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ABSTRACT 
A hybrid modeling framework integrating a highly specific 

mechanistic model with highly abstract empirical model is presented. 

With the growing interest in the scientific and medical community for 

identification of therapeutic targets in treatment of disease, it is 

necessary to develop predictive models that can describe cellular 

behavior in response to environmental cues. Intracellular signaling 

pathways form complex networks that regulate cellular response in 

both health and disease. Mechanistic (or white-box) models of 

biochemical networks are often unable to explain comprehensive 

cellular response due to lack of knowledge and/or intractable 

complexity (especially in events distal from the cell membrane). 

Empirical (or black-box) models may provide a less than accurate 

representation of cellular response due to data deficiency and/or loss 

of mechanistic detail. In the proposed framework, we use a 

mechanistic model to capture early signaling events and apply the 

resulting generated internal signals (along with external inputs) to a 

downstream empirical sub-model. The key construct in the approach 

is the treatment of a cell’s biochemical network as an encoder that 

creates a functional internal representation of external environmental 

cues. The signals derived from this representation are then used to 

inform downstream behaviors.  Using this idea, we are able to create 

a comprehensive framework that describes important mechanisms 

with sufficient detail, while representing complex or unknown 

mechanisms in a more abstract form. The model is verified using 

published biological data describing T-Cells in immune response.  

INTRODUCTION 
Building accurate dynamic models of intracellular 

signaling events in response to extracellular cues is the key 

step towards the development of predictive models for cells or 

whole organisms. These models will ultimately provide 

scientific explanations of behavior of biological systems in 

health and disease as well as the potential for control of these 

systems. In particular, there is growing interest in the 

pharmaceutical industry for control of cellular response in the 

development of therapeutic targets for treatment of diseases, 

including cancer metastasis and autoimmunity [1] . In order to 

understand the effects of extracellular cues on cellular 

response, it is crucial to examine and identify the internal 

mechanisms involved in normal functioning of cells and also 

the defects associated with disease [1].  

Cellular response is regulated by the transfer of 

information from the environment to within the cell. This 

transfer is realized through a complex biochemical network in 

response to different extracellular cues. With recent 

advancements in measurement and sensing, useful mechanistic 

models (white-box models) of biochemical networks have 

been developed. Some examples of relatively detailed 

mechanistic models include Markov chains [2], and 

differential equations [3]. However, these white-box models 

require an enormous amount of mechanistic detail due to the 

inherent complexity of the biological processes. Furthermore, 

the details behind some mechanisms, especially complex 

events downstream of the cell membrane, remain unclear. 

Therefore, due to lack of knowledge and/or intractable 

complexity, white-box models are often unable to explain a 

comprehensive cellular response from input cue to observable 

output or phenotypic change.  

To decrease complexity, another common modeling 

approach is to use experimental data to empirically model 

phenotypic responses to external stimuli.  Purely empirical (or 

black-box models) such as Clustering [4] and Partial Least 

Squares [5] correlate experimentally measured variables to 

elucidate model components and potential relationships. 

However, in order to accurately represent a given data set, 

empirical models require a large amount of data.  

Accumulating appropriate data may be time-consuming and 

impractical due to limited high throughput technologies for 

certain biological processes. In addition, empirical models 

contain little to no mechanistic detail and consequently 
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understanding of the true mechanisms is lost.  Therefore due 

to data deficiency and loss of mechanistic detail, empirical 

models may provide a less than accurate representation of the 

cellular process being studied.   

Our goal is to create a comprehensive model with 

moderate complexity and marginal loss of mechanistic detail 

that will accurately represent a biological process and its 

dynamics. It is therefore necessary to consider approaches 

outside of standard engineering methodologies for control, 

modeling, simulation and analysis. Our approach attempts to 

create a hybrid (grey-box) modeling framework that 

methodically connects a highly specific mechanistic (white-

box) model with highly abstract empirical (black-box) model. 

Previous integrated multi-scale models have made connections 

between adjacent scales of specificity ([4, 6]), but few have 

attempted to merge models at such contrasting levels of 

abstraction.   

In the proposed framework, we use a mechanistic model 

to capture early signaling events and apply the generated 

internal signals, along with external inputs, to a downstream 

empirical sub-model. The key construct in our approach is the 

treatment of a cell’s biochemical network as an encoder that 

creates a functional internal representation of external 

environmental cues. The signals derived from this 

representation are then used to inform downstream behaviors. 

The integrative approach of the proposed framework allows 

flexibility in the design and construction of each sub-model. In 

addition, the proposed framework essentially decouples the 

rapid dynamics involved in the signal transduction process 

from the slower processes occurring inside the nucleus,  such 

as gene regulation. To our knowledge the  proposed modeling  

framework is a novel approach to analysis of dynamic 

signaling data.  

The paper is organized as follows. In the next section, a 

brief review of the physiochemical and kinetic mechanisms 

involved in intracellular signaling is discussed. Next, we 

introduce the model framework and validate on published data 

regarding T-Cells in immune response We conclude with 

discussion of various results and potential implications. 

CELLULAR RESPONSE: THREE STAGE PROCESS 
We may consider cellular response as structured in three 

stages:  input (receptor activation); intermediate (signal 

transduction); and output (gene regulation and observable 

response) [1].   

Stage One: Receptor Activation 
In the first stage, external environmental cues (e.g. to 

mechanical stresses, biochemical factors, or communication 

from adjacent cells) interact with a receptor on the cell 

membrane. Depending on the combination of external cues, 

the cell responds differently. The interaction between the 

external cue and membrane receptor causes activation (change 

in configuration or polarity) of the receptor.  Upon activation, 

the receptor may activate other molecules and proteins within 

the cell. 

Stage Two: Signal Transduction 
In the second stage the cell undergoes the signal 

transduction process, which consists of a cascade of protein 

activations originating from the cell membrane. In practical 

terms, this process serves to encode external signals into an 

internal representation of the outside environment. The 

encoded signals are then applied to later stage mechanisms 

downstream of the cell membrane.  

Stage Three: Cellular Function and Observable 
Response 

The third stage involves the transfer of encoded signals 

(from stage two) to the nucleus where a specific function 

(such as including gene expression and/or protein fabrication) 

is performed. After a set of intermediate mechanisms has 

occurred, the internal state of the cell is altered leading to    

phenotypic change. 

MODEL CONSTRUCTION AND VALIDATION ON 
PUBLISHED DATA 

We may validate our approach by applying our grey-box 

model framework to published T-Cell receptor (TCR) 

signaling data. T-Cell lymphocytes play a key role in the 

immune system homeostasis because they have the ability to 

recognize foreign agents and initiate immune response [1]. In 

stage one of T-Cell response, the cell detects foreign agents by 

means of the TCR which interacts with bacterial or viral 

derived molecules called MHC (Major Histocompatibility 

 

FIGURE 1: CELLULAR RESPONSE STRUCTURED INTO 
THREE STAGES. 
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Complex) [1].  During stage two, upon MHC binding, the  

TCR initiates multiple signal transductions that cascade 

through a complex signaling network which controls the 

activation of several important transcription factors.  Finally, 

stage three of the response involves the travel of transcription 

factors to the nucleus, leading to production of key proteins, 

such as IL-2 protein. Kemp et al. explores the correlation 

between MHC peptide binding affinity and cellular response 

[5]. As shown in Fig. 2, results suggest that levels of IL-2 

production from stimulation with various MHC peptides 

correlate with apoptotic response (cell death) [5].  For a 

detailed description on materials and methods used to collect 

data we refer to the publication [5].  

Using our proposed grey-box framework, we would like 

to model the observed relationship between MHC binding 

affinity and apoptotic response.  The mechanistic (white-box) 

portion of our framework models the signaling pathways 

triggered by MHC/TCR binding (stages one and two of T-Cell 

response). The internal signals (concentration levels of key 

signaling molecules) generated from the mechanistic model 

are used as input variables to the downstream empirical sub-

model. The empirical portion of our framework uses Partial 

Least Squares Regression to relate the external inputs 

(MHC/TCR binding affinity) and internal inputs (levels of key 

signaling molecules) to IL-2 production. IL-2 production is 

chosen as a relevant cellular function correlated to apoptotic 

response. 

Mechanistic Sub-model  
We have chosen to mechanistically model the relationship 

between ligand avidity (stage one) and signal transduction 

(stage two) using a stochastic chemical kinetic simulation 

algorithm [2]. This method will allow us to simulate multiple 

observation experiments of activated states of key signaling 

molecules within the desired network.  We model the cell as a 

well-mixed biochemical reactor with uniformly distributed 

molecules. Consider the network shown in Fig. 4 [5]. We have 

modeled the outlined signaling pathway with four linear 

cascaded reactions ultimately leading to the activation of Akt 

protein. The activation state of Akt is integral in defining the 

downstream cellular function of IL-2 production. 

Consequently, we have chosen to monitor the time-course of 

activated Akt and use it as the generated internal input signal. 

The time-dependent number of each molecule in the outlined 

pathway is given by the state vector: 1 2( ) [ , ,..., ]NX t X X X=

where N is the number of molecular species in both their 

activated and inactivated states.  Each molecule has the ability 

to undergo activation or inactivation reactions                          

( , 1,...,R mν ν = ),   that will occur with probability: 

       
( ( ))a X t dt h c dtν ν ν⋅ = ⋅

                      (1) 

where ( )( )v
a X t  is the propensity function for the thν −   

reaction, cν  is a constant which depends only on the 

temperature and physical properties of the system,  and hν   is 

the number of distinct  molecular reactant combinations 

available in the current state ( )X t . Each reaction defines a 

transition from the current state ( )X t q=  to another state 

( )X t q ζ= + .    

Let:  0

1

( ( )) ( ( ))
m

a X t a X t
ν

ν =

=∑                     (2) 

be the total propensity over the pathway in the current state. 

Using the above definitions and equations, we may now write 

the Chemical Master Equation (or the forward Kolmogorov 

equation):   

 ( ) ( ) ( ) ( )0 0

( , )
; ; , ; ,

dP q t
a q P q t a q P q t

dt ζ ζ

ζ ζ ζ ζ ζ= − − −∑ ∑  (3) 

which describes the time rate of change of the probability   

( ( , )P q t ) that the system is in state q at time t.  Statistically 

correct solutions to the Chemical Master Equation may be 

found through conducting Monte Carlo simulations such as 

the Gillespie stochastic algorithm [2]. It should be emphasized 

that all parameter values and initial conditions in the 

mechanistic sub-model were assumed to be known apriori and 

are obtained from literature [7, 8]. Therefore, no parameter 

fitting was conducted for this portion of the model. 

 

FIGURE 2: A. PRECENTAGE OF DEAD TCELLS AFTER 
STIMULATION WITH VARIOUS MHC PEPTIDES. B. IL-2 
LEVELS IN TCELLS   AFTER SIMULATION WITH VARIOUS 
MHC PEPTIDES. SOURCE:[5] 

 

 

FIGURE 3: MODEL FRAMEWORK SPECIFIC TO 
PUBLISHED TCELL SIGNALING DATA. 
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EMPIRICAL SUB-MODEL  
Partial Least Square Regression was used to relate 

external and internal input values (MHC/TCR rate parameters 

for various peptides and corresponding generated Akt signals) 

to cell functional response (experimentally measured IL-2 

concentration). The PLSR algorithm successfully finds the 

linear combinations of input variables that have maximum 

correlation with the output variables [5]. Specifically, PLSR 

fits data to a hyper-plane made up of the data’s principal 

components. Projections of the input data onto the hyper-plane 

form new variables called scores ( )r Kt ×∈ℝ   that are used to 

approximate the output variables through a linear regression:  

    
T

U t P E= ⋅ +  (4) 

 
T

t C Fϒ = ⋅ +  (5) 

In Eq. (4), 
r n

U
×∈ℝ  denotes the input data matrix 

(containing both external and internal inputs signals); 
n K

P
×∈ℝ denotes the cosine of the angles (or loadings) 

between the K number of principal components and original 

input space; and r n
E

×∈ℝ  denotes the error residuals between 

the projected and original data representations. In Eq. (5) 
1r×ϒ ∈ℝ denotes the output data; 

1 K
C

×∈ℝ  denotes the 

regression coefficients used to relate the projected input data 

(t) to the output data ( ϒ ); and 
1rF ×∈ℝ denotes the error 

residuals between the measured calculated outputs.  PLSR 

analysis was performed in Matlab. It should be noted that the 

data was log-transformed, mean-centered, and scaled by unit 

variance for ease of calculation. 

RESULTS AND DISCUSSION 

Purely Empirical (Black-Box) Model Comparison 
We would like to verify if internally generated input 

signals improved model representation over using a purely 

empirical (or black-box) approach. For comparison we 

constructed an empirical model consisting of a linear 

polynomial regression between input data (MHC/TCR 

affinity) and output data (experimentally measured IL-2): 

 
1

0

K
i

i

i

y c u f
−

=

= ⋅ +∑ ɶɶ ɶ ɶ  (6) 

 Here  uɶ  denotes the input data (containing only external 

inputs: MHC binding affinity),  cɶ  denotes the regression 

coefficients used to relate the input data to the output data( yɶ ), 

and  fɶ  denotes the error residuals between the measured and 

calculated outputs.  Equation (6) may be thought of as a 

simplified form of the Volterra series expansion which 

contains products of increasing order of the input signal with 

itself.  

Correlation between Measured and Calculated 
outputs 

Fig. 5 compares the coefficients of determination (
2

r  

values) and mean squared errors for both the purely empirical 

model (black) and the proposed framework (grey). MSE and 
2

r are generally accepted as a good theoretical basis for model 

selection.  As can be seen, 
2

r values are significantly higher 

for the grey-box model at low parameter numbers. This result 

signifies that calculated outputs from the grey-box framework 

have a higher correlation and therefore are a better 

representation for the presented data. Furthermore, this 

strengthens our claim that addition of internally generated 

FIGURE 5: R
2
 AND MSE FOR VARIOUS PARAMETER #’S IN 

BLACK BOX AND GREY-BOX MODELS 

 

FIGURE 4: DIAGRAM OF MAJOR SIGNALING PATHWAYS 
INVOLVED IN MHC/TCR ACTIVATION. SOURCE: [5] 
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signals in our grey-box framework adds information to the 

downstream empirical sub-model. Figure 6 plots the 

calculated vs. measured IL-2 production (colored circles)  for 

the black-box and grey-box models using K=6 regression 

coefficients.  

Model Validation 

As the number of parameters increase, the  
2

r  values 

between black-box and grey-box models both approach 1. 

This would suggest that both models are good approximations 

of process being studied. However, upon validation using a 

new stimulation condition (not used in parameter estimation), 

the model prediction using the grey-box model had 17% 

prediction error, while the model prediction error of the black-

box model was 32%. This suggests that grey-box framework 

has better predictive capabilities. This may be attributed to the 

model’s ability to capture variance in the data more accurately 

since internal inputs are generated stochastically. In Fig. 6 the 

red boxes denote predicted data points.   

CONCLUSION 
A hybrid modeling framework integrating a highly 

specific mechanistic model with highly abstract empirical 

model is presented. Results suggest that mechanistically 

derived internal signals inform downstream behaviors since 

our grey-box framework better approximated the data. Future 

work will incorporate multiple downstream pathways involved 

in the network to examine effect on downstream cellular 

function and response. Furthermore, our current framework 

statically maps external and internal inputs to downstream 

behaviors using PLSR. This is with the assumption that when 

internal signaling dynamics reach steady state, if there are no 

added inputs, the cell will remain in that state for a period of 

time in which the change in phenotype or functional response 

will occur. Incorporation of dynamic (auto-regressive) models   

is a topic for future work. In addition, we would like to 

explore feedback and bi-directionality between sub-models. 
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