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Abstract

Electronic Health Record (EHR) adoption and retrospective analyses of health care
data are part of a broader conversation about health care quality and cost in the
United States. Machine learning in health care can be used to develop clinical
decision-making aids and assess quality of care. This can help improve quality of
care while lowering cost. In this thesis, we present three methods of using different
kinds of data in health care records to aid clinicians in making care decisions. We
focus on the critical care environment, where patient state can rapidly change, and
many care decisions need to be made in short periods of time.

First, we introduce a method to use correspondences between structured fields
from two different EHR systems to a shared space of clinical concepts encoded in
an existing domain ontology. We use these correspondences to enable the transfer
of machine learning models across different or evolving EHR systems. Second, we
introduce a method to learn correspondences between structured health record data
and topic distributions of clinical notes written by care team members. Finally, we
present a method to characterize care processes by learning correspondences between
observations of patient state and actions taken by care team members.

Thesis Supervisor: John V. Guttag
Title: Dugald C. Jackson Professor of
Electrical Engineering and Computer Science
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Chapter 1

Introduction

Health care quality and spending in the United States are urgent national issues. In

2016, U.S. health care spending accounted for 17.9% of the GDP [1]. In addition,

preventable medical errors in inpatient settings are estimated to account for over

250,000 deaths per year in the U.S [2], and have been estimated to account for $17.1

billion of health care costs annually [3]. To improve care and lower costs, clinical

decision-making aids can be used to help manage care, and quality assessment tools

can be used to evaluate and regulate provided care.

Increasing volumes of healthcare data enable researchers to better understand

individual health (e.g., health conditions, disease progression, risk factors), and the

effects of patient interactions with the health care system. Since the introduction of

the Health Information Technology for Economic and Clinical Health (HITECH) Act

in 2009, data storage in electronic health records (EHRs) in the U.S. has exploded [4].

A 2016 report shows that over 95% of hospitals eligible for the Medicare and Medicaid

EHR Incentive Program have adopted EHR systems that have achieved "meaningful

use" [5]. These record systems are used during the course of care for structured

information entry and retrieval, and communication between care team members

about patient status in clinical notes.

The availability of such data enables secondary analyses that can lead to actionable

metrics. These metrics are important for 1) clinical decision-making aids that help

clinicians make better informed decisions by summarizing vast amounts of data, and
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2) quality of care assessment tools for improved transparency and accountability. An

important step to achieving these goals is disentangling systematic care factors from

patient-specific health factors. Machine learning approaches can be used to derive

actionable, data-driven insights in both of these areas.

Machine learning has successfully been applied to health care data to predict ad-

verse events in patients, including mortality, hospital-acquired infections, and inter-

vention administration. These models take large amounts of data collected during the

course of care, and identify patterns in the data that are predictive of relevant patient

outcomes. However, health care data come from heterogeneous patient populations

and care processes, contain heterogeneous data types, and are often not missing at

random. Thus, it can be challenging to directly apply out-of-the-box machine learning

methods to health care data.

Clinical data exhibit heterogeneity in patient populations and care processes. For

example, a patient who enters the hospital with renal failure has a different physiol-

ogy from a patient entering the hospital for elective cardiac surgery. These patients

will have different factors that are predictive of adverse outcomes such as mortality.

This heterogeneity makes it difficult to build machine learning models that are gener-

alizable across patient populations. In addition, the process of care for these patients

will differ; a patient with renal failure will undergo different procedures and receive

different medications compared to a patient receiving cardiac surgery. Thus, different

sets of treatment decisions are available for different patient populations. In addition,

care processes also differ across institutions.

Clinical data contain heterogeneous data types. EHRs contain categorical data

elements such as medications ordered, procedures performed, lab tests performed,

and diagnosis codes. Continuous values, such as test results, are also stored in EHRs.

In critical care settings, continuous vital signs might also be regularly monitored

and stored. In addition, EHRs contain free-text clinical narratives that summarize

history, symptoms, and the course of care for a particular patient. Integrating discrete

structured items, continuous time-series, and text in a machine learning model is not

straightforward.
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Another issue is the incompleteness of clinical data. Clinical data are often not

missing at random. Data availability is not consistent across data types, patient

populations, and care processes. For example, vital signs monitoring might be routine

in the intensive care environment, but not on the hospital floor. Clinical notes are

often recorded at routine intervals (e.g., at the beginning of the day, or during rounds),

but are otherwise not updated. These data are systematically missing, rather than

missing at random.

Additionally, secondary analysis of EHRs necessitates understanding the condi-

tions under which the data were originally collected. While EHRs are now used by

the majority of physician offices and hospitals, their utility and structure are still

debated [6, 7, 8]. In addition, the usage (and capability) of EHRs is financially incen-

tivized based on guidelines set first by the Meaningful Use EHR incentive program

in 2009, and more recently by the Advancing Care Information component of the

Merit-based Incentive Payment System (MIPS) [9, 10]. As regulations and finan-

cial incentives shift, the type, format, and comprehensiveness of the data will change.

EHR data are collected for care, billing, and accountability, rather than for large-scale

retrospective analyses. Data in EHRs are therefore not only biased in data presence

based on heterogeneous patient populations and care practices; they are also biased

based on current regulations and intended use.

Another important consideration is that EHRs are constantly evolving. They

are not standard across hospitals and care settings, and also evolve in the same

hospital over time. Thus, even if information can quickly be retrieved within a single

EHR, records from different institutions or from different time periods may not be

interoperable. This greatly limits the ability of clinicians to communicate across

institutions [111, and limits how well clinical decision-making aids generalize across

data encoding systems.

In this thesis, we address many of these challenges to utilizing machine learning on

real EHRs for actionable clinical decision-making tools. Our work seeks to contextual-

ize the utility of accurate clinical decision-making aids with respect to the underlying

data collection process. Our goal is to gain an understanding of how data character-
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istics and relationships might affect down-stream predictive models. We build risk

models for adverse outcomes to demonstrate how these insights about EHR data can

be used to improve the generalizability of clinical decision-making tools across dif-

ferent EHR systems, care settings, and patient cohorts. In the following section, we

briefly describe the problem statements of the works in this thesis.

1.1 Overview

1.1.1 Enabling transfer of machine learning models across EHR

systems.

EHR data interoperability is an important goal in facilitating communication about

patients across different care facilities. But, it also has implications for learning

generalizable clinical decision-making aids and quality assessment tools using machine

learning across institutions and over time. Transferring machine learning models

across EHR systems is particularly challenging for the structured data, which may

have similar semantic meanings but completely different encodings.

Machine learning can provide useful insights into patient state and provide clin-

icians with useful, actionable information. However, learning accurate models can

require large amounts of data. Each change in variable encoding from one EHR sys-

tem to another means that a model developed on one system relies on information

that may not be available in another. Risk models that rely on small numbers of

variables can be manually mapped, but this is infeasible for the thousands of items

that exist in modern EHRs.

Structured data encoding systems often come with text descriptions of the content

in each field. While the structured encodings themselves may not be transferable, the

clinical concepts contained in each field can be extracted from these text descrip-

tions. We present a method to leverage these text descriptions of the structured data

items to enable model transfer across EHR versions. We present a case study of our

approach on a transition from one EHR system to another at a single institution.
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Using an existing domain ontology of medical concepts, we translate EHR-specific

item encodings to a shared semantic space. We demonstrate that models learned in

this shared semantic space have significantly improved performance when applied to

a new EHR version, compared to models learned in a version-specific encoding space.

1.1.2 Summarizing structured health record data for reduc-

ing information overload and improving communication

across care teams.

Information overload for health care providers is a well-documented problem [12], and

can result in errors in care. Structured health record data can capture thousands of

variables during the course of the stay, and clinicians cannot be expected to look at all

of them. Effective methods of summarizing health record data to identify the most

salient information about a patient can help alleviate this problem. Clinical notes

serve this purpose in the course of care. Care staff summarize important aspects

of patient history, state, and treatment activity in the clinical notes. These clinical

notes serve as important documents in the transition of patient care from one team

to the next.

Clinical notes are written intermittently during the care process. In contrast,

structured health record data (e.g., lab test results, vital signs monitoring, charted

observations, medications, treatments, etc.) are recorded more frequently. We present

a learning-based approach to generating potential topics that should appear in sum-

maries of patient state and care at any given time. We learn cross-modality rela-

tionships between structured health record data and topic distributions of existing

clinical note summaries written by care team members. By using existing summaries

as a supervised target, our model is able to learn how to summarize high-dimensional

structured health record information into latent topics, a text-based feature represen-

tation.

Clinical notes in electronic systems are often copy-pasted forward [131. Because of

this, notes frequently contain redundant and/or outdated information. In addition,
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notes may be missing important information. This work enables generating topics at

any point that would be pertinent in summarizing the care process and patient state.

Suggested topics can help clinicians recognize when relevant information about the

patient might be missing, and when earlier information might no longer be relevant.

In addition, this work is a first step towards generating an actual note from the

structured data.

1.1.3 Characterizing care processes

Machine learning for clinical decision-making aids has focused primarily on patient

risk assessment tools and patient subtype characterization. In these scenarios, it is

important to handle characteristics of the data (e.g., missing values) that are a result

of the process of care. For example, a test for bilirubin might not be performed if the

care provider is not concerned with the healthiness of a patient's liver.

Care processes can be challenging to characterize. In this work, we seek to build

an understanding of processes by learning how observations about patient state cor-

respond to actions taken by care team members. We use a learning-based approach

to learn correspondences between observations of patient state and actions that are

taken by care team members.

We focus on three categories of actions: 1) laboratory tests, 2) imaging tests, and

3) antibiotic administration. These categories capture both actions that are routinely

done during the course of care (e.g., a lab test panel at the beginning of a patient

stay), as well as indicators of care process driven by patient observations (e.g., a

lab test that is ordered further along in the patient stay because the physician is

interested in a particular value).

We compare actions predicted using our model, which takes in observations of

patient state, to actions predicted using incidence of actions over time. We show that

incidence alone can capture interesting characteristics in care patterns (particularly

routine care actions).
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1.2 Contributions

The contributions of this thesis are as follows:

1. We present and evaluate a novel approach to reconcile structured

EHR data elements across two EHR systems. We show how text meta-

descriptions of structured EHR data elements can be leveraged to map items

that are encoded differently in two EHR systems to a domain-specific ontology.

By mapping distinctly encoded items from two EHR systems to the same vocab-

ulary, we enable clinical risk model transfer across the systems. We demonstrate

that changing the feature space in this way can significantly improve model gen-

eralizability across systems.

2. We present and evaluate a method that uses structured health record

data to predict the topic distributions of clinical notes. Structured

health record data and clinical narratives are very different data modalities.

We show that the structured health record data is able to predict the topics in

the next clinical note comparably well to using prior notes. We also demonstrate

that the structured data can accurately predict the first clinical note in a stay.

Finally, we demonstrate that our learned correspondences capture meaningful

aspects of patient state using downstream outcome prediction tasks.

3. We present and evaluate a method that learns correspondences be-

tween observations of patient state and care actions. This is a first step

towards characterizing care processes based on observations of patient state us-

ing a learning-based method. We compare our model to using baseline incidence

in the population at different times during the patient stay. We demonstrate

that we are able to capture meaningful correspondences between observations

of patient state and provider decisions to administer antibiotics, perform a lab

test, or perform an imaging test.

All of the work we present is evaluated on the MIMIC-III dataset, which contains

data from a critical care setting [14]. Although our experiments are limited to the
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MIMIC-III dataset and therefore to patient populations in a critical care setting, the

questions pertaining to diversity of underlying patient conditions, care patterns, and

relationships between different modalities of data are generalizable to other health

care data and other applications of machine learning.

1.3 Outline

In Chapter 2, we describe the MIMIC-III data set and important attributes of the

different data modalities we considered. In Chapter 3, we describe our work on

enabling risk model transfer across distinct EHR systems using a shared vocabulary

from a domain-specific ontology. In Chapter 4, we describe our work on learning

correspondences across different modalities of clinical data. In Chapter 5, we describe

our method for characterizing care processes. Related work is presented in each

chapter. Finally, in Chapter 6, we summarize our contributions and expand on the

implications of these works for the development and application of machine learning

models in real-world clinical settings.
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Chapter 2

Data

In all of the work described in this thesis, we used the MIMIC-III dataset, an openly

accessible critical care dataset [141. MIMIC-III contains data from the Beth Israel

Deaconess Medical Center, an academic hospital in Boston, collected over the years

2001-2012. It provides detailed static patient information, such as demographics upon

admission, as well as temporally-varying data, such as regularly sampled vital signs,

irregularly sampled lab test results, time-stamped treatments and interventions, and

periodic clinical notes.

In this chapter, we first give some background on critical care environments and

how they are distinct from other health care settings. Next, we describe the different

types of data available in MIMIC. Finally, we give an overview of the data used in

each of the subsequent chapters.

2.1 Critical Care Environments

Critical care is a distinct environment from other care settings-patients in the inten-

sive care unit (ICU) tend to be severely ill and have complex combinations of chronic

and acute conditions. Despite a decreasing number of hospital beds in the United

States, the number of beds in critical care units increased between 2000 and 2010 [15].

Critical care environments are also distinct from other care settings in the volume

of care decisions that need to be made in short periods of time. This time urgency
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makes tools that accurately stratify patients into risk categories and help clinicians

make decisions even more important than in other care settings. In addition, care in

the ICU is provided by a team of nurses, residents, and attending physicians that must

coordinate actions and observations in the care process for each patient 1161. Finally,

the critical care environment is equipped with monitoring systems that capture vital

sign measurements and other values that are not routinely available in other hospital

services or in outpatient care.

In summary, the data from ICUs capture complex patient conditions and physio-

logical characteristics, decisions and actions taken by a care team, and modalities of

data that may not be available in other care settings.

2.2 MIMIC-Ill

MIMIC-III contains data sourced from the hospital database, as well as data from the

ICU databases, over the years 2001-2012. During this period, the hospital database

system stayed the same, but the EHR version used in the ICU changed from CareVue

(2001-2008) to MetaVision (2008-2012). Thus, tables in MIMIC that are derived from

the hospital database (e.g., lab tests) are shared across all admissions, but tables

that are specific to the intensive care unit (e.g., charted events) contain distinct item

encodings for semantically similar items.

Table 2.1 details the tables in MIMIC that are specific to each EHR version, as

well as the ones that are shared.

2.3 Data Modalities

In the following sections, we describe each of the modalities of data we used-clinical

events and physiological time-series, which are from the structured portion of the

health record, and clinical notes, which are composed of text.

In the care setting, clinical narrative notes facilitate communication and help

clinicians summarize and identify the most relevant aspects of the deluge of available
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Table 2.1: MIMIC data tables used in this thesis. Tables that were common and
distinct across the change in EHR systems (Carevue, 2001-2008 to Metavision, 2008-
2012) are shown.

Table name Contents

labevents*t t Time-stamped lab test results.
microbiologyevents*t Microbiology tests. Contains time-

stamped and only date-stamped**
events.

Shared noteeventst Clinical notes. Certain categories
were specific to the CareVue portion

(nursing/other), and certain cate-
gories were specific to the MetaVision
EHR system (physician).

servicest Time-stamped changes in service dur-
ing the hospital admission.

prescriptions* Date-stamped'* prescriptions.
inputeventscv* Time-stamped input events. Includes

nutritional items, medications, and IV
fluids. Specific to CareVue.

inputevents_mv*t I Time-stamped input events. Includes
nutritional items, medications, and IV

Not Shared fluids. Specific to MetaVision.
procedureevents_nvt * Time-stamped procedures. Specific to

MetaVision.
outputevents' f Time-stamped output events.
chartevents*t T Time-stamped charted events and ob-

servations by the care staff.
datetimeeventst i Past events with date, time values.

Event categories used in Chapter 3.
tEvent categories used in Chapter 4.

tEvent categories used in Chapter 5.

Date-stamped (but not time-stamped) events were only used in Chapter 3.
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data about each patient [7, 8, 17]. In contrast, the structured data elements are more

difficult to extract information from quickly. However, structured EHR data facilitate

clinical studies and data analyses [7, 8, 18]. Thus, what is useful in clinical studies

and developing decision-making aids can be at odds with what is useful in the practice

of care [17, 18, 19].

Even within the scope of clinical decision-making tools, these data modalities

provide different types of information. Structured data, such as the physiological

time-series and clinical events, are more often available than clinical narratives, which

are updated more intermittently. In addition, structured data elements capture fine-

grained observations, whereas clinical notes summarize patient state. Thus, machine

learning models that leverage these structured data may present more immediately

actionable output compared to models that leverage clinical narratives.

In addition, while care events and observations can more easily be extracted from

the structured data than from clinical notes to build clinical decision-making tools, the

structured portion of the EHR varies across care settings and hospitals. Thus, tools

specific to a given EHR can be difficult to adapt to other institutions. In contrast,

clinical notes are consistent across EHR systems, in the sense that they always consist

of text. Tools developed for processing natural language within clinical notes can

therefore readily be applied to new EHR systems.

Finally, these data modalities are recorded through different lenses. For example,

physiological time-series directly measure changes in patient state. In contrast, the

clinical events and clinical narratives capture observations and opinions through the

lens of care team members.

2.3.1 Events

The clinical events are extracted from the structured data and exclude information

contained in the clinical notes. They include medications, procedures, lab tests and

results, input/output (IO) fluid events, microbiology tests, and observations noted in

the chart. These events capture most of the interactions the patient had with the

health care delivery system. Different subsets of events were used in each Chapter.
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MIMIC Item ID MIMIC Item Description

229 INV Line#1 [Site]

MIMIC Item ID MIMIC Value

229 PA line

229 Lumbar Drain

229 Dialysis Line

Item ID Item Description

229_0 INV Line Site PA
Line

229_1 INV Line Site
Lumbar Drain

229_23 INV Line Site
Dialysis Line

Figure 2-1: Text values often modify the semantic meaning of the corresponding
items. We assign new unique item IDs with item descriptions that append these
values to the initial item description. In this example, ID 229 in MIMIC is associated
with a number of distinct text values in patients' charts that modify its semantic
meaning.

These are identified in Table 2.1. Each event is based on a unique numerical identifier

from the database. A dictionary is provided with MIMIC containing a short text

description for each identifier. For example, the ID 229 in MIMIC-III is associated

with the text description "INV Line #1 [Sitel;" in other words, information about an

invasive line that has been placed in the patient.

In each table, events are encoded by the item identifier. Each event is associated

with a value. These values are sometimes text-based. We consider distinct (MIMIC

event identifier, value) pairs as distinct items when the value is text-based, and assign

new unique identifiers to each one. This is because a number of events are semantically

modified by the associated text values. For example, the ID 229 is associated with

values like "PA Line," indicating a pulmonary arterial line, and "peripherally inserted

central catheter." These values modify the original item description in semantically

distinct ways, and should be considered separate events. In contrast, while numerical

values capture measurements of patient state, they do not alter the meaning of the

event itself. This example is depicted in Figure 2-1.
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2.3.2 Patient Physiology

In the events data, we excluded numerical values. However, these values are important

in ascertaining the state of the patient. We extracted 31 vital signs and lab values

from the database for each patient. These time-series capture information about

the patient's underlying physiology, and have been shown to be predictive of patient

outcomes (e.g., [20, 21, 22, 23, 241). These time-series differ in the frequency and

regularity at which they are sampled. For example, whereas many lab tests are done

in the first 24 hours of the stay (routine lab panel), they are sampled intermittently

and irregularly (only when needed) afterwards. On the other hand, vital signs are

typically regularly monitored through the entire ICU stay, but are not recorded when

the patient is on the hospital floor.

The physiological time-series we considered included: diastolic blood pressure,

systolic blood pressure, mean blood pressure, heart rate, respiratory rate, tempera-

ture, height, weight, white blood cell count, pH, albumin, anion gap, bicarbonate,

bilirubin, blood urea nitrogen, chloride, creatinine, fraction inspired oxygen, glucose,

hematocrit, hemoglobin, INR, lactate, magnesium, oxygen saturation, partial throm-

boplastin time, phosphate, platelets, potassium, prothrombin time, and sodium.

2.3.3 Notes

MIMIC contains clinical notes for many patient admissions. Some notes only have

date stamps, while others are both date- and time-stamped. Notes come from a num-

ber of different genres, including test reports (e.g., radiology reports, ECG reports,

etc.), nursing notes, physician notes, and discharge summaries. These notes serve dif-

ferent purposes; test reports contain observations from the performed tests, physician

notes and nursing notes contain updates on patient care through the course of the

stay, and discharge summaries describe the care process and patient state through

the entire hospital stay.

In MIMIC, different note categories are available in the different EHR versions. For

example, while "Nursing/ other" is a category in the CareVue portion of the dataset,
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Figure 2-2: Time-stamped physician, nursing, and general notes from the MetaVision
portion of MIMIC. Timing of physician notes peaks at 6 a.m. in the morning. Timing
of nursing notes is more irregular than physician notes, but exhibits regular inter-event
intervals of approximately 6 hours.

it does not exist in MetaVision. Similarly, there are very few physician notes in the

CareVue portion of the dataset.

Figure 2-2 shows the number of admissions in the MetaVision data with notes at

each hour of the ICU stay, aligned on midnight of the day of ICU admission. The

timing of physician notes (Figure 2-2 (left)) has a peak at 6 a.m. every morning. The

timing of nursing notes (Figure 2-2, right), also demonstrates regular structure, but

more frequently through the course of each day.

2.4 Care Units

MIMIC contains data from 5 distinct critical care units: 1) the Coronary Care Unit

(CCU), 2) the Cardiac Surgery Recovery Unit (CSRU), 3) the Medical ICU (MICU),

4) the Surgical ICU (SICU), and 5) the Trauma Surgical ICU (TSICU). While these

are all critical care environments, patients in these care units are distinct populations.

Figure 2-3 shows the CCS category breakdown of the distribution of primary diagnoses

in each unit for the top 20 CCS categories. Certain diagnosis categories appear

primarily in a single ICU. For example, most patients with a diagnosis of "fractures"

or "acute cerebrovascular disease" were in the TSICU or SICU. All of the patients

with a primary diagnosis of "heart valve disorders" were either in the CCU or the

CSRU.
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Figure 2-3: Distribution of Clinical Classifications Software (CCS) categories of ICD-9
diagnosis codes across care units.

Thus, the care unit a patient is admitted to can contain important information

about underlying disease or condition. The type of care patients undergo in these

different care units is distinct; patients in the CSRU are primarily in the intensive care

unit to recover from elective cardiac surgery, whereas patients in the MICU may have

a diverse set of conditions, from a bacterial infection to gastrointestinal hemorrhage.

2.5 Admission Alignment

Data alignment is a challenging problem, and it is not immediately clear how data

from patients in the intensive care unit should be aligned. In MIMIC, many forms of

data are not available until ICU admission (e.g., vital signs monitoring). Thus, for

models leveraging the physiological time-series as the primary features, it makes sense

to align patients on ICU admission. However, care actions are not aligned on time of

ICU admission. For example, some care processes (e.g., routine observations during

rounds, clinical note entry) are aligned to particular times of the day. Figure 2-2

shows how notes are entered at routine times of day (physician notes around 6-7 a.m.

each day, nursing notes at 6 a.m. and 6 p.m. each day, etc.).

Machine learning models for predicting outcomes in the intensive care unit typi-

cally align patient admissions on the time of admission. In Chapter 3, we follow this
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Figure 2-4: Distribution of hour of day of hospital admission (top row) and ICU
admission (bottom row) by admission type (elective, left; emergency/urgent, right).
Timing of admissions is distinctive across admission type. Elective hospital admis-
sions peak at 7 a.m., and correspond to ICU admissions around 10 a.m. On the other
hand, emergency/ urgent admissions are spread out throughout the day. A higher
proportion of emergency/ urgent admissions occur late in the evening compared to
elective admissions.

convention and align examples on ICU admission. We consider a feature representa-

tion that uses the first 24 hours of the ICU stay. However, for Chapters 4 and 5, we

consider time-series representations of patient data during the course of the stay. In

these chapters, we align examples on midnight of the day of admission. This method

of alignment captures time-of-day characteristics.

The time of day of hospital admission and ICU admission can be an important

indicator of patient state. Figure 2-4 illustrates the correlation between hospital

admission and ICU admission times with patient state. Patients who are admitted

with elective status are mostly admitted to the hospital around 7 a.m. and to the

ICU around 10 a.m. Patients who are admitted with emergency/ urgent status are

more likely than elective admissions to be admitted at early morning hours or later

in the evening.
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Table 2.2: Database version and data modalities used in each chapter

Chapter MIMIC EHR Version Data Modalities Alignment
Version

3 1.3 CareVue, MetaVision Events ICU admission
4 1.4 MetaVision Events, Physiolog- Midnight on day of

ical Time-Series, ICU admission
Notes

5 1.4 MetaVision Events Midnight on day of
ICU admission

2.6 Summary

In this chapter, we provided a brief overview of critical care environments, the struc-

ture of data in MIMIC-III, the different data modalities we used in this thesis, and

some additional considerations when building machine learning models using health

record data. Table 2.2 describes the version of MIMIC and the subsets of data used

in each chapter.
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Chapter 3

Predicting Clinical Outcomes Across

Changing Electronic Health Record

Systems

3.1 Introduction

Existing machine learning methods typically assume consistency in how information

is encoded. However, the way information is recorded in databases differs across in-

stitutions and over time, rendering potentially useful data obsolescent. This problem

is particularly apparent in hospitals because of the introduction of new electronic

health record (EHR) systems. During a transition in data encoding, there may be

too little data available in the new schema to develop effective models, and existing

models cannot easily be adapted to the new schema since required elements might be

lacking or defined differently.

In this chapter, we explore the effect of data encoding differences on machine

learning models developed using EHRs. EHRs are constantly changing, utilizing new

variables, definitions, and methods of data entry. In addition, EHR systems across

institutions, and even in different departments within the same institution, often

differ. While changes can appear minor, each difference means that a risk model
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developed on one version may depend on variables that do not exist or are defined

differently in another version. For example, the Society for Thoracic Surgeons' Adult

Cardiac Surgery Database has undergone many transitions since its introduction in

1989 [251. During one transition, two variables indicating whether a patient has a

history of smoking or whether the patient is a current smoker were remapped to a

single variable capturing whether the patient is a current or recent smoker [261.

Remapping variables manually is feasible for small changes, but modern EHRs

may contain over 100,000 distinct items, and this number continues to grow over time

[27, 28]. Consequently, risk models typically rely on only a small number of variables

so that they can be easily adapted. It has been shown, however, that models based on

a large number of variables typically out-perform models based on a small number of

variables [29]. The alternative, building version-specific models, is prohibitively labor

intensive and creates a problem during transitions from one system to another, when

there are insufficient data from the new version to build a high-quality risk model.

We enable the application of machine learning models developed using one database

on data from another version. We apply natural language processing (NLP) tech-

niques to meta-data associated with structured data elements and map semantically

similar elements to a shared feature representation. This approach facilitates building

models that can leverage data from another database without restricting the data to

a small subset or requiring database integration, a difficult problem [30, 311.

In this chapter, we relate EHR-specific data to clinical concepts from the Unified

Medical Language System (UMLS) [321, a collection of medical ontologies. An ontol-

ogy consists of a set of concepts (entities), and relations between entities. Although

general domain ontologies (e.g., [33]) and tools for identifying equivalent semantic con-

cepts (e.g., [341) exist, these tools do not work well with the highly domain-specific

vocabulary present in clinical text.

We demonstrate that using a shared set of semantic concepts improves portability

of risk models across databases compared to using EHR-specific items. We do this by

evaluating the performance of clinical risk models trained on one database and tested

on another for predicting in-hospital mortality and prolonged length of stay (LOS).
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Our work makes the following contributions:

1. We present a novel approach to facilitating the construction and use of predictive

models that work across multiple EHR systems.

2. We demonstrate the effectiveness of our approach on two commonly used pre-

dictive models and on data from the two epochs of EHR systems in MIMIC-III.

3.2 Related Work

Several solutions to resolving structured data in different EHR versions have been

proposed in the literature. Much previous work has developed methods to recon-

cile health care information with different encodings of variable names by mapping

databases to existing clinical vocabularies and ontologies [35, 36, 37.

In [37], the author proposes a method to leverage UMLS to merge two databases.

He demonstrates his approach by producing a shared representation for lab items

at two different hospitals. This work builds a semantic network for each database

structure on its own, and then seeks to merge the two structures by leveraging context

and outside sources such as UMLS. In contrast, our work does not seek to relate

individual concepts within an EHR as a semantic network. Instead, we map each

element directly to concepts in the UMLS ontologies and use this representation for

greater generaliz ability of predictive models.

In the area of clinical risk-stratification, [38] demonstrated that a model for identi-

fying patients with rheumatoid arthritis generalized well at other institutions, despite

differences in the natural language processing pipelines used and the differences in

structured variable coding across EHR systems. While promising, the logistic regres-

sion model they tested used only 21 characteristics (from clinical notes and structured

data) drawn from the patient's record. A similar method would not be appropriate

for our task, which draws upon thousands of characteristics.

Changing encodings of databases is an opportunity for transfer learning methods,

where information from a task that is related (source task) but not directly relevant to
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the task of interest (target task) is leveraged to improve performance. For example,

[39] transferred information from other hospitals in the same hospital network to

improve risk predictions for a hospital-acquired infection at the hospital of interest.

In 139], the hospitals had a shared set of features, but also hospital-specific features.

Similarly, our EHRs intersect (capturing similarly coded lab tests, microbiology tests,

and prescriptions), but each also contains a large set of features that does not appear

in the other. Rather than utilizing the EHR-specific features directly in our models,

we present an approach to first map the features to semantically equivalent concepts.

Unlike most feature-representation transfer methods, which explicitly use the data

to learn a feature representation where the source and target data distributions lie

closer together [401, we utilize an existing domain-specific vocabulary encoded through

expert knowledge.

3.3 Method

In this work, we use the clinical events data described in the previous chapter. We

consider this feature space because it relies on the encoding of items in the EHR.

Events are represented by the number of times they occurred. Each patient is repre-

sented as a bag-of-events (BOE) gathered from the first 24 hours of their stay. The

BOE representation omits information about the ordering of events and any associ-

ated numerical values (e.g., the result of a blood pressure measurement). This type of

BOE representation has been used previously to construct clinical risk models from

structured data [41, 42, 43].

We construct our feature representation to demonstrate that mapping to a shared

encoding enables building effective risk models across EHR versions. The goal of

using this representation is not to learn the best possible risk models; instead, it is

to elucidate the impact of transferring models from one database to another. While

using the values of lab tests or vital signs would certainly lead to improved predictive

performance [44, 45, 461, it would obscure information about how the encodings affect

model performance.
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Bag-of-events is analogous to the bag-of-words representation for text. We there-

fore apply the common normalization technique term-frequency, inverse-document

frequency (tf-idf). Tf-idf favors terms-or, in our case, events-that occur with high

frequency within an individual but infrequently across individuals. These weights

tend to filter out features that occur so broadly that they are ineffective in differen-

tiating individuals. Finally, we apply a maximum absolute value normalizer to all

features after tf-idf transformation to make the ranges of tf-idf transformed features

comparable.

The events we consider are represented in 1) EHR-specific domains, and 2) UMLS

concept unique identifiers (CUIs). These feature spaces are presented in the following

sections. After constructing the BOE representation in the Item ID feature space,

we apply a filter to remove events that occurred in fewer than 5 patients to alleviate

sparsity in the high-dimensional feature space (15,909 items in CareVue, 5,190 events

in MetaVision). After applying the filter, CareVue had 5,875 features and MetaVision

had 2,438 features.

3.3.1 Mapping EHR Item ID to UMLS Concept Unique Iden-

tifiers

In order to identify the shared semantic concepts represented by the EHR-specific

Item IDs, we annotate clinical concepts from the UMLS ontologies in the human-

readable item descriptions. Although concepts could be identified using simpler string

matching methods such as edit distance, these methods do not handle acronyms and

C1328319

ankle brachial index left
C0003086 C0445456 C0918012 C0205091

All: {cO003086, C0445456, C0918012, C0205091, C1328319}
Spanning: {c0205091, C1328319}
Longest: {C1328319}

Figure 3-1: All, Spanning, and Longest methods for annotating "ankle brachial
index left." These approaches relate the item descriptions to different sets of CUIs.
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abbreviations (common in clinical text) well.

Using the Clinical Text Analysis Knowledge Extraction System (cTAKES), a fre-

quently used tool for identifying UMLS concepts, we annotate the human-readable

item descriptions from both EHR versions in our data [47]. cTAKES was primarily

developed for annotating clinical notes, which contain more context than the EHR

item descriptions. This makes identified entities in the item descriptions difficult to

disambiguate, and cTAKES often identifies many concepts for each item description.

The entity resolution process is further complicated by the differing methods of EHR

event entry between CareVue and MetaVision. CareVue allowed for free-text entry

of item descriptions, resulting in typos and inconsistent abbreviation and acronym

usage. These characteristics result in less context to leverage during the entity reso-

lution process, and lead to some ambiguous annotations. Thus, the relation of Item

IDs to CUIs often identifies several relevant concepts, rather than a single one. In

contrast, MetaVision had fewer free-text item descriptions, and more consistent text

values.

To address this, we consider three methods for defining the set of CUIs correspond-

ing to each item ID: 1) all CUIs found (all), 2) only the longest spanning matches

(spanning) and 3) only the longest match (longest). The spanning method is also

utilized by [481. The authors suggest that this method identifies the most specific

concepts corresponding to a given segment of text, without eliminating useful text

auxiliary to the longest concept mention.

Consider, for example, the text "ankle brachial index left" (Figure 3-1). Initially,

five CUIs are associated with this text. For this example, longest would choose only

the CUI for "ankle brachial index," and ignore "left." This is because "ankle brachial

index" corresponds to the CUI with the longest span in the text description. This

method will likely drop informative CUIs. This is evidenced by the large drop in

the average number of CUIs identified compared to all (see Figure 3-2). On the

other hand, all does not remove any CUIs. This may capture concepts that are

only marginally relevant to the item description. For example, the all annotation of

"ankle brachial index" identifies "ankle," "brachial," and "index" as separate CUIs, in
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Figure 3-2: Distribution of number of identified CUIs
Spanning, and Longest relation methods.

IZI

Longest

per Item ID: Comparing All,

addition to the full concept of "ankle brachial index." Capturing these constituent

words "ankle," "brachial," and "index" as relevant to the concept of "ankle brachial

index" could be misleading rather than informative. Finally, spanning presents a

medium between longest and all. For this example, it would identify "ankle brachial

index" and "left" as the corresponding CUIs. This captures all of the concepts with

the longest spans across the text without dropping text or including concepts with

mentions contained within a longer, more specific mention.

Figure 3-2 shows the distribution of number of CUIs per Item ID for the different

mapping methods. Spanning maintains approximately the same mean number of

CUIs per Item ID compared to all, while reducing the tail from over 20 to 15 CUIs.

In Section 3.5.2, we evaluate these different methods for mapping Item IDs to CUIs.

With the resulting set of CUIs corresponding to each Item ID, we mapped the

Item ID BOE feature vectors to CUI feature vectors. For each CUI, we found the

set of Item IDs that contained that concept. We then summed the counts from that

set of Item IDs to get the count for the CUI. This transformation was done before

applying tf-idf normalization. Figure 3-3 depicts an example of this conversion using

the "all" method.
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Figure 3-3: Transformation of Item IDs BOE representation to CUIs BOE represen-
tation using the all method.
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Figure 3-4: Length of stay in the ICU in MIMIC-III. Outliers (LOS > 50 days)
truncated for clarity of visualization.

3.4 Experimental Setup

In these experiments, our goal is to demonstrate the utility of our method in building

models across related databases. We chose not to combine the databases to build

a single risk model in order to clearly demonstrate the utility of our approach for

transferring models across databases.
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Table 3.1: Number of patients N and clinical outcomes n (in-hospital mortality and
prolonged length of stay, i.e. LOS > 11.3 days) in CareVue (2001-2008) and MetaVi-
sion (2008-2012) portions of MIMIC III.

EHR In-Hospital Mortality Prolonged Length of Stay
N n N n

CareVue 18,244 1,954 (10.7%) 16,735 4,893 (29.2%)
MetaVision 12,701 1,125 (8.9%) 11,758 2,798 (23.8%)

Total 30,945 3,079 (9.9%) 28,493 7,691 (27.0%)

19000 Number of patients Number of clinical outcomes
- - CareVue: In-Hospital

18000 ------------------ +- MetaVision: In-Hospital
10000 - - CareVue: Prolonged Length of Stay

17000 * - MetaVislon: Prolonged Length of Stay

16000 0 8000

150oo ~ CareVue: in-Hospital76 - - - - - --- - - - - - - - - - - - - - -
MetaVlsion: In-Hospital I)

1 4000CareVue: Prolonged Length of Stay -
etaVison: Prolonged Length of Stay

13000 E 4000

12000 ' - - - - 4 - - -

2000 - -- -- -- -- - . .. .... .... ... . . . . . . . . .11000 
- - -

10000 0
0 12 24 36 48 0 12 24 36 48

Prediction Gap (Hours) Prediction Gap (Hours)

Figure 3-5: Number of patients remaining in the ICU (left) and clinical outcomes
(right) with prediction gap 0-48 hours.

3.4.1 Task Definition

We considered patients of at least 18 years of age. We included only these patients'

first ICU stay so as to avoid multiple entries for a single patient. This filtering

is important because it removes the possibility of training and testing on the same

patient (even if they are different ICU stays). We also removed the set of 120 patients

whose stays overlapped with the EHR transition and consequently had data in both

CareVue and MetaVision.

In the resulting cohort, we extracted data from the first 24 hours of each patient's

stay. This provides a fair comparison against baseline acuity scores, which commonly

use only information from this time period [441.

We considered the two tasks of predicting in-hospital mortality and prolonged

length of stay (LOS). In-hospital mortality is defined as death prior to discharge from

45



ICU End of first 24 Include outcomes after
admission hours in ICU prediction gap

Features Prediction Gap

Figure 3-6: Diagram of relationship between information used to construct feature
vector (first 24 hours in the ICU) and prediction gap between information used and
outcomes.

the hospital. We define prolonged LOS in the ICU as a stay exceeding the upper

quartile (> 11.3 days). Figure 3-4 shows the distribution of length of stay across the

patients in the ICU. Table 3.1 shows the number of patients in each EHR and the

number of cases of the two outcomes. For prolonged LOS, we filtered out patients who

died before the 11.3 day cutoff. This was to avoid considering patients who died and

patients who were discharged before the prolonged LOS cutoff as equivalent classes.

Because of this, the number of patients (N) considered for the outcome of prolonged

LOS was lower than the number considered for the outcome of in-hospital mortality.

We considered several prediction gaps ranging from 0 hours (immediately fol-

lowing observation) to 48 hours in 12 hour increments. The prediction gap is the

time from the end of the first 24 hours of the ICU stay to when we start counting

outcomes. Any patient who experienced the outcome of interest or was discharged

during the prediction gap was removed from the data before modeling. This impacts

performance by removing the easier cases. For example, a patient who has an item

such as "comfort measures only" in the first 24 hours would have an easily predicted

outcome. Increasing the prediction gap removes such patients from consideration.

Figure 3-5 shows both the number of patients remaining in the ICU and the number

of clinical outcomes as we increase the prediction gap (diagrammed in Figure 3-6) for

both CareVue and MetaVision.
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3.4.2 Model Definition

For all of the experiments, we learned L2-regularized logistic regression models with

an asymmetric cost parameter:

argmin wT w + C+ S log I + e"iwTXi) + C_ log (I + e~yWTX2)
2 i:yj=+l i:yi=-1

(3.1)

We used the scikit-learn LIBLINEAR implementation to train and test all models

[49, 501. We used logistic regression because the model is linear in the features.

Therefore the model weights are clinically interpretable, facilitating assessment of the

relative importance of features. We employed L2-regularization to reduce the risk of

overfitting, since our data are small relative to the data dimensionality (see Table 3.1).

We used 5-fold stratified cross-validation on the training set to select the best

value for C_. We searched for the value in the range 10-7 to 100 in powers of 10. We

set the asymmetric cost parameter (L .) to the class imbalance (i.e., the ratio of the

number patients who did not experience the outcome to the number of those who did).

We evaluated our method using the area under the receiver operating characteristic

curve (AUC). The AUC captures the trade-off between the false positive rate and the

true positive rate of a classifier when sweeping a threshold.

3.5 Experimental Results

3.5.1 EHR-specific Item IDs: Bag-of-Events Feature Repre-

sentation

We first demonstrate that the simple BOE representation with EHR-specific Item IDs

is able to predict clinical outcomes such as mortality and prolonged length of stay.

We show the performance against the Simplified Acute Physiology Score II (SAPS-

II) [44], a well-established acuity score that is commonly used as a baseline when

developing risk models for mortality in the ICU [46, 51, 52] and also uses information
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Figure 3-7: Mean AUC across 10 2:1 stratified holdout sets and 95% confidence inter-
val shown for each database and outcome considered. Item IDs + SAPS-II (purple)
significantly outperforms Item IDs-only (blue) or SAPS-II only (red) in predicting in-
hospital mortality (top) and prolonged LOS (bottom) in CareVue (left) and MetaVi-
sion (right).
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Figure 3-8: Mean AUC across 10 2:1 stratified holdout sets and 95% confidence
interval shown for each database and outcome considered. Converting to CUIs from
Item IDs results in small, but statistically significant differences in performance in
3 out of the 4 tasks considered. Mean AUC across prediction gaps shown for the
outcomes of in-hospital mortality (top) and prolonged LOS (bottom) in CareVue
(left) and MetaVision (right).
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Table 3.2: Outcome: In-Hospital Mortality. Difference in AUC between SAPS II +
Item IDs and SAPS II + CUIs (Spanning) shown. Statistical Significance evaluated
using the Wilcoxon Signed-Rank Test.

Prediction CareVue MetaVision
Gap (Hrs) Mean Difference in AUC p-value Mean Difference in AUC p-value

0 0.0050 0.0051 0.0048 0.0051
12 0.0055 0.0051 0.0052 0.0051
24 0.0058 0.0051 0.0071 0.0051
36 0.0056 0.0051 0.0080 0.0051
48 0.0056 0.0051 0.0074 0.0051

from the first 24 hours in the the ICU.

We evaluate performance on CareVue and MetaVision separately. We computed

the AUC on 10 2:1 stratified training:holdout splits. We show that the Item ID BOE

features add auxiliary information to the physiological variables captured by SAPS

on its own (Figure 3-7). We used the Wilcoxon signed-rank test 1531 to evaluate

significance of the differences between the Item IDs-only results and the SAPS-II +

Item IDs results. The Wilcoxon signed-rank test is nonparametric, and therefore

makes no assumptions of normality. All differences for both outcomes and both

databases were statistically significant (p-value = 0.0051). Although the magnitudes

of the differences are not large (between 0.005 and 0.015 across all prediction gaps

for all tasks), they are consistent. In the following experiments, we used the SAPS-II

+ BOE (Item IDs or CUIs) feature space.

3.5.2 Mapping Item IDs to CUIs Does Not Dramatically Change

Predictive Performance

We evaluate the predictive performance of the BOE features when the events counted

are represented by UMLS concept unique identifiers (CUIs) rather than EHR-specific

Item IDs. We compare the performance of a model trained using SAPS-II + CUIs vs.

SAPS-II + Item IDs for each of the tasks of interest. We evaluate the three methods

of translating item descriptions to CUIs described in Section 3.3.1.

The mean AUCs across 10 2:1 stratified training:holdout splits are shown in Fig-

ure 3-8, and the Wilcoxon signed-rank test p-values for in-hospital mortality and

50



prolonged length of stay are shown in Table 3.2 and Table 3.3, respectively. The

mean differences in AUCs across all of the prediction gaps were statistically signifi-

cant for both outcomes in Carevue, but only for the outcome of in-hospital mortality

in MetaVision (p = 0.0051). However, these differences are small in magnitude (A

AUC < 0.008). For the outcome of prolonged LOS, the differences in MetaVision

between SAPS II + Item IDs and SAPS II + CUIs were not statistically signifi-

cant. Thus, although some statistically significant decreases in AUC occur when

CUIs are used, they are small in magnitude. These small differences demonstrate

that representing clinical events using CUIs can achieve high predictive performance

on predicting mortality in the ICU within a single EHR system.

As Figure 3-8 shows, the spanning method appears to have better or comparable

performance to the other approaches across the four tasks. We therefore use the

spanning method going forward to map to the CUI BOE representation. Table 3.4

shows the number of item IDs in each EHR version and the resulting number of CUIs

from the cTAKES mapping using the spanning approach.

3.5.3 CUIs Enable Better Transfer Across EHR Versions

We evaluate performance on predicting in-hospital mortality and prolonged length

of stay across EHRs. To do this, we train a model on data from one EHR system

(Train DB) and evaluate on data from the other EHR system (Test DB). We hypoth-

esize that models trained on CUIs will better generalize across EHRs compared to

Item IDs because 1) mapping to CUIs removes redundancy within each EHR, partic-

ularly CareVue, and 2) the intersecting set of CUIs between EHRs is larger than the

intersecting set of Item IDs relative to the number of features in each EHR.

We compare our approach of training a model on CUIs to two baselines: 1) training

on all Item IDs from Train DB (Figure 3-9(a)), and 2) training on the shared set of

Item IDs between Train DB and Test DB (Figure 3-9(b)). Training on all Item

IDs from Train DB and testing on Test DB effectively means excluding most of the

charted events from consideration during prediction. While this obviously will not

result in the best prediction performance, it is a realistic simulation of how a model
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Table 3.3: Outcome: Prolonged Length of Stay. Difference in AUC between SAPS II
+ Item IDs and SAPS II + CUIs (Spanning) shown. Statistical Significance evaluated
using the Wilcoxon Signed-Rank Test.

Prediction CareVue MetaVision
Gap (Hrs) Mean Difference in AUC p-value Mean Difference in AUC p-value

0 0.0048 0.0051 0.0001 0.7989
12 0.0053 0.0051 0.0015 0.5076
24 0.0071 0.0051 0.0017 0.3863
36 0.0080 0.0051 0.0017 0.2845
48 0.0074 0.0051 0.0018 0.2845

that has been developed on one database version might directly be applied to data

from a new schema early on in a transition.

These results are shown in Figure 3-10. 95% confidence intervals are shown on

the test AUC, generated by bootstrapping the test set 1000 times to have the same

size and class imbalance as the original test set. The difference between the training

AUC and test AUC provides a sense of how well the model is able to generalize from

Train DB to Test DB, and to what extent it is overfitting to the training data.

These results demonstrate that the models trained on CUIs outperform those

trained on both all and shared Item IDs for both outcomes. In addition, the difference

between the training and test AUC when all Item IDs are used (red lines) is much

larger than the same difference when CUIs are used, or when shared Item IDs are

used. This demonstrates that using CUIs is less prone to overfitting and results in

more generalizable models.

Table 3.4: Number of Item IDs and CUIs in CareVue, MetaVision, and intersection
for in-hospital mortality after filtering (> 5 occurrences in data). For MetaVision,
the filter selects 2,438 of the 5,190 features. For CareVue, the filter selects 5,875 of
the 15,909 features.

Prediction Gap CareVue MetaVision Intersection
(Hrs) Item IDs CUIs Item IDs CUIs Item IDs CUIs

0 5875 3660 2438 2192 2118 2052
12 5843 3645 2421 2182 2102 2046
24 5795 3619 2405 2175 2094 2041
36 5746 3595 2384 2161 2076 2035
48 5703 3573 2351 2151 2048 2017
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Using the UMLS CUIs, we increase the AUC on in-hospital mortality by at least

0.01 across all tasks. Similarly, we improve the AUC on prolonged LOS by at least

0.009 when training on MetaVision and testing on CareVue. When we train on

CareVue and test on MetaVision, we achieve larger improvements compared to shared

Item IDs (A AUC > 0.03) and all Item IDs (A AUC > 0.07).

For predicting prolonged LOS with a gap of 24 hours when training on CareVue

and testing on MetaVision, these differences translate to an AUC of 0.77 (0.76, 0.78)

when using CUIs, compared to an AUC of 0.70 (0.69, 0.71) when all Item IDs are

used and 0.74 (0.73, 0.75) when shared Item IDs are used. Converting our EHR-

specific Item ID features to a shared CUI representation results in significantly better

performance when applying a model learned on data from one EHR version to data

from another.

3.6 Summary and Discussion

We introduced an approach to constructing machine learning models that are portable

across different representations of semantically similar information. When a database

is replaced or a schema changed, there is inevitably a period of time during which

there are insufficient data to learn useful predictive models. Our method facilitates

the use of models built using the previous database or data schema during such

periods.

We demonstrated the utility of our approach for constructing risk models for

Train DB Test DB Train DB Test DB

Figure 3-9: Baseline approaches: (a) Train a model on all items in the training
database (Train DB) (left), and (b) Train a model only on shared items that appear
in both the training and test databases (right).
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and testing on TestDB using EHR-
CUIs. 95% confidence intervals are

shown for each database and outcome considered. The dashed lines show the training
AUC of each model on Train DB, while the solid lines show the AUC on Test DB.
Training using the CUIs representation results in the best training and test AUCs
across all prediction gaps compared to Item IDs (all) or Item IDs (shared) repre-
sentations. These improvements are more pronounced for the outcome of Prolonged
Length of Stay when training on CareVue and testing on MetaVision (bottom left).

patients in the intensive care unit. We leveraged the UMLS medical ontology to
construct clinical risk models that perform well across two different EHRs on two
different tasks: in-hospital mortality and prolonged length of stay. Our method of
mapping to CUIs results in increased AUC over EHR-specific item encodings for all
prediction gaps, both outcomes, and both directions of training on one EHR and
testing on the other.

While our method generalized well across the two EHR versions in our data, our
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use of MIMIC-III limits our experiments to data from the same institution. We

chose to work with MIMIC because it is an open, freely-accessible database, and it

allowed us to conduct a reproducible case study that highlights many of the challenges

associated with the portability of models in a more general setting. Applying our

method to other institutions could lend insight to how well our approach performs in

the presence of different care staff, practices, and patient population characteristics,

as well as differences in EHR systems. It would also allow us to investigate how our

method performs in transferring models across institutions.

Our method is intended to be a general approach to reconciling semantically equiv-

alent concepts to enable model portability across EHRs. Because of this, our approach

is task-agnostic. Therefore, the method we propose is generalizable beyond these two

outcomes. However, it may be desirable to explore portability of models in a task-

specific manner. Our approach maps a large set of EHR-specific encodings to a shared

set of concepts, but only some of these features may actually be needed to predict

an outcome of interest. A task-specific mapping could use information from a model

trained on one EHR system to identify only the features that are relevant to the

outcome, and then find the corresponding concepts in a new EHR system.

Despite improving performance, our method suffers from several limitations. First,

although using the CUI BOE representation leads to significantly higher overlap in

feature spaces between the two EHRs (CareVue and MetaVision), a significant num-

ber of CUIs is lost when the intersection is taken. We believe that this is the result of

insufficient disambiguation of entities from the free-text item descriptions utilized in

CareVue. Identifying all relevant concepts from short item descriptions is challenging

for existing natural language processing tools that depend on context for term disam-

biguation. Leveraging other sources of text with sufficient context to disambiguate

these terms (e.g., clinical notes) is a plausible way to address this problem.

In this chapter, we addressed the notion of semantic equivalence of clinical con-

cepts that are encoded differently in different EHR systems. Semantic equivalence,

defined using clinical concepts contained in the text descriptions, is different from

feature equivalence. Even if the feature spaces of two systems X and X2 are equiva-
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lent, the marginal distributions P(X) and P(X2) may not be, because of differences

in care practice, monitoring systems, and more. Thus, even after semantic concepts

have been reconciled, there may still be differences in the feature spaces that should

be adjusted for before effective model transfer is possible. Future work could investi-

gate other methods in the domain adaptation area of transfer learning to tackle these

problems. Importantly, reconciling semantically equivalent concepts as we do in this

work is a necessary step to identifying distributional shifts in values associated with

the same concept.
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Chapter 4

Learning Cross-Modality

Correspondences in Clinical Data

4.1 Introduction

In the previous chapter, we considered a single modality of data, clinical events, and

demonstrated how the encoding of structured data elements can affect the portability

of machine learning models. In this chapter, we leverage the relationship between

data modalities from the structured health record (i.e., clinical event sequences and

physiological time-series) and the clinical notes to learn how to summarize the high-

dimensional structured health record data using a text-based representation. We use

data from the MetaVision portion of MIMIC-III.

Electronic Health Records (EHRs) contain an overwhelming amount of informa-

tion about each patient, making it difficult for clinicians to quickly find the most

salient information at various points during an admission. Information overload can

also result in health care providers missing important information during the course

of care [121. Accurate, concise summarization of relevant data can help alleviate this

cognitive burden.

Clinical narrative notes serve this purpose during the course of care. They help

clinicians summarize and identify the most relevant aspects of the deluge of avail-

able data about each patient, and facilitate communication among care teams [17].
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However, clinical notes are written at infrequent intervals. Information from the

most recent note can quickly become outdated, particularly in critical care settings,

where patient state can suddenly change and interventions are frequently adminis-

tered. Missing information during communication between care team members can

lead to adverse events [541. Methods for assisting care team members in writing sum-

maries of patient state and the course of care could help address potential errors of

omission.

In this chapter, we propose a system that generates relevant patient- and time-

specific topics from structured health record data. We utilize a supervised model-

ing approach to learn correspondences between detailed, high-dimensional structured

data and existing clinical notes. We model each note as a distribution over top-

ics using latent Dirichlet allocation (LDA) [55]. These topics have been shown to

capture relevant patient subtypes, and are predictive of adverse outcomes such as

mortality [46] and interventions 1221. We then use our model to generate topic-based

summaries of structured health record data. Our approach uses a recurrent neural

network to learn correspondences between the structured data and clinical note topics

over the course of a patient stay.

Our contributions are as follows:

1. We present a supervised framework to learn correspondences between high-

dimensional structured EHR data elements and low-dimensional topic repre-

sentations of clinical notes over the course of a patient stay. This model can be

used to summarize patient care and physiology - even when a note was never

written.

2. We evaluate the generated topic distributions. We show that the generated topic

distributions reflect changes in patient state earlier than recorded clinical notes,

and reflect meaningful correspondences between topics and relevant structured

items.

3. We show that using structured data alone to predict the next note performs

similarly to using all prior notes when they exist. In addition, structured data
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can accurately predict the first note in a patient stay, when a model using only

the notes data has no information. We show that combining structured data

and notes can improve predictions over either one alone when prior notes exist.

4. We evaluate topics generated from the structured data alone by evaluating

performance on two downstream prediction tasks: in-hospital mortality and

first intubation. We demonstrate that using only our predicted notes leads to

comparable performance to using the actual notes.

We first discuss related work in Section 4.2. Next, we describe our data processing

methods in Section 4.4. We describe our methods in Section 4.5, and our experimental

results in Section 4.6. Finally, we summarize our findings in Section 4.7.

4.2 Related Work

4.2.1 Summarizing Health Record Data

A great deal of work has investigated how to summarize structured health record

data in a more accessible manner. Some works have utilized visualization inter-

faces [56, 57, 581. Others have used natural language to generate descriptions of

structured time-series {59, 60, 611. j621 contains a comprehensive summary of tech-

niques for summarizing health record data. In contrast to these works, our goal is to

automatically learn correspondences between structured data and existing summaries

written during the course of care.

4.2.2 Modality Translation

Our task is a translation from one modality of data (structured health record) to

another (clinical text). Recent work utilizing deep learning approaches has demon-

strated success in translating images to text descriptions. Approaches such as those

proposed by [63] seek to generate an entire text caption when given an image. As

in our approach, these methods utilize recurrent neural networks and a supervised

framework.
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In the medical domain, [64] presents an approach utilizing convolutional and recur-

rent neural networks to generate text annotations of chest X-rays by leveraging both

the image itself and the associated radiology report. [651 presents a multi-component

approach to automatically generate descriptions of echocardiograms. This approach

utilizes three neural networks that are first separately trained to 1) use doc2vec to

map text reports to a fixed length, dense vector, 2) extract useful image features from

each available image, and 3) transform from a fixed length vector representing the

corresponding image to a fixed length vector representing a text document.

All of these works generate text corresponding to static images. Our problem

differs in two ways. First, we translate temporal structured health record data (rather

than static images) to a text-based representation. Second, rather than predicting a

sequence of text, we seek to predict an intermediate representation. This is a first

step to understanding the relationship between complex structured health record data

and the information content in clinical notes.

4.2.3 Clinical Note Time-Series

Our work leverages cross-modal data relationships to predict notes at times when

they are not usually written. [51] handles the problem of missing notes by learning

a multi-task Gaussian Process (MTGP) over the time-series of clinical notes. The

authors do not evaluate the ability of the MTGP to forecast notes. They instead

demonstrate the utility of the MTGP parameters for downstream prediction tasks

(e.g., in-hospital mortality). In contrast, we are interested in the task of forecasting

topic membership of missing clinical notes, to generate summaries of care even when

they are not present.

[66] models evolving patient state from nursing notes using a model that integrates

a hidden Markov model (HMM) and latent Dirichlet allocation (LDA). This model

captures changing patient dynamics (and therefore changing topic memberships) over

time, but does not consider the additional value of structured health record data for

generating clinical note topics.
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4.2.4 Integrating Clinical Data Modalities

In this work, we consider physiological time-series, clinical events, and clinical notes.

Each modality of data has been shown to be successful in predicting clinical out-

comes such as mortality (e.g., [24, 46, 67]) and intervention administration [21, 20].

In addition, multi-modal EHR data have been integrated, primarily for the tasks of

1) patient phenotyping (e.g., [68, 69, 70]), and 2) clinical outcome prediction (e.g.,

[22, 71, 72]). While we demonstrate the utility of our learned correspondences in

downstream predictive tasks, we are primarily focused on the task of learning a cor-

respondence between the structured data time-series and a note summarizing patient

status and the care process.

4.3 Cohort Selection

We considered patients > 15 years of age. Because the encodings of clinical events

differed significantly between the two EHR systems in MIMIC-III, we considered

only data from the latter version (MetaVision, 2008-2012). We used each patient's

first ICU stay, to avoid multiple admissions from the same patient. Patients who

died, were discharged, or had a note of "comfort-measures only" within 12 hours

of ICU admission were removed from the study. Patients missing any of the three

modalities of data were also removed, reducing our patient population from > 15, 000

patients to 6,360 patients. This difference was primarily a result of dropping patients

without regular physician and nursing notes. The differences between patients with

and without notes are detailed in Table 4.1. Patients with missing notes are not

noticeably different from patients with notes in length of stay in the ICU, presence

in different care units, or admission status. However, mortality rate was elevated

in patients with missing notes. We divided the remaining patients into a 60/20/20

training/ validation/ test split. These divisions are described in Table 4.2.
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Table 4.1: Differences in length of stay, care units, admission type, and adverse
outcome incidence between patients with and without physician, nursing, and general
notes.

Notes Missing Notes Present

Number of patients 9171 6360
Mean LOS in ICU (days) 2.6 2.5
In-Hospital Mortality (%) 8.8 7.2
Intubation (%) 39.5 36.5
CCU (%) 12.4 13.0
CSRU (%) 17.1 16.7
MICU (%) 38.7 38.6
SICU (%) 18.8 18.1
TSICU (%) 13.0 13.7
Elective admission (%) 16.7 15.4
Emergency admission (%) 82.3 83.1
Urgent admission (%) 1.0 1.5

Table 4.2: Cohort and training/validation/test data split descriptions.

Train Validation Test
Number of Patients 3816 1272 1272
Number of Notes 111,938 34,553 38,747
In-Hospital Mortality 7.0% 7.5% 7.2%
Mean (std) LOS in ICU (days) 2.5 (1.9) 2.4 (1.8) 2.5 (2.0)

4.4 Data Processing

All data were aligned to midnight on the day of ICU admission, to preserve time-

of-day characteristics, and discretized to the hour. All admissions were padded or

truncated to 96 hours from midnight of the first day of ICU admission. The following

sections describe processing details for each data modality.

4.4.1 Events

We discretized the times of events to the hour, from midnight on the day of ICU

admission. Events that occurred in the same hour were represented with a binary

bag-of-events (BOE) vector, indicating whether or not each event occurred in that

hour. We considered two types of events: 1) point events, that occurred at a single
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point in time, and 2) duration events, which were specified with a start and stop time.

Events that spanned a duration of time were 1 between the start and stop times, and

0 otherwise. Point events were 1 if the event was present and 0 otherwise. The events

tensor was then constructed by building this BOE vector over time. Events that

occurred in fewer than three unique admissions in the training data were filtered out.

In total, we considered 6,556 kinds of events.

4.4.2 Physiological Time-Series

Continuous-valued vital signs and lab test measurements were binned to the hour by

taking the median of the values in each hour. The hourly values were then discretized

by taking the z-score, rounding to the nearest integer, and mapping outliers (IzI > 4)

to -4 and 4, following the procedure used in [22] and [201. The means and standard

deviations of all of the features were determined across all admissions in the training

and validation data. These features were then binarized. An additional bin was added

for each variable to indicate a missing value.

4.4.3 Notes

We filtered out a set of pre-defined clinical stop words (e.g., patient, report, pt,

admission, discharge, etc.), as well as tokens that occurred in fewer than 3 documents

or more than 95% of documents. Additionally, punctuation and numerical values were

filtered out. We used latent Dirichlet allocation [55] to reduce the dimensionality of

the clinical notes from a > 47K vocabulary to a distribution over 50 topics. Topic

models were trained using gensim [73]. For each patient, the topic distribution at

each hour was computed by taking the average of the topic distributions for all notes

in that hour.

Table 4.3 describes the top five and bottom five topics by enrichment for in-

hospital mortality. Enrichment was computed using the training data by taking the

average topic probability for each topic across all notes, weighted by the outcome of

the patient the note was written about, as in [74]. The full set of topics is described
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Table 4.3: Top 5 and bottom 5 topics by enrichment for in-hospital mortality.
Topic Top 5

14 family, care, dnr, support, daughter, dni, son, comfort, morphine, social
37 hypotension, line, shock, sepsis, levophed, cvp, fluid, bp, pressors, map
16 liver, cirrhosis, lactulose, transplant, encephalopathy, ascites, hepatic, varices, sbp, albumin
25 spontaneous, rr, min, set, vt, tube, ventilator, peep, mode, ve
36 intubated, sedation, vent, propofol, abg, extubation, sedated, fentanyl, wean, respiratory

Topic Bottom 5
15 etoh, abuse, ciwa, withdrawal, alcohol, pancreatitis, valium, scale, thiamine, seizures
43 pain, control, chronic, acute, continue, prn, dilaudid, morphine, po, iv
42 valuables, transferred, rate, pmh, weight, heart, bp, total, sent, money
13 present, pulse, min, extremities, mmhg, current, regular, rhythm, insulin, chest
38 cabg, artery, wires, coronary, bypass, temporary, graft, svg, avr, valve

in Table 4.4.

4.5 Methods

4.5.1 Learning Correspondences

To learn correspondences between the structured clinical data and the clinical notes,

we utilize a supervised deep learning approach that leverages the temporal nature of

the structured data and the clinical notes.

Network Architecture

struct2note uses all structured data up to and including the hour of the note of

interest to predict topics for a clinical note. We compare against two other models

which leverage prior notes: 1) notes2note uses all prior notes to make a prediction, and

2) struct-notes2note integrates prior notes and structured data. Figure 4-1 diagrams

our model architecture for struct2note.

In struct2note, a temporally shared fully-connected embedding layer with a rec-

tified linear activation function maps the structured data at each time step from a

sparse, high-dimensional feature space to a low dimensional dense embedding space.

This captures relationships between co-occurring events at each time-step. We use

a long short-term memory (LSTM) network to capture the temporal patterns in the

structured data [751. LSTMs have been shown to encode temporal patterns that are
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Table 4.4: Top 10 tokens describing each topic.
Topic Tokens

0 post, surgery, op, epidural, bladder, repair, iabp, stent, urology, pain
1 pleural, effusion, chest, tube, et, effusions, fluid, drain, cxr, placement
2 fluid, na, stool, acidosis, diarrhea, diff, sodium, free, hyponatremia, cont
3 cancer, mass, ca, metastatic, lung, malignant, tumor, neoplasm, chemo, cell
4 skin, left, right, site, wound, groin, area, leg, impaired, intact
5 pain, abdominal, nausea, ct, vomiting, abd, ercp, zofran, iv, abdomen
6 lithium, morbid, myasthenia, suprapubic, mtx, girlfriend, atropine, cystitis, aureus, shocks
7 respiratory, pneumonia, pna, copd, aspiration, cxr, distress, bipap, sputum, nebs
8 code, continue, total, balance, rhythm, review, systems, labs, comments, prophylaxis
9 mental, status, altered, airway, delirium, cont, aspiration, agitation, agitated, risk
10 heparin, pe, ptt, started, dvt, gtt, pulmonary, transferred, eta, filter
11 impaired, problem, description, skin, enter, abscess, comments, integrity, tooth, clindamycin
12 right, left, ct, fractures, hematoma, injury, lobe, chest, posterior, thoracic
13 present, pulse, min, extremities, mmhg, current, regular, rhythm, insulin, chest
14 family, care, dnr, support, daughter, dni, son, comfort, morphine, social
15 etoh, abuse, ciwa, withdrawal, alcohol, pancreatitis, valium, scale, thiamine, seizures
16 liver, cirrhosis, lactulose, transplant, encephalopathy, ascites, hepatic, varices, sbp, albumin
17 seizure, sdh, dilantin, subdural, activity, neuro, seizures, brain, head, keppra
18 hct, bleeding, blood, stable, prbe, monitor, bleed, inr, cont, transfusion
19 afib, atrial, fibrillation, coumadin, rate, af, fib, po, metoprolol, amiodarone
20 gi, bleed, hct, bleeding, gib, egd, stable, gastrointestinal, protonix, upper
21 lasix, chf, diuresis, edema, failure, iv, heart, chronic, acute, goal
22 cath, cardiac, cad, heparin, chest, asa, nstemi, plavix, pain, disease
23 fever, temp, cont, wbc, cultures, sent, abx, cx, vanco, culture
24 neuro, commands, exam, extremities, eyes, pupils, checks, continue, noted, monitor
25 spontaneous, rr, min, set, vt, tube, ventilator, peep, mode, ve
26 arrest, cardiac, vt, icd, av, ccu, bradycardia, ep, rhythm, pacer
27 fx, fracture, fall, trauma, rib, collar, multiple, neck, injuries, pain
28 insulin, din, diabetes, type, blood, gtt, scale, sliding, fs, bs
29 iv, order, total, extremities, rhythm, current, po, prn, fluid, balance
30 bed, oriented, oob, able, swallow, po, speech, chair, today, alert
31 present, normal, sounds, left, right, cardiovascular, respiratory, nose, pulse, absent
32 left, ct, head, hemorrhage, right, neuro, sbp, sah, stroke, sided
33 gtt, monitor, sbp, iv, bp, continue, remains, stable, noted, shift
34 neo, map, hypothermia, wean, pad, bair, hugger, temp, bypass, sfa
35 note, time, agree, section, protected, resident, present, saw, examined, services
36 intubated, sedation, vent, propofol, abg, extubation, sedated, fentanyl, wean, respiratory
37 hypotension, line, shock, sepsis, levophed, cvp, fluid, bp, pressors, map
38 cabg, artery, wires, coronary, bypass, temporary, graft, svg, avr, valve
39 likely, continue, pending, culture, negative, blood, cultures, infection, consider, cx
40 renal, failure, acute, hd, arf, chronic, cr, urine, bun, kidney
41 po, pain, denies, past, ed, prn, home, chest, prior, recent
42 valuables, transferred, rate, pmh, weight, heart, bp, total, sent, money
43 pain, control, chronic, acute, continue, prn, dilaudid, morphine, po, iv
44 abd, bowel, drainage, soft, output, urine, draining, bs, abdomen, ngt
45 ct, head, mri, status, mental, negative, osh, lp, spine, eeg
46 left, aortic, valve, right, normal, ventricular, mitral, systolic, stenosis, wall
47 ed, received, micu, bp, transferred, noted, iv, arrival, started, sent
48 sats, cough, nc, clear, face, mask, diminished, resp, bases, secretions
49 assessed, pulse, total, comments, left, right, balance, review, systems, labs
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effective in predicting interventions and identifying patient diagnoses [22, 231. Finally,

a temporally shared fully-connected layer with a softmax activation outputs predicted

probabilities for the 50 topics at each time step. notes2note uses a similar architec-

ture, but because the topics are already a dense embedding space, we do not need an

embedding layer. struct-notes2note combines both data modalities by concatenating

the topic distribution tensor with the embedded structured data tensor as the input

through the LSTM.

Loss Function and Evaluation Metric

To compare predicted topic distributions with the true topic distributions, we utilize

cosine similarity. Cosine similarity is defined as the normalized dot product between

two vectors:

C(u, v)= . (4.1)

It takes a maximum value of 1 when u and v are parallel, a value of 0 when u and

v are orthogonal, and a minimum value of -1 when u and v are anti-parallel. In our

application, the minimum value the cosine similarity measure can take is 0, because we

are comparing two probability distributions (all elements are non-negative). Cosine

similarity is an appropriate loss function because it evaluates how close u and v are

in directionality, rather than in magnitude. Because our topic distributions always

sum to 1, magnitude is not important in assessing the differences between the topic

distribution of the actual note and the predicted topic distribution. Cosine similarity

has been used in prior work to evaluate differences between dense embeddings of

words [76]. We use cosine similarity both as the loss function during training, and as

an evaluation metric to determine how close our predicted topic distributions are to

the true ones.

Clinical notes are not present at every time step. The cosine similarity loss is only

considered at time-steps when notes are present. When prior clinical notes are used

as input to the notes2note and struct-notes2note models, notes are forward-filled with

the most recent note up until the latest of time of death, discharge, or the final note.
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Figure 4-1: Model architecture for structured data (struct2note). The network is
shown unrolled over time. Sparse, high-dimensional time-series of structured data are
first passed through a fully-connected layer shared over time to get a dense embedding.
The time-series are then encoded using an LSTM. The topic distribution for the note
at each time step is predicted with a fully-connected layer (shared over time) with
a softmax activation. During training, the loss was computed on hours when notes
were present.

Time-steps where input data are not present (e.g., prior to ICU admission on the first

day) are masked out.

Training and Implementation

We implemented our models using Keras 2.1.3 with Tensorflow backend (1.5.0) [77].
The size of the first temporally shared fully-connected layer for embedding the struc-

tured data was set to 30 units, and a grid search from 8 to 256 in multiples of 2 was

performed to choose the LSTM hidden layer size. All models were chosen based on

the validation loss.

4.5.2 Outcome Prediction

To demonstrate that our predicted note topics capture meaningful aspects of patient

care and state, we predict in-hospital mortality and first intubation using models

trained on 1) existing clinical notes, and 2) the predicted clinical notes. In-hospital
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mortality is often used as a proxy for patient severity of illness. First intubation is an

important outcome because it indicates the need for a severe intervention. We utilize

the network architectures from Section 4.5.1, replacing the topics-over-time tensor

with a binary tensor indicating the outcome for that patient at that time.

For the task of in-hospital mortality, we predict whether or not in-hospital mor-

tality occurs at least 24 hours after the hour the prediction is made. We define

the outcome using the earliest of the patient's time of death or a note of "comfort-

measures only" (CMO). When a patient is declared CMO, few (if any) interventions

are made, and the prediction is no longer relevant to the course of care. At each hour,

a prediction is made for each patient. Predictions for patients who are discharged or

die prior to the hour of prediction or within the 24 gap period are excluded from the

loss at that time step. Models trained for in-hospital mortality were further restricted

compared to the training, validation, and test sets described in Table 4.2: patients

who died, were discharged, or had a note of "CMO" in the first 24 hours of the ICU

stay were filtered out from model training and evaluation.

When predicting intubation, we follow the framework of [211 and [22] and predict

intubation in the next 4 hour window, following a gap period of 4 hours. We make

a prediction at each hour of the patient's stay. We consider only the first intubation

event for each patient [21]. A patient is assigned an outcome of +1 if she is intubated

anytime in the 4 hour window after this gap period. If the patient has been intubated

at any point prior to the hour of prediction, or is discharged or dies, she is filtered

out. The intubation prediction task also considered a reduced population compared

to Table 4.2; patients who died, were discharged, had a note of "CMO" in the first

24 hours of the ICU stay, were intubated in the first 6 hours of the ICU stay, or

had an indication of "Do Not Intubate" were filtered out. This follows the filtering

procedure used in [21]; intubation events that happen close to ICU admission may be

substantively different from those occurring later in the ICU stay.

In contrast to prior works predicting intubation, we utilize the entire duration

of the patient's stay up to the point of intubation, death, or discharge to make

predictions at each hour, rather than windowing the data and making predictions
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Table 4.5: Cosine similarity performance of different models on test set. Mean,
standard deviation, and quartiles of performance are shown, broken down by notes
where a prior note existed, and notes where no prior note existed.

Notes with prior notes (9290) Notes without prior notes (1272)
mean (std) 25% 50% 75% mean (std) 25% 50% 75%

notes2note 0.63 (0.19) 0.50 0.65 0.78 0.41 (0.09) 0.35 0.42 0.48
struct2note 0.63 (0.21) 0.49 0.66 0.80 0.61 (0.17) 0.49 0.62 0.74
struct-notes2note 0.66 (0.21) 0.53 0.69 0.82 0.61 (0.17) 0.49 0.62 0.73
Prior note 0.39 (0.29) 0.15 0.31 0.62 - - -

Average note 0.40 (0.09) 0.34 0.41 0.46 0.42 (0.09) 0.36 0.42 0.48

using only the immediate past. In addition, we use physiological signals and clinical

notes, as in 121] and 1221, and events data.

4.6 Results

4.6.1 Predicting the Next Note

To evaluate our model's ability to predict topic vectors for existing clinical notes, we

compared against two baselines: 1) prior note topic membership, where we used the

most recent note topic membership to predict that of the current note, and 2) average

note topic membership, where we used the average note topic membership from the

training data to predict the topic membership of each note in the test data.

Table 4.5 shows the aggregate prediction results of each model on the notes in

the test data. Performance is broken down by notes with prior notes (n = 9290),

and notes without prior notes (n = 1272). We evaluated statistical significance of the

difference between the average performance of each model across all notes for each

patient. We evaluated differences in model performance at the patient level, rather

than at the note level, because notes belonging to the same patient do not satisfy the

test assumption of independence. We used a paired t-test with a significance level of

0.001.

Using all prior notes (notes2note) and using structured data (struct2note) per-

formed comparably well in predicting the next note (mean cosine similarity of 0.63, p

= 0.006). However, struct2note outperformed notes2note on predicting the first note
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Figure 4-2: struct2note, struct-notes2note and note2note performance is shown in (a)
(0 to 48 hours) and (c) (48 to 96 hours). Number of admissions with a note at each
hour is shown in (b) (0 to 48 hrs) and (d) (48 to 96 hrs).

in the stay (p < le - 200). In this case, notes2note performance was similar to taking

the average note from the training data (cosine similarity of 0.41 vs. 0.42).

In addition, integrating the structured data and prior notes to predict the next

note outperformed using either modality on its own (mean cosine similarity of 0.66

vs. 0.63, p < le - 46). For notes without a prior note, the average cosine similarities

of struct2note and struct-notes2note were similar (0.61), but struct2note significantly

outperformed struct-notes2note (p = 0.0003).

Because notes have differing availability over time, we investigated the perfor-

mance of these models on notes at different hours during the ICU stay. The differ-

ences in performance between the models utilizing structured data (struct2note and

struct-notes2note) and the notes2note model are shown in Figure 4-2(a) and (c). The

number of notes at each hour is shown in Figure 4-2(b) and (d).
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In the early hours of the ICU stay (0 to 30), the structured data outperforms using

the notes. Since there are very few notes available at this time, it is challenging for the

notes2note model to make meaningful predictions. This performance improvement

drops off around hour 30, or 6 a.m. on the second day of the patient's stay in the ICU.

Recall from Figure 2-2 that physician notes are recorded regularly around 6 a.m. each

day. At these times, the availability of notes grows, and predictive accuracy of the

note prediction models increase. The improvement of using structured data rather

than prior notes becomes marginal at later hours of the stay (48-96), when more notes

are available.

4.6.2 Outcome Prediction

We evaluated the note predictions generated from the structured data alone (struct2note)

by training supervised networks using 1) actual notes and 2) predicted notes for pre-

dicting in-hospital mortality and first intubation.

We evaluated performance in terms of the Area Under the Receiver Operating

Characteristic Curve (AUC). We evaluated statistical significance by evaluating model

performance on 100 bootstrapped sets for each model. A paired t-test was performed

between the bootstrapped AUCs for a pair of models, at a significance level of 0.001.

Bootstrapped samples were constructed so that the outcomes were represented in the

same incidence as in the original test set. We also trained models using 1) static

demographic characteristics such as age, gender, admission type, and first care unit

and 2) structured data (events and physiological time-series) as performance baselines.

The results are shown in Figure 4-3. We show performance results at the last hour

of each day (11 p.m.), when information from the course of the day can be taken into

account. Our predicted note topic distributions performed comparably to the actual

notes at hours 47 and 95 (p - 0.78 at hour 47 and p = 0.46 at hour 95). At hour

71, the difference in performance between the predicted note topics (AUC = 0.81)

and the actual note topics (AUC = 0.83) was statistically significant (p < le - 5),

but not large. In addition, the predicted note topics significantly outperformed the

actual ones at hour 23 (p < le - 50).
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In-Hospital Mortality, 24 hour gap: Prediction Performance
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Figure 4-3: AUC using different data modalities to predict in-hospital mortality in

the final hour of each day in the ICU (23, 47, 71, 95 hours). Error bars indicate

standard deviations computed across 100 bootstrapped samples.

The results for first intubation prediction are shown in Figure 4-4. We evaluated a

single AUC over all of the windows, rather than evaluating at specific times during the

stay. First intubation is a much harder task than in-hospital mortality, as evidenced

by the significantly lower AUCs.

On this task, the topic distributions of the actual clinical notes performed compa-

rably to the static data (p = 0.04), and the predicted note topic distributions (AUC

= 0.66) performed significantly better than the topic distributions of the actual notes

(AUC = 0.61, p < le - 40). The structured data (AUC = 0.78) significantly outper-

formed the predicted note topic distributions (AUC = 0.66, p < le - 55. While the

AUCs on this task are lower than the AUCs for in-hospital mortality, they similarly

demonstrate that we are able to generate clinically meaningful note topics that result

in predictive performance close to that of the true notes.

These performance results indicate that our method of learning correspondences

between structured health record data and topic distributions of existing clinical

notes allowed us to generate meaningful topics that capture changes in patient state.

Importantly, although the predicted notes do not include any of the existing notes,

they achieve predictive performance comparable to the topics of the actual notes in
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AUC for Intubation Prediction: 4 Hour Gap, 4 Hour Window
N: 54719, n: 224, class imbalance: 0.4%
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Figure 4-4: AUC using different data modalities to predict first intubation. A predic-
tion is made at each hour to determine if after a gap period of 4 hours, the patient will
be intubated in a 4 hour window. Error bars indicate standard deviations computed
across 100 bootstrapped samples.

downstream prediction tasks.

Visualizing Correspondences

To qualitatively evaluate the learned correspondences,we identified individuals with

high presence of certain topics and visualized structured data elements with mean-

ingful relationships to those topics. Figure 4-5 shows the original topic distributions

over time for topics corresponding to intubation or respiratory status (topics 25 and

36). This 88 year-old patient was admitted to the ICU shortly after 11 p.m. (hour

23). Her admission status was "emergency." She died in the hospital, 8 days after

admission.

This patient was intubated shortly after ICU admission, at around 4 a.m. (hour

28). Whereas the original note only indicates a rise in corresponding topic membership

around hour 31, our predicted note topics show an immediate rise in topic 36. This

indicates that our predicted note topics are able to capture changes in patient state

before the actual notes are recorded. This occurs again at hour 81, when the patient

is extubated and then intubated again shortly after. While the predicted topics show

an immediate rise in Topic 36, the note was not written until 8 hours later, at hour

89.
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Figure 4-5: Correspondences between topic distributions of ground truth notes (top),
predicted topic distributions (middle), and structured health record data (bottom)
for a single admission. Topic membership values are shown as negative when no note
was present. Topics corresponding to intubation and respiratory status (25 and 36)
are shown, along with structured data elements pertaining to respiratory status and
ventilation.

This example demonstrates how our method enables learning meaningful cor-

respondences between the high dimensional structured EHR data and clinical sum-

maries written during the course of care. In addition, we note that while our predicted

topics did not always accurately represent the true topic distributions of notes (e.g.,

at hour 56), they still reflect meaningful correspondences with the structured data.

This suggests that even if cosine similarity between the predicted note and the true

note is low, our predictions might offer useful suggestions regarding topics that might

be missing from the recorded notes.

Failure Cases

To better understand which notes our model predicted well and which it predicted

poorly, we investigated the topic distributions of the true notes and the predicted

topics both for patients we were able to predict well and for patients we were unable
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Average topic distributions over admissions with mean cosine similarity > 0.8 (N = 60
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Figure 4-6: Topic distributions of patients with average cosine similarity > 0.8 (top),
and patients with average cosine similarity < 0.4 (bottom).

to predict well. We considered performance for each admission by taking the mean

performance across all notes corresponding to that patient. Patients with an average

cosine similarity > 0.8 were considered good predictions, and patients with average

cosine similarity < 0.4 were considered bad ones. Figure 4-6 shows heatmaps of the

average topic distribution over time for these subsets of patients.

Patients with accurate predictions (top) had far more distinct topic distributions

than patients with inaccurate predictions (bottom). In the top plot, there are fewer

unique topics with high intensity. In the bottom plot, on the other hand, many topics

are present with low intensity. In addition, the topics that are present propagate more
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over time in the top figure than in the bottom, as indicated by the stronger horizontal

bands in the top plot. Patients with predicted note topics closest to the topics in the

actual notes consistently had high topic membership for topic 38 (cardiac surgery)

and the topics 33 and 13 (routine vital signs monitoring). Of the 60 patients in this

group, the majority (37) were admitted to the cardiac surgery recovery unit (CSRU).

Patients with inaccurate predictions had fewer clearly prominent topics over time.

Topics 26 and 9, both of which indicate routine observation rather than clear patient

phenotypes, had the highest topic membership at sporadic times during the stay. In

addition, the overall distribution for patients that were difficult to predict was much

flatter compared to the distribution for patients where our predictions were accurate.

These patients were more evenly distributed among care units; ten patients were

admitted to the surgical ICU, two to the trauma surgical ICU, three to the medical

ICU, three to the cardiac surgery recovery unit, and one to the coronary care unit.

This analysis demonstrates that while notes with certain topic distributions are

easy to predict well (e.g., notes for cardiac surgery patients), patients with more

diverse conditions have notes that are more difficult to predict. We confirmed this

hypothesis by breaking down cosine similarity performance on notes from patients in

the different care units. These results are shown in Figure 4-7. The distribution of

cosine similarity for notes from patients in the CSRU is more right-shifted towards

1 compared to the notes from patients in the other care units. On the other hand,

patients in the MICU and SICU have less right-shifted distributions. Patients in

these units are also more diverse in diagnosis compared to the CSRU (as shown in

Figure 2-3).

In addition, different disease subtypes may not be equally well-represented. For

example, topic 3 corresponds to cancer, topic 16 corresponds to liver disease, and

topic 40 corresponds to renal failure and kidney disease. If small numbers of pa-

tients exist in the data with these conditions, it would be difficult to accurately learn

correspondences between the structured data and the predicted topics.
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Figure 4-7: Cosine similarity distribution for notes from patients in different care
units.

4.7 Summary & Discussion

In this work, we proposed a method to learn to generate meaningful topic summaries

from structured patient health record data. We used existing summaries written by

clinical care team members to learn correspondences between structured health record

data and the topics underlying clinical notes. We demonstrated that using structured

data alone, we are able to generate note topics with an average cosine similarity

to actual notes of 0.63, comparable to the performance of using prior notes alone.

Integrating structured data with prior notes results in an average cosine similarity of

0.66. Using the structured data, we are also able to generate the first note in the stay

with an average cosine similarity of 0.61.

We also demonstrate that our generated topics are able to predict clinical outcomes

such as in-hospital mortality with comparable performance to topic distributions of

actual notes written by care team members. We additionally present qualitative

evaluations of correspondences between structured data elements and changes in topic

distribution.

Inherent to our approach is an assumption that clinical notes are good summaries.

We believe this is usually a reasonable assumption because notes are used at the point

of care for this purpose. However, clinical notes, particularly in electronic systems,

have been shown to contain redundancies and incorporate outdated information.
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Our approach is a first step towards the generation of clinical text summariz-

ing structured health record data. Generating topic distributions could be useful in

proposing potentially missing topics to care staff while they are writing a note. Future

work could include generating candidate phrases corresponding to patient history. In

addition, while our analysis is limited to the intensive care setting and to the struc-

ture and notes in MIMIC, our approach could similarly be used to generate topics

summarizing longitudinal health record data in outpatient settings.
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Chapter 5

Characterizing Clinical Care

Pathways in Critical Care Settings

5.1 Introduction

In this chapter, we return to the question of distinguishing care actions from obser-

vations of patient state. Care actions are taken based on established care processes;

e.g., if a patient's blood pressure is high, blood pressure medication might be admin-

istered. If a patient is unable to breathe on her own, she might be intubated. In this

chapter, we define care process as actions that are associated with observations of

patient state.

We explore how to characterize typical care processes in the intensive care unit.

These actions include medications, treatments, procedures, and ordered tests. Accu-

rately characterizing associations between care patterns and observations of patient

state is an important and challenging task. These learned associations can provide

insight into how physicians typically make decisions. By learning what actions are

performed conditioned on patient attributes, we can capture differences in how doc-

tors act on similar signs and symptoms.

In the prior two chapters, we demonstrated that care events are important pre-

dictors of adverse outcomes, and that they capture a great deal of information about

patient state and clinical care actions that can be used to generate meaningful sum-
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maries. In these works, we treated events as features, rather than as labels. In

addition, we did not distinguish between events that captured observations of patient

state and events that captured actions taken by care providers (e.g., medication or

treatment administered).

In this chapter, we present a preliminary formulation of separating actions from

observations. We utilize observations as features, and actions as labels. We are inter-

ested in learning correspondences between observations of patient state and actions

taken by care team members.

As a case study, we consider lab tests, antibiotics, and imaging tests. These actions

are diverse in when they occur during the course of the stay, the patient populations

in which they occur, and the type of event. Lab tests are often routinely done during

the first portion of a patient ICU stay, and then irregularly thereafter. Antibiotics

can be administered prophylactically, but also to treat infections once they are in

progress. Imaging tests are diverse (e.g., chest X-ray versus CT scan), and different

tests may be done for different patient populations.

These sets of events can occur as a routine part of care, but also capture physician

intuition or knowledge about what certain observations of patient state may indicate.

5.2 Related Work

5.2.1 Capturing Patterns in Care

Observational health record data capture complex interactions between patient con-

dition and care patterns. Disentangling these sources is important to accurately

assessing either one [78].

A great deal of work has investigated patterns in sequences of physician orders.

[791 summarizes event sequences by identifying frequent medical behavior patterns.

[80] investigates common treatment pathways in different patient subsets. These

works focus on patterns in care actions. However, they do not connect care actions

with other patient attributes. In contrast, our goal is to characterize care actions by
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learning a correspondence between observations of patient state and the care actions

that are taken.

[81] use latent Dirichlet allocation to model clinical orders. The authors use data

from the first 24 hours of the patient stay, and ignore the sequential nature of the

events. In addition, the authors combine orders, such as medications, lab tests, and

imaging tests, with observations (e.g., abnormal lab test results, problem list entries,

and diagnosis codes). In contrast, our approach views observations and orders as

distinct, and we consider the sequential nature of the data.

[82] proposes a probabilistic topic model that captures relationships between pa-

tient features and treatment patterns to learn latent treatment patterns. The authors

demonstrate that the learned topics capture meaningful topics describing treatment

patterns, and that different treatment patterns can correspond to different patient

attributes. However, the authors use only patient attributes available on admission.

In contrast, our approach leverages observations through the course of the patient

stay to learn correspondences with care actions.

[83] investigates correlations between information about patient condition (e.g.,

lab tests, concepts in the clinical notes identifying symptoms, medications, etc.) and

events that the authors define as part of the healthcare process: inpatient admission,

inpatient discharge, outpatient visit, emergency department visit, and ambulatory

surgery. Using data from a large clinical data warehouse that includes both outpa-

tient and inpatient visits, the authors show that the variables from the EHR cluster

differently for different health care process events. Their study is limited to a small

set of health care process events and EHR variables.

[84] characterizes physician behavior using the time between an initial lab test

order and another order of the same test for each patient. They demonstrate that

analyzing lab tests in the context of timing is one way of capturing physician expertise,

or "group intelligence." The authors show that high time-to-repeat correlates with

lab test values in the reference range for a "normal" result. In addition, the authors

demonstrate that physician behavior (in ordering lab tests) differs across different

care settings (e.g., inpatient vs. outpatient), and that an understanding of "group
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intelligence" can be used to identify situations where a lab test might be unnecessary.

Similar to these works, our goal is to characterize patterns in care. Our definition

of care patterns centers around actions taken by care team members in response to

observations; in other words, the clinical decision-making process through the care

provider's lens. We utilize a supervised learning approach to learn correspondences

between observations of patient state and care actions. In addition, we focus on the

critical care inpatient setting.

5.2.2 Learning to Predict an Intervention

Prior works have sought to predict intervention administration from patient physi-

ology [20, 21, 221. These works are pertinent to the work discussed in this chapter

because both relate observations of patient state to actions. However, there are key

differences in the set of events we consider as actions, and in how we frame the learning

problem.

[201 uses unsupervised methods to learn latent physiological states in patients who

were administered vasopressors. The authors investigate several intervention onset

and weaning prediction tasks and demonstrate that using latent representations of

physiological state improved predictive performance. [21j extends this framework by

learning unsupervised representations of physiological state for all patients (rather

than using only patients who were administered vasopressors). The authors demon-

strate the generalizability of these representations to predictive models for the onset

of different interventions, including intubation, vasopressor administration, and trans-

fusions [21].

Finally, [221 considers the use of recurrent neural networks and convolutional neu-

ral networks to learn latent representations of physiological state in the context of

the outcome of interest. The authors consider a multi-class formulation by predict-

ing whether the intervention was started, ended, or maintained. They evaluate their

method on a variety of interventions, including ventilation, vasopressors, and colloid

boluses.

These works differ from ours in several aspects. First, these works develop models
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that seek to make predictions about future outcomes. They do this by enforcing

forward-facing predictions of interventions, sometimes with a gap period between the

information being used to make a prediction and the outcome that is being predicted.

In contrast, we seek to learn correspondences between observations of patient state

and the care process, regardless of whether care actions occurred before or after the

observations. While our model captures associations between observations and actions

that are close in time, we do not enforce any temporally causal relationship. Secondly,

we are interested in all care actions, which subsume the interventions considered in

these works. Instead of targeting need for an intervention from a patient perspective,

we characterize clinician response to observations of patient state.

5.3 Methods

5.3.1 Data Processing

As in the last chapter, all data were aligned to midnight on the day of ICU admission

and discretized to the hour. All admissions were padded or truncated to 96 hours

from midnight of the first day of ICU admission.

5.3.2 Cohort

We used data from the first ICU stay corresponding to each patient in the MetaVision

portion of the MIMIC-III dataset. We utilized all patients who had both events data

and physiological time-series. This is a larger subset of patients than the cohort used

in Chapter 4. The data were divided into a 60/20/20 training/validation/test split.

We filtered the cohort to consider only patients with at least a 36-hour stay in the

ICU. This was to ensure that patients were in the ICU for a sufficient period of time

to capture care patterns. The final training, validation, and test cohorts are described

in Table 5.1.
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Table 5.1: Training, Validation, and Test splits. Distributions of patients are similar
in terms of % in-hospital mortality, length of stay, care unit, and admission type.

Train Validation Test

N 5605 1841 1869
In-Hospital Mortality (%) 10.1 9.5 11.4
Mean (std) LOS in ICU (days) 3.5 (2.0) 3.5 (2.0) 3.5 (1.9)

Care Unit
CCU (%) 13.0 14.0 13.3
CSRU (%) 14.5 15.7 15.0
MICU (%) 39.1 38.1 39.3
SICU (%) 19.2 18.9 19.3
TSICU (%) 14.1 13.3 13.2

Admission Type
Elective (%) 13.3 14.3 12.9
Emergency/ Urgent (%) 86.7 85.7 87.1

5.3.3 Categorizing actions and observations

We first separated categories of actions from categories of observations. In MIMIC-

III, recorded items are associated with category labels. We used these labels to

distinguish actions from observations. Table 5.2 details the categories identified as

actions versus categories identified as observations. These definitions of "observation"

versus ''action" are based on item category rather than on specific item definitions.

All events that belong in the observations categories were used as input features.

In addition, we considered static features on ICU admission, including patient age,

gender, ethnicity, admission type (i.e., elective, emergency, or urgent) and first care

unit. We considered three categories of events described as "actions:" 1) lab tests, 2)

antibiotic administration, and 3) imaging tests.

These three action categories capture events that are dependent on patient condi-

tion, and vary in whether they indicate a routine care process or a decision made by

a clinician because there was cause for concern. As we will show, while some actions

depend on patient attributes (e.g., antibiotics are administered differently in different

care units), others are performed regardless of patient attributes (e.g., glucose lab

tests are done for all patients).
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Table 5.2: Categories of events identified as actions and observations.
Category I Events

Intubation/Extubation, Ventilation, Cultures, Antibiotics,

Actions Pain/Sedation, Medications, Access Lines - Invasive, Access Lines
- Peripheral, Blood Products/Colloids, Dialysis, IABP, Impella,
Drains, Labs, Imaging, Service Changes, Microbiology Tests

General, ADT, Adm History/FHPA, Alarms, Nutrition - Enteral,
Nutrition - Parenteral, Blood Gas, Chemistry, Hemodynamics,
Toxicology, Significant Events, OB-GYN, OT Notes, Cardiovascu-

Observations lar, Cardiovascular (pulses), Output, Fluids/ Intake, GI//GU, Pul-
monary, Respiratory, Restraint/ Support Systems, Routine Vital
Signs, Skin - Assessment, Skin - Impairment, Skin - Incisions, Neu-

rological

5.3.4 Data Representation

We represent both observations and actions as tensors over time. As in the previous

chapter, we binarized the tensors to capture whether or not an event occurred at that

hour, rather than the number of times it occurred.

Blurring Actions Over Time

Our goal in this work is to learn correspondences between observations and actions.

However, actions recorded in the EHR are noisy records of the true actions taken.

For example, if an intervention is noted at a particular point in time, it may be that

that intervention could have been administered earlier or later without changing the

effect on patient state. Because of this, works such as [20], [51], and [22] consider

an intervention over a window of multiple hours, rather than at a single point in

time. By considering the presence or absence of actions only at the time they are

recorded in the EHR, we would miss correspondences in the learning process that are

meaningful. Thus, we blur the action labels over time. We consider the action as

having a positive label within 2 hours before or 2 hours after the hour recorded in

the data.
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Observations Actions

t=O 1St = LSTM

Temporally Shared Fully-Connected Layer

Figure 5-1: Model architecture for learning correspondences between observations
and actions. The network is shown unrolled over time. An initial temporally shared
fully-connected layer with a rectified linear activation function is used to embed the
high-dimensional observations into low-dimensional dense embeddings. An LSTM
layer is then used to encode relationships over time. Finally, two more temporally
shared fully connected layers are used to relate the encoded observations to the action
space. The first has a rectified linear activation function, and the second has a sigmoid
activation function.

5.3.5 Learning Associations Between Actions and Observa-

tions

Network Architecture

The network architecture we use is shown in Figure 5-1. Similar to our network in

Chapter 4, we first use a temporally shared fully-connected layer to embed the input

observations at each time step. Next, an LSTM layer is used to capture relationships

over time. Finally, two fully-connected layers are used to relate the encoded observa-

tions to the space of actions. We trained a separate model for each action class we

considered.
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Loss Function

We use binary cross-entropy as our loss function. Because of the high class imbalance

(most actions are infrequently performed), we use an asymmetric cost parameter to

weight labels where actions were present (y = 1) as more important.

Evaluation Metric

To evaluate the performance of our model, we use mean-squared error over the pre-

dicted actions at all time steps. Because of the high class imbalance, we consider the

mean-squared error over actions that were present (y = 1), the mean-squared error

over actions that were absent (y = 0), as well as the total error. For a given patient

i and a given action class,

Z~L~ ~~I=1~,k -Y',k) Y,
MSEr 2th zk1W 1Yk (5.1)
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where K is the number of actions in the action class and T is the number of time

steps in patient i's stay.

This evaluation metric emphasizes how well we are able to predict actions that

occurred for each patient. In contrast, an evaluation metric such as the Area Un-

der the Receiver Operating Characteristic Curve (AUC), which is typically used to

evaluate performance on binary classification tasks, would evaluate performance for

each action. We use MSE rather than AUC because we are interested in evaluating

our ability to predict patterns of care for each patient over time and across all items

within each action class.

Another consideration is that the AUC evaluates performance on each action

independently. However, items within an action class (e.g., antibiotics) may not

be independent. Evaluating discriminative performance for each individual action
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may not capture relationships across items within the same class. For example, an

interesting care pattern such as the administration of a different antibiotic within

hours of the administration of a broad-spectrum antibiotic would not be captured

when evaluating performance on a single action.

Training and Implementation

We implemented our models using Keras 2.1.3 with Tensorflow backend (1.5.0) [771.

The size of the first temporally shared fully-connected layer for embedding observa-

tions was set to 50 units. The LSTM layer and the following fully-connected layer

were set to 128 units. Models were trained with a batch size of 32, until the validation

loss converged.

We implemented the asymmetric cost by weighting the loss for positively labeled

examples by a parameter A. A grid search over A = 1, 5, 10, 20, and 100 was

performed. Figure 5-2 shows the results of these grid searches for each action class on

the validation set. Performance is broken down by error on the present actions (left),

absent actions (middle), and all (right). These figures show that the value of the

asymmetric cost parameter dramatically affects the ability of the model to capture

present actions in addition to absent ones. In addition, the curves for each action class

exhibit an elbow at A = 10. Although the error for present actions continues to drop

as A increases, there is a trade-off with the error for absent actions. Because actions

are rare, the error on absent actions (middle) dominates the overall error (right).

Baseline Comparisons

As a baseline comparison, we use incidence of care events in the population over

the course of the patient stay. Incidence is a naive way to capture care patterns; it

characterizes regularity in care, agnostic to observations of patient state.

We compute incidence as the proportion of patients for whom an action occurred

at each hour. We consider incidence in 1) the entire ICU population, and 2) in each

care unit. We compute incidence values using only the training data.
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Figure 5-2: Mean error for different action classes: antibiotics (top), imaging (middle),
and labs (bottom) over a range of asymmetric class cost parameters (1, 5, 10, 20, 50,
100). Performance error for different classes are shown (y = 1: left, y = 0: middle,
all: right). The best asymmetric cost parameter was chosen based on the elbow in
the curves (around 10).
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5.4 Results

5.4.1 Care patterns differ across care units.

Figures 5-3-5-5 show the incidence of actions in different classes in each care unit and

in the entire ICU population. Different lab tests and imaging tests are performed for

patients in different care units, and antibiotic administration also differs by care unit.

For example, Figure 5-3 shows that antibiotics such as vancomycin and cefazolin

are administered in many patients in the CSRU. Whereas vancomycin is also admin-

istered in the other care units, cefazolin is rarely administered in either the MICU or

the CCU. In addition, patients in the MICU (green bars) and the CCU (blue bars)

receive more diverse antibiotics compared to patients in the CSRU (orange bars).

Imaging tests also show differences across care units. Chest X-rays are frequently

performed in the CSRU, whereas CT scans are not. In contrast, patients admitted

to the TSICU receive a variety of different imaging tests, including chest X-rays,

CT scans, and MRIs. Some imaging modalities are very rarely done; for example,

angiographies, which can be invasive, are performed in only a small subset of patients.

When they are performed, they usually occur for patients in the SICU.

Lab tests demonstrate many fewer differences across care units compared to the

other two action classes. Chemistry lab tests, such as glucose, chloride, sodium, etc.

are performed in all patients in all care units. However, some lab tests, such as

blood gas tests, are performed more often in patients in the CSRU. Others, such as

bilirubin and direct bilirubin (tests for assessing liver function), are performed much

less frequently. Thus, while some lab tests are done regardless of patient attributes,

others depend on patient state.

5.4.2 Model predictions outperform baseline incidence in cap-

turing actions that are taken.

Table 5.3 describes the average error of our model predictions compared to the true

event occurrence over all patients in the test set. Performance is broken down by
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Differences in Antibiotics Administration Across Care Units
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Figure 5-3: Incidence of antibiotics administration in different care units. Antibiotics
such as vancomycin and cefazolin are given to many more patients than the other
antibiotics. In addition, cefazolin is administered more frequently in the CSRU com-
pared to other units. More diverse antibiotics are administered in the MICU and the
CCU compared to the CSRU. This is evidenced by more bars with green (MICU)
regions, compared to few bars with orange (CSRU) regions.

actions that were present (y = 1) and actions that were absent (y = 0). We addition-

ally evaluated the aggregate error. Our model had the lowest error on events that

were present. We are able to outperform baseline incidence measures in predicting

actions taken on a patient, using only static characteristics and observations. This

indicates that our model can learn meaningful correspondences between observations

and actions. This trend holds for all three action classes that we considered.

Our model did not perform as well as the baselines on absent actions. And,

because of the high class imbalance, the overall error is dominated by the error on

absent actions. In general all models were able to predict absent actions much better

than they were able to predict present actions.
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Figure 5-5: Incidence of imaging tests in patients from each care unit. Chest X-rays
are more frequently done compared to other imaging modalities. CSRU patients pri-
marily receive Chest X-rays, whereas Ratients in the other units receive more diverse
imaging tests.
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Table 5.3: Error on actions that were present (y = 1) and absent (y = 0) for different
action classes. Because of the high class imbalance, the contribution to the total
error of actions that are taken is only a small fraction of the overall error. All models
(Ours) were trained with an asymmetric cost parameter, weighting errors in present
actions by 10.

Antibiotics Imaging Labs
Mean Std Mean Std 1Mean Std

Ours 0.1866 0.1007 0.2696 0.1027 0.0278 0.0085
Present Baseline, All 0.2036 0.0970 0.3051 0.0926 0.0329 0.0070

Baseline, Care units 0.1979 0.0963 0.2957 0.0949 0.0315 0.0075
Ours 0.0020 0.0017 0.0039 0.0022 0.0038 0.0014

Absent Baseline, All 0.0004 0.0001 0.0007 0.0002 0.0015 0.0004
Baseline, Care units 0.0004 0.0002 0.0008 0.0004 0.0015 0.0005
Ours 0.0028 0.0015 0.0050 0.0020 0.0044 0.0011

All Baseline, All 0.0016 0.0011 0.0030 0.0016 0.0032 0.0008
Baseline, Care units 0.0016 0.0011 0.0030 0.0016 0.0031 0.0008

Labs: comparing predictions to true actions
Average over top 10 examples in each care unit
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Figure 5-6: Blood gas lab tests: mean over best 10 examples by overall error. True
actions (top) and model predictions (bottom) are shown

5.4.3 Model predictions capture differences in actions across

care units and over time.

In the previous section, we presented quantitative measures of the ability of our

models to capture care patterns for different action classes. In this section, we present

qualitative analyses of examples from each action class where our models performed
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Imaging: comparing predictions to true actions
Average over top 10 examples in each care unit
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Figure 5-7: Imaging tests: mean over best 10 examples by error on present actions.
True actions (top) and model predictions (bottom) are shown.

well. This analysis highlights examples of meaningful correspondences that were

learned.

Figure 5-6 shows heatmaps for blood gas lab tests, depicting true action presence

(top row) and average predictions (bottom row) for the ten patients with the lowest

overall error from each care unit. These examples highlight the characteristics of

patients for whom our model was able to accurately capture care patterns.

Our model predictions demonstrate that our approach of relating patient at-

tributes to care patterns can effectively discover differences in practice across care

units and over time. For example, from Figure 5-4, we know that blood gas tests are

performed more frequently for patients in the CSRU compared to other care units.

This is also evidenced by the true incidence of blood gas tests in the ten patients with

lowest error (top panel). Our model's predictions (bottom panel) capture this trend

well; whereas all other care units primarily have low-intensity regions, predictions for

patients in the CSRU have high-intensity regions in the first day of the ICU stay for

many arterial blood gas tests.

More generally, the images of our predictions (bottom panel) correspond to the
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Antibiotics: comparing predictions to true actions
Average over top 10 examples in each care unit
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Figure 5-8: Antibiotics: mean over top 10 examples by error on present actions. True
actions (top) and model predictions (bottom) are shown.

images of the true data (top panel) for all care units, both in terms of temporal trends

and in terms of relationships between actions.

Figure 5-7 and Figure 5-8 show similar plots for imaging tests and antibiotic ad-

ministration, respectively. These plots were constructed by taking the top 10 examples

based on error over actions that were taken (y = 1), rather than overall error.

Figure 5-7 demonstrates that our model is able to capture shared attributes across
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care units (e.g., chest X-rays performed at regular temporal intervals). In addition,

it can capture unit-specific characteristics (e.g., brighter regions in the CT Scan are

present in our predictions for the MICU, SICU, and TSICU, but not for the CSRU).

This corresponds to a similar trend in the true data. Thus, our model is able to

learn interactions between static characteristics (e.g., care unit on admission) with

observations of patient state in order to predict corresponding care actions.

Figure 5-8 demonstrates that our model can capture unit-specific characteristics.

For example, in the CSRU and in the TSICU, cefazolin is administered early in the

first day. This is not true for the other care units. Our model predictions demonstrate

that it is able to learn this association; in the predictions for the CSRU and TSICU,

there is a horizontal band corresponding to cefazolin, and this band is not present in

the other care units.

5.5 Discussion

In this chapter, we presented a preliminary formulation of learning correspondences

between observations of patient state and care provider actions. We demonstrate how

this correspondence can be learned using patient data in the ICU. We believe this

direction holds a great deal of promise. The modeling approach we explore attempts

to capture physician behavior. There are many questions we can ask about physician

behavior given observations of patient state. For example, what actions are expected

based on the observations? Does a given provider's actions deviate from the usual

pattern of care, conditioned on observations of a particular patient?

There are many challenges to ensuring the correspondence that is learned cap-

tures meaningful relationships between observations and actions. We have presented

a preliminary formulation, where we ensure that events that are categorized as obser-

vations and events that are categorized as actions are mutually exclusive. However,

more specifically defining the nature of an observation and an action are necessary

to accurately characterize how observations drive actions. We have excluded ob-

servations from numerical values (e.g., lab test results, recorded vital signs values)
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and clinical notes. In addition, care actions taken in the past become observations

of patient state; in our initial formulation, we did not include past care actions as

additional observations.

Incorporating these data in a way that does not result in simplistic correspon-

dences is a challenge. Our model does not require a forward-facing prediction in

time; instead, it is trained on associations between observations and actions that oc-

cur close together in time. Thus, if we were to use lab test values as input observations

of patient state, it would be easy to predict when a lab test (action) was performed.

But, this is not a correspondence that provides insight into the care process.

Our initial formulation is also limiting in the way we evaluate performance. We

take a holistic picture of care provided to a patient by evaluating mean-squared error

over the entire space of an action category over time. However, certain actions are

not available once others have been taken. For example, for a given patient, if one

antibiotic has been administered, some of the others may no longer be options. In

addition, once an antibiotic has been started, the option to start it is no longer

available, but the option to stop it is. More carefully considering the set of possible

actions at each time point (given the actions that have already been taken) would

allow us to evaluate our predictions in a more realistic setting.

Learning the correspondences between observations and actions is a way of ex-

plicitly modeling the clinical decision-making process. Accurately characterizing this

process can enable us to better understand what the expected course of care would

be for a particular patient. We believe that our framework of learning how clinicians

make decisions by relating observations to actions can lead to meaningful comparisons

of physician behavior. These differences between actual care and expected care could

then be related to patient outcomes.
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Chapter 6

Summary and Conclusions

6.1 Summary

In this thesis, we presented three methods for leveraging correspondences in EHR

data to improve clinical decision-making aids. Our work addresses a challenge to

the use of machine learning models in health care in practice, and presents novel

learning-based approaches to 1) summarize high dimensional health record data and

2) characterize care patterns using the relationship between observations of patient

state and care provider actions.

In Chapter 3, we presented a method for building correspondences between struc-

tured data encodings across two different EHR systems by using an existing domain-

specific concept vocabulary as an intermediate representation. We used natural lan-

guage processing tools to annotate concepts in free-text descriptions of the structured

item encodings. We demonstrated that machine learning models trained on one sys-

tem and applied to another performed significantly better when features were encoded

in the shared concept space, compared to the EHR-specific encodings. Our approach

enables the portability of a machine learning risk model trained on one system to

another.

In Chapter 4, we presented a method for learning correspondences between differ-

ent modalities of health record data to summarize high-dimensional structured health

record data. Summaries are written by care team members during the course of care,
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in the form of clinical narrative notes. We used topic distributions over these exist-

ing clinical notes to guide our model. We demonstrated that our model was able to

learn correspondences between structured health record data and topic distributions

over existing clinical notes. In addition, we demonstrated that the generated topic

representations are useful representations of patient state, as evidenced by improved

performance on a set of downstream outcome prediction tasks. While these notes

summarize care events and patient state, they are only intermittently available, and

can sometimes contain errors or stale information about the patient. Our model can

be used to suggest topics to care team members as they write a clinical note, and it is

a first step towards automatically generating text-based summaries of the structured

health record.

Finally, in Chapter 5, we learned correspondences between observations of patient

state and actions taken by care team members. In the previous two chapters, we

considered all events as observations of patient state. However, in Chapter 5, we took

the perspective of the care provider. From a care provider's perspective, observations

about patient state are made, and then actions are taken based on the provider's

decision-making process. Our initial results suggest that we are able to learn the

correspondence between observations of patient state and certain care action classes

such as lab tests, antibiotic administration, and imaging tests. Our model captures

meaningful differences in care patterns across different ICUs, and over the course of

the patient stay.

6.2 Conclusion and Future Directions

In this thesis, we demonstrated that using correspondences across EHRs and within

EHRs can lead to meaningful clinical insights.

We identified correspondences between subsets of data in the health record where

there was both shared and unshared information. Different EHR systems still seek

to capture similar clinical concepts. However, the patient data and feature encodings

are not shared. Clinical narrative notes and structured health record data each record
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observations of clinical care and state. However, notes summarize and are recorded

infrequently, whereas structured data are detailed and frequently recorded. Finally,

patient observations and care actions share an observer/actor: the care provider. But,

actions capture decisions made by the provider, whereas observations capture patient

characteristics. This framework of understanding where subsets of data intersect

and diverge can highlight where learning correspondences can lead to clinical insight.

In addition, learned correspondences between data modalities can lend insight into

situations when data elements are redundant, and data collection processes could be

streamlined.

In Chapters 4 and 5, we presented problem formulations that highlight the im-

portance of high-level presentations of the large amounts of data available in EHRs.

The amount of data clinicians need to ingest about even a single patient continues

to grow. While many clinical decision-making aids summarize patient state through

risk metrics, these risk-metrics are outcome-specific. Methods like the ones proposed

in this thesis, and those in the area of patient phenotyping, present more general

purpose outputs.

There are a number of ways we could build upon the work in this thesis.

In Chapter 3, we proposed a method to transition machine learning models across

EHR systems. However, our evaluation was limited to a single EHR transition in a

single hospital. In addition, because all dates in MIMIC are time-shifted, our work

does not capture differences in care practice that may have existed around the time

of the transition. Finally, MIMIC captures EHR-like data, but it is also a curated

data warehouse. Future work could investigate how well our approach generalizes to

systems closer to the point of care, and systems that may not have such comprehensive

documentation of structured data items.

In Chapter 4, we proposed a method to generate topics for summaries of clinical

care and patient state. Future work could investigate the feasibility of incorporating

our work on generating such topics in a real EHR system. The interpretability of

such topics is debated [85], and further evaluation of whether the topics learned from

the clinical notes are meaningful to clinicians is needed. In addition, we trained a
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single topic model over all categories of notes. However, physician notes and nursing

notes differ in their structure, vocabulary, and length. Future work could investigate

whether a category-specific topic model improves our ability to generate meaningful

note topic distributions.

In Chapter 5, we proposed a method to characterize care patterns, by learning

correspondences between observations of patient state and actions taken by care team

members. We explored a single model architecture, and an evaluation metric that

is sensitive to high class imbalance. Future work could investigate other methods

of evaluating performance, as well as other model architectures that may be more

well suited to learning correspondences between observations and care actions over

time. For example, a convolutional architecture may be better suited to capturing

relationships between observations and actions that are nearby in time than the LSTM

we used.

The goal of machine learning models is to learn generalizable patterns in the data.

As we discussed in the introduction to this thesis, clinical data are heterogeneous

in patient characteristics and relevant care decisions. In this thesis, we sought to

evaluate the generalizability of our conclusions on different patient populations by

highlighting differences between care units. However, our modeling approaches do

not explicitly account for differences between patient subtypes.

Another caveat to the generalizability of our claims is the use of MIMIC. First,

MIMIC-III encompasses only critical care unit patients. Thus, we cannot examine the

generalizability of our claims to other care settings. In addition, because MIMIC is

de-identified and time-shifted, we are unable to evaluate if our approaches generalize

over changes in care practice over time. Finally, MIMIC is from a single hospital.

Our experiments are therefore limited to the ICUs at Beth Israel Deaconess.

However, increasing amounts of data are now available from other care settings

and critical care units at other hospitals. Our models do not rely on data types

that are available only in MIMIC; all of the data modalities we consider are part of

most EHR systems. We believe the high-level ideas about enabling interoperability of

clinical decision-making aids, learning correspondences across different modalities of
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health care data, and understanding the relationship between observations of patient

state and actions taken by care providers are generalizable to other institutions and

to other care settings.

Machine learning to obtain data-driven insights about patient condition and clini-

cal care has implications for the ongoing conversation about quality and cost of health

care. Insights from retrospective health data, like the ones we discuss in this thesis,

have the promise to positively impact the quality of care, improving outcomes and

lowering cost.
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