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SUMMARY

We present a method for automatically discovering
signaling pathways from time-resolved phosphopro-
teomic data. The Temporal Pathway Synthesizer
(TPS) algorithm uses constraint-solving techniques
first developed in the context of formal verification
to explore paths in an interaction network. It system-
atically eliminates all candidate structures for a
signaling pathway where a protein is activated or
inactivated before its upstream regulators. The algo-
rithm can model more than one hundred thousand
dynamic phosphosites and can discover pathway
members that are not differentially phosphorylated.
By analyzing temporal data, TPS defines signaling
cascades without needing to experimentally perturb
individual proteins. It recovers known pathways and
proposes pathway connections when applied to the
human epidermal growth factor and yeast osmotic
stress responses. Independent kinase mutant
studies validate predicted substrates in the TPS os-
motic stress pathway.

INTRODUCTION

High-throughput proteomic assays illuminate the amazing

breadth and complexity of the signal transduction pathways

that cells employ to respond to extracellular cues. These tech-

nologies can quantify protein abundance or post-translational

modifications (PTMs). Mass spectrometry, in particular, offers

a broad view of PTMs, including phosphorylation, ubiquitination,

acetylation, and methylation (Choudhary and Mann, 2010), and

is not restricted to a predefined list of proteins. Here, we show
Cell Repo
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how to discover new facets of signaling cascades from complex

proteomic data by integrating observed PTMs with existing

knowledge of protein interactions.

Many gaps persist in our understanding of phosphorylation

signaling cascades. For example, our mass spectrometry exper-

iments show that nearly all proteins that are significantly (de)

phosphorylated when the epidermal growth factor receptor

(EGFR) is stimulated are absent from EGFR pathway maps.

The low overlap is consistent with previous temporal phospho-

proteomic studies of mammalian signaling (Cao et al., 2012;

D’Souza et al., 2014; Humphrey et al., 2015). Discordance be-

tween mass spectrometry studies and pathway databases can

be caused by extensive crosstalk among pathways (Bauer-Meh-

ren et al., 2009), context-specific interactions (Hill et al., 2017),

cell- and tissue-specific protein abundance (Kim et al., 2014),

and signaling pathway rewiring (Pawson and Warner, 2007).

Network inference algorithms can explain the phosphorylation

events that lie outside of canonical pathways and complement

curated pathway maps. Specialized algorithms model time se-

ries data, which inform the ordering of phosphorylation changes

and support causal instead of correlative modeling (Bar-Joseph

et al., 2012). Temporal protein signaling information can be used

to reconstruct more accurate and complete networks than a sin-

gle static snapshot of the phosphoproteome.

A complementary challenge to interpreting off-pathway phos-

phorylation is that the cellular stimulus response includes mech-

anisms that are not captured in phosphoproteomic datasets.

There is an interplay between phosphorylation changes and

other integral parts of signaling cascades. Phosphorylation can

affect protein stability, subcellular localization, and recognition

of interaction partners (Newman et al., 2014). Phosphoproteomic

studies measure only one type of PTM, and not all phosphory-

lated proteins are detected by mass spectrometry. Additional

information is required to infer comprehensive signaling cas-

cades that include non-differentially phosphorylated proteins.
rts 24, 3607–3618, September 25, 2018 ª 2018 The Authors. 3607
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Figure 1. TPS Workflow

First, the PPI graph is combined with the phos-

phorylation data to obtain a condition-specific

network (step 1.1). This step does not model the

temporal information and instead uses the phos-

phorylation peak, the highest magnitude fold

change. Separately, the time series data are

converted into discrete timed signaling events

(step 1.2). TPS then defines a space of models

that agree with the data by transforming the

timed events, undirected network topology, and

prior knowledge (kinase-substrate interaction di-

rections in this study) into a set of constraints (step

2). It summarizes the solution space by computing

the union of all signed, directed graph models that

satisfy the given constraints (step 3). The final

pathway model predicts how a subset of generic

physical protein interactions coordinates to

respond to a specific stimulus in a particular

cellular context.
Protein-protein interaction (PPI) networks serve this purpose by

identifying interactions that connect observed phosphorylation

events.

We present the Temporal Pathway Synthesizer (TPS) (Fig-

ure 1), a method to assemble temporal phosphoproteomic
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data into signaling pathways that extend

beyond existing canonical maps. ‘‘Syn-

thesizer’’ refers to applying computa-

tional program synthesis techniques

(Manna and Waldinger, 1980) to produce

pathway models from experimental data

(Fisher et al., 2014), not synthetic biology

(Benner and Sismour, 2005). TPS over-

comes both of the aforementioned chal-

lenges in interpreting phosphoproteomic

data: modeling signaling events that are

not captured by pathway databases and

including non-phosphorylated proteins

in the predicted pathway structures.

TPS first transforms a PPI graph into

a condition-specific network by using

mass spectrometry data to filter out irrele-

vant interactions. Next, TPS finds the

orientation and sign of edges in the condi-

tion-specific interaction graph based on

the order of the phosphorylation events.

Phosphorylation timing is modeled sepa-

rately for each observed phosphorylation

site on a protein. TPS systematically ex-

plores all signed, directed graphs that

may explain how signaling messages

propagate from the stimulated source

protein. Finally, TPS summarizes the valid

graphs into a single aggregate network

that explicitly tracks confident andambig-

uous predictions. Our temporal pathway

visualizer tool interactively visualizes the
summary network alongside the temporal phosphoproteomic

data (Köksal et al., 2018).

We study the dynamic signaling responses to human EGF

stimulation and yeast osmotic stress. TPS recovers networks

that explain how stimulus-responsive proteins are activated or
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Figure 2. Overview of the EGF Response Proteomics Analysis

(A) Cells are stimulated with EGF for 0, 2, 4, 8, 16, 32, 64, or 128 min and then lysed. Cellular protein content is denatured and digested. Peptides are labeled with

iTRAQ and mixed. Tyrosine phosphorylated peptides are enriched by immunoprecipitation, and the flowthrough is passed over immobilized metal affinity

chromatography to enrich for phosphorylation events on serine and threonine. The phosphotyrosine-rich fraction is analyzed by 1D-LC-MS/MS. The more

complex phospho-serine/threonine-rich fraction is analyzed by 2D-LC-MS/MS. Resulting spectra are identified and quantified using Comet.

(B) The 263 peptides with significant temporal changes in phosphorylation exhibit distinct types of temporal behaviors (log2 fold change with respect to pre-

stimulation intensity). One group of peptides is activated immediately upon stimulation, whereas others display delayed waves of phosphorylation as signals

propagate.

See also Figures S1 and S2 and Data S1 and S2.
inhibited via chains of physical interactions stemming from the

upstream receptors. The highest-confidence TPS predictions

are well supported by prior knowledge and consistent with

kinase perturbations. These insights into well characterized

human and yeast pathways exemplify how TPS can produce

condition-specific pathway maps.

RESULTS

Quantitative Time Series Phosphoproteomics of EGF
Response Captures Widespread Signaling Activity
To quantify global EGFR-mediated cellular signaling changes in

HEK293 EGFR Flp-In (EGFR Flp-In) cells (Gordus et al., 2009)

with phosphoproteomics, we used in-line two-dimensional

high-performance liquid chromatography separation (2D-

HPLC) coupled to tandem mass spectrometry (MS/MS) (Ficarro

et al., 2011; Wolf-Yadlin et al., 2006). We stimulated the cells

with EGF for 0, 2, 4, 8, 16, 32, 64, or 128 min and collected three

biological replicates with two technical replicates each (Fig-

ure 2). We identified 1,068 phosphorylation sites that were de-

tected in all biological replicates (5,442 unique sites detected

in at least one replicate), which were then used for TPS network

modeling (Data S1 and S2). Phosphorylation intensities were
well correlated across the three biological replicates (Köksal

et al., 2018).

Reference Pathway Databases Fail to Explain
Phosphorylation Changes
We assessed how much of the observed phosphorylation could

be explained by existing pathway databases. To obtain a

comprehensive view of EGFR-mediated signaling, we collected

eight EGFR-related reference pathways (Croft et al., 2014;

Gough, 2002; Kandasamy et al., 2010; Kanehisa et al., 2012;

Layek et al., 2011; Nishimura, 2001; Schaefer et al., 2009; Sup-

plemental Experimental Procedures). Despite the diversity of

the pathway diagrams, they all fail to capture the vast majority

of significant phosphorylation events triggered by EGF simula-

tion in our system (Figures S1 and S2). Among the 203 signifi-

cantly differentially phosphorylated proteins, typically 5% or

fewer are present in a reference pathway. 85% of phosphory-

lated proteins are missing from all of the EGFR-related pathway

maps (Figure S1B). Additionally, most of the proteins in the EGFR

pathwaymaps are not differentially phosphorylated (Figure S1A),

reflecting a combination of relevant proteins that do not undergo

this particular type of PTM, phosphorylation events missed by

the mass spectrometry, and interactions that are relevant in
Cell Reports 24, 3607–3618, September 25, 2018 3609



some contexts, but not in EGFR Flp-In cells. The low overlaps

agree with phosphoproteomic studies of other mammalian

signaling pathways. Less than 10% of insulin-regulated proteins

were members of a curated insulin pathway (Humphrey et al.,

2015). In a study of T cell receptor signaling, only 21% of phos-

phorylated proteins were known to be involved in the pathway

(Cao et al., 2012). Phosphosites regulated by transforming

growth factor b (TGF-b) stimulation were not enriched for the

TGF-b pathway (D’Souza et al., 2014).

Crosstalk does not explain the low coverage. Most phosphor-

ylated proteins (63%) are not present in the EGFR pathways or

any BioCarta, Reactome, or PID pathway (Figure S1B), demon-

strating the need for a context-specific representation of EGFR

signaling pathway.

Reconstructing the EGFR Pathway with TPS Explains
Temporal Phosphorylation Changes
We applied TPS to model the dynamic signaling response to

EGFR stimulation in EGFR Flp-In HEK293 cells. Our workflow

consists of three major steps: (1) preprocessing the protein-

protein interaction network and temporal phosphorylation data;

(2) transforming temporal information, subnetwork structure,

and prior knowledge into logical constraints; and (3) summari-

zing all valid signaling pathway models to discover interactions

with unambiguous directions and/or signs (Figure 1).

We first discretized the time series phosphoproteomic data,

using Tukey’s honest significant difference (HSD) test (Yandell,

1997) to determine whether a peptide exhibits a significant in-

crease, significant decrease, or no change in phosphorylation

at each post-stimulation time point. 263 peptides, correspond-

ing to 203 proteins, significantly change at one or more time

points (Köksal et al., 2018). Second, we used the prize-collecting

Steiner forest (PCSF) (Tuncbag et al., 2013) network algorithm to

link the phosphorylated proteins to EGF, the source of stimula-

tion, weighting proteins based on their HSD test significance.

PCSF identifies a PPI subnetwork of 316 nodes and 422 edges

(Data S3). This subnetwork comprises the interactions through

which signaling messages are most likely to propagate. Third,

TPS combined the discretized temporal activities of the 263

significantly changing peptides, the PCSF network, and prior

knowledge (the orientation of kinase-substrate interactions) to

generate a summary of all feasible pathway models (Data S3).

Each type of input was translated into logical constraints, which

were used to rule out pathway models that are not supported by

the data.

In contrast to the reference EGFR pathway diagrams, which

capture at most 11% of the differentially phosphorylated

proteins, the predicted network from TPS (Figures 3 and S3;

Data S3) contains 83% of the responding proteins in its 311

nodes. Each of these proteins is linked to the EGF stimulation

with high-confidence protein interactions and has timing that

is consistent with the temporal phosphorylation changes of

all other proteins in the pathway. These interactions are depicted

as directed, signed edges in a graph, where the sign reflects that

the proteins have the same (activation) or opposite (inhibition)

activity changes. Of the 413 edges in the network, 202 (49%)

have a consistent direction in all of the valid pathway models, a

strong assertion about the confidence in these edge directions.
3610 Cell Reports 24, 3607–3618, September 25, 2018
Thirty-eight of the directed edges have a consistent sign as

well. The PPI connections, phosphorylation timing, and prior

knowledge of kinase-substrate interaction direction all play

distinct, important roles in reducing the number of valid pathway

models (Köksal et al., 2018). The timing of protein activation and

inactivation in the TPS pathway reveals a rapid spread of

signaling post-stimulation (Köksal et al., 2018).

Prior Evidence Supports EGFR Pathway Predictions
Although nearly all differentially phosphorylated proteins lie

outside traditional EGFR pathway representations, 29 (11%) of

the 273 phosphorylated proteins and 5 (13%) of the 38 unphos-

phorylated connective proteins in the TPS network are recog-

nized as EGFR pathway members (Köksal et al., 2018). We find

strong evidence for many of the predicted directions as well

(Köksal et al., 2018). In total, 82 of 202 interaction directions

are supported by our semi-automated evaluations using EGFR

reference pathways, the PhosphoSitePlus input data (Hornbeck

et al., 2015), and natural language processing software (Chen

and Sharp, 2004; Hoffmann and Valencia, 2004; Poon et al.,

2014; Data S3 and S4; Supplemental Experimental Procedures).

The vast majority of the remaining directions can neither be

confirmed nor refuted (Data S3). Our additional analyses (Köksal

et al., 2018; Data S3) show that TPS also recovers high-quality

pathway models when applied to existing EGF response data-

sets with lower temporal resolution (Olsen et al., 2006).

TPS Network Models Can Guide Follow-Up Experiments
The TPS network can be used to prioritize proteins and interac-

tions for additional experimental testing. To illustrate this pro-

cess, we focused on edges for which the direction or sign

were predicted confidently and one of the two proteins is amem-

ber of an EGFR reference pathway (Köksal et al., 2018). For each

interaction, we inhibited the predicted upstream protein and

measured the effect on the predicted target’s phosphorylation

usingwestern blotting. From our list of ten candidate interactions

(Table S1), we selected the three edges for which the antibodies

reliably produced clean and quantifiable bands at the right mo-

lecular weight: MAPK1-ATP1A1; ABL2 / CRK; and AKT1 /

ZYX (zyxin) (Figures 3C and S4). These proteins are already

known to physically interact. The novelty of the TPS predictions

is the interactions’ relevance to the EGF response. The inhibitors

used to inhibit the upstream proteins were SCH772984 for

MAPK1, dasatinib for ABL2, and MK-2206 for AKT1. After serum

starvation, the cells were treated with an inhibitor for one hour

and then stimulated with EGF. We collected data at two time

points (denoted short and long; see Figure S4) based on the

timing of the phosphorylation events in our mass spectrometry

data. Lysates were then assayed by western blot to quantify

the level of phosphorylation of the downstream protein.

Dasatinib decreased phosphorylation of CRK (isoform Crk-II)

pY221, consistent with the TPS pathway edge (Figure S4). Inhib-

iting AKT1 increased phosphorylation of Zyxin. In both cases, the

predicted interaction direction is supported. MAPK1 inhibition

increased ATP1A1 pY10 phosphorylation. The TPS model pre-

dicted an inhibitory interaction between these proteins, but the

direction was ambiguous. Our data agree with the predicted

edge sign and suggest that MAPK1 is upstream of ATP1A1
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Figure 3. TPS EGF Response Pathway Model

Zoomed regions of the full TPS pathway model visualized with Cytoscape (Shannon et al., 2003).

(A) The EGFR subnetwork (EGFR, GRB2, CBL, and all their direct neighbors) depicts the proteins that first react to EGF stimulation. A substantial portion (18 of 38

proteins) is known to be associated with EGFR signaling. Green and red edges depict activation and inhibition, respectively. Gray edges that terminate in a circle

indicate that the interaction is used in the same direction in all possible pathway models, but the sign is ambiguous. Thin, undirected edges are used in different

directions in different valid pathway models. Thick, rounded borders show which proteins are present in one or more reference EGFR pathways. Node anno-

tations are detailed in (B).

(B) Line graphs on each protein node show the temporal peptide phosphorylation changes relative to the pre-stimulation level on a log2 scale. Multiple lines

indicate multiple observed phosphopeptides for that protein, where black lines denote statistically significant phosphorylation changes and gray lines indicate

insignificant changes. Proteins without line graphs are connective Steiner nodes inferred by PCSF. Colored boxes summarize the TPS inferred activity state

across peptides at each time point. Red indicates activation, blue inhibition, gray ambiguity, and white inactivity.

(C) The subnetwork surrounding MAPK1 andMAPK3. TPS correctly determines that MAP2K1 is the kinase that controls both MAPK1 andMAPK3, even though it

is not observed in the mass spectrometry data.

See also Figures S3 and S4, Table S1, and Data S3 and S4.
(Köksal et al., 2018). Truly validating the predicted edges would

require more direct manipulation of the relevant kinases because

Dasatinib is a multi-target inhibitor (Lindauer and Hochhaus,

2014); SCH772984 inhibits both MAPK1 and MAPK3 (Morris

et al., 2013); and MK-2206 inhibits AKT1, AKT2, and AKT3

(Yan, 2009). However, these inhibitor experiments demonstrate

how TPS can generate testable predictions from global phos-

phoproteomic data.

TPS Makes Network Predictions Not Captured by
Alternative Approaches
We compared TPS to two existing methods that combine PPI

networks and time series data and a third that uses only the
phosphorylation data (Supplemental Experimental Procedures).

The dynamic Bayesian network (DBN) (Hill et al., 2012) infers

posterior peptide-peptide interaction probabilities from time se-

ries data and network priors. TimeXNet (Patil et al., 2013) formu-

lates pathway prediction as a network flow problem. FunChisq

(Zhang and Song, 2013) uses an adapted chi-square test to

detect directed relationships between phosphorylated proteins.

Comparing the four predicted EGF response pathway models

demonstrates the impact of the diverse algorithmic strategies.

Almost all of the protein-protein edges are unique to a single

method, and no edges are predicted by all four methods (Köksal

et al., 2018). Despite greater overlap among the predicted no-

des, the four pathways are divergent.
Cell Reports 24, 3607–3618, September 25, 2018 3611



Figure 4. TPS Osmotic Stress Response

Pathway Model

(A) The portion of the TPS yeast osmotic stress

response pathway model for which both proteins

are in the osmotic stress reference pathway. TPS

correctly recovers the core pathway structure from

the Sho1 osmosensor to the primary kinases and

transcription factors by ordering proteins based on

the phosphorylation timing. Twelve of these

pathway interactions are supported by the KEGG

high-osmolarity pathway or other literature (Data

S4). Node and edge visualizations are as in Fig-

ure 3. Note that three interactions (Ste50/ Pbs2,

Ste50 / Ssk2, and Rck2 / Pbs2), derived from

references (Chasman et al., 2014; Sharifpoor et al.,

2011), are not found in other curated versions of

the yeast interaction network.

(B) A zoomed view of the TPS pathway depicting

Rck2 and the proteins it is predicted to interact

with. All four proteins predicted to be activated by

Rck2—Fpk1, Pik1, Rod1, and YLR257W—dis-

played decreased phosphorylation in the RCK2

mutant strain (Romanov et al., 2017), as did pre-

dicted targets Mlf3, Sla1, and YHR131C.

See also Figure S5 and Data S3 and S4.
Becausemost of the differentially phosphorylated proteins are

not members of any reference pathway, these pathways cannot

be used to assess the overall quality of the predictions. The

TimeXNet pathway, the largest of the three predicted networks,

generally captures the most reference pathway interactions

when ignoring edge direction and sign (Data S4). However, a

closer examination that accounts for the predicted interaction di-

rection shows that TPS typically makes the fewest errors, even

when controlling for the size of the predicted pathways (Data S4).

Yeast Osmotic Stress Response Model Recapitulates
Known Pathway Structure and Nominates Candidate
Rck2 and Cdc28 Substrates
Although they are still not fully characterized, stress-response

signaling cascades in the yeast Saccharomyces cerevisiae are

better understood than their human counterparts and are not

subject to cell-type-specific effects. Thus, we applied TPS to

model the yeast osmotic stress response to assess its ability

to recapitulate this frequently studied pathway and reveal addi-

tional interactions. The hyperosmotic stress response is primar-

ily controlled by the high osmolarity glycerol (HOG) pathway.

Kanshin et al. (2015) profiled the rapid response to NaCl, an os-

motic stressor, measuring phosphorylation changes for 60 s

post-stimulation at uniform 5-s intervals. They identified 1,596

phosphorylated proteins, including 1,401 dynamic phosphopep-

tides on 784 proteins based on their fold changes in the salt

stress time series with respect to a control (Table S2). We used
3612 Cell Reports 24, 3607–3618, September 25, 2018
these data to construct a TPS pathway

model of the early osmotic stress

response (Data S3).

The TPS osmotic stress pathway con-

tains 216 proteins and 287 interactions

(Figure S5). Thirty-six of these proteins
(17%) have been previously annotated as osmotic stress

pathway proteins (Kawakami et al., 2016). Focusing on the sub-

set of interactions that connect known HOG pathway members

reveals that many of the edges connecting them are correct as

well (Figure 4A). TPS recovers the core part of the Kyoto Ency-

clopedia of Genes and Genomes (KEGG) high-osmolarity

pathway, including the interactions Sho1 / Ste50, Sho1 /

Cdc24, Sho1 / Pbs2, Ssk2 / Pbs2, and Pbs2 / Hog1

(Data S4). In addition, it correctly places Hog1 as the direct regu-

lator of Rck2 (Romanov et al., 2017) and the transcription factors

Hot1, Msn2, and Sko1 (Capaldi et al., 2008). TPS identifies Sch9

as an additional regulator of Sko1 (Pascual-Ahuir and Proft,

2007). Following hyperosmotic shock, Hog1 is recruited to

Fps1 (Lee et al., 2013), consistent with the TPS prediction. The

predicted feedback from Hog1 to Ste50 is also well supported

in osmotic stress (Hao et al., 2008). Many predicted interactions

that deviate from the canonical HOG pathway model can be

attributed to the input phosphorylation data and background

network, not the TPS algorithm (Köksal et al., 2018).

After confirming the TPS osmotic stress model agrees well

with existing models, we investigated novel candidate pathway

members. The TPS model captured the cascade Hog1 /

Rck2 / Eft2 (Romanov et al., 2017; Teige et al., 2001) and pre-

dicted additional Rck2 targets (Figure 4B). To test these predic-

tions, we compared them to a recent phosphoproteomic study

of an RCK2 mutant subjected to osmotic stress (Romanov

et al., 2017). All four proteins that TPS predicts are activated



Figure 5. Artificial Example Illustrating the Inputs to TPS

(A) The hypothetical signaling pathway that responds to stimulation of node A.

The colored boxes on each node show the time at which the protein is acti-

vated or inhibited and begins influencing its downstream neighbors, with the

leftmost position indicating the earliest time point. Red boxes are increases in

activity, blue boxes are decreases, andwhite boxes are inactive time points, as

in Figure 3B. The left position indicates the activity at 0 to 1 min, the center

position at 1 to 2 min, and the right position at 2 to 5 min.

(B) The first input to TPS is time series phosphorylation data of the response to

stimulating node A.

(C) The second input is an undirected graph of high-confidence interactions

that can recover hidden components that do not appear in the temporal data,

such as node B.

(D) The last input, which is optional, is prior knowledge of the pathway in-

teractions expressed as (unsigned) directed edges. We represent unsigned

edges with a circular arrowhead.
by Rck2 have defective phosphorylation on at least one phos-

phosite in rck2D five minutes after osmotic insult (Romanov

et al., 2017). Thus, Rck2 likely directly phosphorylates Fpk1,

Pik1, Rod1, and YLR257W upon osmotic stress, as TPS pre-

dicts. In addition to the four activated substrates, TPS predicts

that Rck2 directly regulates seven additional proteins with an

ambiguous sign. Three of these seven predicted targets—Mlf3,

Sla1, and YHR131C—have a phosphosite that is dependent on

Rck2 during osmotic stress (Romanov et al., 2017), supporting

the TPS predictions. The three protein-protein edge signs are

ambiguous because some phosphosites on the proteins exhibit

a significant increase in phosphorylation and others decrease.

Similarly, we verified that 67 out of 91 (74%) predictedCdc28 tar-

gets have at least one phosphosite with defective phosphoryla-

tion following Cdc28 inhibition (Holt et al., 2009; Kanshin et al.,

2017; Köksal et al., 2018).

The high-quality TPS osmotic stress pathway demonstrates

the algorithm is broadly useful beyond our own EGF stimulation

study. It not only recovers many major elements of the classic
HOG pathway representation but also prioritizes condition-spe-

cific kinase targets that are supported by independent

perturbations.

DISCUSSION

The pathway structure illuminated by the phosphorylated pro-

teins in our EGFR Flp-In cells differs considerably from the sim-

ple representations in pathway databases. Interpreting signaling

data requires reconstructing models specific to the cells, stimuli,

and environment being studied. TPS combines condition-spe-

cific information—time series phosphoproteomic data and the

source of stimulation—with generic PPI networks and optional

prior knowledge (Figure 5) to produce custom pathway repre-

sentations. The predicted EGFR signaling network highlights

alternative connections to classic EGFR pathway kinases and

extends the pathway with interactions that are supported by

prior knowledge in other contexts or kinase inhibition.

Combining different constraints on pathway structure from PPI

network topology and temporal information is computationally

challenging, and we identify predictions that can be obtained

only through joint reasoning with all available data (Figure 6).

Contrasting TPS with Related Computational
Approaches
TPS integrates information from PPI networks, phosphosite-

specific time series phosphoproteomic data, and prior knowl-

edge by introducing a powerful constraint-based approach.

Existing classes of signaling pathway inference algorithms

do not offer the same functionality as TPS. Methods that identify

dependencies in phosphorylation levels (Hill et al., 2012; Zhang

and Song, 2013) omit pathway members without observed

phosphorylation changes. TPS does not require perturbations

to reconstruct pathways (Ciaccio et al., 2015; Molinelli

et al., 2013; Terfve et al., 2015). Participants in the HPN-DREAM

network inference challenge (Hill et al., 2016) inferred signaling

networks from time series data for tens of phosphopro-

teins, but the top methods either did not scale to our dataset

(PropheticGranger; Carlin et al., 2017) or did not perform well

(FunChisq; Zhang and Song, 2013). Other algorithms that inte-

grate temporal information with PPI networks (Budak et al.,

2015; Gitter and Bar-Joseph, 2013; Jain et al., 2016; Norman

and Cicek, 2018; Patil et al., 2013) do not evaluate and summa-

rize all pathway models that are supported by the network and

phosphorylation timing constraints. This summarization strategy

is what enables TPS to scale to solution spaces (Figure S6) that

are substantially larger than those typically considered by

declarative computational approaches (Chasman et al., 2014;

Dunn et al., 2014; Guziolowski et al., 2013; Köksal et al., 2013;

Moignard et al., 2015; Sharan and Karp, 2013). The Supple-

mental Experimental Procedures contain additional related soft-

ware beyond these representative examples.

Future Directions in Pathway Synthesis
TPS offers a powerful framework for combining multiple types of

declarative constraints to generate condition-specific signaling

pathways. The constraint-based approach could be extended

to include additional types of data, such as perturbation data
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Figure 6. TPS Models for Individual versus

Combined Data Sources

Summary graphs obtained by aggregating (via

graph union) all possible signed, directed tree

models for different constraints obtained from

time series data (A), graph topology (B), prior

knowledge (in this example, kinase-substrate

interaction directions) (C), and all three types

of input at the same time (D). If an edge has a

unique sign and direction in a summary graph

(colored green and red for activations and in-

hibitions, respectively), this means there are no

valid models that assign a different orientation or

sign to that edge. Edges that can have any

combination of sign and direction in different

models are gray without an arrowhead. See also

Figure S7.
that link kinase inhibition or deletion to phosphorylation changes.

Both temporal (Kanshin et al., 2015) and kinase perturbation

(MacGilvray et al., 2018; Romanov et al., 2017) phosphoproteo-

mic data are available for the yeast osmotic stress response.

Modeling multiple related conditions (e.g., different ligand stimuli

and inhibitor perturbations) could allow TPS to learn not only the

signs of interactions but also the logic employed when multiple

incoming signals influence a protein. TPS could also accommo-

date user-defined assumptions or heuristics about pathway

properties, such as restrictions on pathway length. Such com-

plex constraints cannot be readily included in approaches like

DBN or TimeXNet.

For scalability, TPS requires hard logical constraints instead of

probabilistic constraints (Hinton et al., 2006; Katoen et al., 2005).

Discrete logic models for noisy biological data require modeling

assumptions in order to balance model ambiguity and expres-

siveness. These tradeoffs and assumptions provide additional

opportunities to modify and generalize the TPS model, for

instance, a potential TPS extension to infer feedback in networks

that is described in the Supplemental Experimental Procedures.

As proteomic technologies continue to improve in terms of

depth of coverage (Sharma et al., 2014) and temporal resolution

(Humphrey et al., 2015; Kanshin et al., 2015; Reddy et al., 2016),

the need to systematically interpret these data will likewise grow.

TPS enables reasoning with temporal phosphorylation changes

and physical protein interactions to define what drives the vast

protein modifications that are not represented by existing knowl-

edge in pathway databases.
EXPERIMENTAL PROCEDURES

Temporal Pathway Synthesizer Algorithm Overview

TPS receives three types of input (Figure 1): a time series mass spectrometry

phosphoproteomic analysis of a stimulus response; an undirected PPI subnet-

work; and optional prior knowledge about interaction directions.

The undirected graph is obtained through a static analysis in which the

significantly changing proteins are overlaid on a PPI network. A network

algorithm recovers connections among the affected proteins, removing inter-
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actions that do not form critical connections

between these proteins and nominating hidden

proteins that do, even if they are not themselves
phosphorylated. We recommend PCSF (Tuncbag et al., 2013) to select the

PPI subnetwork but also successfully applied other methods (Gitter et al.,

2011; Patil et al., 2013; Yeger-Lotem et al., 2009).

TPS transforms the input data into logical constraints that determine which

pathway models can explain the observed phosphoproteomic data. Topolog-

ical constraints stem from the filtered PPI network and require that phosphor-

ylated proteins are connected to the source of stimulation, such as EGF, by a

cascade of signaling events. These signaling events propagate along the

edges of the filtered PPI network. Temporal constraints ensure that the order

of the signaling events is consistent with the timing of the phosphorylation

changes. If protein B is downstream of protein A on the pathway, B cannot

be activated or inhibited before A. Prior knowledge constraints guarantee

that if the direction or sign of an interaction is known in advance, the pathway

may not contain the edge with the opposite direction or sign. Typically, many

possible pathways meet all constraints, so TPS summarizes the entire collec-

tion of valid pathways and identifies interactions that are used with the same

direction or sign across all models. A symbolic solver reasons with these

logical constraints and produces the pathway summary without explicitly

enumerating all possible pathway models.

To illustrate this process, consider a hypothetical signaling pathway that

contains a receptor node A and six other downstream proteins that respond

when A is stimulated (Figure 5). The first input is time seriesmass spectrometry

data measuring the response to stimulating the receptor (node A), which

quantifies phosphorylation activity for six proteins. Node B is absent from

the phosphorylation data because it is post-translationally modified, but not

phosphorylated, by A. The second input is an undirected protein-protein inter-

action graph. These are detected independently of the stimulation condition

but filtered based on their presumed relevance to the responding proteins

with an algorithm such as PCSF. By combining phosphorylation data with

the PPI subnetwork, this topology can recover ‘‘hidden’’ components of the

pathway that are not phosphorylated (node B). Finally, TPS accepts prior

knowledge of directed kinase-substrate or phosphatase-substrate interac-

tions, such as the edge C / D. Each of these inputs can be used individually

to restrict the space of plausible pathway models. Reasoning about them

jointly produces more unambiguous predictions than considering each

resource separately.

To formulate temporal constraints, we transform the time series data into a

set of discrete signaling events (activation or inhibition) for each node, taking

an event-based view of the signaling process (Table 1). We determine time

points for each node that correspond to statistically significant phosphoryla-

tion changes. These discrete events are then used to rule out network models

that contain signed, directed paths that violate the temporal ordering of these

events no matter which event is chosen for each node. For example, there can



Table 1. Signaling Timing in the Artificial Example

Node Plausible Temporal Signaling Events

A activated 0 to 1 min

B activated or inhibited at any time

C inhibited 0 to 1 min or 2 to 5 min

D activated 0 to 1 min

E activated 1 to 2 min or 2 to 5 min

F activated 0 to 1 min

G activated 0 to 1 min or 1 to 2 min

Plausible signaling events inferred for each node through a statistical

analysis of the time series phosphorylation data. Although B is modified

in the 0 to 1 min interval, this is not observed in the phosphoproteomic

input data.
be no edge from E to D in any model because D is activated strictly earlier than

E regardless of whether E is activated at 1 to 2 min or 2 to 5 min. Because the

time series data measure the response to a specific stimulus, we also devise

topological constraints that ensure all signaling activity originates from this

source. In our example, this asserts that all edges in a solution network must

be on a directed path that starts at node A. Finally, our third input, the set of

directed interactions, requires that no model violates this prior knowledge by

including an edge from D to C.

Figure 6 shows the pathway models that can be learned using each type of

constraint alone and in combination. When we enforce only temporal con-

straints, which corresponds to reasoning locally with phosphorylation data

for pairs of nodes to seewhether one signaling event strictly precedes another,

we obtain a single precise (signed and directed) prediction from D to E (Fig-

ure 6A). The topological constraints by themselves are sufficient to orient

edges from the source A and from node D because D forms a bottleneck (Fig-

ure 6B). The prior knowledge constrains the direction of the edge from C to D,

but its sign remains unknown (Figure 6C). Jointly enforcing all of these con-

straints has a nontrivial impact on the solution space (Figure 6D). For instance,

we can infer that Fmust activate G. If the edge direction was reversed, F would

be downstream of E, but the data show that activation of F precedes activation

of E. The final model that includes all available data closely resembles the true

pathway structure (Figure 5A). The edges incident to node B are ambiguous,

and the interaction between E and G cannot be uniquely oriented, but all other

interactions are recovered.

The summary for the combination of all constraints produces precise predic-

tions that cannot be obtained by intersecting the summaries for the individual

types of constraints. For instance, TPS infers that the relationship between

F and G must be an activation from F to G because the sole way G can reach

F in a tree rooted at A is through E, but F’s activation precedes E’s. This infer-

ence cannot bemade by combining themodels in panels A, B, and C. The sim-

ple example also highlights the differences in how the TPS constraint-based

approach improves upon related methods based on correlation or the time

point of maximum phosphorylation change (Köksal et al., 2018). See also

Figure S7.

TPS Pathway Synthesis

TPS takes the undirected network from PCSF and transforms it into a collec-

tion of signed, directed graphs that explain dynamic signaling events.

Discretization of Time Series Data

To find pathway models that agree with the phosphorylation dynamics, TPS

first performs a discretization step that determines time intervals in which

each protein may be differentially phosphorylated. The discrete set of activa-

tion and inhibition state changes is then used to rule out networks that violate

the observed temporal behavior.

The transformation consists of finding time points for each profile where

phosphorylation significantly differs from either the baseline (pre-stimulation)

or the previous time point. In the baseline comparison, this time point is

accepted only if it is not preceded by an earlier, larger change with respect

to the baseline. If there is a hypothetical phosphorylation level at which the pro-
tein is activated and acts upon its downstream targets, a signaling event

occurs only at the first time this threshold value is reached. This criterion

does not apply when comparing to the phosphorylation level at the previous

time point. TPS supports missing values in the time series data. The time

points for which a phosphopeptide is missing data are assumed to be insignif-

icant in the discretized data.

In our EGF study, we use Tukey’s HSD test to find significant differential

phosphorylation. If comparing a time point to the baseline or the previousmea-

surement produces a p value below a user-defined threshold, the time point is

marked as a possible activation or inhibition event depending on whether the

phosphorylation level increased or decreased relative to the earlier time point

to which it was compared.

Modeling Assumptions

We assume at most one signaling event happens for every node across time

points. Our logical solver can explore all possible activation and inhibition

events for every node, but the data are often too ambiguous to allow multiple

events per node given a single type of stimulation. In the absence of perturba-

tion experiments that test the pathway behavior under different initial condi-

tions, it is impossible to distinguish between different Boolean logic functions

governing the behavior of each node and whether a node responds to one or

multiple regulators. We therefore formalize pathway models as signed,

directed trees, which provide a sufficient basis for explaining the dynamic sys-

tem behavior under these assumptions.

Translating Input into Constraints

TPS transforms each input into a set of constraints that declaratively specify

valid signed, directed tree models that agree with the data (Supplemental

Experimental Procedures). These constraints are expressed as Boolean for-

mulas with linear integer arithmetic, ranging over symbolic variables that repre-

sent choices on edge signs and orientations as well as how the temporal data

are interpreted. The constraints can then be solved by a satisfiability modulo

theories (SMT) solver to find a networkmodel that satisfies all constraints along

with dynamic timing annotations for each interaction in the network.

Using constraints, we restrict the possible orientation and sign assignments

to signed, directed tree networks rooted at the source node (e.g., EGF).

Furthermore, constraints express how every tree model must agree with the

time series data by establishing a correspondence between the order of nodes

on tree paths and their temporal order of activity according to the time series

data. Finally, we declaratively rule out models that contradict the prior knowl-

edge of kinase-substrate interaction directions. These constraints define a

very large space of candidate networks that agree with the data.

Pathway Summaries

TPS can reason with large state spaces by summarizing all valid pathways

instead of explicitly enumerating them. A summary network is the graph union

of all signed, directed tree networks that satisfy the stated constraints

(Figure 6). Timing annotations are summarized by computing the set of

possible annotations for each node over all solutions. In the graph union,

some edges have a unique direction and sign combination, which signifies

that this was the only observed signed, directed edge between two given no-

des across the solution space. However, this does not guarantee that the edge

between the interacting proteins must be present in all valid pathway models.

Ambiguous directions or signs in the summary means that there are valid

models with different direction or sign assignments.

We compute the summary graph by performing a linear number of SMT

solver queries in terms of the size of the input graph. Each queries whether

at least one signed, directed model contains a specific signed, directed

edge. Because individual queries are computationally cheap, we can summa-

rize the entire solution space without enumerating all models, which is typically

intractable. The summary graph over-approximates the solution space. It is

not possible to recover the exact set of valid models from the summary, only

a superset of the models (Figure S7). This tradeoff must be made in order to

analyze such a large state space.

Using Solvers for Synthesis

TPS uses the Z3 theorem prover (De Moura and Bjørner, 2008) via the

ScalaZ3 interface (Köksal et al., 2011) to solve the constraints it generates. It
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also provides a custom data flow solver specifically for computing pathway

summaries. The custom solver and the symbolic solver produce identical

pathway summaries. However, the custom solver is much more scalable

because it is specifically designed to address our synthesis task and can

handle networks containing more than a hundred thousand edges and phos-

phosites (Figure S6; Köksal et al., 2018).

Cell Culture and Mass Spectrometry

We stimulated EGFR Flp-In cells (Gordus et al., 2009) with 23.6 nM EGF (Pe-

protech) for 0, 2, 4, 8, 16, 32, 64, or 128 min. Cells were lysed and proteins

were extracted, denatured, alkylated, and trypsin digested. Following diges-

tion, the tryptic peptides were either lyophilized, stored for future use, or

directly processed for mass spectrometry analysis. To quantify dynamic

changes in protein phosphorylation, all peptides were isobarically labeled

(Ross et al., 2004), enriched using phosphotyrosine-specific antibodies and/

or immobilized metal affinity chromatography (IMAC) (Ficarro et al., 2002),

and analyzed on a Thermo Fisher Velos Orbitrap mass spectrometer (Ficarro

et al., 2011; Wolf-Yadlin et al., 2006) in data-dependent acquisition mode.

We determined peptide sequences using Comet (Eng et al., 2013; Data S5)

and quantified the iTRAQ signals with Libra (Deutsch et al., 2010). Across three

biological replicates, we quantified 5,442 unique peptides in at least one repli-

cate and 1,068 peptides in all replicates and used Tukey’s honest significant

difference for statistical testing (Data S1). See the Supplemental Experimental

Procedures for details and data processing. Also see our p value sensitivity

analysis (Köksal et al., 2018).

Quantitative Western Blotting

We used 25 nM Dasatinib (no. S1021), 400 nM SCH772984 (no. S7101), and

800 nM MK-2206 (no. S1078; all Selleckchem) for kinase inhibition and anti-

bodies pY221-CRK (no. 3491; Crk-II isoform), pY10-ATP1A1 (no. 3060), and

pS142/143-Zyxin (no. 8467; all Cell Signaling Technology) for western blotting

(Supplemental Experimental Procedures). We normalized loading with b-actin

(no. 3700) and imaged blots with anOdyssey Infrared Imaging System (Li-COR

Biosciences).

PCSF

We used the Omics Integrator PCSF implementation (Tuncbag et al., 2016)

with msgsteiner (Bailly-Bechet et al., 2011) to recover the most relevant PPIs

connecting the phosphorylated proteins. The Supplemental Experimental Pro-

cedures describe how we selected parameters, ran PCSF multiple times to

identify parallel connections between proteins, generated prizes from the

phosphoproteomic data, and created a weighted interaction network from

iRefIndex (Razick et al., 2008) and PhosphoSitePlus (Hornbeck et al., 2015).

DATA AND SOFTWARE AVAILABILITY

The accession number for the raw mass spectrometry proteomics data re-

ported in this paper is PRIDE: PXD006697.

The processed data are in Data S1. TPS (https://github.com/koksal/tps) and

our visualization tool for TPS output (https://github.com/koksal/tpv) are avail-

able as MIT-licensed open source software. An archival copy of TPS version

2.2, including instructions for running the software, example data, and scripts

for linking PCSF and TPS, is available at https://doi.org/10.5281/zenodo.

1215177.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, two tables, and five data files and can be found with this article

online at https://doi.org/10.1016/j.celrep.2018.08.085.
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