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Abstract

Every day, about 20% of the clean water produced in the world is lost due to pipe
leaks. Due to limitations in available technologies, most of the leaks are either not
found, or found too late. Every year, there are 240,000 water pipe breaks in the
US, and many of them cause sinkholes and other severe damage to the infrastructure.
Water utilities need methods for detecting and locating such leaks before they become
big breaks, so that they can perform preventative maintenance. This is to save water
and protect infrastructure. This thesis presents the design, analysis, fabrication and
field test validations of such a solution. I developed soft robots for early detection
of leaks in water pipes when the water service is on. This work introduces four key
contributions: (1) Design, fabrication and field validations of soft robots for operating
water pipes (2) Design, fabrication and field validations of a tactile sensor for detecting
leaks in operating water pipes (3) Differentiate leaks from false positives with a low-
cost soft bending angle sensor (4) A practical, minimalism approach to the in-pipe
localization, specifically for soft robots.

The results are validated in simulations, lab, and field experiments. Those sensors
and robots are designed to be low-cost and scalable. They are fabricated with ordinary
material with ordinary tools. It is a sub-500-dollar solution to a multi-billion-dollar
water and infrastructure problem.

Thesis Supervisor: Kamal Youcef-Toumi
Title: Professor, Department of Mechanical Engineering
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Chapter 1

Introduction

1.1 Water leakage is Not Just a Resource Problem

Access to clean water is one of the most challenging problems facing the humanity.

The rapid development and deployment of the next generation of water related tech-

nologies is key to solving the issue of clean water for the expanding world population

under the pressure of climate change. It is predicted that by 2050 about 64% of the

developing world and 86% of the developed world will be urbanized [7]. The United

Nations also recently projected that nearly all global population growth from 2017

to 2030 will be absorbed by cities, about 1.1 billion new urbanites over the next 13

years [8]. In urban environments, water leakage is at the forefront of the issues within

the water access and distribution system.

Every day, the underground water distribution pipe systems in the world loses

20% of its clean water supply due to leaks [9I. Many of those leaks are either not

found, or found too late. When most leaks are found, they would have already

developed into pipe breaks that cause sinkholes in the streets and severe damage the

surrounding infrastructure. Every year, there are about 240,000 accidents as such

in the US [101, causing billions of dollars in property damages. When occurred in

urbanized areas, each pipe break could cost the local water utility an average of USD

200,000 of property damages and repair expenses [11]. The consequences are much

more than the financial loss to the water utility; they also include the intangibles
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such as water service interruptions to residents and business, blockage of traffic, etc.

In comparison, if those leaks were detected before they become big problems, they

could be fixed with controlled excavations that typically cost USD 20,000 each [11].

To water utilities, this means a 90% reduction in the financial loss, the prevention

of public safety incidences, the savings of millions of gallons of water, and overall a

more consistent water service.

The total effect of water leaks is even more than the loss of precious water resources

and infrastructure damage. Wetland and wildlife preservation groups reported that

leaks force communities to draw more water from local bodies of water than they

need, and thus accelerate the decline of local wetland ecosystems. City officials in

developing nations said that the poor often suffer the most from water shortages,

and water leaks make it even more difficult to secure their access to clean water,

a basic human right. Leaks also contaminate the water in the pipes and threaten

consumers' health. Policy scholars report that leaks kill economic opportunities for

developing nations. Talents, investors and companies turn many cities in developing

countries away because they do not have a supportive infrastructure such as a reliable

water service. Consequently, these cities lose global competitiveness, suffering from

slower economic growth and less funding for infrastructure improvement. This is a

downward spiral toward the worst.

1.2 Gaps in Existing Technologies: Early, Accurate,

Consistent

Water utilities commonly use a combination of nightline and acoustic leak detection to

find leaks. Nightline refers to the lowest hourly water flow rate in a part of the water

pipe network, and it is typically measured at 2am in the morning every day. This

monitoring is enabled by connected water meters, commonly known as Automated

Meter Reading (AMR). If nightline increased drastically in one day and stay high

for the following days, it indicates a high probability of leaks in the area. Given a
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slow sampling rate of once per day and relatively low signal to noise ratio due to

random resident water consumption, water utilities only had success in identifying

relatively big leaks. Moreover, this method indicates zones of possible leak but does

not pinpoint leaks.

After the zone of leaks are identified, water companies will send in technicians to

use acoustic leak detection tools to locate the leak. The two most common acoustic

tools are listeners and signal correlators. Technicians can walk above the underground

water pipes and listen for the signature noise generated by leaks. They can also attach

two acoustic sensors a few hundreds of feet apart from each other on the same pipeline.

They measure the vibrational signal generated by the same leaks in between them.

The phase delay in their measurements can be used to calculate the distance of the

leaks from those sensors. Those acoustic techniques are non-invasive and easy to use

by skilled technicians, but they suffer from three drawbacks: low sensitivity, lack of

consistency, and pipe material dependency. Commonly they can find leaks losing

about 10 gallons of water per minute within 10 feet accuracy when it is quiet in the

environment. A 10-gallon-a-minute leak is already big; it loses water twice as fast

as one person uses in a shower. If there are traffic and noise in the environment, air

pockets in the ground near the pipe or a low pressure in the water pipes, the result will

have a worse signal to noise ratio. The leaks are either not detected, or the location

error can be as much as 100 feet. Last but not the least, those acoustic techniques

are developed for metallic pipes, and they are ineffective in pipes made of vibration

damping material such as plastics. In UK, China, Mexico, Saudi Arabia and many

other regions in the world, half or more of their water pipes are plastic. Those pipes

are difficult to maintain because the lack of effective leak detection technology.

In addition to nightline and acoustics, there has been a surge of other new above-

ground leak detection solutions from both the industry and academia. Industrialized

solutions such as smart sensor networks and aerial imagining can identify zones of

possible leak. In a smart sensor network implementation such as Visenti, an MIT-

Singapore program spin-off, pressure sensors of high sampling rates are installed all

over the water pipes network to monitor the water hammering, the impulse generated

25



by a newly pipe break [12]. This method does not detect the existing leaks. Many

leaks grow steadily from small ones into pipe breaks, and they remain undetectable

to the smart sensor networks until they break. Aerial leak detection solutions such

as Utilis [13], uses radiometers on either planes or satellites to measure ground water

content on the received spectral images. They infer leaks when detecting water in

the ground, and their performance is affected by rainfall level in the targeted area.

In the academia, researchers are also experimenting leak detection in short ranges

through measuring the change in conductivity or dialectic properties in the ground

due to water leaks[14].

The last category of leak detection solutions are in-pipe robots, and they tend to

be difficult to use but produce more accurate result. Because those in-pipe devices can

get much closer to the leaks than the above-ground methods do, they are more likely

to sense the leaks and pinpoint their locations. The leading in-pipe leak detection

robot is Smartball [151, a free-floating device that listens for leaks from inside the

pipe. It has two main constraints: size and cost. Smartball can only fit inside pipes

of 8 inches in diameter or bigger, while there are more 2, 4 and 6 inches water pipes in

the vast water distribution network [161. Its location is tracked by a series of wireless

tracking system placed along the pipeline. On the other hand, tethered robots such

as Sahara [171 are easier to use but limited by range. Both Smartball and Sahara use

acoustic sensors, and similar to their above-ground counterparts, their performance

is poor in plastic pipes. The other in-pipe solutions are vision based, include cabled

cameras and cameras on rovers. The technician must be highly trained to spot leaks

on the videos. This vision approach is less commonly used in water pipes because

it requires shutdown of the water service and empty the pipe in order to get a good

visual input.

Effective early leak detection will enable water utilities to actively prevent wa-

ter pipe breaks, but the existing solutions cannot deliver that. Instead of shower-size

leaks, early detection solutions must be able to sense early stage leaks that are a mag-

nitude smaller. In order to be effective, it must also locate leaks fast and accurately.

Moreover, as a preventative measure, the leak detection must be carried out when
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the water service is on. If water service must be turned off for leak detection, it is a

major interference to the community as a water pipe break. Lastly, it is not achieved

by any existing technology to detect leaks consistently, independent of constraints

such as pipe material, in-line pressure, soil condition, and noise in the environment.

1.3 Background Work in New Leak Detection Method

In our group at Mechatronics Research Laboratory, we have been investigating a

pressure gradient [18, 191 based in-pipe leak detection method. It addresses the

consistency issue faced by the existing leak detection solutions. It can sense leaks in

low pressure pipes, pipes of any material and any fluid, and detect leaks independent

of any conditions outside the pipe. This method uses a membrane to detect the sharp

pressure drop in the pipe at the leak [18]. The sharp pressure drop and the leak

flow will draw and pull on the membrane. By measuring the force or motion on the

membrane, one can infer the presence of a leak.

There are two main challenges in applying this pressure gradient based leak de-

tection method to real water pipe systems. The first challenge comes from the water

flow. Previous implementations were only successfully demonstrated in static air or

water pipes [18, 19] . Further experiments showed that none of them could consis-

tently register the leak when water is flowing through the pipe. It is a significant

limiting factor to shut down the water service for using this method to find leaks.

The second challenge is about false alarms. Obstacles in the pipeline such as dirt,

scales, and other irregularities often exert forces on the membrane and trigger false

alarms. This issue is unprecedented in acoustics or visual methods.

1.4 Four Proposed Contributions

My goal of this research thesis to develop a practical and consistent early leak detec-

tion solution. Building on top of the pressure gradient based in-pipe leak detection

method, I will focus on designing the robots and sensors that operate inside real, live
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water pipes, and differentiate leaks from false alarms. I will also pursue opportunities

to collaborate with water utilities to test and validate my robots in real underground

water pipes.

Four research contributions are proposed:

1. A soft matter robot for missions in operating underground water pipes. Con-

ventional in-pipe robots are rigid and precise machines, they require convoluted mech-

anisms to transverse in pipes with obstacles, 90-degree bends and Tee junctions. In

this work, a compliant in-pipe robot is designed to address those challenges in a simple

but reliable approach, and the robots are validated in field tests.

2. Leak detector with robust performance in dynamic flow conditions. In the

previous work, the impact of hydrodynamics on the pressure-gradient based leak

detector was not studied. The dynamic water flow rendered the detector ineffective.

In this work, the design of a functional leak detector in dynamic fluid flow is studied

and validated in field tests. Instead of attempting to minimize the impact of fluid flow

on the detector, this design takes advantages of the hydrodynamic effects to improve

its sensitivity and consistency.

3. Differentiate leaks from false positives with a low-cost soft bending angle sensor

Soft matter tactile sensors are widely used in force sensing. However, in a typical

sensor output, effects applied from different directions, for example, normal pressure,

shear stress and torque, are always coupled and they could not be differentiated

from each other. In this work, I investigate the methods to design single soft matter

sensors that can uncouple tension, pressure and bending moments, measure only

one of them while rejecting the disturbance from the others. For example, in leak

detection applications, leaks bend the sensor down and pull, obtrusions bend the

sensor up. I designed and fabricated single piece soft sensor that can tell them apart

through measuring the bending direction and angle. Such sensor is constructed with

low-cost ordinary material in a low-cost, scalable fabrication process. The outcome

is a 1-dollar solution to robustly detect leaks and obtrusions in pipe distinctively at

the same time.

4. A practical, minimalism approach to the in-pipe localization, specifically for
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soft robots. Existing in-pipe robots are often tracked by external sensor networks

or tethers, I propose and evaluate an approach to estimate the robots' path with

a minimum number of on-board sensors only. This approach would be much easier

to setup in the field, and requires minimum power. I designed the robot so it can

identify to the geometric constraints in the active water pipe, such as joints that occurs

frequently, with a minimum number of sensors. The localization algorithm fuses

three data streams: the identification of those repeating features, the conventional

inertia measurement unit outputs and prior knowledge of pipe maps. The algorithm

is performed on both field test data and simulated data. The effects of noise and

errors in the three data streams on the data fusion process, its limitations and the

necessity for tracking with external system are studied in simulation.
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Chapter 2

Soft Passive Robot For Operating

Water Pipes

2.1 Overview

Before diving into the leak sensors and its algorithms, I am going to present the design

and field test validation of the robotic platform for carrying the sensors through water

pipes. Deployment, retrieval of an in-pipe device and how it maneuvers at pipe elbows

are challenging topics. My solution to these challenges is a soft-body, miniaturized

Pipeline inspection Gauge (PIG); it is propelled by the pipe flow and thus cover a

long distance with little power consumption. Unlike regular PIGs, it is made of soft

material and it can follow the water flow through pipe elbows. Through field tests,

the deployment and retrieval procedure for this robot was also demonstrated. The

first prototype was successfully tested in a 52-mm-inner-diameter, cast-iron industrial

pipe system. Another prototype was successfully tested in an underground 150-mm-

diameter, PVC water main.

2.2 Background

A good in-pipe leak sensor is only useful when a mobile platform can carry it through

the water pipes. The city water distribution systems commonly consist of small
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diameter pipes between 50 to 150 mm(2-6 in). There are many T junctions and

elbows. They are operating with water flows inside most all the time. The mobile

platform must be able to go through small diameter pipe systems with T junctions

and elbows, under flow condition. Moreover, the MIT leak sensors use membranes

to detect leaks, and those membranes must be kept within a fix distance to the pipe

wall in order to detect leaks. The platform then must have position and orientation

stability. The existing in-pipe platforms failed to meet both criteria at the same

time. On one end of the spectrum, free floating system such as the Smartball [20]

can follow the water flow through pipes with elbows. In-pipe swimming robot such as

[21] can actively turn at T junctions and elbows. Both systems are small and move

in pipe without contacting the pipe walls. However, they are easily affected by the

turbulence in the pipe. They cannot maintain the position and orientation of the

leak sensor. On the other end, Pipeline Inspection Gauges (PIGs) are flow driven

robots, they slide on the pipe walls. They can carry ultrasonic transducers, magnetic

flux leakage sensors, and other sensors with similar position and orientation stability

requirements, through pipelines [221. Regular PIGs are rigid and single-piece. Some

others are more like trains, having multiple sections connected with joints, such as

[23]. Single-piece PIGs cannot make sharp turns around pipe elbows but train-like

PIGs can. However, all PIGs have been developed for larger diameter pipes; ones for

small diameter pipes are difficult to build.

In-pipe Mobility was the real problem our research group faced. In the develop-

ment of the leak sensor, our lab partnered with PipeTech LLC in Saudi Arabia, a

professional pipeline service company. PipeTech offered their industrial test facility

(Fig. 2-1, a 1.5 km (0.93 mile) long, 52 mm (2.05 in) inner diameter, cast iron pipe

loop with many elbows, for validating the leak detection technology. To simulate real

applications, there would be pressurized water flow in the pipeline during the test.

There were no available and effective mobile platforms for such a small diameter and

zigzagging pipe system. A design of a mobile platform for those pipe systems is

necessary.

Meanwhile, development of soft robotics in recent years provided an inspiration
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Figure 2-1: A 1.5km long, 52mm inner diameter, cast iron pipe loop for testing
pipeline technologies in industrial settings.

for in-pipe systems. Robots made with soft rubber could move while been squeezed

or bent [24, 25]. Soft sensors [26, 27] measured conveniently strains in multiple di-

rections. Soft material was also used to build swimming robots that mimic real

fishes swimming [28, 29]. Soft material provides many possibilities for building in-

pipe systems; it is resilient, deformable, waterproof, easy to tune, and easy to embed

electronics.

In this chapter, I present the design of a soft-body robot as an effective solution

for carrying sensors through small diameter water pipe systems. It is driven by the

pipe flow so it can go a long distance with little power consumption. It is soft and it

can follow the water flow through pipe elbows. Simple and effective deployment and

retrieval method for this soft-body robot are also developed. The prototype robot

successfully carried a leak sensor through the 52mm inner diameter industrial pipe

loop at PipeTech LLC as shown in Figure 2-1.
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2.3 Robot Design

2.3.1 Soft and Passive

The goal is to design a robot for carrying the MIT leak sensor [30, 31] through a small

diameter, complicated water pipe system. Since the leak sensor works in both plastic

and metallic pipes, this robot should also be able to work in both type of pipes. The

PipeTech's industrial testing pipeline has a single entrance, a single exit and many

elbows. The following design requirements applies to this testing pipeline. The robot

should be able to

(1) move in a 52 mm inner diameter pipe when there is a pressurized flow in the pipe.

The pressure is 2-4 Bar gauge and the flow rate is 0.3-0.7 m/s.

(2) go through T junctions

(3) go through pipe elbows

(4) go through pipes with mild obstacles

(5) maintain the position and orientation stability for the sensor it carries

(6) be untethered and have a range larger than 1.5 km

While designing this robot, many features can be learned from oil pipeline robots

known as PIGs. PIGs are flow driven, so it consumes no power for mobility. Given

the flow in the pipeline and the range requirement, this robot can be flow driven like

regular PIGs. Thus, although powered by batteries, an industrial PIG can go through

tens of kilometers of pipeline without recharging. There can be fewer electronic

components in the robot, since its power consumption is low and it needs no actuators.

This allows the robot to be very compact, a much desired feature for going into small

diameter pipes. PIGs are usually of the same diameter as the pipeline, so it moves like

a piston in the pipe, with perfect position and orientation stability. Thus a PIG-like

robot will be able to satisfy design requirement (1),(5) and (6).

Making the robot out of soft material can help it additionally meet design require-

ment (2), (3), and (4). A soft material is appealing for its capability to squeeze and

bend. In a water pipe, it is common to see dirt, scales and other pipe diameter reduc-
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(a) (b)

Figure 2-2: Conceptual soft-body robot bends and makes through a T junction and
pipe bents. The blue part is the leak sensor and the yellow part is the robot.

tions obtruding the path for the robot. Being able to squeeze through those' regions

makes the robot more reliable. A soft-body robot can naturally follow the flow and

bend to turn around elbows. Moreover, with the correct head design, a soft-body

robot can bend at T junctions, as shown in Figure 2-2. In this figure, the yellow

robot carries a blue leak sensor. The leak sensor has little adaptability or flexibility.

When the system enters the T junction from the vertical branch, its head will touch

the bottom of the T junction and bend along the direction of the flow. As the frontal

part of the robot bends and aligns with the horizontal pipe, it will pull the leak sensor

into horizontal pipe. The head of the robot must facilitate the turn; it should slide in

the horizontal pipe, guide the entire system to turn rather than putting a brake on

it. In a different case when the robot enters the T junction from the left side of the

horizontal pipe and intends to go up to the vertical branch, the robot will not be able

to do so without actuation. Even with actuation, if the flow speed in the horizontal

pipe is high and the robot enters the T junction with large momentum, it would still

have a hard time turning vertical. Thus a soft-body robot can only go through T

junctions in certain cases. Thus when using this robot in a pipe system, the places

where it can go will be limited by the layout of the T junctions and the pipe flow.

However, being able to turn at elbows and T junctions in some cases is already a

big leap forward when compared to regular PIGs. Moreover, this limitation makes it

easier to predict where this flow driven robot can go.

Thus the concept of a robot is formulated as shown in Figure 2-3. Its main body
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is soft and can bend to go around elbows and T junctions. It has no actuation and it
is flow driven. It is very compact. Electronics will be embedded in the soft body for
integrity and waterproofness. It has a solid cap in the front to guide the robot and
reduce friction upon contact when it runs into T junctions and elbows.

The robot carries the leak sensor in the back. Details of the leak sensor will be
presented in the next chapter. Structurally, it consists of four blue membranes, and
four yellow supports and they form a circular pattern when viewed from the back of
the robot. The yellow supports are like umbrellas; they are spring loaded and forced
to expand. They keep the membrane sensors close the pipe wall.

Wn

Membrane sensor support soft body cap

Leak Sensor drone

Figure 2-3: Concept of the soft-body robot carrying a leak sensor.

2.3.2 Material and Geometry

The robot's ability to turn is determined by its flexibility and its flexibility is depen-
dent on ts material and geometry. The material choice is first to be addressed. Then
the shape factor, L, Ha, and W, in Figure 2-3 are discussed. From the T junction

case shown in Figure 2-2, it can be seen that the length of the robot, L, must be

similar to the diameter of the pipe so it can bend in the horizontal pipe before the
leak sensor enters. The place that deforms the most easily on the robot is its neck,
the thinnest part of its body. Thus the neck location H, and the neck width W"

affects the robots ability to bend.
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A set of experiments were conducted to find the best available soft material for this

robot. The Ecoflex and Moldstar product lines from Smooth-on LLC are a wide range

of well-documented and easy-to-make silicone rubber material. However, hardness

does not exactly transfer into spring constants analytically because the shape of the

soft body matters. Six products of adjacent Shore Hardness values were experimented.

Half ellipsoidal shaped dummy robots as shown on the left of Figure 2-4 were made

for each material. The soft part is 50mm long, 45mm in diameter at the base. On

the tip was a rigid cap of 15mm in height. In the test, each soft body was fixed on

the base while its tip was being pulled 3 cm to the left with a dynamometer. The

steady tate force was measured and plotted in Figure 2-4. 'A low force requirement

was preferred, since that translated to low pressure requirement for the pipe flow to

push the robot through bends. The softer silicone rubbers of Shore 00-30 and 00-50

hardness required little force to bend, while the harder ones of Shore A 10-20 required

more than twice the force to bend. The last one of Shore A-40 could not be bent

and thus not plotted. It was also observed that the soft body made of Shore 00-30

rubber would buckle first with an axial force, while the others bend first given the

same loading. Buckling is not desired for turning at T junctions. Thus the next

easiest-to-bend material, Ecoflex silicone rubber of Shore 00-50 hardness, was chosen

for the robot.

25
z

0

10

5

0
3cm 00-30 00-50 AlO A16 A20

Shore Hardness of the Rubber Material

Figure 2-4: Experiment to determine the best available material for robot. Silicone
rubbers of different Shore hardness values are made into the same soft body shape
and tested in the same way.

Similar experiments were also used to determine a feasible robot geometry. It was

a hypothesis that if there was a neck in the geometry, a soft body would always bend
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at the neck, and the required force to bend would be dependent on the size of the
neck. A few trials confirmed that the soft body always bent at the neck. Then a set
of experiments were designed to determine the neck width. As shown in the left of
Figure 2-5, dummy robots with concave shapes of different width to height ratio were
made and tested. The Height of the soft part, H, were all around 50 mm, and the base
was 45mm in diameter. The neck was set to be 35mm from the base given the space
between the neck and base was needed to contain electronics. The rigid cap was 15
mm high. In the test, each soft body is fixed on the base while its tip is being pulled 2
cm to the left. The steady state force is measured and plotted in Figure 2-5. The first

data point was of the same half ellipsoidal soft body from the material test earlier and*
it is convex. The other three body were concave and they all had much lower bend
force requirements. As the neck got thinner, the force required to bend was much
lower, and the soft body could buckle before it bent. Buckling is undesired because it
can prevent the robot from going around Tee junctions. Moreover, thin neck meant
less space in the robot. Thus the median ratio around H:W=2 is chosen for both easy
to bend and large space in the body. At this H:W ratio, most deformation during a
bend occurred at the neck, and the space between the base and the neck was little
affected. If electronics were placed in that space, they would not be squeezed or
stretched significantly during a bend.

Neck in the soft body acts like a joint; it allows us to dimension the robot like a

Diffficot to bend
6

IL

H W 4

2 - * Toosof &

0
2cm 0.5 1.5 2.5 3.S
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Figure 2-5: Experiment to determine the effect of H:W ratio of the soft body on its
bending capability. Four soft bodies of different width to height ratios are made of
the same 00-50 silicone rubber.
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rigid linkage. In the design requirement, the robot is desired to go around Tee junc-

tions and pipe elbow. The robot's dimension decides if it can meet this requirement.

In the case of a multi-module, rigid-body robot, each of its module has to be shorter

than the diameter of the pipe in order to go round the Tee junction. This soft robot,
being able to bent, can be longer than the pipe diameter. How to determine the range

of feasible dimensions for this soft robot?With the neck in the soft body, the soft robot

always deforms first at the neck when bending. This neck can then be modeled as the

joint, and the robot body can be modeled as rigid linkages as indicated in Figure 2-6.
Now we can apply the classic principle from the rigid body robot design in this soft

body robot design. The main body part of the robot that contains electronics and

other inflexible components, should have a length H less than the pipe diameter,
which is 52mm in this case. As long as this dimension constraint is met, the robot

can maneuver around Tee junctions and 90 degree bends.

Hn

Figure 2-6: Modeling soft body robot as a linkage

2.4 2" Robot and Its Field Test in An Industrial Fa-

cility

The leak detection robot was first built and pilot tested in an industrial facility in

Saudi Arabia. The field test required the robot to transverse through a 52-mm-inner-

diameter, cast-iron industrial pipe system and locate leaks. In this section, the robot

prototype and the operation part of the field test are presented in detail. The leak

detection results are not presented here but kept for the next Chapter which focuses
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on the leak sensor.

2.4.1 The 2" Robot Prototype

)

Elbec-
tronics

shaft plate bra

Figure 2-7: 2 inch robot prototype and Inside it.

From the above analysis result, a prototype for the 52mm diameter pipe system

was built. It is shown in Figure 2-7-top. The outer diameter of the robot was 50

mm, in order to accommodate possible rust and dirt in the pipe. In the front of

the robot is a rigid, smooth plastic head. It guides the robot around Tee junctions

and pipe bents. In the back of the robot, there was a rigid plastic plate of 44 mm

in diameter embedded in the silicone rubber. On the left side of this plate connects

the shaft and the support for the leak sensor. The support of the leak sensor was 52

mm in diameter. This means in the 52mm diameter pipe, the support is in contact
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with the pipe surface all the time and maintain the robot's orientation. The detailed

dimensions of the robot are listed in Table 2.1.

,~-,

~

(a) (b)

Figure 2-8: interface between plastic components and the rubber part in the robot
prototype

The plastic components and the rubber robot body were joined together through

brackets. Plastic parts cannot be bonded to the silicone rubber body via adhesives.

Neither can they be bonded with screws and nuts. I propose a way to connect them

without a third material. As shown in Figure 2-8, there were brackets similar to

trusses in the back of the robot head and on the plate connecting to the support.

When these brackets were embedded in the silicone rubber, the silicone rubber would

fill in the empty spaces in the brackets and grab onto the brackets. Thus the plastic

parts were connected to the rubber body.

The robot prototype can be described as a low-cost, wireless data logging device.

It contains just enough electronics for it to record its motion and the leak sensor

outputs. The motion sensors are accelerometers, gyroscopes and compass, all built

Table 2.1: Parameters of the new leak sensor.
Dimensions value
L 50 mm

_Hn 35 mm
_W 25 mm
_He 15 mm

Ld 117 mm
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into one inertial measurement unit(IMU). The leak sensor, which will be described

in more details in the next chapters, are essentially analog tactile sensors. A micro

controller collects all the data and stores in a memory device. Upon request, it can

transmit and receive data through wireless connection. The entire electronic system is

powered by on-board batteries. The battery is rechargeable through inductive wireless

charging coil. Given the wireless charging and wireless communication, the robot's

electronic system is perfectly isolated inside the silicone rubber and thus waterproof.

There is no physical access point, and no water can leak into the electronics. It is

though necessary to turn on and off the robot. This can be done in two different ways.

It can be a software power switch. The robot can be programmed to be waken up from

a ultra-low power, sleep stage into fully functional stage. It can also be a hardware

power switch. A button can be embedded inside the soft body. When pushed in a

specific way, it turns on the electronics. In this robot prototype, I implemented the

hardware power switch. All electronics components are off-shelf. The total cost is

around 60 US dollars.

Table 2.2: Bill of Material
Function
IMU motion sensor
Analog Digital Converter(ADC)
Micro controller
Data storage
Power control
Wireless charging
Power supply
Voltage divider

in the prototype robot electronics system
Item
Pololu MinIMU-9 v5
Knacro ADS1015
Wemos DI mini with ESP8266 WIFI core
MicroSD shield Wemos DI mini + 16GB microSD card
Adafruit Micro Lipo jack+Adafruit push button
Adafruit Inductive Charging Set
Adafruit 3.7V 350mAh Lithium Ion Polymer battery
50kOhm Resistors x4

The robot prototypes were fabricated in a simple molding process. All components

of the robot, including the plastic parts and the electronics, were placed inside a mold.

Then liquid form silicone rubber was poured into the mold. After 4 hours, the liquid

rubber solidified and the robot was complete. The visual details of this molding

process is illustrated in the Appendix.
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Figure 2-9: Electronics Diagram of the complete soft leak detection robot.

2.4.2 Field Test Setup, Insertion And Retrieval Methods

The 2" robot was tested in the industrial facility (Figure 2-1) provided by Pipetech

LLC in Saudi Arabia. The goal of the tests was to verify that this robot was a

good mobile platform for carrying sensors through small diameter water pipe systems

with bends and Tee junctions. In the facility, a section of the 1.5km of pipe loop

was isolated for the tests. This section covered 221 meters, and there are had four

bends in it(Figure 2-11). The entire pipeline was in horizontal plane. The engineers

at Pipetech LLC generously customized the facility for robot insertion and retrieval.

The insertion tool (Figure 2-13) was connected to this segment at the entrance, and

the retrieval tool (Figure 2-15) at the exit.

The robot was inserted into the pipes with a by-pass. Th by-pass is a parallel loop

is an addition to the pipeline to give the water stream two route options to go from

point A to point B. The loop is described in Figure 2-12. Before the robot insertion,
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Figure 2-10: Electronic components inside the prototype robot
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Figure 2-11: Sketch of the 221 m segment of the pipeline for testing the robot.

valve 1, 2 and 3 were closed and valve 4 was open. The water flow skipped the loop

and went through valve 4 to the outlet. Then valve 1 was open, and the robot was
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inserted through valve 1 and passing the T junction to a point close to valve 2. Then

valve 1 was closed and valve 3 was open. This action replenished the loop with water

and pushed the robot against valve 2. Valve 2 was then open and valve 4 was closed

at the same time. The water flow went through the loop and carried the robot toward

outlet. This kind of parallel loop can be added easily to existing bends or U turns

in the water pipe system. This method was implemented at the facility for field test

shown in Figure 2-13 and used during the field test.

Valve 1
T-7

Entrant

Valve 2

K
Valve 3

Flow out

Flow in

Figure 2-12: The concept of inserting the robot into the pipeline through a by pass.

Figure 2-13: Example of the by-pass built for robot insertion.
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On the other end of the pipe system, another by-pass with a Y junction was

implemented for retrieving the robot. The retrieval tool setup was shown in Figure

2-14. Before the robot entered T junction on the left which is the entrance to the

parallel loop, valve 1 and 3 were closed and valve 2 and 4 were open. This forced the

flow and the robot to enter the parallel loop and move toward the Y junction. When

the robot reached the metal mesh at the Y junction, its momentum and the fluid

force behind it pushed it toward valve 3. Meanwhile, the flow went through the mesh

and continued through the parallel loop. The robot then hit valve 3 and produced a

clear "dong" sound. After detecting the sound or sensing the arrival of the robot with

other methods, the operator opened valve 1 and then closed valve 2 and 4. The flow

then skipped the parallel loop and moved through valve 1 toward outlet. Afterward,

it was safe to retrieve the robot from valve 3 as shown in Figure 2-15.

Flow out

Valve 4

Valve 3 Exit
Valve 1

Flow in Valve 2
Metal mesh 1 -

Figure 2-14: The concept of retrieving the robot through a Y junction.

2.4.3 Experiment Results

In a total of 20 tests, the robot transversed through the pipe system at two different

speeds with 100% success rate. In the first set of experiments, the pipeline input pres-

sure was 4 bar gauge. The test procedure was as follows: the operator deployed the

robot with the insertion tool, waited for a few minutes, listened for the robot's arrival
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inside the retrieval tool, took out the robot and downloaded the motion information

from the robot. This test was repeated for 13 times, and the robot was successfully

launched and retrieved in all 13 tests. The average runtime was 345 seconds, and it

put the average speed of the robot at about 0.64 m/s. The same tests were repeated

7 times for 2 bar gauge pressure at the pipeline inlet. The average runtime was 550

seconds, and the average speed of the robot was 0.40 m/s. In a total distance of 4,420

meters, the robot went through all 80 elbows and 40 T junctions (one T junction

in each insertion and retrieval tools) at 100% success rate. It enabled the successful

collection of leak measurement for validating the leak sensor's performance, which

will be presented in the next Chapter. To the best of our knowledge, this was the

first untethered robot that successfully ran through a long distance of small diameter

water pipe under operating conditions.

Figure 2-15: Example of the robot retrieval from a Y junction. The metallic mesh, in
the shape of a tube, traps the robot inside. The mesh and the robot are being taken
off the pipe system in this picture.
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2.5 Adaptable 6" Robot and Its Field Test in Vir-

ginia, US

After the success in industrial facility tests, I moved on to the next milestone: field

test in real, underground water mains. Our group was very fortunate to partner

with a municipal water utility, the Wise County Public Service Authority(PSA) in

Virginia, US, to conduct this field test. New robots were designed to fit in the 6-

inch pipes in the field. To account for the pipe diameter inconsistency in real water

mains, the new robots had more adaptability, so they -were unlikely to get stuck in

smaller-than-expected pipes. In this section, the design of this more adaptable robot

is first presented. Then the details of the field test are also presented. Under the non-

disclosure agreement with the partner utility, the leak detection result is withheld

from this document.

2.5.1 More Adaptable Robot

The design of the 2" robot has a tight tolerance to pipe inner diameters, and that can

be a problem. In the field test in the industrial facility, the exact inner diameter of

the pipeline was known and accurate. The 2" robot was designed to fit in that pipe,

and it succeeded. It may not always be the case that the exact inner pipe diameter is

known, or the pipe inner diameter is consistent throughout the pipeline. It happens

often that municipal water companies know the outer diameter of the pipeline but

not the inner diameter. In another test, the current 2" robot was deployed into a

smaller pipe, 1.9"(49mm) and it was stuck. Although the robot is compressible as

it is made of soft rubber, it cannot transverse through the pipes smoothly when it

is in a compressed state. Compressibility is different from adaptability for these soft

rubber robots.
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Adhesive friction on soft rubber

The robot was stuck in a smaller pipe because of friction force, and more specifically,

adhesive friction. Elastomer has the advantage over rigid material in many appli-

cations because it is flexible, but in this case it also has the disadvantage of being

too flexible. When a rigid material is sliding on another rigid surface under zero

normal pressure, it has a friction coefficient of co. When a large normal pressure

is imposed, the friction coefficient is still co. In comparison, a soft to rigid contact

is completely different; the friction coefficient increases with the normal pressure as

shown in Figure 2-16. When the silicone rubber is sliding on the rigid pipe surface

under zero compression, it has a friction coefficient of co. When the normal pressure is

increased, the silicone rubber will be compressed into any of the microscopic grooves

on the rigid surface as if it forms a perfect seal, as illustrated in Figure 2-17. The

distance between the rubber particle and the pipe material particle at the interface

are significantly reduced. This leads to a large increase in the Van Der Vaal force be-

tween the two surfaces. As a result, the friction coefficient of a soft rubber on a rigid

surface increases as the normal pressure increases. Even when the silicone rubber is

compressed by a small percentage, the friction force can be very large. This is known

as the adhesive friction[32, 1] effect on the soft rubber and other elastomer. It is the

reason that when the 2" soft robot could not move while being compressed inside a

1.9" pipe.

It is necessary to design the robot to be adaptable so it can get through pipes

smaller than what the robot is designed for. Even when the pipeline the robot is

deployed into is smaller than expected, the robot should be able to transverse through

it smoothly. This makes the robot more robust in the field. At the same time, the

robot should still be soft and flexible, so it can maneuver through Tee junctions and

pipe elbows. It seems to be a challenge to meet both the flexibility requirement and

the adaptability requirement.
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Figure 2-16: Example elastomer's adhesive friction curve

Increase normal pressure
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Figure 2-17: Concept of adhesive friction on elastomer

Diameter reduction

Figure 2-18: Additional design requirement on the robot for real water mains: adapt-
ability

Reduce rubber surface area

I propose two solutions to add adaptability to the robot. The first one is to reduce the

rubber surface area. When the 2" robot as shown in Figure 2-19 is compressed, more

of the rubber body surface, in addition to the rigid support, comes into contact with

the pipe surface. The rubber surface is where the adhesive friction occurs. To reduce
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and limit the adhesive friction, one can reduce all the rubber surface area that can

possibly come to contact with the pipe surface. Therefore, when making a 6" robot

for the field test in Virginia, I did not simply enlarge the 2" robot. They shared the

same electronic system, but their geometries are different. Instead of a solid trunk

of soft body, the 6" robot has a thin soft body with blue fins. The blue fins are

made with knit fabric; they are more stiff than the silicone rubber 00-50 and they

strengthen the thin rubber body. In addition, the leak detector is now in two layers

rather than one layer. Each layer has four membrane sensors that covers 180 degrees

of the 360 degree circumference. Given these two layer design and the thin soft body,

this 6" robot can be compressed down to 4" in diameter without any rubber surface

in direct contact with the pipe. The adhesive friction problem is thus avoided. This

6" robot was used in the field test in Virginia.

2-inch robot

6-inch robot

Figure 2-19: Comparison between the 2 inch robot and 6 inch robot

The second solution is to add a low friction coating to the robot. This solution

suits robots of all sizes, in particularly the small size ones that is too difficult to apply

the last method. If the soft body of the robot is coated with a low friction material
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that has relatively constant friction coefficient within a large range of normal pressure,

then the robot could move within a smaller pipe smoothly. This coating material also

has to be soft. One of such material is hydrogel[33]. Hydrogel is hydrophilic. When

coating on the robot, it acts like a layer of water stick to the robot surface. This

layer of water is incompressible and not dispersible. When the rubber body of the

robot being compressed, this hydrogel layer will always stay between the rubber and

the pipe surface, as illustrated in Figure2-20. There is no more contact between the

rubber and the pipe surface and thus no more adhesive friction. Moreover, hydrogel

has the friction property as low as that of water. With the hydrogel coating, the

robot can slide along the pipe surface even at a large percentage of compression.

Increase normal pressure

Silicone rubber Silicone rubber
Hydrogel Hydrogel
Pipe surface Pipe surface

(a) (b)

Figure 2-20: Concept of hydrogel coating on friction reduction

The smoothing effect of hydrogel coating is outstanding in the pipeline robot

applications. A pair of 2" robots, one with hydrogel coating and one without it, were

compared in experiments. When they were deployed in a 2"(51mm) inner diameter,

schedule 40 clear PVC pipe, they all transversed smoothly through the pipe given very

low pressure. This pipe had the inner diameter the robots were designed for. A video

of this experiment is available at this link: http://mechatronics.mit.edu/hydrogel/.

However, when the robots were deployed into a 1.94"(49.25mm) inner diameter clear

PVC pipe, the results diverged significantly. The robot without hydrogel coating

was constantly vibration in the direction of the pipe while moving through it. When

studied in slow motion, it was observed that the robot was stuck momentarily, then

the water pressure in its back built up and pushed it forward a little, and then it

was stuck again. This process repeated till the end of the pipeline. In comparison,

the robot with hydrogel transversed through the pipeline smoothly, as if the pipe was
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not smaller than the robot's size at all. The video of this experiment is also available

at this link: http://mechatronics.mit.edu/hydrogel/. Both robots were compressed

in this smaller pipe. While the regular soft robot's motion became unstable, the

hydrogel coated robot's motion was unaffected by the reduction in pipe diameter.

Robot without hydrogel skin ay in 5 x slower

Robot wi th hydrogel skin Pa in 5 x slower

Water flow
10 cm

Figure 2-21: Comparison between the regular robot and hydrogel coated robot, Video
link: http://mechatronics.mit.edu/hydrogel/

2.5.2 Field Test Site Preparation

The first field test in the US was conducted in a 6-inch water main in Wise County,

VA, on Wednesday January 10, 2018. This pilot project was supported by Wise

County Public Service Authority in Wise County, VA. The inspected water main is

about 1.2 miles in length and built with PVC pipes in the early 1970s. The inner

diameter of this water main is 6 inches, and the pipe is of SDR21 specification. It is

completely buried underground. It was known to be leaking but none of the exact

locations of any leaks were known. The water pressure inside was at least 20psi gauge

pressure. The water flow rate was estimated to be around 200 gallons per minute.

The 6" robot as shown in Fig. 2-19 was used in this field test. During the test, the
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robot and the water flow entered from the Nash Chapel end of the pipeline and exit

from 5599 Pole Bridge Rd end, as indicated in Figure 2-22.

Figure 2-22: Satellite map of the 6 inch pipe experiment site

Wise County PSA made two reconfigurations to the existing water main for test-

ing the robot, and those modifications are illustrated in Figure 2-23:

1) Access points were installed on the buried water main to allow the robot to enter

and exit. Two Tee junctions were installed at each end of the water main and made

accessible from above ground. The first Tee junction was installed after a valve near

Nash Chapel as shown in Figure 2-22. The robot would be inserted into the water

main through this Tee junction. A second Tee junction was installed near 5599 Pole

Bridge Rd, right before a pipe dead end. The robot would be retrieved from this Tee

junction. Both Tee junctions were of 6 inches in inner diameter in all three ways.

2) Valves on any Tee junctions along the water main that may draw the robot in
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were turned off. The leak detection robot flows with water, and it has no active con-

trol of which way to go at a Tee junction. It simply flows with the water. The robot is

designed for pipes of an inner diameter of 4 - 6 inches. To prevent the robot entering

any pipe branches and guide the robot toward the designated exit point, Wise County

PSA was asked to shut off the water flow to any 4 inch or larger branches along the

6-inch water main. There are a few Tee junctions and many service connections, but

among them there is only one 4-inch connection. It is the Road 727 connection in

Figure 2-22. The valve on this 4-inch connection was turned off and all the other

smaller connections were left on.

upstream valve 6 Inch Water Main

Fiow I <4 inch Connections Flow out

Tee j 4 Inch Connection (on) Tee Junction
Robot Entrance (OM Robot Exit

Figure 2-23: The concept of inserting the robot into the pipeline through a by pass.

2.5.3 Field Test Procedure

The field test was performed in the following procedure, and this procedure was also

documented in Figure 2-24 and Figure 2-25:

1) The upstream valve was shut and the 6-inch water main was drained until the

robot entrance Tee could be opened safely.

2) The robot was disinfected with bleach spray.

3) PSA technician Steven Jenkins step into the trench, put the robot into the entrance

Tee junction after this Tee was opened fully. He put his hand and the robot into the

Tee, and manually aligned the robot so its head pointed downstream.

4) The entrance Tee junction was closed, and the upstream valve was gradually turned

on to increase the water flow in the pipe.

5) The exit Tee junction was 25% open in order to ensure a strong water flow in the

pipe.
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6) After 42 minutes of waiting, the robot arrived inside the exit Tee junction. Its

yellow head appeared behind the gate valve at the Tee. The Tee junction was fully

open to let the robot out.

7) The exit Tee junction was gradually turned off to complete the experiment.

Figure 2-24: Picture of the Tee junction for robot entrance (left) and PSA Technician
Steven Jenkins manually placed the robot in this Tee

2.5.4 Field Test Result and Discussion

The 6-inch robot was successfully deployed into this 6-inch water main and retrieved

at its end. The robot was successfully inserted into the water main manually through

a Tee junction, and successfully retrieved from the same water main from another

Tee junction. It took the robot 42 minutes to transit through the 1.2 miles of pipes

without human intervention. The average speed of the robot was 2.5 feet per second,

slightly slower than human walking speed.
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Figure 2-25: Left: Picture of the Tee junction for robot exit. Right: Picture of
shutting the Tee junction off after the robot was retrieved. The persons in the pic-
ture from left to right are Steven Jenkins(PSA), You Wu(MIT, holding the retrieved
robot), Alan Harrison(PSA) and Shane Clark(PSA).

The most significant finding in this field test is that the robot can be retrieved

from the pipelines without a capturing tool. In the Saudi Arabia experiment, a net

was placed inside the pipeline to intercept the robot, as shown in Fig. 2-14. In this

Virginia field test, the robot simply followed the out flux of water flow and exited

from the opening Tee junction. This was possible because the robot is soft. While

traveling inside the water pipe, the robot is as if part of the water flow. It goes where

the majority of water goes.

However, this simple retrieval comes at a cost. While retrieving the robot without

a capturing tool, the technicians had to leave the exit Tee junction partially open for

a while. A significant amount of water was coming out from the open Tee junction

and wasted. The technicians have to setup drainage pumps to remove the wasted

water and preventing the site from being flooded. In comparison, with the capturing

tool in the Saudi Arabia experiment, the retrieval process was clean and little water

was wasted. This clean retrieval process is better suited for robotic inspections in

busy urban areas. Although more complex, it prevents flooding of the streets.
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2.6 Conclusion

Passive soft robots are developed to solve the in-pipe mobility challenge. Those robots

are flow driven, so they can inspect long distance pipelines with minimum power

requirement. They are soft and flexible, so they can maneuver around pipe elbows

and Tee junctions. Those robots can also be adaptable, so they can be used in pipes

they are sized for and also pipes that are slightly smaller. The robots demonstrated

their mobility and reliability in field tests. The first robot prototype successfully ran

through a 52-mm-inner-diameter, cast-iron industrial pipe system 20 times. Another

prototype successfully ran through an underground 1.9km long, 150-mm-diameter,

PVC water main. With this reliable robotic platform, we can now design, field-test

and optimize the leak detection sensor.
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Chapter 3

Leak Detection In Operating Water

Pipes

3.1 Overview

In recent years, an increasing amount of effort has been put into developing effective

leak detection solutions for water pipes. Among them, the pressure gradient based

method developed at the Mechatronics Research Lab at Massachusetts Institute of

Technology excels for its sensitivity in low pressure, small diameter pipes[34, 35, 31,

36, 30]. It can also work in both plastic and metallic pipes carrying gas or water.

However, the method was only verified in static fluid pipes, and the previous sensor

designs were unable to detect leaks when there is a significant water flow in the pipe.

This is undesired as the inspection can only be performed when water service is shut

down. A modeling analysis shows that fluid dynamic effects in the water pipe make

the original sensor's dynamics too slow to react to leaks[37]. Moreover, this leak

detection method is prone to false alarms such as obstacles in the pipes, but there is

a lack of studies on this topic. In this chapter, I present three things: the design of

a new leak sensor that is fast enough to detect leaks in dynamic fluid environments,

a prototype for 52mm-inner-diameter pipeline tested in an industrial facility, and a

method to differentiate leaks from false alarms supported by the test results.
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Figure 3-1: Illustration of the leak detection method.

3.2 Background

In recent years, there has been a surge of new leak detection technologies from both

academia and industry. Among them is a predominance of acoustic/wave based leak

detection technologies. For example, a network of hydraulic and acoustic sensors can

be instrumented on the pipe to look for the occurrence of new leaks [12]. A free

floating acoustic sensor can travel with the flow and listen for leaks from inside the

pipe [201. Those acoustics and pressure based methods suffer from loss of signal-

to-noise ratio or accuracy in low pressure water pipes and pipes made of vibration

damping material such as plastics. This is where pressure gradient [30, 31] based in-

pipe leak detection method developed at Massachusetts Institute of Technology fills

in. Its sensitivity in low pressure, small diameter pipes is outstanding, and it can be

used in pipes of any material and any fluid. This method uses a membrane to detect

the sharp pressure drop in a small region around the leak [301. When the membrane

moves in the pipe and arrives at the leak (Figure 3-1), the pressure drop on the leak

side of the membrane results in a suction force on it. The suction force will press

the membrane against the pipe wall, and this results in an increase of friction. By

detecting the effects of the suction force, the increase in friction force, the change of

motion in the device the membrane is attached to, or any combination of the three,

one can infer the presence of a leak.

There are two main challenges in applying pressure gradient based leak detection

method to real water pipe systems. The first challenge comes from the water flow.

Previously, prototypes of this method was only successfully demonstrated in static
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air or water pipes [30, 31, 38]. Further experiments showed that none of them could

consistently register the leak when water is flowing through the pipe. This is a

significant limiting factor for the commercialization, as it requires the water service

being shut down for the entire duration of the inspection job. Moreover, the leak

sensor needs to be transported through the pipeline, and fluid-driven robots such as

the Pipeline Inspection Gauges (PIGs) [22] are the most energy efficient platforms to

do so. On a fluid driven robot, the leak sensor will be moving at the speed of the

flow and it is required to sense leaks in such dynamic fluid environment. The theory

behind the pressure gradient based method is sound and it should work similarly

well with or without the flow. A new leak sensor design for pipes under operating

condition is worth exploring.

The second challenge is about false alarms. This method requires a membrane

moving parallel to the pipeline wall at a close distance. The membrane will me-

chanically interact with obstacles in the pipeline such as dirt, scales, misaligned pipe

connections and other irregularities. These obstacles can trigger false alarms. This

issue is unprecedented in acoustics or pressure based non-mechanical methods. How

this sensing technique treats obstacles needs to be studied.

A new ingredient to the leak sensor design comes from recent advancement in soft

materials in robotics applications. In particular, soft sensors for haptic application

and assistive technologies demonstrated transferable features that is desired for this

leak sensing technology. Those soft sensors are elastomers with sensing elements

embedded in. The sensing elements can be micro fluid channels [39], or conductive

particles [27]. They can be made with different sensitivity in different directions.

They are compact, flexible, single piece sensors. In contrast, implementations of the

pressure gradient based method have been rigid and mechanical. Those ideas of soft

sensors can be applied to the new leak sensor design.

In this chapter, I present the design of a new leak sensor that can detect leaks in

dynamic fluid environments and differentiate leaks from false alarms. System dynamic

analysis was first performed on the original leak sensor [30] to study why it did not

work in this environment. From this analysis, a new leak sensor design was proposed,
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and a prototype for 52mm inner diameter pipes was successfully tested in the lab and

in an industrial facility. With the data of the sensor's response to obstacles from the

test results, a method to differentiate leaks from obstacles was developed.

Figure 3-2: Picture of the original leak detection system. It is a locomotion module
pulling the leak detector.

pipe wall

spring support structure
membrane

symmetry axis

\brce sensor

pipe wall

Figure 3-3: Schematics of the cross-section view of the original leak detector

3.3 Leak Sensor Design

3.3.1 Design Requirements

The goal is to design a sensor that utilizes the pressure gradient based method de-

scribed in Figure 3-1 to detect leaks in operating water pipes. The researchers was

honored to partner with PipeTech LLC in Saudi Arabia in this project. PipeTech

LLC generously provided their industrial facility, a 1.5km long, 52mm inner diameter
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metallic pipeline for the tests. Three design requirements are derived with specifica-

tions for this pipeline. The leak sensor must be able to

(1) generate an indicative leak signal while moving through a pipe with a significant

water flow. The minimum flow speed and sensor speed is 0.3 m/s.

(2) detect small leaks under low pressure. The target leak is a hole of 4mm in diam-

eter and the line gauge pressure below 2 Bar.

(3) go over small obstacles in pipes without getting stuck, and differentiate them from

leaks.

3.3.2 System Modeling and Analysis

In the following parts of the chapter, I want to first make the following distinctions

in names to avoid confusions. The leak sensor is referred to as the system, and it is

the complete module that includes all the components. One of these components is

the sensing element. It refers to the component that converts mechanical effects to

electrical effects, and it can be force sensitive resistors, encoders or other sensors.

Before generating new sensor designs, it is worthwhile to understand why the

previous leak sensor design failed to meet the new design requirements. Why can it

not detect leaks in a pipe with a significant water flow? The original design[30] is

illustrated in Figure 3-2 and 3-3. The design is axial symmetric around the pipe's cen-

terline. The membrane is attached to a gimbal mechanism; the gimbal is maintained

in a normal configuration by a set of springs. The sensing elements are force sensi-

tive resistors at one end of the springs. When the system passes a leak, the increase

of friction force on the membrane is transferred through the gimbal to the sensing

elements. The support structure which maintain the radial position of the system

is simplified in Figure 3-3. This design and its variations have been demonstrated

to work in pressurized stagnant air pipes, even at line pressure as low as around 1

Bar[30 . However, when the leak sensor is attached to a flow driven robot and tested

in a pipe carrying a water flow of similar line pressure, it was unable to detect leaks.

This design seems to work from a static point of view, but a dynamic analysis

gives insights of why it underperforms in water flow. The system can be approximated
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Figure 3-4: The original and the new leak sensor can both be modeled as a two mass
system.

by a two-mass-spring-damper lumped parameter model, as shown in Figure 3-4. The

membrane has a mass of mi*, a spring constant of k, and a damping coefficient 'bi,
due to its elastic properties and the fluid drag force. The mass of the gimbal is M2,

and it has a damping coefficient b2, due to fluid drag force and mechanical friction.

The spring constant of the springs is k2 . The support is treated as a the ground.

The entire system is assumed to move only in the axial direction of the pipe, and the

angular displacement of the gimbal is very small and the system can be linearized.

The input is an increase in friction force, F, on the membrane ml. The reference

frame is fixed to the support in Figure 3-2. The output y can be interpreted as the

displacement of the gimbal M 2. It is proportional to the spring force on the sensing

element. The values of these parameters, either measured or estimated based on fluid

dynamics, are summarized in Table. 3.1.

Y1 0 1 0 0 x 1  0
::-ki : ki 0 Y1
= M 1 I + ml F (3.1)

Y2 0 0 0 1 X2 0
2 0 -(kl+k 2 ) z=a 0X2 Z2 Y2

y = -X2 (3.2)

In a dynamic flow environment, the system does not have a high bandwidth and

that is the main problem. When the leak sensor is attached to a flow driven robot,

they will move at approximately the speed of the flow. When moving at a high speed,
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Table 3.1: Parameters of the original and the new leak sensor.
System Original leak sensor New leak sensor
ki (N/m) 8600 8600
m1 (g) 2.0 2.0
bi (kg/s) 0.6 3.0
k2 (N/m) 2208 2150
m 2 (g) 5.6 0.5
b 2 (kg/s) 3.0 3.0
ma (g) 14.5 0

the occurrence of a small leak is similar to a high frequency input or an impulse input

on the system. The leak sensor must have a high bandwidth in order to react to

the leaks, or it will pass the leak without a change. If only the mass of the system's

components is considered, the original sensor has an impulse response as curve (A)

in Figure 3-5, and its dominant damped natural frequency at 88 Hz. This is true for

the system in air. However, in a water environment, it is more difficult for the system

to change motion since it has to move the fluid in its way. This effect is known as

added mass in fluids[40]. In the original leak sensor, the gimbal is approximately a

thin plate moving perpendicular to the direction of water flow. Its large frontal area

displaces a blob of water as it moves. Thus it has a large added mass ma proportional

to its frontal area.

ma = p7rr2  (3.3)

The estimated ma is almost three times of m 2 in this case. Adding ma to m 2 in

the system model, the original sensor's impulse response slows down and becomes

curve (B) in Figure 3-5. Its dominant damped natural frequency reduces from 88 Hz

to 28 Hz. The system has a much smaller bandwidth in water, and thus it cannot

detect leaks when moving with a fast water flow. On the other hand, the membrane

is like a thin plate moving parallel to the flow, displacing little water as it moves.

Thus its added mass is approximately 0.

The second problem is that the original system cannot differentiate leaks from

obtrusions. In pipes, obtrusions are verycommon. These includes the o-ring at every

pipe joint, reduction in diameter at every valve, and occasional tuberculation and rust
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Figure 3-5: Simulated impulse response of the leak sensors.
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build-ups. These obtrusions interact with the system in a similar way as leaks. Leaks

pull on the membrane m, and indirectly displace the gimbal m2. Obtrusions in pipes

push on the gimbal M 2 directly. Both of external forces are in the same direction,

and their effect cannot be differentiated from the displacement of m 2 or the output

y. Moreover, obtrusions push on the gimbal m 2 directly, unlike the leak input F that

needs to go through the intermediate mass-spring-damper before reaching the gimbal

M 2 . This means the system has more gains for the disturbance from obtrusions than

the desired input from leaks. Not only is the signal from this system indistinguishable

from the noise from disturbances, the signal is also weaker than the noise.

3.3.3 Proposed New Leak Sensor Design

The previous dynamic analysis provides insights into the design of a new leak sensor.

To detect leaks in a pipe with a significant water flow (design requirement 1), the

leak sensor should have a high bandwidth. To do so, m 2 of the system must be small,

and this M 2 includes added mass. One way to minimize the added mass on m 2 is to

eliminate any components between the membrane and the sensing element that may

have a large frontal area moving perpendicular to the flow. One particular design to

realize that is shown in Figure 3-6. In this design, one side of the sensing element

is connected directly to the membrane, and the other side of the sensing element is

fixed on a umbrella-like support structure. When there is a flow moving from left to
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Figure 3-6: Cross sectio n view of the new leak sensor design. The design is axisym-
metric around the pipe's centerline. It has two features: 1) both membrane and the
sensing element are parallel to the flow for minimal added mass; 2) an umbrella-
shaped support structure that keep membrane close to the wall while adapt to pipe
irregularities.

right in the pipe in Figure 3-6, the flow will push the umbrella-like support to expand

and maintain its contact with the wall at all time. Given a strong fluid drag force, it

is reasonable to assume that the support does not move due to leak induced forces,

and can be treated as the ground in the system model (Figure 3-4). Then m2 , b2

and k2 becomes the mass, damping and spring constant of the sensing element. Since

the sensing element now moves parallel to the water flow in the pipe, and like the

membrane, the added mass on the sensing element is close to zero. With less mass,

the new leak sensor will have a higher bandwidth and thus it can detect leaks in a

higher speed water flow.

The support structure helps the system to detect small leaks (design requirement

2). The membrane needs to be as close to the pipe wall as possible to effectively

detect small leaks[30]. The support structure is like an umbrella; it is spring loaded,

and at its far end is a 180 degree rigid bend as shown in Figure 3-6. When the system

is placed in the pipe, the spring loaded support will keep the bend in contact with

the pipe wall. The bend always keep the attached membrane within a fixed small

distance from the wall, and this distance is equal to the height of the bend. When
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Figure 3-7: New leak sensor in two scenarios: (a) obstacle and (b) leak.

there is a flow moving toward the right in the pipe in Figure 3-6, the flow will push

the umbrella-like support to maintain expanded. Given the strong fluid drag force, it

is safe to assume that the support does not deform due to leak induced forces. Thus,

this umbrella-like support not only keep the membrane close to the wall but also acts

as a stable base for the membrane and sensing element. It can then be treated as

fixed in the system model (Figure 3-4.

This support design allows the system to adapt to and differentiate obstacles from

leaks. This spring loaded support can adapt to pipe diameter changes with a push

from the water flow on its back. With a position encoder, it can measure these

changes. Figure 3-7 shows two scenarios where the leak sensor encounters an obstacle

and a leak. An obstacle is equivalent to a pipe diameter reduction, it will compress the

support and leave the membrane little perturbed. When the obtrusion is significant,

it will bend the membrane radially inward. In comparison, a leak will not compress

the support but pull the membrane. obtrusions bend and leaks pull. These two inputs

cause distinctively different interaction with the new system, and can be measured

independently. With this design, the motions and forces on the membrane and the

support can be measured separately to indicate leaks and obtrusions. For example,

strain sensors can be used to monitor the membrane, while encoders or force sensors

can monitor the support. By searching the different signal patterns in both the force

(or motion) on the membrane and the configuration (or force) on the support, one

can tell leaks apart from obstacles and other false alarms.

Two implementations of the membrane and sensing element are shown in Figure

3-8. The membrane is made of silicone rubber (blue), MoldStar 30 from Smooth-On
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Inc, in a mold. The sensing element can be any force or strain sensor; in this case, it

is a conductive silicone rubber cord (black) from Adafruit. It is a strain sensor with

increasing electric resistance when being stretched. Both are silicone based material

and they bond together chemically to form a single piece of membrane sensor. The

MoldStar 30 rubber is also waterproof, and it wraps the non-waterproof conductive

rubber cord inside to protect it from short circuiting. The fabrication of this mem-

brane sensor can be seen in Appendix A. The membrane and the sensing element are

loosely fit inside a rigid slot on the support structure. The two points on membrane

where the wires connect to the ends of the sensing element is bonded to the bottom

of the slot with superglue. The slot fully covers the sensing element, so the sensing

element can only be stretch in y direction(Figure 3-8 but not bend. Each membrane is

37mm wide, so 4 piece can cover about 90% of the circumference of a 52mm diameter

pipe. The membrane is 2mm thick so it can wrap the conductive rubber cord (1mm

thick, 2mm wide) inside. There are dimples on the side of the membrane facing the

pipe wall, to increase the contact friction coefficient. A preliminary test in air shows

a 30% increase in friction coefficient when the membrane is pressed against smooth

PVC surfaces.

The length L of the membrane is important to the leak sensor's performance, and

it is determined the flow speed and system's sampling rate. For a small leak, The

leak input to the system is an impulse of duration t < L/V where V is the speed

the membrane is moving at. When the membrane is carried by a flow driven drone

[22], V is the same as the flow speed. Assume the system's physical bandwidth is

very high, its output is then determined by its sampling rate f. It would help study

the characteristics of different type of inputs by capturing n > 1 frame of the input.

Thus the length of the membrane can be determined by

L nV (3.4)
fS

In the prototype, the lower end of the sampling rate is f8  20Hz and the target

flow velocity is around V = 0.3m/s. n is set at 2. Thus the length of the membrane
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Figure 3-8: Implementations of the membrane+ sensing element. (a) detail of at-
tachment between the membranle, the sensing element and the support. (b) square
membrane, low sensitivity. (c) Trimmed membrane, high sensitivity. Points L, M, R
are points of application of pulling forces in the calibration process

is determined to be 30mm.

The membrane's shape and material dictate its sensitivity. Implementation in

Figure 3-8-c is more sensitive than the one in Figure 3-8-b. For rubber material, its

material composition and geometry affect its stiffness. MoldStar 30 rubber (mem-

brane) shows higher stiffness than the conductive rubber cord (sensing element). Thus

the stiffness of such implementations is dominated by the MoldStar 30 rubber (mem-

brane). In (c), the portion of the membrane around the sensing element are removed,

and the smallest width of the MoldStar 30 rubber at the sensing element is reduced

from 37mm to 10mm. Reducing the width is similar to removing the number of

springs in a multiple parallel spring system, and thus reducing the spring constant

k2 of the sensing element. Then for the same amount of strain, the implementation

of Figure 3-8-c requires less stress than Figure 3-8-b, and this is validated by the

calibration data in Figure 3-9. In the calibration, The conductive rubber cord, as

a sensing element, converts its strain to electrical resistance change. In the calibra-

tion process, the pulling force is applied on the membranes in the y direction at the

left(L), middle(M) and right(R) point as shown in Figure 3-8. As the calibration

results shows, the system's sensitivity, defined as the percentage of resistance change

per the percentage of pulling force change, is about proportional to the the smallest
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Figure 3-9: Calibration of membrane sensors in Figure 3-8-b and c.

width of the rubber at the sensing element. This is useful for calibrating the system

for different sensitivity; for example, in low pressure pipes, high sensitivity is desir-

able. On the other hand, the system is more sensitive to leak force applied along

the middle line of point M on the membrane in Fig. 3-8-c than that applied to the

far sides, point R and L. The difference can be as much as a IN offset. In the next

sections, the average value of the sensitivities calibrated at point M and point L is

used as the sensor's overall sensitivity value.

Simulations shows that both implementations have a much higher system band-

width. The properties of new membrane sensors in Figure 3-8-c and also in Trace C

of Figure 3-5 is listed in the second column of Table 3.1, and its simulated impulse

response is shown as Trace C in Figure 3-5. Its damped natural frequency is 131Hz,

much faster than that of the original sensor (Trace B in Figure 3-5). The impulse

response of implementation in Figure 3-8-b, is also displayed as Trace D in Figure 3-5.

Most of its parameters are the same as that of Figure 3-5-c except its higher sensing

element stiffness k2 = k1 . The rubber width is the same for the membrane and the

sensing element part. Higher stiffness leads to higher damped natural frequency, 274

Hz. Although Figure 3-8-c was chosen for its higher sensitivity, this dynamics analysis

shows it is possible to push the system bandwidth even higher.

The umbrella-like support in Figure 3-6, when built into a prototype, is a circular

array of discrete pieces encased in silicone rubber. The support of a leak sensor for

52 mm inner diameter water pipe is shown in Figure 3-10. The four discrete rigid

plastic pieces are like the umbrella frame (Figure 3-10-a); each of them have a slot
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on top and they are connected to a common hub by four shafts. Each of the slots

can hold a membrane that spans 90 degrees of a circle; so four of them can cover the

entire circumference of a pipe cross section for leak detection. The circumference can

be divided into a more than four pieces if more accurate radial position of the leak is

needed. With four pieces, the leak can be located to one of the four quadrants in the

pipe cross section. One end of the membrane is connected inside the bracket on the

support structure. The thickness of the bracket and the height of the bend on the

support add up to a H = 2mm gap between the membrane and the pipe wall (Figure

3-8). The frame of this support is enclosed in a single piece of soft rubber, as shown in

the center of Figure 3-10-b. This casing is like the cloth of an umbrdlla, allowing the

pipe flow to effectively push the robot from the back. Since the casing is a rubber,

it is elastic and can additionally serve as the spring for the support (Figure 3-6).

Without any loose parts, it is more robust than a set of springs. The rubber casing

also waterproofs the wires inside. The complete leak sensor has a 52 mm nominal

outer diameter, and it can expand and contract. The stiffness of its compression and

expansion is determined by the elasticity of the rubber material. In the prototype,

the rubber enclosure is made with soft silicone rubber, Ecoflex 0050 from Smooth-on

Inc. It is soft enough for the leak sensor to go over obstacles in pipes.

3.4 Experimental Results

The new leak sensor was attached to a flow driven drone as shown in Figure 3-11

and tested both in the lab and in a industrial facility. The detailed design of this

(a) (b)

Figure 3-10: (a) The frame of the support structure (b) completed leak sensor
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Figure 3-11: The leak sensor is attached to the back of a flow driven drone sized for
2 inch pipes.

drone and a video description can be found at http://mechatronics.mit.edu/leak-

detection-system-for-city-water-distribution-systems/. Its maximum outer diameter

was 52mm, and its length was 117mm. Similar to a PIG [22], it had no actuation,

and it was propelled by the water flow in the pipes. Unlike regular PIGs or any other

kind of pipeline robot platforms, this drone was soft. It was made of silicone rubber

Ecoflex 0050 from Smooth-on Inc. The soft body could be bent, allowing the drone

to turn around pipe elbows with ease. Embedded in the soft body of the drone is

the electronic system for data logging purpose. Details of the electronic system can

be found in the previous chapter. This particular prototype has a 3.7V Lithium Ion

battery powered an Arduino Mini Pro 3.3V/8MHz micro-controller, a Pololu 9 DoF

Inertia Measurement Unit (IMU), and a Pololu SD card writer. The robot has four

membranes, so the leak sensor had a four channels of output, one for each membrane.

Those channels were connected to the Arduino through voltage divider circuits, so

Figure 3-12: The drone and leak sensor passing a leak during a lab test.
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Figure 3-13: Leak sensor reading (I channel) for the leak occurred at (R) the right
side, (M) middle of the membrane, in a lab test.

the Arduino could read the voltage values on the sensing elements which were strain

sensors. Resistance values of the sensing elements were then calculated. With the

calibration in Figure 3-9, the. magnitudes of the pulling forces on the membranes were

estimated. This electronic system made the drone untethered. However, its comput-

ing power is limited; it records the motion information from the IMU(9 channels) and

the leak sensor reading(4 channels) at 20Hz. The encoders in the support of the leak

sensor for measuring pipe diameter changes were not implemented in this prototype,

or it would further reduce the drone's sampling rate. The robot did not use wifi for

real time data feed because wireless communication was unreliable in the cast iron

pipes at the test site. Instead, the robot's data was downloaded all at once after the

robot was retrieved from the pipe.

First, the leak sensor was tested in a lab setting to study how leak positions relative

to the membrane could affect the leak sensor's output. The leak sensor calibration in

Figure 3-9 clearly indicated that the leak sensor was less sensitive to leaks occurred

on the far side of the membrane(point L and R in Figure 3-8-c) than on the middle

(point M in Figure 3-8-c). In this test, cases of the leak occurring at point R and

point M on the membrane was produced. As shown in Figure 3-12, a transparent

50mm (2 inch) inner diameter, plastic pipe with smooth interior was used for this

test. A pinhole leak of 4 mm in diameter was drilled on the bottom side of the pipe.

Water flow from the water tap filled up the pipe, and the line pressure was regulated
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Figure 3-14: (a) The industrial pipeline used for testing (b) a leak on the pipe loop(c)
schematics of the pipe segment.

at about 0.8 Bar gauge. The drone was propelled by the water and moving at about

0.1 m/s. At this speed, it took the membrane 0.3 second to pass the leak, and the

leak sensor should see the leak as slower input rather than an impulse. The flow rate

through the pinhole leak was measured to be about 4.1 L/min (1.08 Gal/min).The

experiments were repeated with point M on the membrane (Figure 3-8-c) aligned with

the leak and point R. The new leak sensor was calibrated with the average values of

the calibrations for trimmed membrane measured at the middle point and the right

point(Figure 3-9). The leak sensor readings from the membrane closest to the leak

are plotted in Figure 3-13, with its steady state value subtracted. It proved that the

leak sensor could detect leaks occurred at both the far side and the middle of the

membrane, though the reading was lower for the same leak occurred at the far side.

Second, the leak sensor was tested in the industrial water pipeline (Figure 3-14-a)

provided by PipeTech LLC in Saudi Arabia. The pipeline was made of cast iron,

and it measured 1.5 km in length and 52mm in nominal inner diameter. The entire

pipeline was in the horizontal plane. A section of 221 m long and 1.2km away from

the inlet was isolated with drone launch and receive tools installed on both ends.
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Figure 3-15: Leak sensor readings and gyroscope reading for rotational speed in the
horizontal plane in three cases: 4mm pinhole leak, pipe joint as obstacle and pipe
elbow.

During the test, the inlet pressure was 2 Bar gauge and the flow rate was about 0.4

m/s. With pipe head loss considered, the line pressure at the test section was about

1.7 Bar gauge.This pipeline provided enough in-pipe features for testing. The first

feature was a 4 mm pinhole leak on the pipe. There was a water tap welded on top

of it to turn it on and off, as shown in Figure 3-14-b. A bucket was used to collect

the leaked water and measure the leak flow rate. The leak flow rate was measured to

be about 5.6 L/min (1.48 Gal/min).This pipeline was constructed with hundreds of

6m long, 52mm inner diameter, metal pipe segments. At each pipe joint, there was a

ring of 3mm diameter reduction, as shown in 3-14-c. Thus each pipe joint, 6m apart,

was an obstacle. Additionally, there were many pipe elbows. The pipeline had been

in service for 6 years so there was a small amount of rust and dirt inside.

The test result showed that various in-pipe features could be differentiated from

the measured signals. The drone travelled through the 221m long test section in an

average time of 550 seconds. The average speed was 0.4 m/s. The drone completed 2

tests, and in each test, it passed 1 leak, 4 pipe elbows and 41 pipe joints and recorded

data for all of them. The readings from the leak sensor for these features were plotted

in Figure 3-15. Since leaks were expected to show up as high frequency, impulse-like

signals, only the changes in pulling forces were studied. The steady-state values of

the leak sensor readings were removed with a high-pass filter (2Hz cutoff frequency).
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At the leak, the leak sensor registered a high frequency, large magnitude change.

This change was only in the channel corresponding to the membrane that was right

on top of the leak, and the changes were much smaller for the other channels since

their membranes didn't touch the leak. The frequency of the observed signal for the

leak was 10Hz, which is at the aliasing limit for this 20Hz sampling rate drone. If the

drone has more computing power, it may be able to observe more content in the leak

signal.

At the obstacles on pipe joints, the leak sensor registered slower changes than it

did at the leak. Since the diameter reduction at the joints was on all sides of the

pipe(Figure 3-14-c), all four channels detected changes. The signal at one of such

obstacle was shown as the main peak in the mid plot of Figure 3-15. The dominant

frequency was about 4Hz. The average magnitude was 1.2N and the standard devia-

tion was 0.7N. However, its distribution was approximately a uniform distribution.

The drone can easily spot pipe elbows. The gyroscope part of the on-board IMU

measured the drone's rotational speed in the horizontal plane, as shown in the bottom

row in Figure 3-15. The gyroscope plots here were low pass filtered (5Hz cut off

frequency) for reducing the noise. At the elbow, the drone registered a significant

change in its rotational speed. At leaks or obstacles, the rotational speed change was

multiple order of magnitude lower. The leak sensor measured multiple oscillations

in all four channels at the elbow, while single pulses at leaks and obstacles. These

oscillations are off similar dominant frequency as that of the obstacle signal.

3.5 Discussion

As predicted with system modeling, a leak sensor with a high bandwidth was able

to detect leaks in an operating water pipe. During the test at the industrial facility,

both the new leak sensor and the water flow were moving at V=0.4 m/s. At this

rate, the membrane of length L=30mm was on top of the leak for about L/V=75 ms.

The membrane could react to the leak for the entire 75 ms or only a fraction of it.

The leak input to the system could be modelled as an impulse function of duration
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T. Depending on the size of the leak and the robot's speed in the experiment, this

duration T was estimated to be between 10 ms to 75 ms. In response to this leak input,

the drone recorded a 100 ms (10 Hz) impulse output from the leak sensor. This was a

good indicator for leaks, but much information about the leak that was not captured.

The drone had a sampling rate of only 20 Hz since its Arduino micro-controller had

limited computing power. Any signal of higher than half sampling rate cannot be

accurately measured due to aliasing. Thus the actual leak response should be faster

than 10 Hz. By design the leak sensor had a damped natural frequency of 131 Hz.

With a more potent micro-controller such as Raspberry Pi to increase the sampling

rate above 260 Hz,'the drone can surely record a more accurate leak re-sponses with

rich details. Then the exact duration of the leak input can be determined, and how

to design the membrane geometry to capture leaks most effectively can be studied.

The new leak sensor is not ideal yet, since there are false alarms. The leak sen-

sor directly measures the pulling force, or equivalently the increase in friction force

on the membrane. Leaks can cause the increase in friction force, so can obstacles

and pipe elbows as indicated in Figure 3-15. Leaks from those false alarms need to

be differentiated, possibly through data fusion and frequency domain analysis. For

example, additional sensor can be added to monitor the pipe diameter change and

thus indicate obstacles. With the IMU in the drone, rotational speed of the robot

can be monitored to detect pipe elbows. There are also four channels on the leak

sensor; small leaks triggers one channel of the leak sensor, while the elbow triggers all

four channels. Correlation among those data streams can be useful to eliminate some

false alarms. More details of this correlation approach can be found in Appendix

B. Another approach is transient response analysis. As described in the Experiment'

Section, the leak, obstacle and elbow have different transient response on the leak

sensor output. The leak sensor's response was damped more in the case of leaks than

in the cases of obstacles and pipe elbows. It has the most oscillations at the elbow.

The response to leaks had the highest damped natural frequency among the three

cases. Further study could lead to a method to differentiate leaks and false alarms

from those frequency domain patterns.
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Chapter 4

Telling Leaks Apart From False

Positives: A Low Cost Soft Bending

Angle Sensor

4.1 Overview

In this chapter, I present the design, fabrication and validation of an improved leak

detector that can robustly differentiate leaks from false positives. Each individual fin

sensors on the detector can differentiate leaks from obtrusions independently. Leaks

bend the sensor down and pull, obtrusions bend the sensor up. The sensor, through

measuring the bending direction and angle, can tell them apart. Such sensor is

constructed with low-cost ordinary material in a low-cost, scalable fabrication process.

The outcome is a 1-dollar solution to robustly detect leaks and obtrusions in pipe

distinctively at the same time. The applications of this low-cost soft bending angle

sensor are not limited to leak detection; an example in fish tail motion tracking is

also demonstrated.
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4.2 Motivation: Differentiate leaks from false posi-

tives

Pinhole Leak
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Figure 4-1: Challenges in Differentiating Leaks and Obtrusions with Simple Leak
Sensor Illustrated with 2017 Saudi Arabia field test result

The first-of-its-kind leak detector for operating water pipes presented in Chapter 3

still had one imperfection: false positives. To the leak sensor, obtrusions causes false

positives. From the results(Fig. 4-1) from the field tests in Saudi Arabia, leaks and

obtrusions appeared to be very similar in individual sensor outputs, and it could only

be differentiated with multi-sensor data correlation (Appendix B). It worked because,

in the field test, the main type of obtrusions were pipe joints, and the only type of

leaks were pinhole leaks. The pipe joints pushed inward the membrane sensors on

all sides and caused readings on all sensors. The pinhole leak could only pull on one

piece of the membrane sensors that is the closest to the leak, so it caused readings
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on only one sensor. The underlining assumption is that leaks are small and pull on

one membrane sensor, while obtrusions compress the entire detector on all sides and

bend all membrane sensors. If there were radial leaks or pipe breaks where the cracks

along the pipe circumference were long enough to be detected by multiple membrane

sensors, this approach may register the leaks as false obtrusions. If there were small

pieces of obtrusions that only triggers one piece of the membrane sensor, this approach

may register the obtrusions as false leaks.This correlation approach to differentiate

leaks from obtrusion is not robust and only works conditionally.

Leaks and obtrusions interact with the membrane sensor in different ways, so it

should be possible for the sensor to differentiate them. As illustrated in Fig. 4-2, a

leak bends the membrane down, toward the pipe wall given the suction force, and then

pull on the membrane given the friction force. In comparison, an obtrusion displaces

the membrane up, away from the pipe wall. If the membrane sensor generate different

outputs for bending up and pulling down, then from its output we can tell leaks and

obtrusions apart. It can be used to detect leaks while rejecting the false positives

from obtrusions. Then this will be a robust leak sensor. It can also be used to detect

both leaks and obtrusions at the same time, with distinctively different outputs. Now

this becomes a multi-purpose sensor.

bracket
ne

Pipe wall obtrusion

Suction force

Figure 4-2: Different Dynamics: Leaks bend the sensor down and pull, and obtrusions
bend the sensor up.

I am going to build this multi-purpose soft bending angle sensor. Following the

theme in this leak detection robot-low cost, robust and practical, the following design

requirements are defined:

1. A Single-piece, fully integrated soft membrane sensor that can output distinc-

tively different signals for bending up and bending down

81



2. Minimum number of sensing elements and connections

3. Build with low cost material

4. Build in a low cost but scalable fabrication process

4.3 Method: Engineering the Neutral Axis

Bending angle sensors can typically be built with carefully chosen placement of the

sensing element with respect to the device's neutral axis. The neutral axis of a

cantilever beam is a plane along which there is no elongation or compression when

the cantilever beam is bent. The membrane sensor in the leak detector can be treated

as such a cantilever beam. As illustrated in Fig. 4-3-a, one end of the membrane

sensor is fixed in the yellow bracket, and the other end is free and can be bent.

When the membrane sensor is bent downward, the part of it above the neutral axis

will be stretched and the part below the neutral axis will be compressed. As the

membrane sensor is made uniformly with the same rubber material, the neutral axis

is then right at the center height of the entire device, and the strain distribution is

symmetric about the neutral axis but in opposite directions. The placement of the

sensing element determines what its output indicates.The sensing element can be a

electrically conductive rubber. It increases electrical resistance while experiencing

elongation, and it decreases electrical resistance while experiencing compression. Its

sensitivity in the two directions may differ. When this sensing element is placed on

the neutral axis such as in Fig 4-3-b, it will experience equal amount of elongation

and compression during a bending motion. It cannot reliably tell which direction

the sensor. In contrast, if the sensing element is placed far above the neutral axis

such as in Fig.4-3-c, it will experience elongation and increase its resistance when the

device is bending downward, and it will experience compression and thus decrease in

resistance when bending upward. The reserved relationship applies to the case when

the sensing element is placed on the opposite side of the neutral axis. With this kind

of input and output relationship ( Fig. 4-4), one can simply measure the direction of
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resistance change to estimate the bending direction and the input. Bending down the

device in Fig. 4-3-c leads to elongation on the sensing element and thus increase in

resistance. Bending up the same device leads to compression on the sensing element

and thus decrease in resistance. If the membrane is estimated to be bent up, the input

must be an obtrusion. If the membrane is estimated to be bent down, the input must

be a leak. There could even be two sensing element, one on each side of the neutral

axis of the device as illustrated in Fig. 4-3-d. In this case, the output would be the

difference in resistance between the top sensing element and the bottom one. When

the change in the difference is positive, the device is bending down. When the change

in the difference is negative, the device is bending-up.

To build a soft bending angle sensor that has the performance of Fig.4-3 may not

sound difficult, but to build a thin membrane thickness one in a low cost way is a

significant challenge. The challenge is the size constraint and commercial availability

of the material. One of the key requirement for this type of bending angle sensor to

work is that the sensing element must be precisely placed on one side of the neutral

axis. Thus the thickness of the sensing element, h, must be less than a half of the

thickness of the entire device, H. In the leak sensor case, H=2mm. To build the

bending angle sensor in this way requires a sensing element of thickness h<1mm.

At the time of this work in late 2017, electrically conductive rubber with less than

1mm thickness are not commercially available. In comparison, the thinnest sheet of

this type of material available on the Internet is 1.5mm, and it is less than 15 US

dollars per square foot (equivalently 0.016 US dollar per square centimeter). If this

conductive rubber is to be used in this 2mm-thick membrane sensor directly as shown

in Fig.4-5, it will experience a combination of compression and elongation when the

entire device is bent rather than only compression or elongation separately. This

renders the bending angle sensor ineffective. The original membrane sensors were

built this way, and each individual membrane sensor cannot produce distinctively

different signal for leaks and obtrusions as shown in Fig. 4-1.

The state-of-the art technique to produce this type of membrane-thickness bending

angle sensor requires high precision, high cost manufacturing equipment and process.
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bracketI
Bending input

Figure 4-3: An typical soft bending angle sensor construction: Placement of sensing

element with respect to the neutral axis matters. The horizontal arrows indicate the

direction and magnitude of shear stress and strain.

Most of the techniques in literatures originated from Micrometer-scale Microelec-

tromechanical Systems(MEMS) applications, and researchers at Harvard University

is pioneering in the field [2, 3, 4]. The popular practice is to print a thin layer of

conductive sensing element on the surface of the device via photo-lithography[2], or

hybrid 3D printing [3]. The device can also be 3D printed with materials of different

property at different depth[4]. It allows fine control over the local property such as
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-AResistance
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Figure 4-4: Ideal output from a soft bending angle sensor.

stiffness within the three-dimensional space of the device, and produces high perfor-

mance sensors. However, these manufacturing processes are of high precision and

require expensive machines. To a sensor of area size on the order of 10 millimeter,

micrometer level precision may be excessive. 3D printing devices layer by layer is

also slow and not scalable, especially when making large surface area devices. In this

project, our goal is to design and build low cost, scalable and practical devices for

leak detection. The state-of-art fabrication technique does not meet our low-cost and

scalability requirements.

In contrast to the conventional high precision, expensive ways, I present an ex-

tremely low-cost approach to produce a millimeter-thickness soft bending angle sen-

Ideal
Conductive Rubber

2mm - - - - Neutral Axis

Rubber membrane

bracket Bending Input

Reality

Commercially available
conductive rubber (1.5

Irending Input
& affordable

nm)

Figure 4-5: Difference between Ideal and Reality of a typical soft bending angle sensor:
thin, commercial conductive rubber is not available at an affordable price.
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1. Phiooiograph~y 2. Surface layer instrurnentation 3. Instrumnent at different depth

Figure 4-6: Three state-of-the-art manufacturing techniques for soft, thin bending
angle sensor: Photolithography[2J, hybrid surface 3D printing[3], hybrid depth 3D
printing[4]

sor. In the typical construction of the soft bending angle sensor, the neutral axis is

fixed by the geometry and material first and then the sensing element is placed on

one side of it. We can engineer the neutral axis of the device to be on one side of the

sensing element, by simply adding a layer of material of higher stretch stiffness on one

side of the sensing element, spanning from one end of the device to the other. This

new material can be a stiffer rubber, but it then requires a multi-step molding process

to produce this membrane sensor. There is another low cost, commonly available,

ordinary material and we can simply bond it inside the rubber membrane sensor in a

one-step manufacturing process. This material is fabric.

Fabric is a great choice for engineering the neutral axis in a soft membrane sen-

sor. The first advantage is the non-isotropic material and structural property of the

fabric. Woven fabric can have very high stiffness in stretching and appear to be al-

most unstretchable. Meanwhile it is extremely soft and easy to bend and fold. The

hierarchical structure of the fabrics also make them very easy to bond to soft rubber

material during the molding process. Given the high contrast in the high stretch

stiffness of the fabric and low stretch stiffness of the other soft material filler, this

bending angle sensor's neutral axis is no longer in the center of the device but in

the proximity of the interface between fabric and the soft material, as illustrated in

Fig. 4-7. When the device is bending down, the sensing element is stretched and
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Neutral Axis
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Figure 4-7: The proposed design of a low cost, membrane-thickness soft bending angle
sensor.

produce an elongation signal. When the device is bending up, the sensing element is

compressed and produce a compression signal. If the fabric is very stiff in the stretch

direction, such design will isolate the sensing element from any horizontal stretch

load.

The advantage of this new design is low cost and low requirement on manufactur-

ing precision. The high contrast of stretching stiffness will dominate the placement

of the neutral axis and thus the sensing element's ability to differentiate bending up

and downs. The sensing element is no longer required to be thin which need precise

and expensive manufacturing process. Very thin fabrics are widely available. This

design allows us to use thick but commercially available conductive rubber to build

previously impossibly thin soft bending angle sensors. Moreover, the performance of

the device by design is consistent and irrelevant to the manufacturing imprecision in

either the sensing element or its placement in the device.

In the next two sections, The principle of this sensor will first be demonstrated

through a simplified fish tail motion tracking application. This design has high tol-

erance toward the errors in the manufacturing process. This aspect will be demon-

strated in leak detection applications.
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4.4 Demonstrate Principles of The Soft Bending An-

gle Sensor in A Fish Tail Motion Sensing Appli-

cation

4.4.1 Motivation: Effective Minimum Sensing For Under-actuated

Miniature Soft Robot Fishes

Soft material has enabled the design of many bio-inspired robots in unconventional

ways. For example, the soft robot fish [5, 41] can swim like a real fish, and do so in an

under-actuated way. The robot fishes are about 10cm long, and they have only one

servo motor inside to control the swing frequency and magnitude of the fish body.

Through controlling the change in the swing motion, this single-actuator robot fish

achieved two degrees of freedom in motion: it could swim forward and backward, and

turn left or right, in a controlled way. Since the robot fish is small in size, it requires

a low number of actuators. The under-actuated control made it feasible. It leads

researchers to think if it is also possible to instrument a small soft robot fish with a

minimum number of sensors while still able to perform feedback control. The sensors

will enable the robot to control its motion. In literature, the minimum requirement

of the number of sensors reported is two [421.

With my soft bending angle sensor, I believe we can instrument the smallest robot

fish with only one sensor and enable feedback control, and do so with minimum cost.

A single bending angle sensor attached to the side of the robot fish will be able to

tell both the direction and magnitude of the fish body swing motion. Then the fish

robot can know if it is subject to external turbulence and adjust its actuator output

accordingly. That will be a single actuator, single sensor robot fish for controlled

swimming in changing flow conditions.
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Figure 4-8: Prof. Kamal Youcef-Toumi holding two examples of under-actuated soft
robot fishes[5]. Question: can we also achieve under-sensing on these robots?

4.4.2 Setup Experiments to Validate Two Hypotheses

To demonstrate the effectiveness of the proposed low-cost sensor in the simplistic

manner, two versions of instrumented fish tails are fabricated and compared in per-

formance. Both fish tails are very thin and small, with 2mm in thickness and 5cm in

length. One fish tail is made with only the non-conductive rubber and the 1.5mm-

thick conductive rubber as the sensing elements, as shown in Fig. 4-9. The non-

conductive rubber used here was Smooth-on Mold Star 30 which has a Shore A hard-

ness of 30. When compared to standard hardness silicone rubber from Smooth-on, it

is estimated that the Shore A hardness of the purchased conductive is around 30-35,

similar to that of the non-conductive rubber. In all fish tails, the conductive rubber

was cut into U-shape sensing elements with dimensions shown in Fig. 4-10. This is

the smallest size one can cut the rubber into manually with scissor. It will require

additional tools to cut even smaller sensing elements. Two braided electrical wires

are stitched to the sensing element at the two tips of the U shape to form a circuit.

In the other fish tail, a layer of very thin woven fabric is embedded and molded into
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the back of the non-conductive rubber. As shown in the cross-section view of the

fish tails in Fig. 4-11, the rubber-only fish tail has its neutral axis along the center

line of the entire device. The sensing elements placed off-center so it is possible for

them to sense the difference in the entire device bending up or bending down. In the

rubber-fabric fish tail, the neutral axis is near the interface between the fabric and

the non-conductive rubber which is above the top of the sensing elements. In this

way, when the fish tail bends downward, the sensing elements will sense compression

and reduce their electrical resistance values. When the fish tail bends upward, the

sensing elements will sense elongation and increase their electrical resistance values.

The sensing elements' resistances are measured and recorded.

Non-Conductive Rubber

Measurement:
Resistance

Conductive Rubber Conductive Rubber
Sensor A Sensor B

Figure 4-9: Soft fish tail with soft bending angle sensors embedded

Figure 4-10: Geometry of the sensing element inside the fish tail. It is cut out from
1.5mm thick conductive rubber

14mm

3mm
3mm4
3mm J

3mm

In the experiment, two hypothesis are to be tested. The first hypothesis is that
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Figure 4-11: Cross-section view along the longitudinal direction of the two soft fish

tails. (1) rubber only version (2) rubber-fabric version.

the inclusion of a fabric effectively enables building thin soft bending angle sensors

without even thinner sensing elements. For this hypothesis to be true, the rubber-

fabric fish tail should clearly show more differentiable sensor outputs for bending up

and bending down. In comparison, the rubber only fish tail should show none or little

differentiable outputs for bending up and down.

The second hypothesis is that this directional sensing capability is not affected

by other external interactions. In the experiment setups as shown in Fig. 4-12, the

left end of the fish tails are mounted in between two plates. when the fish tail bends,

it may press against the corner of one of the plates and thus cause changes in the

sensor outputs. To ensure the differentiable sensor outputs are affected mainly by

the neutral axis rather than the mounting device, two independent sensing elements

are placed in each fish tail. Sensor A is at the left end of the fish body where the

fish tail will be mounted, so it will be affected by the change in normal pressure from

the mounting tool. Sensor B in the middle of the fish tail, unaffected by any normal

pressure. This one serves as the benchmark.

The experiments on the fishtails were conducted in three steps: bend, release,

record. The fishtails was held in-between two clear acrylic sheets, as shown in Fig.

91

-1



Figure 4-12: Setup for the fish tail experiment

4-12. Two clippers were used to held the acrylic sheet and the sensing element tight.

The total force exerted by the clippers was measured with a Vernier dynamo-meter,

and it was 50N total over a 5mm by 30mm area on the fish tail. The fish tail was

then bent to 15 degree into the page in Fig. 4-12 slowly within 2 seconds and then

released. The angular displacement was measured with the angular ruler as indicated

in the figure. We denoted this test as bending up 15 degrees. Similar tests were

performed for bending up 30, 45 degrees, as well as 15, 30, 45 degrees in the opposite

direction. The tests in the opposite direction were denoted as bending down. The

resistance value outputs were recorded by a micro-controller (Arduino Mini Pro 328)
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at a sampling rate of 50Hz.

4.4.3 Experimental Results

The experimental results clearly validated the first hypothesis. We compared the

output of Sensor B in the rubber only fish tail (Fig. 4-13) and the same sensor in

the rubber-fabric fish tail (Fig. 4-14. We found the device with fabric in it clearly

indicated distinctive and different measurements in bending up and down. Sensor

B, being in the middle of the fish tail, experienced only bending moments during

the tests. In the rub.ber only fish tail, the sensor B showed small change.during the

bending phases, but the difference between the output of bending up and that of

bending down was minimal. This is as expected since the sensing element overlapped

both sides the neutral axis of the fish tail (Fig.4-11, a). It does not work as a bending

angle sensor if the commercially available thick conductive rubber is simply embedded

in the thin, rubber-only fish tail.

1.2 d

1. 30 downU -l5down
1

0.9

Bend down Release0.8 - -
Soo 1000 1500 2000 2500 3000 3500

time ins]

S1.2

0 Bend up Release
c0.8

500 1000 1500 2000 2500 3000 3500
time (Ms]

Figure 4-13: Rubber only fish tail, Sensor B output
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Figure 4-14: Rubber -fabric fish tail, Sensor B output

In contrast, the same sensor at the same position in the rubber-fabric fish tail

displayed clearly different outputs for bending up and bending down modes. As shown

in Fig. 4-11, the fabric was embedded in the top side of the sensor (into the page in

Fig. 4-12). Thus when the fish tail was bent downward (out of the page in Fig.4-

12), the sensing element was predicted to be compressed and its resistance reduced.

When the fish tail was bent upward (into the page in Fig. 4-12 and toward the fabric),
the sensing element was predicted to be stretched and its resistance increased. The

measurement indicated in Fig. 4-14 agreed with the prediction. In comparison to the

same conductive rubber sensor in the fish tail of the same thickness but no embedded

fabric, the fabric version could tell not only the direction of the bending motion, but

also the magnitude of the bending, as indicated in Fig. 4-14. Through embedding

a ordinary fabric, we successfully relocated the neutral axis of the entire device. We

used a single piece of commercially available, low cost but thick conductive rubber

in this thin fish tail to enable bending angle and direction measurement. There is no
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need to fabricate thin, sub-millimeter thickness conductive rubber sensors to make

such a bending angle sensor. It is not the thickness of the sensing element and the

device that determines the effectiveness of the bending angle sensor. What really

matters is the placement of the sensing element with respect to the device's neutral

axis.

The experimental results showed the additive effect from the device's interaction

with the mounting tool on the sensor outputs. Because the fish tails are soft, local

deformation is higher at the mounting location and gradually reduces toward the

tip of the fish tail. Sensor A was placed at the mounting location while sensor B

was placed at the middle of the fish tail. Thus, in comparison to Sensor B, Sensor

A was expected to be compressed more and produce a larger magnitude resistance

drop when the fish tails were bent down. When the fish tails were bent up, Sensor

A was expected to be stretched more and produce a larger magnitude resistance

increase. These were reflected by the overall trend in the experimental results. When

sensor A output in the rubber-only fish tail Fig. 4-15) is compared to that of sensor

B (Fig. 4-15) , it was visible that sensor A was able to tell the bending direction

much better than sensor B. Being at the pivoting point of the cantilever structure,

Sensor A experiences much bigger local deformation than Sensor B in the middle of

the cantilever. Similar trends were also observed in the rubber-fabric fish tail when

comparing Fig. 4-16 with Fig. 4-14. However, there is a noticeable difference in Sensor

A's output and Sensor B's output when the fish tails were bent up. Sensor A, during

the bend-up tests, demonstrated a two-phase effect. As Fig. 4-15 indicates, after an

initial phase of increasing resistance as sensor A was stretched, the resistance dropped

gradually. The resistance drop while the fish tail was bent further up indicated that

compression was more significant than elongation at Sensor A. The resistance drop

kicked in earlier when the input bending angle was larger. The question was then

where the compression came from.

The mounting tool adds an additional normal pressure to this process. The corner

of the mounting tools would press against the fish tail and the sensing element in it

in the same way regardless of which direction the fish tail bent. In the case of the
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Figure 4-15: Rubber only fish tail, Sensor A output

rubber-only fish tail, sensor A was compressed by the corner of the mounting tool on

the top (as indicated in Fig. 4-11 when the fish tail was bent up. This compression

was concentrated and it was in the normal direction rather than the longitudinal

direction of the fish tail. This increase of normal pressure on the conductive rubber

sensor would cause a reduction in the sensor's resistance output. While the fish tail

was bending up, the normal pressure from the mounting tool occurred only after the

fish tail was bent over a certain angular threshold. Before the threshold, Sensor A

was mainly stretched and its resistance increased. After the threshold, the normal

pressure increased faster than the stretch on Sensor A, and thus the resistance of

Sensor A reduced. This explained the two phase effect in the bend up phase on

the rubber-only fish tail (Fig. 4-15). In the case of the rubber-fabric fish tail, the

resistance drop phase was less significant because the fish tail was stiffer. The inclusion

of the fabric on the top layer of the fish tail increased the bending stiffness of the

fish tail. The concentrated normal compression on top did not effectively reach the

sensing element on the bottom side of the neutral axis. The same normal compression
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Figure 4-16: Rubber -fabric fish tail, Sensor A output

was also expected to occur when the fish tails were bending down; the corner of the

mounting tool in the bottom would compress Sensor A and reduce its resistance.

However, Sensor A was already compressed due to the downward bending moment

on the fish tail. These two compression effects added to each other, and Sensor A

outputted a larger, single-phase resistance reduction in response to the downward

bending moment on the fish tail.

4.4.4 Summary: Effective Low-Cost Way to Break The Thick-

ness Limit For Soft Bending Angle Sensors

The design of the low cost soft bending angle sensor was demonstrated in a simple fish

tail motion tracking application. To instrument a 2mm thin fish tail, conventional

design requires a sub 1mm thin conductive rubber that are not commercially available

and hard to fabricate precisely. However, it is not the thickness of the sensing element

and the device that determines the effectiveness of the bending angle sensor. What

97



really matters is the placement of the sensing element with respect to the device's

neutral axis. Through the inclusion of more stiff material in the fish tail, such as

ordinary fabrics, the location of the neutral axis in the device can be designed in a

low-cost way. It also significantly reduced the precision requirement in manufacturing

those sensors. Because the material are all ordinary and widely available, bending

angle sensors made this way cost less than $1 each. A single rubber-fabric bending

angle sensor allowed us to track both the direction and the magnitude of the fish tail

displacement due to external forces. It is an effective approach to instrument robot

fish and it only needs one of these sot bending angle sensors.

4.5 Demonstrate High Manufacturing Tolerance of

The Soft Bending Angle Sensor In The Applica-

tion Of Leak Detection

4.5.1 Use Soft Bending Angle Sensor In Leak and Obtrusion

Detection

Based on the design principle of the soft bending angle sensor presented in the Fish

Tail section, new membrane leak sensors were designed and fabricated. As shown

in Fig. 4-17, the new leak sensor was still 2mm in thickness, with 1.5mm thick

electrically conductive rubber embedded inside as the sensing element. Underneath

the conductive rubber is a layer of fabric, indicated by the green region. The rest of

the leak sensor is made with soft silicone rubber; more specifically, Smooth-on Mold

Star 30. This silicone rubber and the sensing element shared similar stiffness. A layer

of fabric was embedded inside the soft silicone rubber, right underneath the sensing

element. When viewed from the top, this fabric layer has to be the exact same shape

and size as the entire sensor, as shown in the Bill of Material in Fig. 4-18. The

sensing element was cut into a U shape, so that two wires could be connected to each

end of the sensing element allowing the measurement of electrically resistance. The
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end of the leak sensor where the sensing element resided was placed inside a yellow

loose bracket. As shown in Fig. 4-17, the left end of the sensing element was bonded

with super glue to the vertical wall of the bracket. With this configuration, any kind

of deformation on the right hand side of the leak sensor would be transferred to the

sensing element and measured. The sensing element must be fully enclosed inside the

bracket. As described in the Fish Tail section, it is undesirable to have any part of

the sensing element to come into contact with the corner of the bracket while the leak

sensor is bent. It results in the additional normal pressure on the sensing element

and noise to the measurement.

Previous Leak Sensor, Side View
30mm

Wires x2

8mm
mm SesingElement

1.5mm Sensing Element Top View

0.5mm bracket 1mm Wires 1 8mm
10mm 3mm

New Leak Sensor, Side View 3mm
30mm 3mm

Wires x2 V2
8mm Wires 2

3mm
*Sensing Element3m

1.5mm,

Fabric+Rubber Layer
0.5mm bracket 1 mm

10mm

Figure 4-17: Illustration of the design of the new leak sensor in comparison to the
leak sensor in last chapter

Several versions of the new leak sensors were compared in experiments to demon-

strate the key design parameters and manufacturing requirements. The variables to

test include the choice of fabric, the length of the sensing element in comparison to

the length of the bracket, and the length of the fabrics. The bill of Material in Fig.4-

18 shows the prototype leak sensors with those varying parameter. The outcome,
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including what works and what does not work, will be presented in the following

sections. The first thing to highlight is the choice of fabric. There were many choices

of fabrics; the only selection criteria on the fabrics was that they should be stiffer in

the elongation direction than the soft rubber. It can be the thin woven cloth which

cannot be stretched at all but can be bent easily. In Fig. 4-18, the nonstretch fab-

ric with linear patterns is an example of the woven cloth. It can also be knit cloth

which is softer, stretchable and equally easy to bend. In Fig. 4-18, the stretch fabric

with mesh patterns is an example of the woven cloth. Those two types of fabrics

can be made with the same threads, but the structure of threads inside these fabrics

determines the overall stiffness of the fabrics (Fig.4-19). Fabrics of different stiffness

affect the leak sensor's performance differently. This will be shown first in the exper-

iment. Afterward, I will present two failure modes caused by inappropriate length

of the sensing element and the length of the fabrics. They define the manufacturing

requirements.

4.5.2 Experiments On Bending Angle Sensor Tuning

Experimental Setup

A set of experiments were designed to evaluate the new leak sensors' capability to tell

leaks and obtrusions apart. The membrane leak sensors were placed inside the black

rigid brackets as shown in Fig. 4-20. The test vehicle had two brackets to hold two

membrane leak sensors. This design allowed the test vehicle to slide on flat surfaces

in a stable manner, and ensures the quality of the measurement. It also improved

the data collection rate; two sets of data could be collected in one experiment. In

the experiment, the test vehicle was placed on top of a flat surface in a large water

tank filled with water. On the flat surface there were artificial obtrusions and leaks.

In the experiments, the water was not moving but the test vehicle was. The test

vehicle was pushed at a speed about 100mm per second in a straight line and slide

over the obtrusion. As illustrated in the sketch at Fig. 4-21, the obtrusions were

long triangular prisms, with a cross-sectional profile of 4mm high and 5mm wide.
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Figure 4-18: Bill of Material for the different kinds of new leak sensors

It was 45mm in length, and that was longer than the width of the membrane leak

sensor(37mm). In other experiments, the test vehicle was pushed at the same speed

of 100mm per second and slide over a leak. The leak was a 8mm long crack aligned

with the direction of the vehicle's motion. It simulated longitudinal crack leaks in

water pipes. The bottom side of the crack is connected to a 1/4 inch (6.35mm)

inner diameter hose. The other end of the hose connects to a vacuum chamber that
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Figure 4-19: Two Basic Types of Fabrics [61: Woven fabrics are difficult to stretch
and knit fabrics are easy to stretch

was pressurized. When the leaks were left open, the pressure drop at the leak was

estimated to be 11Psi (0.8 Bar) and the water was leaking at a rate of 0.8 gallon

(3 Liters) per minute. The actual experiment setup is shown in Fig.4-22. The 4mm

high obtrusions were in the back row, and the 8mm crack leak is in the middle of the

central row where the hose is connected.

Figure 4-20: Prototype of the new leak sensor

Baseline: leaks and obtrusions are the same to rubber only sensor

The rubber-only membrane leak sensor developed in the last chapter was first exper-

imented to establish a benchmark. It could not tell leaks apart from obtrusions. The

rubber-only leak sensor, as illustrated in Fig. 4-17, was not designed as a proper bend-

ing angle sensor. It was expected to produce similar resistance change in response
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Figure 4-21: Illustration of the experiment setup for testing
ability to tell leaks and obstacles apart

I ap

1mm Gap

the new leak sensors'

Figure 4-22: Actual experiment setup for testing the new leak sensors' ability to tell
leaks and obstacles apart

to obtrusions and leaks. When the obtrusion bends the rubber-only leak sensor, the

sensing element that crosses the neutral axis may experience elongation on the bottom

side and compression on the top side. This mixed effect makes it difficult to observe

the direction of motion from the resistance change alone. It depends on the different

directional sensitivities of the sensing element to elongation and compression, and
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this particular sensing element is more sensitive to the elongation than compression.

As the experimental results in Fig. 4-23 shows, in all three repeated tests on the

obtrusion, the leak sensor outputs a positive peak for each obtrusion in its resistance

measurement. At the same time, when the rubber-only leak sensor were experimented

on the leaks, it also produced a positive resistance change for each leak as shown in

Fig. 4-24. This agrees with the analysis that leaks pull and stretch the leak sensor,

causing an increase in resistance. The response was weaker because the leak was

small. When comparing the response to obtrusions in Fig. 4-23 to the response to

leaks in Fig. 4-24, they were not significantly different. They are all increases in re-

sistance. The obtrusions caused reactions of large magnitude, so could a bigger leak

with a larger pressure drop. The rubber-only leak sensor is not an effective bending

angle sensor and it cannot tell leaks apart from obtrusions.

N 1.3

ol
z

0.9
0 2 4 6 8 10 12 14 16 18 20

time(sec)

Figure 4-23: Lab experiment result, rubber-only sensor, measurement on three ob-
trusions (4mm high)

fabric-rubber sensor can measure leaks and obtrusions separately

In contrast, the new leak sensor, being an effective bending angle sensor, can clearly

tell leaks apart from obtrusions. The new leak sensor has a stiff fabric layer in

the bottom as shown in Fig. 4-17. Based on the neutral axis analysis, its sensing

element should experience 100% compression when the leak sensor is bent upward by

obtrusions. Thus it should output a decrease in resistance in response to obtrusions.

In contrast, the sensing element should experience 100% elongation when the leak
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Figure 4-24: Lab experiment result, rubber-only sensor, measurement on three leaks
(8mm cracks, 0.8 gal/min flow rate, 0.8 Bar pressure drop). The rubber-only sensor
reacts similarly to leaks and obtrusions.

sensor is bent downward and pulled by the leak. Thus it should output an increase

in resistance in response to leaks. This predicted difference was clearly visible in

the experimental results. As shown in Fig.4-25, three obtrusions caused three drops

in the resistance measurement. In comparison, three leaks caused three peaks in

the resistance measurement as shown in Fig. 4-26. The difference in the obtrusion

responses and the leak responses were distinctive; one positive and one negative. The

soft bending angle sensor is an ideal implementation for differentiating leaks from

obtrusions in pipes. Moreover, it can even be used to measure leaks and obtrusions

at the same time.
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Figure 4-25: Lab experiment result, stretch fabric-rubber
three obtrusions (4mm high)

sensor, measurement on

One important note here is that stretch fabric is better than non-stretch fabrics
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Figure 4-26: Lab experiment result, stretch fabric-rubber sensor, measurement on
three leaks (8mm cracks, 0.8 gal/min flow rate, 0.8 Bar pressure drop)

for leak detection. The results above were produced by the leak sensor made with

stretch, knit cloth but not non-stretch, woven cloth. Its response to leaks were much

stronger than that with non-stretch fabric because it can also measure pulling force.

Leaks affect the leak sensor in two ways: it bends the membrane down and also

pulls on it. The pulling effect of a leak is much stronger than bending, since the

maximum angular displacement is constrained by the the 1mm gap between the leak

sensor and the leak surface as shown in Fig. 4-21. Moreover, given this constraint

on bending angle, bending angle measurement alone does not reflect the size of the

leak. The bending angle sensor made with non-stretch fabrics such as the woven

cloth can measure bending angle fine, but it cannot measure pulling force. Given

the high contrast in stiffness between the non-stretch fabric and the soft rubber,

Almost all of the pulling force will be transferred through the non-stretch fabric to

the rigid bracket. The sensing element will feel minimum input from the pulling effect

of the leak. A leak sensor made with non-stretch fabric is not effectively measuring

leaks; it is measuring the minor effect of bending while neglecting the major effect of

pulling. This was observed in experimental result with the non-stretch fabric-rubber

leak sensor, as shown in Fig. 4-27. In three repeated experiments on the same leak,

the leak sensor made with non-stretch fabric produced almost no changes in resistance

to the first two (at 4 second and 10 second), and very small resistance change at the

third experiment. The maximum resistance change for this small, 0.8 gallon/minute
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leak was less than 5%. In comparison to this sensor made with non-stretch fabric,

the one made with stretch fabric allowed the leak sensor to measure pulling force.

It produced 2 to 3 times stronger response to the same leaks as shown in Fig. 4-26.

With a lower contrast in stiffness between the fabric layer and the rubber layer, the

sensing element shares a part of the pulling input with the fabric layer. Although the

stiffness contrast is lower, the stretch fabric maintained the sensor's overall ability

to sense bending direction. Since the fabric is placed in the bottom layer, both the

pulling and downward bending input from the leaks elongate the sensing element and

increase its resistance. The upward bending input from obtrusions compresses the

sensing element and reduces its resistance. *Leak sensors made with stretch fabric is

well suited for both measuring leaks and obtrusions with high differentiability and

high sensitivity.
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Figure 4-27: Lab experiment result, non-stretch fabric-rubber sensor, measurement
on three leaks (8mm cracks, 0.8 gal/min flow rate, 0.8 Bar pressure drop). Non-stretch
fabric-rubber sensor cannot detect the pulling effect from the leaks.

4.5.3 High Manufacturing Tolerance: Only Two Failure Modes

Manufacturing Process

All soft bending angle sensors presented in this chapter were fabricated in a simple

manual process, and the devices worked well. In order to make a complete sensor as

shown in Fig. 4-28-a, three components are prepared first.

Step 1: The U-shape sensing element are cut out from the commercially available
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Complete Sensor Design

(a)

Sensor Components

(b)

Figure 4-28: Fabrication Process of the Bending Angle Sensor

electrically conductive rubber.

They are 1.5mm thick, cut with ordinary scissors into the dimensions detailed in Fig.

4-17. The tolerance in its dimensions are 0.5mm; increasing the width or thickness

of the sensing element will lead to an increase in its nominal electrical resistance,

which is expected to be around 70 kQ.

Step 2: Liquid rubber is prepared and poured into the mold as shown in Fig. 4-29.

The blue non-conductive rubber are produced with Smooth-on Mold Star 30. It

comes in two liquid-form compartments. After mixed in a 1 to 1 ratio and stirred
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until reaching a uniform consistency, the liquid rubber is poured into the mold.

Step 3: The fabric is wet with the liquid rubber before pushing into the bottom of

the mold.

The liquid rubber is highly viscous, and it is not absorbed by the fabric without

external pressure. Thus the fabric is wet in the liquid rubber and massaged by hand

to force absorption. Then the wet fabric is pushed into the liquid rubber until it lays

flat on the bottom of the mold. The fabric cannot be placed in the mold before the

liquid rubber is poured in; otherwise there will be little rubber and many air bubbles

on the bottom side of the fabric. The fabric can be any kind of cloth. In this case, a

regular knit cloth of 0.5mm'thickness was used. It is about twice as stiff in the stretch

direction as the the 2mm thick, 100% Mold Star 30 piece of the same geometry.

Step 4: Once the fabric is in place, the sensing element is pressed into the liquid

rubber at the location indicated in Fig. 4-28-a.

This process must be done within 20 minutes of the mixing of the liquid rubber,

or the liquid rubber would become too viscous to work with. In practice, it took less

than 2 minutes to wet each fabric and place the items into the liquid rubber. After

leaving the mold still for 6 hours in room temperature, the liquid rubber solidifies

completely, and this soft bending angle sensor is ready for wiring. In the wiring

process, thin 30 AWG stranded wires are stitched with the help of a needle through

the two ends of each U-shape sensing element. After the needle is removed, the wires

are tied with a knot and fastened to the sensing element.

This soft angle sensor is already low-cost and even cheaper if manufactured in

a industrial setting. With all off-shelf, commonly available material, each sensor

costs 0.15 USD in material. In my manual process, it took about 15 minutes to do

preparation and post-processing of four pieces of sensors, and 6 hours of waiting for

the molding to be complete.

The time and cost to make each sensor can be further reduced when they are

manufactured in bulk. The sensing elements can be stamped or machine cut instead

of manual cut with scissor. The fabrics can be wet with liquid rubber with a paint
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Figure 4-29: Mold for casting the soft bending angle sensor

roller rather than the manual wetting process. Instead of individual molds or four per

batch as in Fig. 4-29, a large sheet that consists of 1000s of the sensors can be made

at once, and then cut into the individual pieces. Instead of making a few sensors and

waiting 6 hours for the liquid rubber to dry, one can make 1000s of the sensors with

a bigger mold in the same 6 hours.

Item Cost

1.5mm thickness U Shape Conductive Rubber (0.8 cm2 ) 0.12 USD

Mold Star 30 Silicone Rubber (2 gram) 0.02 USD

0.5mm knit fabric (11 cm2 ) 0.01 USD

Total 0.15 USD

High Manufacturing Tolerance: fabric layer is not necessarily flat

The manufacturing of this soft bending angle sensors has high tolerance to errors. For

example, the liquid rubber can be mixed at 0.95 to 1 ratio and the outcome is still

solid piece of sensor. Within this range of mixture ratio, no significant changes in the

material or the effect on the sensor are observed. Neither of the sensing element or the

soft rubber have to be of uniform thickness. The high contrast in stiffness between the

soft rubber and the fabric ensures the soft bending angle sensor is effect regardless of
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millimeter thickness errors. The fabric does not even need to be flat in the sensor. In

multiple prototypes I made, the fabric inside the soft bending angle sensor is curved as

indicated in Fig. 4-30. There were air bubbles trapped underneath the fabric during

the molding process and they produced enough buoyancy to push the fabric upward.

However, the prototypes still worked. They were measuring bending directions and

pulling forces equally well when compared the perfect sensors.

Soft Rubber

Fabric+Rubber Layer

Figure 4-30: Manufacturing tolerance: the fabric(green) does not need to be flat

There are though two manufacturing errors that leads to failures. The first one is

when the fabric layer falls short of covering the entire sensor. It disables the sensor's

ability to differentiate bending directions. The other failure mode is when the sensing

element is excessively long and come into contact with the edge of the brackets. This

interaction adds significant noise to the sensor's measurement. Both failure modes

are explained in detail below.

Failure Mode 1: Gaps in the fabric-rubber sensor disable bending angle

sensing

When the fabric layer falls short of reaching the mounting end of the bending angle

sensor, the sensor can no longer tell bending directions. As indicated in Fig. 4-31-1,

when the fabric is cut short, there can be a a gap between the left end of the fabric

and the mounting location in the bracket. Within this gap di, there is no fabrics, and

the neutral axis is no longer along the interface between the fabric and the soft rubber

but reset to the centerline of the device. Thus portion of the sensing element in this

no-fabric zone can not tell the bending directions. Moreover, the part of the sensing

element in this gap is more sensitive than the other part in the fabric zone. The

device has much higher stretch stiffness in the fabric zone than that in the no-fabric
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zone. Since the less stiff region stretches more, given any kind of input, the response

of the sensing element in the no-fabric zone will be dominant. Thus, to a bending

angle sensor with this kind of defect, bending up and down will be indistinguishable.

(1)

Fabri+Rubber Layer
d1

(2)

Bending Ini

Figure 4-31: A gap in the fabric-rubber layer resets neutral axis

For a leak sensor with this defect, it cannot tell leaks apart from obtrusions as

expected. Even when the gap size (di in Fig. 4-31) is only 1mm, the sensor's failure to

differentiate leaks from obtrusions was visible in experimental results. As shown in the

leak measurements in Fig. 4-33 and the obtrusion measurements in Fig. 4-32. While

the normal leak sensor was expected to be compressed by the upward bending input

imposed by the obtrusion and output a resistance drop, the defected sensor output

a resistance increase. This indicated that the part of the sensing element within the

1mm gap was elongated significantly by the obtrusion input. With d= 1mm, the

defected leak sensor behaved similarly to the rubber-only leak sensor as displayed in

Fig. 4-23 and Fig. 4-24. Leaks and obtrusions all result in increases in resistance.

Instead of moving the neutral axis and enable new functionalities, a short fabric only

make the leak sensor stiffer without adding new functions.

Failure Mode 2: Excessively long sensing elements add noise

Similar to what we observed in the fish tail experiments, any unnecessary physical

contact between the sensing element and the mounting tool causes undesired noise in

the measurement. In the fish tail case, the mounting tool introduced a concentrated

normal pressure on the sensing element and thus reduced its resistance. The leak
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Figure 4-32: Lab Experiment result, fabric-rubber sensor, gap d1=1mm, measure-
ment on three obtrusions (4mm high)
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Figure 4-33: Lab Experiment result, fabric-rubber sensor, gap d1=1mm, measure-
ment on three leaks (8mm cracks, 0.8 gal/min flow rate, 0.8 Bar pressure drop). The
sensor can no longer differentiate leaks from obtrusions

sensor is designed with the intention to avoid this unnecessary single-point normal

pressure. In its design as shown in Fig. 4-17, the sensing element is shorter than the

bracket and fully enclosed in the bracket. In this way, the edge of the bracket will never

press against the sensing element and affect its reading. A sensor with excessively

long sensing element is considered a defect. An example of such is depicted in Fig.

4-34. When the sensing element extends a length of d2 beyond the yellow bracket,

the edge of the bracket can press against the sensing element when the device is

bent. This normal pressure would compress the sensing element; in the case of a

conductive rubber, this compression reduces its electrical resistance. Therefore, when

this defected leak sensor passes by a leak, there will be two competing effects on
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the sensing element: the elongation from the bending downward and pulling which

increases the resistance, and the compression from the edge of the bracket(Fig. 4-34)

that reduces resistance. This agrees with the observations in the experiments. In

the experiments, a stretch fabric-rubber sensor, with a extra-long sensing element

and d2=3mm, was tested on the same leak three times as all other leak sensors

earlier. As shown in Fig.4-35, this sensor outputs a drop (compression) and then

an increase (elongation) in resistance for all three times it passed by the leak. The

compression from the edge of the bracket was dominating first and then outmatched

by the elongation from the leak's downward bending and pulling effect. In comparison

to the simple, clean, easy-to-interpret measurement from a normal leak sensor as

shown in Fig. 4-26, the extra length of the sensing element add some unnecessary

difficulty to interpreting the measurement.

d2
(1)

Soft Rubber

Fabric+Rubber Layer

(2) Normal pressure

Bending InpuI

Figure 4-34: Excessively long sensing element interacts with the edge of the bracket
and causes noise to the measurement

These two failure modes can easily be avoided. To avoid having a short fabric in

the device, we can first make a longer device with longer fabrics and then trim it to

the right length. During the trimming process, any excessive length of the sensing

element can be reduced as well. In addition, there is enough tolerance built into the

sensor design. The sensing element is intended to be 8mm long. If it is made 9mm

long, it is still shorter than the 10mm long bracket and it would not touch the edge

of the bracket. Those precautions are easy to implement, making the manufacturing

process of this soft bending angle sensors even more tolerant to errors. It is a robust
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Figure 4-35: Lab Experiment result, stretch fabric-rubber sensor, long sensor
d2=3mm, measurement on three leaks (8mm cracks, 0.8 gal/min flow rate, 0.8 Bar
pressure drop). The leak sensor now sees a mixed effect of pulling and compression.

way to produce effective soft bending angle sensors.

4.5.4 Summary: A Low Cost Leak Sensor That Can Measure

Both Leaks and Obtrusions, Separately

The soft bending angle sensor was successfully implemented in leak detection, in a

low cost and robust way. It was capable of differentiating leaks and obtrusions. The

principle of this sensor is about engineering the neutral axis of the device. This can

be done by embedding in the soft device a piece of simple, ordinary fabric. Fabrics,

being thin while extremely stiff in the elongation direction, allow us to use thick but

commercially available conductive rubber to build previously impossibly thin soft

bending angle sensors. This design allows us to build good performance sensors with

low cost ordinary material. This design also has high tolerance to manufacturing

errors. Thus the sensor can be produced without high precision machineries and even

simply by hand. It is a low cost but effective solution to a complex problem.

4.6 Conclusion

A 1 USD soft bending angle sensor has been developed to measure leaks and obtru-

sions in pipes at the same time. It is a composite material sensor, made of low cost

silicone rubber and ordinary fabrics. It is designed for low-cost manufacturing. It has
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minimum precision requirements even when they are produced on millimeter scale.

Although being low cost, this sensor has great performance and many applications.

When made into a leak sensor, it can differentiate leaks from other disturbances

in the pipe such as obtrusions. It can even measure obtrusions at the same time.

When made into motion sensors, it can track the tail swing of robotic fish. There are

definitely more applications worth exploring with this soft bending angle sensor.
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Chapter 5

A Practical Minimalism Approach to

In-pipe Localization for A Soft Robot

5.1 Overview

In this chapter, I propose solutions to the localization challenge specific to this in-pipe

soft passive robots. The challenges are two folded: being in-pipe and being passive.

Being inside an underground water pipe, the robot has little to none connectivity with

GPS or remote sensors. Locating the in-pipe robot with outside-the-pipe sensors are

difficult, power intensive and costly. As a passive robot, it is propelled by the water

flow and its speed changes with the water flow. This passive robot has no control of its

speed; given the fluctuation and changes in the water flow, it is impossible to estimate

the robot's trajectory based on vehicle dynamics and known actuation. Measurement

of the robot's motion with on-board sensors is then key to the localization. Given the

design of this soft robot and its leak sensors, it is possible to obtain speed measurement

in an unconventional way. The robot, for most of the time it is in the water pipe,

touches the pipe inner surface. This allows us to measure certain in-pipe features,

such as pipe joints, to obtain speed reference. I propose two methods to utilize these

measurements to estimate the location of the robot, and do so with a minimum

number of on-board sensors only.
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5.2 Sensors Are Not The Only Source of Information

In literature and in practice, in-pipe robots are commonly localized with one of two

approaches: remote sensing and on-board sensing. The first one is remote sensing.

The only other passive, flow-propelled in-pipe device on the market, Smartball by

Pure Technology [20] is located with remote sensing. It is similar to GPS, just on a

local scale. An extensive network of wireless relays are attached to the underground

water pipe from the outside, and establish communication with the in-pipe device

when it is within a certain range. Typically, the localization is done with the mea-

surement of received signal strength from the relay to the in-pipe device, or from the

device to the relay. In case there are regions where the wireless signal from the relays

fail to reach the in-pipe device, the localization can still be performed with on-board

sensors first, and then corrected via loop closure when the device is reconnected to

the relays [431. In practice, this remote sensing approach is expensive. Any GPS or

wireless signals or are easily attenuated by the soil, the pipe material and the water

before they reach the robot. If there are not enough density of the relays, there will

be multiple no-signal zones where the robot can estimate its location with only low

confidence5-1. To ensure the quality of localization results, the relay network are usu-

ally high in density and high in power consumption. The price to implement remote

sensing effectively can be on the order of tens of thousand USD per mile. The overall

goal of this thesis is to develop low cost solutions to solve the water leak problem. The

robot so far costs less than 500 USD. It needs a localization solution much cheaper

than the remote sensing network.

In comparison to the high cost wireless sensor network, on-board sensors are usu-

ally lower cost but also less effective solutions for in-pipe applications. On-board

sensors can be used with the remote sensing to achieve greater accuracy, or used in-

dependently. Wheel encoders and inertia measurement units(IMUs) are used in many

mobile robots, but they are commonly reported inaccurate [44]. We also attempted

to use wheel encoders on the robot, and there was significant slip between the wheel

and the pipe surface even when the pipe is empty. When the pipe was filled with
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Figure 5-1: Typical remote sensing setup: the robot can estimate its location with
high confidence when connectivity is available, and low confidence when the connec-
tivity is not available.

water, the slip issue was worse. Wheel encoders are also difficult to install in soft

robots; shafts, wheels and electronics are among the many components a wheel en-

coder requires. In comparison, IMUs are much easier to install in the soft robots. It

is just one integrated chip. In the soft leak detection robots presented in previous

chapters, there is already a Pololu MinIMU-9 v5 embedded. As the results in Chapter

3 indicate, IMUs are helpful in identifying if the robot is passing a pipe elbow, as

well as heading directions. In many mobile robots and aerial drones, the encoders or

IMUs are used together with other sensors such as cameras, acoustic and laser range

finders. The low precision but high sampling rate data from encoders and IMUs are

combined with the high precision but low sampling rate data from the other sensors

through data fusion algorithms in order to produce better motion estimations. The

available algorithms include Kalman Filter [45], SLAM [46] and others. When ap-
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plied to in-pipe robots, cameras can be used for optical flow or visual odometry [471,
or recognition of certain in-pipe features [48]. Cameras can lose its effectiveness due

to low visibility when the pipe is filled with water and the water is moving. This

is, however, the condition our leak detection robots operates in. Moreover, those

additional sensors require space on the robot. It is possible to install them on the 4,

6-inch robots, but the space on the 2-inch robot is a huge constraint. Considering the

cost, space and effectiveness, none of those additional sensors are chosen for this soft

robot.

Sensors are sources of information but not the only one; all constraints imposed by

the pipe system are also sources of valuable information. Water pipe systems impose

many constraints on soft in-pipe robots. First there are the geometric constraints.

the robot can only go forward inside each straight pipe section; since it matches the

pipe in size, the pipe wall prohibits the robot from translating up and down or left

and right. The design of this robot does not allow it to pitch or tilt in the pipe either.

The only places the robot can turn are pipe elbows and T junctions. Then there

are the dynamic constraints. In a typical water system, there are major fluctuations

in the flow rate from one hour to the next through out the day. This fluctuation is

slow and it follows regular patterns as an result of human activities. Many people

are home using water in the evening while few people are at home using water during

the day. However, within a short period of time, half an hour for example, the flow

rate through any particular section of the pipe is more or less constant. Since the

robot is passive and propelled by the water flow, knowing the flow speed is the same

as knowing the robot's speed. Last but not the least, there are standards in pipes.

All pipe systems are built with straight, fixed length pipe segments. In the US, the

standard pipe segment length in the water systems are 6 meters (20 ft). This basically

means every 20 ft there will be a pipe joint. If there is an accurate map of the pipe

construction, the robot can count the joints and know exactly where it is. This is

the case in the Saudi Arabia field test. If there is not an accurate map of the pipe

construction or no map at all, the robot can still count the joints to estimate its

average speed and location. This is the majority of the cases; water companies rarely
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keep a record of their pipe network that accurately shows where every pipe segment

is.

Instead of adding more sensors to the robot, one can add information such as those

geometric, dynamic and standard constraints from the pipe system to the robot's

localization process. Given the design of this soft robot and its leak sensors, two kinds

of on-board sensors are enough to estimate the robot's speed and heading direction

inside a water pipe system: leak sensors and IMUs. The leak sensors are essentially

tactile sensors. They measure features on the pipe inner surface. As we have discussed

in Chapter 3 and Chapter 4, these tactile sensors can be used to measure obtrusions

in pipes such as pipe joints. The'tactile sensor enables the robot to count joints in

pipes. Then the robot can estimate how far it traveled and its speed. At the same

time, the IMU can tell precisely when the robot turned at a pipe elbow, which is the

only place it can change heading direction, in addition to the rough measurements of

the robots' acceleration, rotational speed and heading direction. Through data fusion,

observations from the two sensors and the other available information about the pipe

system are utilized together to create the best estimation of the robot's trajectory

underground.

5.3 Field Test Observations

How Joint Presence Can Be Detected

Pipe joints compress the robot and this compression is measurable. As indicated in

Fig. 5-2, at the location where two standard pipe segments are joint together, there

is commonly an obtrusion pointing radially inward. This obtrusion can be an o-ring

that seals the connection in PVC pipes, or the backside of a groove in some cast iron

pipes. This obtrusion is commonly all around the circumference. As indicated in

Fig. 5-2, in the case of a 52.5mm (2 inches) inner diameter cast iron pipe joint, the

obtrusion is 1.6mm thick in radial direction. This drawing was for the same pipe and

joints in the 2017 Saudi Arabia field tests described in Chapter 2 and 3. When the

robot passes such a joint, this obtrusion will compress the robot on all sides.
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Figure 5-2: Illustration: Pipe joints, either between standard pipe segments or be-

tween other pipe elements, can compress the robot.

Two indicators of pipe joints were observed in the field tests. In one case, joints

can disturb the leak sensors. obtrusions at joints can compress the robot on its leak

membrane sensors and bend the sensors. Since the compression is from all sides,

leak sensors all around the robot will output resistance changes. This simultaneous

reaction on all leak sensors was observed in the field test result from Saudi Arabia,

as shown in Fig. 5-3. It was a 2inch diameter cast iron pipe loop. There were 36

joints in the 221-meter long pipe loop, every one of them triggered readings on all four

leak sensors. Therefore, one criteria to identify a joint is if there were simultaneous

changes in all leak sensors on the same circumference.

Leak sensor force after HPF(N) vs tefsec) - F1HPF
4osil F2HPFPossible pipe joints F3HPV

----2-F4HPF

0
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Figure 5-3: Field test results from 2017 Saudi Arabia test: every peak in the leak

sensor output history may indicate the detection of a pipe joint.

In the case of larger robots, a joint can momentarily disturb the robot's radial sta-

bility. While the robot is in the pipe, its umbrella shaped back-end is fully expanded
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and maintains its contact with the pipe surface on all sides. This contact is keep-

ing the robot centered in the pipe and aligned with the pipe's centerline. When the

robot goes through a pipe joint, this umbrella part of the robot is squeezed and now

smaller than the nominal pipe diameter. For a brief moment after the robot squeezed

through the pipe joint, the robot is still smaller than the pipe diameter. Part or all of

its contact with the pipe surface may be lost temporarily until the robot is expanded

again. In this process, the robot may pitch or yaw slightly due to disturbance in the

water flow or unevenly distributed contact and friction with the pipe surface. Then

the angular position of the robot resets as the robot expands and re-establishes con-

tact with the pipie surface. This angular deviation and reset is small- in magnitude

but high in frequency. It can be measured by the gyroscope inside the IMU on the

robot. This angular deviation was observed in the 2018 Virginia field test. As shown

in Fig. 5-4, in one segment of the field test, the robot recorded a sequence of pulses in

the measurement for its angular velocity in the radial direction, each representing the

arrival at a joint. Meanwhile, the magnetic sensor or compass in the IMU reported

that the heading direction did not change much in the process. This indicated that

after the momentary angular deviation, the robot returned to its normal orientation.

One may note that this radial instability was not observed in the 2017 Saudi Arabia

test results ( Fig. 5-3 ). The reason is the difference in the robot size and design. In

the Saudi test, the robot was 2 inch in diameter and had little compressibility. It was

always in contact with the pipe surface and thus always stable in the radial direction.

In this Virginia test, the robot used was 6 inches in diameter and can be compressed

down to 4 inches. It can easily be compressed and destabilized in the radial direction.

As the bigger robots aimed for more compressibility and adaptability, the price in

this design trade-off is radial stability.

Pipe mapping can be done based on the identification of the joints. A pipeline

is made of connected, straight, standard pipe segments. In each country there are

standard length for the pipe segments. In both field tests in Saudi Arabia and Virgina,

the pipe segments are 6 meters (20 feet) in length. By counting the joints, the robot

estimated how many 6 meter long segments it passed. For example, as shown in Fig.
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Figure 5-4: Field test results from 2018 Virginia test: (1) every peak in angular
velocity may indicate the detection of a pipe joint; (2) the magnetic sensor monitors
the robot's heading direction change. In fhis case the robot's heading direction did
not change much when the pipe joints disturbed the robot's radial stability.

5-5, a portion of the pipeline in the field test could be mapped by the robot. The

white line indicates the trajectory of the robot which is the same as the pipe. The

white dots on the line represent pipe joints. With the ability to identify joints, this

robot can create pipe maps with details such as location of pipe joints. While most of

the existing pipe geographic information system (GIS) provide coordinates of pipes,

the map this robot created adds the locations of pipe joints. This kind of resolution of

pipe GIS has not been demonstrated by any commercial products before. On top of

that, with good speed measurement, the position of all features in each pipe segment

can also be estimated.

Challenges In Joints Identification

Observations from the field tests also indicated three potential challenges. From the

two field tests, it is observed that joints can be identified from measurements of either

the leak sensor, or the gyroscope. However, either those measurements are designated

for joint identification, nor can they detect joints with 100 % accuracy. The three

challenges are summarized in Table. 5.1

The first challenge is false positives. Joints are obtrusions to the robot, but not all

obtrusions are joints. Other features in the pipes, such as ball valves, gate valves and

sometimes tuberculations, can cause similar readings on the robot's measurements
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Figure 5-5: Field test results from 2018 Virginia test: plot pipe maps from the joint
measurements

as pipe joints do. These are the false positives. Those false positives are common;

as shown in the Saudi field test result in Fig. 5-3, there were many minor spikes

in the leak sensor measurement. Many of those false positives were caused by the

rust buildup in the water pipe. The Saudi field test was conducted in a 6 year

old cast iron pipe that was mildly rusted. Just like we were trying to differentiate

leaks from obtrusions in Chapter 4, now we need to differentiate different types of

obtrusions. Many of the false positives can be screened with a threshold on the signal

Table 5.1: Summary of Practical Challenges in Joint Identification
Challenges Examples Impact
False Positives Valves and tuberculations that compresses Overestimate

the robot similarly as joints Distance
False Negatives Worn out joints that the robot fails to notice Underestimate

Distance
Other Pipe Elements Tee junctions, pipe elbows, valves, shorter Overestimate

pipe segments that add lengths Distance
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magnitude and a threshold on the correlation among all leak sensors. The obtrusion

at a joint is all around the circumference so it compresses the leak sensors on all

sides. In comparison, a rust buildup are rarely even on all sides of the pipe; they

are more likely to be on one side of the pipe and compress one or two leak sensors.

Through calculating the correlation of the outputs of all leak sensors, we can filter out

those responses due to single-side rust buildups. Example of this correlation method

can be seen in Appendix B. However, there may still be false positives due to rust

buildups that are all around the pipe circumference, as well as all the valves. Counting

obtrusions is easy for the robot, but identifying which obtrusions are joints can be

difficult. With false positives in the joint measurements, the robot may overestimate

the number of joints it has passed and the distance it has traveled.

The second challenge is false negatives. The robot may pass some pipe joints

without recognizing them. These are the false negatives. Pipes are manually con-

nected, and joints are assembled at different quality. In some cases, the obtrusion at

a joint may be very shallow. This could be an inappropriately placed o-ring in a PVC

pipe joint. The obtrusion can also be worn out. In those cases, the robot will not

measure anything at this joint. The leaks sensors may not pick up any signals, and

the gyroscope may not notice any angular displacements. With false negatives in the

joint measurements, the robot may underestimate the number of joints it has passed

and the distance it has traveled.

The third challenge is the length of other pipe elements. Tee junctions, pipe elbows

and valves are common elements in a water pipe network. They all have their own

dimensions which are much shorter than the standard pipe segments. There could

also be shorter pipe segments. Those shorter ones are cut off from the standard ones.

They are used in place where the space may not permit a full 6 meter pipe segment.

All those non-6-meter elements are connected in series to the standard 6-meter-long

pipe segments. This means more joints. This also means the distance between joints

are not always 6 meters. If the robot assumes the distance between each adjacent

joints are 6 meters constant, it may overestimate the distance it has traveled. The

good thing is that in any water pipe system, most part of them are the standard pipe
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segments. Shorter pipe elements are the minority.

Challenges In General In-Pipe Localization

Other than the challenge in identifying joints, there are three more practical con-

straints specific to the localization problem in municipal water pipes. From the field

tests and interviews with water authorities, I find that pipe map is commonly not

accurate, and neither is the pipe flow speed in real time. The flow rate along the

water pipe is not consistent but it diminishes due to active water usage. Given those

constraints, we cannot make certain assumptions such as the availability of accurate

pipe maps or access to real time flow speed knowledge. Instead, the robot must be

able to estimate its speed and location on its own.

Existing pipe maps are not accurate. During the field tests and in my interviews

with municipal water authorities, this is commonly the case. Pipes were installed

many decades ago, and the construction map was handcrafted without exact dimen-

sions. As the cities are rebuilt over time, the pipe maps are usually not updated. The

old map may make reference to a building or a street that no longer exist. Connec-

tions added to the water pipe network may not be recorded. Moreover, locations of

pipe joints were never on the map. It is impossible to know the absolute location of

the joints without digging up the pipes. Frequently, the location of pipe valves were

not even marked at all. Sometime even pipe elbow locations are not marked. The

water authorities know the pipe is roughly along this street, but there can be a couple

90 degree bends on it that they couldn't find in the record. The robot cannot rely on

the existing pipe map.

Pipe flow speed is generally not available. During the field tests and in my inter-

views with municipal water authorities, no-one could give the exact flow rate through

every pipe sections. When asked for flow rate, the water authorities can at most

provide guesses. Rarely they could find a nearby district flow meter and read the flow

rate from it. If the robot needs to know its speed, it has to measure it on its own.

The inlet flow rate may be constant but the flow rate through out the water pipe

is not. There is large, slow, periodic variations in the pipe flow rate throughout the
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day, and it is caused by human activity patterns. The duration of the robotic pipe

inspection is short when comparing to the period of water usage fluctuation. Thus the

flow rate at the inlet during the inspection may be constant, with minor fluctuation.

The flow rate through out the tested water pipeline may be not consistent due to

water usage. The flow rate decreases after every active service line connection. The

service line connections are where water is extracted from the main pipeline into

households, restaurants and factories. With some amount of water leaving the pipe

at each service connection, the flow rate forward is reduced by the same amount. This

reduction is a step function; it is not a gradual or linear decrease of flow rate over a

distance.'

5.4 Proposed Methods and Key Assumptions

In this chapter, I present two methods to overcome those challenges to perform robust

in-pipe robot localization. Both methods are designed specifically for soft in-pipe

robots. They are low cost as they require a minimum number of sensors on-board and

zero remote sensors. Their performance are sufficient at the minimum requirements,

but can surely be improved further with more sensors. Both methods integrate the

motion estimation provided by an IMU and the information gathered from identified

joints. The first method gathers relative distance and average speed from counting

joints. The IMU data and the relative distance data compensates each other. The

IMU provides good estimation of high frequency changes in the motion, such as

when the robot start moving after being stationary for a while. This is the case in

launching the robot. It is also the case when the flow is stagnant for a while and

starts moving again. At the same time, the relative distance measurement tracks the

low frequency, steady-stage shift in the robot's motion. The second method includes

further information such as the instantaneous speed at each obtrusion. Both methods

are robust when faced with the three general challenges of in-pipe localization. None

of them requires prior knowledge of the pipe map or flow speed. When implemented

on a passive, flow-driven robot, those methods enable the tracking of the flow speed

128



change throughout the pipeline. This information is previously extremely difficult to

capture without expensive and complex sensing systems.

Both methods rely on two key assumptions about a typical water pipe system.

The first assumption is that flow rate is varying slowly during the short period of

robotic inspection. This is usually the case in practice. Given the mass of the water

in the pipe, the flow fluctuation is small in a short period of time. However, the flow

rate varies in space, as every active household water usage reduces the flow rate in the

main water pipe. The proposed methods, without relying on external measurement

or prior knowledge, will be able to capture the flow speed variation in time and space.

The second assumption is that majority of the water pipeline are 'made with

consecutive standard pipe segments. There are both standard pipe segments and

other non-uniform length pipe elements in any water system, but it is reasonable to

claim that more than 90% of the length consists of consecutive, standard, 6-meter

long straight pipe segments. In contrast, the distribution of the other pipe elements,

such as valves and pipe elbows, are sparse and random. It is unlikely that there are

multiple valves evenly distributed with exactly the same distance between them. One

can imagine the pipeline as music. The standard pipe segments are the repeating

notes with a rhythm. The other pipe elements are occasional, and they do not have

a rhythm. Within those consecutive standard pipe segments, the robot can count

the joints to estimate its positions and speed with high confidence. In practice, two

problems stand out. The first problem is how to recognize consecutive standard pipe

segments from all other obtrusions in the pipe. The second problem is how the robot

estimate its position in the rest 10% pipes where there may be no consecutive standard

pipe segments. Both problems are addressed in my proposed methods.

5.5 Simulation Study Setup

The proposed localization algorithms were intensively studied in simulations. There

were limited field test opportunities for us to try the robots with the algorithms in

real pipe conditions. To refine the algorithms and test their robustness, simulation
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studies were performed in Matlab. In the simulations, the pipelines and their flow

conditions were first generated to be similar to what was observed in the 2017 Saudi

Arabia field test and 2018 Virginia field test. Then their parameters were adjusted

to further test the robustness of the localization algorithms.

The simulator consists of three modules: a generator, a sensor and an estimator.

First, the pipe map and robot's motion is simulated in a generator program. In

the generator, a virtual robot flows through a randomly generated pipeline, and the

output is the robot's true motion data. The robot is passively propelled by the

water flow. The water flow enters the pipeline at a constant average rate with some

random fluctuations. The flow rate reduces 'throughout the pipeline due to active

water consumptions.

Second, the measurement data is simulated in a sensor program. The sensor

simulates the robot's onboard sensors such as the IMU. The measurements include

linear acceleration, angular rotational speed, and compass direction reading. The

robot also has the tactile sensor that can measure both out-flux of water at leaks or

service connections, as well as any obtrusions in the pipe. Those measurements are

super-positioned with noise. The water flow rate is unknown to the robot. The robot

can not measure location or speed directly.

Third, an estimator program is tasked to give the best guess of where the robot is

at every point of time. The robot has to estimate its speed and location from only the

IMU readings and tactile sensor outputs. The proposed algorithms are implemented

in the estimator.

Generator

The simulated pipe map is generated with many features. The top view of an ex-

ample pipe map is shown in Fig. 5-7. There are standard 6-meter-long pipe straight

segments, pipe joints, 90 degree elbows. There are several minor Tee junctions on

the pipeline, and they represent service connections to homes and businesses. They

can point to the left of the pipe, or to the right. The mean density of these service

connections are 6 per 100 meter of pipes. This is in-line with the reported national
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Figure 5-6: Three modules in the robot localization simulator

average of 191 people or about 63 families per kilometer of pipes [16]. There are

also a few valves placed in the pipeline. There are also other obtrusions on the pipe

representing tuberculations.

For simplicity, the following assumptions are applied to the simulated maps:

1. All pipes are in horizontal plane

2. 90 % Pipe segments are straight and of standard length Le,

3. Pipe segments are aligned (0 degree offset)

4. Pipe only change heading at 90 degree bends

5. All pipe segments are of the same diameter d

6. All Tee junctions are service connections; they are too small in diameter for the

robot to enter

7. There is one inlet and one outlet for this pipeline, no branches.

This scope of this simulation study is thus limited to 2D pipelines. Change in the

depth of the pipes, or a network of pipes are out of the scope of this study, but the

simulation algorithms can be augmented for those conditions.

The robot's motion is confined within the simulated pipeline, and a few more

assumptions are applied to it. The robot has no actuation, and it is not self-propelled.

Its motion is driven by the fluid drag force Fd(Vf(t, s), V,(t)) .
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Here Vf(t, s) is the flow speed at time t and distance s from the inlet. The

flow speed is dependent on distance because it reduces after every active household

connection. V(t) = (t) is the robot's in-line speed at time t. Since the robot's

dimension is almost the same as the water pipe diameter, the robot is like a piston

in the cylinder with very high drag coefficient cd. cd can be determined through

computational fluid dynamic(CFD) simulation. p is the density of water and A is the

back-side area of the robot in the direction of the pipe flow.

At the same time, there are a small amount of friction on the robot as it slides
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along the pipe surface. This friction is denoted as

Ff(g(s)) = cf * FN(g(s)) (5.2)

Ff(g(s)) is dependent on the location of the robot s, friction coefficient cf, and

normal force FN. FN is dependent on if there is a change of pipe feature, g(s) ,at

location s. The value of g(s) is binary; it is zero in normal pipe segments, and

one at ball valves, gate valves, pipe joints, Tee junctions, pipe elbows as well as

any tuberculations. Those features have their own lengths. At those features, the

normal force between the robot and the pipe FN(g(s)) will be higher, and thus friction

Ff(g(s)) will be higher.

For simplicity, four assumptions were made in the simulated flow in the pipe:

1. The flow speed at the inlet has a mean value of Vfo and Gaussian white noise of

standard deviation ofo

2. The mass of the water in the pipe acts like a 1st order low pass filter with a cut-off

frequency at f,

3. Active household connection reduces by the same amount AVf

4. Any active household connection is assumed to remain on for the entire duration

of the robotic pipe inspection.

For simplicity, six assumptions were made in the simulated robot's motion:

1. When the robot first enters the pipeline through the insertion point at s = 0, it is

stationary: V,(s = 0, t = 0) = 0

2. The robot is never stuck or moves backward V,(t > 0) > 0

3. The robot, given its size is almost the same as the pipe diameter, is constrained

to move only in the axial direction of the pipe but it cannot translate in the radial

direction of the pipe

4. Friction coefficient cf is treated as constant throughout the pipe

5. Within normal pipe segments, normal force FN(g(s) = 0) = c 1(s)mg where mg is

the weight of the robot, c1(s) has a mean value of ci with Gaussian white noise of
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standard deviation -c

6. At other pipe features, normal force FN(g(s) = 1) = c2mg, and c2 is a lot higher

than ci, c2(s) has a mean value of c2 with Gaussian white noise of standard deviation

9c2

7. Friction is much smaller than the drag force, so for most of the time Vf(t, s) ~

Vr(t)).

Then the robot's motion through out the pipeline can be generated with the

following dynamic equation

(m + ma) = Fd(Vf (t, s), V,(t)) - Ff (g(s)) (5.3)

where m is the mass of the robot and ma represents the added mass [40] of this robot.

In this setup, the robot's motion is confined to within the pipeline and it cannot move

sideways. The input variables are the flow speed Vf(t, s) and pipe features g(s) . The

output variables are the in-line distance s, in-line speed a (same as V, ) and in-line

acceleration . of the robot. Substitute in the representations of the drag and friction

forces, this detailed dynamic equation governs the robot motion.

(m + ma)s = 2 (V (t, s) - a)2 - Cf FN(g(s)) (5.4)

Analysis in the rest of this chapter will be shown using the example pipe shown in

Fig. 5-7 and the parameters summarized in Table 5.2. Some of the parameters are

determined by the design of the actual robot prototype. The other parameters are

manually chosen to represent certain set of flow and friction conditions.

This simulation generator outputs the true, discretized motion trajectory of the

robot, and it captures several key features in the real water system. An example

motion is shown in Fig. 5-9. In this example, the discretized motion trajectory is

sampled at 5,000 Hz. The robot's velocity has an overall decreasing trend. It reflects

that water is being drawn by households, and the pipe flow diminishes toward the end

of the pipeline. The in-line acceleration is high at the beginning, as the stationary

robot is catching up to speed with the moving water flow. For the remaining part of
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Figure 5-8: Block Diagram of the robot system dynamics

Table 5.2: Parameters used to generate an example simulated in-pipe robot mission
Parameter value unit

Lseg 6 meters

d 150 millimeters

Vfo 0.5 m/s
-f 0 0.5 m/s

A 10 Hz
AV 3%

Cd 2

rho 1000 kg/M 3

A 0.0177 m2

M 2.35 kg
ma 0.88 kg
g 9.81 m/s 2

Cf 0.01

ci 0.2

O-ci 0.02

C2  
2

O-c2  0.4

the trajectory, the acceleration has a mean value around zero and minor deviations

due to fluctuation in the flow speed, and friction changes at every in pipe features.

The Matlab code for the generator can be found in Appendix C.

Sensor

The sensor simulates the sensors on-board the robot, generating noisy measurements

about the robot's interaction with the simulated environment. It includes simulated

accelerometer, gyroscope and tactile sensors. None of these sensors provide direct
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Figure 5-9: true motion trajectory of the robot in simulation. The red trace is velocity

and the blue trace is acceleration.

measurement of the robot's speed. The sensor samples at f = 50Hz; it is a low but

reasonable sampling rate for implementation in robots powered by regular arduino

based micro-controllers. The accelerometer is assumed to be of a single axis and it

is aligned with the axis of the pipe. It captures the robot's in-line acceleration as in

Fig. 5-9, but it is also affected by an addictive Gaussian white noise of zero mean

and standard deviation O-acc. The gyroscope is also assumed to be of a single axis and

positioned to capture the robot's yaw rate in the horizontal plane. The gyroscope is

affected by an addictive Gaussian white noise of standard deviation -%yro, in addition

to a bias term governed by bgyro. The parameter of bgyro defines the expected drift

in the gyroscope reading per minute. Both the noise and drifts in the accelerometer

and the gyroscope is modeled following Kalibr [49, 501, a conventional off-line IMU

calibration approach. In this model, the noise in the measurements is added using

the following equations:

Output(k) = 9(k) + uaccn(k) (5.5)

woutput(k) = w(k) + -gyron(k) + bias(k) (5.6)
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Table 5.3: Noise Parameters in the simulated accelerometer and gyroscope
Parameter value units
O7 acc 0.5 m/s 2

agyro 2 deg/s
bgyro 1 deg/s/min

where s and w are the true acceleration and true rotational speed of the robot.

They are also outputs of the generator. goutput and w0 utput are the measured accel-

eration and rotational speed. The measurement noise are characterized by a unit

strength white Gaussian noise n multiplied by the standard deviation of the noise,

Uacc and cigyro, respectively. The gyroscope measurement has a bias component that

increases overtime. It is defined as

bias(k) = bias(k - 1) + bgyr n(k) (5.7)

The parameters of the accelerometers and the Gyros are chosen based on the

specifications of the IMU used inside the prototype robot, which is a miniIMU V5 by

Pololu. A sample output from this part of the sensor is shown in Fig. 5-10.

CM Accelerometer output in in-line drection
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Figure 5-10: Sample motion data output from the simulated in-pipe robot. The
acceleration measurement is very noisy. The gyroscope measurement contains large
peaks that corresponding to pipe bends, and small peaks that corresponding to pipe
joints.
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Table 5.4: Parameters in the simulated tactile sensors
Feature expected nominal magnitude
joints 5
household connections 20
pipe bends 20
obtrusions 5

The other part of the sensor simulates the tactile sensor outputs. An example

output is shown in Fig. 5-11. The tactile sensor can measure both out-flux of water

at leaks or service connections, as well as any obtrusions in the pipe. Fig. 5-11

shows the output of a simulated first version of the tactile leak sensor, which cannot

differentiate leaks from obtrusions. There are four channels of the tactile sensors,

each monitoring the pipe surface condition in their respective quarter of the pipe

circumference. Leaks, service connections are assumed to be contained within one

quarter of the pipe circumference, so only one tactile sensor will be triggered. Pipe

features such as pipe joints, valves and bends, will trigger similar reading on all four

channels. The other obtrusions such as tuberculations can trigger one or multiple

tactile sensors. The probability they trigger any number of tactile sensors is a uniform

distribution. In the simulation, the tactile sensor output, denoted as tactile factor, has

a nominal magnitude and length for every kind of in-pipe feature. Those parameters

are summarized in the table below. There are also variations in the magnitude of the

tactile signal for each feature, and this variation is assumed to be 20% of the nominal

magnitude. Although in reality pipe features usually have different dimensions, in this

simulation all features are assumed to be uniformly 0.04 meters long for simplicity.

The Matlab Code and other information pertaining to the sensor can be found in

Appendix C.

Estimator

The estimator performs data fusion on multiple sources of information to best ap-

proximate the robot's true motion. The goal is to estimate the robot's position at

every point of time. The available sources of information include:
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Figure 5-11: Sample tactile data output from the simulated in-pipe robot. Each peak
in the data corresponds to either a pipe joint, a household connection, a pipe bend
or an obtrusion.

Table 5.5: Four sources of information and constraints for the in-pipe robot localiza-
tion problem

1. In-line acceleration, yaw rate, and tactile measurements of pipe features
from the sensor
2. Understanding of the dynamics of the robot in a water pipe, as in
Equation. ( 5.3 )
3. Assumption that the in-pipe flow rate is varying slowly during the short period
of robotic inspection
4. Assumption that majority of the water pipeline are made with consecutive,
same-length, standard pipe segments

It is clear that the robot's speed information is missing, while the speed is critical

for calculating position. In addition, the flow speed is also missing, while the flow

speed is important for determining the robot's speed, according to Equation. (5.3).

Thus this estimator is tasked to estimate the robot's speed, the flow speed at every

point of time. From the speeds, we can then derive the in-pipe robot's trajectory and

thus the pipe map.

The baseline estimator algorithm is an Extended Kalman Filter(EKF). EKF allows

the data fusion between the noisy measurement (Source 1 in Table 5.5) and knowledge

of the robot-pipe dynamic interactions (Source 2 and 3 in Table 5.5). Given the

in-pipe robot's dynamics as in Equation. (5.3) is nonlinear, an Extended Kalman

Filter is selected rather than regular Kalman Filter. In the framework of EKF, the

dynamics of the robot and the assumption that the in pipe flow is changing slowly

become the model. A model is the robot's understanding and belief of how things

work. Once the robot has a belief of its current state, it can propagate its belief
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through the model, generate a prediction of the next state and thus a prediction

of the next measurement. The model can be treated as a form of constraint, and

the actual measurement, although noisy, is another form of constraint. By taking

both constraints into consideration, the robot can use an EKF to find the optimal

estimation of the next state. In this case, an optimal estimation is defined as the

approximation with minimal expected error variance and at the same time it satisfies

all constraints.

The robot's motion throughout the pipeline is tracked with four states. They are

the in-line distance robot traveled s, the in-line velocity of the robot s, the in-line

linear acceleration s, and the flow velocity in the pipe VfIQW. The goal is to know s(k)

for all time step k.

s(k)

X(k) = (k) (5.8)
s(k)

Vf low (k)

Y(k) = HX(k) = [0 0 1 0] X(k) (5.9)

What is measurable is the acceleration s. The robot's velocity .(k) and the flow

velocity Vflow(k) are both unknown. Together they determine the drag force on the

robot. With the assumption that the friction force on the robot can be treated as

Gaussian white noise, the dynamics equation (5.4 )can be rewritten as

s(k) = cdpA(m + ma) (Vlow(k) - . (k)) 2 + Wf(k) (5.10)
2

where Wf(k) is the effect of the friction force on the robot, modeled as a Gaussian

white noise of zero mean and variance Qaa.

The estimator based on Extended Kalman Filter is then setup to estimate all four

states. At every time step k, the inputs are the aposteriori estimate X(k -IIk -- 1), the

belief about the state at the prior time step k-1, and the aposteriori error covariance

estimate P(k - Ik - 1), the believed error in the prior state's estimate.

140



Step 1: update the apriori estimate of the current state X(k k-1), with the system

dynamics and the inputs. The system dynamics equation here is the linearized version

of Equation (5.10)

(kk - 1)

s -(klk -- 1)
X(k1k - 1) = (5.11)

(klk - 1)

LVfow (klk - 1) -

X(klk - 1) = Aest(k - 1)X(k - 1|k - 1) (5.12)

With the linearized model which is update at every step

1 At (At) 2  0

0 1 At 0
Aest(k-1) =

A k1) _C pA(V fito wk-1 k1 )-8k-1k-1)) 0 CdpA(VfIO(k -1jk-1)-S(k-1k-1))
(m+ma) (m+ma)

0 0 0 1

(5.13)

Step 2: update apriori error covariance estimate at time step k by propagating

the aposteriori error covariance estimate P(k - 1|k - 1) through the system model.

P(kjk - 1) = Aest(k - 1)P(k - Ilk - 1)Aest(k - 1)T + QT (5.14)

where Q is the error covariance for the process noise. It includes information such as

the flow fluctuation and friction. Q is assumed to be static and time-invariant. The

choice of initial value of P, X and Q will be explained in the example in the next

section.

Step 3: the Kalman gain for time step k is determined from the apriori error

covariance estimate P(klk - 1) and the measurement error covariance R.

K(k) = P(klk - 1)HT/( HP(klk - 1)HT + R) (5.15)

Step 4: update aposteriori state estimate X(klk), which is the weighted average
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of the apriori state estimate and the measurement.

X(klk) = X(klk -1)+ K(k)(Y(k) - HX(klk -1)) (5.16)

Step 5: Update aposteriori error covariance estimate P(klk) to reflect that the

expected error in the state estimate increased.

P(klk) = (I - K(k)H)P(klk - 1) (5.17)

where I is the identity matrix of rank 4.

The Matlab code for the estimator can be found'in Appendix C.

5.6 Benchmark: Simple Dead Reckoning with EKF

Integration of Acceleration

Using EKF as the estimator is better than simple integrating acceleration data. EKF

is a data fusion technique, and it uses the system dynamics and the measurement

as constraints to generate state estimations. If the robot does not used EKF but

simply estimates its speed through integration on its acceleration measurement, it is

ignoring the dynamic from the in-pipe water flow and generating unbounded error

in its speed estimation. As shown in Fig. 5-12, the speed estimation from simply

integrating accelerometer data diverges from the actual velocity of the robot, and its

error grows over time. A method to generate bounded speed estimation is necessary,

and EKF is the right algorithm for this task.

The Matlab code for this result can be found in Appendix C.

EKF and Assumed Average Speed

A method to generate bounded speed estimation is necessary, and EKF is the right

algorithm for this task. EKF allows the robot to constraint its motion estimation

with both the IMU measurement and the assumed system dynamics model. However,
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Figure 5-12: Challenge with estimating velocity with accelerometer data: error build
up over time and diverge from real speed

there are two difficulties in implementing EKF on this robot: the initial flow speed is

unknown and the flow speed variation throughout the pipeline is unknown.

The first difficulty is to know the initial flow speed. At k=0O, the robot is placed

inside the water pipe at the starting point and it is momentarily stationary. Thus in

the initial condition, s(O) = 0, A(0) = 0. However, s(0) and Vpcim(0) are unknown.

The flow speed in the water main is commonly not monitored in practice. The water

authority generally can only give an estimation of the flow rate and it is usually not

accurate. There is only one feasible way left to estimate the initial flow speed. The

water authority can give an estimation of the length of the pipeline, and the robot can

measure the time it takes to go from one end of the pipeline to the other. Dividing

the total distance by total time, the robot can have an estimate of its average speed.

Since this is a passive, flow driven robot, its average speed is thus very close to the

average flow speed in the pipe. The robot can assume the flow speed is constant and

take this average flow speed as the initial flow speed. Now three out of four states

in the initial condition is determined, the only remaining state, the acceleration, can

be calculated with Equation. (5.4) given the robot's initial speed and the initial flow

speed.

Here is an example on initial conditions. While the pipeline is actually 200 meters

long, and the water authority's estimation can have a 5% error due to inaccurate map.

Thus the pipeline length estimation is 210 meters. It takes the robot 516 seconds to
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travel through this pipeline, so the average robot speed is 0.4m/s. The average flow

speed is assumed to be the same as the average robot speed, 0.4m/s. From the system

dynamics in Equation. (5.4), the expected initial acceleration is 1.8m/s 2 . The initial

state estimate is then

s(00) Om

s(010) Om/s
(00) S(5.18)

(010) 1.8m/s 2

Vf 0W(0|0) 0.4m/s

The initial aposteriori error covariance estimate should account for the expected

errors in these estimations. The expected error E, in distance s(010) and Erobot

speed s(010) should be very small since they are known. The expected error E&v in

the flow speed Vfjol(010) should be fairly large since the average flow speed is used

in this place. It is assumed to be 25% of the average value to account for possible

variations in the flow speed throughout time and distance. Given the inaccuracy in

the flow speed estimation and the noise due to friction, the expected error 'E in the

initial acceleration estimation is assumed to be 100% of the acceleration value. Given

those assumptions, the initial aposteriori error covariance estimate is

(ES)2 0 0 0

P(00) = (EV)2 0 0 (5.19)
0 0 (Ea)2 0

0 0 0 (Evf)2

(0.01m) 2  0 0 0

0 (0.Olm/s)2  0 0
P(010) = (5.20)

0 0 (1.8m/s2 )2  0

0 0 0 (0.lm/s) 2

To start the EKF process, estimations of the system process noise and measure-

ment noise must be defined through system identification. The system process error

covariance matrix Q accounts for the expected variations in the flow rate and the
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friction. The overall structure of the process noise covariance matrix is

0 0 0 0

0 Qrr 0 Qfr (5.21)
0 0 Qaa 0

0 Qfr 0 Q55

The first row is the error covariance on the distance. There is no process noise that

affect the distance estimate directly. Noise from friction and flow speed variations

directly affects the robot's acceleration instead of distance, and thus these errors are

propagated through the system model to the distance estimate.

The second and the fourth row are the error covariances related to the speed of

the robot and the speed of the flow, which are highly correlated. The expected flow

speed fluctuation can be reasonably assumed to be 0.rn/s for every 10 meters of

distance. Taking into account that the system is updated at 50 Hz, the variance in

the flow speed is

Q0 =/ [m/s] 2 = (0.0002m/s) 2  (5.22)
10m * 50Hz

Under the assumption that this passive, flow driven robot moves at almost the same

speed as the water flow, the robot's speed is highly correlated to the flow speed. Thus,

it is further assumed that

Qrr = Qfr = Qf f (5.23)

The third row is the error covariance related to the robot's acceleration. The friction

is treated as a process noise to the acceleration only. The effect is assumed to be very

small when compared to the effect of drag force. The process noise due to friction is

assumed to be Qaa = (0.2m/s2)2. The measurement covariance matrix R account for

the errors in the accelerometer readings. This value can usually be looked up from

the specifications of the accelerometer. The accelerometer on the robot is part of the

Pololu minIMU v5, and its error variance R = (0.5m/s2 )2.

When EKF is implemented with the above conditions, the result speed estimation
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is much better when compared to simple acceleration integration. As shown in Fig.

5-13, the robot speed estimation is bounded and close to the actual speed. However,

there is still a large error in the distance estimation for two reasons. The first source

of the error is due to inaccurate estimation of the total length of the pipeline, and thus

inaccurate average speed. The other source of the error is that EKF over-constraints

the speed estimation and does not capture the variation in the flow speed.

Dad Reck&nin RMot Veloclv1mt I ___0.6
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Figure 5-13: Challenge with conventional deadreckoning: fail to capture flow speed
change over time and distance

The Matlab code for this result can be found in Appendix C.

Necessity to Obtain Speed Information

To capture the flow speed variation is the second difficulty for this EKF estimator.

As Fig. 5-13 indicates, the assumption that the in-pipe flow rate is varying slowly is

only valid for short period of time and distance. The active household connections

along the pipeline reduce the in-pipe flow rate over distance, especially toward the

end of pipeline. With the accelerometer, the robot can capture the fast fluctuations

in its speed and the flow speed. Without actually measuring the speed, the robot
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cannot capture the slow variations in the flow speed due to active water usage.

There are additional information that can help the robot measure speed without

adding more sensors the the robot. So far in the EKF setup, three out of the four

available sources of information are used. They are

1. In-line acceleration, yaw rate, and tactile measurements of pipe features from the

sensor

2. Understanding of the dynamics of the robot in a water pipe, as in Equation. (5.3)

3. Assumption that the in-pipe flow rate is varying slowly during the short period of

robotic inspection

While the fourth source, the assumption that majority of the water pipeline are made

with consecutive, same-length, standard pipe segments, has not been used at all. The

concept is to identify those consecutive, same-length, standard pipe segments, and

use their known length and measured passage time to obtain speed measurements.

Inspired by the observations in the field tests, I propose to identify the joints between

those consecutive, same-length, standard pipe segments from either the gyroscope

data as in Fig. 5-10, or the tactile sensor data as in Fig. 5-11.

5.7 Method 1: Estimate Robot Speed From Consec-

utive Pipe Joints

In this method, the goal is to populate the blank robot speed measurement data

space with actual data. This concept of populating the measurement data space to

get more accurate estimation can be visualized in Fig. 5-14. If nothing is known

about the actual process (the red curve), then the estimation about the process may

be as inaccurate as the blue dash curve. If two or more measurements(black dots)

are available, then the estimation of the process becomes the black curve and it is

much more accurate. In the in-pipe localization case, the robot needs at least a few

measurements of its speed in order to capture how the actual speed varies in time.

In particular, the robot is obtaining speed measurements via searching for indicators
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that it passes consecutive, standard length pipe segments. The indicators are the pipe

joints. The robot can obtain more accurate speed estimation for the short duration it

travels from one pipe joint to the next one. Based on information source No. 4 that

majority of the water pipeline are made with consecutive, same-length, standard pipe

segments, the robot expects to find many of these pipe joints, and thus obtain speed

estimation in many short periods. Those periods may be segmented and disconnected.

Then with an algorithm, the robot can connect those data segments and create a

smooth estimation of how the robot speed varies throughout the entire inspection.

In comparison to the benchmark method, the robot now has more information to

contstraint its trajectory estimation. It is then more likely to generate an accurate

estimation of its speed and distance.
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Figure 5-14: The Concept of Populating the Measurement Data Space

This method is performed in four steps. First, time stamps of all possible candi-

dates of the pipe joints are identified. They may include the joints between standard,

fix-length pipe segments, and also valves and other obtrusions in the pipeline. Then

from these candidates, groups of pipe joints that are most likely to generate valid

speed references are selected. These groups are denoted as High Confidence Zones.

The other candidates that are not selected are grouped into the Low Confidence
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Zones. The robot has low confidence in determining if they are joints, valves or other

obtrusions in the pipeline. In an ideal pipeline with no valves, no bends and no

tuberculations, all candidates should be identified as one High Confidence Zone. In

the third step, the robot's speed trajectory within the High Confidence Zones are

estimated using all four sources of information. This step actually also generated the

boundary conditions for the Low Confidence Zones. In the last step, the robot's speed

trajectory in the Low Confidence Zones are estimated with all available information

and constraints.

Step 1: identify potential candidates for pipe joints with peak searching

All potential candidates of the pipe joints are extracted from the tactile measurement

of the robot. From the field tests, it is observed that pipe joints have the tendencies

to compress the robot radially from all sides and trigger impulses in all tactile sensors

readings. Therefore, the occurrences of possible pipe joints can be identified from the

tactile sensor measurements in three steps.

Step 1-1: Apply to the tactile sensor measurement a high pass filter with a very

low cut-off frequency, e.g. 1Hz. It filters out the steady state value and its slow

variations in the tactile sensor readings. The output of the filter highlights many

peaks as shown in Fig. 5-11. This filter is performed on all channels of the tactile

sensors.

Step 1-2: Search for all peaks in the filtered tactile sensor output. All time stamps

of the peaks in filtered tactile sensor output are identified. The peaks can often be

defined by magnitude, raising edge, falling edge or a combination of them. In my

work, the peak is defined as a single data point that has the highest magnitude in

its vicinity of a certain duration, e.g. 1 second. The peaks must exceed a magnitude

threshold, e.g. 10% of maximum value in the filtered tactile output. This step is

performed on all channels of the tactile sensors. For each peak, only the time stamp

value is important, while its magnitude or width are dropped in the further analysis.

This avoids the bias toward obtrusions that cause higher tactile sensor readings. A

higher tactile sensor reading may indicate a larger obtrusion, but a larger obtrusion
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is not necessarily a pipe joint.

Step 1-3: Remove unlikely candidates via data correlation. In the example ob-

server output, there are four channels of the tactile sensors. From the last step, the

time stamps of peaks in every channel are obtained. From the field tests, it is ob-

served that pipe joints are most likely to trigger impulses in all channels of tactile

sensors. Therefore, by performing a correlation among all channels, one can find the

candidates that are more likely to be pipe joints. In my work, this correlation is sim-

ple and binary; if there are peaks in all channels at the same time stamp. For every

time stamp, if the correlation is one, then this time stamp is added to the queue of

candidates. Each candidate represents 'the occurrence of a possible pipe joint. If the

correlation is zero, then this time stamp is not added to the queue of candidates.

By performing step 1-1 to 1-3 on the tactile sensor output, a candidate queue

is obtained. This queue is shown in Fig. 5-15. It can be told from Fig. 5-15 that

in some part of the queue, the candidates are evenly spaced, such as those between

t = 50 sec and t = 100 sec. There is a regular rhythm in them. Information source

No. 3 in Table 5.5 states that flow speed and robot speed varies slowly and they can

be treated as constant in a short period of time. Therefore, those candidates, evenly

spaced in time, are very likely to be evenly spaced in distance. Those candidates

may be a sequence of consecutive pipe joints, and the interval between each adjacent

pair is a standard-length pipe segment. Meanwhile, in some other part of the queue,

the candidates seem to be randomly distributed, such as those between t = 300 sec

and t = 350 sec. There is not an obvious rhythm in them. Among these candidates

there may be tuberculations, valves and actual pipe joints. It is difficult to tell them

apart. Which are the useful candidates? Step 2 and 3 are designed to extract such

information with high confidence out of this queue.

The Matlab code for this result can be found in Appendix C.

Step 2: identify High Confidence Zones with autocorrelation

The useful parts of the candidate queue are those with rhythms in them. Those

are consecutive pipe joints, and in-between each adjacent pair of them is a standard
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Figure 5-15: Step 1: identify potential candidates for pipe joints and record their

time-stamp

pipe segment of length Lseg. In the US, the pipe standard defines Lseg = 6 meter.

Knowing this distance expectation is critical. The candidate queue gives the time

difference between each pair of the adjacent candidates. With time and expected

distance known, the robot can obtain the average speed between two adjacent pipe

joints. When combined with the acceleration measurement, the robot can accurately

estimate its speed variation between each pair of adjacent pipe joints.

To identify the useful part of the candidate queue, a piece-wise autocorrelation

algorithm is used. Autocorrelation is the standard method for identifying dominant

periodic patterns in signals. When used on a piece of the candidate queue, e.g.

t = 50 sec to t = 100 sec, it can identify the dominant period in this part of the

queue, identify irregularities and predict the most likely next candidate in the queue.

After repeating this procedure for all pieces in the candidate queue, all groups of

consecutive pipe joints, denoted as a High Confidence Zones(HCZs), are identified.

For example, after the candidate queue in Fig. 5-15 is processed, three HCZs are

identified and highlighted in Fig. 5-16.

0 00 0 00 a 0 0 0 @ --

0 50 100 150 200 250 300 350 400 450 500
time(sec)

Figure 5-16: Step 2: identify high confident zones where there are consecutive, almost

evenly spaced pipe joints

The details of the piece-wise autocorrelation algorithm is as follows. The Matlab
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Table 5.6: Algorithm: Identify High Confidence Zone(HCZ) Through Piece-wise Au-
tocorrelation

0 Given at least 6 candidates in the queue t(1, 2, 3, .., k, .., kend)
1 Initialize k=6, empty arrays HCZtemp = [] and HCZ = []
2 Initialize an array y(t)=1 for t= for t=t(k-5), t(k-4), t(k-3), t(k-2), t(k-1), t(k),

y(t)=0 everywhere else
3 Y(t(k-5)-1:t(k)+1)= Convolve y(t(k-5):t(k)) with a triangular wave

h(t)=1+t when -1 < t < 0, h(t)=1-t when 0 < t < 1, and h(t)=0 everywhere else
4 Perform autocorrelation on Y(t(k-5)-1:t(k)+1), and find the non-zero delay,

Atcorr with maximum correlation value
5 Predict the expected arrival time of the next candidate i(k + 1) = t(k) + Atcorr
6 If li(k + 1) - t(k + 1)| 1 i1, add k to the HCZtemp; otherwise terminate HCZtemp
7 If HCZtemp is terminated, and HCZtemp has at least 3 elements, then add

HCZtemp as an element to HCZ
8 If k is not the end of the candidate queue, increment k=k+1, return to step 2

otherwise terminate

implementation code can be found in Appendix C.

The algorithm can be visualized in the following two examples in action. The first

example shows when a new pipe joint is recognized and added to the current High

Confidence Zone queue. When the robot just records a new candidate at t = 105 sec,

it has a non-empty array HCZtemp that records the most recent sequence of believed

pipe joints. Now it is trying to determine if it should believe this candidate t(k) = 105

sec as a pipe joint. So the robot performs autocorrelation on the latest 6 candidates,

from t(k - 5) = 38 sec to t(k) = 105 sec, as shown in Fig. 5-17-(1) and (2). The

autocorrelation result indicate that the non-zero delay with maximum correlation

value is about ZAtcorr = 13 seconds. Thus the robot predicts that if t(k) = 105 sec is a

pipe joint, then it should take another 13 seconds to pass the following standard pipe

segment and arrive at the next pipe joint i(k + 1) ~ 118 sec. The robot is making

this prediction based on relatively constant speed assumption. It is a derivation from

information source No. 3 in Table 5.5: the assumption that the flow speed does

not change much within short distance and duration. Then the robot waits until

the recording of the next candidate and checks if the prediction is valid. The next

candidate arrives at t(k + 1) = 118.8 se, within 1 sec of its prediction, as shown in

Fig. 5-17-(c). The black line is the actual signal and the red line is the prediction.
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The prediction is valid, so candidate t(k) = 105 sec is believed to be a pipe joint and

added to the end of HCZtemp
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Figure 5-17: Step 2-1: Piece-wise autocorrelation
pipe joints, example of satisfying condition

The second example shows when an extrusio

and it terminates the current High Confidence

90 100 110 120 130

as a method to identify consecutive

n is not recognized as a pipe joint

Zone queue. As shown in Fig. 5-

18, the robot proceeds to t = 131 sec and records a new candidate. It performs

the autocorrelation on the latest 6 candidates and predicts the next candidate at

(k + 1) = 145 sec. However, the next candidate arrives at t(k + 1) = 142 seconds,

which is outside the 1 second tolerance zone of the prediction (red line in Fig. 5-18-

(3)). There could be many possible reasons. Candidate t(k) = 131 sec could be a

valve or a tuberculation. The pipe segment the robot passes between 131 sec and 142

sec may be a rare, irregular one. The flow may have accelerated during this period

of time and so does the speed of this passive, flow-driven robot. The robot is unsure
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what have changed, so it chooses not to believe candidate t(k) = 131 see is a regular

pipe joint. At the same time, the robot terminates HCZtemp, the recording of the

latest High Confidence Zone, and push this HCZtemp into memory HCZ which stores

the recordings of all past High Confidence Zones.
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Figure 5-18: Step 2-2: Piece-wise autocorrelation as a method to identify consecutive
pipe joints, example of non-satisfying condition

There are four important features in this HCZ identification algorithm. The first

one is the window size. As the autocorrelation is performed on a piece of the candidate

queue y(t) of window size AT, this window size significantly affects the correlation

result. If AT is too short, for example it only covers one of the recent candidate, then

autocorrelation will produce nothing useful. In the other extreme, if AT is too long

and covers all candidates in the past, the autocorrelation will not be able to capture

recent changes in the candidate queue. Instead, it is very likely for the autocorrelation

to produce the same delay prediction Atcor, at every step. For example, if the flow
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speed changed recently and so was the delay between recent two candidates, autocor-

relation on a long queue would yield a prediction as if this change never happened.

Therefore, the window size must be chosen carefully; it should contain enough recent

candidates to make a valid prediction, while not too many to neglect recent changes

in the motion. After careful tuning, a feasible window size is found to be covering the

last 6 candidates. If all 6 candidates were real pipe joints, then within this window

of time the robot should travel through 5 standard pipe segments of length Lseg.

The second important feature is the triangular wave representation of the can-

didate queue. The candidate queue from Step 1 is a 1D array of time stamps,

t(1), t(2), .. , t(k), ., t(kend). It does not produce anything useful to perform autocor-

relation on this 1D array. Instead, this ID array is translated into a 2D array y(t),

where y(t) = 1 at the time stamp of all candidate t(k) and y(t) = 0 everywhere else.

When autocorrelation is performed on this 2D array, it can produce correlation value

and the corresponding delay Atcorr. However, a impulse train y(t) as a representation

of the candidate queue cannot account for variations in the flow speed. As the flow

speed varies, the time it takes the robot to pass through one standard pipe segment

of length Lsegalso varies. The time delay between every pair of adjacent pipe joints

are then not expected to be the same. One way to add tolerance to the algorithm and

account for the variations in this time delay is to widen the impulse in y(t) that rep-

resents each candidate. The duration of each impulse is increased from infinitesimal

to 26t. This 26t can be treated as tolerance or confidence interval. 6t is determined

by the expected change in the time to pass a standard pipe segment. In this case,

6t = 1 sec.

6t = Cf Lsg = 0.06 m 1sec (5.24)
Vf low 0.4m/s

In the definition of 6t, Lseg is then the estimated time of passing one standard
Vflow

pipe segment. cf is the expected maximum percentage change in the flow speed

through a pipe segment. Based on two additional, logical assumptions, cf is chosen

to be 0.06. The first assumption is the flow speed change is mainly due to the active
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household connections, each of which reduces the flow rate by AVf = 3%. The second

assumption is that there are at most 2 household connections within the distance of

one pipe segment length Leg = 6 meters.

cf = 2AV = 2 * 0.03 = 0.06 (5.25)

6t is also dependent on Vflow, the guessed flow speed. From the benchmark al-

gorithm in the last section, Vfl0o is estimated to be around 0.4m/s. If the robot is

asked to make conservative predictions or not make guesses for VfIo0 , it can always

start with a relatively large t = 3 seconds for example, and gradually converge to a

smaller value as it collects more data in the pipe.

The third important feature is the prediction of the expected arrival time of the

next candidate. If the current candidate t(k) is a true pipe joint, it should be followed

by a standard pipe segment of length Leg. The robot is expected to see another pipe

joint after passing through this this standard pipe segment. The robot is predicting

this delay, or passage time based on the relatively constant speed assumption. It is

not expected that the flow speed changes much within one pipe segment. If there

are any changes in the flow speed and thus in the delay, it can be accounted by the

tolerance in the prediction, which is the same as 6t.

The forth and last important feature is the minimum length of a valid High Con-

fidence Zone. While majority part of the pipeline is made of standard pipe segments,

there are randomly distributed valves, tuberculations and other false positives for

pipe joints. To minimize the possibility of mistaking a false positive into the High

Confidence Zone, a valid High Confidence Zone must contains multiple consecutive

pipe joints. After careful tuning, the minimum number of pipe joints in a High Con-

fidence Zone is found to 3. At this setting, the robot identified three High Confidence

Zones as indicated in Fig. 5-16, and the maximum length of any High Confidence

Zones is 6. If this minimum number is set high, 7 for example, then the robot will

derive zero High Confidence Zones.

156



-A

Step 3: Speed Estimation Inside High Confidence Zones

Within each High Confidence Zone, robot's speed can be determined with high ac-

curacy. The robot will temporarily neglect all the data outside the High Confidence

Zones, and focus on the state estimation within the High Confidence Zone, as in-

dicated in Fig. 5-19. Within each High Confidence Zones, the robot believes the

distance between each pair of adjacent pipe joints to be Leg, and it can measure

the time of passage to further estimate its average speed between each pair of adja-

cent pipe joints. Now the robot knows its acceleration, its estimation model based

on its dynamics, and two more pieces of newly available information: the total dis-

tance between these two pipe joints and the travel time between them. In addition

to the assumption that the flow speed does not vary much within this short period

and distance, the robot now has enough information to accurately estimate its speed

variation throughout the High Confidence Zone.

0

0 50 100 150 200 250 300 350 400 450 500
time(sec)

Figure 5-19: Step 3 Input: Focus on High Confidence Zones (blue dots), estimate the
robot speed within these zones first

The speed estimation is performed through a data fusion process. There are two

streams of measurement data: the acceleration data that is collected regularly at

a high sampling rate, and the distance data that is only available once when the

robot arrives at the next pipe joint. Since these two streams of data are collected at

different sampling rate, the previous EKF in Equation ( 5.11-5.17) is not capable of

fusing them together. It needs to be augmented with another data fusion algorithm.

While the distance data is unavailable, the EKF can make predictions and estimate

the robot's motion based on model and acceleration. This process can be visualized

as the dash line in Fig. 5-20. From time ti to t2, the EKF gives the estimated state

trajectory starting with initial condition at t1, and end with a predicted state at t2
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with a large error covariance indicated by the dash circle. When the robot arrives

at the next pipe joint at time t2, it knows it has traveled a distance of Leg, from

the last pipe joint and thus obtained a new measurement about its state at t2. This

measured state has a much smaller error covariance, or in another word, much higher

confidence. This measured state can be different from the state predicted from EKF.

In order to incorporate this distance measurement and correct the robot's past state

estimation that leads up to the current state, Rauch-Tung-Striebel (RTS) smoother

algorithm [51] is implemented. RTS algorithm revisits the past state estimations and

creates a new smooth estimated state trajectory from ti to t2, as shown by the solid

curve in Fig. 5-20. The st'ate at ti can be treated as the initial condition in this piece

of the localization problem from time ti to t2 , and the state at t2 can be treated

as the final condition. EKF+RTS is one of the optimal algorithms to extrapolate

the trajectory from initial condition to the final condition under all constraints. It is

optimal because it is expected to produce the minimum error covariance.

%Predicted State @ t2

Measured State @ tl1 J

Measured State @ t2

Figure 5-20: Illustration of the effect of RTS smoother

Here are the details of the RTS implementation. Assume currently the robot is

at pipe joint k,+ 1 within a High Confidence Zone and it lastly visited pipe joint k,.

Define the initial condition at t(k,) as k(k,,k,) with error covariance P(knks).

s(kn kn) 0

(knlkn) =(kk+k-k")At (5.26)
(knkY kn) n
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(O.Olm) 2  0 0 0

P(knok) 0 (0.02(kn~kn)) 2  0 0 (5.27)
0 0 R 0

0 0 0 (0.02fow(kn~kn)) 2

Three assumptions are made in the initial state. The first assumption, the initial

distance .(k lk,) = 0, is made for simplicity in the calculation. The goal is to estimate

the robot's speed, so precise distance from the starting point is not necessary. As long

as the robot knows that it takes the time it takes to go from one pipe joint to the next

and the distance is equivalent to the length of a standard pipe segment, Leg. The

second assumption is about the robot's speed at kn. Although the exact A(knlkn) is

still unknown to the robot, it can take the average speed in this pipe segment between

joint kn to joint k,+1 as an estimation. Given the overall assumption that the flow

speed does not vary much in short internal and short distance, this approximation of

(knlkn) is reasonable. The third assumption is that the flow speed at k and kn+ 1 is

set to be the same as the robot speed . at kn. This is a valid assumption given that

the robot is passive and flow driven.

The initial error covariance matrix (Eq. 5.27) is carefully chosen to compensate

for the inaccuracies in the initial state assumptions. Standard deviation in the error

of the speed estimations are assumed to be a small percentage (2%) of the expected

value. The error variance in the acceleration is the measurement error covariance

R = (0.5m/s2 )2 since the robot has the acceleration measurement. Error covariance

in the distance cannot be zero, or the P matrix is not positive definite or invertible.

The P matrix must be positive definite.

Given these initial conditions, perform an EKF as described in Equations ( 5.11-

5.17) from t(kn) to t(kn+1 ). EKF will predict its own X(kn+1 |kn+1) and P(kn+ 1 kn+1).

However, the robot choose to believe the the measurement at kn+ 1 since the additional

distance data is available. The final conditions in the interval t(kn) to t(k,+1 ) are

updated to be
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*kn+1lkn+0Lseg

s (kn+1 lkn1) Lseg
X(kn+| = 1|k+) (k,+2-k!+1)At (5.28)

A(kn+1 lkn+1) Y(kn+ 1 )

(k n + k n + ) .(k +Lseg

(0.01m) 2  0 0 0

P(kn+1kn+1) = 0 (0.02(kn+1lkn+1))2 0 0

0 0 R . 0

0 0 0 (0.02flow(kn+lkn+1)) 2

(5.29)

The final conditions are chosen with mostly the same logics as the the initial

conditions, except two items. The first one is the final distance, .(kn+1lkn+l) = Lseg.

To estimate the robot's speed, the relative displacement from the last pipe joint, Lseg,

is sufficient. The second item is the robot's final speed inbetween joint kn to joint

kn+1, denoted as s(kn+ 1 kn+ 1 ). Although the exact value is unknown to the robot, the

robot can use the average speed in the next pipe segment between joint kn+ 1 to joint

kn+2 as A(kn+1 |kn+1 ). The question is then whether this assumption is valid for the

last pipe joint in a High Confidence Zone. The answer is yes. Given High Confidence

Zone identification method described in Step 2, each pipe joint in a High Confidence

Zone is always followed by a standard pipe segment. Therefore, even if k,+ 1 is not

the end of a High Confidence Zone, it is still followed by a standard pipe segment and

the average speed within that pipe segment can be known.

Then RTS smoother is performed to update all past states by working backward

from t(k,+1 ) to t(kn). First, the RTS gain is calculated for each time stamp t(k)

between t(kn+1 ) and t(kn), starting with k = kn+1 - 1-

C(k) = P(klk)Ae st(k ) T P(k + 1k)-- (5.30)
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Then the state estimation X(klk,+ 1 ) is updated.

X(' krn+1) = X( kk) + C(k)(X(k + 1|kn+1) - X(k + 1|k)) (5.31)

It is worth to note that the notation of X(klk,+1 ). Just like in the Extended

Kalman Filter, here the state of interest is X(k), and it is conditioned on the state

X(k,+ 1 ). After the state estimation update, its error covariance is also recalculated.

P(klkn+1 ) = P(klk) + C(k)(P(k + 1|kn+ 1) - P(k + 1|k))C(k)T (5.32)

Now the state and error covariance for time stamp t(k) are updated, the step counter

k is updated k = k -I to move onto an earlier state. Equation ( 5.30 -5.32) is repeated

for the new k. The process terminates when k = kn. That is when the robot was at

the previous pipe joint.

After the EKF+RTS is performed for each pair of adjacent pipe joints in all High

Confidence Zones, the robot obtains a good estimation of its speed trajectories in

those High Confidence Zones. The result in this example is shown in Fig. 5-21. As

the colored curves in the figure indicates, the EKF+RTS algorithm is performed 14

times for each of the 14 pairs of adjacent pipe joints. The result captures the both

the fast fluctuation and the slow steady state shift in the robot speed. This result is

already a major improvement on the benchmark in Fig. 5-13, which is regular EKF

with assumed average speed.

0 li

0 50 100 150 200 250 300 350 400 450 500
time(sec)

Figure 5-21: Step 3 outcome: Example robot speed estimation within High Confidence
Zones
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Step 4: Speed Estimation In Low Confidence Zones

However, the speed estimation outside the High Confidence Zones is still missing.

These areas are denoted as Low Confidence Zones. In this step, the robot will attempt

to estimate these missing pieces of speed trajectory with information from the High

Confidence Zones. The idea is the same; populate the speed measurement data space

in order to capture the speed variations. As described in Fig. 5-14, the robot need

to obtain at least two data points of speed measurement before it can develop an

accurate speed trajectory estimation. There are already two data points available,

one at the end of each Low Confidence Zones-. These are also the robot speed at the

end of High Confidence Zones.

E

0 50 100 150 200 250 300 350 400 450 500
time(sec)

Figure 5-22: Step 4: Estimate robot speed outside High Confidence Zones, with initial
and final condition derived from High Confidence Zones

The same RTS algorithm is implemented to produce the speed trajectory esti-

mation within the Low Confidence Zones with differently formulated initial and final

conditions. Since no distance information is available in the Low Confidence Zones,

the RTS smoother should neglect distance correction. Instead, the RTS smoother will

correct speeds. For example, if k, is the end of the previous High Confidence Zone

and k,+1 is the beginning of the next High Confidence Zone, then the duration be-

tween t(ks) and t(k,+1 ) is a Low Confidence Zone. The initial condition for this Low

Confidence Zone is then transferred from the Z(k,,k,) at the end of the last High

Confidence Zone. The distance value is reset to zero for simplicity in calculation; its

absolute value is unknown and not important here.
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X(knjk,) =

P(knlkn) =

(0.01m) 2

0

0

0

0

(0.02A(knlkn))2

0

0

0

(kn kn)

S (kn k)

Otf ow (knj kn)

0 0

0 0

R 0

0 (0.02Vfiow(knflkn)) 2

Given these initial conditions, perform EKF as described in Equation ( 5.11-5.17)

from t(kn) to t(kn+1 ). EKF will predict Z(kn+1 kn+1) and P(kn+ 1Ikn+1 ). Since the

robot has a new speed measurement from the next High Confidence Zone, it will

update the velocity part of the predicted Z(kn+l|kn+1 ) with the speed measurement.

Since the robot has no new information about its distance, it will not update the

distance part of the X(kn+1 kn+1 )-

X(kn+1 Ikn+ 1) =

A(kn+llkn+1)

i(kn+1|kn+l)

A(kn+1|kn+1)

Of low (kn+1 Ikn+1)

The error covariance P(kn+1 kn+ 1) in the final condition is also updated accord-

ingly. The error covariance in the distance stays the same as that from the EKF

results. The error covariance of the speeds are tightened in comparison to that from

the EKF results. After careful tuning, the standard deviation of the speeds is chosen

to be 20% of the expected speed values. It is much bigger than its counterpart in the

High Confidence Zones to reflect the fact that the robot has lower confidence in the

estimations outside the High Confidence Zones.
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(5.34)

s(kn+1|kn+1)

(kn+2-'k,41)At

Y(kn+1 )

seg

(5.35)



P(kn+ 1 kn+ 1)[1, 1] 0 0 0

P(kn+o1kn+1) 0 (0.2s(kn+ 1 kn+1 )) 2 0 0

0 0 R 0

0 0 0 (0.2Yflow(kn+1|kn+1)) 2

(5.36)

Then the same RTS smoother as in Equation ( 5.30 -5.32) is performed from

X(kn+lJkn+1) to X(knlkn). RTS updates the past state trajectory estimation based on

the discrepancy between the EKF estimation of the final conditions and the measured

final conditions. Since the estimation of the distance and its error covariance in the

final state are the same as that from the EKF, the RTS smoother will not update

the distance estimations. The other states in the RTS estimation are unaffected by

the distance state. It is similar to perform the EKF and RTS in the Low Confidence

Zones on three states [., s, Vlow] instead of the four states [s, s, s, Vflw]T as in the

High Confidence Zones. Instead of reducing the states and write separate code for

the Low Confidence Zones, the algorithm achieves the same goal in a more concise

way by change the initial and final conditions.

This algorithm works in-between the High Confidence Zones, but it needs to be

changed for the Low Confidence Zones before the first High Confidence Zone and after

the last High Confidence Zone. Each of these two Low Confidence Zones are connected

to only one High Confidence Zone so there is only one boundary condition available.

The other boundary condition must be derived in another way. For example, in the

first Low Confidence Zone starting at time t = 0 sec, the initial condition is assumed

to be

.(0|0) Om

s(0ol0) O0m/s
X(00 *. + )Vk0) (010) Om/s (5.37)

2 

0) cdp A(m- (k1
Vflow(0|0) Vflow(k1)
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(0.01m) 2  0 0 0

P(010) 0 (0.01m/s) 2  0 0 (5.38)P(0|0) =0 (1.38
0 0 (S(O|0))2 0

0 0 0 (0.2fiow(0|0)) 2

where the robot is certain that it starts at distance 0 and initial speed 0. The

initial flow speed is assumed to be the same as the flow speed at the beginning of the

first High Confidence Zone. The initial acceleration is estimated from the drag force

equation as in Eg. 5.4.

The RTS smoother is not performed' on the Low Confidence Zone after the last

High Confidence Zone. There is not a final condition so the robot cannot perform

effective RTS smoother in this zone. Thus only the EKF is performed in this zone.

The initial condition for the EKF also follows Equation ( 5.33 and 5.34).

The output of Step 4 completes the robot's speed trajectory estimation. For

example, as shown in Fig. 5-23, this Low Confidence Zone algorithm is performed

four times in the four blank regions outside the High Confidence Zones, and fills

in the robot's speed estimations. Now the robot has a complete speed trajectory

estimation. This estimation indicates that the robot is slowing down toward the end

of the pipeline, and so is the water flow speed. It agrees with the fact that multiple

active household connections are drawing water from the pipeline and reducing the

water flow. The combined algorithm from step 1 to 4 is able to capture this spatial

variation in the pipe flow. From the speed trajectory, the robot can integrate the speed

to produce in-line distance at every point of time, and complete the localization.

0.5

0
0 50 100 150 200 250 300 350 400 450 500

time(sec)

Figure 5-23: Step 4 outcome: Example robot speed estimation outside High Confi-
dence Zones
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Result And Discussion
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Figure 5-24: Localization result of the Consecutive High Confidence Joints method

The method of obtaining robot speed information from consecutive pipe joints

produces accurate localization results at very low cost. As the comparisons in Fig.

5-24 indicate, the robot is able to track its speed with this method well and produces

an in-line distance tracking error on the order of 1 meter in this 200-meter run.

The tracking error is about 0.5 % of the total distance of the robotic inspection.

In comparison to the benchmark as in Fig. 5-13, this method produces an order

of magnitude lower distance error, and it is uniquely capable of capturing the slow

variations in the robot speed and flow speed throughout the pipeline. Moreover, this

performance is achieved by a robot with IMU but not a single actual speed sensor.

All speed measurements are derived from the tactile measurements of the pipe joints.

These speed measurements are not available at every time step as an actual speed
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sensor can produce; instead this method only produces speed measurements within

the High Confidence Zones. However, given the dynamic constraint in a typical water

pipeline that water flow changes slowly, these few isolated pieces of speed information

sufficiently constraint the robot's estimation and limit the error propagation. This

is a low cost, minimum sensing requirement approach to in-pipe robot localization

problem.

It is also worth attention how the distance tracking error changes in different

zones. As shown in Fig. 5-24, the distance tracking error is almost constant in the

High Confidence Zones. This is the effect of the RTS smoother, especially due to

the distance constraint in the boundary conditions. The RTS smoother makes sure

the robot's distance estimation within each pair of pipe joints in the High Confidence

Zones are bounded to the pipe segment length. This keeps the distance tracking error

bounded within the High Confidence Zones.

In comparison, the distance tracking error in the Low Confidence Zones is a prob-

lem. The tracking error fluctuates significantly within each Low Confidence Zone.

Since there is no information available about either the absolute or relative distance

in any Low Confidence Zones, this tracking error is expected to scale up with the

duration of the Low Confidence Zones. It sets the lower bound of the total tracking

error.

There are at least two feasible ways to address this Low Confidence Zone Challenge

and further improve the localization accuracy. The first approach is to identify more

joints in the candidates. If the robot can identify pipe joints more effectively and

keep each of the Low Confidence Zones short, the total tracking error can be further

reduced. It is possible to improve Step 2 the identification of High Confidence Zones

with other pattern recognition methods than autocorrelation.

The other approach is to obtain more information out of the candidate queue,

especially those outside the High Confidence Zones. In Step 3 and 4, all the candi-

dates outside the High Confidence Zones are neglected. Is it possible to reuse these

candidates and extract from them information for robot localization? The robot can

then populate the speed measurement space with more data points than it can with
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the current method, and produce more accurate speed and distance tracking. This

seems impossible to achieve with the current on-board sensors. However, what is the

minimum number of additional sensors to enable the robot to collect useful infor-

mation from each candidate in the queue? In the next section, I propose a second

method to address these two questions.

5.8 Method 2: Tactile Speed Sensor

To enable the robot to collect speed measurements in the Low Confidence Zones, the

robot is modified to include a tactile speed sensor. In the last section, the robot

utilizes a ring of tactile sensors to identify if the robot passes a pipe joint. The speed

measurement is obtained through dividing the known distance between two adjacent

pipe joint and the time it takes the robot to go from one pipe joint to the next. Thus

the speed measurement is only obtainable when the robot passes multiple consecutive

pipe joints. The robot cannot obtain speed measurements inside the Low Confidence

Zones because it cannot know if it has passed multiple consecutive pipe joints. To

populate the speed data space inside each Low Confidence Zone, the robot can be

modified to measure its speed from passing only one pipe joint or a single obtrusion.

A tactile speed sensor is designed to deliver this capability. This speed sensor is

simply two rings of original tactile sensors separated at a known distance, as shown

in Fig. 5-25. When the robot passes an obtrusion, both ring of tactile sensors will

be bended by the obtrusion and register tactile signals. There is going to be a delay

between the two tactile sensors from the two rings, since the two rings arrive at the

obtrusion one after another. Dividing the known distance between the two rings by

this time delay, the robot can obtain its instantaneous speed over this obtrusion.

There are. two advantages this tactile speed sensor has over the other type of speed

sensors on this robot. First, it is easy to integrate. There is already a ring of tactile

sensors integrated in the robot. To construct this tactile speed sensor, the same

ring of tactile sensors are simply duplicated. The integration is much easier when

compared to adding wheel encoders, acoustic range finders or vision systems. The
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Figure 5-25: Robot prototype with the tactile speed sensor for measuring instanta-
neous speed at every in-pipe obtrusion

second advantage is that the tactile speed sensor is multipurpose. Collectively this

array of multiple tactile sensors can be used to measure speed. More importantly each

individual tactile sensor is a leak sensor. It can be used to monitor the occurrence

and magnitude of leaks in the pipe.. If those tactile sensors are constructed in the

same way as the soft bending angle sensors in the previous chapter of this thesis, they

can also detect the height of obtrusions in the pipe. This two-ring arrangement adds

another functionality to the leak sensors.

Accuracy of the Tactile Speed Sensor

Tactile sensor Tactile sensor
2

1 -I Benchmark encoder

Figure 5-26: Experimental device for evaluating the accuracy of the tactile speed
sensor

To determine its accuracy, the tactile speed sensor is compared to a wheel encoder

in a benchmark test. A test vehicle as shown in Fig. 5-26 is constructed. It is very
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similar to the test vehicle used in the soft bending angle sensor experiments as in Fig.

4-20. In the front (right side of the figure), there is an optical wheel encoder. In the

back, there are two soft tactile sensors placed Lgap apart. The bottom of the tactile

sensors and the bottom of the wheel encoder are aligned. When the vehicle is pushed

to the right on a non-slip surface with multiple obtrusions, both the wheel encoder

and the tactile speed sensors will produce speed measurements. If the wheel encoder

is assumed to be perfectly accurate, the difference between the output of the tactile

speed sensor and that of the encoder is the error in the tactile speed sensors.

Analog Tactile Signal

S30

510[-

5W dt

490---_

12000 17000 22000 27000 32000 37000 42000 47000

Time(ms)

Figure 5-27: Sample experiment output from the Experimental device in Fig. 5-26.
The blue trace is the data from the tactile sensor in the front. The gray trace is
the data from the tactile sensor in the back. The device ran over two consecutive
obtrusions at various speed in each trial, and data for ten trials are reported here.

The tactile speed sensor estimates the device's speed by comparing the signals

from the two tactile sensors. The signals from the two tactile sensors are shown

in Fig. 5-27. The blue curve is the reading from the tactile sensor in the front of

the vehicle, and the gray curve is from the sensor in the back. For every obtrusion,

the front sensor signal leads the back sensor signal. The time delay between them,

measured from the rising edge in the front signal to the next closest rising edge of the

back signal, is denoted as dt. The distance between the front and the back sensor is
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known to be Lgap. This means it takes the robot dt to move forward a distance of

Lgap, and the robot's speed over this obtrusion k is estimated to be

s(k) = Lgap (5.39)
dt

The error in the tactile speed sensor output scales with its time resolution and

the vehicle's speed. Tactile speed sensor produces speed estimation based on time

measurement. If measurement dt is off by one resolution 1/f8 , then the speed error

J is

Lgap _ Lgap Lgap 5 (5.40)
dttrue + 1/hf dIttrue Lgap/ + 1/f fs " + 1

For example, if the true speed is a = 100mm/s and the sensor sampling rate is

fs = 50 Hz, the expected speed measurement error is calculated to be 6s = 4mm/s.

This prediction agrees with the experimental result. In 10 experiments with the

vehicle is moving at a speed around 100mm/s, the average difference between speed

estimation from the tactile speed sensor and that from the encoder is 5mm/s.

When the robot travels at high speed, it needs to sample the tactile sensors at

a higher rate in order to measure its speed accurately. In the simulation example

used in this Chapter, the robot speed is around . = 500mm/s. At f, = 50 Hz, the

expected error is Js = 80mm/s. In order to limit the error within 5mm/s or 5% of

the actual speed, the sampling rate must be increased to f, = 200 Hz. This sampling

rate is still obtainable by commercially available micro-controller platforms such as

the ESP32 this robot is using.

Integrate Tactile Speed Sensor readings in Localization

The Consecutive Pipe Joints method described in the last section needs minimal

modification to integrate the tactile speed sensor data. All algorithms stays the same,

and the only changes are in the boundary conditions in Step 4 where the robot speed

inside Low Confidence Zones are estimated. Given the tactile speed sensors provide

171



an instantaneous speed measurement at every candidate including those in the Low

Confidence Zones, the robot can connect those instantaneous speed measurements to

produce the speed trajectory in the Low Confidence Zones. Instead of connecting from

the end of the last High Confidence Zone to the beginning of the next High Confidence

Zone in a single EKF+RTS operation, the robot can now perform the same operation

between each pair of adjacent candidates in the Low Confidence Zones. As shown

in Fig. 5-28, the speed measurement at each candidate is now available. For each

pair of adjacent candidates in the Low Confidence Zones, the robot can take the

measured speeds and accelerations as the initial and final condition, and use the

same EKF+RTS as in Step 4 in the last section to estimate the speed trajectory from

a candidate to the next one.
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Figure 5-28: Revamped Step 4: Estimate robot speed outside High Confidence Zones
with instantaneous speed measurements

Result And Discussion

The tactile speed sensor successfully limits the distance tracking error growth in

the Low Confidence Zones. As shown in Fig. 5-29, this method tracks the speed

variations throughout the pipeline equally well when compared to the consecutive

pipe joint method. The distance tracking error is also on the order of 0.5 % of the

total distance, but the distance error now fluctuates much less in the Low Confidence

Zones than the results of the previous method. The distance tracking error in the

Low Confidence Zones, although not bounded, now grows much slower than it does

in the previous method. This is the benefit of populating the speed measurement

172

0@00 90 40 0



space with more data points. Each additional data point adds a constraint to the

robot's localization process. With more constraints in place, the robot increases its

likelihood to accurately track its speed and distance.

This tactile speed sensor method and the previous consecutive pipe joint method

have their pros and cons. The consecutive pipe joint method is simpler, and it re-

quires fewer sensors than the tactile speed sensor method. The consecutive pipe joint

method works well when it can observe multiple High Confidence Zones, or consecu-

tive, evenly distributed pipe joints, in the pipeline. Its error scales with the length of

Low Confidence Zones, so it is not effective in a pipeline where there are few consec-

utive, evenly distributed pipe joints. This is the scenario in many aged pipes around

the world where heavy tuberculation on the pipe wall makes the pipe joints unob-

servable. In contrast, the tactile speed sensor method works in all kinds of pipes.

Figure 5-29: Localization result of the tactile speed sensor method
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It is more effective in pipes where there are more obtrusions such as those from the

tuberculation. The tactile sensor method requires slightly more complex hardware,

but it is versatile and well suited for applications in real water systems.

5.9 Conclusion and Future Work

In this chapter, I presented two approaches to localize the robot in a pipeline with-

out remote sensing. These approaches only require a minimum number of on-board

sensors, and they are a IMU and the tactile leak sensors. Although the robot has no

means to measure speed or distance directly, it utilizes the common knowledge about

a water pipeline to constraint its motion estimation and produces accurate results. In

the first localization method, the robot uses the tactile sensors to identify consecutive

pipe joints among all obtrusions in the pipe. From the data history of pipe joints it

derives its speed and distance with confidence. This method is capable of locating

the in-pipe robot with a small error equal to 0.5 % of the total distance. However,

its performance is worse in heavily tuberculated pipes where pipe joints are difficult

to observe. Thus a second method is developed to measure robot speed directly with

tactile sensors. Both methods are well suited for this soft leak detection robot. They

keep the total cost of the robot low while providing high quality localization results.

These localization methods can be further improved in three ways. First, the

algorithms can be improved to account for pipe depth variations. The methods I

presented consider pipes in a 2D plane only. In reality, pipes can go up and downs

even they are underground. The second improvement would be the sensing of pipe

alignment. So far it is assumed that each pipe segment is straight. It is also assumed

that the robot can accurately sense its direction and thus the direction of the pipe

with the compass in the IMU. The accuracy of this direction sensing needs to be

evaluated. If it is accurate enough, the robot will be able to measure the bending

in the pipe segment and misalignment in the pipe joints. These information may be

early indicators of pipe leaks. Last but not the least, these methods can be further

validated in experiments and field tests. Given the limited field test opportunities,
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it was necessary to conduct much of the research in simulations. With more exper-

imentations and even field tests, new observations may be made on how to improve

the accuracy of these methods even further.
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Chapter 6

Conclusion and Recommendations

6.1 Conclusions

In this thesis, low cost, soft robots for leak detection in real and active water pipes

are presented. It can be deployed into real underground water pipes through any Tee

junctions, flow passively through the pipeline, go around pipe bends and pinpoint

leaks. It can do all these when the water service is on. There are four research contri-

butions, all of which are validated in both simulations, and lab and field experiments:

(1) A soft and passive robot design that is more reliable and less complex than the

state-of-the-art. It is the first soft body robot that went through real underground

water pipes in the world.

(2) A unique method to detect leaks. It uses a soft membrane sensor to measure the

suction force occurred at the leak locations due to the out flux of water flow. I made

this method work in operating water pipes, which was never done before.

(3) A design that allows the membrane sensor to differentiate leaks form false posi-

tives. Through smart utilization of the difference in material properties, these sensors,

made of a composite of ordinary fabrics and rubber, can measure leaks and in-pipe

obtrusions differently at the same time.

(4) A practical, minimalism approach to determine the location of the soft robots in-

side pipes. It is a model based algorithm that best utilizes common knowledge about

pipelines. It enables the robots to perform localization using a minimal amount of
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on-board sensors and zero remote sensors.

The best attribute of my leak detection robots is that they are low cost but

effective. They are fabricated with ordinary material with ordinary tools. They find

leaks in real water pipes. It is a sub-500-dollar solution to a multi-billion-dollar water

and infrastructure problem.

Figure 6-1: Two of my soft leak detection robots: 6" Lighthouse and 2" Daisy

6.2 Recommendations

The thesis lays the foundation of efficient in-pipe inspection with soft robots and

sensors, and there are at least three areas that future innovations can be build upon.

The first opportunity is to make the robot active rather than passive. The current

design allows the robot to flow with the water stream in the pipe. It is an effective

way to travel through a long distance pipelines with minimum energy consumption.

However, it is ineffective when the robot is navigating through a pipe network, where
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it is required to make turns at certain Tee junctions independent of the flow. Most

pipes in urban areas are in network configuration. Enabling the robot to actively

steer its direction at Tee junctions will make the robot easier to use in urban areas.

The second opportunity is to build and validate the localization algorithm in 3D.

The current localization algorithms assumes the pipes are in 2D plane and do not

yet account for pipe depth variations. In reality, pipes can go up and downs even

they are underground. It is also assumed in the current algorithm that the robot can

accurately sense its direction and thus the direction of the pipe with the compass

in the IMU. The accuracy of this direction sensing needs to be evaluated. If it is

accurate enough, the robot will be able to measure the bending in the pipe segmerit

and misalignment in the pipe joints. These information may be early indicators of

pipe leaks. Moreover, these algorithms can be further validated in experiments and

field tests. Given the limited field test opportunities, it was necessary to conduct much

of the research in simulations. With more experimentations and even field tests, new

observations may be made on how to improve the accuracy of these methods even

further.

The third opportunity is to explore more applications of the soft bending angle

sensor. In this thesis, the soft bending angle sensor has been demonstrated as an

effective tool for differentiating leaks from false alarms. It has also been shown as a

minimum approach to add sensing and feedback to any soft robot fish. There should

be more applications where this kind of low-cost, thin, multi-purpose soft sensors

are more advantageous than existing solutions. This can be a very exciting topic for

future research.
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Appendix

Low Cost Robot Fabrication Process

A.1 2" Robot Cast Molding

Given the small size of the robot, it can use 3D printed molds. At this size, the 3D

printed molds takes about 4 hours total to be printed on a Stratasys 250mc printer.

(1)Mold the leak sensor

I ~
(3) Make Circuit
& Connect to the
Leak sensor

(2) Assemble
the leak sensor

(4) Insert electronics
Pour in liquid rubb

I
(5) Take out finished robot

)

Figure A-1: 2" robot fabrication process

181

A

Liquid rubber

0



A.2 4-6" Robot Cast Molding

At this size, 3D printed molds can be expensive. Instead, the mold is assembled

from acrylic sheets. The acrylic sheets are laser cut into the precise dimensions, and

put together like Lego pieces. This method saves a lot of cost in comparison to 3D

printing the mold.

Please also note that step 1: assemble the leak sensor should be repeated twice.

There are now two rings of the the leak sensors in the final robot. Each ring covers

180 degrees in the 360-degree pipe circumference. Each ring is compressible.

(1 Assembie Leak sensor (2) Connect electronics

(5) Pour in
liquid rubber

CAI Ampmhl thp mnld (4) Add in fabric reinforcempnt

Figure A-2: 4-6" robot fabrication process

A.3 12" Robot Cast Molding

This is an alternative way to fabricate soft robots with sheet-assembled mold. Instead

of Acrylic sheets, the mold can be assembled from foam core boards. This is very

cheap, and it can also be used as a design iteration tool for the mold.

Although being made in super low cost molds, the outcome is still very good.
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Figure A-3: 12" robot mold made from foam core boards
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Figure A-4: 12" robot prototype

184



Appendix B

Field Test Report, Differentiate Leaks

from Obtrusions Through Data

Correlation
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MIT,KFUPM & PipeTech Collaboration
Robotic Leak Detection Report #2

You Wu (youwu@mit.edu)
March 30, 2017

Abstract
This document reports the results of the field test of the Leak Detection Robot at Pipetech's
facility during Jan 16-19, 2017. During the field test, an improved version of the leak detection
robot successfully detected a 4mm diameter leak. Data from both the leak sensor and the
motion sensor were collected for pipe features other than leaks, such as pipe elbows and joints.
Signal analysis were performed on the data to differentiate leaks from various disturbances.
This field test marked the first time we were able to detect leaks with our robotic technology in
a real water pipeline.

Background
MIT, KFUPM and PipeTech LLC in Saudi Arabia have been collaborating on the robotic leak
detection project since 2015. The goal was to take the MIT-KFUPM leak detection technology
from a lab prototype stage to validation in real water pipe systems. The particular real water
pipe system is provided by PipeTech LLC in their test facility in Dammam, Saudi Arabia, and it is
a 52mm(2in) inner diameter, 1.5km(0.9mile) long cast iron pipeline with multiple 90 degree
bends. The robot is supposed to detect leaks in this pipeline.

This report discusses the second test we conducted during January 16-19, 2017. In this second
test, we achieved significantly better results than we did in the first test. In the first test in
March 2016, we demonstrated a soft body robot that could reliably get through the water
pipeline while been propelled by water flow. We also validated the method of inserting the
robot into the pipe and retrieving it. However, the leak sensor was unable to register the
expected leak signal. The MIT, KFUPM and Pipetech team investigated this problem and
determined that both design issues and the construct of the artificial leak caused the problem.
Thus before the second test, the MIT team redesigned the leak sensor and PipeTech
constructed new artificial leak points. The goal of the second test was to validate the capability
of the new leak sensor in finding leaks and it was achieved.

The Leak Detection Robot
The new leak detection robot (Figure 2) has the similar soft robot body as the previous
one(Figure 1). Similar to a pipeline inspection gauge(PIG), this robot had no actuation, and it
was propelled by the water flow in the pipes. Unlike regular PIGs or any other kind of pipeline
robot platforms, this robot was soft and it was made of soft silicone rubber Ecoflex 0050 from
Smooth-on Inc. The soft body could be bent, allowing the robot to turn around pipe elbows
with ease. Embedded in the soft body of the robot, a 3.7V Lithium Ion battery powered an
Arduino Mini Pro 3.3V/8MHz micro-controller, a Pololu 9 DoF Inertia Measurement Unit (IMU),
and a Pololu SD card.
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Figure 1 Leak detection robot vi used in the first test, March 2016

I

Leak sensor drone

Figure 2 Leak detection robot v2 used in the second test, Jan 2017. Top left: rear view of the leak sensor; top mid: isometric
view of the robot; top right: illustration of how the robot bend; bottom: the robot and its components

The new leak detection robot is equipped with a new leak detection sensor. This sensor consists
of four pieces of identical blue silicone membranes connected to a yellow plastic support
structure. As shown in Figure 3, those membranes have embedded conductive rubber resistors
which increase their electrical resistance when stretched. The support structure is spring loaded
like an umbrella; when water is pushing the robot in the back, the support structure will be fully
expanded. Thus it can maintain the membranes at its end close to the pipe wall. When the leak
sensor passes a leak, the membrane will be pulled by the suction force at the leak and thus
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stretch. The conductive rubber resistor responds to the stretch by increasing its electrical
resistance. This change in resistance can be measured by the robot to indicate a leak. This
design significantly simplified the leak sensor mechanism when compared to the previous
versions we have developed. It is less affected by the hydrodynamic forces, such as
disturbances and added mass effect, and this allows the leak sensor to respond faster to leaks.
This new leak sensor has a calculated bandwidth of 130Hz, much faster than the previous
version's 30Hz.

Membrane Sensing element

Support structure

I /
Figure 3 The leak sensor design. Sensing element, which is a conduct rubber resistor, is embedded in the membrane. The

membrane is fixed inside the support structure at the two ends of the conductive rubber resistor.

The Field Test Result
The new robot was tested in the industrial water pipeline provided by PipeTech LLC in Saudi
Arabia. The pipeline was made of cast iron, and it measured 1.5 km in length and 52mm in
nominal inner diameter. The entire pipeline was in the horizontal plane. A section of 221 m long
and 1.2km away from the inlet was isolated, and robot launch and retrieval tools installed on
both ends, as shown in Figure 5. During the test, the inlet pressure was 2 Bar gauge and the
flow rate was about 0.4 m/s. With pipe head loss considered, the line pressure at the test
section was about 1.7 Bar gauge. This pipeline provided enough in-pipe features for testing. The
first feature was a 4 mm pinhole leak on the pipe. There was a water tap wielded on top of it to
turn it on and off, as shown in Figure 4(b). A bucket was used to collect the leaked water and
measure the leak flow rate. The leak flow rate was measured to be about 5.6 L/min (1.48
Gal/min).This pipeline was constructed with hundreds of 6m long, 52mm inner diameter, metal
pipe segments. At each pipe joint, there was a ring of 3mm diameter reduction, as shown in
Figure 4(c). Thus each pipe joint, 6m apart, was an obstacle that could affect the leak sensor
readings. Additionally, there were many pipe elbows. The pipeline had been in service for 6
years so there was a small amount of rust in the pipeline.

The test result showed that various in-pipe features could be differentiated on the measured
signals. The robot travelled through the 221m long test section in an average of 550 seconds.
The average speed was 0.4 m/s. The robot completed 2 tests, and in each test, it passed 1 leak,
4 pipe elbows and 41 pipe joints and recorded data for all of them. The readings from the leak
sensor for these features were plotted in Figure 14. Since leaks were expected to show up as
high frequency, impulse-like signals, only the changes in pulling forces were studied. The
steady-state values of the leak sensor readings were removed with a high-pass filter (2Hz cutoff
frequency).
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Figure 4 (a) The industrial pipeline used for testing (b) the leak on the pipe (c) Schematics of the pipe segments

+ 2.7 m

72.3 m Exit
I2mm Leak@131m

4mm Leak@113m

10 m

Entrance
68 m

----- m - (mm m

Figure 5 Schematics of the water pipeline for test
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Figure 6 Leak sensor readings and gyroscope reading for rotational speed in the horizontal plane in three cases: 4mm pinhole
leak, pipe joint as obstacle and pipe elbow.

At the leak, the leak sensor registered a high frequency, large magnitude change. This change
was only in the channel corresponding to the membrane that was right on top of the leak, and
the changes were much smaller for the other channels since their membranes didn't touch the
leak. The frequency of the signal was 10Hz, which is at the aliasing limit for this 20Hz-sampling-
rate robot.

At the obstacles on pipe joints, the leak sensor registered slower changes than it did at the leak.
Since the diameter reduction at the joints was on all sides of the pipe as shown in Figure 4(c), all
four channels detected changes. The signal at one of such obstacle was shown as the main peak
in the middle plot of Figure 14.The dominant frequency was about 4Hz. The average magnitude
was 1.2N and the standard deviation was 0.7N, however, its distribution was close to uniform
distribution.

The robot can easily spot pipe elbows. The gyroscope part of the on-board IMU measured the
robot's rotational speed in the horizontal plane, as shown in the bottom row in Figure 6. The
gyroscope plots here were low pass filtered (5Hz cut off frequency) for reduced noise. At the
elbow, the robot registered a significant change in its rotational speed. At leaks or obstacles, it
did not. The leak sensor measured multiple oscillations in all four channels at the elbow, while
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single pulses at leaks and obstacles. Those oscillations are of similar dominant frequency as that
of the obstacle signal.

Based on the above analysis, there are two analytical methods to differentiate leaks from
obstacles and pipe elbows. The first method is in frequency domain, such as high pass filter.
Sensor response to leaks is of higher frequency than responses to obstacles. However, due to
the low sampling rate of this robot (20Hz) used during the test, much frequency content was
not captured. Thus the frequency domain method was not selected.

The second method is data fusion. There are four channels in the leak sensor, one for each
quarter of the pipe cross-section. There is also the gyroscopic reading which indicates the
rotational speed of the robot. As discussed above, leaks most likely trigger only one channel of
the leak sensor, while pipe elbows and the joints most likely trigger more channels. Thus the
skewness of the data from the four channels of the leak sensor at any single point of time can
be used to differentiate leaks from obstacles. One way to measure the skewness is to look at
the difference between the mean value of the four channel readings, and Y of the largest value
of the four channel readings. This difference should be between 0 and 0.75 times the largest
value of the four channel readings. A smaller difference indicates a larger skewness and thus a
higher chance to be a leak. We denote this difference as skewness, Sk:

Sk (t) = Imean(F1(t),F2(t),F3(t),F4(t)) - max(F1(t), F2(t), F3(t), F4(t))
4

And we define a Leak factor FX1:

Max(F1(t), F2(t), F3(t), F4(t))
FX1(t) + C

while C is a small constant in place to avoid the denominator being zero. In practice, C=0.05 is
chosen.

F2

25

elbow joint leak -8 662

Figure 7 Data fusion method to categorize signals for leaks and obstacles. Ideally, Sk=0.25Max(F) for elbows, 0.75Max(F) for
joints and 0 for leaks.
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The result of the calculations is shown in Figure 8. The original leak sensor reading is plotted in
Figure 8-top. On the horizontal axis is distance. It is estimated with average speed of the robot
and time with error correction from information about the 90-degree bends. Arrivals at the 90-
degree bends were monitored with the gyroscopic reading as shown in Figure 8-bottom. Figure
9-bottom indicates that the robot turned left twice and then turned right twice, which agrees
with the pipe map shown in Figure 5. From Figure 5, we also know that the distances from the
starting point to the bends are 68m, 78m, 146m and 148.7m. When a high pass filter (2Hz
cutoff frequency) is applied to remove the steady state value of in the leak sensor reading and
reveal only the changes, we have the second plot in Figure 8. The sensor readings after the high
pass filter are used in the calculation of Sk and FX1. FX1 is plotted in the third part of Figure 8.
As we can see, FX1 has high values at all four 90-degree bend locations. Those locations can be
identified with the gyroscopic reading of the robot's rotational speed in the radial direction, as
shown in Figure 8-bottom. In order to eliminate the false alarms at 90-degree bends, rotational
speed (w(t)) should be considered. Thus FX1 was modified and became FX2:

Max (F1(t), F2 (t), F3 (t), F4(t))
Sk(t) + 1w(t)| + C

By placing the rotational speed w(t) in the denominator, this new leak indication factor reduces
when the rotational speed of the robot is high. That is the case when the robot pass a 90-
degree bend.

FX2 is an effective leak indicator. It takes into account the location of the leak along the pipe
cross-sectional circumference, the magnitude of the leak sensor reading, and the motion
information of the robot. As shown in the fourth plot in Figure 8, FX2 was high at only one point
in the entire test, of an estimated distance 112.3m from the starting point. The artificial pinhole
leak of 4mm diameter was at 113m from the starting point. The leak detection robot found the
leak with a distance estimation error of 0.7m. By using FX2, we were able to filter out most of
the false alarms and clearly see the location of the leak.

Discussion
The main conclusion is that this field test conducted during Jan 16-19, 2017 was successful. It
achieved our goal in validating the effectiveness of the MIT-KFUPM leak detection robot in
finding leaks in real water pipes. A pinhole leak of 4mm diameter was detected at 1.7 Bar line
gauge pressure and 0.4 m/s water flow speed. The estimated leak flow rate through the pinhole
was 5.6 L/min. We also succeeded again in deploying the robot into the water pipe and retrieve
it. Now we can confidently state that we have a working robot prototype for putting into real
water pipes under operating conditions, detect leaks and later taking out of the pipe.

Several aspects of the robot and the experiment can be improved. The first aspect is the
waterproofness of the robot. The robot actually ran through the pipeline 8 times, but it was
only able to record complete data for the first two runs. Its electronics were water damaged for
the remaining 6 runs and did not record complete data. The second aspect is about testing both
the lower and upper limits of the robot's performance. In the test, there was another 2mm
pinhole leak 18m behind the 4mm leak. However, the leak flow rate was under 0.2 L/min and
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the leak itself was blocked by the rust in the pipe early in the test. The robot was not able to
register significant readings at this 2mm pinhole leak, partially due to the leak was blocked.
More tests of the robot at lower pressure, higher pressure as well as different leak sizes would
be beneficial for understanding the limits of this robot and leak sensor design.
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Figure 8 Leak Detection Result
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Appendix C

Computer Program Codes

C.1 Arduino Code for the Leak Detection Robot

The robot has two modes:

(1) Data logger mode

Record data from leak sensors, IMU and store them to a SD card

(2) Data Transmission mode

Put all data files on a downloadable web page

The robot select the mode at initialization. If the robot is initialized inside the

wireless charging dock, it will be in data transmission mode. Otherwise it will be in

data logger mode.
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*/
////Import libraries
//WIFI
#include <ESP8266WiFi.h>
#include <WiFiClient.h>
#include <ESP8266WebServer.h>
#include <ESP8266mDNS.h>
//SD
#include <SPI.h>
#include <SD.h>
//12C,IMU,ADC
#include <Wire.h>
#include <LIS3MDL.h>
#include <LSM6.h>
#include

////wi fi

<AdafruitADS1015.h>

definitions
#define DBGOUTPUTPORT Serial
const char *ssid
const char

= "YouHouse3";
*password = "ilovepurdue";

const char* host = "esp8266sd";

ESP8266WebServer server(80);

////SD definitions
#define SS 15
static bool hasSD = false;
#define FILEBASENAME "/Dat
char fileName[13] = FI
long int lasttime = 0;

LEBASENAME "00.csv";

////IMU definitions
//#define SDA-pin 4 //D2
//#define SCL-pin 5 //D1
#define SDA-pin 5 //D1
#define SCL-pin 4 //D2
LSM6 imu;
LIS3MDL mag;
int agm[9]; //IMU outputs
int val[4]; //ADC outputs
////ADC definitions
AdafruitADS1015 ads1(0x48);
//AdafruitADS1015 ads2(0x49);

/* Use thi for the 12-bit version */



4_

////switch mode definition 0
#define WatchPin 16
int modeKey=0;///1 --wifi transmit; 0---datalogger.
////indicator light
bool heartbeat=true;
long int lastbeattime = 0;

void setup(void){
////initialize debug output through serial
DBGOUTPUTPORT. begin(115200);
DBGOUTPUTPORT.setDebugOutput(true);
DBGOUTPUTPORT. print("\n");
pinMode(LEDBUILTIN, OUTPUT);

////initialize SD card and create a new file for datalogging
if (SD.begin(SS)){

DBGOUTPUTPORT.println("SD Card initialized.");
hasSD = true;
digitalWrite(LEDBUILTIN, LOW);
delay(500);
digitalWrite(LEDBUILTIN, HIGH);
delay(500);
digitalWrite(LEDBUILTIN, LOW);
delay(500);
digitalWrite(LEDBUILTIN, HIGH);
delay(500);
digitalWrite(LEDBUILTIN, LOW);
delay(500);

} else {
DBGOUTPUTPORT.println("SD Card initialization error");
return;

}
pinMode(WatchPin,INPUT);
modeKey=digitalRead(WatchPin);
DBGOUTPUTPORT.print("modeKey value is ");
DBGOUTPUTPORT.println(modeKey);
////setup wifi connection and the website
if (modeKey==1) {

DBGOUTPUTPORT.println("transmission mode on");
initializeWIFIo;
server.on("/", HTTPGET, printDirectory);
server.onNotFound(handleOthers);
server.begino;
DBGOUTPUTPORT. p rintln("HTTP server started");



4j

digitalWrite(LED-BUILTIN, LOW);
delay(250);
digitalWrite(LEDBUILTIN, HIGH);
delay(250);
digitalWrite(LEDBUILTIN, LOW);
delay(250);
digitalWrite(LEDBUILTIN, HIGH);
delay(250);
digitalWrite(LEDBUILTIN, LOW);
delay(250);
}
else {
DBGOUTPUTPORT.println("datalogger mode on");
////start IMU
initiateIMUO;
ADCinitO;
if (hasSD==true){

findNameo;
DBGOUTPUTPORT.print("New file will be named: ");
DBGOUTPUTPORT.println(fileName);

}
}

}

void loop(void){
if (modeKey==0){

if ((millisO - lasttime) >= 20) {
lasttime = millisO;
String dataString = "";
dataString +=String(lasttime);
ReadIMUO;
for (uint8_t i = 0; i < 9; i++){
dataString +=
dataString += String(agm[i]);

}
ReadADC4();
for (uint8_t j = 0; j < 4; j++) {

dataString += ",";
dataString += String(val[j]);

}
//store to SD card
File file2write = SD.open(fileName, FILEWRITE);
if (file2write) {

file2write.println(dataString);
file2write.closeo;



if (DBGOUTPUTPORT.availableo){
DBGOUTPUTPORT.println(dataString);

}
}
/*else {
DBGOUTPUTPORT.print("error opening ");
DBGOUTPUTPORT.println(fileName);

}
*/

}
if ((millis)-lastbeattime)>=2000 && !heartbeat)

heartbeat=true;
digitalWrite(LEDBUILTIN, heartbeat);

}
if ((millisO-lastbeattime)>=2500 && heartbeat)
lastbeattime=millis(;
heartbeat=false;
digitalWrite(LEDBUILTIN, heartbeat);

}
} else {
server.handleCliento;

}

void ADCinit( {
adsl.setGain(GAINONE);
//ads2.setGain(GAINONE);

125mV
adsl.begino;
//ads2.begino;

// 1x gain
// 1x gain

+/- 4.096V 1 bit = 2mV
+/- 4.096V 1 bit = 2mV

void ReadADC4() {
val[0]= map(adsl.
val[1]= map(adsl.
val[2]= map(adsl.
val[3]= map(adsl.

readADCSingleEnded(0),
readADCSingleEnded(1),
readADCSingleEnded(2),
readADCSingleEnded(3),

void initiateIMUO {
Wire.begin(SDApin,SCL-pin);
Wire.setClock(400000L);
if (!mag.inito)

{

__

{

{

0.125mV
0.

-2048,
-2048,
-2048,
-2048,

2048,
2048,
2048,
2048,

-410,
-410,
-410,
-410,

410);
410);
410);
410);



DBGOUTPUTPORT.println("Failed to detect and
while (1);

initialize magnetometer!");

}

mag.enableDefaulto;

//magnetic sensor
// 0x58 = 0b01011000
// OM = 10 (high-performance mode for X
mag.writeReg(LIS3MDL::CTRLREG1, Ox58);

// 0x00

and Y); DO = 110 (40 Hz ODR)

= Ob0000000
// FS = 00 (+/- 4 gauss full scale)
mag.writeReg(LIS3MDL::CTRLREG2, Ox00);

// 0x01 = Ob00000001
// MD = 01 (continuous-conversion mode)
mag.writeReg(LIS3MDL::CTRLREG3, Ox00);

// 0x0C Ob00001000
// OMZ = 10 (high-performance mode for Z)
mag.writeReg(LIS3MDL::CTRLREG4, Ox08);

delay(1000);
if (!imu.init()

{
DBGOUTPUTPORT.pri
while (1);

}
imu.enableDefaulto;

ntln("Failed to detect and initialize

// Accelerometer
7/ 0x4B = ObO1001011
/7 ODR = 0100 (104 Hz); FS_XL = 10 (+/-4 g full scale); BWXL=11 (50Hz
antialiasing filter bandwidth)

imu.writeReg(LSM6::CTRL1_XL, Ox4B);
7/ Gyro

// 0x48 = Ob01001000
// ODR = 0100 (104 Hz); FSXL = 10 (1000 dps);

imu.writeReg(LSM6::CTRL2_G,0x48);
// Common

// 0x04 = Ob00000100
// IFINC = 1 (automatically increment register address)
imu.writeReg(LSM6::CTRL3_C, Ox04);
delay(1000);

-_A

IMU!"if);



-A

}

void ReadIMU() {
imu.reado;

mag.read();
agm[0]=map(imu.a.x,

agm[1]=map(imu.a.y,
agm[2]=map(imu.a.z,
agm[3]=map(imu.g.x,
agm[4]=map(imu.g.y,
agm[5]=map(imu.g.z,
agm[6]=map(mag.m.x,
agm[7]=map(mag.m.y,
agm[8]=map(mag.m.z,

}

-32768,
-32768,
-32768,
-32768,
-32768,
-32768,
-32768,
-32768,
-32768,

32768,-100,
32768,-100,
32768,
32768,
32768,
32768,
32768,
32768,
32768,

-100,
-100,
-100,
-100,
-100,
-100,
-100,

void findName) {;
const uint8_t BASENAMESIZE = sizeof(FILEBASENAME) - 1;
if (BASENAMESIZE > 6) {

DBGOUTPUTPORT.println("FILEBASENAME too long");

}
while (SD.exists(fileName)) {

if (fileName[BASENAMESIZE + 1] !=
fileName[BASENAMESIZE + 1]++;

} else if (fileName[BASENAMESIZE]
fileName[BASENAMESIZE + 1] = '0'
fileName[BASENAMESIZE]++;

} else {
DBGOUTPUTPORT.println("Can't cre

}
}

}

void handle0thers){
String path=server.uri);
String message;
DBGOUTPUTPORT. print("URI: ");
DBGOUTPUTPORT.println(server.uri();

'9') {

!= '9') {

ate file name");

if(hasSD && loadFromSdCard(path)) {
return;

}
else if (hasSD && path.substring(0,8) == "/remove/")
DBGOUTPUTPORT.println("enter remove operation");
char __dataFileName[sizeof(path.substring(8))+1];

100)
100)
100)
100)
100)
100)
100)
100)
100)

{
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path.substring(8).toCharArray(-_dataFileName, sizeof(__dataFileName)+1);
DBGOUTPUTPORT.println(__dataFileName);
if (SD.exists(__dataFileName)) {
DBGOUTPUTPORT.println("file exist");
message+="deleting ";
message+=__dataFileName;
DBGOUTPUTPORT.println(message);
if(SD.remove(__dataFileName)){
DBGOUTPUTPORT. println("delete completed ");
message+=" completed";

} else {
DBGOUTPUTPORT.println("delete failed ");
message+=" failed";

}
}
else {
message+="requested file to delete: ";

message+=__dataFileName;
message+=" is not found";
DBGOUTPUTPORT.println(message);

}
server.send(404, "text/plain", message);
return;

}
else {
message = "SDCARD Not Detected\n\n";
message += "URI: ";
message += server.urio;
message += "\nMethod: ";
message += (server.methodO == HTTPGET)?"GET": "POST";
message += "\nArguments: ";

message += server.argso;
message += "\n";
for (uint8_t i=0; i<server.argso; i++){
message += " NAME:"+server.argName(i) + "\n VALUE:" + server.arg(i) + "\n

}
server.send(404, "text/plain", message);
DBGOUTPUTPORT.print(message);
return;

}
}

bool loadFromSdCard(String path){
String dataType = "text/plain";



if(path.endsWith(" src")) path = path.substring(0,
else
else
else
else
else
else
else
else
else
else

if(path.
if(path.
if(path.
if(path.
if(path.
if(path.
if(path.
if(path.
if(path.
if(path.

endsWith("
endsWith("
endsWith("
endsWith("
endsWith("
endsWith("
endsWith("
endsWith("
endsWith("
endsWith("

.htm"))

. css"))

.js"))

.png"))

.gif"))

.jpg"))

.ico"))

.xml"))

.pdf"))

.zip"))

File dataFile = SD.open(path.c-str));
if(dataFile.isDirectoryo){
path += "/index.htm";
dataType = "text/html";
dataFile = SD.open(path.c-stro);

}

if (!dataFile)
return false;

if (server.hasArg("download")) dataType = "application/octet-stream";

if (server.streamFile(dataFile,
DBGOUTPUTPORT.println("Sent

} else {DBGOUTPUTPORT.println(

dataType) != dataFile.sizeQ)
less data than expected!");
"sent successfully") ;}

dataFile. closeO;
return true;

}

void initializeWIFIO {
WiFi.begin(ssid, password);

DBGOUTPUTPORT.print("Connecting to ");

DBGOUTPUTPORT.println(ssid);

// Wait for connection
uint8_t i = 0;
while (WiFi.status) != WLCONNECTED && i++ < 20)

delay(500);

}
if(i == 21){

DBGOUTPUTPORT.print("Could not connect to");
DBGOUTPUTPORT.println(ssid);

{

dataType
dataType

dataType =

dataType
dataType
dataType
dataType
dataType
dataType
dataType

= "text/html";
= "text/css";
"application/javascript";

= "image/png";

= "image/gif";
= "image/jpeg";
= "image/x-icon";

= "text/xml";
= "application/pdf";
= "application/zip";

{//wait 10 seconds

path.lostIndex0f(" ." )) ;



while(1) delay(500);

}
DBGOUTPUTPORT. print("Connected! IP address:
DBGOUTPUTPORT.println(WiFi.localIPo);

if (MDNS.begin(host)) {
MDNS.addService("http",
DBGOUTPUTPORT. println(
DBGOUTPUTPORT.print("Y

"tcp", 80);
"MDNS responder started");
ou can now connect to http://");

DBGOUTPUTPORT.print(host);
DBGOUTPUTPORT. println(" .local");

}

void returnOKO {
server.send(200,

}
"text/plain"

void returnFail(String msg) {
server.send(500, "text/plain",

}
msg + "\r\n");

void printDirectoryo {
DBGOUTPUTPORT. print("URI:
DBGOUTPUTPORT.println(server.uri();
String message="welcome to ESP8266 file display page <br>";

File root;
root = SD.open("/");
if (!root) {

message+=("Failed to open directory
server. send(404, "text/plain",

<br>");
message);

DBGOUTPUTPORT.println(message);
return;

}
if (!root.isDirectory() {

message+=("Not a directory
server. send(404, "text/pla

<br>");
in" , message);

DBGOUTPUTPORT.println(message);
return;

}
File file = root.openNextFileo;
while(file) {

if (file.isDirectoryo) {
DIR : <a href=\"");

-A

}

" ") ;

"f) ;

message+=(" i
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message+=(file.name();
message+=("\">");
message+=(file.nameo);
message+=("</a> <br>");

} else {
message+=(" FILE: <a href=\"");
message+=(file.nameo);
message+=(" \">" );
message+=(file.ncmeo);
message+=("</a> SIZE: ");
message+=(String(file. size)));
message+=("<br>");

}
file = root.openNextFileO;

}
file. closeO;
server.send(200, "text/html", message);

}



C.2 Arduino Code for the Soft Bending Angle Sen-

sor Data Collection

This program measures the bending angle sensor outputs and print them to a com-

puter communication port.
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int sO =0;
int si =0;
int s2 =0;
int s3 =0;

long lasttime = 0;
void setupO {
// put your setup code here,
Serial.begin(115200);

}

void loopo {
if (milliso-lasttime>=20)
lasttime=milliso;

to run once:

{

// put your main code here,
sO = analogRead(AO);
si = analogRead(A1);
s2 = analogRead(A2);
s3 = analogRead(A3);
Serial.print(lasttime);
Serial.print(",");
Serial.print(s0);
Serial.print(",");

to run repeatedly:

Serial.print(
Serial.print(
Serial.print(s2);
Serial. pri
Serial.pri

nt(" ,");
ntln(s3);

unsigned

si);
I, );

}
}



C.3 Matlab Code for In-pipe Robot Localization

C.3.1 Main Program

This program is the main body of the simulator. It calls all linked subprograms and

run the entire simulation from the beginning to the end.
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6/4/18 5:02 PM /Users/vouwu/Dronbox (MI... ./ns main final.m

V6map parameters

cdc;
clear all;

important factors
map-error=5/100; 5% error, normal distribution
Tees=10; %flow reduction due to customer usage--flow steady state drift
obstacles = 1; scould be noise to joints
V_fluctuation=1/100;%l100% stdev---flow noise

%4pipe characteristics
ninetyBend = 1;
valve = 2; %"noise to joints in tactile signat
lengthPipe.= 200;
SegPipe=6;
joints=floor(lengthPipe/SegPipe);
lengthPipeest=lengthPipe*(+maperror*randn(1));
V_mean=0.5; %average flow speed, unit: m/s
tactile-noise=0.2; % 20percent noise
acc_wn=0.01;'m/s^2
cd=12;
%9 sensor parameters
Psensor sampling rate
f_imu=50;imu low pass filter cut off frequency=sampling frequency/2
dtL=1/f-imu;
%tactile speed sensor standard deviation
V_tacvar=0.01;%V_mean*dt_L;%m/s=2inch/sec
V_tacscale=1;
oKF setup
R_accest=acc_wn^2;s(m/s^2)^2
Q_flow-est=12; m^2/ s^5

%%ssgene rat o r%%%%
%Rmap creation
prep1_mapgenV2;
%tflow and motion creation
prep2_flowgenV4;

i ensore"
prep3_observer_genV4;
%%estimator5U#%
% benc hma rk
nsldeadreckoning;
?-method 1.: consecutive pipe joints
estep 1,2
nsautocorfinal;
estep 3,4
nsHCZLCZfinal;
<%method 2
nstx2_final;
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96%%%%b Gener ato
%map gen
close all

output = cell(ninetyBend+Tees+valve+obstacles+joints+1, 4);
outCount = 1;
leftT = floor(Tees*rand(1));
rightT = Tees-leftT;
leftBend=ceil(ninetyBend*rand(1));
rightBend=ninetyBend-leftBend;

z50 pts per meter (line space)
%generate matrix in x,y

%placement of features
leftBendloc = lengthPipe* rand(1, leftBend);
rightBendloc = lengthPipe* rand(1, rightBend);
leftTloc = lengthPipe*rand(1, leftT);
rightTloc = lengthPipe*rand(1, rightT);
valveloc = lengthPipe*rand(1, valve);
obstacleloc = lengthPipe*rand(1, obstacles);
cjointtoc=SegPipe*rand(l)+SegPipe*(4:I:joints-1];
jointloc=[SegPipe*rand(1)1;
while jointloc(end)<=lengthPipe

if rand(1)>0.9
jointloc=[jointloc,jointloc(end)+SegPipe*rand(1)];

else
jointloc=[jointloc,jointloc(end)+SegPipe];

end
end
%jointloc=SegPipe*[0:1:joints-1;

jointX = zeros(1,joints);
jointY = zeros(1,joints);
jointcount = 1;
leftTX= zeros(1,leftT);
leftTY = zeros(1,leftT);
leftTcount = 1;
rightTX= zeros(1,rightT);
rightTY = zeros(1,rightT);
rightTcount = 1;
valveX= zeros(1,valve);
valveY = zeros(1,valve);
valvecount = 1;
obstacleX= zeros(1,obstacles);
obstacleY = zeros(1,obstacles);
obstaclecount = 1;
dirx = 1;
diry = 0;
curx = 0;
cury = 0;
j=O;
jstep = 0.02;
counter = 2;
x(1) = 0;
y(1)=0;
while j<lengthPipe

1 of 3
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curx = curx+ dirx*jstep;
cury = cury+diry*jstep;
x(counter) = curx;
y(counter) = cury;

if sum(jointloc>j-jstep & jointloc<=j)
output{outCount, 1} = curx;
output{outCount, 2} = cury;
output{outCount, 3} = 'joint'
output{outCount, 4} = j;
outCount = outCount+1;
jointX(jointcount) = curx;
jointY(jointcount) = cury;
jointcount = jointcount+1;

end

if sum(leftTloc>j-jstep & leftTloc<=j)
output{outCount, 1} = curx;
output{outCount, 2} = cury;
output{outCount, 3} = 'left T';
output{outCount, 4} = j;
outCount = outCount+1;
leftTX(leftTcount) = curx;
leftTY(leftTcount) = cury;
leftTcount = leftTcount+1;

end

if sum(rightTloc>j-jstep & rightTloc<=j)
output{outCount, 1} = curx;
output{outCount, 2} = cury;
output{outCount, 3} = 'right T';
output{outCount, 4} = j;
outCount = outCount+1;
rightTX(rightTcount) = curx;
rightTY(rightTcount) = cury;
rightTcount = rightTcount+1;

end

if sum(valveloc>j-jstep & valveloc<=j)
output{outCount, 1} = curx;
output{outCount, 2} = cury;
output{outCount, 3} = 'valve';
output{outCount, 4} = j;
outCount = outCount+1;
valveX(valvecount) = curx;
valveY(valvecount) = cury;
valvecount = valvecount+1;

end

if sum(obstacleloc>j-jstep & obstacleloc<=j)
output{outCount, 1} = curx;
output{outCount, 2} = cury;
output{outCount, 3} = 'obstacle';
output{outCount, 4} = j;
outCount = outCount+1;
obstacleX(obstaclecount) = curx;
obstacleY(obstaclecount) = cury;
obstaclecount = obstaclecount+1;
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end

if sum(leftBendloc>j-jstep & leftBendloc<=j)
5tLjrn left
output{outCount, 1} = curx;
output{outCount, 2} = cury;
output{outCount, 3} = 'left bend';
output{outCount, 4} = j;
outCount=outCount+1;
if(dirx==0)

dirx = -diry;
diry =0;

else
diry = dirx;
dirx = 0;

end
end

if sum(rightBendloc>j-jstep & rightBendloc<=j)
output{outCount, 1} = curx;
output{outCount, 2} = cury;
output{outCount, 3} = 'right bend';
output{outCount, 4} = j;
outCount=outCount+1;
if(dirx==0)

dirx = diry;
diry =0;

else
diry = -dirx;
dirx = 0;

end
end

j = j+jstep;
counter = counter+1;

end
output{outCount, 1} = curx;
output{outCount, 2} = cury;
output{outCount, 3} = 'end';
output{outCount, 4} = j;

plot(x,y);
hold on
plot(jointX, jointY,'.');
plot(leftTX, leftTY,'*');
plot(rightTX, rightTY,'*');
plot(valveX, valveY,'o');
plot(obstacleX, obstacleY,'s');
legend('pipe','joint','leftT','rightT','valve','obstace');
output
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%%4 tactile channels

close all;
%0-noise in friction, rotation are corre..I.
%-flow gen->V(t,l)
frobot=500; a motion similation sampling rate for the robot, un t:
dt=1/frobot;
%V-mean=0.5; %-average flow speed, unit: m/s
T=lengthPipe/Vmean*3; 9 Timr for +h rnot'hrt'u? t

t=0:dt:T;
minfeaturesize=dt*Vmean;
SxAsimulate flow fluctuatio
%9V_fluctuation=2;200%
flowpass=10; 'low pass fiLter cut off frequency 50Hz, flow fluctuation simulati
V_random=Vmean*(1+Vfluctuation*randn(1,length(t)+20/flowpass*frobot)); %f low speed
tau=2*pi()/flowpass;
a=dt/tau;
V_lpf=filter(a,[1 a-1], Vrandom);
V_filtered=V_lpf(20/flowpass*frobot+1:end);
%plot(t,V_filtered);

,%robot dynamics, 6inch diameter robot
d_robot=0.15; 0diameter of the robot, unit: m
cd=2;
cf=0.01;
A_rc=(d-robot/2)^2*3.14; ?cross sectional area
m=Arc*drobot*4/3*1000*2/3; %mass of the robot, unit: kg
ma=(d-robot/2)^3*3.14*2/3*1000; %added mass,
mtotal=m+ma;

frictionnorm=(m*9.8)/5*cf;
imax=length(t);
V_flow=Vfiltered;
Drag=zeros(1,imax);
Qfriction=zeros(1,imax);
disr=zeros(1,imax);
v_r=zeros(1,imax);
accr=zeros(1,imax);
rotr=zeros(1,imax);

dis-r(1)=0;
v_r(1)=0;%V-flow(l);
acc-r(1)=0;
rot-r(1)=0;9degrees/sec

%flow disturbance definition
%obstacle half size
hs.obs=floor(.02/V_mean*frobot);
fVobstacle=1.00;
fVbend=1.1;
fVtee=0.9;
ffmeanobstacle=10;
ffvarobstacle=0.2;
ffmeanbend=3;
ffvarbend=0.2;
ffvarnorm=0.1;
frictionnofilter=frictionnorm*(1+ffvarnorm*randn(1,imax+20/flowpass*frobot));
friction=frictionnofilter(20/flowpass*frobot+1:end);
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tactile=zeros(4,imax);
tac mean=0;
tacobs=-0.5;
tac bend=-2;
tac-out=2;%out
tacnm=-0.001;%normat noise

% %%tactile speed measuremenT
% Vtacvar=0.05;%m/s=2inch/sg<
% Vtac=zeros(2,ninetyBend+Tee

%flow reduction due to active service lines
FlowReduce=1;

dis-i=O;
i=1;
tac-count=0;
while disi<=lengthPipe

i=i+1;
dice=randn(1);
if sum(jointoc>dis-r(i-1) & jointloc<=disr(i-1)+minfeature size)

V_flow(i)=V-filtered(i)*fVobstacle;
rotchange=15/(2*hs-obs*dt)*(2+1*dice)*ones(1,hsobs);
rotr(i:i+hsobs-1)=rot-r(i:i+hsobs-1)+rot-change;
rotr(i+hsobs:i+hsobs*2-1)=rot-r(i+hsobs:i+hsobs*2-1)-rot-change;
friction(i:i+hsobs*2-1)=friction(i:i+hsobs*2-1)+frictionnorm*ffmeanobstacle*

(1+ffvarobstacle*dice)*ones(1,hsobs*2);
tactile(:,i:i+hsobs*2-1)=tacmean+tac obs*(1+0.1*randn(4,1))*ones(1,hsobs*2);

% taccount=tac-count+1;
% Vtac(:,taccount)=[i;v_r(i-l)+Vtacvar*dicel;

elseif sum(obstaceloc>dis-r(i-1) & obstacleloc<=dis-r(i-)+minfeaturesize)
V_flow(i)=Vfiltered(i)*fVobstacle;
rotchange=10/(2*hs-obs*dt)*dice*ones(1,hsobs);
rotr(i:i+hs-obs-1)=rot-r(i:i+hs-obs-1)+rot_change;
rotr(i+hs-obs:i+hsobs*2-1)=rot-r(i+hsobs:i+hsobs*2-1)-rot_change;
friction(i:i+hs-obs*2-1)=friction(i:i+hsobs*2-1)+frictionnorm*ffmeanobstacle*(

(1+ffvarobstacle*dice)*ones(1,hsobs*2);
tacnum=floor(1.33*rand(1,4));
tactile(:,i:i+hs-obs*2-1)=tacmean+tacobs*(1+dice)*tacnum'*ones(1,hsobs*2);

taccount=tac-count+1;
Vtac(:,taccount)=[i;vr(i-)+Vtac_var*dicel;

elseif sum(valveloc>disr(i-1) & valveloc<=dis-r(i-1)+min featuresize)
V_flow(i)=V\filtered(i)*fVobstacle;
rotchange=10/(2*hs-obs*dt)*dice*ones(1,hsobs);
rotr(i:i+hs-obs-1)=rot-r(i:i+hsobs-1)+rot-change;
rotr(i+hs-obs:i+hsobs*2-1)=rot-r(i+hsobs:i+hsobs*2-1)-rot-change;
friction(i:i+hs-obs*2-1)=friction(i:i+hsobs*2-1)+frictionnorm*ffmeanobstacle*

(1+ffvarobstacle*dice)*ones(1,hsobs*2);
tactile(:,i:i+hsobs*2-1)=tacmean+tac obs*(1+0.5*randn(4,1))*ones(1,hsobs*2);

taccount=tac count+1;
Vtac(:,taccount)=[i;v-r(i-l)+Vtacvar*dicel;

elseif sum(teftBendoc>dis-r(i-1) & leftBendloc<=dis-r(i-)+minfeaturesize)
V_flow(i)=Vjfiltered(i)*fVbend;
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rotr(i:i+149)=rotr(i:i+149)+90/(150*dt)*ones(1,150);
friction(i:i+149)=friction(i:i+149)+frictionnorm*ffmeanbend*(1+ffvarbend*dice) a"

*ones(1,150);
tactile(:,i:i+149)=tac -mean+tacbend*([0.5+0.5*randn(1);0.5+0.5*randn(1);1+0.e

5*randn(1);1+0.5*randn(1)])*ones(1,150);
tac-count=tac count+1;

%Vt ac ( : , tac_ count)= [i; v_r (i-1) asa

elseif sum(rightBendloc>dis_r(i-1) & rightBendloc<=dis_r(i-1)+minjfeaturesize)
V_flow(i)=Vfiltered(i)*fVbend;
rotr(i:i+149)=rotr(i:i+149)-90/(150*dt)*ones(1,150);
friction(i:i+149)=friction(i:i+149)+frictionnorm*ffmeanbend*(1+ffvarbend*dice) 1

*ones(1,150);
tactile(:,i:i+149)=tac mean+tacbend*([1+0.5*randn(1);1+0.5*randn(1);0.5+0. a

5*randn(1);0.5+0.5*randn(1)])*ones(1,150);
taccount=tac-count+1;
Vtac(:,tac_count)=[i;vr(i-i)+Vtacvar*dicel;

elseif sum(rightTloc>dis -r(i-1) & rightTloc<=dis_r(i-1)+min_featuresize) 1| sumie
(leftTloc>dis-r(i-1) & leftTloc<=disr(i-1)+minfeature-size)

%if rand()>0.5
FlowReduce=FlowReduce*0.97;
%friction(i:i+hsobs*2-1)=friction(i:i+hsobs*2-1)*0.5;
tactile(:,i:i+hsobs*5-1)=tac -mean+tacnm*dice*ones(4,hsobs*5);
tactile(ceil(4*rand(1)),i:i+hs obs*5-1)=tacmean+tac-out*(1+dice)*ones(1,e

hsobs*5);
% taccount=taccount+1;
% Vtac(:,taccount)=[i;v-r(i-1)+Vtacvar*dice];

%end

else
V_flow(i)=Vfiltered(i);
tactile(:,i)=tacmean+tacnm*dice*ones(4,1);
%rotr(i)=0;
%friction(i)=frictionnorm*(i+ffvarnorm*dice);

end
%Drag(i)=cd*1000*Arc/2*(V-flow(i)-v-r(i-1))*abs(V_flow(i)-v r(i-1));
%%bernoulli's equation
V_flow(i)=V_flow(i)*FlowReduce;
Drag(i)=cd*1/2*1000*(Vflow(i)2-v-r(i-1)^2)*Arc;
acc-r(i)=(Drag(i)-friction(i))/mtotal;
v.r(i)=v-r(i-1)+accr(i)*dt;
disr(i)=dis-r(i-1)+v_r(i)*dt;
disi=dis-r(i);

end
imax=i;
t(imax+1:end)=[];
accr(imax+1:end)=[];
V_flow(imax+1:end)=[];
Drag(imax+1:end)=[];
friction(imax+1:end)=[];
v_r(imax+1:end)=[];
disr(imax+1:end)=[];
rotr(imax+1:end)=[];
tactile(:,imax+1:end)=[];
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x_r=zeros(1,imax);
y-r=zeros(1,imax);
yawr=zeros(1,imax);
yaw-r(1)=0; -degrees
x_r(1)=0;
y-r(l)=O;
for i=2:1:imax

yaw r(i)=yaw r(i-1)+rot-r(i)*dt;
x-r(i)=xr(i-1)+v_r(i)*dt*cos(yaw -r(i)/180*pi));
y_r(i)=y_r(i-1)+v_r(i)*dt*sin(ya_r(i)/180*pi());

end
figure(1);
subplot(5,1,1);plot(t,acc_r);title('robot acceleration');
subplot(5,1,2);plot(t,V_flow,'b');
hold on
plot(t,vr,'r');
title('robot velocity');
legend('Flow','Robot');
hold off
subplot(5,1,3);plot(t,Drag,'b');
hold on
plot(t,friction,'r');
title('Forces on the robot');
legend('Drag','Friction');
hold off
subplot(5,1,4);plot(t,rotr,'b');
title('robot rotational input(deg/sec)');
hold off
subplot(5,1,5) ;plot(t,tactile);
title('tactile sensor input');

figure(2);
plot(x,y,'b-','LineWidth',3);
hold on
plot(xr,yr,'r-');
plot(jointX, jointY,'.','MarkerSize',12);
plot([leftTX, rightTX], [leftTY, rightTY],'x','MarkerSize',12);
plot(valveX, valveY,'o','MarkerSize',12);
plot(obstacleX, obstacleY,'s','MarkerSize',12);
legend('pipe','robot path','joint','Tee','valve','obstacle');
xlabel('x distance(m)');
ylabel('y distance(m)');
title('original pipe map');
hold off

% figure(3)
% plot(t,rotr,'.-');
- title('robot rotational speed over time');

% figure(4)
% plot(t,yaw_r);
% title('robot yaw');

%figure(5)
Oplot(t,friction);
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%%%Sensor%%%%%%%
%%robot localization with IMU and tactile
%generate accelerometer and gyro data
%%4 tactile sensors
close all;

9-%imu (50h:
tau=2*pi()/f-imu;
a=dt/tau;
:a cc
accf=filter(a,[1 a-1,acc_r);
-ogyro
windowSize=1*floor(frobot/f-imu);
b = (1/windowSize)*ones(1,windowSize);
gyro_r=filter(b,1,rot t_ r );
%gyrof=filter(a, [1 a-11,gyror);
gyrof=filter(a,[1 a-1J,rotr);
%%encoder speed measure
V_enc=filter(a,[l a-1,v-r);

f_tac=10;
tau=2*pi()/f-tac;
a=dt/tau;
%tactilef=filter(a, [1 a-1l,tactile);
windowSize=2*floor(frobot/f-imu);
b = 1/windowSize*ones(1,windowSize);
%tactileff=zeros(4,length(t));
tactile_f=zeros(4,length(t));
for i=1:1:4

tactileff=conv(b,tactile(i,:));
tactileff(1:floor(length(b)/2-1))=[];
tactileff(length(tactile)+1:end)=[];
tactilef(i,:)=filter(a,[1 a-11,tactile_ff);
%tactile_fl(i,:)=filter(b,1,tactile_ff(i,:));

end
%downsample to imu frequency
t_L=downsample(t,frobot/fimu);
accL=downsample(acc_f,frobot/fimu);
gyro_L=downsample(gyrojf,frobot/f-imu);
tactileL=zeros(4,length(tL));
tactileL(1,:)=downsample(tactilef(1, :),frobot/f_imu);
tactileL(2,:)=downsample(tactile-f(2,:),frobot/f_imu);
tactileL(3,:)=downsample(tactile-f(3,:),frobot/fimu);
tactileL(4,:)=downsample(tactile-f(4,:),frobot/fimu);
dis_r_L=downsample(disr,frobot/f_imu);
V_encL=downsample(Venc,frobot/fimu);

55%add measurement noise
96accwn=0. 1;0m/s^2
gyrown=2;3-6deg/sec
gyro_bias_rw=0.75;
enc-wn=0.05;

acc-output=accL+accwn*randn(1,length(tL));

gyro_bias_dot=gyro-biasrw*randn(1,imax);
gyro_bias=zeros(1,length(tL));

Pik- .I
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V_enc=zeros(1,length(tL));
for i=2:1:length(tL)

gyrobias(i)=gyro-bias(i-l)+gyro-biasdot(i)*sqrt(l/f_imu);
V_enc(i)=VencL(i)+encwn*randn(l);

end
gyro-output=gyroL+gyrown*randn(l,1ength(tL))+gyro-bias;

tactile.output=1000*tactileL.*(+tactilenoise*randn(,length(tL)));%sensor calibrationW
10000hm/N

%%generate tactile speed measurement
f_t._hpf=1;
tau=2*pi()/f-t-hpf;
a=dtL/tau;
f_t_lpf=10;
tau2=2*pi()/f_t_lpf;
a2=dtL/tau2;
tactileHPF=zeros(4,length(tactileoutput));
tactile_BPF=zeros(4,length(tactile-output));
for i=1:1:4

tactileHPF(i,:)=filter([1-a a-1],[1 a-1],tactile-output(i,:));
tactileBPF(i,:)=filter(a2,[1 a2-1],tactileHPF(i,:));

end
tactileabsmean=1/4*ones(1,4)*abs(tactileBPF);
%tactileabs=1./(ones(1,4)*(gyro-output+(abs(tactileHPF)-tactileabsmean).
/tactile_absmean).^2);
tactilemax=max(abs(tactileBPF));
tactilemin=min(abs(tactileBPF));
tactilex=tactileabsmean.*(tactilemin./tactilemax+0.01);
%tactilex=tactileabsmean./(tactilemax-tactileabs mean+0.1);
tactilethreshold=0.2;
[tactilepksx,tactilelocsx=findpeaks(tactile -x,'MinPeakHeight',
tactilethreshold,'MinPeakDistance',5/dtL);%'maxPeakWidth',1/dtL);
[tactilepks,tactile_locs0l=findpeaks(tactilemax,'MinPeakeight',
tactilethreshold,'MinPeakDistance',2/dtL) ;%'maxPeakWidth',1/dtL);
tactileabs=tactile-x;
v_r_L=downsample(vr,frobot/fimu);
V_tacL=v_r_L(tactile-locs6);
V_tacnoise=Vtacvar*randn(,length(tactilelocs0));
V_tacest=Vtacscale*abs(VtacL+Vtacnoise);

figure(201);
subplot(5,1,1);
plot(t_L,accoutput,'b-');
hold on;
plot(tL,accL,'r-');
legend('accelerometer output','real acceleration');
title('accelerometer output');
hold off;

subplot(5,1,2);
a -0,-plot~t,gyro_r,'b-');
hold on;
>plot(t,gyro ur,'b-');
plot(t_L,gyro-output,'r-');

2 of 3
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title('gyroscope output');
%tegend('real yaw speed','gyroscope output');
hold off;

subplot(5,1,3);
%plot(tL,tactileBPF);
splot(tL,tactileabs_mean,'r-');
hold on
plot(tL,tactile x,'b.');
'plot(tL,tactile_-BPF);
plot(t_L(tactilelocsx),tactilepksx,'ro');
title('robot tactile output');
hold off

subpl.ot(5,1,4);
9.plot(t_L,tactile_-BPF);
%plot(tL,tactileabs_mean,'r-');
plot(tL,abs(tactileBPF));
hold on
plot(tL(tactilelocs),tactile_pkse,'ro');
title('robot tactile output');
hold off

subplot(5,1,5);plot(t_L,v_r_L,'b-');
hold on
plot(tL(tactile.locs),Vtacest,'ro');
title('robot speed');
legend('real speed','tactile speed measure');
hold off
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f_accf=10;
tauacc3f=2*pi()/f-acc-f;
dt_L=1/f_imu;
a_acc-f=dtL/tau-acc-f;

accbpf=filter(a acc-f,[1 a accf-1l,acc output);

V_0=0;
V_flow-est=lengthPipe-est/t(end);

V_est dd=zeros(l,length(acc output));
V_est_dd(l)=V_0;
for i=2:1:length(acc output)

V-est dd( i)=Vest dd(i-1)+acc-bpf(i-1)*dt_L;
end

d_accbpf0=zeros(1,length(V est dd));
for i=2:1:length(Vestdd)

d_accbpf0(i)=d accbpf0(i-)+(Vest dd(i)+V-est-dd(i-1))/2*dtL;
end

disdd=d-accbpf0;

Z_obsv=acc output;
coef=cd*1000*Arc/(m+ma);

Q_VfVf=(0.1/10/fimu)^*2;
Q_VrVf=QVfVf;
QVrVr=0;
Q-aa=0.2^2;
Q_Vra=0;

Q_ss=Q_VrVr*dt_L^2;
Q_process=l*[Qss 0 0 0

0 QVfVf QVrVf 0;
0 QVrVf QVfVf QVra;
0 0 QVra Q-aal;

H = [0 0 0 1];

K = zeros(4,1,length(accoutput));

X_aposteriori=zeros(4, tength(acc_output));

X-apriori=zeros(4,length(acc-output));

P-apriori = zeros(4,4,length(accoutput));
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P_aposteriori = zeros(4,4,length(acc output));
V_flow-est=LengthPipe*(1+map_e rro r) /max (tL);
V_0=0;
a_e=cd*1000*A rc*(0-Vflow est )^2/ (m+ma);
X_aposteriori(:,1)=[0; V-flow-est; V O; a_@];
Xapriori(:,1)=X aposteriori(:,1);
P-aposteriori(:,:,1) = [0.0001^2 0 0 0;

0 0.1"2 0 0;
0 0 0.01^2 0;
0 0 0 1^2*a_0^2];

for i=2:1:length(Z-obsv)
Ai=[1 0 dt L dtL^2;

0 1 0 0;
0 0 1 dtL;
0 coef*abs(X-aposteriori(2,i-l)-X-aposteriori(3,i-1)) -coef*abs(Xaposteriori(2,'

i-1)-X-aposteriori(3,i-1)) 01;

X_apriori(:, i)=Ai*Xaposteriori(:, i-1);

Qi = Q0process;

Ri= Raccest;

P_apriori(:,:,i) = Ai*P-aposteriori(:,:,i-1)*Ai' + Qi';

K(:,:,i) = P-apriori(:,:,i)*H' / (H*P-apriori(:,:,i)*H'+Ri);

X_aposteriori(:,i) = X-apriori(:,i) + K(:,:,i) * (Zobsv(:,i) - H*Xapriori(:,i));

P_aposteriori(:,:,i) = (eye(4) - K(:,:,i)*H) * Papriori(:,:,i);
end
a ekfj=Xaposteriori(4,:);
a ekfj-var=Paposteriori(4,4,1:end);
a-ekfj-std=reshape(sqrt(aekfj-var),1,[]);

V ekfj=Xaposteriori(3,:);
V ekfj-var=P-aposteriori(3,3,1:end);
V-ekfj-std=reshape(sqrt(V-ekfjvar),1, H);

Vfekfj=Xaposteriori(2,:);

d ekfj=Xaposteriori(1,:);
d ekfj-var=P-aposteriori(1,1,:);
d_ekfistd=reshape(sqrt(dekfjvar),1, H);
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d_estdd=zeros(1,length(V est dd));
for i=1:1:length(Vestdd)-1

d_estdd(i+1)=destdd(i)+(Vestdd(i)+Vestdd(i+1))/2*dtL;
end
figure(101);
subplot(3,1,1);
plot(tL,v_r_L,
hold
plot(tL,Vestdd,
title(
xlabel(
ylabel(
legend(

hold
subplot(3, 1,2);
plot(tL,v_r_L,
hold
plot(tL,Vekfj,
title(
xlabel(
ylabel(
legend(

,1);

,1);

hold

subplot(3,1,3);
hold

3 of 4

,

);

,

,



6/6/18 4:32 PM /Users/youwu/Dropbox.../nsl deadreckoning.m 4 of 4

plot(t_L,abs(d-ekfj-dis_r_L), ,2);
title(
xlabel(
ylabel(
legend(
ylim( [0,101);
hold
set(findall(gcf, , ),12);
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%%find all possible joints
%%assume at most 1 false positive between joints
%%assume at most 1 missing joint in a row
%%assume no false positive and false negative are next to each other
close all;

f_g_lpf=1;
tau=2*pi()/f_g-lpf;
a=dtL/tau;
gyro_HPF=filter([1-a a-1],[1 a-1],gyro-output);
gyro_radiusabs=filter(1/(0.5*fimu)*ones(1,floor(e.5*fimu)),1,sqrt(gyroHPF.^2));
jointthreshold=5;
[jointpks,joint-locsO]=findpeaks(gyro-radiusabs,'MinPeakHeight',
jointthreshold,'MinPeakDistance',3/dtL,'MinPeakProminence',5, 'MaxPeakWidth',1/dt_L);

0%eliminate bends
jointpksl=zeros(1,length(jointpksO));
jointlocsl=zeros(1,length(jointpks0));
jj=0;
for j=1:1:length(joint_locs0)

if joint-pks0(j)<=80
if rand(1)>=0
jj=jj+1;
joint-pksl(jj)=jointpkse(j);
jointjlocsl(jj)=joint-locsO(j);
end

end
end
joint-pks1(jj+1:end)=[];%%corrected array of max rotational speed at joints
jointlocsl(jj+1:end)=[];%%corrected array of time array indexes at joints

%0%autocorrelation to find norminal frequency change
fs=fimu;
xj=jointlocsl;
yj=zeros(1,length(tL));
dtjointl=(xj(2:end)-xj(1:end-1))*dtL;

yj(xj)=1;
M-convolution
cn=fs;
yjj=l/cn*conv(conv(ones(1,cn),ones(1,cn)),yj);
yjj(1:cn-1)=[];
yjj(length(yj)+l:end)=[];
[acorfull,lagfull] = xcorr(yjj,yjj);
halfway-full=(length(acor_full)-l)/2;
acorfull(halfway_full+-cn*2:halfwayfull+1+cn*2)=;
lag_full(1:halfway-full+1)=[];
acorfull(1:halfway-full+1)=[];
[maxcorfull,mainlag_full]=max(acor_full);
acorfull=acorfull/maxcor_full;
[pksf,locsfl=findpeaks(acor-full,'MinPeakHeight',max(acorfull)*0.75,'MinPeakDistance',.(
fs*2);
mainlag-full=locsf(1);

mainlag=0;
normtj2j=zeros(2,length(xj)-1);
acorlast=[1];
for i=1:1:length(norm-tj2j)

if i<=5

1 of 4
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10=1;
iL=max(xj(5)-i0,60*fs);

else
iO=max(min(xj(i-5)-fs,xj(i)-60*fs),1 );
iL=xj(i)-iO;

end

maxlag=min(max(mainag*10,fs*60),iL);
y_indow=yjj(iO:min(iO+iL,length(yjj)));
[acor,lag] = xcorr(ywindow,ywindow,maxlag);
halfway=(length(acor)-1)/2;
acor(halfway+1-cn*2:halfway+1+cn*2)=0;
lag(1:halfway+1)=[1;
acor(1:halfway+1)=[];
[maxeor,mainlag1=max(acor);

t_mainlag=mainlag/fs;
normtj2j(:,i)=[xj(i);t-mainlag];

figure(1);
subplot(3,1,1);plot(tL(i:min(i+iL+1000,length(yjj))),yjj((i:min(i+iL+1000,engthf

(yjj)))),'k-');
hold on
plot(tL(iO:min(iO+iL+50,length(yjj))),yjj(iO:min(iO+iL+50,length e

(yjj))),'b-','LineWidth',2);
xlabel('time (sec)');
hold off

subplot(3,1,2);plot(lag/fs,acor,'b-','LineWidth',2);
hold on
plot(t mainlag,maxcor,'r**);
xlabel('time delay(sec)');
hold off

end

i_sell=[];
tj2jcor=normtj2j(2,:); %length(xj)-1;
tj2j_atrue=t_L(xj(2:end))-tL(xj(1:end-1)); %tength(xj)-1;
tj2jamiss=(tL(xj(2:end))-tL(xj(:end-1)))/2; %length(xj)-1;
tj2j_afalse=t_L(xj(3:end))-t_L(xj(l:end-2)); 3-.ength(xj)-2;

S0%high confidence zone
HCZ thres=0.1;
for i=1:1:length(tj2jcor)-2

%%first find regions where tj2j-cor is mostly constant
if abs(tj2jcor(i+1)-tj2jcor(i))<=tj2jcor(i)*HCZthres

if abs(tj2j_cor(i+2)-tj2j-cor(i+1))<=tj2jcor(i+1)*HCZthres
if ismember(i,i-sell)==false

isell=[isell i i+1 i+21;
elseif ismember(i+1,isell)==false

isell=[isell i+1 i+2];
else

isell=[isell i+2];
end

end
end

end
%Olow confidence zone
tj 2jcor2=tj 2jcor;

2 of 4
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iLCZ0=1;
iLCZ1=1;
for i=1:1:length(tj2jcor)

if ismember(i,i-sell)==true && ismember(i+1,i.sel1)==false
iLCZ0=i;

end
if ismember(i, isel1)==false && ismember( i+1, i sell)==t rue

iLCZ1=i+1;
tj2jcor2(iLCZ0:iLCZ1)=tj2j_cor(iLCZO)+(tj2j-cor(iLCZ1)-tj2j_cor(iLCZ0))*linspaceL'

(0,1,iLCZ1-iLCZO+1);
end

end

figure(2);
subplot(2,1,1);plot(t_L,yj*100);
hold on
plot(tL,gyroradius_abs);
title('Rotational speed in radial direction(deg/s)');
xlabel('time(sec)');
ylim([0,100]);
hold off
subplot(2,1,2);
plot(tL(xj(:end-1)),tj2j_cor,'b-');
hold on
plot(tL(xj(1:end-1)),tj2j-cor2,'r-');
title('nominal delay estimations(sec)');
xlabel('time(sec)');
plot(t_L(xj(isell)),tj2j-cor(i sell),'bo');
plot (tL(xj (1:end-1)), tj2j_at rue, 'r. ', 'markerSize' ,10);
plot(tL,yj*50);

i_sel2=[];
xj2=[];
yj2=zeros(1,length(tL));
HCZthres2=0.2;
for i=1:1:length(tj2j_cor2)

%0consecutive true joints
if abs(tj2j_cor2(i)-tj2j_atrue(i) )<=tj2jcor2(i)*HCZ_thres2

i_sel2=[i sel2 i];
xj2=[xj2 xj(i)];

%%imiss next true joint
elseif abs(tj2jcor2(i)-tj2j_amiss(i))<=tj2jcor2(i)*HCZ-thres2

0-0 i_sel2=[i-sel2 i);
xj2=[xj2 xj(i) xj(i)+floor(tj2jamiss(i)/dtL)];

9Onext one is a false joint
% elseif i<=length(tj2j-afalse)
% if abs(tj2jcor2(i)-tj2j-afalse(i))<=tj2j cor2(i)*HCZthres2
0-0 i sel2=[i-sel2 ii;
% if i+2<length(tj2j-cor2)
1- xj2=[xj2 xj(i)];

else
xj2=[xj2 xj(i) xj(i)+ftoor(tj2jafatse(i)/dtL)I;

end
end

JIM, m1i
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end
plot(t_L(xj(i-sel2)),tj2j-cor2(i_sel2),', );
yj2(xj2)=1;

end

hold

4 of 4
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%0 find the high confidence zones: at least three
i_sel=[];
for i=1:1:length(i -sel2)-1

if isel2(i)+1==isel2(i+1)
if ismember(i se2(i),i-sel)==false

i.sel=[isel isel2(i) i-sel2(i+1)];
else

i-sel=[i-sel isel2(i+1)];
end

end
end

%isel=isel2;
vHCZ=SegPipe./tj2jatrue;
figpre(2);
plot(t_L(xj(i-sel)),v_HCZ(i-sel),'b*');

%%initialize the data record matrices
V_ekf91=zeros(1,length(tL));
V_ekf92=zeros(1,length(tL));
%%find the first low confidence zone
i_0j=0;
i_nj=1;
for j=1:1:length(isel)-1

i_6=isel(j);
in=isel(j+1);
if i_0+1==i nohigh confidence zone

%forward estimation
d_0=0;
V_0=V-ekf9(xj(i-0));
if V_0==0

V_0=vHCZ(i_0);
end

V_6=v HCZ(i_6);
V_flow est=V_0;
a_0=accoutput(xj(i_0));
XOj=[d_0; Vjflow-est; V_; a_0];
P_0j = [0.0001^2 0 0 0;

0 (V0*0.02)^2 0 0;
0 0 (V._0*0.02)^2 0;
0 0 0 Raccest];

M-Ibackward smoother
d_n=SegPipe;
V_n=vHCZ(in);
a_n=accoutput(xj(in));
%%%EKF in the HCF Confidence Zone
ns4_stepEKFHCZ;

V_ekf9l(xj(i_0):xj(in))=V.smooth;
V_ekf92(xj(i_0):xj(i-n))=V-ekfj;

d_ekf9(xj(i_0):xj(in))=dekf9(xj(i_9):xj(i_n))+d smooth;
d_ekf9(xj(i-n)+1:end)=ones(l,tength(tL)-xj(i-n))*d-ekf9(xjL

(in));
hold on
plot(t_L(xj(i_0):xj(l_n)),V_ekfj,'-');
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plot(tL(xj(i_):xj(i_n)),Vsmooth,',');
hold off

else %low conftidence z,)
%%forward estimatia
V_0=vHCZ(i_0);

V_0=V-ekf91(xj(i_-
if V_0==0

V_=vHCZ(i_0);
end

V_flowest=V_0;
a_0=accoutput(xj(i_.0));
X_0j=[0; V\flowest; VO; a_01;
P-Oj = [0.0001^2 0 0 0;

0 (V_*0.02)^2 0 0.;
0 0 (V_0*0.02)^2 0;
0 0 0 Raccest];

1VYbackward smoother
V_n=vHCZ(i-n);
a_n=accoutput(xj(i.n));
%%%EKF in the Low Confidence Zone
ns4_stepEKFLCZ;
0-0-%

V_ekf9l(xj(i_0):xj(in)
%V_ekf9(xj(i_0):xj(in
V_ekf92(xj(i_0):xj(i n)
0- d-ekf9(xj
00 dekf9(xj

)=V-smooth;
))=V-ekfj;
)=V_ekfj;
(i_0):xj(i-n))=dekf9(xj(i_0):xj(in))+dsmooth;
(in)+l:end)=ones(l,ength(tL)-xj(i-n))*d-ekf9(xj(in));

hold on
plot(tL(xj(i_0):xj(in)),Vekfj,'-');
plot(tL(xj(iO):xj(in)),Vsmooth,'.');

plot(tL(xj(i_0j):xj(i-nj)),V-ekfj-Vekfjstd,'--');
1- plot(tL(xj(i_0j):xj(inj)),Vekfj+Vekfjstd,'--');
hold off

end
end

,othe segment before the first high confidence zone
i_0=0;
i_n=isel(1);
kkforward estimation
V_0=0;
V_flowest=vHCZ(i-n);
a_0=cd*1000*Arc*(0-Vflowest)^2/(m+ma);
X_Oj=[0; Vjflow est; V_0; a_0J;
P_Oj = [0.0001^2 0 0 0;

0 (0.01)^2 0 0;
0 0 (V flowest*0.2)'2 0;
0 0 0 a_0^2];

-&<backward smoother
V_n=vHCZ(in);
a_n=acc -7 output(xj(i -n));
% %EKF in the Low Confidence Zone
ns4_stepEKFLCZ;
9- O--

9-

9-
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V_ekf9l(1:xj(i-n))=Vsmooth;
V_ekf92(1:xj(in))=Vekfj;

% for i=2:1:length(V smool.
% dekf9(i)=dekf9(i- lvIkfiud
% end
% %d_ekf9(1:xj(in))=dekf9(1:xj(in))+d_
% dekf9(xj(in)+1:end)=dekf9(xj(i_n)+1:end)+oies(i, tength(t_L)-xj(i-n))*d-ekf9(xj La
(i-n));
hold on
plot(tL(1:xj(in)),Vekfj,'-');
plot(tL(:xj(in)),Vsmooth,'.');
hold off

c%Othe segment after the last high confidence zone
i_0=i.sel(end);
in=length(xj)+1;
%%forward estimation
V_0=vHCZ(i_0);
V_flowest=V_0;
a_0=acc.output(xj(i_0));
X_0j=[0; Vj.flow_est; V_0; a_01;
P_Oj = [0.0001"2 0 0 0;

0 (V_0*0.02)^2 0 0;
0 0 (V_0*0.02)^2 0;
0 0 0 Raccest];

%%%no backward smoother
-%%EKF in the Low Confidence Zone
ns4_stepEKF_HCZ;

Vekf91(xj(i_0):end)=Vekfj;
V_ekf92(xj(i_0):end)=V(_ekfj;

% dekf9(xj(i_0):end)=d-ekf9(xj(i_0):end)+d-ekfj;
hold on
plot(tL(xj(i_0):end),Vtekfj,'-');
%plot(tL(xj(i Lx0):end),V_smooth,'.');
0-0 plot(t_L(xj(iOj):xj(inj)),Vekfj-Vekfjstd,'--');
0- plot(t_L(xj(i_Oj):xj(i_nj)),V_ekfj+V-ekfj_std,'--');
hold off

d_ekf91=zeros(1,length(Vekf91));
d_ekf92=zeros(1,length(Vekf92));
for i=1:1:length(V_ekf91)-1

d_ekf9l(i+)=d-ekf9l(i)+(Vekf9l(i)+V -ekf9l(i+1))/2*dtL;
d_ekf92(i+)=d-ekf92(i)+(Vekf92(i)+Vekf92(i+1))/2*dtL;

end

figure(3)
subplot(2,1,1);plot(t_L,v_r_L,'r','LineWidth',2);
hold on
title('Robot Velocity(m/s)');
plot(t-L,V-ekf91,'k','LineWidth',2);
, plot(t_L,V_ekf92,'LineWidth',2);
plot(tL(xj(i-sel)),zeros(1,length(i-sel)),'k.','MarkerSize',20);
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%plot(tL,yj*I);

joints');
xlabel('time(sec)');
hold off

subplot (2, 1, 2);
plot(tL,abs(d d.ekf9l-disrL),'k' ,'LineWidth' ,2);
hold on
title('Distance Estimation Error(m)');
xlabel('time(sec)');
plot(t_L (xj(i sel)),zeros(1,length(isel)),'k.','MarkerSize',20);
%plot(tL,yj*1);
legend('Estimation with EKF+Smoothing','high confidence joints');%'all possible joints');
hold off
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%0 %EKF in the errorish range
if i_0==0

Z_obsv=accoutput(1:xj(i_n));
elseif in>length(xj)

Z_obsv=accoutput(xj(i_0):end);
else

Z_obsv=accoutput(xj(i.0):xj(i_n));
end
coef=cd*1000*Arc/(m+ma);
%state error
Q_VfVf=(0.1/10/fimu)^2;
QVrVf=QVfVf/2;
Q_VrVr=0;%Qaa*dt_L^2;
Q.aa=0.2^2;
QVra=0; Q-aa*dtL^2;%Q_aa/50;
%Q_flowest=l;
Q_ss=Q_VrVr*dt_L^2;
Q_process=1*[css 0 0 0

0 Q_VfVf QVrVf 0;
0 Q_VrVf Q_VfVf QVra;
0 0 QVra Q.aa];

-' +Q-flow est*[0 0 0 0 0;
% 0 dt_L^3/3 dt_LA2/2 0 0;
% 0 dt_L^2/2 dtL 0 0;
% 0 0 0 0 0;
% 0 0 0 0 01;

% Measurement-state Jacobian
H = [0 0 0 11;
% Kalman Gain
K = zeros(4,1,length(Zobsv));
? Apriori state estimates
X_aposteriori=zeros(4,length(Z-obsv));
% Aposteriori state estimates
X_apriori=zeros(4,length(Zobsv));
% Apriori error covariance estimates
P_apriori = zeros(4,4,length(Zobsv));
O Aposteriori error covariance estimates
P_aposteriori = zeros(4,4,length(Zobsv));

X_aposteriori(:,1)=X_0j;
X_apriori(:,1)=Xaposteriori(:,1);
P_aposteriori(:,:,1) = P_0j;
%0 forward estimation
for i=2:1:length(Z_obsv)

Ai=[1 0 dtL dt._L^2;
0 1 0 0;
0 0 1 dt_L;
0 coef*abs(Xaposteriori(2,i-1)-Xaposteriori(3,i-1)) -coef*abs(Xaposteriori(2,Lm

i-1)-X~aposteriori(3,i-1)) 0];
% Update apriori es-timate
X_apriori(:,i)=Ai*Xaposteriori(:,i-1);

Update state Jacobian

% Assume knowledge of Q and R (Use system I.D. techniques in practice)
Qi = Q-process;
Smeasurement error
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Ri= Raccest;

96 Update aprioiri error covariance estimate
Papriori(:,:,i) = Ai*P_aposteriori(:,:,i-1)*Ai' + Qi';

0 Update Kalman gain
K(:,:,i) = Papriori(:,:,i)*H' / (H*P_apriori(:,:,i)*H'+Ri);

% Update aposteriori state estimate
X_aposteriori(:,i) = X._apriori(:,i) + K(:,:,i) * (Zobsv(:,i) - H*Xapriori(:,i));

O Update aposteriori error covariance estimate
P_aposteriori(:,:,i) = (eye(4) - K(:,:,i)*H) * Papriori(:,:,i);

end

a_ekfj=Xaposteriori(4,:);
a_ekfjvar=P-aposteriori(4,4,1:end);
a_ekfjstd=reshape(sqrt(aekfjvar),1,[]);

V_ekfj=Xaposteriori(3,:);
V_ekfj_var=P-aposteriori(3,3,1:end);
V_ekfjstd=reshape(sqrt(Vekfj-var),1,[]);

Vfekfj=Xaposteriori(2,:);

d_ekfj=Xaposteriori(,:);
d_ekfj_var=Paposteriori(1,1,:);
d_ekfj_std=reshape(sqrt(d_ekfjvar),1,[]);

d_ekfj.min=max(d_ekfj-d.ekfj-std,6);
d_ekfjmax=dekfj+d-ekfj-std;

*Abackward smoother
if iLn>length(xj)

else
if (in-iO)==1 %HCZ

X -nj=[SegPipe; Vn; V._n; an];
P nj = P_Oj;

else %LCZ
if i_0==0

LCZjmid=ceil(Vn*dt_L*(xj(i-n))/SegPipe);

else
LCZjmid=ceil((Vekfj(1)+V-ekfj(end))/2*dtL*(xj(i.n)-xj(i_.))/SegPipe);

end
LCZjdis=6*(LCZjmid+[-3,-2,-1,0,1,2,31);
P_LCZj=normpdf(LCZjdis,d_ekfj(end),dekfjstd(end));
[P_LCZ -max,LCZjestl=max(PLCZj);
d_ekfjreal=LCZjdis(LCZj_est);

X nj=[dekfjreal; V_n; Vn; a_nl;
P-nj = [dekfj_std(end)^2 0 0 0;

0 (V.n*0.2)^2 0 0;
0 0 (V.n*0.2)^2 0;

2 of 3



6/4/18 5:07 PM /Users/youwu/Dropbox (.../ns4_stepEKF HCZ.m 3 of 3

0 0 0 Raccest];
end
X_back=zeros(4,length(Zobsv));
P_back=zeros(4,4,length(Z.obsv));
C = zeros(4,4,length(Zobsv));
X.back(:,length(Z._obsv))=Xnj;
P_back(:,:,ength(Z_obsv))=P_nj;
for j=length(Zobsv)-1:-1:1

Ai=[1 0 dtL dt_L^2;
0 1 0 0;
0 0 1 dtL;
0 coef*abs(Xaposteriori(2,j)-Xaposteriori(3,j)) -coef*abs(Xaposteriori(2,L*

j)-)aposteriori(3,j)) 01;
C(:,:,j)=P_aposteriori(:,:,j)*Ai'*inv(Papriori(:,:,j+1));
X_back(:,j)=X_aposteriori(:,j)+C(:,:,j)*(Xback(:,j+1)-X-apriori(:,j+1));
P_back(:,:,j)=Paposteriori(:,:,j)+C(:,:,j)*(P_back(:,:,j+1)-P_apriori(:,:,j+1))L

*C(:,:,j)';
end

V_smooth=X.back(3,:);
%d_smooth=Xback(1,:);

end

NP=dl



6/4/18 5:07 PM /Users/vouwu/Dropbox (.../ns4_stepEKFLCZ.m

%%.EKF in the errorish range
if i_0==0

Z_obsv=accoutput(1:xj (in));
elseif in>length(xj)

Z_obsv=accoutput(xj (i_0) :end);
else

Z_obsv=acc-output(xj(i_0):xj(in));
end
coef=cd*100*A rc/ (m+ma);
9state error
Q_VfVf=(0.1/10/f_imu)^2;
Q_VrVf=Q_VfVf/2;
Q_VrVr=0;%Qaa*dt_L^2;
Q.aa=0. 2^2;
Q_Vra=0;%Q aa*dtL^2;%Qaa/50;
0Q_f low_est=1;
Q_ss=QVrVr*dt_- L^2;
Q-process=*[Qss 0 0 0

0 QVfVf Q_VrVf 0;
0 QVrVf Q_VfVf QVra;
0 0 QVra Qaa];

% 0+Qflow-est*[0 0 0 0 0;
% 0 dt_L^3/3 dtL^2/2 0 0;
0 0 dt_L^2/2 dtL 0 0;
% 0 0 0 0 0;
% 0 0 0 0 0];

% Measurement-state Jacobian
H = [0 0 0 1];
% Kalman Gain
K = zeros(4,1,length(Zobsv));
% Apriori state estimates
X_aposteriori=zeros(4,length(Zobsv));
% Aposteriori state estimates
X_apriori=zeros(4,length(Z_obsv));
% Apriori error covariance estimates
P_apriori = zeros(4,4,length(Z._obsv));
% Aposteriori error covariance estimates
P_aposteriori = zeros(4,4,length(Zobsv));

X_aposteriori(:,1)=X_0j;
X_apriori(:,1)=X_aposteriori(:,1);
P_aposteriori(:,:,1) = P_0j;
5%forward estimation
for i=2:1:length(Zobsv)

Ai=[1 0 dtL dtL^2;
0 1 0 0;
0 0 1 dt_L;
0 coef*abs(X_aposteriori(2,i-)-Xaposteriori(3,i-1)) -coef*abs(Xaposteriori(2,L'

i-1)-Xaposteriori(3,i-1)) 01;
I Update apriori estimate
X_apriori(:,i)=Ai*X-aposteriori(:,i-1);

5 Update state Jacobian

Assume knowledge of Q and R (Use system I.D. techniques in practice)
Qi = Qprocess;

measurement error
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Ri= Raccest;

g Update apr~i-
P_apriori(:,:,i) = Ai*Paposteriori(:,:,i-1)*Ai' + Qi';

% Update Kalman gain
K(:,:,i) = P_apriori(:,:,i)*H' / (H*P_apriori(:,:,i)*H'+Ri);

% Update aposteriori state estimate
Xaposteriori(:,i) = X_apriori(:,i) + K(:,:,i) * (Zobsv(:,i) - H*X-apriori(:,i));

% Update aposteriori error covariance estimate
P_aposteriori(:,:,i) = (eye(4) - K(:,:,i)*H) * Papriori(:,:,i);

end

a_ekfj=Xaposteriori(4,:);
a_ekfj_var=Paposteriori(4,4,1:end);
a_ekfj_std=reshape(sqrt(a-ekfj-var),1,[]);

V_ekfj=X.aposteriori(3,:);
V_ekfjvar=P -aposteriori(3,3,1:end);
V_ekfjstd=reshape(sqrt(Vekfj_var),1,[]);

Vfekfj=XLaposteriori(2,:);

d_ekfj=Xaposteriori(1,:);
d_ekfj_var=P-aposteriori(1,1,:);
d_ekfj-std=reshape(sqrt(d_ekfj_var),1,[]);

d_ekfj.min=max(d_ekfj-dekfjstd,0);
d_ekfj-max=d-ekfj+dekfj_std;

%%backward smoother
if i.n>length(xj)

else

d_ekfj-real=d-ekfj(end);

X_nj=[d-ekfj.real; Vn; V_n; an];
Pnj = [dekfj-std(end)^2 0 0 0;

0 (V_n*0.2)^2 0 0;
0 0 (Vn*0.2)^2 0;
0 0 0 Racc-est];

X_back=zeros(4,length(Z-obsv));
P_back=zeros(4,4,length(Zobsv));
C = zeros(4,4,length(Zobsv));
XLback(:,length(Zobsv))=Xnj;
Pback(:,:,length(Z_obsv))=P_nj;
for j=length(Zobsv)-1:-1:1

Ai=[1 0 dtL dt_L^2;
0 1 0 0;
0 0 1 dtL;
0 coef*abs(Xaposteriori(2,j)-X.aposteriori(3,j)) -coef*abs(Xaposteriori(2,we

j)-Xaposteriori(3,j)) 01;
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C(:,:,j)=Paposteriori(:,:,j)*Ai'*inv(Papriori(:,:,j+1));
X_back(:,j)=X~aposteriori(:,j)+C(:,:,j)*(X_back(:,j+1)-X~apriori(:,j+));
P_back(:,:,j)=Paposteriori(:,:,j)+C(:,:,j)*(P_back(:,:,j+1)-P_apriori(:,:,j+))?

*C(:,:,j)';
end

V_smooth=X back(3,:);

end
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Vfind the high confidence zones: at least three joints in a row
i_sel=[];
for i=1:1:length(i-sel2)-1

if isel2(i)+1==i sel2(i+1)
if ismember(i sel2(i) , sel)==false

i..sel=[i.sel isel2(i) i-sel2(i+1)];
else

i.sel=[isel isel2(i+1)];
end

end
end
%%Ounselect at first run
i_sel=isel2;
v_HCZ=SegPipe./tj2j_atrue;
V_tacnoise=V tac var/2*randn(1,length(xj));
V_tacL=zeros(1,length(xj));
V_tacest=zeros(1,length(xj));
for i=1:1:length(xj)

V_tac_L(i)=mean(v_r_L(xj(i)-2:xj(i)+2));

V_tacest(i)=Vtacscale*abs(V_tac_L(i)+Vtac_noise(i));
end
figure(2);
plot(tL(xj) ,zeros (l,length(xj)) ,'k. ', 'MarkerSize' ,5) ;
hold on
plot(t_L,zeros(1,tength(t_L)),'k-', 'LineWidth',1);
plot (tL(xj (i-sel)), zeros(1,length(i-sel)),'b. ', 'MarkerSize' ,20) ;
for i=1:1:length(iLsel)-1

if i-sel(i)+1==isel(i+1)
0-plot (tL (xj (i-sel(i) ) :xj(iki sel(i+1) )) ,V-ekf91( xj (i-sel(i) ) :xj (i_sel(i+1) )) , s'

'LineWidth' ,2);
plot(tL(xj(i.sel(i)):xj(isel(i+))),yj(xj(isel(i)):xj(isel(i+))),'b');

end
end
plot (t_L(xj ),V _tac_est, 'k. ', 'MarkerSize' ,10);
hold off
%%initialize the data record matrices
V_ekf91=zeros(1,length(tL));
V_ekf92=zeros(1,length(t_L));
%sfind the first low confidence zone
i_j=e;
i_nj=1;
for j=1:1:length(xj)-1

i_0=j;
i Tn=j+1;
if ismember(i_- O,i sel) && ismember(in,isel)%high confidence zone

-%1forward estimation
d_e=e;
VS=V-ekf9(x(i-O));
if V_0==O

V_0=vHCZ(i_0);
end

V_e=Vtacest(i i_0);
V_flow est=V_3;
a_0=accoutput(xj (i_0));
XOj=[d_0; Vflow est; V_0; a_0];
P_0j = [0.0001^2 0 0 0;

0 (V_0*0.02)^2 0 0;
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0 0 (V_0*0.02)^2 0;
0 0 0 Racc-est];

%%%backward smoother
d_n=SegPipe;
V_n=vHCZ(i i n);
a_n=accoutput(xj (in));
9%%EKF in the HCF Confid:
ns4_stepEKFHCZ;

V_ekf9l(xj(i_0):xj(in))=V-smooth;
V_ekf92(xj(i_0):xj(i -n))=V_ekfj;
% d_ekf9(xj(iO):xj(in))=dekf9(xj(i0):xj(in))+dsmooth;
o d_ekf9(xj(i_n)+1:end)=ones(1,tength(tL)-xj(in))*d_ekf9(xjL

(i-n));
hold on
%plot(tL(xj(iO):xj(i-n)),V-ekfj,'-');
plot(tL(xj(i_0):xj(in)),Vsmooth,'.');
hold off

else %low confidence zone
0%%forward estimation

V_0=Vtac_est(i _0);
V_flowest=V_0;
a_0=accoutput(xj(i_0));
X_j=[0; Vjflow-est; Vj; a_01;
P_0j = [0.0001^2 0 0 0;

0 (V_0*0.2)^2 0 0;
0 0 (V_0*0. 2)^2 0;
0 0 0 R-accest];

%%%backward smoother
V_n=V_tacest(i i.n);
a_n=accoutput(xj(in));
9%OEKF in between
ns4_- stepEKFLCZ;

V.ekf9(xj(i_0):xj(i-n))=Vsmooth;
V_ekf92(xj(i_0):xj(in))=Vekfj;
hold on
%plot(t_L(xj(iO):xj(i_n)),Vekfj,'-' ) ;
plot(tL(xj(i_0):xj(i n)),Vsmooth,'. ');
hold off

end
end

%%the segment before the first high confidence zone
i_0=0;
i_n=isel(1);
?<%forward estimation
V_0=0;
V_flowest=vHCZ(i-n);
a_0=cd*1000*A rc*(-V flowest)^2/(m+ma);
X_oj=[0; V_flow-est; V_0; a_01];
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P_0j = [0.0001^2 0 0 0;
0 (V_0*0.2)^2 0 0;
0 0 (V_0*0.2)"2 0;
0 0 0 a_0^21;

0%backward smoothe
V_n=V_tac_est(i_n);
a_n=acc_output(xj(in));

%0%EKF in the Low Confidi /
ns4_stepEKF_LCZ;

V_ekf9l(1:xj (i.n) )=Vsmooth;
V_ekf92(1:xj(_n))=V_ekfj;

% for i=2:1:length(V-smooth)
% dekf9(i)=dekf9(i-)+V-ekf9(i)*dt_L;
% end
% %d_ekf9(1:xj(in))=d-ekf9(1:xj(in))+d_smooth;
dekf9(xj(i_n)+1:end)=d-ekf9(xj (i_n)+1:end)+ones(1,length(tL)-xj(i-n))*d-ekf9(xj we

(i-n));
hold on
plot(t_L(l:xj(i -n)),V _ekfj,'-');
plot(tL(:xjt(ln)),V smooth,'.');
hold off

%9-%%the segment after the last high confidence zone
i_0=length(xj);
i_n=length(xj)+1;
%%forward estimation
V_0=Vtacest(i_- 0);
V_flow_est=V_0;
a_0=acc output(xj (i_0));
X_0j=[0; Vjflow-est; VO; a_0I;
P_Oj = [0.0001^2 0 0 0;

0 (V_0*0.2)^2 0 0;
0 0 (V_0*0.2)^2 0;
0 0 0 Raccest];

%%%no backward smoother
.%AEKF in the Low Confidence Zone

ns4_stepEKF_LCZ;

V_ekf9l(xj(i_0):end)=V_ekfj;
V_ekf92(xj (i_0):end)=V_ekfj;

d-ekf9(xjj(i_0):end)=dekf9(xj(i_):ed)+d_ekfj;
hold on
plot(tL(xj(i_):end),Vekfj,'-');
hold off

d_ekf9l=zeros(1,length(V_ekf9l));
d_ekf92=zeros(1,length(Vekf92));
for i=1:1:length(V__ekf91)-1

d -ekf9(i+1)=d-ekf9l(i)+(Vekf9l(i)+V ekf9l(i+1) )/2*dtL;
d_ekf92(i+)=d-ekf92(i)+(Vekf92(i)+\.ekf92(i+1))/2*dtL;

end

3 of 4
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figure(3)
subplot (2,1, 1) ;plot (t_L, v_r_L, r , , 2)
hold on
title('Robot Velocity(m/s)');
plot(t_L,V ekf91,'k','LineWidth',2);
%plot(tL,V ekf92,'LineWidth',2);
plot(t_L(xj~i Tsel) ),zeros (1, length i-sel)), 'k. ''arkerSize',20);
%plot(t-L,yj*1);
legend('actual','Estimation with EKF+Smoothing' ,'High confidence joints' );'aL possiuleL'
joints');
xlabel('time(sec)');
hold off

subplot(2,1,2);
plot(tL,abs(dekf9l-dis-rL),'k','LineWidth',2);
hold on
title('Distance Estimation Error(m)');
xlabel('time(sec)');
plot(tL(xj(isel)),zeros(,length(i.se)),'k.','MarkerSize',20);
'-'plot(t_L,yj*l);
legend('Estimation with EKF+Smoothing','high confidence joints');%'all possible joints');
hold off
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