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Abstract

Cortical neurons receive thousands of synaptic inputs, only a few of which come from
any single other cell. The basic nature of cortical computation depends not on this
number, but instead on the number of simultaneous inputs necessary to cause the
post 1aptic cell to fire a spike - the degree of functional, as opposed to anatomical,
convergence. Using whole-cell patch clamp recording and a combination of techniques
allowing the study of both the whole population of inputs to a cell, and its responses to
a single input over time, single-fiber inputs to cortical cells are shown to be large, fast,
and extremely variable. Assuming linear summation, only 5-50 simultaneous inputs
are necessary to generate an action potential. The variability in these inputs - both
between the inputs to different cells, across the population of inputs to a single cell,
and in a single input over time - is functionally expressed in the variability of output
spikes. A number of factors are proposed to account for the variability seen across
the population of putatively uniquantal miniature excitatory postsynaptic currents
(mEPSCs) seen in a single cell in the presence of tetrodotoxin. Compartmental
models of reconstructed neurons are used to show that electrotonic filtering alone is
sufficient to generate a large amount of such variability, and is necessary to explain
certain features of recorded mEPSCs, including the correlation between event rise
time and half width. This analysis is extended to the case of miniature inhibitory
postsynaptic currents (mIPSCs) of hippocampal dentate gyrus granule cells. Using
computational models designed to match the responses to evoked inputs to known
locations, and amputation of the bulk of the dendritic tree, these events are shown
to originate almost entirely from proximal sites. Together, these properties allow a
single cell to participate in a wide variety of ongoing computations, and providing a
rich substrate for both cortical information processing and cortical plasticity.

Thesis Supervisor: Mriganka Sur
Title: Professor

Thesis Supervisor: Tomaso Poggio
Title: Professor






Acknowledgments

MIT is not a very nice place. But once you've been there, nothing will
ever scare you again.

-Steve Kosslyn, Harvard Professor, 1989

Besides those trees that valiantly sacrificed themselves to generate a book that
very few people will read, I'd like to thank quite a few people:

My committee: Mriganka Sur, Tomaso Poggio, Christof Koch. and Arthur Lan-
der; for reading this rather long thesis, sometimes on rather short notice; and most
importantly, for letting me out. In particular. I'd like to thank Christof for his sup-
port, advice, and input over the last few years; and Mriganka. for providing me with
the facilities to do the work I wanted to do, even though he wasn’t always sure why
I wanted to do it. And Jan Ellertsen, for smoothing my passage through MIT, and
not killing me at the end for flagrantly disregarding deadlines.

My collaborators, who taught me most of what I know about how to do science,
and at the same time were always there for friendship, support, and fun: Sacha Nelson,
Ivan Soltesz, the exquisite Manuel Esguerra, Jong-On Hahm, and Istvan Mody.

The current and former members of the Sur lab: Manny, Jong-On, Anna, Young,
Louis, Sarah, Ron, Alessandra, Monica, Ary, Paco, Ken, Chris, Carsten, Bhavin,
Chenchal, Jittendra, Karina, Sacha, Manuela, Melvin, Darren, and, of course, Pre-
ston. You were my teachers, my friends, and always there in a pinch - especially
when my thesis was due. And, especially, Martha Meyer, Suzanne Kuffler, Maryann
Capehart, and Terry Sullivan, for their attention to detail, ability to make sense out
of my sometimes bewildering requests, and tendency to smile in times of crisis.

The people whose fault it was I ended up where I am: Rick Garrison and Jim
Garrett, for starting me on this long road; Sylvia Zaremba for making me realize that
I didn’t want to be a pianist; Wayne Cowart, for showing me that maybe research
might be interesting after all; J. P. Bruno for getting me interested in neurons; Peter
Pappas from whom I learned that physiology was really cool; and Tom Weiss and Bill
Peake, from whom I learned that neurophysiology was the coolest thing of all.

The people without whom | wouldn't have made it through, who provided me
advice, support, and encouragement when | needed it most, or who said the right
thing at the right time, whether they knew it or not: Christof Koch, Sacha Nelson,
Eve Marder, Idan Segev, Larry Abbott, Bill Bialek, Jim Bower, John Rinzel, Bard



Ermentrout, Roger Traub, Brenda Claiborne, Tom Brown, Wayne Cowart. Lyle Borg-
Graham, Barry Connors, Irwin Levitan and. certainly, Ivan Soltesz.

My father, for telling me not to panic. My mother, for always being willing to
listen. And Anita, for her stability in times of crisis. I'm sure they're all glad this is
over at last.

The women of my family, and those I have known, who by doing those things they
weren’t supposed to, showed me I could be whatever I wanted: Alma, Hilda. Hetty,
Harriets one and two, Vera, Punk, and Mary.

My current and former officemates, for putting up with me: Randy, Robert, Louis,
Corrie, Bobby, Elliot, and especially Marc and Karl for making it through the last
few months.

The moral support contingent: Elizabeth, Rachel, Corrie, Danielle, Barbara,
Manny, Sacha, Randy, Robin, Ken, Jim, Diana, Loren, Heather, Jong-On, Gary,
Fei, Tony, Todd, Jonathan, Dave, Arun, Jody, Mark, Mark, Libby, Brent, Zhaoping,
Eric, Nava, Jan, Yves, Angie, Margaret, Terry and Bill, Debbie, and everybody else
[ forgot... SRR

And, most importantly, Paul Placeway and Ivan Soltesz - for being there at the
beginning and the end, respectively, with love, caring, friendship, and a willingness
to listen to me even when [ wasn’t being altogether rational.

I want to dedicate this to my grandfather, Ralph Hewes, and his sister, Mary
Zimmerman, who should have been here to see me finish this thesis; and to Jim
Smith, who should have been here to finish his own.



Contents

1 Introduction
1.1 OQutlineofthethesis . ... ... ... ......... . .......
1.2 Credits and Publication . . .. ... ... ... ... ... ......
1.3 Literaturereview . . . . . . . . . . . i i i e e e e e e

1.3.1 Cortical micro-anatomy and cellular physiology . .. ... ..
1.3.2 Synaptic properties of central neurons . . . .. ... ... ..
1.3.3 Functional convergence onto visual cortical neurons . . . . . .
1.3.4 Factors shaping postsynaptic response . . . .. ........
14 FigureLegends .. ... .........................
2 General Methods
2.1 Slice Preparation . . ... ... ............ .. ... ...
2.2 Electrophysiological techniques . . . . . . ... ............
22.1 Drugsandsolutions. .. .....................
2.2.2 Recordingandanalysis . . . . ..................
2.3 Histology and reconstructionofcells .. ................
2.4 Compartmental Simulations . . . ... ... ..............
3 Functional Convergence onto Visual Cortical Neurons
3.1 Introduction . . . . .. ... ... ... ...
32 Methods . . . . . ... ... ... ...
33 Results. . . ... ... ... ... .. . ...
3.3.1 Properties of single-fiber inputs to cortical cells. . . . . . . ..
3.3.2 Properties of spontaneous synapticevents. . . . ... ... ..
3.3.3 sEPSC variability within and between cells. . . ... ... ..
3.3.4 Sources of SEPSC variability between cells. . . . . . ... ...
3.3.5 What generates EPSC variability within a single cell? . . . . .
3.3.6 Properties of single inputs over time. . . . ... ........
3.3.7 Only a small number of inputs are necessary to

generateaspike. . . ... ... ... ... o ..

64



CONTENTS

3.3.8 Reflection of input variability in output variability. . . . . . . 85
3.4 Discussion . . . ... 87
3.4.1 Size of single-fiber inputs to corticalcells . . . . ... ... .. 88
3.4.2  What generates EPSC variability within a single cell? . . . . . 92
3.4.3 Properties of single inputs over time . . . .. .. ... .. .. 93
3.44 Estimates of spike threshold . . . . . ... ... ... ... .. 95
3.4.5 Estimates of functional convergence . . . . .. ... ... ... 95
3.4.6 Implications for cortical information processing . . ... ... 97
35 FigureLegends . . ... ............ ... ... ..... 101
4 The Role of Electrotonic Structure in Generating Synaptic Variabil-
ity in Cortical Neurons 135
4.1 Introduction . . . . . .. ... ... ... e 135
4.1.1 Chapter Summary . ....................... 137
42 Methods . . . ... ... ... ... 138
4.2.1 Electrophysiology . . . . ... ... ... ... ..., ..... 138
4.2.2 Morphological Reconstruction . . . . .. ... ... ...... 138
4.2.3 Simulation of Response Distributions . . . . .. ... ... .. 138
43 Results. . ... ... ... ... . ... ... . 140
4.3.1 mEPSCs show extensive amplitude variability. . . . . . .. .. 140
4.3.2 Does electrotonic filtering contribute to mEPSC
variability? .. ... ... LT e e e e e e e e e e 142
4.3.3 How much variability can be produced by cable
filtering alone? . .. ... ... ... ... ... ........ 143
4.3.4 Sensitivity of response parameters to synaptic
location . . . ... ... ... ... ... 146
4.3.5 Parameter correlations: How to detect a contribution
of electrotonic filtering to mEPSC shape. . . . . ... ... .. 149
4.3.6 Series resistanceandnoise. . . . . . ... ............ 166
4.3.7 Evidence for cable filteringof mEPSCs. . . . ... ... .. .. 172
4.3.8 Is cable filtering alone sufficient to explain mEPSC variability? 175
44 Discussion . . . .. . ... e 179
4.4.1 Electrotonic filtering is necessary to explain some characteris-
tisofmEPSCs. . . . ... ... .. ... ... .. ...... 180
4.4.2 Electrotonic filtering is not sufficient to explain all of mEPSC
variability. . . . . ... ..o L 182
4.5 Figurelegends . . ... ... .. .. ... ... ... ... ..... 187

5 Experimental Evidence for Electrotonic Filtering in Visual Cortical
Pyramidal Cells 243



CONTENTS

5.1 Introduction . . . . . . . . . . .. L 244
32 Methods . . . . .. . . . . ... e 245
3.2.1 Isolating subpopulations of mEPSCs. . . . .. ... ... ... 246
53 Results . . . . . . . .o 249
5.3.1 Most mEPSCs originate from the region of the basal dendrites. 249
5.3.2 All of the largest events are generated proximally. . . . . . . . 251
5.3.3 Apical events are few in number and small in amplitude. . . . 253
5.3.4 Effects of CNQX application on the population of cells studied. 255
5.3.5 Dual-puffs reveal the nature of apically-generated
BVENMLS. . . . . v i e e e e e e e e e e e e e e e e e e e 256
5.3.6 Shape ‘ndices are reflective of mEPSC source location. . . .. 262
5.3.7 Effect of event detection on parameter measurements. . . . . . 263
54 Discussion . . . . . - . .. it e e e e e e e e 265
55 FigureLegends . ... ................... ... .... 273
Electrotonic Structure in Dentate Gyrus Granule Cells: Filtering of
IPSCs 297
6.1 Introduction . . .. ... ... .. ... .. 297
6.1.1 Nature and location of inhibitory inputs to
granulecells. . .......................... 298
6.1.2 Properties of GABAergic synaptic currents . . . . . ... ... 300
6.1.3 Is there a functional role for GABAergic
mIPSCs? . . . . . . . e 301
62 Methods . . . ... ... .. ... ... ... e 302
6.2.1 Preparationofslices ... .................... 302
6.2.2 Electrophysiology . . . . .. ... ... ... ... L. 303
6.23 Simulations . ... ... ... ... .. ... .. ... 304
6.3 Results . . . . .. ... ... .. .. e 305
6.3.1 Miniature IPSCs are variable in amplitude and
kinetics . ... ... ... .. ... 305
6.3.2 Effects of cable filtering on proximal and distal
inhibitory synapticinputs . . . . .. ... ........... 307
6.3.3 Removal of distal dendrites does not change the
amplitude or kineticsof mIPSCs . . . . . .. .......... 308
6.3.4 Assessment of the ability of the event detector to
detect distal IPSCs . . . . . ... .. ... ..... ... ... 310

6.3.5 Computational modeling of the influence of synaptic location
on IPSC amplitude and kinetics in
granulecells . . . ... ... ... .. ... ... .. ... .. 311



CONTENTS

6.3.6 Percent of miniature IPSCs from distal sites which should be

detectable . . . . . .. ... ... ... L 313
6.3.7 Source of amplitude variability in dendrotomized
NEUTOMS. . .« . v v v v vt e e e e e e e e e e e e e e e e 314
6.4 Discussion . . . .. . .. ... 318
6.5 FigureLegends . ... ... ... ... ... .. . .......... 325
7 Summary and Conclusions 349
7.1 Paradoxes of Cortical Function . . . .. .. ... ... ........ 352
7.2 Cortical microcircuitry and function . . . . . ... ... ... ..... 353
Appendix A Additional Analysis of Filtering Effects 355
A.l Effectsof morphology. . . ... ..................... 355
A.l.1 Effects of cableshape. . . ... ................. 356
A.1.2 Effects of somatic shunt: comparison to sharp
electrodestudies. . . . . ... ... ..., ... ........ 360
A.1.3 Effects of errors in morphological reconstruction. . . . . . . . . 365
A.2 Current vs. voltageclamp. . . . . . . .. ... ... ... ....... 366
A3 Effectsofspines. . ... ... ....... ... ... ... ..... 367
A.3.1 Effects of spine incorporation on simulated
parameter distributions. . . . . ... ... ... ... ... 367
A.3.2 Effects of spine head input location on parameters of synaptic
TESPOMSE. . . . . . vt v v ettt et e e e e e e e e e e e 370
A.4 Effects of synaptic kinetics. . . ... .. ... ....... . ..... 371
A.5 Effects of passive parameters. . . ... ... ... ........... 372
A6 Effectsofseriesresistance. . . . . ... ... .............. 374
A.6.1 Series resistance and filtering. . . . ... ... ... ...... 374
A.6.2 Parameters controlling the effects of
Series resistance. . . . . . . . . . . .. i i e e 376
A.7 Effects of detection threshold. . . . ... ... ............. 378
A8 FigureLegends .. ... ......................... 381
Bibliography 409

10



List of Figures

1-1 Morphology of recorded cell. . . .. .................. 45
1-2 Responses of cortical neurons to current injection. . . . . .. ... .. 47
3-3 Cortical cells receive spontaneous synaptic inputs. . . . . ... .. .. 107
3-4 Properties of spontaneous synapticevents. . . . .. ... ... .... 109
3-5 Voltage dependence of sEPSCs. . . . . ... ... ........... 111
3-6 sEPSCs show intra- and inter-cellular variations in kinetics. . . . . . . 113
3-7 sEPSCs are made up of action potential-dependent and independent

BVENLS. . . . . vt . e e e e e e e e e e e e e e e e e e e e 115
3-8 Distribution of sSEPSC amplitudes across the population of cells. . . . 117
3-9 Sources of SEPSC variation oetween cells. ... ............ 119
3-10 What generates EPSC variability? . . . . .. .............. 121
3-11 Variability in a single input over time. . . . ... ........... 123
3-12 Minimal evoked EPSCs are very similar to sEPSCs. . . . . . ... .. 125
3-13 meEPSCs show less kinetic variability than spontaneous events. . . . 127
3-14 Ouly a small number of inputs are necessary to bring the postsynaptic

celltothreshold. . .. ... ... ... .. ... . ... ... . ... 129
3-15 Cells utilize a voltage threshold for firing. . . . . ... ......... 131
3-16 Variability in inputs is reflected in output variability. . .. ... ... 133
4-17 MEPSCs show extensive amplitude variability. . . . . . . ... .... 197
4-18 Could cable filtering contribute to amplitude variability? . . . .. .. 199
4-19 MEPSCs show no correlation between rise tinic and amplitude. . .. 201
4-20 Description of simulation paradigm. . . . . . ... ........... 203
4-21 Cable filtering alone can generate skewed amplitude distributions sim-

ilar to those seen experimentally. . ... ................ 205
4-22 Most cells generate skewed voltage clamp amplitude distributions from

cable filteringalone. . .. ... ........ ... ... ... 207
4-23 Cable filtering alone generates skewed rise time distributions in both

voltageand currentclamp. . . . . ... ... ... ... .. 0L, 209

4-24 Measured synaptic parameters show different relationships to distance. 211

11



LIST OF FIGURES

4-25 Similar parameter distributions have different underlying relationships

to cell structure. . . . . . ... 213
4-26 Sources of synaptic variability other than cable filtering. . . . .. .. 215
4-27 Effects of cable filtering in combination with other sources of synaptic

variabality. . . . ..o oL 217
4-28 Selection of fastest events allows some examination of underlying ki-

netic variability. . . . ... ... ... ... ... 221
4-29 Effect of noise on the measurement of mEPSC parameters. . . . . . . 223
4-30 Assessing the robustness of experimental parameter correlations. . . 225
4-31 Cable filtering is necessary to explain some features of the data. . . . 227
4-32 Correlation between rise time and half width suggests the presence of

cablefiltering. . . . .. ... ... ... ... ... . ... ... ... 229
4-33 Correlations between parameters provide evidence for additional sources

ofvariability. . . ... ... ... ... ... ... .. . .. ... 231
4-34 Lack of relationship between amplitude and inverse rise time cannot

be easily explained. . . ... ... ... ... .. 0L 233
4-35 Cable filtering is not sufficient to match all characteristics of data. . 235
4-36 Effects of added conductance variability. . . . .. ........... 237
4-37 Cable filtering still controls mEPSC characteristics in the presence of

significant conductance variability. . . ... ... ........... 239
4-38 Effects of parameters on degree of amplitude variability in current and

voltageclamp. . . . ... ... ... ... ... ... .. ... ... 241
5-39 Local applicationof CNQX. . . ... ... ... ............ 279
5-40 Most mEPSCs originate from the basal dendrites. . . . . . . . .. .. 281
5-41 Apical mEPSCs tend to be smaller in amplitude. . . . ... ... .. 283
5-42 Effects of CNQX application in the populationof cells. . . . . . . .. 285
5-43 Nature of apical events: dual-puffecells. . . . .. ... ... ... ... 287
3-44 Correspondence between response and morphology. . . . . . ... .. 289
3-45 Shape indices reflect event location. . . . . . ... ........... 291
5-46 Effects of detection threshold. . . . . ... ... ... ......... 293
5-47 Effectsof bath CNQX. . . . . ... ... .. ... ........... 295
6-48 Role of cable filtering in the generation of mIPSC amplitude variability. 331
6-49 Effects of cable filtering on minimally evoked IPSCs. . . . ... ... 333
6-50 Are there significant numbers of distally-generated eveats? . . . . . . 335
6-51 Are slow distal events escaping detection? . ... ........... 337
6-52 Effects of cable filtering on mIPSC shape. . . ... ... ... .... 339
6-53 What proportion of distal mIPSCs should we be able to detect? . . . 341
6-54 Could cable filtering contribute to amplitude variability? . . . . . .. 343

12



LIST OF FIGURES

6-35 Effects of passive parameters on simulated input resistance. . . . . . 345
6-36 How much cable filtering is going on in cut cells? . . . .. ... ... 7
A-57 Effects of morphology. . . . . . . ... ... ... ... ... ... 387
A-38 Effects of somatic shunt: comparison to sharp electrode studies. . . . 389
A-39 Effects of errors in morphological reconstruction. . . . . . ... ... 391
A-60 Relationship between current and voltage clamp.. . . . . . . .. ... 393
A-61 Effects of spine incorporation function on parameter distributions. . . 395
A-62 Effects of spine input on parameters of synaptic response. . . . . . . 397
A-63 Effects of synaptic kinetics. . . . .. ... ... ... ... ... 399
A-64 Effects of passive parameters. . . . . . ... .............. 401
A-65 Effects of series resistance. . . . . . ... ... ... ......... 403
A-66 Parameters controlling effect of series resistance. . . . . . . ... ... 405
A-67 Effects of detection threshold. . . . . . . . ... ............ 407

13



LIST OF FIGURES

14



List of Tables

1.1
3.1

4.1

Single-fiber connection strengths measured in a variety of studies. . . 37

Comparison of minimally-evoked and spontaneous event kinetics from
thesamecell. . ... ... .. ... ... e 81

Measured mEPSC parameter values from 3 cells in TTX, APV, and
Bicuculline. . . ... ... ... ... ... e 141

15



LIST OF TABLES

16



1

Introduction

The mammalian neocortex is responsible for processing an amazingly diverse body
of information - from analyzing early sensory input from all sources and combining
those inputs across modalities, to generating plans of action and executing them via
an orchestrated motor response. It performs these tasks through a bewildering and
ever-increasing number of architectonically and physiologically distinct cortical areas,
each specialized in terms of its inputs and outputs [282].

In spite of this specialization of the different cortical areas, their intrinsic cellular
makeup and micro-circuitry appears remarkably similar (287, 105]. This suggests that
there may be basic computations performed by cortical circuits may be similar in all
areas (159, 64]. On this view, specialization to particular tasks would be determined
primarily by the input and output connectivity of a particular area, combined with
minor differences in its intrinsic circuitry and cellular makeup [216]; examples of
the latter being the abundance of small layer 4 cells in primary sensory cortices
(192, 287), and the expansion in total cell number in primary visual cortex of all
mammals (192, 19, 282].

This implies that an understanding of the computations performed by cortical
cells and local cortical circuits will provide a basis for understanding the mechanisms
of operation of a wide variety of neural processing across diverse areas of neocortex

(181, 63, 64, 259]. While a considerable amount of work over the last 10 years has

17



1 INTRODUCTION

demonstrated many of the intrinsic properties of the diverse cortical cell types [49.
166. 111, 113, 136], and the glutamatergic. combined NMDA /non-NMDA makeup of
excitatory synaptic connections both intrinsic to the cortex and in the inputs from
thalamic afferents [107, 253, 254, 262, 129, 1, 183]; at the same time much less is known
~about the functional properties of cortical neurons at the level of micro-circuitry -
the highly recurrent connectivity between diverse cell types and layers that is the
hallmark of the neocortex [64, 287, 258, 262, 261, 264, 60, 108, 162, 182, 181].

A single cortical neuron receives between 5 and 10 thousand excitatory synaptic
inputs, from both thalamic afferents and other cortical neurons [62, 287, 192]. As a
result of the large divergence of cortical axons [287, 192, 62, it has been estimated
that only 1-4 of those synapses come from any single presynaptic cell (287, 62, 74,
116, 255, 256], su.ggesting a convergence of from 1,000 to 10,000 presynaptic cells onto
one postsynaptic cell. How much of an impact does each presynaptic cell have on the
output of the postsynaptic cell? Do a thousand presynaptic cells have to be active
at once to make the postsynaptic cell fire a spike, or only ten? And does it matter
which ten - are all inputs to a cortical neuron created the same, or is their function
determined by factors such as synapse location or the firing history of the presynaptic
cell? Clearly the answers to these questions are basic to our understanding of the
operation of neocortical cells.

These are the questions that I will address in this thesis. I have approached these
issues using a combination of electrophysiological recording from single neurons in
slices of rat and cat visual cortex, anatomical reconstruction of recorded cells, and
detailed computational modeling of cellular and synaptic properties. I have chosen to
concentrate on visual cortex because of the large body of anatomical and physiological
data available. Comparison with this data allows both a greater understanding and
analysis of the cellular events studied here, as well as an extrapolation beyond the
slice into the impact of cellular and synaptic properties on the response of these cells

in vivo in response to sensory input.
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1.1 OUTLINE OF THE THESIS

1.1 Outline of the thesis

The work presented here draws heavily on a previous body of research both on the
properties of cortical neurons, and on the nature and properties of synaptic transmis-
sion in central neurons. | will therefore begin this thesis with a brief review of the
anatomical and cellular properties of cortical neurons, followed by a review and sum-
mary of the relevant physiological and theoretical work on synaptic physiology. This
review will concentrate on those issues most relevant to the work presented here, for
more extensive review the reader is invited to consult the numerous general review
works available [192, 287, 165). More detailed discussion of the literature relevant
to particular issues, and review of relevant theoretical and computational work and
methods will appear in the appropriate portion of the body of the thesis.

Following the introductory chapter, I will present a summary of electrophysiologi-
cal and computational methods common to all of the chapters of the thesis. Methods
for particular experiments will appear in the introductory section of the relevant
chapter.

The body of the thesis is divided into two parts. In the first part, I will address
the question of the characteristics of excitatory synaptic inputs to cortical neurons,
and how they relate to the output of the cell. This part will attempt to answer the
question of how large are the single-fiber inputs to cortical neurons, and how many of
them does it take to fire the cell? In other words, what is the functional, as opposed
to anatomical convergence onto cortical neurons.

In the second part, I will address the question of the factors influencing the re-
sponse of the postsynaptic cell to these inputs, in particular, how electrotonic filtering
and synaptic location influence the effectiveness and properties of a synaptic input.
This part can be divided into three subsections. In the first, I will present physiologi-
cal data on the variability of synaptic inputs, and will use computational modeling to
explore how much of this variability could be due to electrotonic filtering, and what

influence various cellular and synaptic parameters will have on the synaptic response
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1 INTRODUCTION

at the soma. The simulations in this chapter are supplemented by basic findings
presented in the Appendix. In the second section I will present an experimental ap-
proach to the question of the role of synaptic location on postsynaptic response, and
compare the experimental data with the results of the models in the previous sections.
Finally, in the third section, I will address he issue of the generality of the conclusions
presented here by applying similar computational techniques to data describing the
location of an entirely different class of synapses on an entirely different cell type -

GABAergic inputs onto dentate gyrus granule cells of the hippocampus.

1.2 Credits and Publication

While the work presented in this thesis is overwhelmingly my own, various studies
were performed in collaboration with other investigators, as summarized below.

The work on cortical synapses presented in chapters 3, 4, 5, and the Appendix was
performed in collaboration with Dr. Sacha Nelson, a former postdoctoral fellow and
now faculty member at Brandeis university. Besides his contributions to discussions
of the work herein, Dr. Nelson and I performed together many of the experiments
described in Chapter 3, which also produced a few of the filled cells used in Chap-
ters 4.! | performed the other half of the early experiments described in Chapter 3,
and all of the cortical physiology used in later chapters, as well as all of the analysis of
physiological data presented here, both for chapter 3 and later chapters. ! performed
all of the histological processing, anatomical analysis, and morphological reconstruc-
tion described here, as well as all of the mathematical and theoretical analysis and
computational simulations.

As noted in chapter 6, the work on inhibitory synapses onto dentate gyrus granule
cells was performed in collaboration with Drs. Ivan Soltesz and Istvan Mody of the

University of Texas Southwestern Medical Center at Dallas. All electrophysiology

This series of experiments also included a study on short-term synaptic plasticity of cortical
synapses, which is not included here.
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1.3 LITERATURE REVIEW

for that study was performed by my collaborators. Two granule cells were used for
computational modeling, one was filled by Dr. Soltesz. the other. used for prelim-
inary simulations only. was filled by me during the course of other experiments. |
reconstructed both of the cells. I performed all of the simulations described here and
in the paper, as well as the testing of the event detector using simulated data. In the
writing of this chapter ! have tried to emphasize the computational analysis of the
problem. The work presented in chapter 6 is in press in Neuron [240].

This work was supported by a Howard Hughes Medical Institute predoctoral fel-
lowship. EYO7023 to M. Sur, a NIH eye institute fellowship to S. Nelson, and NS-
30549 to 1. Mody.

1.3 Literature review

1.3.1 Cortical micro-anatomy and cellular physiology

By the turn of the century, Golgi stains of the neocortex in a variety of species had re-
vealed the bewildering array of cell types making up its cytoarchitectonically defined
6-layered structure [207].> This diversity can luckily be described to a first approx-
imation by a small number of morphological classes of cells, which also correspond
closely to those divisions based on intrinsic physiological properties and neurotrans-
mitter phenotype.

Cortical neurons can be divided along two different lines, each resulting in two
(overlapping) categdries of neurons. The first division is between spiny and non-spiny
neurons. Spiny neurons, which include the pyramidal cells and the spiny stellate cells
of layer IV, are generally considered to be glutamatergic, excitatory neurons [287, 192].
Non-spiny cells (including “sparsely spiny” cell types) are in general GABAergic and
hence inhibitory [287, 192]. Along the other axis, there are pyramidal cells, which

?In the rat, this 6-layered structure is present, but harder to clearly differentiate. This study will
follow the standard practice of lumping together layers II and III, and layers V and VI [287].
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1 INTRODUCTION

make up the largest cell class in the cortex and are its output cells projecting to
other cortical areas and subcortical structures [287, 193, 194, 195, 196, 133]; and
non-pyramidal cells, a category which includes quite a number of distinguishable cell
types (e.g. spiny, sparsely spiny and non-spiny stellates, chandelier cells, basket cells,
etc. [197, 106, 241].).

Pyramidal cells (examples of which can be seen in Figures 1-1, 1-2, 4-21, 4-22, 5-
44) are distinguished by their pyramidal-shaped soma, and by a long “apical” dendrite
extending from the top of the cell body to the pial surface. This dendrite usually gives
off a number of side branches close to the soma (“apical obliques”), then extends up to
the pial surface where it gives rise to a “tuft” of small branches. There are systematic
differences in pyramidal cell morphology both within and between layers. In a large
layer V cell (such as that shown in Figure 1-1), the apical obliques and tuft will be
separated by up to several hundred microns of isolated apical trunk, while in a smaller
layer II/III cell, where the apical dendrite has only a short distance to travel before
reaching the pial surface, the boundaries of the obliques and the tuft may overlap and
in the smallest cells the distinction may be largely irrelevant. Surrounding the soma
will be a cloud of from 3-10 “basal” dendrites, which actually constitute the majority
of dendritic membrane in all pyramidal cells [133, 137]. In layer V, pyramids can be
divided into “bushy” and “thin” subtypes, the former generating a large apical tuft
in layer I, the latter generating many fewer apical branches, and frequently ending in
lower layer I1/111. Layer IV of the rat contains small spiny stellate neurons, as does
layer IV in other species, but in the rat these sometimes maintain a vestigial apical
dendrite and are referred to as “star pyramids”. Pyramids in Layer VI usually have an
apical dendrite which extends only so far as layer IV before ending without branching
into an apical tuft [133, 137, 287]. Finally, in the rodent, there are also a reasonable
frequency of “inverted pyramids”, cells showing normal pyramidal morphology except
that for some unknown reason their apical dendrite extends towards the gray matter
rather than towards layer I [177). These subdivisions also correspond to differences

in connectivity; for instance “bushy” layer V cells are reported to be the only cell
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type projecting to the superior colliculus [108], while “thin” layer V cells project to
the contralateral cortex and may project to other cortical areas intrahemispherically.
These differences in morphology and connectivity suggest the likelihood of differ-
ences in function between these cell types. Even more suggestive is the finding that
- these divisions also correspond to differences in intrinsic physiology. Pyramidal cells
for the most part fire an adapting train of spikes to an injected current step. have
relatively broad spikes, and saturate at maximal firing rates less than around 200
Hz. Two examples of regular-spiking cells, one from cat and one from rat, can be
seen in Figure 1-2, together with reconstructions of that rat cell and a different cat
pyramidal cell. This broad class of cells has been termed “regular spiking cells”, or
RS cells, and can be subdivided further on the basis of adaptation characteristics®
(49, 166, 40, 136]). A subset of pyramidal cells, those large pyramids of layer '/ and
lower layer IV show a different type of intrinsic physiology. These cells respond to
injected current with a burst of action potentials, and are known as “intrinsically
bursting” (IB) cells [40, 49, 166, 108]. These cells correspond to the “bushy” layer V
cells described above (136, 137, 108, 36, 37].
In spite of their high degree of morphological heterogeneity, until recently, only
a single physiological class of non-pyramidal cells had been identified. These “fast
spiking” (FS) cells make up the majority of smooth non-pyramidal cells in cortex
[111, 113]. They respond to an injected current step with a non-adapting train of
action potentials, can fire at very high frequency, and have very narrow spikes [49,
166]. Recently they have been identified with the parvalbumin-containing (a Ca**-
binding protein) subtype of GABAergic neurons [113, 114], and probably include
the basket and chandelier cell types defined morphologically (113, 106]. Three other
physiological types of non-pyramidal cells have recently been described in rat frontal
cortex. The first of these is the low-threshold spike cell (LT) cell, showing bursts

following preceding hyperpolarization, and exhibiting tonic firing to depolarization,

3This adaptation, however can vary from a slight frequency reduction towards the end of a train
to a total cessation of firing after 4-5 spikes.
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similar to thalamic neurons [111, 113, 72]. These are calbindin-positive. and may
correspond to “sparsely spiny” cells {113, 112]. Both FS and LT cells are present
in all layers. Two other cell types have also been identified in layers II/IIl. Late-
spiking (LS) cells show slowly-developing ramp depolarizations in response to step
current injections, which eventually reach firing threshold. Their spike trains are
usually of lower frequency than FS cells, and they show slight frequency adaptation
[113]. They correspond to neurogliaform cells [113]. Finally, the remaining NP cells
have been classed together as regular-spiking non-pyramidal cells (RSNP cells). This
class is heterogeneous, including some cells that show a small fast depolarizing notch
in response to depolarizing current steps, like a mini-burst; this subgroup includes
double bouquet and bipolar cells [113]. Spiny stellates, another non-pyramidal cell
class, fire non-adapting trains of spikes, but do not usually fall into the “fast spiking”
category, however they have not been analyzed in detail [247, 87).

These differences in intrinsic physiology and cell class have, until recently, not been
considered in in vivo studies, and hence their relationship to receptive field properties
and sensory responses is not yet known. However, cells with different morphologies, or
whose somata lie in different layers sample different input populations simply by virtue
of the axons their dendrites are able to reach{137, 133, 62, 36]. Additionally, recent
evidence both in cortex and on similar cell classes in the hippocampus [82, 83, 261,
264, 164, 163] suggests that these differences in cell class correspond to differences in
synaptic response properties (see Table 1.3.3). Combined with the obvious differences
in spiking (output) properties of each class, this would provide an opportunity for

these cell types to process information in very different ways.

Excitatory synaptic transmission in cortical neurons

Both cortical pyramidal cells and thalamic afferents to cortex are known to use the
excitatory amino acid, glutamate, as their major neurotransmitter [62]. Because

pyramidal cells receive the bulk of their connections from other pyramidal cells, both
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those nearby and those in other cortical areas. excitatory synapses predominate and
are estimated to make up 85% of all synapses in cortex [62. 287. 192]. Pyramidal cells
receive the vast majority of their excitatory inputs through synapses located on spine
heads [192. 287]. while inhibitory inputs are predominantly located on their somata,
axon hillocks, and dendritic shafts [192]. For the most part, pyramids have few spines
(and hence few excitatory synapses) within 30 um of their somata [134]. In contrast.
spiny stellate cells of layer IV in the cat! receive over half of their excitatory inputs
onto their dendritic shafts [9, 8].> Non-pyramidal, non-spiny neurons receive their
excitatory synaptic inputs distributed over their somata and dendrites.

Excitatory synapses onto cortical neurons involve both the N-methyl-d-aspartate
(NMDA) and non-NMDA (primarily a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate
(AMPA)) subtypes of glutamate receptors® {107, 183. 262, 247, 253, 254, 84]. As in
many other cell types, the two receptor subtypes seem to be colocalized at single
synapses [18, 263, 258, 262]. Presumably because of the high input impedance of
spine heads and small distal dendrites, combined with a possibly higher resting po-
tential in the dendrites, significant NMDA contributions can be seen in inputs from
single presynaptic axons even when the soma of the postsynaptic cell is as hyper-
polarized as -80 mV [264, 262, 183]. This indicates that the site of synaptic input
must be significantly depolarized (see chapter 4), as cortical NMDA receptors show
a conventional current-voltage relation for that subtype [247], not passing significant
current below -50mV in the presence of normal Mg** concentrations.

In addition to the differences in anatomical localization, there appear to be dif-

ferences in the physiology of synaptic inputs to different cell types and layers. Even

40Of which there are few or none in rat [192].

5As rats presumably do not have spiny stellate cells, and no recordings in this study were per-
formed in layer 1V, this complication will be ignored for the bulk of this study, which is heavily
biased towards pyramidal cells.

SThere is also evidence for the presence of metabotropic glutamate receptors on central neurons
{180], but these have been much less extensively studied and will not be considered here. In addi-
tion, I will not make a distinction between the other subtypes of non-NMDA receptors, considering
primarily the AMPA/CNQX-sensitive class.
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the channels underlying the synaptic response may be different in different cell types.
For instance, the synaptic responses of pyramids and some interneurons are strikingly
different in their kinetics [264, 261]. This may be partially due to the fact that gluta-
matergic inputs to non-pyramidal cells seem to generate postsynaptic responses with
a much more rapid time course than those in pyramidal cells, reflecting differences in

the underlying channel kinetics in the two cell classes [83].

Use of whole-cell patch clamp recording and the development of neocorti-

cal synaptic physiology

In recent years, the technique of whole-cell patch clamp recording in slices [24, 68] has,
through its increased signal-to-noise ratio and its increased pharmacological access
to the intracellular milieu, greatly increased our knowledge of synaptic and cellular
physiology. However, many of the experiments on synaptic responses in a variety
of neuronal subtypes were performed using conventional (“sharp electrode™) intra-
cellular recording, and so in comparing data from these studies it is important to
consider the differences between these recording methods.” There has been some
controversy that the significantly higher input resistance and longer time constant
seen in whole-cell recordings is due to washout of some normal cellular components
contributing additional conductance to the cell [6, 36], but careful studies including
use of perforated patch recording techniques support the notion of a somatic shunt
underlying a significant fraction of the reduction in R;, in sharp electrode recordings
(243, 6, 231, 246). Also, most, if not all, sharp electrode recordings are performed at
temperatures above 30°C, while whole-cell recording is l.'requently performed at room
temperature. As a reduction in temperature can increase input resistance and change

other cellular properties [257], this may contribute to some of the reported differences

7In addition to the increased S/N, the most noted difference between intracellular and whole-cell
recording is the likely presence in the former of a somatic shunt, or leakage to ground around the
electrode [243, 242, 152]). The importance of this to recordings of synaptic events is discussed in
Section A.1.2.

26



1.3 LITERATURE REVIEW

in cellular properties with the two methods. However, some studies have compared
whole-cell and sharp electrode recordings under conditions of identical temperature.
recording conditions, and animal characteristics (246, 243], indicating that this cannot
be whole story. Almost all the recordings here were performed at 34°C, but a small
number of cells were recorded between 22 and 34°C for comparative purposes.® At
reduced temperatures there was a slight increase in R;,, and decrease in spontaneous
mEPSC frequency similar to those reported in from the literature. These changes
were small, and would not affect the conclusions presented here.

Additionally, most whole-cell recording (including the data presented here from
rat) is performed on tissue from animals significantly younger than those used in
intracellular studies (typically postnatal days 9 (P9) to 21)° [104, 247, 68, 29]. This
becomes an important factor both in comparing data across studies using animals of
different ages, and in extrapolating the results of whole-cell studies to the response of
these cells in adult animals, as animals may still be undergoing developmental changes
in cellular and synaptic properties at these younger ages. It is therefore important
to ~xamine both the developmental changes that occur between these younger ages
and adulthood, and any changes that may occur in the period from P12 and P28, the
ages used for the studies presented here.'®

A number of studies have examined the morphological and electrophysiological
development of rat cortical neurons [174, 175, 177, 176, 109, 110, 29, 30, 147]. In the
rat, visual cortical neurons are born between E13 and E22/P0 [16]. They migrate in
an inside-out pattern,reaching their final laminar position a few days later [16]. In the
visual cortex, their ultimate differentiation may in part be controlled by visual experi-
ence, which begins with operation of the photoreceptors after birth {148} and changes
dramatically with eye-opening at P13. During this period, from P6-12, retinal axons

8As this experiment was somewhat impromptu (the temperature controller broke), no systematic
quantitative results will be presented.

9This is done because of the increased ease of obtaining whole-cell recordings in the younger
animals.

19Most of the neurons used here were taken from animals between P14 and P21.
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form their contacts with the relay cells of the LGN [16]. In the cortex, differences in
cellular morphology corresponding to differences in cell type can be seen as early as
P5 [109]. Cells undergo a rapid increase in size, dendritic complexity and number of
spines between P3 and P12, which taper off and begin to plateau during the third
-postnatal week. For the most part, morphological differentiation of pyramidal cells is
complete by P21 (174, 109]. After P21, the dendrites continue to increase in length up
until P60, but this increase is limited to distal dendritic segments [174]. Between P11
and adult, there is a significant increase in the number of dendritic tips [109], but the
basic structure of the cell (as indicated by soma size, number of proximal dendrites,
etc) does not change. In all cases, layer V cells develop approximately 3 days in
advance of the counterparts in layer II/III [174], possibly due to their earlier arrival
in the cortex. Inverted pyramids develop apace with their normally-oriented coun-
terparts [177]. Non-pyramidal cells appear to develop morphologically at the same
time as the pyramids of the same layer [175], though it appears that their synaptic
development may be somewhat retarded with respect to pyramidal cells, as IPSPs
cannot be evoked till several days after it is possible to evoke EPSPs [109, 147]. The
major differences between the cells used here and the adult, then, is in the length and
number of their distal dendritic segments. This means that the cells used here will
be more amenable to space clamp than adult cells, and that it should be considered
that discussions of electrotonic filtering in Chapters 4 and 5 may underestimate the
impact of electrotonic filtering that will be seen in the adult. Between P14 and P21
(i.e. during the primary period used for study here), cells do continue to increase their
dendritic lengths, but their basic structure is largely constant. The major change that
cells undergo during this period is in their spine distribution. The density of spines
increases by at least two-fold between P9-12 and P21 [174], and the adult pattern of a
very low spine density on the most proximal dendritic segments is not established un-
til P21. After P21, spine density first increases and then decreases to approximately
the level seen at P21, and there is a continuing loss of proximal spines.

Electrophysiological properties of pyramidal cells appear to develop largely in
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concert with their morphological differentiation [167. 109, 110]. Between P3 and P21,
there is a gradual decrease in input resistance, time constant, and resting potential
[109). Active properties develop in this period as well, with a gradual decrease in
action potential threshold, and an increase in action potential size and speed, amount
of persistent Na* current, afterhyperpolarization size and complexity, and amount of
“sag” current [109, 110, 93. 167. 4]. Bursting cells only appear after P14, in spite of
the fact that the morphological distinction between “bushy” and “thin” layer V cells
is clearly visible by P5 [110]. In all cases, cells appear electrophysiologically mature
by P21, and the changes seen during the age range used here, while significant, are
all quantitative changes in cell behavior rather than qualitative ones and should not
significantly alter the conclusions below.

Finally, synaptic properties of pyramidal cells appear to develop even before they
are morphologically or electrophysiologically mature {29, 30]. Excitatory synaptic
inputs [109)], showing both NMDA and non-NMDA components [29, 30, 146], can be
evoked as early as P3. These do not appear to change in character over the first
two postnatal weeks [29, 30], and any changes seen before P21 can be attributed to
concomitant changes in membrane time constant [109]. IP5Ps in contrast, do not ap-
pear until P9, at which point they show a normal reversal potential near the resting
potential of the cell [109, 147]. Unfortunately, the development of synaptic proper-
ties between P21 and adulthood has not been studied using comparable methods at
both ages, so it is difficult to assess whether there is a further period of synaptic

development before adulthood.

1.3.2 Synaptic properties of central neurons
Quantal nature of synaptic transmission

Beginning with studies at the neuromuscular junction (NMJ) [55, 56, 280] and grad-
ually expanding, after years of controversy, throughout the central nervous system

is a consensus that transmission between neurons is quantized (280, 276, 160, 161,
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210. 20, 92. 32, 45, 67. 95, 104, 127, 132. 140. 156, 248. 283, 291]. A presynaptic
action potential releases not a graded amount of neurotransmitter, but from zero to
several hundred vesicles, each containing a “unitary” amount of transmitter. At the
NMJ, under normal conditions, the number of quanta released by a single action po-
tential is very large, and the fluctuations in number of quanta released by different
action potentials are unseen. In contrast, in the central nervous system, the number
of synaptic junctions formed between two neurons can be very small, and the num-
ber of quanta released by one action potential is never very large, so in many cases
the statistical fluctuations in transmitter release result in significant fluctuations in
postsynaptic response between subsequent trials [189, 249, 3, 291]. While quantal
synaptic transmission in the central nervous system seems a generally accepted con-
cept at this point, some of its mechanistic details are still under intense debate. It is
not known whether a single synaptic connection/release site ever releases more than
one vesicle, and hence whether the fluctuations in synaptic amplitude are due to the
release of different numbers of vesicles from one site, or from the all-or-none activa-
tion of different release sites [191, 126, 95); a corollary of this fact is that it is still
debated whether or not a single vesicle saturates the receptors found locally on the
postsynaptic membrane [191, 95, 127, 88], which would imply that release of addi-
tional vesicles would have no additional postsynaptic effect. It is not known whether
the multiple synaptic connections from one presynaptic cell onto a single postsynaptic
partner all produce the same quantal amplitude of response, or have the same prob-
ability of release in response to an invading action potential (285, 95, 126]. While it
is widely believed tﬁat various forms of synaptic plasticity result from modulation of
any or all of these parameters of synaptic transmission, other than in a few cases (e.g.
paired-pulse facilitation, which is usually due to an increased probability of release
to the second of two closely spaced stimuli, due to presynaptic calcium accumulation
(161, 92]), it is hotly debated exactly which parameters are subject to change. And
finally, it is not known whether different subclasses of synapses differ in some or all

of these parameters, and whether membership in a certain subclass can be altered by
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the history of synaptic activation [219. 31. 127].

In spite of this uncertainty as to the mechanisms underlying synaptic transmission
in the central nervous system, we can still use its well-understood macroscopic features
to both examine their functional impact on the behavior of cells. and to explore some

of the factors shaping postsynaptic response to a synaptic input.

Functional implications of quantal transmission

At many synaptic connections, at least in the slice preparation, total failures of trans-
mission are frequently seen (189, 249. 3, 291]. While there is a possibility that some of
these failures of transmission are due to failures of stimulation of the presynaptic axon.
or of branch point failure of action potential propagation [250. 42, 227], there is strong
evidence that a significant number of them represent actual failures of transmission
(249, 92, 95]. When transmission does occur, the amplitude of the postsynaptic re-
sponse is characterized by its extreme variability [189, 3, 249, 140, 291}, sometimes
being seen to fluctuate between discrete, evenly spaced amplitudes, and generating
a “peaky” amplitude distribution as a result {140, 247, 67, 104]. This is interpreted
as evidence for quantal behavior, with the increments between response amplitude
being the amplitude of response to a single “quantum”, or vesicle of transmitter.

The fact that in central neurons the probabilistic nature of synaptic transmission
is not washed out by the law of large numbers as it is at the NMJ, and shows up
in extreme variability of the postsynaptic response, obviously has major impact on
the nature of computation performed by neural circuits [34, 189]. It then becomes
very important to know what the relationship is between these “noisy” inputs and
the output of the postsynaptic cell - is the cell’s output affected, or even dominated
by synaptic input “noise” [236, 235, 21, 228], or is such “noise” averaged away by
requiring hundreds or even thousands of synaptic inputs to be simultaneously active
to fire the postsynaptic cell?

This question is particularly important in the neocortex, where single cells (partic-
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ularly pyramidal cells) receive between 5,000 and 10.000 excitatory synaptic inputs.
while it is suggested that only 1-4 of these inputs come from any single presynaptic
cell. Understanding the “unit” by which cortex computes requires knowing what any
given synaptic connection might “mean” to the postsynaptic cell - are the local con-
nections between single pre- and postsynaptic cells physiologically strong enough to
significantly influence the firing of the postsynaptic cell, or is cortex better seen as
a continuum, generating its output only by averaging over large areas of space/large
numbers of presynaptic cells.

The answer to this question has far-reaching importance. One of the fundamental
questions of neuroscience today is how is information represented by neurons - what
is the neural “code” [23]. Classically, neurons were believed to represent information
in their average firing rate. If neurons are inherently noisy, incapable of accurately
timing or transmitting their outputs [230], this seems to be the inescapable conclusion.
On the other hand, a body of recent work has provided evidence that neurons may
be capable of representing information in the detailed timing of their spikes [23,
35, 50, 12]. In spite of the seemingly “random” response of a cortical neuron to a
visual stimulus, repeated presentation of the same stimulus results in almost exactly
the same “random” pattern of spikes in response {12]. Injection of a noisy current
waveform designed to mimic the synaptic noise seen in vivo results in a train of
output spikes which reflect the detailed features of the waveform, not its long-term
average. If the “unreliable” single-fiber inputs to a cortical cell are reflected in its
(apparently temporally accurate) output, this implies that we must reexamine the
notions of neural “hoise”, and whether these unreliable connections are really in
some way functionally effective after all.

To begin to answer these questions, it is first necessary to determine the amplitude
of response to single-fiber synaptic inputs to cortical neurons, and its relationship to
the threshold level of the postsynaptic cell - how many inputs must be active to make
the postsynaptic cell fire a spike. In other words, what is the functional, as opposed

to anatomical, convergence onto visual cortical neurons?
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1.3.3 Functional convergence onto visual cortical neurons
Methods for measuring the properties of synaptic connections

There are a number of established methods for studying the properties of synaptic
connections between neurons. A subset of these will be used here, but data from all

of them from a large number of cell types and studies is reviewed in Table 1.3.3.

o Paired recordings: The most specific method for studying a connection be-
tween a synaptically connected pair of cells is to record from both the pre-
and postsynaptic neuron. This has the advantage over extracellular electrical
stimulation of the presynaptic cell that stimulation failure is not an issue, and
connections can be tested in both directions. This has the disadvantage that
the number of connections which can be studied is low, due to the difficulty of
the technique, and, more importantly, the requirement of repeated penetrations
to search for a synaptically connected cell means that it is usually done with
sharp electrode recording (the only exception is [156], where the presynaptic
cell was recorded intracellularly and the postsynaptic cell using whole-cell tech-
niques). The greatly lowered signal-to-noise ratio of this technique means that
connections can only be resolved with averaging, not much information about
amplitude fluctuations can be obtained from comparison of single sweeps, and it
will be biased towards large-amplitude connections (223, 2€3, 261, 264, 260]. Ad-
ditionally, the presence of a somatic shunt induced by the sharp electrode may
influence the amplitude and time course of the measured postsynaptic response
(see Section A.1.2), and the low frequency response of the high-impedance sharp
electrodes make voltage clamp analysis difficult if not impossible. Recent im-
provements in visualized slice techniques are making this method much more

amenable to whole-cell patch recording.

o Spike-triggered averaging: A presynaptic neuron is recorded extracellularly

(possibly while increasing its firing rate via iontophoresi. of glutamate), and
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EPSPs are recorded in a postsynaptic neuron by triggering on the time of the
extracellularly recorded spikes [262]. This technique has relatively good speci-
ficity, though spurious EPSPs might be correlated with the measured spike train.
It suffers from the disadvantage that the timing of presynaptic spikes cannot be
well-controlled. Additionally. it has in practice been performed with sharp elec-

trode recording from the postsynaptic cell, and hence suffers the disadvantages
described above.

e Minimal stimulation: Very low-amplitude extracellular stimulation of neigh-
boring cells or fibers is used to find a location where stimulation gives a “thresh-
old” response in the postsynaptic cell — below a certain amplitude of extracellu-
lar stimulation, there is no postsynaptic response, and as the stimulus amplitude
(or duration) is increased, a postsynaptic response suddenly “appears” which
remains relatively constant over a further region of increasing stimulus ampli-
tude. This is interpreted to be a result of stimulation of one, or at most a very
small number of presynaptic cells/fibers [249, 168, 3, 209, 291]. In the best
uses of this technique, placement of the stimulation pipette next to a candidate
presynaptic cell is done under visual control to increase specificity of stimulation
(67, 247]. The advantage of this technique is its relative technical simplicity,
allowing large numbers of cells and connections to be examined. The disadvan-
tage of this technique is its potential for lack of specificity, as more than one
fiber can be stimulated at a time; and the possibility of stimulation failures.!!
It is also impossible, as with spike-triggered averaging, to fill the presynaptic
cell and reconstruct the number/location of synapses underlying the recorded

connection.

1 Failures due to transmission failure at axonal branch points are also possible, but they are a
hazard of all the techniques mentioned here and may be a feature of normal synaptic transmission
(42). They might be somewhat more common with extracellular stimulation due to the chance of
firing only part of an axon, or inducing action potential propagation in an abnormal direction.
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e Spontaneous inputs: While there is not a lot of spontaneous firing of cells in
a brain slice. there is some. and it provides a good metric of the characteristics
of the population of inputs to the postsynaptic cell. The advantages of this
technique are its extreme simplicity. and the possibility of seeing a large variety
of inputs coming in all over the cell and hence getting a measure of the range of
possible input characteristics. The disadvantages of this technique are the lack
of identifiability of inputs, making it impossible to study the fluctuations of a
single input over time or even to know if the same input fires more than once,
the fact that only some classes of inputs may be spontaneously active in a slice,
leading to a biased sample of a subset of the inputs to the cell; and the fact that
spontaneous synaptic inputs are a mix of inputs generated by action potentials
in other cells and by the spontaneous, action-potential independent exocytosis

of single transmitter quanta, known as “miniature” EPSCs or EPSPs.

e Miniature EPSCs and EPSPs: In the presence of TTX, the spontaneous
synaptic inputs due to action potentials in other cells disappear, leaving only
the “miniature” EPSCs or EPSPs (mEPSCs or mEPSPs, also “minis”). Not
only does this give, by subtraction, an estimate of which of the spontaneous
events seen without TTX were due to action potentials and how their am-
plitudes relate to the (putatively uniquantal) minis, but the minis themselves
provide a valuable measure of the fundamental “units” of synaptic transmission.
Additionally, they have been used to separate pre- and postsynaptic effects of
various maniphlations (e.g. [157, 155]), as mini frequency is assumed to be
determined purely presynaptically, while mini amplitude is assumed to be de-
termined postsynaptically (assuming little change in vesicle filling with most
short-term manipulations). This measure does suffer from the same localiza-
tion issues as does recording spontaneous events, and the potential for bias

induced by different frequencies of vesicle release at different classes of synapses
[179].

35



Properties of single-fiber synaptic inputs in a variety of cell types

The properties of single-fiber connections between central neurons have been mea-
sured in a variety of cell types over the past 25 years. The results of a large fraction
of these studies are summarized in Table 1.3.3. As can be seen, the average amplitude
of any given connection is relatively small, on the order of 100-200 uV, as measured
with sharp electrodes. This figure is fairly consistent across systems and cell types, a
fact which might be considered somewhat unusual given for instance the extreme size
difference between a cat spinal motoneuron and a neocortical interneuron. An excep-
tion is the more recent work of Thomson et. al.[261, 264, 260] in rat sensorimotor
cortex, who have observed several extremely strong connections between pyramidal
cells, particularly in the deep layers, and from pyramidal cells onto interneurons in
the superficial layers. In single sweeps, they have nbserved EPSP amplitudes as large
as 9mV [260).

2Recording method used for postsynaptic cell. WC = whole cell patch, SE = sharp electrodes.
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1 INTRODUCTION

Relationship of single-fiber inputs to threshold

A number of estimates of the relationship between single-fiber input amplitude and
threshold have been made. particularly in hippocampal CAl pyramidal cells. Using
the common value of 150 uV for the average size of a single-fiber input (7, 168], 15-
20mV depolarization from rest necessary to fire the postsynaptic cell [7}, and assuming
linear summation of inputs [130}, this has provided an estimate of 100-250 synchronous
inputs necessary to cause the postsynaptic cell to spike (7, 168, 259, 181, 223, 6).

More recent estimates using whole-cell recording, however, have provided much

13Method used to study connection. P = paired cell recordings, MS = minimal stimulation,
VMS = minimal stimulation with visualization of the presynaptic cell, STA = spike-triggered
averaging, SP = measurement of spontaneous events, M = measurement of miniature spontaneous
events (in the presence of TTX).

14 Average over all connections tested.

SRange of averages seen at single connections.

16 Average includes failures.

1"Median amplitude. (Maximum approximately 2mV.)

18For putative somatic events, defined by rise times < 0.57, half widths < 0.67.

19Range of event amplitudes seen at single connections.

23Estimated probability of release at a single bouton, p.

2117.9 pA for pairs where charge transfer was measured. Average charge transfer (corrected for
missing pairs) was 170 fC.

2Increased to 0-40pA after LTP.

23Decreased to 5% after LTP (n=1).

2Range of means from minimal stimulation was 95-395uV .

5Range from minimal stimulation was 95-395uV .

2Range of maximum values across cells was 0.82-5.5nS.

27Range of average amplitudes seen in bursting cells: 0.19-0.28mV.

28Single sweeps could be as large as 9mV.

29As an estimate in some cells.

0Selected for strong connections.

3!Estimated in 4 cells as 179xV, 216uV, 227uVand 382uV (potentiated).

32Maximum average values with repeated activation: 0.24-2.05mV (mean 1.16mV). Single sweeps
as large as 5mV.

33Failure rate decreased with repeated activation. Failures to first spike: 54-100%, second: 12.2-
50%, third: 27-34%.

HSingle connection, comprised of 2 boutons to separate basal dendrites.

3Single connection, comprised of 8 boutons to apical dendrite.
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1.3 LITERATURE REVIEW

larger estimates for the amplitude of single-fiber inputs (e.g. 1-4mV in CAl [209]).
These studies have come up with much lower numbers of inputs necessary to fire
a postsynaptic cell: in cerebellum, 5-30 parallel fiber inputs necessary to bring a
Purkinjie cell to threshold [13], and in CAl, 10 inputs [209]. or 26 in the presence
of inhibition, but only 16 with inhibition blocked [189]. Additionally. several studies
provide evidence that the normal fluctuations in synaptic amplitude can have a strong
affect on the variability of spike output both in vitro (CAl. [189]). and in vivo (spinal
motoneurons [34)).

As Table 1.3.3 shows, even larger than the amplitude variability at a single con-
nection over time, is the amplitude variability across connections within a single cell
class, or even in a single cell. In addition to determining the impact of a particular
input on a postsynaptic output, it then becomes equally important to examine the
factors that shape postsynaptic response, which determine the variability across the

population of inputs to a single cell.

1.3.4 Factors shaping postsynaptic response

There are an extremely large number of mechanisms that can affect the strength
of a synaptic connection, for example: number of boutons or release sites making
it up, probability of release, number of postsynaptic receptors at each synaptic site
and their individual channel conductances, kinetics, and binding properties, number
of transmitter molecules released per quantum, the input impedance of the postsy-
naptic dendrite, its nonlinear properties, and so on. However, if we permit a slight
abstraction above the level of mechanism, we can macroscopically lump all of these
factors into 4 characteristics of a synaptic connection that control its efficacy. Each
of these factors may vary from synapse to synapse, between the boutons making up

a single synaptic connection, and even at a single release site over time.

e Synaptic location: in a passive cell, electrotonic filtering will affect the am-

plitude and kinetics of the somatic response to a synaptic input depending on
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1 INTRODUCTION

the location of that input in the dendritic tree [203. 242, 150].

e Synaptic conductance: the total conductance opened by any single synaptic
input or release of transmitter quantum. If “inputs™ are measured as presy-
naptic action potentials, this may be 0, as there may be a failure of transmis-
sion. This parameter subtends any variability in number of boutons, number
or characteristics of available postsynaptic channels or number of channels free
of desensitization, number of transmitter molecules rel. ased (in the absence of
synaptic saturation), stochastic fluctuations in the nun.Jer of channels opened
[279], etc.

e Synaptic kinetics: differences in the postsynaptic channels (e.g. their subunit
composition or state of phosphorylation) or in the distance transmitter must
diffuse to reach them may cause differences in their kinetic properties, and hence
in the kinetics of the macroscopic currents they generate. While such differences
may also cause changes in the synaptic conductance, mathematically we can

consider these factors independently.

e Dendritic nonlinearities: In addition to the effects of synaptic location men-
tioned above, variations in the nonlinear properties of the postsynaptic cell
dendrites may cause unexpected variations in synaptic response from location
to location on the dendritic tree. Until recently, the characteristics of these
dendritic nonlinearities were largely unknown, and were a “wild card” in con-
siderations of dendritic computation: they might do anything. In spite of recent
increases in our understanding of these properties [252], they are still heavily
underdetermined. This thesis endeavors to explore the effects of the first three
contributors to synaptic variability alone, and is limited to experimental and

computational simulations where that is probably a valid simplification.

Considering synaptic strength in terms of these lumped parameters gives us a

great deal of power to draw conclusions about the sources contributing to synaptic
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1.3 LITERATURE REVIEW

variability in cortical neurons, without getting bogged down in the mechanistic details.

Relationship to quantal variance An important factor in the application of
quantal analysis to central synapses is the amplitude variance between quanta at
a single synaptic connection [92, 62]. This variance is assumed to be caused by
variability in the size of quanta at a single release site either by differences in the
number of transmitter molecules in different vesicles, or by stochastic differences
in the number of channels opened by different vesicles; or by slight differences in
quantal amplitudes at different synapses between the same pre- and postsynaptic
cell. Quantal variance causes the width of peaks in the amplitude histogram to
increase with peak number [62]. In most applications of quantal analysis, either
quantal variance has been assumed to be zero, because the width of the peaks did not
increase, or because they were consistently narrower than would be predicted by the
baseline noise® [95, 45, 285, 223]. This lack of quantal variability was taken to imply
that a single quantum saturated the receptors at one postsynaptic site, and that the
variance in receptor number between sites at a single connection was minimal or zero
(in the case where there were more than one site/connection) [95, 191]. However,
it has been estimated that a quantal coefficient of variation of up to 15% might
not result in a measurable increase in peak width in typical experimental situations
[285). In cases where quanta were assumed to have some intrinsic variability, this
was estimated from the variance of miniature EPSCs occurring in the same cell or
cell class. This suffers from the problem that the mEPSCs occur on synapses all
over the cell, not just at the connection undergoing qu:.ntal analysis. Additionally, if
mEPSCs are collected during stimulation (i.e. not in the presence of TTX), they may
be contaminated by a certain number of action-potential-dependent EPSCs, which
may be multiquantal. Given a population of true mEPSCs, and assuming that the

quantal variance (and amplitude) is the same across all synapses onto the cell, then

3]ndicating that the noise and the peak amplitudes were not independent
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one can identify quantal variance with the variance in synaptic conductance described
above.’™ However, if any of the other sources of postsynaptic variability mentioned
above contribute to the shape of the mEPSC amplitude distribution, then it will
not provide a good predictor of quantal variability. A quantitative estimation of the
role of the factors above ir: generating mEPSC variability will therefore have the side
benefit of possibly shedding some light on the question of quantal variability and its

implications for synaptic saturation.

37While the actual mechanism underlying quantal variance may be variance in the size/content of
vesicles [17], or in the number of postsynaptic receptors activated at different sites or stochastically
at the same site [285], these are all functionally equivalent to a variance of posteynaptic conductance
and will be treated as such here. '
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1.4 FIGURE LEGENDS

1.4 Figure Legends

Figure 1-1: Morphology of recorded cell. A layer V cell from a P19 rat, filled
with biocytin during the course of recording. On the left is a digitized microscope
image taken from the cell at 10x magnification. On the right is a projection of the
3D reconstruction of this cell, scaled to approximately the same size (scale bar is 100
- um). See General Methods for details.

Figure 1-2: Responses of cortical neurons to current injection. A. Re-
sponses of a rat layer V pyramidal cell (above) to injected current steps (below).
This is a regular-spiking cell, recorded with a K-Gluconate electrode, and shows little
adaptation. B. Morphology of cell shown in A. This is a “thin” layer V cell. C. Linear
current-voltage relationship for cell shown in A,B. R;, is 615.1 M. D. Responses
of a cat layer V neuron (above) to injected current steps (below), again in a regular-
spiking cell. E. Morphology of another cat layer V neuron for comparison to B. F.
Current-voltage relationship for the cell shown in D, R, of this cell is 131.6 MQ.
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2
General Methods

This chapter describes those experimental and computational methods which form
the basis for all of the work in this thesis. Descriptions of more complex techniques
specific to each chapter have been presented in the methods section of the relevant
chapter.

2.1 Slice Preparation

Preparation of rat slices Juvenile Sprague-Dawley rats (postnatal day 12-28)
were sacrificed by overdose of sodium pentobarbital (120 mg/kg) or ketamine and
acepromazine (120/10 mg/kg). The brain was rapidly removed and placed in ice-
cold oxygenated artificial cerebrospinal fluid (ACSF), and was then hemisected. The
ventral third of each hemisphere was trimmed off, and in some cases the bulk of the
diencephalon was removed. The brain was then cut into 400 gm coronal slices with
a Vibratome. Slices were used from the most posterior portion of the brain where
coronal slices including the full cortical thickness and the white matter could be ob-
tained, anteriorly through the full extent of primary visual cortex to the beginning
of the corpus callosum. Recordings were restricted to visual areas. In experiments
presented in Chapter 3, only primary visual cortex was used, but in later experi-
ments the more anterior and lateral visual areas were included because they were
less significantly curved with respect to the angle used for slicing, and so contained
more intact deep-layer pyramidal cells, the apical dendrites of which were frequently
sectioned in more posterior slices. Slices were maintained at room temperature sub-
merged in ACSF continuously bubbled with 95% 0;-5%CO; (carbogen). Three slices
at a time were transfered to the recording chamber, where they were maintained at
34° C at the interface between ACSF and warmed, humidified carbogen. Slices were
allowed one hour for temperature equilibration after being transferred to the record-
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2 GENERAL METHODS

ing chamber before any penetrations were attempted. and up to an additional hour
for recovery after cutting. Except as noted, the ACSF contained (mM): 126 NaCl,
3 KCl, 26 NaHCO;, 1.2-2 MgS0y, 2.5 CaCl,, 10 dextrose in Millipore-filtered water
(305 mOsm). In some early recordings, 20mM dextrose was used to increase the rate
of spontaneous events. In the experiments described in Chapter 5, 50mM dextrose
was used for the same reason.

Preparation of cat slices Cat slices were taken from animals used for in vivo
whole cell recording after completion of those experiments. Animals (3-4 months
old) were induced with Ketamine/Xylazine (30/3 mg/kg), tracheotomized, and then
paralyzed with gallamine triethiodide (3.6 mg/hour) and maintained on a respirator
anesthetized by isofluorane (1-2%), and O2/NO, (70/30%). Unilateral or bilateral
craniotomies were performed over area 17, and the brain was protected by agar and
mineral oil for up to 36 hours while whole-cell recording was performed. On comple-
tion of those experiments, the craniotomy was enlarged to allow access to additional
areas of visual cortex (area 17 was usually too damaged by repeated penetrations to
used for slices), the dura was removed, and a 1 cm square chunk of cortex usually from
areas 19 or 21 was excised using scalpel cuts. This chunk was immediately placed
into iced, oxygenated ACSF. The chunk was then trimmed, and 400 pm slices were
cut perpendicular to the pial surface with a Vibratome. Maintenance and recording
from slices then proceeded as described above.

2.2 Electrophysiological techniques

2.2.1 Drugs and solutions

Drugs (TTX, CNQX, APV, BMI) were applied by perfusion through the bath solu-
tion, except for sucrose and CNQX when used for puffer pipette application (described
in the Methods section of Chapter 5). All drugs were dissolved in H,O except for
CNQX, which was either dissolved in H;0 at a concentration of 1 mM, or was dis-
solved with DMSO at higk concentration and then diluted to a concentration of 1
mM with H;0, to be added to the bath at concentrations of 10 um or 0.3 um (final
concentration of DMSO < 0.006%). Tetrodotoxin (TTX) and Bicuculline Methiodide
(BMI) were obtained from Sigma. CNQX and APV were obtained from Cambridge
Biochemicals (Cambridge, UK) or RBI (Worcester, MA).

A number of intracellular solutions were used during the course of these exper-
iments. Those used for the data presented here used Potassium Gluconate (KGlu)
or Cesium Fluoride (CsF) as their main salt (KMeSO, and CsAc were also used in
some experiments, but this data is not presented here). These solutions contained
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2.2 ELECTRCPHYSIOLOGICAL TECHNIQUES

(mM): (KGlu) 120-135 KGlu, 5-10 KCI, 2 MgCl;, 10 N-2- hydroxyethylpiperazine-N-
2-ethanesulfonic acid (HEPES), 10 (EGTA). and 1 CaCly; (CsF) 130-135 CsF. 5-10
CsCl, 2 MgCl,. 10 HEPES, 1 EGTA, 0.1 CaCl;. Solutions were buffered to pH 7.2 and
filtered with an 0.2 um filter (Millipore). and were made in (HPLC grade) Millipore
filtered water. In many cases, Lucifer Yellow (0.2%-0.5%. dipotassium salt, Sigma)
or biocytin (0.5%-1% Molecular Probes) were added to the recording solution, and
the solution was re-filtered. In the case of biocytin, the pH of the solution was also
readjusted to 7.2, and the solution was frozen at -20° C in small aliquots until used.
The osmolarity of the solution was adjusted to 260-290 mOsm as needed.

2.2.2 Recording and analysis

Whole-cell pipettes were pulled from borosilicate glass (o.d. 1 mm, WPI) using
a Brown and Flaming horizontal pipette puller to a final resistance of 1.5-7 MQ.
Recording was performed with an Axopatch-200A (Axon Instruments, Burlingame
CA). Series resistance compensation was used whenever possible. Only cells with
series resistances under 30 M were considered acceptable, except where noted for
comparative purposes. (Series resistance criteria for use in particular analyses were
much stricter than this, this is noted where applicable.) Data were not compared
across a change in series resistance of more than 20%. For the experiments reported
in Chapter 3, series resistance was checked every few minutes, while for later experi-
ments, series resistance was automatically tested every 5-10 seconds.

KGlu-based recordings were considered acceptable if the cell had a resting poten-
tial of greater than -50 mV (relative to potential at withdrawal from the cell), and
overshooting action potentials. If either of these factors or the input resistance of
the cell changed significantly, recordings were discarded at that point. As record-
ing with Cs-based solutions tended to rapidly depolarize the cell, the main criteria
used for accepting such recordings were ability to generate action potentials, initial
apparent (and continuing) health (e.g. initial voltage drop on break in), and input
resistance. For recordings in the presence of TTX in either case, the remaining pa-
rameters besides action potentials were combined with general cellular characteristics
(e.g. mEPSC properties) to gauge cell health. A total of 212 neurons (204 rat cells,
8 cat cells) were considered acceptable by these criteria. Membrane potentials in
current clamp are corrected for any offset seen on withdrawal from the cell (usually
very small), but are not corrected for liquid junction potential. Holding potentials in
voltage clamp are not corrected for either of these factors.

Recordings were made in layers I1/111 or V/VI, as estimated from the relative loca-
tion of the pipette between white matter and pial surface. If the cell was morpholog-
ically recovered, the actual soma location is reported rather than the location of the
recording pipette taken from the drawings made during recording. Some of the unre-
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covered cells may therefore represent dendritic recordings and therefore their laminar
position will be incorrect, however as the number of confirmed dendritic recordings
seen in morphologically recovered cells was very low (n=2), thus they should comprise
an equally small percentage of the total population. The vast majority of the cells
recorded from and recovered are pyramidal cells. It is likely therefore that the major-
ity of those cells whose morphology was not recovered were also pyramidal cells; the
large size of most of the recording pipettes used here to obtain low series resistances
may have biased us against recording from non-pyramidal cells. When a cell type
is reported in the text, it has been confirmed morphologically: cell types postulated
purely on physiological grounds are reported as such.

Bipolar stimulating electrodes were constructed from very fine, 0.3 mm, teflon-
coated tungsten wire (A&M systems), mounted inside broken glass pipettes with
Locktite; some stimulating pipettes were coated with SigmaCote (Sigma) or Sylgard
to reduce capacitive artifact. Stimulation was applied through a constant current
stimulator (Grass S88) via a stimulus isolation unit (Grass) on current ranges of
10-150 pA (minimal stimulation) and 0.1-1.5 mA (threshold stimulation). Stimulus
duration was 50 usec, and stimulus strength ranged from 1-150 V (1-15 V for minimal
stimulation). Stimulating electrodes were usually positioned at either the pial surface
or the gray-white border, directly in line with the recording pipette.

Data were filtered at 2-5 kHz and digitized onto videotape at 44 kHz (Neurodata).
Off-line, the recordings were sometimes further filtered to 3 kHz before digitization at
5-20 kHz by computer (A/D board in an Intel 486 computer). Digitization was per-
formed using Pclamp software, which was also used for some analysis. Most analysis
was performed on Apple Macintosh computers using Axograph (Axon Instruments,
Foster City, CA) or software I wrote. The latter included the event detection soft-
ware, which both detected events and measured their amplitudes, rise times, areas,
half widths, and slopes. The event detection used in Chapter 4 and parts of Chapter 3
used a simple combination of an amplitude threshold (usually 1.5-2 times the stan-
dard deviation of the noise), minimum time above threshold, and (weak) derivative
threshold'. Both thresholds could either be set manually or relative to the baseline
noise, and were constant for the duration of detection. The same amplitude thresh-
old was used for detecting all events from a single cel.. Thresholds were extensively
tested to ensure that few if any events were missed, within the limits allowed for by
the noise. An additional digital Gaussian filter was included, and sometimes used at
1-2 kHz; it could filter either only the data before an event was detected (and not
the buffer used to measure the properties of the detected event), or both the detec-
tion and measurement phases. All events detected were screened by eye to remove

The derivative threshold was used sparingly in order to ensure detection of slow, presumably
distally generated, events.
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2.2 ELECTROPHYSIOLOGICAL TECHNIQUES

as much as possible spurious noise and multiple overlapping events. The latter were
not considered in the analysis. A later version of the detector incorporated addi-
tional processing to automatically detect overlapping events and inflections on the
rising phase of events [10]. The detector used a threshold on a filtered version of
the first derivative of the event to look for inflections. The detector incorporated a
minimum duration for multiple as well as single events, but sometimes accidentally
deiected one event as two in rapid succession. It was not considered possible to de-
tect events with an interval between their onsets of less than 1 msec. and “extra”
events occuring more frequently than this were removed. These errors did not cause
significant changes in the distribution of mEPSC inter-event intervals, however when
the reciprocal of the IEls was taken to obtain instantaneous frequency values, these
spurious large frequency values could significantly bias the mean. Therefore, the me-
dian instantaneous frequency was usually considered, and then only as an adjunct to
the distribution of IEls. Overlapping events were only used for calculations of event
frequency, their shape parameters were not measured unless the overlap could not
interfere with them (e.g. the rise time and amplitude of an event with another event
late on its falling phase were measured), and they were not included in any averages
shown. In this case, events were not extensively screened by hand, removing any
chance of experimenter bias in removing particular types of “non-events” from con-
sideration. Events were superficially scanned to remove the pulses used to test access
resistance, and to be sure that few, if any, events were missed. Events were scanned
with more care in cases where event frequency was very low (e.g. after application of
CNQX, see Chapter 5), and a small number of mis-detected noise events would have
a noticeable impact on the distribution of mEPSC parameters.

EPSC/EPSP amplitudes were measured as the average of several samples (usually
3) around the peak. 10%-90% rise times were linearly interpolated between successive
sample points. In the early portion of the analysis, a design flaw in the routine
for measuring rise times caused the rise times for slow events to be overestimated
in the presence of large-amplitude noise. Therefore, some of the mean rise times
presented here have been biased by these large values. As much as possible, critical
data were reanalyzed with the corrected analysis routine, and none of the conclusions
(qualitative or quantitative) were significantly altered. Event widths were measured
at half-amplitude, and slower half widths tended to be underestimated in the presence
of noise (see section 4.3.6). Areas were integrated point-by-point, without additional
smoothing. The integration period was determined by the detection software, which
attempted to find the point at which the event returned to baseline. It varied for
each event. Slopes were estimated using a 5 point centered-difference formula. Inter-
event intervals were calculated between the onset of subsequent events. If two events
were separated by a noise artifact, or a seal test pulse, their IEI was not calculated
as it was not known whether an intervening event might be missed during the seal
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test. This put an upper limit on the largest IEI measurable of the interval between
seal test pulses (usually 7 seconds. but occasionally 5 or 10). This is more likely to
affect the IEI values measured when events are very low frequency and there is a
large amount of noise. Absolute frequency values (rather than average instantaneous
frequency) are simply the number of detected events divided by the total time period
under consideration. This is an optimal estimator of the rate constant of a Poisson
process [234], which spontaneous events appear to be.

Differences between parameter distributions were tested using the Komolgorov-
Smirnov test (200, 294]. Parameter correlations were tested for significance using
Spearman’s Rank Test, but R values reported in the text are standard correlation
coefficients for ease of interpretability. Due to the very large n’s in most samples, even
quite small R values are significant. Differences between means were tested using the
Mann-Whitney U test [294], as none of the underlying distributions appeared to be
normal. Statistical analysis was perform>d using StatView for the Macintosh, or
using macros written for Kaleidagraph [200]. Significance levels are p<.05. Values
are reported as Mean + Std.Dev..

2.3 Histology and reconstruction of cells

In many cases, recording pipettes contained either Lucifer Yellow (0.2%-0.5%, di-
potassium salt, Sigma) or biocytin (0.5%-1% Molecular Probes) in order to later
visualize the morphology of the recorded neuron. In cases where there was dye in the
recording pipette, the locations of all recorded cells and all unsuccessful penetrations
were noted on a drawing of the slice’. Multiple successful penetrations were some-
times made in the same slice, and these drawings allowed all recorded neurons to be
recovered unambiguously. In the cases where there was more than one well-filled neu-
ron in the vicinity of the recording, due to either too close spacing of penetrations,
or (more commonly) filling of additional neurons due to extracellular expulsion of
dye from the patch pipette, the morphology was not used for subsequent analysis or
reconstruction in comparison with the relevant physiology® (in cases where all filled
neurons were of the same morphological class, tentative class assignment was made
to the physiologically-recorded cell).

Slices containing filled neurons were placed in fixative (either 4% paraformalde-

2If no dye was included in the pipette, no drawings were made, and in a small number of cases
cells were recorded without adequate record of their layer of origin. These are noted as “layer
unknown” in the presentation of the data

3In several such cases, the cell was reconstructed for simulation, but it was treated as if it was
filled without recording from it, and no attempt was made to fit it to physiological data which might
have come from another cell.
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2.3 HISTOLOGY AND RECONSTRUCTION OF CELLS

hyde or 10% neutral buffered formalin) after recording. Some slices were fixed immedi-
ately after withdrawal from a recorded cell, others remained in the recording chamber
for up to several hours subsequent to any particular recording. Slices remained in fix-
ative for periods from 24 hours to 30 days. with no apparent effect on the ability to
recover morphologies. There was a correlation between amount of time before fixation
and ability to recover the cell, particularly in the case of biocytin-filled neurons. The
somata of some biocytin-filled cells sometimes began to degenerate after conclusion
of recording, and at the same time additional transport of biocytin resulted in better
filling of the axon with increased time between recording and fixation [27]. Addi-
tionally, the soma of recorded cells was sometimes significantly damaged by pulling
off the electrode at the conclusion of recording. As all physiological data analyzed
was obtained before any significant change in the physiological condition of the cell,
I assume that any somatic morphological degeneration occurred after the physiology
was obtained [27]. I have therefore used the morphologies of some of these cells in
my simulations and analysis, reconstructing the soma morphology as well as possible
from the data available.

Fixed slices containing biocytin-filled cells were sunk in 30% sucrose for > 1 hour,
and then were sectioned at 60 um on a freezing microtome into phosphate-buffered
saline. After rinsing in PBS, background peroxidase activity was quenched with
1% H,0, and sections were rinsed again. The tissue was then permeated with 0.7%
Triton-X100, for 20 minutes, and then incubated for 4 hours to overnight in an avidin-
biotin-peroxidase complex (ABC, Vector labs, 1:100 in PBS with 0.7 % Triton-X100).
Sections were enhanced in 0.1% CoCl; in Tris buffer , then reacted with DAB (0.05%)
and H,0, (0.01%) in Tris (protocol due to L. Cauller). Sections were mounted from
dilute gelatin. They were then cleared in sequential alcohols and coverslipped with
DBX. The small size of the sections and the lack of embedding medium made it likely
that some sections or fragments would be lost either during sectioning or processing
of the tissue. | did not directly measure shrinkage with this technique, but it has
previously been estimated to be around 10% [25, 36).

Slices containing Lucifer yellow-filled cells were processed in a number of ways.
Some were sunk in sucrose and sectioned as above, then mounted and cleared briefly
in alcohols and coverslipped with Krystalon. Some were cleared in methyl sali-
cylate and/or alcohols, and then mounted whole and coverslipped with Krystalon.
Some were mounted, cleared and coverslipped in the water-soluble mounting medium
Aquamount. By far the most successful protocol, and the one used for most of the
slices, was that of B. Claiborne et. al. [43]. Slices were cleared in sequential increas-
ing concentrations of glycerol (20, 40, 50, 70, 90, 95% for 5 minutes each, followed by
3 changes of 100% glycerol for 30 minutes each), then mounted in glycerol (protocol
due to B. Claiborne and M. O’Boyle). After examining the slices under fluorescence
to determine whether the cells were in the top or bottom half of the slice (in the
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z-axis), slices with cells located very deep were flipped over, and then coverslips were
sealed with nail polish. This allowed the cells to be as close as possible to the top
surface of the slice. which greatly facilitated reconstruction. This latter technique has
been estimated to result in a shrinkage of < 5%.

Selected cells were reconstructed using a Eutectics NTS 3D reconstruction system
via a Zeiss microscope (all biocytin and some Lucifer Yellow cells), using a 40x water
and an 100x oil-immersion objective (1.3 n.a., final magnification 1000x). In some
cases, conventional camera lucida drawings were also made at a variety of magnifi-
cations (maximum 1250x) to aid in reconstruction. Several Lucifer Yellow-filled cells
were scanned in a series of Z sections with a confocal microscope (Biorad, 40x water
immersion objective), and the sequential image sections were imported into the NTS
system for reconstruction using its video-handling capabilities.

Cells were analyzed quantitatively to varying degrees using the NTS system. Lin-
ear shrinkage in the x and y directions was not usually corrected for, however greater
apparent shrinkage in the z dimension due to a combination of optical foreshortening
and tissue processing was corrected as suggested in the NTS manual.

ASCII text files obtained from the NTS system were converted into input for the
simulation program Neuron [85] via a translation program, ntscable, written by John
Wathey. The translation was constrained to be accurate between branch points (i.e.
segment lengths were constrained to maintain branch point locations) and to generate
segments less than 20um in length. In all cases, this was significantly less than 0.1A.

2.4 Compartmental Simulations

Compartmental simulations were performed using standard techniques [90, 124, 205],
with the program NEURON (courtesy M. Hines). Reconstructed cells were divided
into compartments of less than 20 um in.length between branch points, which always
resulted in compartmental lengths less than 0.1 A. In almost all cells, the initial
portion of the axon was retained in the simulations simply for morphological accuracy.
~ It was assumed that the very small diameter of the distal axonal branches would keep
them from influencing significantly events seen at the soma, and they were neglected
to save computation time. In some cases, simulations were performed of a soma-
single cable model. If not otherwise noted, the soma diameter used was 20um, cable
diameter was 1.6 ym, and cable length was 1000 um. Together with passive properties
of: Rn=50,000 Qcm?, R;=200 Qcm, and Cr,=1.0 uF/cm?, this gave a cable length
of 1.0 A, which was divided into 20 compartments. In simulations where cable length,
diameter, and/or passive properties, were systematically varied, the cable was usually
divided into compartments of 0.1 A (usually less than 20) to save computation time.
The time step used was 0.01 msec for voltage clamp simulations and 0.025 msec for
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2.4 COMPARTMENTAL SIMULATIONS

current clamp.

Passive Parameters Except where otherwise noted, all simulations were com-
pletely passive - no active conductances were included in the soma. dendrites or
axon. “Baseline” passive parameters were: R,,=40,000 Qcm?. R;=100 Qcm, and
Cm=1.0 uF/cm?[243]. Variations in all of these parameters were explored, and ex-
cept as noted all conclusions were robust across a wide range of parameters. Results
from simulations using other parameter values, in particular those suggested by Ma-
jor [150, 154, 104] for cortical pyramidal cells: R,=50,000 Qcm?, R;=300 Qcm. and
Cm=0.7 pF/cm? (“GM™ parameters), will be presented where illustrative for compar-
ison purposes. Somatic voltage clamp was simulated with a simple feedback model.
When noted, a resistance in series with the membrane was included to simulate the
electrode access resistance normally present in whole-cell voltage clamp recordings
(this was neglected in current clamp, see Section A.6 for discussion). Electrode ca-
pacitance was not simulated, as the recordings used for comparison were performed in
an interface-style chamber, which would minimize excess capacitance due to having
the electrode submerged in fluid, and electrode capacitance compensation was always

used.

Correction for Spines The presence of spines was corrected for by altering the
values of R,, and C, [89] to compensate for the additional membrane area that spines
add to the cell. This is mathematically equivalent to the alternative method of altering
dendritic lengths and diameters [251, 102, and it is easier to keep track of particular
locations on the cell in the face of changes in passive parameters and spine density
assumptions. A number of spine density assumptions were tested. The most simple
one was to assume spine density is constant with dendritic length (usual assumed
value 1.4 spines/um) [22, 33). It has been noted that spine density can vary as a
function of the size of the parent dendrite. Therefore, a more complex spine density
function was also used that made density a linear function of parent dendrite diameter.
One version of this function was drawn from the average relationship found by Guy
Major for a population of layer III cells: (1.1 + 1.3 x diameter) spines/um. The
other, used for comparative purposes, was to fit a -pine density function for each
individual cell by counting the number of spines on a set of dendritic segments of
varying diameter, and fitting a linear function to the resulting densities, as per the
method of Major [150, 154]. The differences in the outcomes with these varying
methods were subtle at best, and so the first two methods were used interchangeably
here. Data quantitatively comparing the three methods can be seen in Figure A-
61. Average spine areas were taken from the literature [134], as they cannot be
accurately measured with the light microscope. In all cases, the assumed spine area
depended on parent dendrite diameter as follows: diameter < 1.5um, area=1.7Tum?;
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1.5 < diameter < 2um, area=1.5um?; diameter > 2um, area=1.4pm?[134].

Synaptic Inputs Synapses were simulated as a difference of two exponentials, ac-
cording to equation 2.1.

Gma: -t/ -t/ ’
g(t) = m(e 7o _ ¢t/7R) (2.1)

Itvn(t) = g(t)(vm_Ereu)
TR-TR/(TR-TD) 1R -td/(TR-TD)

N orm(rn, TD) =
™D ™D

The rise and decay time constants were 7g and 7p, rcspectively. G, is the peak
synaptic conductance in nS, and Norm is a normalizing constant dependent on g and
7D, to allow G, to control the synaptic current amplitude independent of kinetics.
Vi is the subsynaptic voltage, and E,., is the synaptic reversal potential. “Base-
line” values, used unless noted otherwise, are: Gpq;=1nS [17, 104], Tr=0.1 msec,
7p=1.0 msec [82], E,.,=0mV. Resting membrane potential (and clamp voltage in
voltage clamp) was -70 mV. Except where noted, synapses were placed directly onto
dendritic shafts, rather than onto explicitly modeled spines, for computational sim-
plicity. The error in neglecting an interposed spine was tested in simulations and
found to be negligible for the range of synaptic conductances used here. The effect
of including an interposed spine on somatic and subsynaptic response is described in
Section A.3.2.

The characteristics of the synaptic response (amplitude, rise time, half width,
area, and maximum slope) were measured using the same algorithm used for the
experimentally-recorded events, described above. For each synaptic input, these re-
sponse parameters were measured for both the somatic and the subsynaptic voltage
(current clamp); or for the somatic current and the actual synaptic current (voltage
clamp). In the latter case, the same parameters were measured for the subsynap-
tic voltage escape, and the maximum value of the somatic voltage escape! was also
measured.

‘With a non-zero series resistance, there will be some somatic voltage escape.
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3

Functional Convergence onto
Visual Cortical Neurons

Abstract

How many of the thousands of inputs to a cortical neuron need to be active to make it
generate an output spike? In this chapter, I have used whole-cell patch clamp recording
techniques to study spontaneous synaptic inputs and responses minimal stimulation to
characterize the population of single-fiber inputs to individual cortical cells. Individual
inputs to cortical neurons are very large (up to several mV), and very rapid in time course.
There is enormous variability in the popuiation of inputs to one cell, and between the
inputs to different cells. As in many other systems, this variability in amplitude is not just
due to differences between synapses, as it is also reflected in the fluctuating response to a
single input over time. Given the size of individual inputs, I then estimated the number
which must be simultaneously active in order to cause the postsynaptic cell to fire. Spike
threshold was measured using synaptic inputs sufficient to generate an action potential on
50% of trials. Single-fiber inputs are large relative to spike threshold, and assuming linear
summation, only 5-50 simultaneous inputs would be necessary to generate a spike. This
implies that the variability seen at the single input level should.be reflected to some degree
in the output of the cell. This is indeed the case, as there is considerable variability, both
in the probability of the cell spiking with a near threshold ipput, and in the timing of the
resulting spikes. -~

3.1 Introduction

A single cortical neuron receives 5-10,000 excitatory synaptic inputs (287, 134]. It

is estimated that only 1-4 of these contacts come from any single presynaptic cell
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3 FunNcTIONAL CONVERGENCE

[287, 62]. How many of these inputs must be simultaneously active in order to make
the postsynaptic cell spike? Must it average over several thousand inputs to generate
an output, or are only a few sufficient? In other words, what is the functional, as
opposed to anatomical, convergence onto the postsynaptic cell?

This question is basic to our understanding of how cortex computes. On the one
hand, there is the image of a linear summation unit, or leaky integrator, passively
adding up a large number of inputs to generate as noiseless an average as possible
before passing judgment. On the other hand, with the recent discovery that single-
fiber connections in the CNS are variable and unreliable [189, 140, 3, 249, 291], the
possibility that small numbers of inputs are sufficient to generate an output spike
raises the specter that this synaptic variability might be passed along to the next cell
in the chain, rather than lost in the law of large numbers.

In spite of its seeming simplicity, it is also not a question whose answer is known.
Until recently, sharp electrode recordings in hippocampal pyramidal cells had pro-
vided an estimate that at least several hundred simultaneous synaptic inputs would
be necessary to reach threshold in the postsynaptic cell (7, 6, 223]. With the advent of
whole-cell patch clamp techniques, however, the measured input resistances of cells,
as well as the amplitudes of their synaptic inputs, have been revised upwards, and
hence the estimate of the population size necessary to reach threshold may change as
well. This number is also quite likely to vary between brain regions and cell types.

In this chapter, I have used whole-cell patch clamp recording techniques to study
the size and characteristics of single-fiber inputs to cortical neurons. I have com-
bined the study of s.lpontaneous synaptic inputs, which allows one to see the range
of characteristics of the input population as a whole, with minimal stimulation of
one or a small number of fibers to allow the study of single inputs over time. Single
fiber inputs to cortical neurons are very large (up to several mV), and very rapid in
time course. There is enormous variability in the population of inputs to one cell,
and between the inputs to different cells. As in many other systems, this variability

in amplitude is not just due to variation between synapses, as it is also reflected in
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the fluctuating response to a single input over time [249, 3, 291, 140]. Single-fiber
inputs are large relative to spike threshold, and assuming linear summation, only 5-50
simultaneous inputs would be necessary to generate a spike. These findings here are
consistent with very recent studies in cerebellum and hippocampus [189, 13].! This
implies that the variability seen at the level of single inputs should be reflected to
some degree in the output of the cell. This is indeed the case, as there is considerable
variability both in the probability of the cell spiking with a near threshold input, and

in the timing of the resulting spikes.

3.2 Methods

Electrophysiology and stimulation. Preparation of rat and cat slices and record-
ing were performed as in General Methods. The vast majority of cells were recorded
using KGlu-based solutions, however a small number were recorded using CsF so-
lutions in order to improve voltage control and decrease intrinsic noise at holding
potentials above -30mV. Where data from these cells are presented, the solution is
noted; however, there were no differences between the two groups of cells with re-
gards to the conclusions of this study. Spontaneous events and evoked responses were
collected off-line for analysis. Evoked responses were sampled at 5-10kHz. For the
vast majority of cells presented in this chapter, series resistance and recording criteria
were as described in Chapter 1. However, for the small sample of cat cells, and for
cells recorded in current clamp, the series resistance criteria were relaxed somewhat
to include a few cells with R, >30MQ. As these cells were used for current clamp
analysis, or for comparison of spontaneous inputs to evoked responses within the same
cell (and thus subject to the same series resistance), this should not bias the results.
Data from such cells are not included in the amplitude summary plots in Figures 3-7
"and 3-8, except in the case of one cat cell with a very high R,, and 3 cat cells with
R, values in the range of 30-40M$). Data from some cells with high R, values are
included in the plots in Figures 3-9B and C, on the effect of R, on EPSC amplitude.
They are not used for further analysis elsewhere in the chapter.

Stimulating electrodes were made as in General Methods. Small, bipolar elec-
trodes were placed at the gray-white matter border, or in layer 1, directly in line with
the recording electrode. 1-2 stimuli of 0.05 ms duration were given at 0.33-1 Hz (usu-

!These studies were published while this work was in progress.

61
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ally 0.5 Hz, ISI for paired stimuli 20-200 ms, usually 50 ms). For minimal stimulation,
stimulus strength was gradually increased till a response began to appear. Such re-
sponses failed on a percentage of trials, were uniform in waveform and latency. and
appeared to be the result of a single input fiber [168, 209, 156, 140, 249, 3. 291]. As
stimulus intensity was increased further, there was a plateau region where the ampli-
tude of the response did not change, though the failure rate sometimes decreased (see
Fig. 3-11). Eventually, as the stimulus was increased yet further, response amplitude
began to increase, and inhibitory components to the response usually appeared. In
some cases, it appeared that 2 fibers, with different latencies and waveforms, were
being stimulated; though it is impossible to distinguish this from the case of two
synapses from the same axon which generate very different postsynaptic responses.
Whenever possible, analysis was restricted to those cases which seemed to be the same
single input. In measurements of peak amplitude, kinetics, or failure rates, attention
was restricted to an input that occurred at a particular, fixed latency. This seemed
to be the best method for avoiding contamination by spontaneous synaptic inputs.
Peak amplitudes were measured as the average of three samples in a fixed window fol-
lowing each stimulus. For measurements of evoked event kinetics, individual evoked
responses were detected using Axograph and a simple amplitude threshold algorithm.
Kinetic parameters were then measured using Axograph. Failure rates were counted
by eye, restricting attention to an identified input coming in at a particular latency
post stimulus. Failures were counted for both the first and second peak of paired-
pulse stimuli, but unless noted, these numbers were not combined. Responses to the
first of a pair of stimuli were considered equivalent to responses to a single stimulus
alone, and data from these two groups were pooled.

For threshold stimulation, stimulus intensity was increased to the point where the
cell generated a spike on 50% of trials. For both large-amplitude (threshold) stimuli
and minimal stimulation, stimulus pulses were frequently given in pairs 50 ms apart.
Paired-pulse facilitation and depression were both seen, and are discussed in detail in
separate publications (Nelson and Smetters, in preparation). In many cases, it was
impossible to bring a cell to threshold with white matter stimulation due to powerful
feedforward inhibition. Sometimes, however, due to depression of the IPSP combined
with facilitation of the EPSP, the cell would spike to the second of a pair of pulses.
For each cell presented here undergoing paired stimulation, it is noted whether the
responses shown are to the first pulse, the second, or both.
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3.3 Results

How can one estimate the importance of individual inputs to the output of a cortical
cell? The first step is, of course, to figure out how large are the individual inputs, and
what are their properties. The second is to determine what “large” means - large
relative to what? In other words, what is the threshold for the cell to generate an
output, and how does it sum those inputs to get there? Finally, one can combine
these two pieces of information to estimate how many simultaneously active inputs
are necessary to generate an output from a cortical cell, and how much the properties
of these individual inputs will influence the output of the postsynaptic cell, and hence

the information seen by the next cell down the line.

3.3.1 Properties of single-fiber inputs to cortical cells.

How large is a single-fiber input to a cortical neuron? Recording from pairs of synap-
tically connected neurons, the most accurate technique to determine this number (see
Chapter 1), suffers from the problem that at the very most only 2-3 of the inputs
to any one cell can practically be studied, and the overall yield of connected pairs
is very low. Additionally, the vast majority of these studies have been performed
using sharp eléctrodg recording techniques, whose low signal-to-noise ratio makes it
difficult to identify very small inputs, or reliably distinguish failures of transmission
from non-failures.

What we would like to do is assess the properties of the whole population of inputs
to a single cortical cell, and compare them to the properties of an identified input,
which can be studied repeatedly over time. To do this practically, I have combined
study of spontaneous excitatory inputs to cortical cells, with minimal stimulation

designed to evoke responses in one, or at most a small number of fibers at a time.
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3.3.2 Properties of spontaneous synaptic events.

Cortical cells in a slice receive a barrage of spontaneous synaptic inputs. Figure 3-3
shows several such events occurring in a cat layer III cell. Such events occur appar-
ently at random, in most if not all cases, with exponentially distributed inter-event
intervals suggestive of a Poisson process. Unlike evoked inputs, which occur at known
times and can be averaged to increase their signal-to-noise ratio (SNR), spontaneous
events must be detected in order to be analyzed. These events presumably arise from
synapses located all over the dendrites of the postsynaptic cell, and it is impossible to
know which presynaptic cell generated a particular response, or where on the postsy-
naptic cell it arose. This, however, is also true of all techniques for studying synaptic
inputs to cortical cells, with the sole exception of paired recordings combined with
successful filling of both cells, and, ideally, electron microscopic analysis of synapse
location. Unfortunately, neocortex has none of the supposed simple, laminar orga-
nization of input fibers characteristic of the hippocampus - the relative location of
two cell bodies is not at all predictive of where on the somadendritic axis they may
synaptically connect. '

The frequency of spontaneous EPSCs? is much lower in slice than it is in vivo, and
it is sensitive to drugs, the composition of the bath solution, and electrical stimulation;
so they do not provide a good method to study the effects of spontaneous activity on
the properties of cells in vivo [22, 208]. However, in spite of these drawbacks, they
give a simple method to rapidly asses the properties of a large number of single-fiber
inputs to a single cortical cell, and to compare the distributions so gathered from a

large number of cells.

2Spontaneous excitatory postsynaptic currents. Miniature excitatory postsynaptic currents,
recorded in the presence of tetrodotoxin (TTX, see below), will be referred to as mEPSCs. “Spon-
taneous events” always refers to sEPSCs.
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Single-fiber inputs are large relative to threshold.

Figure 3-4A shows the properties of spontaneous EPSCs (sEPSCs) and EPSPs (sEP-
SPs) in a rat layer V cell recorded in the presence of bicuculline to block GABA 4-
mediated spontaneous IPSCs (sIPSCs). These events are large, with a modal ampli-
tude in current clamp frequently > 0.5mV; and very rapid in time course. Amplitude
distributions in both current and voltage clamp show a characteristic shape, skewed
towards larger values. This distribution shape is common to a variety of synaptic
input types in a large number of cells {247, 144. 274, 104, 164, 163, 244, 232, 41, 290,
143, 82, 70, 146, 29, 155, 157, 17, 128, 188, 187, 190, 217, 231, 238, 240, 266, 280].

Most spontaneous events are excitatory.

In cortical cells recorded at 34°C at the ages studied here, the vast majority of sponta-
neous synaptic inputs were excitatory and glutamatergic. Bath application of CNQX
(10uM) blocked almost all events (n=4), and all events recorded in the presence of
TTX, APV, and bicuculline (n=4). Figure 3-4B shows traces before (above, Vjo1a=-
70mV) and after (below, Vj,s=-60mV) bath application of CNQX (10uM) in the
absence of bicuculline; in spite of the very high initial frequency of spontaneous PSCs,
all events seen here are blocked by CNQX.

There are spontaneous IPSCs in these cells as well, occuring at a lower frequency
than sEPSCs. Holding the cell at -40mV, above the reversal potential for GABA 4-
mediated IPSCs (around -55 with KGlu-based solutions), makes a small population of
outward events clearly visible (Fig. 3-4C). Over several seconds (upper trace) outward
(upward) IPSCs can be seen to occur at a slower frequency than inward EPSCs
(downwards). In this cell, IPSC frequency is 0.307 Hz, while EPSC frequency is 7.36
Hz. The different kinetics of SEPSCs and sIPSCs can be seen in the lower, expanded
trace. In cells recorded in the presence of bicuculline, no reversed IPSCs appeared
at -40 mV (n=6). Washing in bicuculline methiodide (BMI, 50 M) did not change
the frequency of spontaneous PSCs (Fig. 3-4D, same cell as in C), however it did
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shift them slightly towards larger amplitudes. presumably due to the usual increase
in spontaneous action potential activity seen with BMI in the absence of TTX (see
below).

The frequency of SEPSCs and sIPSCs varied from cell to cell. The contribution of
each was assessed by counting the number of inward and outward events during time
periods of 25-250 seconds, at holding potentials where sIPSCs were clearly visible
as outwards events (-50 - -30mV, usually -40mV), in 33 cells. sEPSC frequency
was usually 3-4 Hz, but was considerably higher in a few cells. Figure 3-4E shows
the percentage of all events which were IPSCs for each cell, broken down by layer
and species. The average percentage of IPSCs was 11.9+2.79%, including 2 cat cells
with relatively high or very high IPSC frequencies and EPSC frequencies of 2Hz; the
median value was only 6.62%. For the vast majority of cells, sIPSC frequency fell into
a narrow range (Fig. 3-4F), with a few outliers. Mean sIPSC frequency in these cells
was 0.862340.372 Hz (median: 0.276Hz). Mean sEPSC frequency counted at -40 mV
in these cells was 5.8+1.11 Hz (median: 3.45 Hz), and in the whole population of cells
studied was usually 3-4 Hz, unless increased by manipulation of bath osmolarity.?

As sIPSCs do not usually form a large fraction of the spontaﬁeous events, this
allows excitatory inputs to be studied in the absence of bicuculline with only minor
contamination by sIPSCs. Bicuculline, even at low concentrations, increases sponta-
neous action potential-driven activity and frequently causes seizures, particularly if
electrical stimulation is applied. Therefore, this study combines analysis of a small
number of cells recorded in bicuculline with a larger number recorded in its absence,
to assess the properties of SEPSCs. It must be kept in mind that in these cases up to
15% of the events detected at -70 may be reversed IPSCs, so large numbers of events
should be considered to allow robust conclusions in spite of this contamination. How-
ever, emphasis was placed on cells which showed very low frequencies or no sIPSCs

when held at -40 mV, and all of the conclusions here were robust in the presence

3Some of the cells in this sample of 33 were recorded with a bath dextrose concentration of 20
mM, which will mildly increase synaptic event frequency.
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of bicuculline. In fact, as event amplitudes shifted slightly towards larger values in
the presence of bicuculline,* recording in the absence of bicuculline will if anything
lead us to underestimate the size of single-fiber inputs to cortical cells. In spite of
the relatively small contribution of sIPSCs to the population of synaptic events at
these ages. evoked inhibition to large stimuli was quite robust, and frequently able to

prevent cell firing.

Voltage dependence of sEPSCs

Figure 3-5A shows average sEPSCs as a function of holding potential for a cell
recorded with CsF-based solution. sEPSCs reverse at 0mV, consistent with their be-
ing glutamatergic. There is a slight trend towards broadening of the average sEPSC at
depolarized potentials, possibly reflecting a contribution of NMDA receptors (29, 146).
Cumulative amplitude distributions for a cell recorded in TTX, APV, and bicuculline
(Fig. 3-5B) also show that events reverse at 0mV, and there is a standard increase in
distribution slope with increased polarization.

The nature of spontaneous events, however, complicates any more detailed analysis
of their voltage dependence. One might be tempted to measure the average slope
conductance of SEPSCs by plotting the peak amplitude of the average event® vs
voltage; or to estimate the range of electrotonic distances events were coming from,
or individual event locations, by isolating a uniform population of events (e.g. in
APV and bicuculline), and seeing at what point they reversed as a function of their
amplitude and kinetics. In the noise-free case, more proximal events would reverse at
a lower apparent potential (the true reversal potential) ‘than more distal events, who
are not under quite as good voltage control.

The detection threshold for spontaneous events, however, makes such analyses

“Due to both increased action potential-driven activity and the fact that any sIPSCs blocked are
close to their reversal potential and therefore small in amplitude due to lack of driving force.

30r the average peak amplitude, which is not the same thing due to differences in time course
between events.
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difficult. As sEPSCs must be detected, rather than occurring at known times, there
is always a chance that some small events may escape detection, depending on event
size and noise level (see Section 5.3.7). As the cell is depolarized, events decrease in
amplitude due to the reduction in driving force, and an increasing proportion of the
smallest events are lost below the threshold. This can be seen in Figure 3-5C and D,
where the complete amplitude distributions for each holding potential are summarized
for the cells in A and B (see legend for explanation of plot). This induces a bias in
the measurement of mEPSC parameters and voltage dependence. For instance, the
sEPSC:s of the cell shown in Fig. 3-5A probably reverse slightly above OmV. This cell
had a small number of sIPSCs (4% of all events at -40mV). At voltages from -40 to
0 mV, only inward events (purely sEPSCs) were detected. At 0 mV, however, a very
small number of events (12 inward, 13 outward) were still seen. These presumably
comprised the very largest inward sEPSCs, who had not quite reversed but were
still visible even with very little driving force, and the low-frequency sIPSCs (the
outward events). Averaged together, these events came to an amplitude of 0 pA.
Unfortunately, the noise level and detection threshold impose a band around 0mV
where no events can be seen.

This effect of losing an increasingly large number of small amplitude events below
the detection threshold (which is constant across all events detected in a single cell).
means that the slope conductance of sSEPSCs would be overestimated if measured from
average events at depolarized voltages, as at these voltages only the largest-amplitude
events are detectable. It is much better to estimate slope conductance from the event
amplitudes measured at very negative potentials, where all or almost all events are
detectable (see Section 5.3.7), and use the reversal potential measured from a voltage
series such as this one (which will be relatively accurate as DC space clamp errors are
usually small {242, 150, 293]) to estimate SEPSC conductance. Similarly, the band
around the synaptic reversal potential where no events are visible above the detection
threshold makes it difficult or impossible to accurately measure any differences in

reversal potential due to location across an otherwise uniform population of synaptic
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inputs. The difference in reversal potential between proximal and distal events is
subtle, usually less than 20 mV (see Figure 4-35), which is too small to be reliably
detected above the noise as events disappear behind the detection barrier surrounding
0 mV.

3.3.3 sEPSC variability within and between cells.
Kinetics of sEPSCs vary both within and between cells.

The individual SEPSCs shown in the lower part of Fig. 3-4A show that, besides the
wide variation in sSEPSC amplitudes within a single cell, events also vary in kinetics.
Distributions of SEPSC kinetic parameters show characteristic skewed shapes similar
to that seen for amplitudes (Fig. 3-6A, from the cell shown in Figure 3-4A, recorded in
the presence of 50u M BMI). Even recording events in the presence of TTX, APV, and
BMI, to isolate as much as possible a uniform set of purely AMPAergic, uniquantal

events, kinetic parameters still show such skewed distributions (Fig. 4-17B).

Kinetic variations between cells. sEPSCs also vary in kinetics between cells.
The average of 490 sEPSCs from two layer III cells recorded in the presence of TTX,
APV, and BMI are compared in Figure 3-6B and C (also compare traces in Figures 3-
4A, 3-12A,B.C lower). These cells show dramatically different SEPSC kinetics (time
and amplitude scales are the same for the two averages), in spite of their only slight
differences in amplitude, and their presumed uniquantal, purely AMPAergic nature.
This difference is not a function of a difference in series resistance, in fact, the cell in
C with relatively slow sEPSC kinetics had the lowest R, of any cell recorded in this
study (2 MQ2 ), and lower that that in B (8 MSQ).

In some cases such extreme kinetic differences in EPSCs have been shown to cor-
respond to differences in cell class (e.g. interneuron vs. regular-spiking cell) (82, 143];
and tc be due to differences in underlying AMPA receptor kinetics 83, 142]. Based

on the data in [82, 83), it is possible that the cell in Figure 3-6B is an interneuron;
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this is, however, not consistent with its low input resistance of 87 M. It was not
recovered anatomically, and was recorded entirely in the presence of TTX, so this is

the best indication available of its class.

Kinetic variation within a single cell. It is not known whether such hetero-
geneity in AMPA receptors is present within the population of receptors on one cell,
though there have been suggestions of kinetically distinct, bimodally distributed pop-
ulations of mEPSCs in some cell types [70].

Another potential source of variation in SEPSC kinetics is electrotonic filtering,

as these events differ in input location.®

sEPSCs are made up of action potential-dependent and

independent events.

One source of the large amplitude variability seen among the inputs to on cell is the
fact that these events are a mix of responses to action potentials in other cells, and to
the spontaneous, quantal exocytosis of transmitter as miniature EPSCs (mEPSCs, or
minis). Miniature EPSCs can be studied in isolation by recording in the presence of
TTX to block action potentials.” Cells vary in the contribution of action potential-
dependent events to their SEPSC population, and in the degree of overlap between
the amplitudes of these events and the minis. Figure 3-7A and B compares two cells
with very different responses to TTX (1uM). The layer V cell in A loses most of
its spontaneous events, and all large-amplitude events, in the presence of TTX. The
layer III cell in B, in contrast, shows no such change, and in fact a slight increase in
event frequency after washing in TTX. These two cells had SEPSCs of comparable
amplitudes before TTX application, but the cell in A showed a very unusual, broad,

SThe relative contributions of these factors to generating kinetic variability in EPSCs is discussed
in detail in Chapter 4.

?Unfortunately, there is no corresponding method to study action potential-dependent events
alone.
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almost peaky amplitude distribution. While on the whole, cells recorded in TTX
tended to have fewer very large sEPSCs than did cells recorded without TTX, it is
not true that all large-amplitude events are action potential-driven. Figure 3-7C and
D show cumulative amplitude distributions for 29 layer II/III cells (C), 27 layer V/VI
cells (D), and two cells of unknown layer (C, circles) recorded in the presence of TTX.
There is still considerable intra- and inter-cell amplitude variability even among pure
uniquantal mEPSCs. There is a tendency for event amplitudes to be slightly smaller
than those recorded in the absence of TTX (see Figure 3-8E), particularly in the
presence of bicuculline, which promotes the firing of spontaneous action potentials
in the slice. There is also a slight, non-significant, trend towards larger amplitude

mEPSCs in layer V/VI cells.

3.3.4 Sources of SEPSC variability between cells.

Comparing sEPSC amplitude distributions from different cells reveals an inter-cell
variability as large as that within a single cell. While almost all cells show the
stereotypical skewed distribution of sSEPSC amplitudes (see Figure 3-7A for one of the
few exceptions), the range of absolute event amplitudes varies tremendously between
cells. Figure 3-8A-C shows cumulative amplitude histograms for 12 rat layer II/IIl
cells, 13 rat layer V/VI cells, and 5 cat cells (4 layer II/III, 1 layer V/VI). The
distribution of mean amplitudes for each group is shown in Fig. 3-8D. In spite of the
large amount of variation between cells, the variation in the variation is rather small
- the coefficient of variation (CV) of sEPSC amplitudes is very close to 0.4 in most
cells. The distribution of amplitude CV’s for the data in A-C, plus the data for the
cells in Fig. 3-7C,D is shown in Fig. 3-8E. A similar degree of inter-cell variability is
shown for SEPSPs in current clamp (Fig. 3-8F).

There are a number of likely sources of inter-cell variability in sEPSC amplitudes.
One, noted before, is the presence of both spontaneous and miniature synaptic inputs

within the population of sSEPSCs. However, the large inter-cell variability seen in the
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presence of TTX (Fig. 3-7C,D) indicates that this cannot be the only factor involved.

Animal Age The age of the animal might affect sSEPSC characteristics in two
ways. First, the properties of SEPSCs, in terms of their size, frequency, or underly-
ing receptor makeup, might change during development over the ages studied here.
Second, the increase in dendritic length over this period, and hence the degradation
of space clamp, may also contribute to changes in recorded sEPSC amplitudes. Fig-
ure 3-9A shows the relationship between mean sEPSC amplitude and animal age, for
the groups of cells shown above. Cells on this plot can be subdivided into two loose
groupings. There is one group, consisting of the vast majority of cells, whose mean
sEPSC amplitude changes vary little, if at all, with age, remaining at around 15 pA.
There is a second, smaller, group of animals with very large sEPSC amplitudes; and
the mean amplitudes of this group appear to decrease with age, merging into that of
the more general population by P17. This group is made up from cells of all layers,
with and without TTX. There may be more subtle changes in sEPSC amplitude with
age, however, they are not visible relative to the large variability in sEPSC properties

between cells.?

Pharmacological Manipulations Just as TTX will affect the distribution of
event amplitudes by restricting attention to mEPSCs, other drugs which affect synap-
tic responses, such as BMI; or compounds which affect postsynaptic cell properties,
such as TTX itself or Cs*-based recording solutions, may affect sSEPSC amplitudes.
It is clear from the data in Figures 3-7 and 3-8 that sEPSC amplitude increases sig-
nificantly in the presence of bicuculline and the absence of TTX, presumably due to
the concomitant increase in spontaneous activity in the slice. The change in cellular

passive properties after perfusion with Cs* might be expected to have some effect on

80r even, occasionally, between sequentially recorded cells in the same slice.
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sEPSC amplitudes.® Unfortunately. due to the problems of spontaneous bursting and
bistable plateau potentials encountered when recording with Cs*-based solutions in
the absence of TTX, too few cells were recorded with such solutions without TTX

(similarly, very few cells were recorded using K* -based solutions in the presence of

TTX).

Series Resistance An unfortunate complication in continuous voltage clamp
recording, access resistance (R,) acts as a low-pass filter to selectively attenuate the
amplitudes of the very fastest (usually largest) sEPSCs. This effect, obviously, in-
creases with increasing values of R,; but less intuitively it also increases with increas-
ing cell size (to do an increase in total capacitance [229] (see Section A.6). Therefore,
recordings with the same absolute value of R, may have in fact undergone different
amounts of filtering, depending on the size of the cell involved. Figure 3-9 plots mean
(B) and maximum (C) sEPSC amplitude against effective R,(after the application
of series resistance compensation, if any).'® Both mean and maximum amplitude
decrease exponentially with increasing amplitude, as would be expected for the effect
of a low-pass filter (see Chapter 4). Both appear to decrease at the same rate with
increasing R,, which is somewhat surprising. Mean amplitude, being heavily deter-
mined by the bulk of small events, which are frequently slow and less affected by
low-pass filtering (see Chapter 4) would be expected to be less sensitive to R,. How-
ever, mean amplitude does show a slightly smaller proportional reduction in value
than does maximum amplitude (80% as opposed to 90%). The effect of R, on max-
imum amplitude can only be estimated in this fashion; because we are limited to

examining the largest event we happen to see during our period of observation, it

9However, this effect may be small. Though Cs* increases membrane resistivity by blocking K+
channels, attenuation of synaptic events is much more dependent on R; and C,, then R, (see [242],
Chapter 4).

19Note that a few cells used here with very high values of R,are only included for comparison,
and were not used elsewhere in this study. One cell included in this graph was actually recorded at
three different values of R, , and all three are included for comparison.
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is possible that just by sampling we will underestimate maximum event amplitude.
particularly in cells where the data collection period is short. However, over a large

number of cells it should approximate the true maximum value.

Cell Type Another source of SEPSC variability between cells is, of course, dif-
ferences in the cells themselves. Unlike hippocampus, blind patch recording in the
cortex will sample from a variety of cell types. It has been shown that different cell
classes in the neocortex can vary dramatically in the properties of their AMPAergic
mEPSCs ([82, 83], see above). Even restricting attention to pyramids (only a very
small subset of the cells in this study were non-pyramidal), two nearby pyramids in
the same layer can have very different morphologies - for instance the “thin” and
“thick” pyramidal cells of layer V [137, 136, 108]. The presence of at least two sub-
populations of cells with different SEPSC properties is suggested by the cumulative
amplitude distributions shown in Figures 3-7 and 3-8. The cumulative amplitude
distributions can be divided into two loose groups; a large one of very steep distribu-
tions with few large-amplitude events, and a smaller one with a much more gradual
slope and many more large-amplitude events - this latter group resembles those cells
recorded in the presence of bicuculline. The former, larger group, corresponds to the
“standard” picture of SEPSCs/mEPSCs seen in a number of studies - events predom-
inantly distributed below -20 pA in amplitude [247, 274, 104, 164, 163, 244, 232, 41,
290, 143, 82, 70, 146, 29, 155, 157, 17, 190, 217, 231, 266). This difference in ampli-
tudes also corresponds to a difference in kinetics, with the events of the “large™ group
appearing somewhat faster (compare the traces shown in Fig. 3-4A, a “large, fast”
cell in bicuculline, with the average event in Fig. 3-6C, a “small, slow” cell). This
informal classification scheme may not correspond to systematic differences between

cell types, however.

Relationship between current and voltage clamp The similarities between

the amplitude histograms ir current and voltage clamp shown in Figure 3-4A tempt
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one to assume there is a very simple mapping between the amplitude of synaptic
cvents in current clamp and their amglitude in voltage clamp. This is. unfortunately,
an oversimplification - it’s true for the steady-state case, but with transient inputs it
no longer holds (see Figure A-60). Determination of the real, empirical, relationship
between these two variables is complicated heavily by the difficulty of detecting events
in current clamp. As event amplitudes in current clamp are filtered by the cell
membrane, but to a large extent recording noise is not, events in current clamp have
a lower SNR than they do in voltage clamp, requiring a relatively higher detection
threshold. More importantly, the greatly slowed time course of events in current
clamp means that, with any frequency of events, they will frequently overlap, which
makes them much more difficult to detect (see General Methods). The net result is
that, for equal periods of time, one usually detects many fewer spontaneous events
in current than in voltage clamp; and they are probably biased towards the larger
end of the amplitude distribution. In the ideal case, low event frequency combined
with careful detection might allow one to detect a corresponding number of events in
both current and voltage clamp. In that case, the relationship between the two would
best be revealed by plotting the event amplitudes of particular relative frequencies
in one against the same relative frequency in the other (e.g. plot the 25th percentile

amplitude in current clamp against that amplitude in voltage clamp).

3.3.5 What generates EPSC variability within a single cell?

As discussed above, there are a large number of factors which might contribute to
the variation in SEPSC amplitudes seen between different cells. It is less obvious
what might cause such wide variability in event amplitudes within a single cell. Po-
tential contributors can be divided into two classes. Intrinsic factors are differences
between synapses due to intrinsic properties of the synapses themselves: differences
in postsynaptic receptor subunit composition or rumber, differences between action

potential-dependent events and mEPSCs, differences in firing history of the presy-
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naplic cell. etc. Ertrinsic factors are differences due to the relationship of synapses
with the postsynaptic cell: for example. symapse location on the dendritic tree, or the
presence of voltage-dependent conductances shaping the postsynaptic response to a
synaptic input. (See Section 1.3.4.) Is the effectiveness of a synapse controlled only
~ by its own history - intrinsic factors - with each synapse having an equal possibility of
contributing to the output of the cell? Or is the effectiveness of a synapse controlled
by its location on the postsynaptic cell?

A number of studies have looked for an effect of synapse location on response
amplitude of synaptic location, in the form of electrotonic filtering,!! is to look for a
negative correlation between event rise time and amplitude [244, 247, 163, 164. 274,
104, 209]. As a synapse is moved farther out a dendrite, the response at the soma will
decrease in amp]itude and increase in time (203, 97, 269]. It is therefore logical that
these two variables should be negatively related to one another if event amplitudes
and kinetics are indeed shaped by electronic filtering. A large number of studies
[244, 247, 163, 164, 274, 104, 209] have concluded that since these two parameters
are not strongly negatively correlated, there is no contribution of electrotonic filtering
to synaptic event amplitude. In fact, in cortical neurons, these two parameters are
indeed not negatively correlated (Figure 3-10A,C), and the fastest (presumably most
proximal) events are still extremely variable in amplitude, covering the entire range of
amplitudes seen. However, as shown in Figure 3-10D, there is a significant correlation
between SEPSC rise time and half width. Such a correlation has been identified in
the theoretical literature as the best predictor of a role for electrotonic filtering in the
generation of synapfic response shape (203, 97]. This suggests that, in fact, sEPSCs
may be subject to a considerable degree of electrotonic filtering; and that the lack
of correlation between rise time and amplitude may not be a good predictor of a
contribution of synaptic input location to synaptic response shape (see Discussion,
Chapter 4).

!'Rather than in the form of a contribution of spatially inhomogeneous voltage-dependent con-
ductances to synaptic response.
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2.3.6 Properties of single inputs over time.

The study of spontaneous events tells us about the population of inputs to a cell
- what range of amplitudes, etc., we might expect it to see. However, it doesn't
give us a lot of detailed information about individual inputs, most notably their
behavior over time - a single input might not be active more than once during the
period in which sEPSCs are collected, and even if it was, there is no way to know
it. Fluctuations in single inputs over time is both an important source of extrinsic
variability, and an additional important factor in determining single fiber response
amplitudes. I have therefcre used the technique of minimal stimulation (see Methods,
(168, 209, 249, 3, 291, 140, 156, 6]) to attempt to repeatedly evoke responses from
one, or at most a small number, of input fibers.

Putative single-fiber responses fluctuate randomly in amplitude between a clearly
identifiable failure level and one or more response amplitudes. This is shown for 3
cells in Figure 3-111,2, and 4. In most cases, failures (open symbols) are clearly
distinguishable from responses (1), but if the noise level is high and responses are
small, the distance between the two narrows. If there are spontaneous EPSCs either
during the baseline or response period, then the failure amplitude will overlap with
that of the responses (2). Responses are usually stable over time, showing occasional
mild increases (3, end), or decrezses (1,end) in failure rate, which usually recover to
baseline in a few seconds. The region of putative single-fiber responses can clearly be
identified as stimulus amplitude is increased. At low stimulus amplitudes, all inputs
fail to generate a response (Bl, left). As the stimulus amolitude is increased, suddenly
a response begins to appear (B1, 6V, B3, small response, 20V). As the stimulus is
increased further, there is a plateau region where the response amplitude does not
increase, but the number of failures may go down [249] (or disappear entirely, without
the non-failure amplitude increasing much, Bl 15-20V). Finally, as stimulus strength
is increased still further, the response suddenly begins to increase, failures disappear,

and an inhibitory component may appear as well (B1, 30V, B3, 40V). Figure 3-11B2
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shows the mean non-failure amplitude and probability of failure for the data in Bl.

Probability of failure. To estimate the number of inputs which must be active
to make the postsynaptic cell fire, we must not only estimate their size relative to
threshold, but given the fact that transmission in the CNS is apparently fallible
(189, 92, 17, 3, 249, 291); we must also estimate the number of inputs which will
actually cause a postsynaptic response given that a certain presynaptic population
fires a spike. Unfortunately, minimal stimulation is not an accurate technique with
which to estimate failure rates. Even if one is extremely careful, it is always possible
that one is stimulating 2 fibers instead of one (though this usually results in clear
differences of latency and waveform). This will result in an underestimate of failure
rate. If responses are small, it may be difficult to distinguish small responses from
failures due to recording noise. As these will probably be misclassified as failures, this
will cause an overestimate of failure rates. Using the minimal stimulation technique
as presented here, one cannot monitor the action potentials of the presynaptic cell
being stimulated. This leaves open the possibility of failures of stimulation. Or there
could be branch point failure, where a stimulated axon fails to propagate an action
potential to all of its terminals; such failures might be increased due to damage
during the slicing procedure. Careful studies have suggested that at least a large
fraction of the failures of release seen in slice studies are true failures of release, rather
than failures of stimulation or propagation [249, 3]. However, other studies support
the idea that failures of stimulation do happen at least in some cases [250]; and
that the probability of stimulation failure may vary between slices, cells, electrode
placements, etc. Given all of this, it is important to take probabilities of failure
estimated using minimal stimulation with a very large grain of salt. In spite of this
fact, the distribution of failure probabilities seen in the 27 cases (22 rat cells, 5 cat
cells, first stimulus only) of minimal stimulation used here is presented in Figure 3-
11C. The mean probability of failure was 37.56+4.223% for rat cells, and 26.15+7.79%
for cat cells (overall probability = 35.4543.82, n=27).
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Relationship between meEPSCs and spontaneous events.

Single inputs do vary considerably in amplitude over time. Figure 3-12 shows the
properties of single fiber inputs evoked with minimal stimulation in rat and cat cor-
tical cells; and compares their properties to spontaneous events within the same cell.
‘Minimal evoked responses (meEPSCs, traces, left) fluctuate in amplitude between
clear failures of transmission and variable levels of response. They vary much less in
kinetics and latency (see Figure 3-13) than in amplitude. The amplitude distribution
of meEPSCs always overlapped heavily with those of SEPSCs in the same cell (see
amplitude histograms, right). This was true in all of the cases which met our criteria
for minimal stimulation (rat cells, n=23; cat cells, n=5), suggesting that these evoked
responses truly represent single-fiber inputs.

Evoked amplitudes do show varying relationships to the distribution of SEPSCs,
depending most likely simply on which region of the sEPSC amplitude distribution
the fiber under study was drawn. in some cases (Fig. 3-12A), the peak of non-failure
meEPSC amplitudes centered around an amplitude which was towards the largest end
of the SEPSC amplitudes seen. In other cases, (Fig. 3-12B), the smallest meEPSC
amplitudes were close to the failure peak, and appeared to be smaller than the smallest
sEPSCs, because they were below the threshold for spontaneous event detection.!?
In the final group (Fig. 3-12C), meEPSC amplitudes showed a broad distribution;
with the sSEPSC amplitudes primarily corresponding to the smaller peaks. These
relationships are consistent with SEPSCs consisting heavily of miniature EPSCs, and

with the meEPSCs consisting of one or more distinguishable quantal levels [140, 191).

Minimally-evoked EPSCs show less kinetic variation than sEPSCs.

Careful examination of the amplitude histograms in Figure 3-12 shows that, while

spontaneous events show their characteristic skewed amplitude distribution, mini-

12Because meEPSCs occur at known times, even very small events are accessible for analysis,
though it may be difficult to distinguish them from failures.
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mal evoked events from the same cell do not. Besides the peak near 0 pA repre-
senting failures of transmission, they consist of either a Gaussian-type second peak
(Fig. 3-12A,B). or a constellation of peaks presumably representing multiquantal in-
puts (Fig. 3-12C). This can be seen more clearly in Figure 3-11B1,3 and 4. which plots
meEPSC amplitude histograms without the failures of transmission (parameters of
these distributions are summarized in Table 3.3.6). This suggests that at least in
some cases, the processes generating skewed amplitude distributions in sEPSCs may
not apply to meEPSCs, which presumably come from a single or small number of
input sites on the dendritic tree."

Responses to minimal stimulation also show less kinetic variability than do spon-
taneous events, having, for instance, a rise time distribution with is narrower and less
skewed (Fig. 3-13C, Table 3.3.6). This is consistent either with individual inputs be-
ing restricted to a particular time course of response (but response kinetics perhaps
being allowed to vary between input fibers); or with the stimulated input coming
into a single, or a narrow range of, electrotonic locations on the postsynaptic cell’s
dendritic tree. This latter interpretation is partially supported by plotting rise time
vs half width for evoked and spontaneous events. While in both cases, rise time and
half width are significantly correlated (p<.05, Spearman), the points for the evoked
responses form a narrowly-defined, almost isometric cloud in a restricted region of
the shape index space (note different axes for evoked and spontaneous responses, to
show more detail of evoked response). Interestingly, while spontaneous EPSCs show

no correlation between rise time and amplitude, evoked responses in this particular

13Even in the case of uniquantal meEPSCs, if the presynaptic fiber made more than one contact
with the postsynaptic cell which fired with low enough probability to never simultaneously release
two quanta, an apparently uniquantal input could arise from multiple release sites. As individual
release sites from the same presynaptic axon are not constrained to make nearby contacts onto the
postsynaptic cell’s dendritic tree, and a single axon may make multiple synapses at widely disparate
points on the same postsynaptic cell [60], any multiquantal input has the possibility of arising from a
number of electrotonically distinct input sites. If a single release site is capable of releasing multiple
quanta effectively [191], then even an input which consists of large numbers of quanta might all arise
from the same point on the dendritic tree. However, using the technique of minimal stimulation, it
is impossible to distinguish these possibilities.
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Mean | SD | CV | Skew
Amplitude
S1 -42.74 | 8.78 1-021 | 043 |
S2 -40.94 | 11.95 { -0.29 | -0.31 "
Both || -41.69 | 10.73 | -0.26 | -0.085
Spont || -17.16 | 7.37 | -0.43 | -2.30
Rise Time
S1 095 | 0.17 | 0.18 | 0.38
S2 098 | 0.30 [ 0.30 | 1.04
Both 097 { 025 { 0.26 | 1.09
Spont || 1.09 | 0.67 | 0.63 | 2.68
Half Width
S1 462 | 0.62 | 0.13 | 0.04
S2 459 | 0.73 | 0.16 | 0.09
Both || 4.61 | 0.68 | 0.15 | 0.06
Spont | 2.16 | 1.18 | 0.35 | 5.28

Table 3.1: Comparison of minimally-evoked and spontaneous event kinetics from the
same cell.

fiber (as well as at least several others, data not shown) show a small but significant
positive correlation between these two variables. This is quite possibly due to the
fact ihat, the largest, apparently multiquantal evoked responses frequently showed
a bit of latency jitter in the onset of each quanta, sometimes leaving a rising-phase
inflection. Sometimes this inflection is clearly visible; all these events were removed.
In other cases, the inflection was subtle, and might serve to increase rise time and

half width relative to amplitude.

3.3.7 Only a small number of inputs are necessary to
generate a spike.
Now, armed with an estimate of the size of single-fiber inputs to cortical cells, we can

proceed to ask how many of these inputs must be simultaneously active to cause the

postsynaptic cell to spike. First, however, we must ask how large are these inputs
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relative to the spike threshold of the cell, and what it means for a cell to have a
threshold.

Spike threshold was measured by using large-amplitude stimuli to generate re-
sponses sufficient to cause the cell to spike on 50% of trials [189]. In many cells, it
was not possible to stimulate the cell to threshold from the gray-white matter border.
When the stimulus intensity was increased beyond a certain point. powerful feed-
forward inhibition would overcome excitation and cause the response amplitude to
actually decrease with increasing stimulus intensity.'* Giving pairs of stimuli 50 ms
apart frequently enabled the cell to reach spike threshold to the second stimulus, due
to simultaneous paired-pulse facilitation of the EPSP and paired-pulse depression of
the IPSP (Nelson and Smetters, in prep.).

Figure 3-14 compares the response to threshold stimulation to sEPSPs and mini-
mal evoked EPSPs in two cells, an interneuron from upper layer V (A), and a layer
[1/11I regular spiking cell (B). In A, the mean spontaneous event amplitude was 1
mV, while the modal (most common) spontaneous event amplitude was 0.8 mV and
the maximum was 3.4 mV. The threshold voltage, measured as the point where the
largest subthreshold EPSPs and spiking traces diverged, was 17.68 mV above rest.
One can get a crude measure of functional convergence by assuming linear summa-
tion, and simply dividing the threshold voltage by the expected input size, to come
up with an estimate of how many inputs are necessary to cause the postsynaptic cell
to fire. Using the modal, or most common, spontaneous input size, this corresponds
to 21 inputs necessary to bring this cell to threshold; if the largest spontaneous event
seen in this cell (3.36) mV is considered instead, that number comes down to 6. Sim-
ilarly, for the cell shown in B, the threshold voltage was measured as 18 mV above

rest, while the modal EPSP amplitude was 0.5 mV,!> while larger events frequently

14Large-amplitude stimuli in the presence of bicuculline almost invariably evoked seizure activity.
This problem could probably be avoided by stimulating upper-layer cells from layer IV, which avoids
much of the feedforward inhibition.

13As the modal EPSP amplitude is always smaller than the mean in these cells due to their skewed
amplitude distributions, using this measure suggests if anything a larger number of inputs necessary
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reached 1mV in amplitude. This would generate an estimate of 18-36 simultaneous
inputs necessary to cause this cell to fire an output. Across these measures. and
across cells (including cells whose thresholds were measured using current injection).
it was estimated that 5-50 inputs would be sufficient to generate an action potential
in the postsynaptic cell. Taking into account an approximate mean probability of
failure of 40%, 8-83 input cells much reach threshold nearly simultaneously to cause

the postsynaptic cell to spike.

Nature of threshold

An important question in estimating the number of inputs needed to bring a cell
to threshold, is what exactly do we mean by threshold?'® Is the above measure,
a fixed amplitude relative to rest, a good measure of what it takes to make a cell
spike? Or is a better one the old measure of rheobase (threshold) current injection
sufficient to generate a spike? Or, perhaps even more simply, the “naive” notion of
a simple voltage threshold - if the cell crosses this point, it will fire — used by many
simplified neural models. Theoretical work has systematized these naive notions into
three possibilities: a voltage threshold, a current threshold, and a charge (integral of
current over time) threshold [97]. Old and recent computational work [71, 118, 97]
suggests that cells do in fact operate using the simplest approach, a voltage threshold.
The data presented here also strongly support the idea that cells fire more or less when
they reach a particular voltage.

Figure 3-14C and D plots the absolute peak amplitude reached by the cells in A
(C) and B (D) on each trial, whether the cell spiked or not. In each case, the cell was
held at two different voltages with DC current; one the resting potential of the cell,
and one depolarized closer to spike threshold (in the case of A, -65 mV and -45 mV,;
-60 mV and -70 mV in the case of B). Amplitudes plotted in C and D are absolute

to activate the cell than the mean would; while also perhaps being a more representative estimate
of the most common case in terms of frequency of inputs, if not average input amplitude.
160r, more importantly, what does the cell mean by threshold?
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voltages, the relative amplitudes of EPSPs generated from the two holding potentials
varied dramatically. It can be seen in C that whenever the cell crossed a certain
potential, ( -38mV), it fired an action potential, no matter what voltage it came from
or how large of an input it took to get it there. This cell fired only to the second
of 2 paired stimuli, apparently because the response to the first (opeh Ba.rs) never
quite reached threshold. This suggests that these cells operate at least loosely by a
voltage threshold [118]. Therefore, the baseline “resting” potential at which the cell
is pushed by other inputs will determine how many additional inputs are necessary
to cause it to spike.!”

Applying a similar analysis to spontaneously firing cells also supports the notion
of a voltage threshold. Few cells are spontaneously active in the slice, but a small
number of cells seem to undergo random baseline fluctuations (either synaptic or
simply noise); when these cells are depolarized to near spike threshold, the random
fluctuations cause them to generate apparently random spontaneous activity (Fig. 3-
15A1). Plotting the local maxima reached by the membrane potential in such a cell,
either the peaks of the small subthreshold fluctuations or the peaks of the spikes,
shows a sharp bimodal distribution of amplitudes as a function of time (Fig. 3-15A2),
suggesting again that this cell simply fired whenever it happened to reach a particular
voltage.

Adaptation, and the inactivation of slow currents, can modulate this voltage
threshold behavior. Figure 3-15B1 shows a local maxima plot for a cell filled with
CsF, undergoing a pattern of voltage plateaus and burst firing typical of such cells
[214] (expanded in ﬁ2, bursts indicated by gray bars: {urther expanded to show ac-
tual voltage trajectory in B3). If a narrow window of time is examined, such as that
shown in B2, the cel.l apparently exhibits voltage threshold behavior. All amplitudes
are either below a thl:eshold near -60 mV, or above it representing the peaks of spikes.

The apparent intermediate points near -20mV can be seen on examination of the volt-

17Possibly modulo conductance changes due to background activity, see [22, 208}.
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age trace in B3, to be the lower peak amplitudes of spikes located in the middle of
a burst. However, when the long-term behavior of the cell is studied in Bl, it can
be seen that as it climbs a depolarizing ramp (at 15 sec and 90 sec, description
in legend), its threshold climbs with it, and when it is reset to hiyperpolarized state
where it no longer fires rhythmic bursts ( 45 sec and 120 sec) the two bursts it does
fire ( 50 sec and 65 sec) appear to arise from a much lower threshold of near -70
mV. This is likely due to the bistability induced by Cs* blockade of K* currents in
cortical cells [214], and indicates that the state of the slowly adapting currents in
these cells can control the absolute value of the voltage threshold. However it also
shows (B2), that on short time scales, a fixed voltage threshold may be the best and
simplest model of action potential generation. As the estimates of functional conver-
gence generated above were based on the distance from the resting potential to spike
threshold at a particular resting potential, they are accurate for that potential - if

the cell is hyperpolarized, more inputs will be necessary to fire an output.

3.3.8 Reflection of input variability in output variability.

One consequence of the low apparent numbers of inputs necessary to generate an
output spike, is that the law of large numbers does not apply. One of the original
arguments about why one would want a large number of inputs to converge to make
an output is that “noise” in individual inputs would be washed out through averaging.
Given that individual inputs are extremely variable in amplitude and sometimes fail to
respond at all (Section 3.3.6, [168, 209, 249, 3, 291, 140, 156, 6}, this would seem to be a
good idea. Therefore it becomes an important question whether this input variability
is in fact reflected in variability in the output of the postsynaptic cell. Simply the
fact that one can perform threshold stimulation - where repeated, identical electrical
stimuli only generate a spike on some subset of trials, suggests that these fluctuations
in synaptic inputs do have functional consequences.

Figure 3-16A shows 20 identical stimuli given to the cell shown in Figure 3-14A,9
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of which generate a spike. Mean spike latency is 31.01 ms, with a standard deviation
of 7.29 ms; there is an incredible fluctuation in spike timing when a spike occurs
at all. Figure 3-16B shows that spike timing in a regular spiking cell is much less
variable (6 of 15 traces contain a spike, same cell as in Figure 3-14B), but is still
.noticeably so. Mean spike latency is 5.7 ms, standard deviation is 0.52 ms. This
is not a product of injury due to breaking the cell membrane, or some a-tifact of
washout - Figure 3-16C shows a series of threshold stimuli given to a cell recorded
in cell-attached patch mode. Action potentials are clearly visible through the patch
on a subset of trials, and occur with variable latency. This variability is likely due
to variation in the underlying synaptic inputs, as can be seen in Figure 3-16D, which
shows voltage clamp recording of the threshold stimulus to the cell in Figure 3-16B,
which varies considerably in amplitude (CV of peak amplitude = 0.085, CV of spike
latency = 0.086).

This “jitter” in spike latency varies between cells, as can be seen by comparing A
and B, and in Figure 3-16E, which summarizes this variability for 4 representative cells
by plotting the time of each spike relative to the mean spike latency for that particular
cell. Individual cells ranged dramatically in the variability of their spike timing, from
a cell whose spikes almost completely superimposed, to the extreme variability seen in
Fig. 3-16A. Plotting mean spike latency vs the standard deviation of spike times for
9 cells, (Fig. 3-16F, which includes separate points for two cells which spiked to each
of 2 or 5 stimuli on some trials) shows a significant correlation (R=0.948, p<0.02,
Spearman Rank Test, correlation still significant if only one stimulus considered for
each cell) - longer latency spikes show significantly more jitter. This corresponds well
to the fact that longer latency inputs, which are typically assumed to be polysynaptic
in nature, are more variable in response. In a chicken-and-egg situation, the fact that
spikes are variable in their timing, and longer-latency spikes the most variable, may

account for why polysynaptic inputs are so variable in latency and occurrence.

86



3.4 DISCUSSION

3.4 Discussion

In this chapter I have provided estimates of the range of response amplitudes gen-
erated by single-fiber inputs in cortical cells, using both the study of spontaneous
events to see the range of properties across the population of inputs to a cell, and
minimal stimulation to see the variability in a single input over time. Single-fiber
inputs to cortical cells are large, fast, and extremely variable; both across the pop-
ulation of inputs to a cell, and over sequential responses to the same input. I then
measured the size of input necessary to reach spike threshold, and combined that with
estimates of the average single-fiber input size in those cells to estimate, assuming
linear summation, that only 5-50 presynaptic inputs would need to be simultaneously
active to cause the postsynaptic cell to fire a spike. Because this number is so low,
the variability in the individual synaptic inputs to a cortical cell will have functional

consequences for the timing and occurrence of its output.

Species differences. Several differences were noted between the spontaneous ex-
citatory inputs to rat and cat cortical cells. Two cat cells showed an extremely high
frequency of spontaneous IPSCs, something that was only seen in 1-2 rat cells under
conditions were the slices were otherwise undergoing spontaneous epileptiform activ-
ity. The amplitudes of SEPSCs in cat cells were also quite small, on the same order as
those rat cells showing the smallest SEPSC amplitudes (Fig. 3-8. There were no ap-
parent differences between rat and cat cells in their response to minimal stimulation
(threshold stimulation was not performed in cat cells).. There are a number of pos-
sible explanations for these differences in sSEPSC amplitudes. It may be due simply
to differences in cell size (those cat cells recovered morphologically were equivalent in
size to the largest of the rat cells in our sample. This would also exacerbate the effects
of series resistance (which was high in 4 of these cells), however this difference was
maintained in the 3 cells with low series resistances, and the one cell with a moderate

series resistance. The difference, particularly that seen in the increased frequency of
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sIPSC's, might correspond to the differences in relative ages of the two animal pop-
ulations used - however. these differences were not uniform across the population of
cat cells studied. Most likely. there are also differences in the health of the slices,
as the cat tissue was removed by biopsy from animals that had undergone several
days of anesthesia. Unfortunately, our sample of cat neurons is much too small to
draw any definitive conclusions about the importance of these differences, or their
underlying cause. More striking, however, is the fundamental similarity between rat
and cat cortical neurons, in the basic properties of their sEPSCs and meEPSCs. This
suggests that the fundamental properties of synaptic integration in cortical neurons

may be generic across all cortices.

3.4.1 Size of single-fiber inputs to cortical cells

The strength of this study is in its sampling of the populations of single-fiber inputs
and mEPSCs from an enormous number of cells (204 rat ce''s, 8 cat cells; the cells
not explicitly shown here were consistent with the rest). A small number of other
studies have used paired recordings with sharp electrodes to characterize in detail
the properties of a small number of identified connections between cortical cells (see
Table 1.3.3 in Chapter 1 for summary), and an even smaller number of studies have
looked at the properties of spontaneous, or miniature synaptic events, or minimal
stimulation in cortical cells [29, 30, 146). This study is the only one to have combined
the high signal-to-noise ratio of whole cell patch clamp techniques, used by these latter
studies, with the attention to the variations between cortical cell types characteristic
of the former; in an identified region of cortex and across a number of cells which is
simply not possible with paired recordings.

There are several problems endemic to the electrophysiological analysis of single-
fiber input strengths. Using spontaneous events as a way to study the entire popula-
tion of inputs to a cortical cell makes the tacit assumption that all of these inputs are

equally likely to generate spontaneous events. This may not be the case. In cultured
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cortical cells, the history of stimulation can bias particular synapses to generate the
majority of mEPSCs [179]. In dentate gyrus granule cells. miniature IPSCs seem
to preferentially be generated by synapses in the region of the soma and proximal
dendrites (see Chapter 6, [240]). In the case of spontaneous events measured in the
absence of TTX, particular cells may be prone to spontaneous activity in the slice.'®
There is no way to control for this possibility, though comparing sEPSCs with the
responses to minimal stimulation, which may hit some of these normally silent inputs,
gives some reassurance that there isn’t a population of either very large or very small
events out there routinely being missed. The hunt-and-peck method of traditional
paired recording is also subject to the same problem, and may be especially biased
towards the selection of strong connections due to the low signal-to-noise ratio of
sharp electrode recordings. Only visualized techniques, with the ability to select con-
nections between particular classes of cells, combined with a great deal of exhaustive
work, will get around this problem with time. Finally, spontaneous EPSCs may be
heavily biased towards action potential independent events (mEPSCs), which at least
in some cases are of smaller size than the average action potential-driven input; this

may cause the average size of single-fiber inputs to be underestimated.

Other studies on the size of inputs to cortical cells, and studies on the
size of inputs in other brain regions. Single-fiber connections have a public
relations problem. When you ask someone to estimate the size of a single synaptic
connection, the usual answer is “small”. The number which is most commonly cited
in review articles and theoretical expositions of cortical function [181] is on the or-
der of 100-200 V. That is indeed the number obtained in the pioneering studies of
synaptic strength in spinal motoneurons, and in several studies of hippocampal and

cortical pyramidal cells (see Table 1.3.3 for summary and references). Most attempts

18This is suggested by the occasional appearance of repeated, identifiable, SEPSCs in some cells; in
the limiting case a single presynaptic cell firing a relatively high-frequency train of action potentials
can be identified by its characteristic response waveform.
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at quantal analysis using current clamp recording with sharp electrodes. and/or de-
convolution approaches [223, 45] also come up with an average quantal amplitude of
100 pV'.

On the other hand, there are several recent studies in hippocampus and cerebellum
[6, 189, 13] which come to couclusions very similar to those reached here for cortical
cells - single-fiber connections are actually strong, a significant fraction of a millivolt
in amplitude. Similarly, the sizes of SEPSCs and mEPSCs measured in a large number
of voltage clamp studies in hippocampus [164. 163, 155, 70, 157] and cortex [146, 29,
30. 82, 83] as well as other brain structures [143, 142, 290} have described event
properties very similar to those seen here for visual cortex. What is the source of this
difference?

One major source of this disparity in size estimates is the difference in techniques.
Most early studies of single-fiber connections were performed using sharp electrodes,
while it is whole-cell patch clamp recording techniques that have generated these re-
cent measurements of strong synaptic connections. Sharp electrode recordings are
theorized to generate a somatic shunt conductance, which will decrease the input
resistance of the recorded cell. This can decrease the amplitude of synaptic inputs
recorded at the soma in current clamp, but is not sufficient to account for the size of
the disparity seen here (see Section A.1.2 for examples of sSEPSP amplitude distribu-
tions recorded with sharp electrodes and discussion of the difference between these
techniques). Most importantly, with the poor signal-to-noise ratio of sharp electrode
studies, EPSP amplitudes are measured as an average of failure and non-failure trials
as the two cannot be reliably distinguished. If a significant fraction of inputs result
in failures, this will drastically reduce the estimated EPSP amplitude.

A second source of this disparity is the difference in animal ages typically used;
whole cell techniques are typically performed on juvenile animals, while sharp elec-

trode recordings are typically performed in adults, and the spinal motoneuron studies
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were performed in adult cats in vivo.'® Cells from younger animals are smaller. have
higher input resistances, fewer voltage dependent conductances [109], and might sim-
ply have stronger synaptic inputs.

On the other hand, there is a much simpler explanation for the source of this
difference: it doesn’t actually exist. While the most commonly cited numbers for
single-fiber input strengths are the small ones estimated in early studies, Table 1.3.3
clearly shows that recent sharp electrode studies using paired recording of true single-
fiber connections in cortex show connection strengths of similar sizes to those seen
here. In the limiting case; it has been shown that responses to single-fiber connec-
tions between presynaptic pyramids and postsynaptic interneurons can reach 9 mV
in amplitude on single sweeps (cortex, [261]); and can be sufficiently strong to ex-
cite the postsynaptic cell to fire with a single presynaptic spike, through a single
morphologically-identified release site (hippocampus, [77]). It could be argued that
these studies selected for particularly strong connections, to best overcome the low
SNR of the recording technique. However, taking this data in combination with that
of the present study which looked at the whole population of inputs to cortical cells,
it is clear that single-fiber inputs are, on the whole, extremely strong.

A secondary, but still interesting question, is why this perception of weak single-
fiber inputs persists in the community of physiologists and theoreticians not directly
recording them. One reason is that many of these studies, particularly those using
whole-cell techniques, are quite recent, and the earlier studies have been around a very
long time. Another reason, at least for computational neuroscientists, is simplicity; if
you take a realistic neuronal model, using “standard” passive parameters (243], and
place onto its soma a “typical” synaptic conductance input, the response you get is
about 200 uVin amplitude (e.g. see Fig. 4-21C). In fact, due to heavy filtering by
the membrane capacitance, it is extremely difficult to simulate a large response to

a rapid synaptic input in current clamp using standard parameters. This is a very

19/n vivo studies have their own contribution to the problem of cell properties and event size,
which will not be addressed here [22, 208].
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useful fact, as it can place an important constraint on our estimates of cellular and

synaptic parameters.

3.4.2 What generates EPSC variability within a single cell?

As discussed above, there are a large number of factors which might contribute to the
variation in sEPSC amplitudes seen between different cells. It is less ob sious what
might cause such wide variability in event amplitudes within a single cell. Above. |
identified two broad classes of factors, intrinsic and extrinsic, which might result in
such variability.

In the case of SEPSCs, it is very likely that both types of factors play a role. It was
shown above, that sEPSCs consist of both mEPSCs and action potential-dependent
events, which can have overlapping but not identical amplitude distributions. This
division itself will introduce a certain amount of amplitude variability into the pop-
ulation of sEPSCs. Similarly, there is increasing evidence that within the population
of actior. potential-driven events, the response to a single input can vary over time
(see below). Even if a given presynaptic cell fires only one action potential during the
time period in which sEPSCs are collected, given the fact that a particular fiber will
be in different states on subsequent action potentials, and that there is no reason for
different fibers to be in the same state at the same time, this intrinsic variability will
generate variation in sEPSCs. This is examined in more detail below.

Extrinsic factors are also likely to play a role in the generation of sEPSC ampli-
tude. Considerable sEPSC variability is still seen in recordings using CsF electrodes
in the presence of TTX, APV, and BMI (Fig. 3-7B,C), which isolates as much as
possible a uniform, AMPAergic population of uniquantal events, and blocks most of
the active conductances in the postsynaptic cell. If extrinsic factors do strongly in-
fluence synaptic responses, it becomes a developmental problem - if it matters to the
synaptic effectiveness of an axon where on the postsynaptic cell it synapses, then the

axon guidance problem becomes not only one of finding the right cell, but of finding
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the right piece of the right cell. The fact that in many cell types different presynaptic
cell classes do target very limited dendritic regions of the postsynaptic cell (see Chap-
ter 6) suggests that there is some important functional difference between inputs to
different locations to the postsyl'iaptic cell.

Figure 3-10 shows that there is no strong negative correlation between the rise
times and amplitudes of spontaneous inputs to cortical cells. A number of studies
have taken such an absence of correlation as proof that synaptic location does not
contribute to the generation of response amplitude [244, 247, 163, 164, 274, 104,
209]. However, there is a problem with this analysis. In spite of the fact that these
two variables are not negatively correlated, they are negatively related - fast events
may cover the entire amplitude range, but slow events are restricted to being small.
Computational analysis shows that as these two parameters change with distance at
different rates, they should not be expected to be negatively correlated, but instead to
show a negative relationship such as this one in the presence of electrotonic filtering
(see Chapter 4). And in fact, there is a correlation between event rise times and
half widths (Fig. 3-10D) in most cells, which is a much better indicator of an effect of
electrotonic filtering [203] (Chapter 4). Together, these facts suggest that electrotonic
filtering does play a significant role in the generation of sEPSC amplitude variability.
However, the fact that the amplitudes of the fastest events do cover such a wide range,
while not evidence against an effect of cable filtering, is evidence for the presence of
an additional source of SEPSC variability (see Chapter 4 for a much more detailed

discussion of these issues).

3.4.3 Properties of single inputs over time

Minimal stimulation was used to study the properties of single-fiber inputs over time.
The sharp threshold for minimal stimulation response, combined with the high failure
probability and the similarity between meEPSCs and sEPSCs in the same cell all
strongly suggest that this increasingly commonly used technique [168, 249, 3, 291,
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253. 140. 156] is successful at stimulating one, or at most a small number, of fibers.
However, there are problems with this technique, most of which were discussed above.
The possibility that one is stimulating 2 or 3 fibers. instead of just one. or that in
some cases stimulation or conduction, rather than transmission, may fail. means that
results obtained with this technique must be interpreted with caution. The qualitative
results of minimal stimulation experiments presented here, that single fiber inputs are
variable and quite fallible over time. and that they are consistent in size with being
made up of one or a small number of quanta; are all consistent with the results of
paired recordings in cortical cells [261, 264, 260, 60).

The most interesting result obtained using minimal stimulation in this study was
that the kinetics of meEPSCs are much less variable than those of sSEPSCs in the same
cell (Fig. 3-13). This conclusion is robust, at least in the subset of tested connections
where one fixed-latengy input could clearly be identified. If two or more fibers were
actually being stimulated, this would, if anything, artificially increase the apparent
amount of kinetic variability; failures of stimulation would have no effect on the re-
sponse kinetics for the successful trials. The example inputs used were unfortunately
not uniquantal, and showed mildly peaky, though generally Gaussian amplitude dis-
tributions. Therefore any temporal dispersion between release of quanta, or spatial
dispersion in the possible multiple release sites involved in this connection will also
cause an overestimate of kinetic variability. Therefore, the data presented here pro-
vides an upper bound on the amount of kinetic variability in a single fiber inputs.
Similarly, because the events subjected to detailed analysis were not uniquantal, they
cannot easily be used to estimate the amount of qua:.tal variability at a single re-
lease site (rather than between release sites). However, it is clear that, at least in
the absence of TTX, single inputs are variable in amplitude, and more notably, for

the most part these amplitude distributions are not particularly skewed.?® These two

29The response to the second of two pulses occasionally showed a mildly skewed amplitude distri-
bution, presumably because of a slight bias towards larger-amplitude events induced by paired-pulse
facilitation. However, these distributions were always much less skewed than those seen for sEPSCs.

94



3.4 DISCUSSION

facts will become important in Chapter 4. when they will be used to estimate the
relative contributions of various sources of synaptic variability to the generation of

skewed sEPSC amplitude distributions.

3.4.4 Estimates of spike threshold

A number of methods have been used to estimate spike threshold in pyramidal cell
types throughout the brain (7]. The current or charge injection necessary to produce
a spike, the amplitude of a just subthreshold EPSP, the point at which the spike
takes off from the surrounding EPSP (measured as divergence from failure trials or
by a slope threshold for spike onset), the voltage response to just non-spiking current
injections, etc. All of these methods come up with similar answer: spike threshold
is approximately 12-20 mV above resting potential in the slice (7, 189, 13, 6], and
behaves as an absolute voltage threshold, rather than an amplitude threshold relative
to the “resting” membrane potential - if the cell is hyperpolarized, a larger input
is necessary to make it spike. The important fact about these facts is that a) these
estimates are very consistent, yielding reliable predictions applicable across a variety
of cell types; and b) if the cell is depolarized, e.g. by spontaneous background activity
in vivo, to near firing threshold, only a slight perturbation may be sufficient to make it
spike [149]. Influences on the cell, such as neuromodulators, which can alter its resting
potential, can dynamically alter the size of an input necessary to reach threshold, as
well as simultaneously affecting synaptic integration by changing the input resistance
of parts of the cell. ‘Similarly, differences between the intrinsic nonlinear properties
of cells, e.g. whether they are bursting or regular-spiking cells, will affect their spike

threshold, and hence their degree of functional convergence.

3.4.5 Estimates of functional convergence

Most older estimates of functional convergence have relied on the small estimates

of single-fiber input size discussed above; these have resulted in estimates that at
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least 100-400 inputs will need to be simultaneously active to make a (in this case,
hippocampal) pyramidal celi fire an action potential (7, 6, 259. 181]. While still much
smaller than the total number of inputs to the average cell, this estimate is large
in the important sense that the properties of the individual inputs making up this
threshold cohort will be averaged away.

The estimate of functional convergence obtained here, in contrast, is much smaller -
only 5-50 inputs must be synchronously active in order to generate a spike. These
numbers are remarkably consistent with those obtained in recent studies in hippocam-
pus [189] and cerebellum [13]. Of course, these cstimates must be taken with the usual
caveats. If inputs are desynchronized, more of them will be necessary. If they sum
nonlinearly, again, more will be necessary. If there is strong inhibition [189], or a
lot of background activity increasing the cell’s resting conductance (22, 208|, more
will be necessary. It is a lower bound. In the limiting case of a very small, high
input resistance cell such as a hippocampal interneuron, the lowest bound has been
reached - a single presynaptic spike, mediated via a single bouton, is sufficient to

make the postsynaptic cell fire [77).

Do inputs sum linearly?

It can be easily noted that the threshold synaptic current shown in Figure 3-16 is
very large, on the order of 1 nA. While this is on the large end of that seen in our
sample, and is much larger than the amplitude of the steady-state current injection
necessary to cause spiking, it is not that much larger than that seen in other cells.
And yet our apparent voltage threshold of 20mV above rest would suggest that
much less current would be required. There are two possible explanations for this
fact. The first is that linear summation is not a good model for synaptic integration,
that nonlinear interactions between synapses combined with interference by voltage-
dependent currents cause combined inputs to be “worth” much less than those single

inputs alone. The second is a profound effect of silent, or “shunting” inhibition.
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Experimental studies have shown that. in the absence of the nonlinear effects
of shunting inhibition, linear summation is indeed a good model for the interaction
between EPSPs; even when those EPSPs are generated at sites presumed to be near
to one another on the postsynaptic cell [7, 206, 31].

The second explanation for the apparently large size of threshold synaptic currents
is that a large component of that synaptic current is in fact inhibitory, acting as
a shunt to ground (120, 122, 33]. In fact, when cells undergoing large-amplitude
stimuli were depolarized, it was found that they were receiving massive inhibitory
input. In many cells, feedforward inhibition was so strong that they could not be
brought to spike threshold via large-amplitude stimulation of the white matter -
as stimulus intensity was increased, response amplitude first increased, and then
decreased as excitation was overwhelmed by inhibition. In the presence of bicuculline,
not only were small-amplitude stimuli capable of evoking action potentials from a
similar location, such action potentials usually cascaded into full-blown seizure-like
activity. Such inhibition has been shown to increase the number of combined synaptic
inputs necessary to generate an output [189]. Though it was not tested systematically,
a few observations suggested that those cells with the least épike latency jitter tended
to be subject to strong inhibition. It is an interesting question of whether shunting
inhibition, in addition to preventing spike firing through the powerful influence of
basket and chandelier cells on the soma and axon hillock of pyramidal cells [106], also
acts to shape the timing of an output spike; only allowing the cell to fire in a narrow

window of time depending on the time course of the IPSP [117].

3.4.6 Implications for cortical information processing

If you do need only a small number of inputs to generate an output, at least under
some circumstances, it has strong implications for the nature of cortical information
processing. A recent study has shown that the spike-encoding (threshold) mechanism

in cortical cells is very relialle [149] - it will accurately represent the details of the
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timing of an input current waveform in the pattern of output spikes, up to some limit.
If large. single-fiber inputs are riding on a pattern of background depolarization, they
will have a large impact on the detailed timing of the cell’s output spikes. This is a
far cry from a simple integrate-and-fire model [228. 12}.

The data presented above, and similar results obtained in hippocampal pyramids
[189] show that indeed, the variability shown to be characteristic of single-fiber inputs
appears in the output spike timing of the postsynaptic cell. This is perhaps an ugly
side effect of this sensitivity to single inputs - if you average many inputs to make
an output, it doesn’t much matter if your inputs are noisy. Given the fact that this
synaptic “noise” has consequences for the next cell down the line, we are therefore
forced to ask whether it actually plays some functional role [86, 28, 5], particularly in
ine light of the fact that regular spiking cells seem to work very hard to accurately
encode the details of their subthreshold inputs [149]. And it is extremely interesting
in light of the recent studies suggesting that the timing of spikes in cortex in response
to sensory stimuli can be very repeatable [12]. These cells certainly seem to function
well in spite of this “noise” - perhaps they are actually doing so because of it (see
Chapter 7).

Ancther interesting question is suggested by !,hé idea that only 1% of the inputs
to a cell are required to make it generate an output. Namely, what do you do with
the rest? Neural network studies suggest that such wide fan-in could be used to allow
the cell to participate in multiple representations; if this is combined with an output
encoding mechanism using spike timing rather than just a binary spike-or-don’t signal,
a given cell could store many input-output transformations. Simple simulations of a
realistic pyramidal cell model have in fact used it to store on the order of 100 images
(169, 170).

Modulation of dynamic range. Finally, the powerful effect of inhibition on spike
failure and spike timing seen in Figure 3-16 suggests an important processing role for

all of our above caveats on why this estimate of functional convergence is in fact
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a lower bound. As the cell receives more or less background input, or more or less
inhibition. or changes the state of its active conductances through short- or long-term
modulation [138, 273}, it will dynamically change its functional convergence. Even
more interestingly, the temporal sculpting effect of shunting inhibition {117]. and the
dynamics of its active conductances will allow it to change this convergence in time as
well as in space; this will allow it to make the timing of its output spikes more or less
accurate, and make the window for temporal convergence of its inputs narrower or
wider. Given enough inhibition and background activity, the cell would indeed revert
to a leaky integrator, when such behavior was suggested by the amount of background
activity. This ability to dynamically alter its functional convergence would allow the
cell transparently to encode information in different ways depending on the current
sensory and motivational context; and would provide a rich substrate for cellular and

sensory plasticity.
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3.5 Figure Legends

Figure 3-3: Cortical cells receive spontaneous synaptic inputs. Sponta-
neous synaptic events in a cat layer III cell. The bottom trace shows a stretch of
current recorded from a cell voltage-clamped at -T0mV. Spontaneous inward synaptic
currents can be seen as downwards deflections; there are probably 5 of them in this
trace. One event (shown by box) is expanded in the upper trace.

Figure 3-4: Properties of spontaneous synaptic events. A. Amplitude his-
tograms (above) and traces (below) of spontaneous excitatory synaptic inputs to a
layer V cell. Events are large, fast. and amplitude distributions show a character-
istic skewed shape. Bath solution contains 50uM bicuculline methiodide (BMI). B.
Traces before (above, Vi,a=-T0mV) and after (below, Vjoq=-60mV) bath applica-
tion of CNQX (10uM) in a different cell in the absence of bicuculline. C. Holding
a cell at -40mV, above the reversal potential for GABA ;-mediated IPSCs, makes a
small population of outward events clearly visible. Upper trace: outward (upward)
IPSCs can be seen to occur at a slower frequency than EPSCs (downwards). The
different kinetics of SEPSCs and sIPSCs can be seen in the lower, expanded trace.
D. Amplitude distributions from a layer Il cell before and after bath application of
BMI (50uM). E. Relative frequency of sEPSCs and sIPSCs. 33 cells were held at
potentials where sIPSCs were clearly visible as outwards events (-50 - -30mV, usually
-40mV), and the number of inward and outward events were counted in time periods
of 25-250 seconds. No automatic detection was used. Percentage of all events which
were IPSCs is plotted for each cell, broken down by layer and species. “Other” cells
were ones whose layer was unknown. F. Absolute frequency of sIPSCs in the same
population of cells.

Figure 3-5: Voltage dependence of SEPSCs. A. Average sEPSCs from one cell
at a number of different holding potentials. SEPSCs reverse at 0mV. B. Cumulative
amplitude histograms for events at a variety of holding potentials for a cell recorded
in TTX (1uM), APV (30uM), and BMI (50uM). C,D. The detection threshold for
spontaneous events complicates interpretations of voltage dependence. These plots
summarize the amplitude distributions as a function of voltage for the cells shown in
A(C) and B (D). The total length of the bar represents the range of event amplitudes
seen. The ends of the box represent the 25th and 75th percentiles, and the bar
inside the box is the median amplitude. These cells were recorded using CsF-based
solutions.

Figure 3-6: sEPSCs show intra- and inter-cellular variations in kinetics.
A. Distributions of sEPSC kinetic parameters show characteristic skewed shapes sim-
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ilar to that seen for amplitudes. These parameter distributions are for the cell shown
in Figure 3-4A. B,C. Event kinetics vary widely between cells. Averages of 490 sEP-
SCs from two example cells showing widely different kinetics. Both are rat layer 11
cells recorded in the presence of TTX (1 pM). APV (30 xM), and BMI (50 M ). B.
A cell from a P12 rat. R;,= 107.5 MQ. R,=2 MQ. C. A cell from a P19 rat. R;,=
87 MS). R,=8 M.

Figure 3-7: sEPSCs are made up of action potential-dependent and inde-
pendent events. A. Amplitude distribution of sEPSCs from a layer V cell showing
a large reduction in event frequency and amplitude with bath application of TTX
(1xM) to block action potential-dependent events. B. A layer III cell showing no
loss of events on washing in TTX, and, if anything, a small increase in the frequency
of medium amplitude events. C,D. Cumulative amplitude histograms for mEPSCs
recorded in the presence of TTX in 29 layer II/III cells (C) and 27 layer V/VI cells
(D). The majority of these cells (solid lines) were recorded in TTX (1uM), APV
(30uM) and BMI (50uM ), with CsF electrodes and (except in one case) 50 mM bath
dextrose, which may increase mEPSC amplitude (see Chapter 5, [278, 281, 275]).
Two cells were recorded under the same conditions except with KGlu-filled electrodes
(empty squares), and 3 cells were recorded with KGlu electrodes either in TTX alone
(circles) or TTX + BMI (lines).

Figure 3-8: Distribution of SEPSC amplitudes across the population of
cells. A. Cumulative amplitude distributions for sEPSCs in 10 rat layer II/III cells,
and 2 cells of unknown layer (dashed lines with circles). Thick line is for a cell recorded
in 50 uM bicuculline. B. Cumulative amplitude distributions for sEPSCs in 12 rat
layer V/VI cells. Thick line is for a cell recorded in 50 pM bicuculline (also shown in
Figure 3-4A). C. Cumulative amplitude distributions for sSEPSCs in 5 cat cells. The
only layer V/VI cell, is shown by a thick, dashed line, the rest of the cells were in
layer I1I. D. Cumulative amplitude distributions for 8 rat cells and 1 cat cell (filled
circles) in current clamp. Dashed line with squares shows events for an interneuron
from upper layer V (also shown in Figures 3-14A and 3-16A). Thick line is for a cell
recorded in 50 uM bicuculline (also shown in Figure 3-4A). E. Distribution of mean
sEPSC amplitudes for the cells shown in A-C, and the cells shown in Figure 3-7B and
C recorded in the presence of 1 uM TTX. “Other” refers to cells whose layer was not
recorded. F. Distribution of coefficients of variation of sSEPSC amplitude for the cells
shown in E.

Figure 3-9: Sources of SEPSC variation between cells. A. Mean sEPSC or
mEPSC amplitude vs animal age, for rat cells whose cumulative amplitude distri-
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butions were shown in Figure 3-8. B. Mean and C. maximum sEPSC or mEPSC
amplitude plotted against effective R,. Cell layer. species, and whether events were

sEPSCs (no TTX) or mEPSCs (with TTX) shown in legend.

Figure 3-10: What generates EPSC variability? A. Rise time and amplitude
are not negatively correlated in a large population of sSEPSCs from one cell. B.
Amplitude and rise time distributions for the cell in A. C. A similar lack of relationship
between rise time and amplitude is seen in current clamp (left) and in the presence
of bicuculline (right), indicating that it is intrinsic to the cell and not due to other
sources of variability, such as heterogeneity of input types.D. Rise times and half
widths of sEPSCs are significantly correlated (pj0.05), suggesting a role for synaptic
location in controlling synaptic event amplitude.

Figure 3-11: Variability in a single input over time. A. Variation in a single
input over time. Responses to minimal stimulation in 3 cells are plotted as a function
of successive stimulus trials. Amplitudes were measured as the average of a fixed
1-ms window located at the peak of the average response. Responses are plotted for
both the first (circles) and second (squares) of two paired stimuli (ISI 50 ms). Open
symbols were identified as failures. B. Effect of increasing stimulus amplitude. 1.
Response amplitude vs stimulus strength, for a single stimulus (the first of a pair).
Failures are identified as open symbols. 2. Mean amplitude (error bars are std.
error) and % failures as a function of stimulus intensity for the data shown in 1. 3.
Response amplitude vs. stimulus strength for another cell. Failures are not identified.
C. Histogram of % failures for 27 cells, including 5 cat cells. Single (or first) stimuli
only.l

Figure 3-12: Minimal evoked EPSCs are very similar to sEPSCs. Re-
sponses to minimal (putatively single-fiber) stimulation are compared to spontaneous
events in the same cell for 3 cells. A. Rat layer II/III cell. B. Cat layer III cell.
C. Cat layer V/VI cell. Minimal evoked EPSCs (meEPSCs) are shown to the left,
including clear failures of transmission. Below each set of traces are shown examples
of consecutive sEPSCs from the same cell. To the right are amplitude histograms
for larger populations of meEPSCs (upper) and sEPSCs (lower) from each cell. The
meEPSC amplitude histograms include a peak near 0 representing failures.?! Ampli-
tude histograms in B and C were taken from cells undergoing paired pulse stimulation
(2 pulses 50 ms apart), and contain responses to both pulses (the traces at left are

21Dye to the stimulus artifact, the failure peak may not be exactly 0 pA in amplitude. However,
its shape is invariant and clearly does not contain a synaptic inflection.
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responses to the first pulse only). In B. responses were indistinguishable between
the two pulses. In C. responses to the second pulse failed less frequently an tended
towards larger amplitudes; they are shown as white bars.

Figure 3-13: meEPSCs show less kinetic variability than spontaneous
events. A. Single-fiber responses show a narrow distribution of latencies. Latency
of onset (black bars) measured as 5% of peak amplitude??, and of meEPSC peak
(hatched bars) relative to stimulus onset.?* B. 1,3.4. meEPSC amplitude distri-
butions with failures removed. Distributions are peaky, and Gaussian, rather than
skewed, in shape. Responses to both of paired stimuli shown, distributions to first
stimulus alone were also unskewed. 2. Skewed distribution of spontaneous EPSC
amplitudes for the cell shown in 1. C. Rise time distribution for minimally evoked
inputs (left) is narrower and less skewed than that for spontaneous events in the same
cell (right). D. Rise time vs half width plot for evoked responses (both stimuli, left)
and spontaneous events (right). E. Rise time vs amplitude plot for evoked responses
(both stimuli, left) and spontaneous events (right). A, B1,2, C-E all show data from
the same cell.

Figure 3-14: Only a small number of inputs are necessary to bring the post-
synaptic cell to threshold. A. Spontaneous inputs and minimal evoked responses
in a layer V non-pyramidal cell (left). Increasing the amplitude of the stimulus was
sufficient to bring the cell to threshold on 50% of trials (right). Inset shows responses
to intermediate levels of stimulation, where distinguishable inputs appeared to be
added sequentially as the stimulus intensity was increased. B. Threshold stimulation
in a regular-spiking neuron. Spontaneous EPSPs are shown in inset. This cell only
spiked to the second of two paired pulses at an interval of 50ms. C,D. Histograms of
peak amplitude of either the EPSP or the spike, depending on whether the cell spiked
or not. Each cell was held at 2 potentials, and the absolute voltage, rather than the
voltage relative to the holding potential, is shown. C. Data for the cell shown in A.
Responses to the first of the two paired pulses are shown as white bars, the second as
black. D. Data for the cell shown in B, black and white bars show the two different
holding potentials. )

Figure 3-15: Cells utilize a voltage threshold for firing. Al. Layer V cell
firing spontaneously in a slice when depolarized to near threshold with DC current.

22As response amplitude varies between trials, this onset measure will introduce a certain amount
of variability in and of itself.

23As peak latency is measured relative to the stimulus, not to onset, onset variability will be
convolved with intrinsic and noise-induced variability in peak latency.

104



3.5 FIGURE LEGENDS

Cell fires randomly due to baseline fluctuations and sEPSPs. 2. Local maxima of
data for cell in 1. A longer stretch of data from the cell in 1 (data shown in 1 has
time axis values appropriate for its location in 2) was low-pass filtered, and its local
maxima were detected using a simple derivative sign algorithm. This finds the peaks
of both the spikes and the subthreshold baseline fluctuations, similar to the analysis
for evoked inputs showr: in Figure 3-14C,D. Local maxima are plotted against time,
and suggesting that every time the cell goes above a critical voltage, it fires. B1. Local
maxima plot for cell filled with CsF and exhibiting bursting and plateau behavior.
This cell went through periods of 0.5Hz bursts on an increasingly depolarized plateau.
When hyperpolarized by injected current (at 40 and 115 seconds in B1), it remained
at a lower stable point with only occasional bursting, and then began to climb to the
same plateau. 2. Expansion of one of these bursting periods shows the same voltage
threshold behavior as in the cell in A. Periods during individual bursts are indicated
by gray bars. 3. Expansion of the data shown in 2, to show the structure of individual
bursts. Each burst consisted of 4-7 spikes, with the middle spikes much shorter than
the first or last. These middle spikes produce the intermediate-amplitude maxima in
2. Times in 2, 3 correspond to the appropriate section of 1.

Figure 3-16: Variability in inputs is reflected in output variability. A. 20
identical stimuli to the cell shown in Figure 3-14A, 9 of which generate a spike. B.
Spike timing in a regular spiking cell is much less variable. Note different time base
than in A. C. Variability in output spike timing is not a result of injury to the cell.
Threshold stimuli were applied to a cell recorded in cell-attached patch mode, and
show a similar pattern of failures and variability. D. Voltage clamp of the threshold
synaptic EPSP in B. E. Variation in spike times around the mean latency for the cells
in A and B, and 2 other regular-spiking cells. F. Significant correlation between spike
latency and standard deviation of spike time, for 7 cells. One cell measured from
spikes to threshold stimuli in voltage clamp (p<0.02). Two cells fired to multiple
sequential stimuli - one (shown in C) to both of two paired stimuli, and the other to
all 5 of a 5-stimulus train (ISI 50 ms in both cases), the responses to each stimulus is
shown as a separate point.
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4

The Role of Electrotonic
Structure in Generating Synaptic
Variability in Cortical Neurons

Abstract

Does electrotonic filtering contribute to synaptic variability? Even uniquantal, AMPAergic
miniature EPSCs show a remarkable degree of amplitude variability and skewed parameter
distributions. In this chapter, compartmental simulations are used to show that electrotonic
filtering alone is capable of generating most, but not all of the variability seen in mEPSCs.
Methods for detecting the presence of electrotonic filtering and other potential sources of
synaptic variability are developed and applied to experimentally-measured mEPSCs. This
analysis shows that there is strong evidence for the influence of electrotonic filtering on
mEPSC shape and amplitude distributions, but that other sources of variability are likely
to be present as well. Electrotonic filtering and one of these additional sources of variability
together are shown to be sufficient to qualitatively match all of the properties of mEPSCs
measured experimentally.

4.1 Introduction

What controls the effectiveness of a synaptic input? Are all synapses created equal,
or are some synapses inherently different from others? In chapter 3, we saw that
there was extreme variability in the population of spontaneous inputs to a single cell

(see Figure 3-8), between the spontaneous inputs to different cells, and even in the
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response to a single input over time (see Figure 3-12). Here we begin to address the
question of what factors generate this enormous variability.

One obvious difference between synaptic inputs to a cell is their location on the
dendritic tree. In the case of cortical pyramidal cells. more than 80% of their excita-
tory synaptic inputs come from other cortical pyramidal cells. If we for the moment
ignore the sometimes subtle differences in layer and intrinsic physiology (see Sec-
tion 1.3.1) of these source pyramids, it might be said that this 80% of the excitatory
synapses come from a more or less uniform population of input cells, and are distin-
guished primarily by the location of the synapse on the postsynaptic surface. More
accurately, different subpopulations of pyramids (and other inputs) select particular
regions of the postsynaptic cell onto which to synapse [62, 287, 36]; this can be most
clearly seen in the hippocampus, where the laminated structure makes it clear that a
particular region of a cell, not just the cell as a whole, is the desired synaptic target of
a presynaptic cell class (see Chapter 6). This suggests that the location of a synapse
must have some major impact on its function, to make it worth the developmental
cost of this point-to-point wiring.

What effect does synaptic location have on synaptic effectiveness? With the recent
demonstration that the dendrites of neocortical pyramidal cells contain a large array
of voltage-dependent conductances and can support spiking behavior [115, 39, 252,
158, 184), it may be that different inputs are positioned to activate these dendritic
nonlinearities. However, it may be that these conductances are only activated by large
numbers of simultaneous inputs to the same dendritic region, or inputs activated at
high frequency (as suggested by the limited Ca** response seen in the dendrites with
low-frequency stimulation [213]). In this case, this would not explain the high degree
of variability seen in small spontaneous synaptic inputs, or in response to minimal
stimulation at different sites.

Does synapse location affect the response to small, single synaptic inputs? As
early as 1959, it was suggested that the location of a synapse would drastically al-

ter the synaptic response seen at the soma simply due to passive filtering by the
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cell membrane [201]. Since that time. the effects of cell morphology and membrane
characteristics. or electrotonic structure on electrical signals has been analyzed in
great detail (for review, see [205, 124, 269. 97, 90]). More recently. several computa-
tional studies have strongly supported a role for electrotonic filtering in controlling
the shape and amplitude of synaptic inputs as measured at the soma in pyramidal
cells[242, 150, 152. 153, 151, 154].

4.1.1 Chapter Summary

What impact does cable filtering have on the population of responses seen at the
soma? More importantly, does it play a major role in generating synaptic variability
across the population of synaptic inputs? This chapter attempts to determine the
contribution of cable filtering to the distribution of responses seen at the soma, and
to evaluate the impact of synaptic and cellular parameters on these distributions.
To simplify the problem, I have concentrated on as uniform as possible a popu-
lation of synaptic inputs. Terminals throughout the central and peripheral nervous
system spontaneously release neurotransmitter vesicles even in the absence of ac-
tion potentials, generating so-called “miniature” synaptic inputs, or minis [280, 276).
These events are putatively uniquantal, and can be easily recorded in the presence
of tetrodotoxin (TTX), which blocks sodium action potentials. To obtain a uniform
population of minis for study, I have recorded excitatory miniature EPSCs (mEPSCs)
mediated purely by the AMPA subtype of glutamate receptor, under conditions in
which most nonlinearities in the postsynaptic cell’s rosponse should be blocked (see
methods for details). This population of synaptic inputs should be as intrinsically
uniform in kinetics and conductance as possible. In spite of this fact, they still show
the extensive amplitude variability described in Chapter 3, and skewed distributions
of all parameters (Figure 4-17). To understand how much of this variability could
be due to cable filtering, I have used computational simulations of visual cortical

neurons. The results suggest that cable filtering does indeed play a major role in
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generating synaptic variability under these conditions, but that it is not sufficient to

explain all of the data.

4.2 Methods
4.2.1 Electrophysiology

Electrophysiological recording from slices of juvenile rat visual cortex was performed
as described in the General Methods (Chapter 2). All data presented here were
recorded in the presence of tetrodotoxin (TTX, 1 M), 2-amino-D-phosphonovaleric
acid or 2-amino-D,L-phosphonovaleric acid (APV, 30 M) and Bicuculline Methio-
dide (BML, 50 u M) to isolate putative AMPA-only events. All remaining events under
these conditions were blocked by bath application of 10 u M 6-cyano-7-nitroquinoxaline-
2,3-dione (CNQX, see data in Figure 3-4C and Figure 5-47), indicating that these
remaining events were mediated by AMPA receptors alone.

Pipette solution contained (in mM): 130 CsF, 10 CsCl, 10 HEPES, 1 EGTA,
0.1 Ca**, 2 MgCl,. Intracellular Cs* blocks K* channels and GABAg receptors
[73]. Additionally, any Cs* released extracellularly while forming the seal may act
to attenuate anomalous rectifier (H-type) currents [166]. Extracellular TTX blocks
somatic and dendritic Na* currents, as well as much or all of the persistent Na*current
[93, 4]. Together these effects “passivize” the cell, blocking most of its subthreshold
nonlinear response.

4.2.2 Morphological Reconstruction

Cells recorded in rat or cat visual cortical slices were filled with biocytin or Lucifer
yellow and reconstructed as described in the General Methods (Section 2.3). Cells
were corrected for Z-dimension shrinkage as described. No additional shrinkage cor-
rection was applied except where noted, due to the uncertainty in the appropriate
correction to use {150, 154].

4.2.3 Simulation of Response Distributions

Simulations of reconstructed neurons were performed as described in the General
Methods (Section 2.4). The goal of these simulations was not to model the cell’s
response to a single synaptic input, but instead to simulate the population of sponta-
neous mEPSCs recorded in a single cell. Therefore, a method was needed to generate
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a simulated distribution of responses. The basic paradigm used is shown in Figure 4-
20: an identical synaptic input was placed sequentially onto each compartment of
the cell. and the properties of the response at the synaptic input site and at the
soma were measured. These were then used to estimate the distributions of these
various parameters as follows: the number of excitatory synapses onto a compart-
ment was estimated to be the same as the number of spines on that compartment.
consistent with results from electron microscopy showing that the vast majority of ex-
citatory synapses on pyramidal cells come onto their spines, and that there is usually
1 synapse/spine (287, 192].! The number of spines (and hence synapses) was esti-
mated from the spine density models described above. As noted there, spine density
was usually assumed to be constant or to be a simple linear function of dendrite shaft
diameter; all conclusions presented here were robust across the various spine density
functions described (see Section A.3.1). Each synaptic input was assumed to have
an equal probability of generating a mEPSC,? and therefore each spine contributed
one “measured” set of synaptic response parameters to the simulated “population”.
This population data was then used to generate histograms and curulative probabil-
ity distributions of various parameters. In some cases, the number of spines in each
compartment was scaled down to decrease the total number of points to be plotted
(usually by a scale factor of 0.3). A fractional number of spines was rounded up to 1.
This will not affect the shape of the distribution unless there are a significant number
of compartments with a very small number of spines; this was determined not to be
the case, and all plots had the same shape in either their reduced or full versions

1A recent study has shown that the spiny stellate cells of layer IV in cat in fact get a majority of
their excitatory synaptic input onto their shafts [8], however such cells were not considered in this
study. | did not record in layer IV (see General Methods), and in addition, rats do not have classical
spiny stellate cells, instead having a modified pyramidal type with a very small apical dendrite (the
“star pyramid”, [62]), therefore the conclusions of that study may not scale easily to this species.

2For the conclusions here to be valid it is not necessary that every synapse onto a cell should
routinely produce at least one mEPSC in the course of an experiment. It is not even necessary that
each synapse on the tree actually has an equal probability of producing an mEPSC - it might be,
for instance, that past history of presynaptic release and/or potentiation could affect the probability
of any single bouton releasing a vesicle in TTX [179, 155). All that is required is that the proba-
bility of any given synapse generating a mEPSC is independent of that synapse’s location on the
postsynaptic cell - that, for instance, there isn’t some amazing tendency for apical oblique inputs to
generate mEPSCs at a much higher rate than other synapses. The conclusions presented here are
indepdendent of a certain degree of bias in the locations generating mEPSCs, but extreme bias will
alter the conclusions.
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4.3 Results

4.3.1 mEPSCs show extensive amplitude variability.

Spontaneous EPSCs recorded in the presence of TTX (mEPSCs) show a remarkable
degree of amplitude variability in both current and voltage clamp (Figure 4-17A).
Amplitude histograms show the characteristic skewed shape (Fig. 4-17A, top) seen in
a wide variety of cell types under very different conditions [247, 144, 274, 104, 164,
163, 244, 232, 41, 290, 143, 82, 70, 146, 29, 155, 157, 17, 128, 188, 187, 190, 217, 231,
238, 240, 265, 280}; such distributions are seen for most of the mEPSC parameters
typically measured (Fig. 4-17B). While the shape of the amplitude distribution is
common across all cells, the absolute amplitudes vary widely from cell to cell (Fig. 4-
17C and Table 4.3.1).

What factors control this synaptic variability? Potential contributors can be di-
vided into two classes. [Intrinsic factors are differences between synapses due to
intrinsic properties of the synapses themselves: differences in postsynaptic receptor
subunit composition or number, differences in firing history of the presynaptic cell,
etc. FEztrinsic factors are differences due to the relationship of synapses with the
postsynaptic cell: for example, synapse location on the dendritic tree, or the pres-
ence of voltage-dependent conductances shaping postsynaptic response to a synaptic
input. (See Section 1.3.4.) Is the effectiveness of a synapse controlled only by its
own history - intrinsic factors - with each synapse having an equal possibility of
contributing to the output of the cell? Or is the effectiveness of a synapse controlled

by its location on the postsynaptic cell?
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| Amplitudes (pA or mV) Rise Times (ms)
Cell | Layer | N || Mean | SD CV | Skew || Mean | SD CV | Skew
Voltage Clamp
1 | IIT [2804[3383] 16.71 049 1.81 || 097 | 0.68 | 0.71 | 2.31
2 M1 1526 || 30.68 | 13.118 1 0.43 | 0.96 || 092 | 0.59 | 0.65 | 3.04
3 I [2276 || 16.69 | 6.98 | 0.42] 1.62 1.32 ] 0.83 | 0.62 | 3.33
14.35 [ 0.53 ] 1.35 || 1.08 | 0.74 | 0.69 | 2.94

Current Clamp ||

1 I [ 559 || 094 | 060 |0.64] 235 || 2.57 | 1.75 | 0.68 | 3.12 ||
2 I | 569 || 0.67 | 044 [0.66 2.90 || 3.16 | 2.52 | 0.80 | 2.51
3 111 46 0.61 030 |0.49 ] 1.27 5.01 ] 2.59 | 0.52 | 1.04
Widths (ms) Areas (fC)
Voltage Clamp
T 1T 2.10 | 0.88 [0.42] 1.56 [[ 104.88 [60.59 [ 0.58 [ 1.31
I 2 1.72 | 0.68 |0.39] 2.09 || 80.47 | 48.77 | 0.61 | 1.26
| 3 2.07 | 1.09 |0.53| 2.88 || 59.41 |37.97] 0.64 | 1.48
LAl 2.00 | 095 [0.48 [ 2.65 [| 82.73 [54.19 | 0.66 | 1.45 [
“ Current Clamp
1 11.77 | 6.89 ]0.59 [ 2.58 | 14.70 | 19.39 | 1.32
| 2 1220 | 8.00 | 0.66 | 2.23 || 10.72 | 13.70 | 1.278
3

19.28

11.21

0.58

0.89

12.31

10.34

0.84

1 95.25 | 48.03 | 0.50 | 2.39
2 89.67 | 31.78 | 0.35 | 0.87
3 52.40 | 16.98 | 0.32 | 0.87

35.63

0.46

Table 4.1: Measured mEPSC parameter values from 3 layer III cells recorded in the
presence of TTX (1 um), APV (30 um), and Bicuculine (50 um). “All” is a pool of
4500 events, made up of 1500 consecutive events selected from each cell.
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Recent studies have suggested that synaptic location, through the effects of elec-
trotonic filtering, can have a major impact on the somatic response to a synaptic
input [242, 150, 154, 152, 153, 151]. As mEPSCs come from all over the cell, each
should be subject to a different degree of electrotonic filtering (Fig. 4-18). Does such

filtering contribute to the generation of mEPSC variability?

4.3.2 Does electrotonic filtering contribute to mEPSC
variability?

Cable filtering causes distally-generated events to be reduced in amplitude and slowed
in time course. Therefore, if cable filtering contributes to mEPSC shape, one might
expect these two parameters to be negatively correlated. MEPSCs do not show a
strong negative correlation between rise time and amplitude (Fig. 4-19A,C, R=.256
for 3 pooled cells, similar results presented in [247, 163, 164, 104, 244, 144, 274, 41}).
In fact the fastest events, presumably from the most proximal synaptic locations,
cover the whole range of measured amplitudes. This can be seen more clearly in
Figure 4-19D, which shows the amplitude distributions of subpopulations of events
with increasingly faster rise times [104, 41] In theory, this should restrict attention to
increasingly proximal events; if the shape of the amplitude distribution is determined
by synaptic location it might be expected to be uncovered by this technique in the
form of shifts to the right (a bias towards larger events) in the amplitude distributions
for putatively more proximal events. In reality, all of these distributions overlap very
closely. Similar results obtained from recordings of synaptic events in a number of
cell types [244, 247, 163, 164, 274, 104, 209] have been taken in other systems to
mean that cable filtering does not contribute to the generation of mEPSC amplitude
variability [244, 209, 247, 163, 164, 274, 104, 144].

There are, however, features of Figure 4-19A supportive of a role for cable filtering:
while the fastest events cover the entire range of amplitude variability, the slowest

events do not; as rise times increase, events are restricted to smaller and smaller
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amplitudes (see Figure 4-31). Similarly. consideration of the largest events in Figure 4-
19 shows that they are uniformly fast.

Several factors complicate interpretation of the results shown in Figure 4-19.
While intuitively it seems that a significant role for cable filtering should cause a
negative relationship between rise time and amplitude, in the case of a complex cell
the relationship between these parameters may not be one of linear correlation. And
in using “fast” rise times as a criterion to select for synaptic inputs close to the soma,
it is important to know the quantitative change of rise time with distance in these
cells - in other words, how fast is fast? These questions are difficult to examine exper-
imentally - it is very hard to unequivocally identify the site of origin of mEPSCs to
compare their amplitude and shape with their source location 179, 189].% I therefore
turned to compartmental simulation to more quantitatively evaluate the potential

role cable filtering could play in the generation of mEPSC variability.

4.3.3 How much variability can be produced by cable

filtering alone?

I used computational simulations to set up conditions under which electrotonic fil-
tering was the only source of synaptic variability, and then asked how much of the
experimentally observed mEPSC variability it could account for. Simulated distri-
butions of mEPSC parameters were generated by placing a synaptic input identical
in conductance and kinetics sequentially onto each point of a reconstructed cortical
cell, measuring the parameters of the resulting response at the soma, and using the
known distribution of spines as a metric of synapse location to generate an expected

simulated mEPSC distribution of each parameter (see legend to Figure 4-20, Meth-

3Using paired recordings or other methods of activating a small population of inputs to a cell
with the potential to locate their synaptic contacts both removes the possibility of examining the
range of variability that can be produced across the whole cell, and requires recording without TTX,
increasing the likelihood of multiquantal release and the involvement of postsynaptic Nat currents
in the shaping of mEPSCs.
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ods for details). In this case, each underlying synaptic input has the same size and
shape, and any variation seen at the soma comes only from electrotonic filtering of

the response on its way from the synapse.

Amplitudes

Cable filtering is sufficient to generate skewed voltage clamp amplitude distributions
very similar to those seen experimentally (Fig. 4-21A, mean = 27.91 pA, CV = 0.573).
This histogram was generated from simulation of the cell shown in Figure 4-21B,
with inputs to the apical dendrite shown in gray. As would be predicted from the
distribution of spines [134] (see Figure A-61A), more than 80% of the simulated
mEPSCs are generated in the basal dendrites, less than 250 um from the soma. In
spite of this proximal site of origin, they are still subject to profound attenuation
(Fig. 4-21D). Amplitude decreases rapidly, faster than exponentially, with distance,
due to the very rapid kinetics of the mEPSCs [82] (see Fig. A-63. Even inputs only
100 pgm from the soma lose approximately 50% of their amplitude due to electrotonic
filtering. This implies that if one wishes to select “close”, mostly unfiltered events,
one must use extremely stringent criteria and be satisfied with looking at only a very
small subpopulatica of events.*

Cable filtering has less of an effect in current clamp (Fig. 4-21C, F) - the simu-
lated amplitude distribution is narrower tuan that seen experimentally and unskewed
(CV = 0.248), and the decrement of amplitude with distance plateaus at a relatively
high level. In current clamp, all events are filtered by the time constant of the cell
membrane, not leaving many high-frequency components to be filtered by synaptic
location. Additionally, prominent reflections from dendritic terminations reduce the

amount of attenuation (see Figure A-57).

4Due to the lower number of spines on the very proximal dendrites [134), it is possible that the
number of events coming from <50 uym from the soma, or even closer, will be very small. However,
this proximal reduction in spine density does not develop till after the ages of the animals used here
(see Section 1.3.1).
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The amount of skew seen in the simulated current clamp amplitude distribution
depended both on the cell and the parameters used (see Figures 4-38.A-64). The
distribution for the cell in Figure 4-21 is one of the less skewed. Absolute amplitudes
are also quite small (mean=0.2271+0.056mV, experimental pooled mean=0.796mV.
3 cells, see Table 4.3.1), though voltage clamp peak amplitudes are in the experi-
mental range. Modifications of these parameters or the other assumptions of these
simulations will be necessary to improve the match between simulation and data (see
Section 4.3.8).

These results are general. A number of pyramidal cells were simulated as in Fig-
ure 4-21, and in all cases cable filtering alone was sufficient to generate skewed (or in
one case, broad, see D) amplitude distributions in voltage clamp (Fig. 4-22). In some
cells, cable filtering alone is sufficient to generate a skewed amplitude distribution in
current clamp (Fig. 4-22A, CV=0.364).

Rise Times

Cable filtering alone generates skewed rise time distributions in current and voltage
clamp similar to those seen experimentally (Fig. 4-23A,B). Rise time increases slowly,
almost linearly, with distance across the whole dendritic tree (Fig. 4-23C). Even
in simulations, rise time and amplitude do not appear to be negatively ccrrelated
(though quantitatively they are, Fig. 4-23D, R=.774). Though rise time increases, and
amplitude decreases with distance as predicted, the relationship between these two
parameters is not linear. Even in a simple soma and cable model (Fig. 4-23D, inset),
a plot of amplitude vs rise time shows a concave V-shape. For the full cell model, this
relationship appears as a cloud of points, rather than a simple V, corresponding to
the multiple differently-shaped cables making up the cell. The basic concave shape,
while less noisy than the experimental relationship, is still in many ways basically
similar to it (compare Fig. 4-23D to Fig. 4-19A). As in the experimental case, events

with the fastest rise times cover much of the observed amplitude range, and slow
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events are restricted to only sma!l amplitudes. There are still disparities between the

experimental and simulated distributions. however, which are addressed below.

4.3.4 Sensitivity of response parameters to synaptic

location

The reason for this lack of negative correlation between rise time and amplitude
can be seen if we examine more closely the relationship between response shape and
location on the cell. The parameters of the somatic response: amplitude, rise time,
half width, area, and maximum rate of rise, each change in their on characteristic
way as the synapse is moved out the dendrite. This is illustrated in Figure 4-24 using
a simple soma and cable model. These relationships are, for each parameter, very
similar in both voltage (Fig. 4-24A,B) and current clamp (Fig. 4-24C,D).

Three parameters, amplitude, area, and maximum rate of rise, show a quasi-
exponential relationship with distance. Each falls off initially very rapidly, and then
eventually plateaus. Maximum rate of rise shows the steepest dependence on distance,
changing 5-fold within 100 gm of the soma (Fig. 4-24B,C). This extremely rapid
falloff is due to the fact that this parameter is the most dependent on high-frequency
components in the synaptic current, and therefore the most sensitive to cable filtering.
It may therefore serve as the best, almost binary, indicator of “close” synapses. Peak
amplitude shows a similar, if less steep, decrement with distance (Fig. 4-24A,B).
Again, this parameter is very sensitive to synaptic locatioﬁ over a narrow region close
to the soma (i.e. it changes significantly for a small change in synapse location),
but it is very insensitive to movement of the synapse in more distal regions. While
area (shown only in Figure 4-24D, the pattern in voltage clamp is basically identical)
also shows an exponential-type relationship with distance, the rate of decay is very
slow, and it may not reach its plateau level within the dendritic extent of the cell.
It is therefore sensitive to change in synapse location throughout most or all of the

tree. However, the total decrement in area (charge) is approximately the same as the
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amount of DC voltage decrement in the cell [201. 205, 97, 269], and hence may not
be practically visible in a cell of limited dendritic extent. In an infinite cable, all of
these parameters, including area, would eventually continue their exponential decay
to zero [97).

Two other parameters, rise time and half width, show a linear dependence on
distance from the soma (Fig. 4-24A,B,C,D, also see Figure 4-23C). They can also show
pronounced termination effects close to the end of a cable (simulations assume sealed
end boundary conditions), but these effects are modest in simulations of real cells (see
Fig. 4-23C). The time constants of rise and decay obtained by fitting Equation 2.1 to
these simulated EPSCs behave very similarly to rise time and half width, respectively.
However, Tp shows very pronounced termination effects, decreasing sharply near the
end of the cable (data not shown).® Again, in an infinite cable, these termination
effects should not occur, and rise time should continue to increase until decreasing
amplitude renders it immeasureable [97].

So in practice, rise time and half width are sensitive to movement of the synapse
across all or most of the dendritic tree, and may serve well as index variables of
absolute synaptic location.® A given change in dendritic distance (e.g. 100 pm) will
produce the same absolute change in rise time, for instance, no matter where the
original synaptic location was in the tree. On the other hand, the absolute change
in rise time or half width may be very small if the movement of the synapse is not a

large one. Therefore amplitude or maximum rate, which can show very large relative

SBecause of the difficulty in accurately fitting exponential“functions to even these noise-free
traces (extensive hand-tuning of the initial conditions was necessary to find the optimal fits, and
even in this purely linear model, some simulated EPSCs had obviously biexponential decays), fits
were not attempted to simulated EPSCs from a full cell model. Therefore it is difficult to estimate
how severe these termination effects are likely to be in real cells. However, the cylinder used for
these simulations was similar to a collapsed equivalent cylinder model - its diameter was quite
thick. Termination effects for other parameters, such as half width, increased in cable models whose
diameters approached those of real cell dendrites. Therefore I expect that this effect on the fitted
Tp is underestimated here.

SThe same is true for rg and 7p , however care must be paid to the difficulty of accurate fitting
and the possibility of termination effects.
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changes in their values for a small movement of the synapse over the proximal region
of the dendritic tree, are more sensitive indicators of relative synaptic location in
these regions. These parameters are not unique identifiers of synapse location; the
fact that the dendritic tree is made up of multiple different cables, rather than the
single uniform one used for illustration here. means that the graph for a real cell would
be a cloud of points rather than a single curve. However, the different cables generally
show reasonably similar relationships (see Figure 4-21D for amplitudes, Figure 4-23C
for rise times), and so these relationships can probably be used predictively even in
the context of a complicated cell.

Finally, the very different relationships these two classes of parameters show to
distance can be used to explain the lack of correlation between rise time and amplitude
shown in Figure 4-23D. As amplitude decays exponentially with distance, while rise
time increases only linearly, these two parameters should not be neatly negatively
correlated with one another. Instead, they should show this concave relationship
similar to that seen in the data (compare to Figure 4-19) (See section 4.3.5 for further
discussion.)

These different rates of change of the various parameters with distance causes the
distributions of these parameters from across the cell to undergo a complex scaling of
parameter values (Fig. 4-25). This results in an “axis compression” effect, where one
small region of a cell can represent a wide range of parameter values while another,
larger region generates only a much narrower range of values. This can be seen most
clearly in the case of the amplitude or maximum slope histograms in Figure 4-25,
where the region of the cell < 50 ym from the soma (black bars) generates all of the
long right-hand tail of the histogram, while values from other parts of the cell are
compressed to the left of the histogram. These plots also show clearly that parameters
whose distributions are qualitatively very similar in shape, such as amplitude and rise
time, actually have totally different underlying relationships to the structure of the

cell.
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4.3.5 Parameter correlations: How to detect a contribution

of electrotonic filtering to mEPSC shape.

Section 4.3.3 and following have shown that cable filtering alone is sufficient to gener-
ate a large fraction of the variability seen in spontaneous synaptic inputs to cortical
cells. Does it in fact do so? Section 4.3.4 argued that the lack of negative correlation
between rise time and amplitude is not good evidence against a role for cable filtering
in the generation of mEPSC shape. What is a good way to look for evidence of cable
filtering shaping experimentally-measured synaptic inputs?

In 1967, Rall made the first theoretical attempt to use the waveform of a synaptic
response to determine the location of the underlying synaptic input on the cell surface
[203, 206). He identified a number of measured parameters of the synaptic waveform,
or relationships between parameters, that were useful in distinguishing source loca-
tion; he termed these parameters shape indices. The most useful shape index he
identified was a linear correlation between rise time and half width (see Figure 3 in
[206]); the presence of such a correlation both indicated a strong effect of cable filtering
on the underlying synaptic current, and could be used quantitatively to predict the
electrotonic distance of the synaptic input from the soma (203, 206, 100, 98, 96, 211].
However, this study normalized all synaptic inputs to have the same peak amplitude
at the soma,” and concerned itself purely with the generation of synaptic waveform
kinetics. The strong dependence of somatic response amplitude on synaptic location
may provide an additional source of information about the role of electrotonic filtering
in generating synaptic response shape.

Additionally, there are a number of additional potential sources of variability in
synaptic responses besides cable filtering alone. It is important to assess what effects,

if any, these will have on the shape indices used to assess the effects of filtering.

"Though the majority of Rall’s earlier work emphasized linear current inputs and analytical
solutions, this study and quite a number of the papers that came after it on synaptic transients used
conductance inputs and purely computational and graphical approaches [203].
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Other sources of synaptic variability.

In the case of real mEPSCs, there are several factors that complicate the picture

considerably. These are, most importantly (see section 1.3.4:

e conductance variability between synapses
e kinetic variability between synapses

® noise

e series resistance

In the real world, all synapses are not guaranteed to be identical, and may show
subtle or even radical differences in their underlying synaptic conductance or kinet-
ics. In fact, even repeated activation of the same synaptic connection can generate
responses with highly variable amplitudes and possibly kinetics (see Figure 3-12,
(249, 291, 3, 6, 209, 17]). If the same synapse can generate a variable response over
time, then it stands to reason that a population of synapses can easily vary from each
other - think of them as single, variable synapses each caught at a particular point
in time.

The underlying biophysical basis for these variations are most likely to be a differ-
ence in the aggregate of postsynaptic receptor-channels found at a particular synapse.
Having different numbers of channels at different synapses will generate variability
in peak synaptic conductance, as will releasing varying amount of neurotransmitter
in each vesicle (assuming that postsynaptic receptors are not saturated). Having a
heterogeneous assortment of channels with different kinetic properties will result in
a difference in the macroscopic synaptic kinetics seen from that site; this could be
easily due to heterogeneity in the subunits the of AMPA receptor found at different
synapses, or to different phosphorylation states of the receptor-channels [268, 267].

These differences between synapses, if large enough, are another potential source of

150



4.3 RESULTS

explanation of the variability seen in spontaneous synaptic events. However. they
still leave any variability seen in a single input over time unexplained.

In the case of action-potential driven events, there are several additional mecha-
nisms that can generate variability in the same input over time. Synaptic transmission
in the CNS is unreliable [17, 189, 249, 3] (see Figure 3-11). A synaptic bouton can fail
to release any neurotransmitter in response to an incoming action potential. When
an axon makes more than one synaptic contact onto a postsynaptic cell (which occurs
frequently, even between cortical pyramidal cells [60]), this means that any combina-
tion of those boutons might release transmitter in response to a spike, resulting in
variability at least in the amplitude of the synaptic response. Such amplitude vari-
ability will be magnified if the postsynaptic receptors are not saturated by a single
vesicle of transmitter [191, 88), and if each bouton is capable of releasing more than
one vesicle with some probability. If the kinetics of the channels present at these dif-
ferent synaptic contacts vary, then the response to this single input will have variable
kinetics. However, there are two additional important sources of kinetic variability at
a multi-bouton synaptic connection. First, those boutons could be located at different
places on the postsynaptic cell [60], and hence would be subject to different degrees
of cable filtering. Second, those boutons might not always release their vesicles with
exact synchrony, which would smear the timing of the somatic response [286]). A
primary reason for studying miniature synaptic events in this context is that they are
putatively, or at least predominantly, uniquantal (but see [274]), and are therefore
not subject to either of these additional sources of variability.

There are two more complications introduced by the experimental situation it-
self. Noise makes it difficult to record synaptic parameters accurately, and may mask
subtle relationships between them, particularly when the changes in parameters with
distance are small (see Figure 4-29). Series resistance adds an additional low-pass
filter similar to the cable itself, selectively affecting the larger, faster, more proximal
inputs (see Figures 4-25, 4-38, A-65, and A-66). In some cases it strengthens or even

induces correlations between various parameters. But usually, series resistance acts
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to mask the effect of cable filtering, by filtering selectively those events which aren’t
already filtered by the cable.® Events that seem relatively impervious to electrotonic
location might have actually undergone dramatically different degrees of cable filter-
ing, but their different shapes at the soma will be rendered almost identical by the
action of series resistance.

How do these different sources of variability affect the relationship between synap-
tic shape indices, and are there reliable ways to detect them experimentally? We will
attempt to answer these questions by using simulations to explore the effect of these

sources of synaptic variabilivy, alone and in combination.

Variability in the absence of cable filtering: Conductance variability

If we assume that synaptic kinetics are uniform, and vary only the conductance of a
synapse, what happens to the shape indices? To start, we will remove as many of the
other complicating factors described above as possible. Consider a synapse onto a
single-compartment, spherical neuron, which will undergo no cable filtering. Let the
series resistance be 0 M.

In this case, if you change only the peak conductance of the synapse (Gmq in

equation 2.1), the following happens:

e Rise time and half width remain constant (as do 7 and 7p).

e Amplitude, maximum slope, and area all increase proportionally to reflect the

change in conductance:®

8This seeming uncanny selectivity can be understood simply by realizing that those events which
are strongly filtered by the cable have no high-frequency components left when they reach the soma
to be affected by the series resistance, while proximal inputs, less affected by the cable, are much
more sensitive to R,.

91f you add conductance variability to a system without perfect space clamp and no access
resistance (to prevent subsynaptic voltage change), this proportionality only holds up to a point.
When the synaptic conductance becomes large enough, the subsynaptic voltage escape will reduce
the synaptic driving force enough to reduce the peak synaptic current. This will mean that the
amplitude, maximum slope, and area will all be lower than predicted from the amount of conductance
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area/amplitude = mazrise/amplitude = CONSTANT (4.1)

Assuming no significant saturation effects, in the case of conductance variation
alone, all parameters that are proportional to conductance (amplitude, maximum
slope, and area), will obviously be correlated with one another (Fig. 4-26A). The
distributions of these parameters will show the same shape as the underlying conduc-

tance distribution (data not shown).

Kinetic variability
Now, again in a single compartment, say we assume the synaptic conductance is con-

stant but allow the synaptic kinetics (in the form of 7z and 7p) to vary, independently

of each other. Then:

o Amplitude is constant.

o Rise time, half width, area, and maximum slope (as well as Tp and 7p, the fitted

time constants of rise and decay) all vary with the kinetics.

e 7 and 7p(the underlying synaptic time constants) are not independently re-
lated to any of the measured parameters (e.g. if you change 7p it can have an
effect on rise time). However, the rise is very quick, so area (charge) is mostly

(but not completely) determined by 7p, the time constant of decay. Similarly,

increase, and may not even change in proportion with each other. Eventually, if the conductance
becomes large enough, the synaptic kinetics may be affected as well. It is important to realize
that this effect occurs long before the synapse “saturates” - i.e. when the subsynaptic potential
reaches the reversal potential of the synapse and no current flows at all. A noticeable decrease in
response can occur when the subsynaptic voltage increase reduces the driving force by as little as
20% [203]. It is also important to realize that this may happen with different conductance values
at different locations on the cell. Fine distal branches will experience saturation effects with much
smaller synaptic conductances than those required to cause saturation on large proximal dendrites
[120).
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maximum rate of rise is primarily determined by r5.1°

The following relationships between parameters are seen in this case (constant

conductance, no cable filtering):

e There is a trend towards a loose correlation between rise time and half width
(Fig. 4-27B1), simply because things with slow rise times cannot have infinitely

short half widths.!!
e Area and half width are very tightly correlated (Fig. 4-26B2).2
e Maximum rate of rise is the maximum value of ihe limit of amplitude/risetime

as the measurement period goes to 0. Therefore (Fig. 4-26B3):

mazimumrate « 1/risetime (4.3)

The next step: interactions between kinetic and conductance variability.

Now, if we allow in our single compartment model (i.e. no cable filtering effects) both
variation in peak synaptic conductance and in synaptic kinetics as described above,

we will see the following in recorded responses:

e Rise time, half width, and the decay time constant are determined only by the

synaptic kinetics, independent of peak conductaace.

1%Maximum rate of rise and g, the synaptic rising time constant, are related according to:
mazimumrate l/f,” . (4.2)
111f the distribution of 7s is narrower than used here, this correlation is much tighter, but the
resulting values of rise time and half width cover only a very narrow range.

12 A maximuimn conductance is fixed, area cannot be increased by changing peak current amplitude,
only by adding to the tail of the synaptic current which will also increase half width.
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e Peak amplitude is determined only by conductance, not kinetics. Maximum
rate of rise and area are both scaled according to conductance as well, but in
addition are also determined by the synaptic kinetics. Therefore, to isolate

kinetic effects, normalize both maximum rate and area by peak amplitude.

The following relationships are seen between parameters in this case (no cable

filtering, both kinetic and conductance variability):

o Rise time is determined only by the synaptic kinetics, and amplitude only by

conductance. Therefore these two variables are independent (Fig. 4-26C1).

e There is a weak relationship between rise time and half width determined by
the kinetics (Fig. 4-26C2), this is unaffected by the presence of conductance

variability.

e Any relationship between area and width is determined by kinetic variability, as
conductance variability does not affect half width. These two parameters will be
correlated in the presence of any kinetic variability, but the affect of conductance
on area will make the relationship a noisy one (Fig. 4-26C3a). Normalizing area
by peak amplitude (see above) should leave a clear correlation between these

two parameters in the presence of kinetic variation (Fig. 4-26C3b).

e Similarly, a relationship between maximum rate and 1/risetime is determined
by kinetic variability, but made noisier by conductance effects on maximum rate
(Fig. 4-26C4a). Again, normalizing maximum rate by amplitude will isolate the
kinetic effects (Fig. 4-26C4b).

e Any relationship between amplitude and area or maximum rate of rise is de-
termined by conductance variation only. It is, unfortunately, not simple to
normalize out the effects of kinetic variation on area or maximum rate to see

the effect of conductance change alone.
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Effects of Cable filtering alone

In Figure 4-27A, a synapse is moved sequentially out a simple soma-cable model. The
underlying synaptic inputs are identical, so the only source of variability in mEPSC

parameters is electrotonic filtering. All parameters are altered by cable filtering, but
| in different ways (see section 4.3.4). We know that rise time and half width both
depend linearly on distance, while amplitude, maximum slope, and area all depend
quasi-exponentially on distance. In this case, the following relationships between

parameters would be expected:

e Amplitude and rise time show the concave V-shaped relationship presented in
Figure 4-23D (Fig. 4-27Al).

o Rise time and half width would be correlated linearly with each other (Fig. 4-
27A1).

e Cable filtering will induce a (possibly nonlinear) negative relationship between
area and half width - area decreases with distance, while half width increases
(Fig. 4-27A2). Area and rise time behave similarly (not shown). Normalizing
area by peak amplitude does not adequately compensate for the effects of cable

filtering (Fig. 4-27A2), leaving a positive correlation with half width.

o Peak amplitude can be correlated to some degree with either maximum slope

or area, depending on the relative rate of fall of each (Fig. 4-27A3).

e Maximum slo;;e is the instantaneous limit of amplitude/risetime. Therefore it
might alsc be expected to be proportional to 1/rise, but it isn’t as cable filtering
has a much more severe effect on maximum slope than rise time (Fig. 4-27A4).
Normalizing by peak amplitude to partially compensate for cable filtering re-

stores some correlation (Fig. 4-27A4).

e If Equation 2.1 were fit to the simulated mEPSCs, the resulting time constants

Tr and 7p should depend linearly on distance and hence ought to be correlated,
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similarly to rise time and half width (section 4.3.4). However. p can show

strong termination effects which may mask this relationship.

The presence of any of these parameter relationships might be taken as good
evidence for the presence of cable filtering in this simple case, but a strong correlation
between rise time and half width is probably the best indicator of the presence of cable
filtering [203, 206, 100, 98, 96, 211].

Interactions between cable filtering and other sources of variability.

In Figure 4-27B, C and D, the two other potential sources of synaptic variability
discussed are added to our simple soma-cable model. As above, amplitude, area, and
maximum slope are scaled in proportion to variation in underlying conductance.'.
Kinetic variability affects everything but peak amplitude!* Cable filtering, of course,
affects all synaptic parameters.

Comparing the corresponding parts of Figure 4-27B, C and D, it can be easily
seen that the effects of cable filtering overwhelmingly dominates the relationships
between most pairs of synaptic parameters; these relationships resemble a “noisy”
version of the ones in A, generated by cable filtering alone. While closer examination
shows that in fact some of these relationships are reflective of the nature of inputs
underlying them, these other sources of variability only express themselves within the
constraints put down by electrotonic filtering (see Section 4.3.5). These relationships

are examined in more detail below:

e Cable filtering induces a relatively tight correlation between rise time and half
width (Fig. 4-27A1,C1,D1), even in the presence of kinetic variability.!s

e Peak amplitude and rise time show the concave V-shaped relationship induced

13 Assuming that we are in the linear synaptic regime and can ignore saturation effects.
4Except in the presence of non-zero access resistance, see below.
15Conductance variability has no effect on these parameters (Fig. 4-27B1).
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by cable filtering,'® regardless of the presence of other sources of variability
(Fig. 4-27A1, B1, C1, D1); these only serve to add additional “noise” to this

relationship, filling in some areas of the plot.

o Area/Amplitude shows a very tight correlation with half width (Fig. 4-27B2,
C2, D2). While careful examination shows this relationship has the same shape
as the corresponding one seen with cable filtering alone (Fig. 4-27A2), its great
similarity to the correlation seen in the presence of kinetic variability without

cable filtering (Fig. 4-26B2, C3b) prevents it from being experimentally useful.

o Area and half width show a noisy negative correlation in the absence of kinetic
variability (Fig. 4-27A2,B2). Kinetic variability alone (without cable filtering)
induces a strong positive correlation between these two parameters (Fig. 4-
26B2). In the presence of both of these sources of variability (Fig. 4-27C2,D2),
these effects cancel each other out, leaving at best a very weak correlation
in either direction. The major complication in this case arises from the fact
that some combinations of synaptic kinetics will be much more affected by
cable filtering than will others. So in some sense, even a single cable will have
a multitude of simultaneous “electrotonic lengths” seen by different synaptic

inputs depending on their individual kinetics (see section A.4).

e In the generation of the relationships between slope, amplitude and area, the
presence of conductance variability dominates over the effects of cable filtering
(Fig. 4-27B3), resulting in families of events linearly related in these parame-
ters, rather than showing the somewhat nonlinear relationship seen with cable
filtering alone (Fig. 4-27A3). However, both of these effects give rise to approx-
imately equal degrees of correlation. Kinetic variability predominantly acts to

add noise to the effects of cable filtering (Fig. 4-27C3). In the case of max-

18Surprisingly, this is just the relationship that has been previously used as evidence against the
presence of cable iiltering (see Section 4.3.2).
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imum slope, the resulting relationship is very similar to that seen with cable
filtering alone. However, the relationship between area and amplitude is filled
in, as the variation in kinetics means that proximal events (those with the
largest amplitudes) are no longer restricted to having large areas (area being
relatively unaffected by cable filtering). Distal events, however, are restricted
to having both small amplitudes and small areas by the dominant effects of
cable filtering, resulting in compression of the left hand side of the plot. Adding
conductance variability (Fig. 4-27D3) does not significantly change these rela-
tionships, though it adds a significant degree of noise to that between maximum

slope and amplitude.

o Both cablé filtering (Fig. 4-27A4) and kinetic variability (Fig. 4-26B3,C3b) in-
duce a correlation between slope (or normalized slope) and riseime™!. Such a
relationship, particularly in the normalized parameter, is seen in all conditions
(Fig. 4-27B4,C4,D4), but it is difficult to uniquely attribute its source.

The examples shown here used a very large degree of kinetic variability, much
larger than that likely to appear in in a single cortical neuron.!” The same effects are
seen with much narrower kinetic distributions, but the amount of variability induced
by the kinetics is much smaller. This acts to improve correlations between variables,
both those induced by other sources of synaptic variability, and those induced by the
kinetics themselves. For instance, the correlation between rise time and half width in
the presence of kinetic variability alone is much tighter than that shown here when the
amount of kinetic variation is smaller. However, in that case, the resulting changes
in synaptic parameters (rise time, half width, etc) due to the kinetic variation is
so small as to be experimentally irrelevant - the resulting correlations act more by
adding correlated noise to the data than by inducing a large-scale structure to it on

their own. And as shown here, they are dominated by the effects of cable filtering.

171t would have been reflected in a wide variation in the kinetics seen with single-channel recordings
within identified cell classes [267, 83, 142).
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A correlation between rise time and half width, therefore, still remains the best
indicator of the presence of cable filtering in all cases. Additionally, normalizing
amplitude and maximum slope by area may provide an indication, albeit a noisy one,

of the distribution of these parameters due to cable filtering alone.

Test of the analysis method.

These methods were tested on a population of recorded mEPSCs subject to a sim-
ulated increase in conductance variability. The measurements of mEPSCs recorded
in one cell at -70mV were compared with those same events combined with the pop-
ulation of events measured in the same cell at a holding potential of -110mV (data
not shown). In theory, this change in holding potential should simply increase the
driving force by a factor of 1.57, and be approximately equivalent to an shift in the
conductance distribution,'®. The two populations together are approximately equiv-
alent to a stretched version of the original conductance distribution.'® As predicted
for a pure change in the underlying conductance distribution, amplitude, area and
maximum slope all show a similar stretch in their distributions, and the normalized
parameters (amplitude, area, and maximum slope normalized by either amplitude
or area) are unchanged. Again, as predicted,rise time shows no change between the
two holding potentials. However, half width shows an apparently linear shift towards

larger values at -110mV.?°

18This assumes that no significant portion of the distribution was previously hidden in the noise.
As discussed in Section 5.3.7, this does not appear to be the case. Out of approximately 1500 events
detected at -110mV, only 15 were of amplitudes that suggested they would have been detected at
-110mV and not at -70. The two amplitude distributions do nearly superimpose on scaling one by
a constant factor.

19They are actually equivalent to the original conductance distribution summed with a shifted
version of itself, but in the case of these particular distributions, this can be thought of as a stretch
in the distribution shape.

20This could be due to the increased availability of anomalous rectifier conductances at this voltage.
The addition of larger widths across the amplitude distribntion is not what would be expected as a
result of events now being larger relative to the noise, that would cause a selective increase in the
widths of small-amplitude events. Saturation effects would cause a selective increase in the widths
of large-amplitude events.
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In spite of this, and as predicted, the relationship between rise time and half width
is unaffected by this “conductance variability”. The relationship between rise time,
area, and amplitude is similarly unaffected, as ail three are scaled to the same degree
by the “conductance” change. The only affect not in concert with the predictions
above is the change in the relationship between half width and area (or amplitude).
Conductance increase alone should simply stretch this relationship along the area
axis, while leaving the width dimension unchanged. For large amplitude events,
this is approximately what happens. However, larger width events are added at
all amplitudes, and for smaller amplitude events, there is not the expected increase
in amplitude for a given width. The net result is that the change in the area-half
width plot mimics kinetic variability almost more than conductance variability. This
suggests that either hyperpolarization is not a pure model of conductance change,
or that interpretation of the experimental relationship between half width and area

must be done with caution.

Attempting to constrain the problem: looking at a selected subclass of

events.

One approach to getting around the effects of cable filtering, and to see the other
sources of variability contributing to the shape of synaptic events, is to try to re-
strict attention to proximally-generated, mostly unfiltered events (for instance, see
Section 4.3.2, and Chapter 6). There are two major drawbacks to this approach: first,
‘it is difficult to unequivocally select “proximal” events a posteriori. Cable filtering
places a number of constraints on event shape (see Section 4.3.5), notably that the
largest, fastest events are the most likely ones to be generated proximally. # How-
ever, kinetic and/or conductance variability may shape the size and speed of events
independent of their location, so deciding what is “large enough™ or “fast enough™ to

be considered probably proximal is difficult without some a priori knowledge of the

2INotice that the opposite does not hold.
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degree of cable filtering likely to be present in a particular cell. Second. there may
only be a few events that are generated proximally enough to be considered unfil-
tered. In the case of inhibitory inputs [287, 192, 106](see Chapter 6), or excitatory
inputs to non-pyramidal cells [26, 27, 77], many of which are somatic, proximal inputs
may predominate. On the other hand, in the case of excitatory synaptic inputs to
pyramidal cells, the number of proximally-generated events may be very small. None
of these inputs occur on the soma, and there are very few spines located on the most
proximal 50 um of the dendrites [134].

To see how this would work in practice, I selected the 25% of events with the fastest
rise times in Figure 4-27B,C and D in an attempt to minimize the impact of cable
filtering on the resulting parameter relationships. This technique is not completely
accurate, particularly in the presence of kinetic variability; while the events thus
selected come predominantly from proximal locations, a few events from as far away
as the midpoint of the dendritic cable (0.5 ) are selected as well. And a certain
number of proximally-generated events with slow kinetics are missed. The selection
is not particularly stringent, as it encompasses most of the events generated in the
most proximal 20% of the cable; this region is still subject to a reasonable amount of
filtering.

In spite of these facts, the parameter relationships for this “proximal” population
resemble more closely those seen in the absence of cable filtering. In particular, rise
time and amplitude (Fig. 4-28A1, B1) are predominantly uncorrelated, and rise time
and half width show. the loose correlation induced by kinetic variability alone (Fig. 4-
28A2, B2). The relationship between area and half width is similar to that seen with
conductance variability alone (compare Figure 4-28B2 and Figure 4-26C3a,b). When
area is normalized by amplitude, it narrows as expected to a very tight correlation
as expected (Fig. 4-28B2), however, it shows a very similar pattern in the absence of
conductance variability (Fig. 4-28A2), and this behavior is very similar to that seen
in the presence of full cable variability; together these facts suggest that it is risky

to base any conclusions on this plot. This apparent lack of filtering effects breaks
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down when it comes to the relationship between maximum slope or area and peak
amplitude (Fig. 4-28A3. B3) which is similar to that seen in the corresponding plot
for all events. Both amplitude and maximum slope have still undergone a significant
degree of filtering, even in this population. This can be seen in Figure 4-28A3,
where only kinetic variability and cable filtering were present in the simulations. The
variability in peak amplitude is a result of cable filtering, in spite of the selection of

only the most rapid events.

Better methods for selecting proximal events. As amplitude and maximum
raie of rise change significantly faster with distance than does rise time, it is hard
to unequivocally select the “fastest” events based on rise time and be sure that they
really are unaffected by cable filtering of their amplitudes or maximum rates. As noted
above, maximum slope is actually the most sensitive marker for proximal synapses.
It is non-unique, as it varies with both conductance and kinetics, but if one is willing
to end up with that population of closest events with the fastest kinetics and largest
amplitudes, which is the only population which can be identified as proximal with
any conviction (but see below), it is the best marker. Rall has additionally suggested
normalizing slope by peak amplitude (as was done above) [206], as selection based
on slope would give a population of proximal synapses, such a normalization would

remove most of the effects of conductance variability.??

Nonuniqueness and constraints induced by cable filtering.

In the presence of all three of these sources of synaptic variability, a proximally-
generated event with slow kinetics and small conductance is indistinguishable from
a distal fast event with a large conductance. We cannot uniquely derive the synap-

tic location from the EPSC shape, even if the electrotonic structure of the cell is

22This technique was not used above as a sharp slope criterion really does select the most proximal
events, but therefore yields too few events to be used for population analysis, and in addition, it has
not been routinely used experimentally.
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completely known.

However, we can constrain the answer. We cannot tell how many of the slow
events are really intrinsically slow events generated on the soma, rather than fast
events generated distally and then filtered without further experimental data (see
chapters 5,6). We also cannot tell how many of the small events are actually gener-
ated proximally with small conductance (and potentially variable kinetics). But we
can put a bound on the problem from the other end. Given the presence of cable
filtering, and assuming a passive dendritic tree, very fast events cannot come from
a significantly distal site. By measuring the fastest event we see at the soma. and
simulating the response at the soma to an event with those kinetics placed distally
on the cell (assuming knowledge of the cell’s morphology and passive properties), we
can say what are the fastest events that could have come from this site. We can also
say how large that fastest event would have to have been for us to detect it at the
soma (see Chapter 6 for just such an analysis). Such an analysis requires, as above,
identifying a putatively proximal event. However it escapes some of the usual prob-
lems with such an analysis; as only a few events are required, selection criteria can be

very strict, and should succeed even if the number of true proximal events are small.

Correlated sources of variability.

In the analyses above, we have relied on the very fundamental, and perhaps unwar-
ranted, assumption that these multiple sources of variability are independent. In other
words, there is no systematic relationship between th: kinetics of a synapse and its
peak conductance, or between its location and either its conductance or kinetics. It is
biologically plausible that there would be some systematic relationship between these
variables: for instance, AMPA receptors with slower kinetics might also have lower
single-channel conductances, or tend to aggregate less tightly, meaning that slower
synapses would generate smaller EPSCs even in the absence of electrotonic filtering.

There are also plausible mechanisms for generating systematic relationships be-
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tween synaptic location and EPSC parameters. In many systems, but most notably
the hippocampus, inputs from different presynaptic cell types are systematically seg-
regated on the postsynaptic cell. If the presynaptic neuron in some way controls the
behavior of the postsynaptic component of the synapse, this would allow different
parts of the cell to have synapses made up of different kinetic classes or numbers of
receptors. Or more simply, the axons of these different presynaptic cell types could
release differently-sized vesicles, generating different peak amplitudes of mEPSCs in
the absence of receptor saturation.?® It has been suggested in alpha-motoneurons
that the only way to explain the lack of decrement seen in peak EPSP amplitude
resulting from activation of single la inputs with increasing distance from the soma
(as measured by shape indices from the rise time vs. half width plot), is to postulate
a systematic increase in synaptic conductance for more distal synapses [95].

In the worst case, these factors could even conspire to violate the constraints
described above, imposed by cable filtering on response shape (Section 4.3.5). All of
those constraints were relative, based on selecting events that are larger or faster than
others in the same cell. If, for some very perverse reason, nature chose to put very
slow or small synaptic inputs onto the soma of a cell, and increasingly fast or large
inputs farther out,?®, then in fact the largest and/or fastest events seen might not
be the most proximal ones. While such collusion is possible, it does not make good
biological sense. This would maximize the attenuation of current on its way to the
soma, and thus waste a lot of energy in pumping ions back to their starting places

without using them to send an effective signal. It would also drastically curtail the

23Even more simply in the absence of TTX, these presynaptic cell types could make different
numbers of contacts with their postsynaptic partner, thus incurring different failure rates and re-
sponse amplitudes, without requiring any differences in the release process or postsynaptic reccptors
between inputs.

24This would have the potentially productive effect of reducing the amount of variability between
synapses on the same cell as seen at the soma [95, 89, 53]. However this would cost the cell in
temporal resolution of its synaptic inputs. A similar effect can be achieved using an arrangement of
active dendritic conductances to equalize the somatic impact of synapses across the dendritic tree
[51, 52, 53], without loss of temporal resolution. It is more likely that this is the approach actually
taken by cells [184, 252, 214, 292].
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cell’s ability to respond to rapidly changing signals in its inputs - those signals would
be lost due to filtering in the distal dendrites. and simply not represented proximally
if those inputs were limited to very slow time courses.

Another, perhaps more plausible, scenario is that correlation between these sources
- of variability would act to mimic the effects of cable filtering when it was not present
(e.g. receptor kinetics could be organized so that increasing rise times always were
associated with increasing haif-widths, etc). However, in this case they would still
obey the constraints on synaptic response shape described in the previous paragraph.
This suggests that it is a good idea not to rely only on relative measures of synap-
tic size and speed, but to compare those values both to the results of quantitative

simulations and. to those obtained in other cell types.?

4.3.6 Series resistance and noise.

Series resistance. As described in detail in Section A.6 (also see [242, 150]), series
resistance preferentially filters proximally-generated events, which are not already
filtered by the cable. As a result, series resistance can drastically reduce the amount
of synaptic variability measured at the soma (see Figures 4-38 and A-65). This effect
is independent of the presence of conductance variability — the relative change in
EPSC parameters is the same regardless of underlying conductance, it only depends
on the frequency components of the synaptic current left when it reaches the soma.
In contrast, series resistance interacts with kinetic variability in a complicated
manner. Those events with faster kinetics will be much more severely affected by
series resistance. Again, only those rapid events which are not already filtered by
the cable will be subject to this effect. In the absence of cable filtering (e.g. in the

single compartment model discussed above), series resistance can generate amplitude

However, it can be difficult to compare absolute numbers in studies performed in different labo-
ratories. Different standards for access resistance, recording conditions (particularly temperature),
and most important, measurement techniques (sampling rate, interpolation techniques, filtering) can
affect the synaptic parameter values measured.
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variability from a group of events with varying kinetics and uniform conductance (the
fastest events have their amplitudes severely reduced by R,, while the slower events
are relatively untouched). Given creative choices of the distributions of 75 and 7p. it
is possible to generate histograms of all synaptic parameters similar to those seen in
cortical neurons in a single compartment model purely from the combination of kinetic
variability and series resistance.?® However. in this case, the parameter correlations
are entirely different from that seen in the presence of cable filtering (data not shown).
In particular, the relationship between rise time and amplitude is a convex, positive
correlation, rather than the concave V-shape seen in both simulations of cable models
and the data. Additionally, rise time and area show a strong positive correlation,
rather than being uncorrelated or showing the mild negative correlation they do in
the presence of cable filtering. These effects may complicate the interpretation of

some studies.

Noise. Measurement of mEPSC parameters is complicated by noise; both the usual
experimental noise (approximately Gaussian and additive) and several other sources
of low-frequency “noise”. These include exogenous sources of low-frequency (e.g. 60
Hz) noise, and endogenous sources of low-frequency noise. For accurate measurement
of an EPSC, one must also accurately measure the baseline, as well as identify the
endpoint of the EPSC. The latter is also obscured both by noise and by baseline drifts
and the occurrence of other PSCs. Both of these latter effects increase in pfobability
as the current (EPSC) duration increases (as in slower, more distal events), and
increase in impact as the amplitude of the EPSC is rediiced. Therefore they will tend
to selectively impact the parameters of distally-generated EPSCs, and will also have
more impact on those parameters which require measurements to be made over all or
a large part of the EPSC: area and half width.

I have used simulations to assess the impact of some of these noise sources on the

26Kinetic variability as shown above is already sufficient to generate broad or skewed distributions
of all parameters except amplitude without including a nonzero R,.
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measurement of EPSC parameters. In the simplest case, Gaussian noise was added
to each simulated mEPSC. Peak amplitude measurements are unaffected (Fig. 4-
29A), except for the very smallest (most distal) events. Rise times and half widths
of proximal events (smaller values) are similarly unaffected (Fig. 4-29A). However,
measured rise times of distally generated events (larger values) are systematically
larger in the presence of noise. In contrast, the half widths of distally generated
events are systematically smaller with noise. Most strikingly, the addition of noise
causes measured half widths to plateau at a value of approximately 5 ms, with no
further increases as the synapse is moved more distally. At that point, the synaptic
current has decayed to the level that a noise swing will go below the half-amplitude
mark, effectively curtailing the mini in the “eyes” of the measurement algorithm. The
effect on maximum rate is exactly the opposite: smaller values (more distal synapses)
are unaffected by the presence of noise, while larger values (proximal inputs) are
systematically reduced by the presence of noise, as the slope of the noise itself begins
to be measured rather than the slope of the EPSC. However, in spite of these large
effects, Gaussian noise has little effect on the correlations between parameters, other
than to increase the amount of scatter (Fig. 4-29C).

As a simple model of these other sources of low-frequency noise, I added noise
to the baseline measurement as well as to the mEPSC itself. As all amplitudes,
areas, etc, are measured relative to this baseline, this will have far-reaching effects on
mEPSC parameters. In this case, the noise in the baseline was the same as that added
to the rest of the EPSC; this is an overestimate of this particular source of noise, as
~ the experimentally-measured baseline is averaged, and will be less subject to noise
than the points of the EPSC themselves. However, it does not take into account the
additional, and possibly even larger, sources of noise mentioned above, so serves as an
example of a medium-bad case. Amplitude, rise time, and maximum slope were not
significantly more affected by the presence of baseline noise than by noise in the EPSC
trace itself (data not shown, see Figure 4-29A). However, half width (Fig. 4-29B, left),
and area (Fig. 4-29B, right) were much more significantly affected when the baseline
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was noisy than when the traces alone were contaminated by noise. Again, the effect
of the additional noise source on half width is much more pronounced on distally-
generated events (larger values), though instead of a systematic reduction in measured
half widths as is seen with simple Gaussian noise, adding baseline noise adds a large
- degree of scatter in the measured values of distal half widths. The effect of baseline
noise on area is even more pronounced. This somewhat artificial method of inducing
noise first of all causes the area measurement to sometimes be negative. Besides
that, these values are incredibly scattered, showing essentially no correlation with
the true, noise-free values. In contrast to the lack of effect of Gaussian noise alone,
adding baseline noise does significantly affect the relationships between parameters.
It strongly increases the scatter in the relationship between distally generated rise
times and half widths (Fig. 4-29D, left), and practically reverses the direction of the
relationship between area and half width (Fig. 4-29D, right).

Testing for the effects of noise in recorded mEPSCs. To test the effect of
noise on measured parameter values, a population of 1031 events from one cell were
fit according to Equation 2.1, and synaptic shape parameters were measured from the
fits, on the theory that the fitted values will be less susceptible to experimental noise.
Figure 4-30A shows the relationships between the values of each parameter measured
from the fits and those measured from the raw data traces. Tight correlations between
directly measured and fitted amplitudes and areas (Fig. 4-30A1,A2) suggest that in
fact these parameters may be well-estimated in the expefimental data. The latter
is a surprising finding in light of the results presented in Figure 4-29. The strong
correlation between area and integration period (Fig. 4-30C) suggests a tendency for
baseline drift to interfere with area measurements. Estimates of half width are some-
what more susceptible to noise (Fig. 4-29). Half width as measured from the data
systematically underestimates the value measured from the fits (Fig. 4-30A3), as ex-
pected from simulations. However, the size of the error is independent of the synapse

location (actual half width), while the simulations would predict that the error would
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have increased with increasing half width (synapse distance from the soma). Most
surprisingly, rise time showed the worst correspondence between measured and fitted
values. This result suggests that rise times are consistently overestimated and that

).?” In any case,

the amount of error increases as the rise time increases (Fig. 4-30A4
these results suggest that our models of experimental noise are inadequate, but that
parameters measured directly from the data rather than from fits are robust enough

for analysis.

Is area a robust parameter? The results presented on page 167 and in sec-
tion 4.3.5 imply that caution should be used in the interpretation of mEPSC area
measurements. Area is frequently used as a robust measure of EPSC characteristics,
as it is relatively impervious to electrotonic filtering, and, because it is averaged over a
long period is thought to be relatively impervious to noise. In the presence of simple,
Gaussian noise, area is indeed a fairly robust measure - as can be seen in Figure 4-
29B, noise adds scatter uniformly across all events, and the estimation of area in the
presence of noise is unbiased. In theory, if one low-pass filters the data sufficiently, the
area estimate should only improve. However, in practice, area estimates are very sen-
sitive to other sources of noise, particularly low-frequency noise, and previous studies
have concluded that peak amplitude can be a more robust measure than area, [131],
even under relatively optimal conditions. Most importantly, in practice, one can only
integrate an EPSC for a limited amount of time before noise or the presence of an-
other mEPSC would bias the area estimate. This means that the integration period
must be limited. There are two approaches to doing this: integrate each area for a
fixed period, or adaptively choose the integration period based on the duration of the
mEPSC. The latter allows use of the minimum integration period possible for any

given event, thus minimizing the probability of the occurrence of a second mEPSC

2"This was discovered to be partially due to a design flaw in the algorithm used to measure rise
times, which led to significant overestimates of rise times in slow events, but little error for rapid
events. The algorithm was fixed and critical data was reanalyzed with the new algorithm. In any
case, no conclusions were altered by the error.
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or significant baseline drift during the integration. However, it does require accurate
detection of the end of the mEPSC, which is much more difficult for smaller events.
This may bias the area measurement, as can be seen in Figure A-60A,B Right. There
are two other methods for estimating area which may get around this problem. The
first is to integrate for a fixed period, adding the same potential for bias to all events.
This approach is frequently taken, however, the integration period is usually chosen
to be quite short, to minimize the low frequency noise effects mentioned above. This
has some extremely undesirable effects. One is that it is effectively measuring the
area under the peak of the event, rather than the event as a whole. Instead of be-
ing relatively impervious to electrotonic filtering, this “short-area” measure is in fact
somewhere between peak amplitude and area in its attenuation characteristics (data
not shown), decreasing exponentially with distance, though somewhat more slowly
than amplitude. It also has none of the theoretical advantages of measuring area it-
self and none of the intuitive advantages of measuring peak amplitude. The prefered
approach may be to integrate area for a fixed window long enough to contain the
longest mEPSC. However, this requires carefully selecting events and analyzing only
those area values for which this entire period is free of contamination.

A third method which may get around some of the problems endemic to the other
two is that used on page 169: fitting a function to the mEPSC, and then measure the
area under the function rather than the mEPSC itself. While time-consuming, this
approach is likely to be the most robust; however the fitting of exponential functions
is notoriously ill-conditioned and one must be careful to avoid systematic fitting
‘errors which will bias the area estimate. Surprisingly given the arguments above,
application of this technique suggests that area measurements are, as expected a
priori extremely robust in practice, at least in the data presented here. However,
given the considerations mentioned above, it is important to consider the effects of

various noise sources in analyzing any or all mEPSC parameters.
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4.3.7 Evidence for cable filtering of mEPSCs.

Now, at last, armed with this understanding of how these candidate sources of synap-
tic variability manifest themselves in EPSC parameters and parameter correlations,
we can finally return to our original question: is there experimental evidence that
cable filtering does influence mEPSC shape?

Before returning to the parameter correlations introduced above, let us look more
closely again at the relationship between mESPC rise time and peak amplitude. The
idea that the concave, V-shaped relationship between these parameters might actually
be indicative of electrotonic filtering is not an intuitive one. However, it is true that
if cable filtering does shape mEPSCs, then slower events should have a tendency to
be smaller. This holds true for the mEPSCs recorded in cortical cells. While fast
events cover the whole range of amplitudes, slow events are restricted to being very
small; similarly the largest events tend to have very rapid rise times (Fig. 4-31D).
I have examined this in more detail by dividing the population of mEPSCs into
5 non-overlapping subpopulations with increasingly ‘slower 10-90% rise times, and
comparing their averages (Fig. 4-31A) and cumulative amplitude distributions (Fig. 4-
31B). Progressively slower subpopulations of events tended to show progressively
smaller amplitudes.?®

The classical measure of electrotonic filtering in a cable model is the degree of
correlation between rise time and half width [203, 206]. The simulations performed
above showed that this is best predictor of a significant effect of electrotonic filtering in
the generation of mEPSC shape (Fig. 4-32A), even in a morphologically complex cell
composed of multiple cables, and in the presence of multiple other sources of synaptic
variability. In fact, there is a strong correlation between these variables both for
the events of a single cortical neuron (an example is shown in Figure 4-32B, R=.6,
p < .0001) and in the pooled set of 4500 mEPSCs from 3 cells used above (Fig. 4-

28This effect is minimized here by restricting most of the divisions of the event pool to contain
some of the faster events. See Figure 6-48 for a more striking example of this type of analysis.
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32C, expanded in D, R=0.583, p < .0001). This indicates that electrotonic filtering
does significantly affect the shapes of mEPSCs. Though these correlations are highly
significant due to the large number of points involved, the R values themselves are not
particularly satisfying. Simulated mEPSCs show a correlation on the order of R=0.95
between rise time and half width. Other sources of effective synaptic variability, such
as recording noise and kinetic variability (if present) will act to lower the absolute

degree of correlation.

Evidence for other sources of mEPSC variability from parameter correla-

tions.

Electrotonic filtering, though present, is likely not to be the only source of mEPSC
variability. The data presented in Figure 4-19D and E, showing that the a.mplitﬁde
distributions of (overlapping) faster and faster subpopulations of events are basically
the same, while not evidence for the absence of electrotonic filtering, is evidence that
there must be some other factor present in addition to electrotonic filtering to explain
all of the variability in the data.

Figures 4-33A and B show that there are strong correlations between both area and
maximum slope and amplitude, which from the discussion above, are good evidence
for the presence of conductance variability. Additionally, mEPSCs show a reasonable
correlation between area and half width (Fig. 4-33C), supporting the presence of
kinetic variability in. this population of mEPSCs.

As a check on the robustness of these conclusions, equation 2.1 was fit to a pop-
ulation of 1031 events from 1 cell, and the shape parameters were measured from
the fits to these events [274], in the hopes of reducing parameter contamination by
noise. The parameter correlations obtained between these fitted parameters were un-
changed from those measured from the raw traces (Fig. 4-30B), though the strength
of correlation between area and half width was somewhat reduced.

Unfortunately, it is difficult to assess directly the amount of kinetic and conduc-
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tance variability present in a population of inputs to a cell, because of the confounding
effects of cable filtering. Section 4.3.5 presented one approach that has been taken
to overcome this problem - using the kinetics of the synaptic events themselves to
attempt to select a subpopulation unaffected by electrotonic filtering [41]. Applying
this approach to mEPSCs from one cell yielded changes in the correlations between
parameters predicted in Section 4.3.5 (data not shown). Limiting attention to the
25% of events with the fastest rise times drastically reduces the correlation between
rise time and half width (population: R=.6, n=1492; fastest events: R=.361, n=362),
as would be expected if we had removed the effects of electrotonic filtering. The cor-
relation between area and half width was basically unchanged (population: R=.575,
fastest events: R=.563). The correlations between area and amplitude and slope and
amplitude became even stronger (area: population: R=.782, fastest events: R=.879,
slope: population: R=.823, fastest events: R=.905), strongly supporting a contribu-
tion of conductance variability to the generation of mEPSCs.

As will be shown below, a simple model incorporating both cable filtering and
conductance variability is consistent with almost all of the available data. However,
there is one further parameter relationship which suggests that something else may be
going on. Figure 4-34A shows that for simulated data, as might be expected from the
appearance of Fig. 4-24A, rise time and amplitude actually show a very close inverse
relationship to one another purely as a result of electrotonic filtering. However, real
mEPSCs show no such relationship (Fig. 4-34B), instead showing a v-shaped rela-
tionship similar to that seen for rise time and amplitude directly. This inconsistency
may be partially, but not entirely explained by the o!t:er sources of variability intro-
duced above. Figures 4-34C-E show this relationship in a simple soma-cable model
in the presence of cable filtering and either conductance (C) or kinetic variability
(D) alone, or both together (E). While these plots are somewhat more similar to the
experimental relationship, they still leave much to be desired. It is not clear whether
a combination of the more complex morphology of a real cell, different assumptions

about the nature of underlying synaptic parameter distributions, and experimen-
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tal noise would together be sufficient to replicate the experimental relationship; or

whether an additional factor not discussed here must also be playing a role.

4.3.8 Is cable filtering alone sufficient to explain mEPSC
variability?

Evidence has been provided that electrotonic filtering does play a role in generating
mEPSC variability. Simulations in Section 4.3.3 showed that such filtering is sufficient
to generate most or all of the amplitude variability seen in voltage clamp. However,
as described above (and see discussion), there is experimental evidence that other
sources of variability play a role in shaping mEPSCs. Additionally, further analysis
of the simulations suggest that at least one other such source of variability is a prior:
necessary to explain all of the variety in measured mEPSC parameters - electrotonic

filtering alone cannot do so.

What cable filtering can’t do.

As shown in Figure 4-21C, simulated amplitude distributions in current clamp do
not always show the skewed shape seen in the data. In fact, all parameters which
are subject to a considerable degree of intrinsic low-pass filtering: current clamp
amplitudes, areas in both current and voltage clamp, and voltage clamp amplitudes
under conditions of very high series resistance, in many cases show narrow, sometimes
Gaussian-like simulated distributions (Fig. 4-35, left, but see Fig. 4-22A), while the
experimental distributions for all of these parameters are skewed (Fig. 4-35, right).
Together, these results suggest that cable filtering alone is not always sufficient to

generate all of the aspects of mEPSC variability seen experimentally.

Addition of conductance variability.

If one compares responses to mEPSCs originating from different boutons, some or

all of differences seen in their conductance or kinetics may arise from their different
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lccations on the postsynaptic cell.? Therefore it is optimal to look for evidence
of conductance and or kinetic variability in the response to release from a single,
identified bouton, though this may underestimate the total amount of conductance
and kinetic variability seen across the population of inputs.

Such independent evidence for the presence of conductance variability in mEPSCs
evoked even at a single synapse over time can be seen in the work of Bekkers and
Stevens [17], who showed that it was possible to generate skewed amplitude distri-
butions when evoking vesicle release with sucrose from a single bouton in cultured
hippocampal neurons.

If electrotonic filtering alone is not sufficient to explain all of the measured mEPSC
variability, will the addition of other sources variability allow a complete match to the
data? To answer this question, I simulated mEPSC distributions from reconstructed
cells, and incorporated conductance variability by generating a distribution of mEP-
SCs of varying ainplitudes from each point on the cell. This is the most restricted
way of extending the original model, as addition of kinetic variability adds a large
degree of nonuniqueness, and there is no a priori constraint on what distribution of
kinetic parameters to use. The evidence for the presence of conductance variability
from parameter correlations presented above is quite strong (in contrast to the case
for kinetic variability, which is a bit more shaky). Additionally, there is very strong
evidence for the presence of conductance variability at central synapses from other
studies [17, 274]. Most notably, Bekkers and Stevens have shown that in cultured
hippocampal neurons repeated activation of a single bouton with sucrose generates
mEPSCs with a skewed amplitude distribution [17). It is therefore important to see
if the addition of conductance variability alone is sufficient to supplement the effects

of cable filtering and produce simulated mEPSC parameter distributions that match

This is particularly a problem in the case of minimal stimulation or paired recording, where
multiquantal release may also confound interpretation of the data. Even if one considers the kinetic
and/or amplitude variability in the subpopulation of presumed uniquantal release events, these
events from the same presynaptic axon may in fact arise from boutons widely separated on the
postsynaptic cell (e.g. see Thomson and West, 1994 [259}).
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those seen experimentally.

Adding conductance variability can indeed generate skewed current clamp am-
plitude and area (data not shown) distributions (Fig. 4-36, box). Any conductance
distribution with a slight amount of skew is sufficient to greatly increase the match
between the real and simulated parameter distributions (in fact even a Gaussian dis-
tribution may be sufficient). The resulting area distributions in fact more closely
reflect the conductance distribution used in the simulations than they do any effect
of electrotonic filtering [17]. This suggests that the shape of the experimentai area
distribution may be a good starting point as an estimate of the true conductance
distribution in these cells.

Adding even the large amount of conductance variability shown in the bottom
panel does not damage the match between other parameters and the data, in fact it
only improves it. This can be seen on the right, where voltage clamp amplitude and
rise time distributions are shown for the same 2-Gaussian conductance distribution
shown on the left. The skew of these distributions is also somewhat increased, but
the predominant effect is simply a smoothing of their previous shape. This suggests
that the data is consistent with the presence of a reasonable degree of conductance

variability.

In the presence of conductance variability, cable filtering still strongly

influences mEPSC shape.

Even in the presence of extensive variability in synaptic conductance (Fig. 4-37),
there is still a very strong relationship between amplitude and distance, showing a
powerful effect of cable filtering on synaptic shape (also see Sections 4.3.5 and 4.3.5).
While proximal events cover a wide range of amplitudes, due to their wide variation in
underlying conductances, distal events are limited to being very small events in spite
of the fact that they have the same conductance distribution as the proximal events.

The tight correlation between rise time and half width (R=.905) in this noise-free case

177



4 ELECTROTONIC STRUCTURE AND VARIABILITY

is a good indicator of the continued presence of cable filtering. There is a reduction in
the correlation between rise time and amplitude (R=.540), resulting in a relationship
between the two variables very similar to the experimental one (Fig. 4-37), is not

indicative of a lack of cable filtering, and is in fact primarily determined by it.

How much conductance variability do we need?

We have seen from the discussion above that there is evidence for the presence of
multiple sources of variability in the generation of the distributions of mEPSC pa-
rameters. How much do each of these sources contribute to the generation of mEPSC
variability?

As noted above, it is difficult to assess directly the total amount of conductance
and kinetic variability present in the population of inputs to a cell. One alterrate
approach is to ask, quantitatively, how much additional variability is needed to ex-
plain all of the experimental findings. Addition of conductance variability was shown
to be sufficient, in the presence of cable filtering, to replicate the experimental dis-
tributions of mEPSC and mEPSP parameters. We can therefore put a bound on
the relative contributions of cable filtering and other sources of variability by asking
exactly how much conductance variability is necessary to generate the full range of
mEPSC/mEPSP variability seen experimentally?

Unfortunately, the answer is “it depends”. It does depend, on exactly how much
variability can be generated by electrotonic filtering alone. While it is true that
with the “standard” parameters used for most of the simulations shown here, the cell
shown in Figure 4-21B does indeed have unskewed current clamp amplitude and area
distributions, for other cells (Fig. 4-22A), and other sets of parameters (Fig. 4-38,
which uses the same cell morphology as in Figure 4-35), it is possible to generate
significantly more skewed distributions of these parameters purely by electrotonic
filtering. Many of the parameter changes which increase the amount of skew (e.g.

increase in synaptic conductance, changes in passive parameters, slowing of synaptic
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kinetics) also increase the amplitude of simulated current clamp events into the exper-
imental range, a necessity for any adequate model of mEPSP generation. Therefore,
to adequately answer this question. we must much first more tightly experimentally
constrain both the passive and synaptic parameters used in simulations.

Even then, the answer we come up with will probably not be unique, as these
sources of variability are redundant (as can be seen in Figure 4-36) - addition of extra
sources of variability does not always qualitatively change the resulting parameter
distributions, it may simply smooth them. However, it should be possible to put an
upper bound on the amount of mEPSC variability that could have been generated

purely by electrotonic effects. Such simulations are the subject of the next chapter.

4.4 Discussion

Electrotonic filtering is sort of like crime. In this day and age, everybody accepts that
it occurs, but everybody assumes it would never happen to them - or to the data they
record. Its existence is treated with an unusual combination of flagrant disregard and
total acceptance. Electrotonic filtering does exist, it is a logical consequence of the
basic properties of neurons and their membranes (201, 205, 97, 269]. However, it is
one thing to acknowledge its theoretical existence, but quite another to understand
its effects in a particular experimental situation. Only recently have we started to
understand to what extent electrotonic filtering will impact any particular signal in
any particular cell, with its complex morphology and passivé properties {242, 150, 152,
153, 151, 154). The conclusions of a number of recent theoretical studies, however,
are simple: electrotonic filtering has a larger impact on more classes of cellular signals
than previously considered [242, 150, 154].

In this chapter, I have shown using computational simulations that on its own,
electrotonic filtering can generate most of the characteristics of mEPSC parameter
distributions.

I have then attempted to answer the question of whether, in fact electrotonic
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does contribute to mEPSC variability, and whether any other sources of variability
are involved as well. To do this I used simulations to examine the correlations be-
tween synaptic parameters generated by cable filtering and other sources of synaptic
variability, to see what aspects of these correlations could be used as evidence for
the presence of these factors. I also identified which of the synaptic parameters are
most useful for identifying location or other characteristics of the source synapse (see

Section 4.3.4).

4.4.1 Electrotonic filtering is necessary to explain some char-

acteristics of mEPSCs.

I have examined the parameter correlations present in experimentally-measured mEP-
SCs, and used these results to conclude that while electrotonic filtering does play
a significant role in generating mEPSC variability due to the correlation between
mEPSC rise times and half widths, other sources of variability (notably kinetic and
conductance variability) also are likely to be present. I have used one such additional
source, conductance variability, to show that a small amount of additional variability
is sufficient, together with cable filtering, to match the general characteristics of the
distributions of all mEPSC parameters. While kinetic variability may also play a
role, conductance variability and cable filtering together are sufficient to reproduce
the data.

These conclusions are at odds with those of other studies which have strongly
downplayed the role of electrotonic filtering in shaping EPSC/IPSCs (209, 41, 244,
163, 164, 144, 145, 217, 94], however, these studies all relied on the lack of relation-
ship between EPSC/IPSC kinetics (usually rise time) and amplitude to draw their
conclusion that PSC amplitude was not determined by filtering. As shown above,
amplitude and rise time have vastly different relationships to underlying synaptic
structure, and hence their relationship to each other is complex to say the least.

Rall’s original work on identifying the input location of an EPSP from its shape
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[203. 206] avoided the question of amplitude entirely, by normalizing all synaptic
conductances to generate the same EPSP amplitude at the soma. That work concen-
trated on using purely kinetic metrics, particularly plots of rise time and amplitude,
as a marker of electrotonic filtering and as an indicator of synaptic source location.
Notably, a correlation between rise time and half width, indicative of a strong ef-
fect of electrotonic filtering, has been found in almost every study that has looked
for one — both in the data presented here (Figure 4-32), and in the data from a
variety of other systems, both in miniature and action potential-dependent events
[206, 96, 100, 162, 262, 289, 163, 164, 274, 184, 259, 182, 150, 104, 128]. Perhaps
most tellingly, using sucrose to evoke mEPSCs from increasingly distal regions of the
dendrites of cultured hippocampal cells gives rise to events with increasingly smaller
amplitudes and slower time courses, matching the predictions of electrotonic filtering
[19].

Unfortunately, the presence of noise and the effects of series resistance make it
difficult to interpret correlations between mEPSC parameters. For instance, noise
can induce a positive correlation between time to peak and amplitude [126], hiding
the true relationship between these parameters. It is therefore risky to rely entirely
on these correlations to assess what underlies the variability of mEPSCs. Addition-
ally, it could be that a conspiracy of factors make it appear that filtes::.g is truly
shaping events (see Section 4.3.5), while all events are really proximal. Or, electro-
tonic filtering could play an important role in shaping mEPSCs, but in practice we
could be unable to detect more than the most proximally-generated events which
could be largely free of filtering (but see Figure 4-28, Chapter 6). Can we be sure
that electrotonic filtering really plays a major role in generating mEPSC variability?
In addition to the evidence from other studies presented above for the presence of
electrotonic filtering and other sources of variability in generating mEPSC amplitude
distributions, Chapter 5 presents an experimental attempt to directly assess the role
of electrotonic filtering in generating mEPSC shape.

If we accept a role for electrotonic filtering in generating mEPSC variability (and
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even if we don’t), the next important question is: what else contributes? First, can we
say a priori that there has to be something else? The answer to that appears to be yes.
Even if the passive parameters of the cell model used in Figure 4-35 could be tweaked
sufficiently (as in Figure 4-38) to account for all of the data, there is additional positive
evidence that something else must be playing a role. First, the parameter correlations
presented in Figure 4-33 suggest that both kinetic and conductance variability add
to the generation of mEPSC variability. Second, the fact that the fastest events
seen in Figure 4-19 cover the whole range of amplitude values, and that progressively
faster subsets of the data have similar amplitude distributions, suggests strongly that
some other source of variability (possibly in addition to cable filtering) is generating
very fast events with a wide range of amplitudes. Finally, a number of other studies
have presented strong experimental evidence for both conductance [17, 274, 95] and
kinetic variability [190] in the generation of minimal events in other systems. The
answer, however, may be system- and synapse-dependent - in some cell types [41], the
relationship between rise time and amplitude is not cf the standard concave form seen
in Figure 4-19A, instead being completely scattered. These cells are likely candidates
for a large degree of kinetic variability between their synapses, and perhaps a less

significant role for cable filtering.

4.4.2 Electrotonic filtering is not sufficient to explain all of
mEPSC variability.

As discussed above, and as can be seen from the simple observation that the fastest
events in a plot of rise time vs amplitude cover the whole range of observed ampli-
tudes (Fig. 4-19), at least one additional source of variability is necessary to explain
the experimentally-measured properties of mEPSCs. I have suggested two additional
sources of synaptic variability, namely conductance and kinetic variability, which
might account for the rest. These properties were suggested on a priori grounds,

and an attempt was made to define them abstractly enough that they encompassed
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a wide variety of mechanisms. However. do they, together with cable filtering, span
the whole space of possible sources of variability? In a very limited set of cases. the
answer is yes. If we limit ourselves to a completely passive cell (possibly one whose
electrotonic properties are allowed to be nonuniform), with synaptic inputs described
by Equation 2.1, then the only parameters subject to change are those that describe
the passive properties of the cell or the synapse location (cable filtering), the peak
amplitude of the synapse or its reversal potential (conductance variability), and the
kinetic parameters p and 7p (kinetic variability). In this limited, abstract, mathe-
matical universe, we can say that those are the only sources of synaptic variablity.
What happens in a more complicated system? Do all of the biological mecha-
nisms we can think of really reduce to these simple mechanisms? In a lot of cases.
they do. Any variance in the release process that affects the postsynaptic cell (i.e.
if the receptors aren’t saturated) will act as a source of conductance variability or
kinetic variability, depending on whether there is a change in the amount of trans-
mitter released (discrete or continuous)/number of channels opened, or in the time
course of transmitter release or degradation. Perhaps in the biological case, these
two effects (conductance and kinetic changes) cannot happen independently, but we
can still treat them mathematically as if they do. If we widen our allowable range
of models for the postsynaptic cell, i.e. the factors that contribute to cable filter-
ing, things get more complicated. Nonuniformities in the cable structure of the cell,
e.g. those due to localized inhibition, simply add an additional source of variability.
If those nonuniformities are allowed to vary over time, at least to a limited degree
(e.g. transient large-conductance inhibitory inputs to a portion of the cell), they can
probably be encompassed in our extended version of cable filtering by considering
them as multiple synchronous spatial differences in cable properties, as we dealt with
variability in a single input over time by reducing it to differences between different
inputs each of which would be in a unique state, as no single input is likely to be
seen twice during the usual periods of observation. With the addition of nonlinear

conductances, however, all bets are off.
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This study is one showing the plausibility of electrotonic filtering as a source of

synaptic variability.

Control of EPSC/EPSP amplitude The data presented on correlations between
rise time and half width in this and other studies strongly supports a major role for
electrotonic filtering in the generation of mEPSC shape. However, a much more
contentious question is how much it contributes to generation of mEPSC amplitude.
As noted above, every study that has looked for a correlation between synaptic input
amplitude and kinetics has failed to find one, and usually such studies have concluded
that either electrotonic filtering does not contribute to the generation of EPSC/EPSP
properties (those studies looking only at rise time vs amplitude), or that it contributes
to EPSC shape, but not to amplitude (those studies looking at rise time vs half width
plots). In particular, the pioneering studies which used shape indices such as these
to compute probable synaptic location for inputs to alpha motoneurons (206, 100]
showed that for those, action potential-dependent inputs, there was no relationship
between computed synaptic location and synaptic amplitude; and in one case it was
suggested that distal inputs were actually systematically larger in amplitude than
proximal ones [100].

There are two major, additional factors which come into play when one moves
from mEPSCs to action potential-driven events (or events recorded in the absence of
TTX). One is the fact that a given presynaptic cell can make multiple contacts on the
postsynaptic cell, sametimes in widely different locations [60], providing a source of
conductance variability between single-axon inputs. his is strongly exacerbated in
the case of massed, rather than minimal electrical stimulation - there are a number of
studies using such population stimulation to show that, in fact, EPSC/EPSP kinetic
parameters change as predicted by cable theory as the stimulus is moved farther away
from the soma [289, 6], however it is impossible to effectively compare amplitudes
resulting from such stimuli as the number of fibers stimulated may vary widely.

The second is dendritic nonlinearities. While such nonlinearities have not been
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studied in motoneurons, recent work in cortex has shown that the dendrites of pyra-
midal cells contain sufficient concentrations of Nat channels to support propagation
of action potentials [252]. Work using Ca** imaging [213], and the fact that mEPSCs
are unaffected by bath application of Cd**+ or other heavy metals,* suggests that
mEPSCs themselves to not significantly activate these dendritic nonlinearities, but
it is clear multiple inputs arriving under normal conditions will [37]. These nonlin-
earities may be differentially distributed in the dendrites [214, 292], and it has been
suggested in some systems that they are in fact designed primarily to overcome the
effects of electrotonic filtering by boosting synaptic signals [36, 37, 214, 292].

The remaining question, therefore, is what are the relative contributions of elec-
trotonic filtering and these other sources of variability in generating the shapes of
mEPSC parameter distributions? Unfortunately, that question can not be answered
uniquely, as these multiple sources of variability are redundant. If we limit ourselves
to the case of cable filtering and conductance variability alone, we can ask the more
constrained question: how much conductance variability is necessary, in addition to
cable filtering, to match quantitatively the distributions of mEPSC parameters from
particular cells? To answer this question, however, we must use experimental data to
limit the characteristics of both the cells and the mEPSCs under study - we must use
the passive properties of particular cells to attempt to match the mEPSC parameter

distributions measured from those same cells.

30These compounds block all Cat* channels. They are usually employed to show that mini
release itself is independent of Ca*+, but at the same time their lack of effect on mEPSC amplitude
distributions demonstrates that dendritic Catt conductances are not significantly involved in the
generation of mEPSC amplitude or shape.[172]
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4.5 Figure Legends

Figure 4-17: MEPSCs show extensive amplitude variability. A. Traces (be-
low) and amplitude histograms (above) illustrate the variability of the the amplitude
and kinetics of miniature excitatory postsynaptic events (mEPSCs) recorded both
in voltage clamp (left) and current clamp (right). Amplitude histograms show char-
acteristic skewed shape. All cells showed similar amplitude variability and skewed
distributions, though the absolute amplitudes varied between cells. B. Other param-
eters also show large variability and skewed distributions. Data from the same cell as
A. C. Voltage clamp amplitude distributions from 20 cells are shown schematically.
Each horizontal bar represents the amplitude distribution measured in one cell. The
range of event amplitudes is shown by the bar length. Boxes indicate the portion
of each distribution lying within the 25th and 75th percentiles. The center line the
median (50th percentile). The mean amplitude is shown as a black diamond. Gray
boxes represent events from layer V/VI cells, while white boxes represent events from
layer I1/111 cells. The hatched box is from a cell of unknown layer. The cell marked
a was recorded with a potassium gluconate-based solution in the absence of APV.
The cell marked b was recorded with a KGlu solution at a temperature of 24.6°C. All
other events were recorded in the presence of TTX (1 uM), APV (30 pM), and BMI
(50 uM).

Figure 4-18: Could cable filtering contribute io amplitude variability?
The effect of synaptic source location on the shape of synaptic current measured at
the soma is schematized on the left. Currents coming from more distal synapses are
smaller and slower than those originating more proximally.

Figure 4-19: mEPSCs show no correlation between rise time and ampli-
tude. mEPSCs show no strong negative correlation between rise time and amplitude
in either voltage clamp (R=.284) (A, amplitude and rise time distributions shown in
B) or current clamp (C, R=.096). D. Amplitude distributions are generated for re-
stricted subpopulations of events with increasingly fast.r rise times: all events, events
with 10-90% rise times < 1.5 msec, 1.0 msec, 0.5 iusec, and 0.25 msec, identified as
1-5, respectively.

Figure 4-20: Simulation paradigm used. Basic organization of all simulations
used in this chapter. Synaptic inputs are placed sequentially onto each point of a
reconstructed cell or cable model, and the resulting responses are used together with
the distribution of synapses to generate simulated distributions of response param-
eters (see Methods for details). Synaptic inputs are controlled by four parameters:
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location; G,..r. the peak synaptic conductance; and Tg and p, the rising and decay-
ing time constants. The effects of cable filtering are measured as the effect of input
location on response properties. Changing G,,,, simulates the effects of a change in
peak synaptic conductance. Changing 7g and rp simulates the introduction of kinetic
variability. (See Section 1.3.4.)

Figure 4-21: Cable filtering alone can generate skewed amplitude distri-
butions similar to those seen experimentally. A. Simulated voltage clamp
amplitude distribution shows the same amplitude variability and skewed shape seen
experimentally. All underlying synaptic inputs were the same, cable filtering is the
only source of variability. Input sites on the apical dendrite (including the proximal
apical trunk) are shown as gray bars, basal sites in black. B. Small rat layer V pyra-
midal cell used for simulations shown here. Scale bar is 100 um. C. Simulated current
clamp amplitude histogram, inputs to the apical dendrite are shown in gray. This
histogram is significantly narrower and less skewed than those seen experimentally.
D. Relationship between peak response amplitude at the soma (circles) and synap-
tic input site (squares) and distance of the synaptic input from the soma (measured
as dendritic path length). Apical inputs are shown as white symbols. Peak ampli-
tude decreases extremely rapidly with distance, reaching a plateau < 200um from
the soma, within the extent of the basal dendrites. Theie i< little decrement in the
subsynaptic current amplitude, indicating that loss of input current due to decreased
driving force at the input site does not contribute significantly to the decrease in so-
matic amplitude. The vertical bar at 50 um indicates that inputs more proximal than
that may be overrepresented (see text).3! Key in F is for D, E and F. E (expanded
in F). The relationship between current clamp amplitude (at soma and synapse) and
synaptic location. The relative decrement in somatic response amplitudes with dis-
tance (seen in F) is not very large in this cell, resulting in the narrow distribution of
current clamp peak amplitudes shown in C. The detailed shape of the cell is reflected
in the response amplitudes (subsynaptic amplitudes in E, to a lesser extent somatic
amplitudes in D). In E, a close correspondence can be seen between the branching
structure of the cell and the pattern of increasing subsynaptic amplitude with increas-
ing distance (e.g. compare the three main branches of iie apical tuft of the cell in B
with the three lines of apical (white) subsynaptic responses (squares) on the right in

E).

Figure 4-22: Most cells generate skewed voltage clamp amplitude distri-
butions from cable filtering alone. Simulated voltage clamp amplitude distri-

31 Removing these extra large-amplitude events in A would actually increase its similarity to ex-
perimental distributions by removing the bulge at the right end of the distribution.
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butions for 5 additional cells. A. Large rat layer V pyramid. In this cell, the current
clamp amplitude distribution is also skewed. B. Rat layer III pyramid. C. Cat layer
V pyramid. D. Rat layer III pyramid. E. Thin rat layer V pyramid. All cells but
D were filled with biocytin, the cell in D was filled with Lucifer yellow and recon-
structed with a confocal microscope (see General Methods). All cells are at the same
scale, scale bars are 100 um. In A and C the pronounced distal tuft of these cells
~ generates a cluster of very small amplitude events when measured at the soma, ap-
pearing as a “bump” on the left of the histogram. If such events exist, they would
probably be below the threshold for event detection, and so would never be measured
experimentally.

Figure 4-23: Cable filtering alone generates skewed rise time distributions
in both voltage and current c!amp. A. Voltage clamp and B. current clamp rise
time distributions corresponding to the amplitude distributions shown in Fig. 4-21 A
and C. C. Rise time increases slowly, almost linearly, with distance across the whole
dendritic tree. D. Relationship between rise time and amplitude for this cell and a
simple soma-cable model (inset).

Figure 4-24: Measured synaptic parameters show different relationships to
distance. The relationship between the parameters of the somatic response (ampli-
tude, rise time, half width, area, and maximum rate of rise, and location is illustrated
using a simple soma and cable model (parameters: R,=40,000 Qcm?, R;=100 Qcm,
Cm=1.0 pF/cm?, tp=0.1 msec,rp=1.0 msec, Gmqsr=1 nS, R,=0 MQ. The curves
are, for each parameter, very similar in both voltage (A,B) and current (C,D) clamp.
Area is shown only in D, the pattern in voltage clamp is basically identical. See text
for discussion (section 4.3.4).

Figure 4-25: Similar parameter distributions have different underlying
relationships to cell structure. Histograms of synaptic response parameters are
color-coded according to synaptic location on the cell at lower left. The cell is divided
up into regions of increasing 50 or 100 pm distance from the soma, as shown by the
colored circles, and in the key above the cell. Three effects can be seen: first, an “axis
compression” effect, where one small region of a cell can represent a wide range of
parameter values while another, larger region generates only a much narrower range
of values. Second, parameters whose distributions are qualitatively very similar in
shape actually have totally different underlying relationships to the structure of the
cell. Third, low-pass filtering of the synaptic signal, in the form of added series
resistance in voltage clamp or looking at a parameter that is intrinsically low-pass
filtered, such as current clamp amplitudes, or areas, has a much stronger effect on

189



4 ELECTROTONIC STRUCTURE AND VARIABILITY

proximal inputs than on distal ones.

Figure 4-26: Sources of synaptic variability other than cable filtering. A.
Effect of conductance variation alone on parameter correlations. 1000 synaptic inputs
were simulated in a single compartment model (length = diameter = 80 um, to give
the same total surface area as a full cell model). The kinetics of each input were
identical (tg=0.1 ms and 7p=1.0 ms), but the peak conductance, G,,,,, was evenly
distributed between 0.0 and 5.0 nS. As EPSC slope, amplitude, and area are all
proportional to conductance, they are tightly correlated with one another. B. Kinetic
variation alone. In the same single-compartment model, 2000 synaptic inputs were
simulated that varied widely in their kinetics: g and rp were drawn independently
from flat distributions which ranged from 0.05-1.5, and from 1.0-10.0 ms, respectively.
Gonar Was fixed at 1 nS. Peak amplitude was therefore constant, but all other synaptic
parameters varied with the kinetics. Bl. There is a weak correlation between rise
time and half width. B2. Area and half width are tightly correlated. B3. Maximum
slope is tightly correlated with Rise Time™! (B3). C. Parameter relationships in
the presence of both conductance and kinetic variability. 2000 simulated EPSCs were
generated in the same single-compartment model, and both G.; and g and 7p were
allowed to vary (indcpendently) according to the distributions described above for
A and B, respectively. Cl. Amplitude and rise time are independent. C2. Rise
time and half width show the same mild correlation described for Bl. C3a,C4a.
Relationships between area and half width and maximum slope and Rise Time™!.
C3b,C4b Same relationships with area and slope normalized by peak amplitude. See
text. Passive parameters for these simulations: R, =40,000 Qcm?, R; =100 Qcm,
Cm =1.0 uF/cm?, and R, =0 MQ.

Figure 4-27: Effects of cable filtering in combination with other sources
of synaptic variability. A. Relationships between parameters seen in the case of
cable filtering alone. An identical synapse was moved sequentially out a simple 1-A
soma-cable model, and synaptic parameters were measured.  B. Relationships between
parameters seen in the presence of both cable filtering and conductance variability.
A single synaptic input was moved sequentially out a simple soma-cable model as
described in A. At each location, 30 points were simulated with varying values of
Gomaz- In this case, G,,,; was distributed as the sum of two Gaussians, with means
of 0.75 and 1.5 nS (¢ = .3 nS). Similar results were seen with the flat distribution of
peak conductances used above (Fig. 4-26A,C). C. Relationships between parameters
seen in the presence of both cable filtering and kinetic variability. Simulation as
described in A, except at each location on the model, 50 EPSCs were simulated
with kinetics drawn from the distribution used in Figure 4-26B. D. Relationships
between parameters seen in the presence of cable filtering, kinetic variability, and
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conductance variability. Simulations as described in A, 50 inputs simulated at each
input location. Conductance distribution used taken from B. kinetic distributions
same as C. Relationships pictured in D1-4 same as B1-4, described above. See text
for discussion.

Figure 4-28: Selection of fastest events allows some examination of un-
derlying kinetic variability. Simulated EPSCs from Figure 4-27 were sorted ac-
cording to 10-90% rise time, and the 25% of events with the fastest rise times were
selected in an attempt to minimize the impact of cable filtering on the resulting pa-
rameter relationships. A. Kinetic variability plus cable filtering. 1) Amplitude vs rise
time. 2) Half width vs rise time. 3) Maximum slope and area vs amplitude. B. Cable
filtering, and both conductance and kinetic variability. Graphs 1-4 as in A. See text
for discussion.

Figure 4-29: Effect of noise on the measurement of mEPSC parameters.
A. Effects on parameters of adding noise. Simulated parameter distributions were
generated as in Figure 4-21 from the cell pictured in 4-21E. Gaussian noise (=3p.})
was added to the simulated EPSC traces, which were then filtered at 3kHz with a
digital Gaussian filter before parameter values were measured. EPSC length was
taken as whole simulated time period (50.0 ms), and was the same for each EPSC -
no attempt was made to detect the end of the EPSC, as is done with experimental
mEPSCs. The value of each parameter in the presence of noise is plotted against
the value measured from same location in the noise-free case. Diagonal lines indicate
the identity relationship. B. The addition of low-frequency noise was modeled by
repeating the simulations in A and adding the same Gaussian noise to the measured
baseline value. Amplitude, rise time, and maximum slope were not significantly more
affected by the presence of baseline noise than by noise in the EPSC trace itself
(data not shown, see A). Half width (B, left), and area (B, right) were much more
significantly affected when the baseline was noisy than when the traces alone were
contaminated by noise. Both panels show the parameter measured in the presence
- of Gaussian noise alone (filled triangles), and with both Gaussian trace noise and
baseline noise (open circles). C. Parameter correlations in the presence of Gaussian
noise alone. Simulations and parameters as shown in A. D. Additional effects of
baseline noise on parameter correlations. Parameter correlations for simulations and
parameters shown in B.

Figure 4-30: Assessing the robustness of experimental parameter correla-
tions. A population of 1500 events from one cell were fit according to Equation 2.1
using a Chebyshev algorithm (Axograph). 1031 events yielded adequate fits. Synaptic

191



4 ELECTROTONIC STRUCTURE AND VARIABILITY

shape parameters were measured from the fits in order to examine the susceptibility
of typical measurement methods and parameter correlations to noise. A. Directly
measured values are plotted against those measured from the fits to each event for:
1. Amplitude 2. Area. 3. Half Width. 4. Rise time. The gray line is the line of best
fit to the data points. The black line in 3 and 1 is the identity relationship (the slope
of the best fit line in 1 and 2 is 1.0). B. Parameter correlations measured from the
fits. B1) There is still a strong correlation between rise time and half width (relation-
ship for direct measurement shown in Figure 4-32B). B2) Area and half width are
still somewhat correlated. B3) Rise time and amplitude are completely uncorrelated.
C. There is a strong correlation between area and integration period, suggesting a
tendency for baseline drift to interfere with area measurements.

Figure 4-31: Cable filtering is necessary to explain some features of the
data. Three layer Il cells were selected on the basis of recording quality, and
1500 events from each were pooled to generate this population distribution (total
N = 4500). Rise times range from 0.1-10 msec, and the rise time distribution is
skewed. The population of mEPSCs were divided into non-overlapping subpopula-
tions with increasingly slower rise times by arbitrarily binning those events with rise
times < 0.5 ms, 0.5-1.0 ms, 1.0-1.5 ms, 1.3-2 ms, and > 2 ms. A. Averages of these
subpopulations of cortical mEPSCs. B. Cumulative amplitude distributions for the
five subpopulations shown in A. Note that populations of mEPSCs with distinct and
progressively slower rise times show progressively smaller amplitudes (see also Fig-
ure 6-48). C. Amplitude and rise time distributions for the total population of events
shown in A and B. D. There is no strong negative correlation between rise time and
amplitude in this population of events (R=.256). Note that while fast events cover
the whole range of amplitudes, slow events are restricted to being small.

Figure 4-32: Correlation between rise time and half width suggests the
presence of cable filtering. A. Simulations (of the same cell shown in Figure 4-
21, see legend to that figure for details) predict that in the presence of cable filtering
alone, there should be a strong correlation between rise time and half width [203, 206).
B. Data from one cell recorded in the presence of TTX (1 uM), APV (30 uM), and
BMI (50 uM), showing a reasonably strong correlation between rise time and half
width (R=0.54, n = 1489 events). Other cells tested showed similar, if not stronger,
correlations, with R values of around 0.6. C. 4500 events pooled from three cells also
show a strong relationship between rise time and half width (R=0.579). D. Plot in C
shown on expanded scale. This strong relationship holds between events with smaller
rise times and half widths, and is not simply a feature of slower events.
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Figure 4-33: Correlations between parameters provide evidence for ad-
ditional sources of variability. Other parameter correlations are shown for the
population of 4500 events pooled from three cortical cells (see above). A. Strong
correlations between maximum slope and amplitude (R=.809). and B. area and am-
plitude (R=.785) suggest the presence of conductance variability in the generation
of these events, although to some degree such a relationship can be generated by
electrotonic filtering alone (see Section 4.3.5 and Figure 4-27). C. A positive correla-
tion between area and half width strongly suggests the presence of kinetic variability
(R=.535). Without kinetic variability, cable filtering would be expected to generate a
negative relationship between these parameters. even in the presence of conductance
variability. D. A strong positive correlation between Area/Amplitude and half width
supports either the presence of kinetic variability (see Figure 4-26), or cable filtering,
or hoth (see Figure 4-27). These relationships were all seen for each of the three cells
pooled here when taken individually, and so are not simply artifacts of combining
events from different cells with different properties.

Figure 4-34: Lack of relationship between amplitude and inverse rise time
cannot be easily explained. A. Simulated mEPSCs show a very tight inverse
relationship between rise time and amplitude (shown as a linear correlation between
amplitude and the inverse of rise time). B. Real mEPSCs show no such correla-
tion. Amplitude is plotted against inverse rise time for events in one cell. Kinetic
and conductance variability can account for some, but not all, of the experimental
relationship. Amplitude is plotted against the inverse of rise time for events in a
soma-cable model in the presence of cable filtering and C. conductance variability, D.
kinetic variability, and E. both conductance and kinetic variability.

Figure 4-35: Cable filtering alone cannot match all of the characteristics of
recorded mEPSC distributions. As shown in Figure 4-21C, simulated amplitude
distributions in current clamp do not always show the skewed shape seen in the data.
In fact, all parameters which are subject to a considerable degree of intrinsic low-
pass filtering: current clamp amplitudes, areas in both current and voltage clamp,
and voltage clamp amplitudes under conditions of very high series resistance, all
show narrow, sometimes Gaussian-like simulated distributions, while the experimental
distributions for all of these parameters are skewed. This is shown here for simulated
current clamp amplitude and area distributions, on the left, compared to their skewed
counterparts from actual data, on the right. Area, in particular, shows very little
decrement over the distance ranges present in this cell. According to cable theory,
area should decrease approximately as steady-state voltage [201, 205, 97, 269), this
can be seen both in the truly exponential decrease shown in Figure 4-24D, and here
in the similarity between the simulated area distribution and the distribution of DC
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transfer impedances shown at the bottom of the figure. Together, these results suggest
that cable filtering alone is not always sufficient to generate the mEPSC variability
seen experimentally.

Figure 4-36: Adding conductance variability generates mEPSC variability
consistent with data. Effects of adding conductance variability. Conductance
variability is specified in terms of a probability distribution of peak synaptic con-
ductances (G,qc) Occurring at each synaptic connection. In the box, current clamp
amplitude distributions are compared for various distributions of underlying synaptic
conductances. The conductances used here was in the linear range, so the desired con-
ductance distribution was convolved with the result of standard constant-conductance
simulations to arrive at the simulated variable-conductance distributions. The result-
ing current clamp amplitude distributions are shown for the following conductance
distributions: constant (top, parameters as in standard simulations, cable filtering
alone generates variability); Gaussian (middle, Gaussian distribution has mean of 1
nS, =0.5 nS); and a skewed sum of two Gaussians (bottom, means 0.75 and 1.5 nS,
0=0.3 nS).3? Absolute amplitudes are <till not as large as those seen experimentally
(compare to Figure 4-17), however (see section 4.3.8), but the shape of the distribution
is much more realistic. Right panel: Adding even the large amount of conductance
variability shown in the bottom panel does not damage the match between other
parameters and the data, but in fact only improves it. Voltage clamp amplitude and
rise time distributions are shown for the same 2-Gaussian conductance distribution
shown on the left.

Figure 4-37: Cable filtering still controls mEPSC characteristics in the
presence of significant conductance variability. A. Plot of voltage clamp peak
amplitude vs distance for simulations with 2-Gaussian underlying conductance dis-
tribution shown in Figure 4-36 (compare to Figure 4-21A). B. Amplitude vs distance
plot for current clamp for the same underlying conductance distributioi:, showing
that while cable filtering is less dominant under these conditions, it still plays a ma-
jor role in shaping events. C (expanded in D). Voltage clamp amplitude vs. rise
time for the events shown in A still shows the same concave shape as seen in the
constant conductance simulations (compare to Figure 4-23D). But the area near the
origin has filled in and the whole plot is somewhat more noisy. In fact it now bears
a striking similarity to the usual experimental amplitude vs rise time plot (compare
to Figure 4-19A).

32 Any skew to the conductance distribution will increase the skew of the amplitude distribution,
this data should not be interpreted to support a model of sums-of-Gaussian conductance distributions
[274], an exponential or lognormal distribution would perform just as well.

194



4.5 FIGURE LEGENDS

Figure 4-38: Effects of parameters on degree of amplitude variability in
current and voltage clamp. Effects of changing passive and synaptic parame-
ters on simulated voltage and current clamp amplitude histograms (shown at top
for comparison). Simulated cumulative amplitude distributions produced in the
cell shown in Figure 4-21B. Baseline distributions used the following parameters:
R,,=40,000 Qcm?, R;=100 Qcm, and Cp,=1.0 uF/cm?; Tp=0.1 ms, 7p=1.0 ms. A.
Slowing the kinetics of the synaptic current input decreases the amount of attenuation
it will undergo on the way to the soma. The standard amplitude histograms (above)
are generated with 7p= 0.1 msec, Tp= 1.0 msec. An example amplitude histogram
generated with rp= 0.2 msec, rp= 1.5 msec is shown in both current and voltage
clamp. To the right of each amplitude histogram is shown a cumulative probability
plot comparing the amplitude distributions generated witi: each of three sets of kinet-
ics. B. Changing passive parameters can increase the skew of the distributions in both
current and voltage clamp. The absolute effect of a particular value of R, depends on
parameters of both the cell and the synaptic input (see Figure A-66), as can be seen
comparing the curves for R,=10 with two different sets of passive parameters (the
curve for R,=0 with “GM” parameters is shown in B). D. Increasing the synaptic
conductance in current clamp into the saturation range both moves the amplitudes
measured at the soma into the experimental range, and increases the skew of the am-
plitude distribution (histogram at left). Cumulative amplitude distribution at right
compares amplitudes normalized to the somatic response amplitude seen with that
synaptic conductance (to allow comparison on one graph); as synaptic conductance
increases the slope of the cumulative Jdistribution decreases, indicating an increase
in variability, and the midpoint of the normalized distribution moves to the left, in-
dicating an increase in skew. Increasing the synaptic conductance beyond 5 n fails
to further change the distribution shape, presumably due to increasing saturation.
Cumulative amplitude distribution from B, using “GM” parameters, is included for
comparison.
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