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Abstract: The number of equilibrium points of a dynamical system dictates important qualitative prop-
erties, such as the ability of the system to store different memory states, and may be significantly affected
by state-dependent perturbations. In this paper, we develop a methodology based on tools from degree
theory to determine whether the number of equilibrium points in a positive dynamical system changes due
to structured state-dependent perturbations. Positive dynamical systems are particularly well suited to de-
scribe biological systems where the states are always positive. We prove two main theorems that utilize the
determinant of the system’s Jacobian to find algebraic conditions on the parameters determining whether the
number of equilibrium points is guaranteed either to change or to remain the same when a nominal system is
compared to its perturbed counterpart. We demonstrate the application of the theoretical results to genetic
networks where state-dependent perturbations arise due to disturbances in cellular resources. These distur-
bances constitute a major problem for predicting the behavior of genetic networks. Our results determine
whether such perturbations change a genetic network’s number of steady states.

1 Introduction

The number of equilibrium points of a dynamical system is of general theoretical interest [1]–[3] and is
specifically relevant to applications in systems biology [4], [5], population dynamics [6], [7], electrical systems
[8], and, more recently, in synthetic biology [9], [10]. In particular, multi-stability is a central property of
dynamical models of biological regulatory network motifs implicated in cell-fate determination. In these
models, each steady state is typically associated with a distinct cellular phenotype and transitions among
steady states capture the process of cellular differentiation [11]. A change in the number of equilibria may
reflect a change in the phenotypic diversity of a multi-cellular organism and is, therefore, a relevant feature
to consider.

Most mathematical models of both natural and synthetic biological network motifs assume the network
to be “isolated” from the cellular context. This is rarely true in practice, since a number of interactions exist
between the network under study and the rest of the cell. A class of such unwanted interactions, whose effects
have been well characterized, consists of interactions due to sharing a limited amount of cellular resources
[12]. These interactions manifest themselves as a state-dependent perturbation in the dynamical model of
the network and may result in a dramatic change in the qualitative behavior of the system [13]. So far, a
theoretical investigation of the potential consequences of these perturbations on the emergent features of a
biological network, such as the network’s number of equilibria, has been missing.

Related work. There is a large body of theoretical work aimed at determining structural conditions
for chemical reaction networks under which a chemical network exhibits a single positive steady state,
most notably deficiency theory [14]–[17]. Unfortunately, many systems of practical interest, such as those
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considered in this paper, do not have a deficiency of zero or one, so these results are often not applicable. The
authors of [18] elaborate on tools of deficiency theory and provide results about the number of equilibrium
points of a chemical reaction network; however, they require the system to be described by mass-action
kinetics [19], which leads to large systems of ODEs that are prohibitive for design and analysis. Other
structural conditions exist to provide insight into qualitative changes in dynamical system behavior—most
notably, these conditions examine the sign pattern of the Jacobian relating to the signs of cycles in the
associated graph of the system [20]–[22]. However, these methods do not take parameters into account,
whose ranges are often known for synthetic genetic networks. Related work also exists specifically for
monotone systems [5].

We consider the class of positive dynamical systems—systems where all states are positive—which are
commonly used to capture the dynamics of biological networks where the states of the system represent
concentrations of chemical species. We present a mathematical framework for determining situations where
a positive dynamical system maintains its number of equilibrium points when it is affected by a structured
state-dependent perturbation to its dynamics. This framework is useful for analyzing biological systems
but may also be applicable to other fields. We present a novel methodology to accomplish this using tools
from degree theory [23], [24]. This requires checking whether the determinant of the system’s Jacobian
does or does not change sign over a subset of the state space that contains the equilibrium points as the
system is perturbed. This methodology enables us to find algebraic conditions on the system’s parameters
under which the number of equilibrium points does or does not change without having to solve for the
equilibrium points explicitly. Our first result, Theorem 2, provides conditions guaranteeing that the number
of equilibrium points of a system does not change when the perturbation is considered. The next result,
Theorem 3, provides conditions guaranteeing that the number of equilibrium points of a system changes as
the perturbation is considered. These results give easily verifiable algebraic conditions for determining the
robustness of the qualitative behavior of a system to a class of structured, state-dependent perturbations.
We illustrate the application of our results to gene regulatory networks where state-dependent perturbations
arise from changes in the availability of resources necessary for the system to function. Fluctuations in the
availability of resources has recently appeared as a major bottleneck to the ability of predicting the behavior
of genetic networks [12], [13], [25], [26]. In this work, we provide a predictive tool that can be used to
practically analyze and design genetic networks that behave as expected from theory.

This paper is organized as follows. We first present a motivating example in Section 2. Next, we formulate
the problem, provide mathematical background, and state our main results in Sections 3, 4, and 5. Finally,
in Section 6, we demonstrate the theoretical results through examples of genetic networks with resource
sharing to illustrate the practical relevance of these results.

2 Problem Motivation

The general problem of when state-dependent perturbations change the qualitative behavior of a dynamical
system (i.e., the number of equilibrium points) is of relevance to several application domains. In this section,
we illustrate an instance of this problem in the context of gene regulatory networks in which the perturbation
arises due to fluctuations in the amount of resources available to the network, which are necessary for the
network’s operation. Fluctuation in the availability of resources has recently appeared as a major bottleneck
to predicting the behavior of genetic network, and therefore limits our ability to design networks that behave
as intended [13], [25]–[27]. In turn, unpredicted changes to the number of equilibrium points may completely
disrupt a network’s intended function. As an example, consider the toggle switch, which is currently the
most widely used genetic network in biotechnology applications [28]–[31]. It is a bistable system that can
switch an output of interest on or off depending on the input. One of its recent applications is in the design
of kill switches, which are safety mechanisms embedded in genetically modified cells that trigger cell death if
the functionality of the cell has been compromised—resulting in a biohazard [29], [31]. If, due to fluctuations
in gene expression resources, the toggle switch becomes monostable, as we show may occur in the following,
cell death may not be triggered when needed and harmful cells may be kept alive in the environment.

A standard non-dimensionalized model of the toggle switch realized by mutual activations (Figure 1), in
which perturbations in available resources are not included, can be written as follows:

ẋ1 = F1(u, x2)− x1 ẋ2 = F2(x1)− x2 (1)
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where x1 and x2 represent the concentration of proteins x1 and x2, u represents the concentration of an input,
F1(·) and F2(·) are smooth functions in the form of Hill functions [32] and are continuous, increasing, bounded,
and positive for positive inputs. Note that this system is a positive system—all states are nonnegative for
all time if the initial condition is positive. Additionally, it is straightforward to show that the states of this
system are bounded since F1(·) and F2(·) are bounded. We will use these properties in proving our results
in Section 5. Biological systems require resources such as enzymes for the production and degradation of
proteins, which will be referred to throughout the paper as production or degradation resources, respectively.
We now consider the same genetic network, except we include the fact that production resources are finite.
Then, the dynamical system becomes the perturbed system

ẋ1 =
F1(u, x2)

1 + J1F1(u, x2) + J2F2(x1)
− x1 (2a)

ẋ2 =
F2(x1)

1 + J1F1(u, x2) + J2F2(x1)
− x2, (2b)

as derived in [33] and experimentally validated in [13]. Here J1 and J2 represent the resource demand
coefficients by proteins x1 and x2, respectively. We consider this type of structured, state-dependent pertur-
bations throughout the paper. We now simulate (1) and (2) by slowly varying the input, u, and observing
the corresponding steady state concentration of the output, x2, shown in Figure 1.
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Figure 1: Simulation of genetic toggle switch in (1) and (2) showing differing number of equilibrium points
from state dependent perturbations due to fluctuations in the availability of resources. Parameters used for

the simulation are F1(u, x2) = u+ 1+0.0774(x2)3

1+0.01(x2)3 and F2(x1) = 1+0.0774(x1)3

1+0.01(x1)3 , and J1 = J2 = 0.03.

As it can be seen in Figure 1, the two systems have different steady state responses. The nominal system
(1) exhibits bistability for an input range of u between 0.48 and 1.18 while the perturbed system (2) has one
equilibrium point for all values of u. Thus, the state-dependent perturbation causes this nominally bistable
system to undergo a change in its number of equilibrium points resulting in the loss of bistability and a
failure in the system’s behavior. This difference in the number of equilibrium points between the nominal
and perturbed systems is not easily predicted by inspection of the dynamics.

3 Problem Formulation

In this section, we present a framework to determine the effects of state-dependent perturbations of a general
form that can capture the fluctuations in both production and degradation resources in a genetic network.
We do so by comparing two systems: a nominal system and a perturbed one. We then represent these
two systems as a single parameterized system, and, using this representation, we present easily checkable
analytical conditions to address the question of when the number of equilibrium points differ between the
nominal and the perturbed systems.

We consider a nominal system in the form

ẋ = h(x)− Λx, (3)
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where x ∈ Rn≥0, h : Rn → Rn is C1 and bounded and positive for all positive arguments, and Λ is a diagonal
matrix with strictly positive entries. Eq. (3) may represent a model of a biomolecular network in the absence
of perturbations on production and degradation resources [9]. We now consider the perturbed system

ẋ = h(x)� α(x) + g(x)− Λx, (4)

where � represents the element-wise product, α : Rn → Rn may represent a perturbation on production
resources, and g : Rn → Rn may represent a perturbation on degradation resources [13], [34], [35]. We
are interested in comparing the number of equilibrium points of the nominal system (3) and the number of
equilibrium points of the perturbed system (4). To this end, consider the two-parameter system

ẋ = h(x)� [1+ µ(α(x)− 1)] + λg(x)− Λx, (5)

where 1 represents a vector of 1’s, and µ, λ ∈ [0, 1] × [0, 1] are control parameters and are allowed to vary
between 0 and 1. For µ = λ = 0, (5) becomes the nominal system (3), while for µ = λ = 1, (5) becomes
the perturbed system (4). Our goal is to determine conditions under which the nominal system (3) and the
perturbed system (4) are guaranteed to have the same number of equilibrium points. This may be addressed
by analyzing the number of equilibrium points of the parameterized system (5) as the parameters change
between 0 and 1. Thus, the problem of comparing the number of equilibrium points of the systems (3) and
(4) may be restated as

Problem 1. Determine conditions under which the number of equilibrium points of (5) is guaranteed to be
constant or is guaranteed to change as µ and λ are varied between 0 and 1.

4 Mathematical Preliminaries

Here, we introduce mathematical objects necessary to state our results. Additional mathematical background
and all the proofs of lemmas are given in Appendix A.

Notation. A domain is an open, connected set in Rn. A set, Ω ⊂ Rn, is called a bounded domain if it
is open, connected, and there exists a ball with finite radius, r, such that Ω ⊂ B(0, r). The closure of a set
Ω is denoted as Ω, the interior int(Ω) is the largest open set contained in Ω, and the boundary of a domain
Ω is denoted as ∂Ω = Ω\int(Ω). x ≥ 0, x ∈ Rn denotes a vector with all components nonnegative. The
positive orthant is the set Rn≥0 = {x : x ≥ 0}. Given a family of functions fµ,λ(x) that are continuous with
respect to µ and λ, we denote the set of zeros as Sµ,λ = {x > 0 : fµ,λ(x) = 0} for any fixed µ, λ.

Definition 1. Given a C1 vector field f : Rn → Rn, a point x0 ∈ Rn, is called degenerate if det
(
∂f(x0)
∂x

)
= 0.

Additionally, x0 is called a degenerate zero if f(x0) = 0 and det
(
∂f(x0)
∂x

)
= 0.

Definition 2. Let Ω ⊂ Rn be a bounded domain, let f : Ω → Rn be C1, and assume f has no degenerate
zeros and has no zeros on the boundary of Ω. Then the topological degree of f with respect to zero, or more

briefly, the degree of f , is deg(f,Ω) =
∑

z∈f−1(0)∩Ω

sign
(

det
(
∂f(z)
∂x

))
where f−1(0) is the set of zeros of f in

Ω and sign(·) is the sign function.

Lemma 1 provides a condition under which the cardinality of the set of zeros of a family of vector fields
is constant. The following theorem comes from [36] and is one of the main theorems of degree theory. This
theorem states that the degree is a topological constant [23], [37] and will be used in the proofs of Lemma 2
and Theorem 3.

Theorem 1. [36] Consider a bounded domain Ω ⊂ Rn and a family of C1 vector fields fλ : Ω → Rn. Let
λ∗ > 0 and suppose that fλ is continuous with respect to λ for λ ∈ [0, λ∗], such that fλ does not have any
zeros on the boundary of Ω for all λ ∈ [0, λ∗]. Then deg(fλ,Ω) is constant for all λ ∈ [0, λ∗].

Lemma 1. Consider a bounded domain Ω ⊂ Rn. Let fλ : Ω → Rn be a C1 family of vector fields and
continuous with respect to λ. Fix λ∗ > 0 and assume that, for all x ∈ ∂Ω, fλ(x) 6= 0 for every λ ∈ [0, λ∗].

If, for all λ ∈ [0, λ∗], det
(
∂fλ(x)
∂x

)
6= 0 for all x ∈ Sλ, then the cardinality of Sλ does not depend on λ.

4



Now, consider the system of ordinary differential equations (ODEs)

ẋ = f(x) (6)

where x ∈ Rn and f : Rn → Rn is a C1 vector field. We say a point x ∈ Rn is an equilibrium point if
f(x) = 0.

Definition 3. A vector field, f : Rn → Rn, is positive invariant on the positive orthant if for every
i = 1, . . . , n, whenever x ≥ 0 and xi = 0, then fi(x) ≥ 0. We say that a dynamical system is positive
invariant on the positive orthant if it has dynamics of the form (6) and f(x) is a positive invariant vector
field.

Definition 4. Given a domain Ω ⊂ Rn, a continuous vector field h : Ω→ Rn is bounded over Ω if there exists
an M ∈ R such that ‖h(x)‖ ≤ M for all x ∈ Ω. Given a dynamical system ẋ = f(x), where f : Rn → Rn
is continuous, a trajectory of the dynamical system is bounded if there exists an M,T ∈ R>0 such that
‖x(t)‖ < M for all t ≥ T . We say a dynamical system is bounded if all trajectories are bounded.

Definition 5. A function g : Rn → Rn is mass dissipating if there exists some m ∈ Rn>0 such that m·g(x) ≤ 0
for all x ∈ Rn≥0.

5 Main Results

We now present the main theoretical results of the paper. Theorem 2 provides a sufficient condition on the
determinant of the Jacobian of (5) where if the Jacobian is nonsingular over a set containing all equilibrium
points, then the system is guaranteed not to change its number of equilibrium points as µ and λ are varied.
Next, we state a converse theorem, Theorem 3, which provides a condition where the number of equilibrium
points of a dynamical system in the form of (5) changes as µ and λ are varied, based on the determinant
of the system’s Jacobian. The use of these results is illustrated in Section 6. Finally, Theorem 4 finds a
set guaranteed to contain at least one equilibrium point for all values of the parameter µ. Before stating
our main results, we present a lemma that demonstrates that our general form (5) satisfies all assumptions
required by Lemma 1.

Lemma 2. Consider the continuous time dynamical system

ẋ = h(x)� [1+ µ(α(x)− 1)] + λg(x)− Λx , fµ,λ(x), (7)

where x ∈ Rn≥0, h : Rn → Rn and g : Rn → Rn are positive invariant C1 vector fields on the positive orthant,

α : Rn → Rn is a C1 vector field, Λ is a diagonal matrix with strictly positive diagonal entries. Assume
that 0 < α(x) ≤ 1, g is mass dissipating, h(x) has no zeros on the boundary of the positive orthant, and
ẋ = f0,0(x) is bounded. Fix µ∗ ∈ [0, 1] and λ∗ ≥ 0. Then, for all µ, λ ∈ [0, µ∗]× [0, λ∗],

(a) (7) is positive invariant on the positive orthant;

(b) There exists a positive vector m, a positive scalar M , and a set Ω = {x ∈ Rn>0 : m · (Λx) < M} such
that Sµ,λ ⊂ int(Ω);

(c) deg(fµ,λ,Ω) = (−1)n and Sµ,λ 6= ∅.

Theorem 2. Consider the dynamical system (7) with the same assumptions as Lemma 2. Choose a fixed

µ∗ ∈ [0, 1] and λ∗ ≥ 0. If there exists a set Aµ,λ ⊂ Rn≥0 such that Sµ,λ ⊂ Aµ,λ and det
(
∂fµ,λ(x)

∂x

)∣∣∣
∀x∈Aµ,λ

6= 0

for all µ, λ ∈ [0, µ∗]× [0, λ∗], then ẋ = f0,0(x) and ẋ = fµ∗,λ∗(x) have the same number of equilibrium points
in the positive orthant.

Proof. Fix µ∗ ∈ [0, 1] and λ∗ ≥ 0. By Lemma 2, system (7) is positive invariant on the positive orthant
and there exists Ω ⊂ Rn≥0 such that Sµ,λ ⊂ int(Ω) for all µ, λ ∈ [0, µ∗]× [0, λ∗] so Lemma 1 may be applied
over this Ω for µ∗ ∈ [0, 1] and λ∗ ≥ 0. Choose a set Aµ,λ such that Sµ,λ ⊂ Aµ,λ. Now, fix λ = 0 and vary

µ from 0 to µ∗. For each µ ∈ [0, µ∗], if det
(
∂fµ,0(x)
∂x

)
6= 0 for all x ∈ Aµ,0, then, by Lemma 1, ẋ = f0,0(x)
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and ẋ = fµ∗,0(x) have the same number of equilibrium points in Ω and therefore the positive orthant. Next,

fix µ = µ∗ and vary λ from 0 to λ∗. For each λ ∈ [0, λ∗], if det
(
∂fµ∗,λ(x)

∂x

)
6= 0 for all x ∈ Aµ∗,λ, then,

by Lemma 1, ẋ = fµ∗,0(x) and ẋ = fµ∗,λ∗(x) have the same number of equilibrium points in the positive
orthant. Finally, by the transitive property of equality on the numbers of equilibrium points, ẋ = f0,0(x)
and ẋ = fµ∗,λ∗(x) have the same number of equilibrium points in the positive orthant. The condition we

proved is that det
(
∂fµ,λ(x)

∂x

)
6= 0 along the path µ ∈ [0, µ∗], λ = 0;µ = µ∗, λ ∈ [0, λ∗]. This path is contained

in [0, µ∗]× [0, λ∗], which implies the statement in the theorem. �

Remark 1. The condition in Theorem 2 must be checked for all µ, λ ∈ [0, µ∗] × [0, λ∗]. It is not possible
to check just the endpoints (µ, λ) = (0, 0) and (µ, λ) = (µ∗, λ∗). For example, (7) (let λ∗ = 0) may undergo
a pitchfork or saddle-node bifurcation when µ = µ∗/2, resulting in a change in the number of equilibrium
points while the determinant of the Jacobian over Aµ,0 with µ = µ∗ may be non-zero.

Special cases of (7) may be considered by letting either µ∗ = 0 or λ∗ = 0 and are relevant when considering
systems where only production or degradation resources are shared. The construction of the set Aµ,λ in
Theorem 2 allows us to avoid calculating the equilibrium points of the system explicitly. This enables us to
provide analytical characterization of conditions to guarantee that the number of equilibrium points remains
constant, thus avoiding resorting to numerical methods.

Theorem 2 represents a significant sharpening and generalization of the results presented in [36]. The
system considered in [36] is a one-parameter system and is required to be linear and non-degenerate when
λ = 0. Thus, it has one equilibrium point, while in Theorem 2, it is not required for the system with
µ = λ = 0 to be either linear or to have one equilibrium point. In the case where the system has one
equilibrium point when µ = λ = 0 and Aµ,λ = Rn≥0, Theorem 2 and the global implicit function theorem
have similarities [38]. However, these two theorems are not equivalent in general: the global implicit function
theorem provides conditions under which a system has one equilibrium point, while Theorem 2 guarantees
that two systems have the same number of equilibrium points.

A theorem is now presented which provides conditions to guarantee that the number of equilibrium points
changes in system (7) as µ and λ are varied.

Theorem 3. Consider the dynamical system (7) with the same assumptions as Lemma 2 and assume that
f0,0(x) = 0 has one solution, x0,0, for x ∈ Rn≥0. Denote a nonempty subset Ŝµ,λ ⊂ Sµ,λ. For some fixed

µ∗ ∈ [0, 1] and λ∗ ≥ 0, assume that det
(
∂fµ∗,λ∗ (x)

∂x

)
6= 0 for all x ∈ Sµ∗,λ∗ . Then ẋ = fµ∗,λ∗(x) has

more than one equilibrium point if and only if there exists a set Bµ∗,λ∗ such that Ŝµ∗,λ∗ ⊂ int(Bµ∗,λ∗) and

sign
(

det
(
∂f0,0(x0,0)

∂x

))
6= sign

(
det
(
∂fµ∗,λ∗ (x)

∂x

))
for all x ∈ Bµ∗,λ∗ .

Proof. Fix µ∗ ∈ [0, 1] and λ∗ ≥ 0. Suppose that the number of equilibrium points is constant and equal to 1

for all µ, λ ∈ [0, µ∗]× [0, λ∗]. Without loss of generality, assume that when µ = λ = 0, det
(
∂f0,0(x0,0)

∂x

)
> 0

for x0,0 ∈ S0,0. Choose Ω as in Lemma 2. Then, deg(f0,0,Ω) = +1 by Lemma 2 and the definition

of degree. Now, suppose that there exists a set Bµ∗,λ∗ such that a nonempty subset Ŝµ∗,λ∗ ⊂ Sµ∗,λ∗ is

Ŝµ∗,λ∗ ⊂ int(Bµ∗,λ∗), and suppose det
(
∂fµ∗,λ∗ (x)

∂x

)
< 0 for all x ∈ int(Bµ∗,λ∗). Then deg(fµ∗,λ∗ ,Ω) < 1.

This is a contradiction since, by Theorem 1, deg(f0,0,Ω) = deg(fµ∗,λ∗ ,Ω) = 1. Therefore, the number of
equilibrium points of ẋ = f0,0(x) and ẋ = fµ∗,λ∗(x) are different. Furthermore, since deg(f0,0,Ω) is odd, then
ẋ = fµ∗,λ∗(x) must have an odd number of equilibrium points strictly greater than one by Theorem 1 since the
degree over Ω constant. Note that there exists at least one degenerate point for some (µ, λ) ∈ [0, µ∗]× [0, λ∗];
however, Theorem 1 still applies, since Theorem 1 applies for more general definitions of degree that allows
for the existence of degenerate points. To prove the converse, suppose (7) has multiple equilibrium points

when µ = µ∗ and λ = λ∗ and, without loss of generality, suppose that det
(
∂fµ∗,λ∗ (xµ∗,λ∗ )

∂x

)
> 0 for all

xµ∗,λ∗ ∈ Sµ∗,λ∗ . Then deg(fµ∗,λ∗ ,Ω) > 1. This contradicts Lemma 2. Then, there exists some x∗ ∈ Sµ∗,λ∗

such that det
(
∂fµ∗,λ∗ (x∗

µ∗,λ∗ )

∂x

)
< 0. Choose Bµ∗,λ∗ as a sufficiently small open ball around x∗. Therefore,

there exists a set Bµ∗,λ∗ such that Ŝµ∗,λ∗ ⊂ int(Bµ∗,λ∗) and sign
(

det
(
∂f0,0(x0,0)

∂x

))
6= sign

(
det
(
∂fµ∗,λ∗ (x)

∂x

))
for all x ∈ Bµ∗,λ∗ . �
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Theorem 3 allows us to find conditions where the number of equilibrium points change as µ or λ are
varied. The condition that the system ẋ = f0,0(x) has one equilibrium point rules out all local bifurcations
where equilibrium points collide and exchange stability properties without changing the number of equilib-
rium points present overall (e.g. transcritical bifurcations [3]). Using Theorems 2 and 3, it is possible to
determine conditions where the number of equilibrium points change or remain constant as µ and λ are
varied. Theorems 2 and 3 are applied to a few examples in Section 6.

We now present a result that characterizes the region in which an equilibrium point of (5) resides. This
result is helpful for choosing Aµ,λ as required by Theorem 2 when λ∗ = 0 to guarantee that (7) maintains
its number of equilibrium points as µ is varied.

Definition 6. A square matrix A is positive (negative) semidefinite, denoted by A � 0 (A � 0), if xTAx ≥ 0
(xTAx ≤ 0).

Note that in (7), if all elements of α(x) are the same, then α(x) may be considered to be scalar and
the element-wise product becomes scalar multiplication. In the following theorem, this is the case, i.e.
α : Rn → R.

Theorem 4. Consider a dynamical system in the form

ẋ = [1 + µ(α(x)− 1)]h(x)− Λx , fµ (8)

for x ∈ Rn≥0, where h : Rn → Rn is C1 and positive invariant on Rn≥0 and has no zeros on the boundary of

the positive orthant, α : Rn → R is C1 and 0 < α(x) ≤ 1 for all x ∈ Rn≥0, and Λ is a diagonal matrix with

strictly positive entries. Fix µ∗ ∈ [0, 1]. If
∂fµ
∂x = ∂h

∂x −Λ + µ
(
(α(x)− 1)∂h∂x + h(x)∂α∂x

)
� 0 for all µ ∈ [0, µ∗]

and for all x ∈ {x ∈ Rn≥0 : xTΛx ≤ xT0 Λx0} for some x0 ∈ S0, then there exists exactly one equilibrium

point, xµ, such that xTµΛxµ ≤ xT0 Λx0 for all µ ∈ [0, µ∗].

Proof. First, (8) is positive invariant o the positive orthant by Lemma 2, and may be written as ẋ = fµ(x).
Setting ẋ = 0 and differentiating fµ(x) = 0 with respect to µ (which can be done since h and α are C1 and
µ appears linearly in fµ) gives

∂fµ
∂x

∂xµ
∂µ

+
∂fµ
∂µ

= 0 (9)

where
∂fµ
∂µ = (α(xµ)− 1)h(xµ). Then, rearranging (9), substituting, and multiplying both sides by

∂xµ
∂µ

T
, we

have
∂xµ
∂µ

T (∂fµ
∂x

)
∂xµ
∂µ

= (1− α(xµ))
∂xµ
∂µ

T

h(xµ). (10)

Additionally, when ẋ = 0 in (8), we have

h(xµ) =

(
1

1 + µ(α(xµ)− 1)

)
Λxµ (11)

at the equilibrium point, xµ. Then, substituting (11) into (10) gives
∂xµ
∂µ

T
(
∂fµ
∂x

)
∂xµ
∂µ =

1−α(xµ)
1+µ(α(xµ)−1)(

∂xµ
∂µ

)T
Λxµ. Fix µ∗ ∈ [0, 1] and suppose there exists a set D ⊂ Rn≥0 such that xµ ∈ D and

∂fµ(x)
∂x

∣∣∣
x∈D
� 0

for all µ ∈ [0, µ∗]. Then
∂xµ
∂µ

T
(
∂fµ
∂x

)
∂xµ
∂µ ≤ 0 for all x ∈ D. Since 0 < α(x) ≤ 1, then 1−α(x)

1+µ(α(x)−1) ≥ 0

for all x ∈ Rn≥0 and all µ ∈ [0, µ∗], which gives
∂xµ
∂µ

T
Λxµ ≤ 0. Integrating by parts gives

∫ µ
0
∂xµ̂
∂µ̂

T
Λxµ̂dµ̂ =

xTµ̂Λxµ̂

∣∣∣µ
0
−
∫ µ

0
xTµ̂Λ

∂xµ̂
∂µ̂ dµ̂ ≤ 0, and, since Λ is symmetric, this implies that

∫ µ

0

∂xµ̂
∂µ̂

T

Λxµ̂dµ̂ =
1

2

(
xTµΛxµ − xT0 Λx0

)
≤ 0.

In particular, xTµ∗Λxµ∗ ≤ xT0 Λx0. Additionally, D exists and D = {x ∈ Rn≥0 : xTΛx ≤ xT0 Λx0} since we have

just shown that xµ ∈ {x ∈ Rn≥0 : xTΛx ≤ xT0 Λx0} for all µ ∈ [0, µ∗]. �
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Theorem 4 guarantees that (8) always has one equilibrium point contained in the set {x ∈ Rn≥0 : xTΛx ≤
xT0 Λx0} when

∂fµ
∂x � 0 in that set for all µ ∈ [0, µ∗]. Note that it is not required for (8) to have one equilibrium

point globally—there may exist other equilibrium points outside the set {x ∈ Rn≥0 : xTΛx ≤ xT0 Λx0}. For
systems with one equilibrium point, Theorem 4 may be used in conjunction with Theorem 2 to show that
the equilibrium point in the set {x ∈ Rn≥0 : xTΛx ≤ xT0 Λx0} is unique as µ is varied from 0 to µ∗ by choosing

Aµ = {x ∈ Rn≥0 : xTΛx ≤ xT0 Λx0}. We will illustrate this in Section 6 through an example.

6 Application of Theory

In this section, we present application examples to demonstrate the use of the theorems in Section 3 to
genetic circuits where fluctuations in production or degradation resources are captured by state-dependent
perturbations in the form of α and g in the form of system (5). In Example 6.1, we revisit the design of
a genetic toggle switch circuit. Specifically, we use Theorems 2 and 3 to find conditions under which the
system has multiple equilibrium points and show that different designs of the genetic toggle switch behave
differently when considering perturbations in production resources. We show that one of the toggle switch
designs is more robust than the other when these perturbations are considered. In Example 6.2, we consider
a genetic cascade and use Theorems 2 and 4 to find conditions under which the system is guaranteed to
maintain its number of equilibrium points. Subsequently, we use Theorem 3 to find conditions under which
the system with production resource perturbations is guaranteed to change its number of equilibrium points.
In Example 6.3, we consider a cascade with degradation resource perturbations and apply Theorem 2 to
find conditions under which this system is guaranteed to maintain its number of equilibrium points despite
resource perturbation effects. Example 6.3 is a system with four states, illustrating how the theorems in
Section 3 apply to higher dimensional systems. To simplify analysis, we use nondimensionalized system
equations (See Appendix B.1 for more information on nondimensionalization of genetic circuit models). A
general guide for applying the theoretical results to genetic circuits is given in Section 6.4.

6.1 Genetic Toggle Switch

We now revisit the motivating example presented in Section 2 and derive analytical conditions using our
results under which the number of equilibrium points of the system changes when perturbed by resource
sharing. Consider a genetic toggle switch shown in Figure 2. The toggle switch may be created either
where x1 and x2 mutually activate each other (activation toggle, Figure 2a) or mutually repress each other
(repression toggle, Figure 2b). We assume the toggle switch is perturbed by production resource fluctuations,
and we wish to find conditions, when it is possible, for the system to exhibit multiple equilibrium points.
The normalized, nondimensionalized model of the system with resource perturbations in the form of the

x1 x2 x1 x2
(a) (b)

Figure 2: Diagrams of possible toggle switch designs: (a) Activation toggle switch design. (b) Repression
toggle switch design; a indicates repression.

parameterized system (7) is given as

ẋ1 = β1

[
1 + µ

(
F1(x2)/β1

1 + J1F1(x2) + J2F2(x1)
− 1

)]
− x1 (12a)

ẋ2 = β2

[
1 + µ

(
F2(x1)/β2

1 + J1F1(x2) + J2F2(x1)
− 1

)]
− x2. (12b)

Comparing this with (7), h(x) = [β1, β2]T , α(x) = [F1(x2)/β1,F2(x1)/β2]T

1+J1F1(x2)+J2F2(x1) , Λ = diag([1, 1]), and g(x) = 0. Since

g(x) = 0, we drop λ from our notation for clarity. The functions F1 and F2 have the form Fi(xj) =
1+aix

ni
j

1+bix
ni
j

8



for nonnegative constants ai, bi and integer ni ≥ 1. Additionally, β1 and β2 are positive constants such
that F1(x2) ≤ β1 and F2(x1) ≤ β2 and all x ∈ R2

≥0. Then (12) satisfies the conditions on h, g, α, and Λ in
Theorems 2 and 3. When µ = 0, (12) is linear with one unique equilibrium point at x1 = β1;x2 = β2, while
when µ = 1, (12) has the dynamics of the toggle switch with resource sharing.

Using Theorem 3, we will find a necessary condition such that (12) has multiple equilibrium points. Note

that det
(
∂fµ
∂x

)
> 0 for all x ∈ R2

≥0 when µ = 0. Let µ∗ = 1, and B1 =
{
x ∈ R2

≥0 : det
(
∂f1(x)
∂x

)
< 0
}

. By

Theorem 3, if (12) has multiple equilibrium points, then at least one equilibrium point exists in B1. We
now simplify our reasoning by taking advantage of the symmetry of (12). We assume that J1 = J2 = J ,
β1 = β2 = β, and F1(·) = F2(·) = F (·). Since the dynamics of x1 and x2 are symmetric, this implies
that the trajectories of (12) are symmetric about the line x1 = x2 and all equilibrium points must appear

symmetrically about the line x1 = x2. We will now find a condition on ∂F (x)
∂x such that B1 is nonempty,

which is necessary for (12) to exhibit multiple equilibrium points by Theorem 3.
Since deg(fµ) = 1 by Lemma 2, then the number of equilibrium points is odd. Since the determinant of

the Jacobian of (12) is symmetric about the line x1 = x2 and the number of equilibrium points is odd, there
always exists an odd number of equilibrium points on the line x1 = x2. The set x1 = x2 is invariant for the
dynamics of (12) due to symmetry, and the dynamics of (12) on this set are given as

ẋ = β

[
1 + µ

(
F (x)/β

1 + 2JF (x)
− 1

)]
− x. (13)

By Lemma 2, the degree of (13) is −1, which implies that if there exists multiple equilibrium points on the

line x1 = x2 = x, then at least one of them has det
(
∂f1(x)
∂x

)
< 0 since the degree is constant by Theorem 1.

Thus, we can restrict our attention to the line x1 = x2 to find a necessary condition for the existence of B1

in Theorem 3. We denote ∂F (x)
∂x as F ′(x). Then, the determinant of the Jacobian of (13) is given as

det

(
∂fµ
∂x

)
= 1 +

2µJF (x)F ′(x)

(1 + 2JF (x))2
− µ2(F ′(x))2

(1 + 2JF (x))3
. (14)

We now evaluate (14) when µ = 1 and find a relation to eliminate the dependence of (14) on F (x). With

µ = 1 and setting the derivative in (13) to 0, F (x∗)
1+2JF (x∗) = x∗ is satisfied at any equilibrium point x∗ that

lies on the line x1 = x2. Then, solving for F (x∗), we have

F (x∗) =
x∗

1− 2Jx∗
. (15)

Since F (x) > 0 for all x ≥ 0, then all equilibrium points x∗ satisfy x∗ ∈ [0, 1
2J ). Substituting (15) into (14)

with µ = 1, we find

det

(
∂f1

∂x

)
= 1 + 2J(1− 2Jx∗)F ′(x∗)− (1− 2Jx∗)3(F ′(x∗))2. (16)

Next, setting det
(
∂f1
∂x

)
< 0 and solving the resulting quadratic inequality in (16) for F ′(x∗), we find that if

(12) has multiple equilibrium points, then by Theorem 3 there exists an equilibrium point x∗ such that

F ′(x∗) >
J +
√
J2 + 1− 2Jx∗

(1− 2Jx∗)2
, or (17a)

F ′(x∗) <
J −
√
J2 + 1− 2Jx∗

(1− 2Jx∗)2
. (17b)

Note that an equilibrium point x∗ ∈ B1 if and only if x∗ satisfies (17). Furthermore, if (17) is never satisfied
for any x∗ ∈ [0, 1

2J ), then (17) is never satisfied for any equilibrium point and, by Theorem 3, (12) exhibits
one equilibrium point.

We restrict our attention to the activation toggle switch, as presented in Section 2 where F ′(x) > 0 for
all x ≥ 0. Note that when J = 0 (no resource sharing), the right-hand side of (17a) is 1. It can be shown

9



that the right-hand side of (17a) is increasing with increasing J for all x ∈ [0, 1
2J ) by taking the derivative

with respect to J . Increasing J corresponds to increased resource demand by the proteins x1 and x2. Thus,
an activation toggle switch that meets the condition in (17a) when J = 0, may not satisfy it when J > 0.
Specifically, there exists an F ′(x) that satisfies (17) when J = 0, but not when J > 0, and any F ′(x) that
satisfies (17) for some J > 0 also satisfies (17) when J = 0. Therefore, in the activation toggle switch, a
system that nominally has multiple equilibrium points may have one equilibrium point when perturbed with
resource sharing.

Next, we find a condition such that (12) is guaranteed to never exhibit multiple equilibrium points using
Theorem 2. Let Aµ = {x ∈ R2

≥0}. By the symmetry argument done previously, we can restrict our attention

to the line x1 = x2 = x. Then, by Theorem 2, (12) exhibits a single equilibrium point if det
(
∂fµ
∂x

)
> 0

for all x ∈ Aµ for all µ ∈ [0, 1]. The determinant of the Jacobian is given in (14). We set det
(
∂fµ
∂x

)
> 0

and solve the resulting quadratic equation for F ′(x). After simplifying, we find that the determinant of the
Jacobian is negative if both

F ′(x) <
1

µ
(1 + 2JF (x))2 and (18a)

F ′(x) >
−1

µ
(1 + 2JF (x)) (18b)

are satisfied at all equilibrium points x∗ for all µ ∈ [0, 1]. Then, we find the worst case µ such that
the right-hand sides of (18a) and (18b) are minimized and maximized, respectively. This occurs when
µ = 1. Substituting µ = 1 in (18a) and (18b) and substituting (15) to eliminate dependence on F (x) at the
equilibrium point x∗, we find that if

F ′(x∗) <

(
1

1− 2Jx∗

)2

and (19a)

F ′(x∗) >
−1

1− 2Jx∗
(19b)

for all equilibrium points x∗, then (12) always has a unique equilibrium point for all µ ∈ [0, 1]. Furthermore,
if (19) is satisfied for all x ∈ [0, 1

2J ) (since all equilibrium points exist in this interval), then (12) always has
a unique equilibrium point. It can be shown that the right-hand side of (19a) is increasing with respect to
increasing J for all fixed x ∈ [0, 1

2J ), and the right-hand side of (19b) is decreasing with respect to increasing
J for all fixed x ∈ [0, 1

2J ). Thus, since the absolute value of the right-hand sides of both (19a) and (19b) are
increasing, a system that exhibits multiple equilibrium points when J = 0 and fails (19) may satisfy (19)
when J > 0 and always have one equilibrium point.

6.2 Genetic Cascades

Cascades are one of the most common genetic networks in both natural [39] and engineered systems [9]. We
consider a two-node cascade shown in Figure 3 in which protein x1 either activates (Figure 3a) or represses
(Figure 3b) the production of protein x2. The experimentally verified model [13] with perturbations in
production resources in the form of (7) is given as

x1 x2 x1
(b)(a)

u u x2

Figure 3: Diagram of two-node cascade network: (a) Activation cascade (b) Repression cascade

ẋ1 = F1(u)
[
1 + µ

(
1

1+J1F1(u)+J2F2(x1) − 1
)]
− x1, (20a)

ẋ2 = F2(x1)
[
1 + µ

(
1

1+J1F1(u)+J2F2(x1) − 1
)]
− x2, (20b)

10



where Fi(z) = 1+aiz
ni

1+bizni
with positive constants ai, bi, and ni for i = 1, 2. Comparing (20) with (7) gives

h(x) = [F1(u), F2(x1)]T , α(x) = [1,1]T

1+J1F1(u)+J2F2(x1) , λ∗ = 0, Λ = diag([1, 1]). In this example, λ∗ = 0 so we

will simplify notation of the sets Aµ,λ and Sµ,λ to Aµ and Sµ, respectively. The determinant of the Jacobian
of (20) is given as

det

(
∂fµ
∂x

)
= 1 + µ

F1(u)F ′2(x1)

(1 + J1F1(u) + J2F2(x1))2
. (21)

It can be seen from (21) that if F ′2(·) ≥ 0, then choosing Aµ = R2
≥0, and Aµ contains all equilibrium points

and det
(
∂fµ
∂x

)
> 0 for all x ∈ Aµ since all terms in (21) are nonnegative. Under these conditions, ẋ = f1(x)

and ẋ = f0(x) have the same number of equilibrium points by Theorem 2. These conditions physically
correspond to activation of x2 by x1, so a two-protein activation cascade with perturbations in production
resources always has one equilibrium point.

We now investigate whether a repression cascade where F ′2(·) < 0 is guaranteed to have one equilibrium
point for any parameters using Theorems 2 and 4. Note that when µ = 0, the system (20) becomes
ẋ1 = F1(u) − x1; ẋ2 = F2(x1) − x2. The equilibrium point is easily shown to be unique and is given as
x1 = F1(u);x2 = F2(F1(u)) due to the cascade structure of the system. Additionally, (20) with µ = 0
satisfies the conditions of Theorem 4. Choose Aµ = {x ∈ R2

≥0 : x2
1 + x2

2 ≤ F1(u)2 + F2(F1(u))2}. Note that,

no equilibrium points exist in the set {x ∈ R2
≥0 : x2

1 + x2
2 > F1(u)2 + F2(F1(u))2} since F1(·) and F2(·) are

bounded. Now, the Jacobian of (20) is negative definite over Aµ if

−µF1(u)F ′2(x1) <(1 + J1F1(u) + J2F2(x1))2, (22a)

4 + 4µβF ′2(x1) >α(F ′2(x1))2 (22b)

for all x ∈ Aµ (derived using the principal minors), where β = F1(u)
(1+J1F1(u)+J2F2(x1))2 and α = (1− µ

J1F1(u)+2J2F2(x1)+(J1F1(u)+J2F2(x1))2

(1+J1F1(u)+J2F2(x1))2

)2

. Note that (22a) is always satisfied whenever F ′2(x1) > −1 (using

the fact that 0 < F1(·) ≤ 1). Additionally, solving the quadratic equation in (22b) for F ′2(·) by using the fact
that since 0 < F1, F2 ≤ 1, then 0 < β ≤ 1, and 0 ≤ α < 1, we can guarantee that (22b) is satisfied whenever
2 − 2

√
2 < F ′2(x1) < 2 over Aµ. The lower bound is found by maximizing the negative root of (22b) over

α, β, µ ∈ [0, 1], while the upper bound is found by minimizing the positive root of (22b) over α, β, µ ∈ [0, 1]
(i.e. worst case parameters). Then, if F ′2(x1) satisfies this condition, the equilibrium point is unique and
contained in the set {x ∈ R2

≥0 : x2
1 + x2

2 ≤ F1(u)2 + F2(F1(u))2} for all µ ∈ [0, 1] by Theorem 4. Combining
with the previous result that the equilibrium point is unique when F ′2(x1) > 0, (20) is guaranteed to have
one equilibrium point for any set of parameters when F ′2(x) > 2− 2

√
2 for all x ∈ R≥0.

It was shown in [33] that a two-node repression cascade may have multiple equilibrium points. We
have shown that the number of equilibrium points of an activation cascade is more robust to production
resource fluctuations than that of a repression cascade. Therefore, if we seek to design a genetic cascade with
increasing input/output response, choosing activations is a more robust strategy than choosing repressions.
Additionally, the number of equilibrium points of cascades is more robust to production resource fluctuations
if the maximum of the function |F ′2(·)| is small.

We now assume that F ′2(·) < 0 in (20). Observe that if

sup
x≥0
{−F ′2(x)} < min

µ∈[0,1]

{
inf

u,x1≥0

{
(1 + J1F1(u) + J2F2(x1))2

µF1(u)

}}
, (23)

then (21) is strictly positive for all x ∈ R2
≥0 and all µ ∈ [0, 1]. The right hand side of (23) is a strictly

decreasing function in µ with the minimum occurring at µ = 1. Then, when µ = 1, note that x1 =
F1(u)

1+J1F1(u)+J2F2(x1) at the equilibrium point, so substituting and simplifying, we have

sup
x≥0
{−xF ′2(x)} < inf

u,x1≥0
{1 + J1F1(u) + J2F2(x1)} . (24)

By substituting parameters for F1(z) = 1+a1z
n1

1+b1zn1
and F2(z) = 1+a2z

n2

1+b2zn2
in (24) from Appendix B.2, (24) is

equivalent to
n2

4

(
1− a2

b2

)
< 1 + J1 min

{
a1

b1
,
b1
a1

}
+ J2

a2

b2
. (25)
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where a1, b1 are parameters belonging to F1(·) and a2, b2, n2 are parameters belonging to F2(·). If (24) or
(25) is satisfied, then by Theorem 2 with λ∗ = 0 and Aµ = R2

≥0, (20) has a single equilibrium point. In fact,
we can exploit the form of the system to find a tighter set. Observe that since

F1(u)

[
1 + µ

(
1

1 + J1F1(u) + J2F2(x1)
− 1

)]
≤ F1(u) ≤ 1 (26a)

F2(x1)

[
1 + µ

(
1

1 + J1F1(u) + J2F2(x1)
− 1

)]
≤ F2(F1(u)) ≤ 1 (26b)

then any equilibrium point must reside in the set {x ∈ R2
≥0 : x1 ≤ F1(u), x2 ≤ F2(F1(u))}. This is a smaller

set than {x ∈ R2
≥0 : xTx ≤ F1(u)2 + F2(F1(u))2}, given by Theorem 4. Thus, if

max
0≤x≤F1(u)

{−xF ′2(x)} < inf
0≤x≤F1(u)

{1 + J1F1(u) + J2F2(x1)} , (27)

and, if b2 < F1(u), equivalently

n2

4

(
1− a2

b2

)
< 1 + J1 min

{
a1

b1
,
b1
a1

}
+ J2

1 + a2

1 + b2
, (28)

while if b2 > 1, then (27) is equivalent to (25). By Theorem 2, choosing Aµ = {x ∈ R2
≥0 : x1 ≤ F1(u), x2 ≤

F2(F1(u))}, and observing that (27) guarantees det
(
∂fµ
∂x

)
> 0 over Aµ for all µ ∈ [0, 1], then ẋ = f0(x) and

ẋ = f1(x) both have a single unique equilibrium point in the positive orthant.
Now, we use Theorem 3 to find conditions under which (20) has multiple equilibrium points if these exist.

Suppose that
sup
x≥0
{−xF ′2(x)} > sup

u,x1≥0
{1 + J1F1(u) + J2F2(x1)} , (29)

or, equivalently, substituting F1(z) = 1+a1z
n1

1+b1zn1
and F2(z) = 1+a2z

n2

1+b2zn2
from Appendix B.2,

n2

4

(
1− a2

b2

)
> 1 + J1 + J2, (30)

then it is guaranteed that there exists some x ∈ R2
≥0 such that det

(
∂f1(x)
∂µ

)
< 0. Choose B1 = {x ∈ R2

≥0 :

−x1F
′
2(x1) > 1 + J1F1(u) + J2F2(x1)}. From (21) and Theorem 3, if there exists an equilibrium point of

(20) with µ = 1 in B1, then (20) has multiple equilibrium points. This may be accomplished by choosing u
such that x1 = 1

b2
(which is guaranteed to exist if b2 > 1 + J1 + J2 since supu≥0{F1(u)} = 1). Then (20) has

multiple equilibrium points for this value of u by Theorem 3.
We simulated this system with and without resource perturbation effects. Under certain parametric

conditions, the system exhibits multiple equilibrium points when resource perturbations are considered.
Results of the simulation are shown in Figure 4. Note that the parameters used fail the condition in (28)
(meaning we cannot guarantee the system has one equilibrium point) but also the parameters do not satisfy
(30).

We have shown that the number of equilibrium points of an activation cascade is more robust to production
resource fluctuations than that of a repression cascade. Therefore, if we seek to design a genetic cascade with
increasing input/output response, choosing activations is a more robust strategy than choosing repressions.
Additionally, the number of equilibrium points of cascades is more robust to production resource fluctuations
if the maximum slope of the function F2(·) is small. Conversely, if one wishes to create a cascade with multiple
equilibrium points due to production resource perturbations, this is guaranteed to be possible in a repression
cascade for some parameter conditions if (30) is satisfied for some value of u.

6.3 Genetic Cascade with Degradation Resource Perturbations due to microRNA

This example illustrates how our results can be applied to systems with dimension higher than two. Mi-
croRNA (miRNA) are short RNAs that may bind to sites on mRNA, and with the help of a protein complex
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Figure 4: Simulation of repression cascade in (1) and (2) showing differing steady state landscapes due to
resource perturbations. In the schematic, a represents repression. Parameters used for the simulation are

F1(u) = 1+2·10−7u
1+0.1u and F2(x1) =

1+0.02x4
1

1+2·105x4
1
, J1 = 0.25, and J2 = 2.5.

known as argonaute, degrade the mRNA transcript [40]. MiRNAs are conserved throught this process, and
so may be considered a shared resource. MiRNAs have proven to be important in natural genetic systems
as well as engineered genetic circuits [41], [42]. We consider a system in which a microRNA degrades the
mRNAs of two proteins in a cascade, shown in Figure 5. The set of equations governing this system and

x1 x2

m2
m1

u

q1

q2
microRNA

Figure 5: Diagram of a genetic cascade with mRNA degradation by microRNA.

derived in Appendix B.3 and nondimensionalized as in Appendix B.1 are given as

ṁ1 = T1F1(u) + λq1(m1,m2)− γm1 (31a)

ẋ1 = m1 − x1 (31b)

ṁ2 = T2F2(x1) + λq2(m1,m2)− γm2 (31c)

ẋ2 = m2 − x2 (31d)

where m1 and m2 represent the concentration of mRNAs, x1 and x2 represent the concentration of proteins,
F1(·) and F2(·) are normalized nondimensionalized positive monotonic functions, u is the external input to
m1, and γ represents the ratio of the rate of dilution of mRNA to the rate of dilution of proteins. Additionally,
q1 and q2 represent degradation of m1 and m2 due to miRNA, respectively, and have the form

qi(m1,m2) =
−kimi

1 +
2∑
j=1

mj

for i = 1, 2,
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where ki is proportional to rate of degradation of the mRNA by microRNA. Then q1 and q2 have the following
properties:

qi ≤0 and (32)

∂qi
∂mj

=

{
< 0 if i = j

> 0 if i 6= j
(33)

Then (31) has the form of (7) with h(x) = [F1, 1, F2, 1]T , µ∗ = 0, g(x) = [q1, 0, q2, 0]T , and Λ = diag([γ, 1,
γ, 1]). Additionally, when λ = 0, (31) is bounded by Proposition 1, and (31) satisfies the conditions in
Lemma 2. The Jacobian of (31) is given as

∂fλ
∂x

=


λ ∂q1
∂m1
− γ 0 λ ∂q1

∂m2
0

1 −1 0 0

λ ∂q2
∂m1

T2F
′
2(x1) λ ∂q2

∂m2
− γ 0

0 0 1 −1

 , (34)

and The determinant of the Jacobian is given as

det

(
∂fλ
∂x

)
= −λ ∂q1

∂m2
T2F

′
2(x1) +

(
γ − λ ∂q1

∂m1

)(
γ − λ ∂q2

∂m2

)
− λ2 ∂q1

∂m2

∂q2

∂m1︸ ︷︷ ︸
>0

(35)

and the second and third terms are positive for all λ ∈ [0, 1] since λ2
(
∂q1
∂m1

∂q2
∂m2
− ∂q1

∂m2

∂q2
∂m2

)
= λ2k1k2

(1+m1+m2)3 ≥

0. Note that whenever λ = 0, det
(
∂fλ
∂x

)
> 0. Then, if F ′2(x1) ≤ 0, this system exhibits one equilibrium

point by Theorem 2 choosing Aλ = R4
≥0, since all terms in det

(
∂fλ
∂x

)
are positive. Additionally, if

F ′2(x) <
γ

T2

(
γ + λ

∣∣∣∣ ∂q1

∂m1

∣∣∣∣+ λ

∣∣∣∣ ∂q2

∂m2

∣∣∣∣)(λ ∂q1

∂m2

)−1

︸ ︷︷ ︸
>0

(36)

for all x ∈ R4
≥0, then there does not exist a region in the positive orthant where the determinant of the

Jacobian is zero. Thus, by Theorem 2, it is guaranteed that perturbations due to microRNA cannot cause a
change in the number of equilibrium points in a two-node repression cascade, and it is not possible for the
number of equilibrium points of a two-node activation cascade to change due to microRNA perturbations
unless the slope of F2(x) is large enough, corresponding to very strong activation.

6.4 General Considerations for the Application of Results

We now summarize a recipe for use of the results in Section 3 in the design of engineered circuits and analysis
of natural systems.

1. If the user can verify that the determinant of the Jacobian is nonzero over the entire positive orthant,
then by choosing Aµ,λ = Rn≥0, Theorem 2 may be applied, proving that (7) has the same number of
equilibrium points in the positive orthant for any µ, λ ∈ [0, µ∗]× [0, λ∗].

2. If there does exist at least one point in the positive orthant in which the determinant of the Jacobian
is zero, then one must find a set Aµ,λ containing all the equilibrium points over which the determinant
of the Jacobian is nonzero. This may be done by bounding the region in which a particular equilibrium
point resides. If such an Aµ,λ exists, then Theorem 2 may be applied. Theorem 4 may be used for
guidance in the choice of Aµ. By bounding the location of the equilibrium points and choosing this set
as Aµ,λ allows one to perform this check in an analytically tractable manner. Additionally, systems
may be designed such that Aµ,λ is as large as possible to provide increased robustness.
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3. If the set Aµ,λ is not easily found, and the nominal system (µ = λ = 0) has one equilibrium point,
then one may be able to find the set Bµ∗,λ∗ , which contains at least one equilibrium point when
µ = µ∗, λ = λ∗ over which sign of the determinant of the Jacobian is opposite that of the sign of the
determinant of the Jacobian evaluated at equilibrium point in the nominal system. Then, Theorem 3
applies guaranteeing that the number of equilibrium points is different when µ = µ∗, λ = λ∗ versus
µ = λ = 0. It is usually most straightforward to choose Bµ∗,λ∗ as the set where the sign of the Jacobian
is different than that of the sign of the determinant of the Jacobian evaluated at the equilibrium
point when µ = λ = 0. Then one may verify that an equilibrium point is in the set Bµ∗,λ∗ when
µ = µ∗, λ = λ∗.

4. If none of the above approaches are possible, one may use brute force numerical solution techniques
along with bifurcation software to solve the system.

7 Discussion

The number of equilibrium points is an important qualitative property of dynamical systems. In this paper,
we developed a theoretical framework to determine algebraic conditions under which the number of equilib-
rium points of a positive dynamical system changes when state-dependent perturbations are considered. Our
results allow for the analysis of this problem without having to explicitly find the equilibrium points, thus
allowing us to determine parametric conditions under which the number of equilibrium points of a nominal
system and a perturbed system differ.

We applied our tools to genetic networks as a specific application example. State-dependent perturbations
such as arising from fluctuations in available resources have recently appeared as a major problem to our
ability of predicting a genetic network’s behavior. We have illustrated our results on a genetic toggle
switch and on a genetic cascade to show how to determine parameter conditions under which the number of
equilibrium points of the nominal and perturbed systems are guaranteed to be the same or to differ. These
conditions allow us to both design networks in a way such that they are robust to perturbations in resources,
and to select the most robust network topologies.
Acknowledgments: The authors would like to thank Muhammad Ali Al-Radhawi for his helpful comments
and for proofreading the paper. The authors would also like to thank our funding source: NSF-Expeditions
Award #1522074.
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[37] M. Fečkan, Bifurcation of Chaotic Solutions, ser. Topological Fixed Point Theory and Its Applications
5. Springer Netherlands, 2008, DOI: 10.1007/978-1-4020-8724-0 4, isbn: 978-1-4020-8723-3 978-1-4020-
8724-0.

[38] I. Sandberg, “Global implicit function theorems,” IEEE Transactions on Circuits and Systems, vol. 28,
no. 2, pp. 145–149, Feb. 1981, issn: 0098-4094.

[39] U. Alon, “Network motifs: Theory and experimental approaches,” Nat Rev Genet, vol. 8, no. 6, pp. 450–
461, Jun. 2007, issn: 1471-0056.

[40] C. Ender and G. Meister, “Argonaute proteins at a glance,” J Cell Sci, vol. 123, no. 11, pp. 1819–1823,
Jun. 2010, issn: 0021-9533, 1477-9137.

[41] J. M. Schmiedel, S. L. Klemm, Y. Zheng, A. Sahay, N. Blüthgen, D. S. Marks, and A. van Oudenaarden,
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A Additional Proofs and Mathematical Background

Definition 7. A point x0 ∈ Rn is an isolated zero of a vector field f : Rn → Rn if f(x0) = 0 and there
exists an ε > 0 such that x0 is the only point in the ball B(x0, ε) satisfying f(x) = 0.
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Definition 8. Let Ω and f be as in Definition 2 and suppose f has only isolated zeros. Let xi be a zero of
f and Ωi be a sufficiently small open and bounded neighborhood of xi ∈ Ωi such that xi is the only solution
of f(x) = 0 in Ωi, then the index of an isolated zero of f is Φ(f, xi) = deg(f,Ωi).

Note that the index essentially is the sign of the determinant of the Jacobian of f evaluated at each zero
of f ; however, since the degree is defined over a set Ω, the index is as well. We now state two results related
to degree theory that will be used in later proofs. Lemma 3 connects the definition of degree evaluated over
a bounded domain with the number of zeros of the vector field in that domain.

Lemma 3. Let Ω ⊂ Rn, f : Ω → Rn be a C1 vector field, and suppose that det
(
∂f
∂x (x)

)
6= 0 for all

x ∈ f−1(0). Then the number of zeros of f in Ω is equal to the sum of the absolute values of the indexes of
f in Ω, i.e. n =

∑
i |Φ(f, xi)|.

Proof. The proof follows by Definitions 2 and 8. Since det
(
∂f
∂x (x)

)
6= 0 for all x ∈ f−1(0), all zeros

of f are isolated by the Inverse Function Theorem [43] and Definition 8 may be applied. Note that

n =
∑

x∈f−1(0)

∣∣∣sign
(

det
(
∂f
∂x (x)

))∣∣∣ =
∑
i |Φ(f, xi)| since |sign(z)| = 1 for any z 6= 0 which is assumed in

Definition 2. �

Proof of Lemma 1. Choose a fixed λ∗ > 0 and let n denote the cardinality of S0. Suppose that det
(
∂fλ(x)
∂x

)
6=

0 for each xλi ∈ Sλ for every λ ∈ [0, λ∗], then n is finite since all zeros are isolated. Partition the interval
[0, λ∗] into N subintervals according to P = {0 = λ0, λ1, . . . , λN−1, λN = λ∗}. Consider the kth subinterval
[λk, λk+1], where λk is fixed and λk+1 will be chosen later. For λk and for each xλki ∈ Sλk , there exists

an open ball Ωλki = B(xλki , εki ) containing the zero xλki such that xλki is the unique solution of fλk(z) = 0

for z ∈ Ω
λk
i by the Inverse Function Theorem [43]. Note that xλi is continuous, since fλ is continuous

with respect to λ. Choose λk+1 such that for all λ ∈ [λk, λk+1], xλi ∈ Ωλki for all i = 1, . . . , n since xλi is

continuous. Apply Lemma 3 to each Ωλki since each zero is isolated, contained in Ωλki , and the index for each
xλi is nonzero for all λ ∈ [λk, λk+1]. Then, for all λ ∈ [λk, λk+1], the cardinality of the set Sλ is constant and
equal to n. Note that, by Theorem 1, if any zeros appear, they must appear from a degenerate zero, since
the degree over any domain with no zeros on the boundary is constant. Repeat over each subinterval until
λN = λ∗. Then the cardinality of Sλ is constant and equal to n for all λ ∈ [0, λ∗]. �

Lemma 4. For any positive invariant vector fields f : Rn → Rn and g : Rn → Rn and for nonnegative
scalars, a, b ∈ R≥0, af(x) + bg(x) is positive invariant. Furthermore, for nonnegative vectors c, d ∈ Rn≥0,
c� f(x) + d� g(x) is positive invariant.

Proof. We show that h1(x) = af(x)+bg(x) is a positive invariant vector field for positive constants a, b ∈ R≥0.
Consider the boundary of the positive orthant, ∂Rn≥0 = {x : xi = 0 and x ≥ 0 for each i = 1, . . . , n}. Since
f(x) ≥ 0 and g(x) ≥ 0 for all x ∈ ∂Rn≥0 and a, b > 0, then af(x) + bg(x) ≥ 0 for all x ∈ ∂Rn≥0. Thus, h1(x)
is positive invariant. Similarly, for c, d ∈ Rn≥0, h2(x) = c � f(x) + d � g(x) is positive invariant, since on
f(x) ≥ 0 and g(x) ≥ 0 for all x ∈ ∂Rn≥0 and c, d ≥ 0, then c� f(x) + d� g(x) ≥ 0 for all x ∈ ∂Rn≥0. Thus,
h2(x) is positive invariant. �

Proof of Lemma 2. We first show that (7) is positive invariant. Since h(x), g(x), and −Λx are C1 positive
invariant functions, α(x) is C1, and 0 < α(x) ≤ 1 for x ∈ Rn≥0, it follows that µ(α(x) − 1) + 1 > 0 for any

µ ∈ [0, 1]. Then fµ,λ(x) is C1 positive invariant for all µ, λ ∈ [0, 1]× [0,∞) by Lemma 4. This proves (a).
Next, to prove (b), we construct a bounded domain, Ω, over which we will consider the set of equilibrium

points of (7) in the positive orthant. To construct Ω, choose an m > 0 such that m · g(x) ≤ 0, which can
be done since g is mass dissipating. Now, by assumption, x(t) is bounded for the system ẋ = h(x)− Λx, so
Λx(t) is also bounded for all t ≥ 0. Furthermore, m · (Λx(t)) is finite. Choose M > sup

t≥0
{m · (Λx(t))}. We

now define Ω = {x ∈ Rn>0 : m · (Λx) < M}. We prove that fµ,λ has no zeros on the boundary of Ω. We
first observe that fµ,λ(x) has no zeros on the sides of Ω : {x : xi = 0 and x ≥ 0 for each i = 1, . . . , n} for all
µ, λ ∈ [0, 1]× [0,∞) since h(x) has no zeros in the set ∂Rn≥0 = {x : xi = 0 and x ≥ 0 for each i = 1, . . . , n}
and both g(x) and −Λx are positive invariant and α(x) > 0. Now, we show that fµ,λ has no zeros on the
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boundary defined by {x : m · (Λx) = M} and no zeros in the positive orthant outside of Ω. To this end,
consider

m · fµ,λ =m · (h� [1+ µ(α(x)− 1)]) +

m · λg −m · (Λx)

m · fµ,λ =m · (µ(α− 1)� h) +m · h+m · λg−
m · Λx.

Since α ≤ 1, then m · (µ(α− 1)� h) ≤ 0. It then follows that m · fµ,λ ≤ m · h + m · λg − m · (Λx).
Furthermore, since g is mass dissipating with respect to m, we have m · g ≤ 0 and m ·fµ,λ ≤ m ·h−m · (Λx).
Since M > sup

t≥0
{m · (Λx(t))}, this implies that supt{m · h(x(t))} < M . Then, for {x : m · (Λx) ≥ M},

we have m · fµ,λ ≤ m · h(x) − m · (Λx) ≤ m · h(x) − M < 0. So m · fµ,λ < 0 for all points on the
outer boundary of Ω : {x : m · (Λx) = M} for all µ, λ ∈ [0, 1] × [0,∞) since m is a positive vector.
This implies that fµ,λ has no zeros on the boundary of Ω for any µ, λ ∈ [0, 1] × [0,∞). Similarly, since
m · fµ,λ(x) < 0 for all x ∈ {x : m · (Λx) > M}, then there exist no zeros in the positive orthant outside
of Ω for any µ, λ ∈ [0, 1] × [0,∞). Therefore the interior Ω contains all zeros in the positive orthant for all
µ, λ ∈ [0, 1]× [0,∞). This proves (b).

To prove (c), we will find deg(fµ,λ,Ω). Note that by Theorem 1, deg(fµ,λ,Ω) = deg(f0,0,Ω) where
f0,0(x) = h(x)−Λx. Since x(t) is bounded, Ω is compact, and, since h(x) is continuous over Ω, then h(x(t))
is bounded over Ω. We can rewrite h(x) as h(x) = c � β(x) where β : Rn → Rn is C1, 0 < β(x) ≤ 1

for all x ∈ Rn≥0, and ci = sup
x≥0
{hi(x)} for each i = 1, . . . , n. We now define the auxiliary function f̂ν(x) =

c � [1+ ν(β(x)− 1)] − Λx with parameter ν ∈ [0, 1]. Then f̂1(x) = f0,0(x) and f̂0(x) = c − Λx, which is

linear. Since 0 < β(x) ≤ 1 and c > 0, then f̂ν is positive invariant and has no zeros on the boundary of Ω, as

shown previously. Additionally, f̂0(x) has one zero in Ω, namely x = Λ−1c, and the Jacobian is ∂f̂0
∂x = −Λ.

Then det
(
∂f̂0
∂x

)
=
∏n
i=1(−Λii) and sign

(
det
(
∂f̂0
∂x

))
= (−1)n so deg(f̂0(x),Ω) = (−1)n by Definition 2.

Then, by Theorem 1, deg(fµ,λ,Ω) = deg(f0,0,Ω) = deg(f̂1,Ω) = deg(f̂0,Ω) = (−1)n. Furthermore, Sµ,λ 6= ∅
by Definition 2. This proves (c). �

Proposition 1 illustrates that given a dynamical system in the form of (3) or (4), if the dynamics may be
decomposed into the form of (37), then it is bounded, even if h(x) in (3) is not necessarily bounded.

Proposition 1. Consider a system of the form

ẋ1 = h1(x1, x2)− Λ1x1 (37a)

ẋ2 = h2(x1)− Λ2x2 (37b)

where x1 ∈ Rm, x2 ∈ Rp, h1 : Rm × Rp → Rm and h2 : Rm → Rp are continuous, positive vector fields and
h1 is bounded over Rm≥0, while h2 is not necessarily bounded. Additionally, Λ1,Λ2 are diagonal matrices with
strictly positive diagonal entries. Then, the dynamical system (37) is bounded.

Proof. Note that (37) is positive invariant since h1, h2 > 0 for all x1, x2 > 0. Then x1 is bounded since h1 is
bounded so there exists a T ∈ R≥0 such that for all t > T , x1(t) ≤ sup

x
{Λ−1

1 h1(x)}. Since h2 is continuous and

depends only on x1, then h2(x1(t)) is bounded for bounded x1. Therefore, x2(t) ≤ sup
t
{Λ−1

2 h2(x1(t))} <∞
and all trajectories in the positive orthant are bounded. Thus the dynamical system is bounded. �
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B Background on Biomolecular ODE Models

B.1 Nondimensionalization of Biomolecular ODEs

We consider systems that have the form [33], [34]

ẋi = TiFi(x)︸ ︷︷ ︸
hi(x)

1

1 +
m∑
j=1

JjFj(x)︸ ︷︷ ︸
αi(x)

−
kPtot

xi
Ki

1 +
m∑
k=1

xk
Kk︸ ︷︷ ︸

gi(x)

−δxi, (38)

where x ∈ Rm represents the concentration of all proteins in the system, Fi(x) is a normalized Hill function
in the form 1+axn

1+bxn for positive constants a, b, and n, Ti represents a scaling of Fi, and Jj scales the resource
usage by each protein, which appears in the denominator of hi(x)αi(x) for each i = 1, . . . ,m.

It will be helpful to first nondimensionalize (38) to simplify our analysis, eliminating any free parameters.
Throughout the nondimensionalization process, we denote nondimensional quantities with ∗. By choosing
the nondimensional concentration x∗i = δ

Ti
xi and nondimensional time t∗ = δ · t, then (38) becomes

dx∗i
dt∗

=
1

Ti

dxi
dt

=
Fi(T� x∗/δ)

1 +
∑
j JjFj(T� x∗/δ)

− kPtotx
∗
i /(δKi)

1 +
∑
k x
∗
kTk/(Kkδ)

− x∗i (39)

For simplicity, we consider single input Hill functions, F (·); however, this may easily be extended to Hill
functions with multiple inputs [33]. The nondimensional Hill function is defined as

F ∗i (x∗) = Fi(T� x∗/δ) =


1+ai(Ti/δ)

nix∗
i
ni

1+bi(Ti/δ)nix∗
i
n if ai ≤ bi(

bi
ai

)
1+ai(Ti/δ)

nix∗
i
ni

1+bi(Ti/δ)nix∗
i
ni

if ai > bi
. (40)

Define the nondimensional constants

a∗i = ai(Ti/δ)
ni

b∗i = bi(Ti/δ)
ni ,

where Ti corresponds to the input state xi. Then, the nondimensionalized Hill function is given as

F ∗i (x) =


1+a∗i x

∗ni

1+b∗i x
∗
i
ni

if a∗i ≤ b∗i(
b∗i
a∗i

)
1+a∗i x

∗
i
ni

1+b∗i x
∗
i
ni

if a∗i > b∗i
. (41)

Additionally, define the nondimensional constants k∗i = kPtot
δKi

and K∗i = Ti
Kiδ

for i = 1, . . . ,m. This gives the
nondimensionalized version of (38) as

dx∗i
dt∗

=
F ∗i (x∗)

1 +
m∑
j=1

JjF ∗j (x∗)︸ ︷︷ ︸
hi(x)αi(x)

− k∗i x
∗
i

1 +
m∑
k=1

x∗kK
∗
k︸ ︷︷ ︸

gi(x)

−x∗i . (42)

An alternative method of nondimensionalization may be performed by choosing the nondimensional
concentration x∗i = xi/Ki where Ki is a Michaelis-Menten constant and nondimensional time is t∗ = t · δ.
Then, the nondimensional model is given as

dx∗i
dt∗

=
T ∗i F

∗
i (x∗)

1 +
m∑
j=1

JjF ∗j (x∗)︸ ︷︷ ︸
hi(x)αi(x)

− k∗i x
∗
i

1 +
m∑
k=1

x∗k︸ ︷︷ ︸
gi(x)

−x∗i . (43)

In the examples, we drop the ∗ for clarity of presentation.
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B.2 Background on Hill Functions

Here we state some useful properties of the standard Hill function commonly used in modeling mRNA or
protein production in biomolecular models [9], [10]. These properties are utilized in Section 6. We consider
single input Hill function models; however, similar results may be derived in a straightforward manner for
multiple inputs. We assume all Hill functions have the form

F (x) =


1 + axn

1 + bxn
if a ≤ b(

b

a

)
1 + axn

1 + bxn
if a > b

(44)

for positive constants a, b, n. Then, the derivative of the Hill function with respect to its argument is

F ′(x) =


(a−b)nxn−1

(1+bxn)2 if a ≤ b(
b
a

) (a− b)nxn−1

(1 + bxn)2
if a > b

. (45)

Observe that F (·) has the following properties:

1. 0 < F (·) ≤ 1 for all positive arguments

2. F (·) is monotonic. Strictly increasing if a > b and strictly decreasing if a < b.

3. sup
x≥0

F (x) = 1

4. inf
x≥0

F (x) = min{ab ,
b
a} ≤ 1.

Additionally, arg max
x≥0
|xF ′(x)| = b−1/n and


min
x≥0
{xF ′(x)} =

n

4

(a
b
− 1
)
≤ 0 if a ≤ b

max
x≥0
{xF ′(x)} =

n

4

(
1− b

a

)
> 0 if a > b

(46)

If we consider only the domain x ∈ [0, 1] and b < 1, then arg max
x∈[0,1]

|xF ′(x)| = 1 and


min
x∈[0,1]

{xF ′(x)} =
n(a− b)
(1 + b)2

≤ 0 if a ≤ b

max
x∈[0,1]

{xF ′(x)} =

(
b

a

)
n(a− b)
(1 + b)2

> 0 if a > b
(47)

B.3 Modeling microRNA Dynamics

We begin with the chemical reactions. We consider a system in which n different mRNAs are produced and
degraded by a single microRNA modeled by the following chemical reactions [40], [44]

µ+ A
a−⇀↽−
d

R ∅
Hi(x)−−−−⇀↽−−−−
δ

mi (48a)

mi + R
ai−⇀↽−
di

Ci
k−→ R mi

α−→ mi + xi. (48b)

Here µ is a microRNA, A is the argonaute protein, R is the RNA induced silencing complex (RISC) formed
from the microRNA and argonaute, mi is the mRNA, and Ci is the complex formed from RISC and mRNA,
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Hi(x) is the production rate of mRNA which depends on the concentration of proteins, x for each i = 1, . . . , n.
Then, using the law of mass action, this becomes the set of ordinary differential equations

ẋi = αmi − δxi (49a)

ṁi = Hi(x)− aimiR+ diCi − δmi (49b)

Ċi = aimiR− (di + ki + δ)Ci (49c)

We assume that the argonaute protein is non-limiting and so its dynamics and the dynamics of the miRNA
loading into RISC are neglected. Assuming that the dynamics for the complexes are much faster than for
mRNA and protein dynamics (quasi-steady state assumption), and noting that R is conserved

Ci =
Rmi

Ki
(50a)

Rtot = R+
∑

Ci (50b)

R =
Rtot

1 +
∑
j
mj
Kj

(50c)

whereKi = di+ki
ai

is the Michaelis-Menten binding constant. Then, substituting (50) into (49) and simplifying
we arrive at the desired, reduced dynamics

ṁi = Hi(x)− kRtotmi/Ki

1 +
∑
j
mj
Kj

− δmi (51)

ẋi = αmi − δxi. (52)
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