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Coherence Retrieval Using Trace Regularization∗

Chenglong Bao† , George Barbastathis‡ , Hui Ji§ , Zuowei Shen§ , and Zhengyun Zhang¶

Abstract. The mutual intensity and its equivalent phase-space representations quantify an optical field’s state of
coherence and are important tools in the study of light propagation and dynamics, but they can only
be estimated indirectly from measurements through a process called coherence retrieval, otherwise
known as phase-space tomography. As practical considerations often rule out the availability of a
complete set of measurements, coherence retrieval is usually a challenging high-dimensional ill-posed
inverse problem. In this paper, we propose a trace-regularized optimization model for coherence
retrieval and a provably convergent adaptive accelerated proximal gradient algorithm for solving the
resulting problem. Applying our model and algorithm to both simulated and experimental data, we
demonstrate an improvement in reconstruction quality over previous models as well as an increase
in convergence speed compared to existing first-order methods.
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1. Introduction. Coherence retrieval is the unified mathematical treatment for two anal-
ogous physical measurement processes: estimating the density matrix of a quantum state and
reconstructing the mutual intensity of partially coherent light. Many if not most coherence re-
trieval methods in optics originate from the seminal phase-space tomography approach [34, 27].
This reconstructed mutual intensity, or equivalent phase-space representations such as the
Wigner distribution, is highly useful in that it can predict the three-dimensional distribution
of light intensity after propagation through any known linear optical system [9, 22]. Like-
wise, knowledge of both the input and the output coherence state of a system enables study
of its dynamics [15]. Furthermore, the mutual intensity’s phase-space representations enable
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680 C. BAO, G. BARBASTATHIS, H. JI, Z. SHEN, AND Z. ZHANG

intuitive understanding of light propagation [42] and form the physical basis for light field
imaging in the field of computational photography [31, 30, 23, 50].

In a coherence retrieval experiment, stationary quasimonochromatic light, i.e., narrow
in temporal frequency with mean wavelength λ, in some unknown state of coherence is sent
through one or more known optical systems, with the intensity measured at their outputs. The
spatial coherence properties of this light source, e.g., the mutual intensity, are then recovered
from these measurements [43, 1, 4, 28, 24, 3, 34, 27, 18, 35, 44, 47, 45, 40]. More concretely, the
electric field for quasimonochromatic light on some source plane is described by a complex-
valued stochastic function U(p), where p ∈ R2 denotes a position on this plane. For the
special case of a fully coherent field, such as light from a laser, U(p) is deterministic, yielding
the amplitude and phase for the wave function. However, in this paper we consider the general
case where the field is not necessarily coherent, such as one emanating from a light-emitting
diode (LED), and thus U(p) can take on many possible values [25].1 The mutual intensity is
the correlation function describing this electric field, given by

(1) J(p1,p2) = E
[
U(p1)U

∗(p2)
]

=

∫∫
υ1υ
∗
2PU (υ1, υ2;p1,p2) dυ1 dυ2 ,

where E[·] denotes the expected value (i.e., the ensemble average), ∗ denotes the complex
conjugate, and PU (υ1, υ2;p1,p2) is the joint probability density function for U(p1) = υ1
and U(p2) = υ2. Other phase-space representations, such as the Wigner distribution and
ambiguity function, can be obtained from the mutual intensity via Fourier transforms [42].

In typical experimental conditions, the optical field propagates linearly from a source point
p to one of the M measurement points qm ∈ R3, traversing various parts of an experimental
apparatus. This linear relationship is characterized by the possibly stochastic kernel K(p, qm),
known as the transmission function [9] or the amplitude spread function [22]:

V (qm) =

∫
U(p)K(p, qm) dp,

where V (qm) describes the output field at position qm. The resulting intensity is the expected
value of the magnitude of the field squared, yielding the Hopkins integral,

I(qm) = E
[
V (qm)V ∗(qm)

]
=

∫∫
E
[
U(p1)U

∗(p2)
]

E
[
K(p1, qm)K∗(p2, qm)

]
dp1 dp2,

if we assume that the statistical fluctuations in the optical field are independent of the statis-
tical fluctuations in K, typically the case in practical scenarios.

To enable numerical computation, we choose some basis { ξi }i and approximate the field on

the source plane as U(p) ≈
∑N

i=1 uiξi(p), where {ui }i are complex-valued random variables.
This naturally yields a discretization for the mutual intensity (1) as a Hermitian positive
semidefinite matrix X = E

(
uuH

)
such that

(2) J(p1,p2) ≈ ξT(p1)Xξ
∗(p2),

1The analogous case in quantum tomography of a partially coherent field is a mixed state, whereas the fully
coherent field corresponds to a pure state.D
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COHERENCE RETRIEVAL USING TRACE REGULARIZATION 681

where T denotes transpose, H denotes conjugate transpose, u = [u1, u2, . . . , uN ]T ∈ CN , and
ξ(p) = [ξ1(p), ξ2(p), . . . , ξN (p)]T. The basis {ξi}i is chosen based on both ease of computation
and efficiency in representing the field and mutual intensity; typical basis functions can be
constructed from sinc functions, Hermite functions, and the prolate spheroidal functions.

Using the definition of the mutual intensity (1) as well as our discretization scheme (2),
we obtain

(3) I(qm) ≈
∫∫

ξT(p1)Xξ
∗(p2) E

[
K(p1, qm)K∗(p2, qm)

]
dp1 dp2 .

Now let us define a vector km ∈ CN with nth element km[n] =
∫
ξn(p)K(p, qm) dp being a

random variable with probability density Pkm(k̂m) for each possible realization k̂m ∈ CN . We
can then construct a discretized measurement operator that characterizes propagation of light
from the source to point rm:

Km = E
[
k∗mk

T
m

]
=

∫
Pkm

(
k̂m

)
k̂∗mk̂

T
m dk̂m .

Substituting these new definitions back into (3), we obtain that the intensity is an inner
product of the source mutual intensity matrix X and the discretized measurement operator
Km (i.e., the sum of the elementwise product of X with the complex conjugate of Km):

I(qm) ≈ 〈Km,X〉 = tr
(
KH
mX

)
,

where 〈A,B〉 denotes the inner product of matrices A and B and tr(·) denotes the trace. We
note that the Kms are Hermitian, but we keep the conjugate transpose notation here to be
consistent with later uses of inner products in the paper, which involve matrices which may
or may not be Hermitian. In many situations, the Kms are low-rank; for example, rank-one
operators were used in [44, 49].

We can model measurement noise as an additive term:

(4) ym = tr(KH
mX) + nm,

where ym denotes the mth measured value and nm denotes the noise term. The nm’s can
be well approximated by zero-mean normal distributions with standard deviations σm’s if
measurements are from a standard camera sensor pixel with at least ∼10 photons recorded
and the noise level before quantization is much larger than a single quantization level, i.e., if
the noise is predominantly Poisson and the rate parameter is high enough.

The problem of coherence retrieval is then about recovering X from the measured in-
tensities {ym}m, which can be formulated as solving a weighted least-squares semidefinite
problem:

(5) minimize
X

M∑
m=1

1

2σ2m

(
tr(KH

mX)− ym
)2

subject to X ∈ SN+ ,

where SN is the set of N×N Hermitian matrices, SN+ is the set of N×N positive semidefinite
matrices in SN , and M is the total number of measurements.

Unlike the phase retrieval problem [21, 20, 13, 12], the rank of X is generally bigger than
one; only in the special case of a coherent field do we have that rankX = 1, and that is what isD

ow
nl

oa
de

d 
10

/2
9/

18
 to

 1
8.

10
1.

8.
12

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

682 C. BAO, G. BARBASTATHIS, H. JI, Z. SHEN, AND Z. ZHANG

referred to as phase retrieval. With coherent light in phase retrieval, the goal is to reconstruct
the field, represented by a deterministic vector u; the lifting approach [13, 12] reformulates
the problem as seeking the rank-one matrix uuH instead, with low-rank promoters to rule
out higher-rank solutions. However, with coherence retrieval, we consider the more general
partially coherent fields [25]—u is a stochastic vector, and we seek to reconstructX = E

(
uuH

)
,

which can have rank greater than 1 due to X being an expectation across many possible rank-
one matrices. Hence, our goal in coherence retreival is not to recover a single N -dimensional
vector lifted to matrix form as was the case in phase retrieval but rather to recover an N ×N
matrix, which is not necessarily rank-one and might not even be low-rank.

In practice, coherence retrieval is usually an ill-posed inverse problem. Recovering the
N × N coefficient matrix X requires O(N2) measurements and thus a forward operator of
size O(N4), which would require prohibitively high computational and storage costs. Fur-
thermore, even with smaller values of N , sometimes it is not straightforward to take enough
measurements for the forward operator to have a reasonable condition number. For example,
in translation-only phase-space tomography, the camera would need to be translated infinitely
far away as well as behind the source to capture a complete set of measurements.

To tackle these difficulties, one could introduce optical elements such as lenses [27, 26], but
this can also introduce systematic error in the solution without accurate enough calibration of
optical element positioning and aberrations. Another approach is to add a regularization term
to (5); for example, nuclear norm regularization is used in [44] to promote low-rank solutions.
However, the low-rank prior may not be reasonable in many coherence retrieval scenarios in
practice, and a single scalar parameter for the regularizer may not be flexible enough, either.

This paper aims to develop an effective approach for coherence retrieval. We propose a
trace-regularized model based on a penalty term physically analogous to the total intensity of
light after passing through a chosen (virtual) linear system. The proposed regularization is
motivated by the concept that for a set of solutions with similar likelihood, the one which is
least energetic is likely to be closer to the truth—the extra intensity could simply be an artifact
due to noise. Flexibility in choosing an arbitrary virtual system enables encoding additional
a priori information about the solution as well. These concepts lead to the following trace-
regularized optimization formulation for coherence retrieval:

(6) minimize
X

M∑
m=1

1

2σ2m

[
tr
(
KH
mX

)
− ym

]2
+ µ tr

(
RHX

)
subject to X ∈ SN+ ,

where µ > 0 is the penalty parameter andR ∈ SN+ is a virtual measurement operator encoding
our choice of virtual system. Given a priori information, we can set R to a value other than
I to penalize unlikely values of X. Candidates for the matrix R include diagonal weighting
matrices as well as difference operators or high-pass filters constructed from wavelet tight
frames. While previous literature [13, 12, 44] has used the R = I special case to promote
low-rank solutions, our goal here is not to specifically promote low-rank solutions but rather
to promote less noisy solutions and encode other a priori information such as smoothness or
soft constraints on support.

Although many convex optimization methods can be applied to solve our new model (6),
we present an efficient first-order scheme tailored for this particular problem. It is basedD
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COHERENCE RETRIEVAL USING TRACE REGULARIZATION 683

on the accelerated proximal gradient (APG) method [6] with adaptive restart [32, 41], and
we introduce a new restart criterion so that under some mild conditions on the measure-
ment operators Km’s, we can prove that the proposed algorithm is globally convergent—the
generated sequence converges to a global minimum of (6). Furthermore, we also propose a
sufficient condition for when our algorithm is provably linearly convergent. Numerical results
show the advantage of the proposed model with both simulated and experimental data, and
the proposed numerical algorithm also outperforms other state-of-the-art methods in terms of
computational efficiency for these data sets.

The rest of the paper is organized as follows. We explain the principles guiding our trace-
regularized approach in section 2, give a numerical algorithm to solve the proposed model
in section 3, analyze its convergence in section 4, present numerical experiments for both
simulated and experimental data in section 5, and discuss the results in section 6.

2. The trace-regularized coherence retrieval model. For notational brevity, we first
summarize our proposed convex problem for regularized coherence retrieval as follows:

(7) minimize
X

1
2

∥∥A (X)− b
∥∥2
2

+ µ tr
(
RHX

)
subject to X ∈ SN+ ,

where linear operator A : SN → RM has mth element A (X)[m] = tr
(
KH
mX

)
/σm and vector

b ∈ RM has mth element b[m] = ym/σm.
Our choice of using regularizers of the form tr

(
RHX

)
derives from several motivations.

The first is that tr
(
RHX

)
for positive semidefinte R corresponds to a physical quantity:

the resulting intensity if the source is channeled through an optical apparatus defined by
measurement operator R. This interpretation allows us to pose the problem as seeking the
least physically energetic solution that satisfies the measurements to an acceptable degree.
Minimizing the energy is a common approach in many inverse problems, and this interpretation
is more widely applicable than the rank-minimization interpretation [13, 12, 44]—not many
partially coherent fields are exactly low-rank despite having decaying eigenvalues.

Furthermore, by not being restricted to setting R = I, we enable some flexibility in
encoding other a priori information. For example, we can encode the unequal likelihood of
the spatial basis functions by setting R = W , where W is a diagonal matrix whose entries
give the relative negative log-likelihood of the spatial basis functions. This can be used to
enforce a soft constraint on the spatial support of the solution (see, for example, [7]) if the
basis functions are spatially localized, e.g., sinc functions. Unlike a hard spatial support
constraint, this soft constraint allows us to embed uncertainty into the solution—for example,
imaging an aperture using a lens will likely not result in a sharp aperture due to aberrations,
so forcing the solution to be zero outside the image of the aperture is overly restrictive.

The well-studied Gaussian Schell-model source and their relatives (see, for example, [39,
38, 33, 36]) have smooth underlying wave functions, and the statistics of natural images also
suggest a decay property in amplitude of the Fourier transform of the intensity profile [10,
19, 46]. These optical fields will be more likely to have lower energy content at higher spatial
frequencies, and this suggests setting R in such a way so that tr

(
RHX

)
is more sensitive to

high-frequency content. We can do this by setting R = D = HHH, where H is defined such
that the continuous function ξT(p)Hu is equal to ξT(p)u with its high-frequency components
boosted. Therefore, tr

(
HHHX

)
= tr

(
HXHH

)
is the trace of matrix X after boostingD
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its high-frequency components, resulting in a higher penalty value for nonsmooth solutions.
In this paper, we obtain good results from the use of simple matrices for H such as one
that extracts the high-pass component using the Haar wavelet, whereas a more powerful and
flexible approach would be to designR based on the concept of high-pass filters of wavelet tight
frames [17], which has been shown to have a close relationship to the difference operators [11].

We now present a numerical example that shows how trace regularization and choice of R
affects reconstruction quality in an idealized coherence retrieval scenario wherein closed-form
solutions exist, in order to avoid complications due to algorithmic differences. In this example,
we seek to reconstruct a one-dimensional Gaussian Schell-model source [39] with parameter
β = 1 from simulated noisy measurements through an ideal apparatus; i.e., the linear operator
A (·) has unit singular values, and b is drawn from an i.i.d. Gaussian ensemble. For simplicity,
we chose a spatial basis consisting of the first 32 Hermite functions φn(x) given in [39], and
thus the ground truth X? ∈ SN+ is a diagonal 32 × 32 matrix whose nth element is equal to

2n−1
(
3 +
√

5
)1−n

. Note that while X? has decaying eigenvalues, it is not low-rank. To see
the effect of regularization, we consider the following four closed-form solutions:

1. XU = X? + σG is the solution to (5), where positivity is ignored, i.e., where we
replace SN+ with SN ; σ gives the noise level; and G is drawn from a Gaussian unitary
ensemble. We use this primarily as a point of reference for the other reconstruction
approaches.

2. X0 = ProjSN+
(X? + σG) is the solution to (5).

3. XI = ProjSN+
(X? + σG− µI) is the solution to (7) with R = I.

4. XD = ProjSN+
(X? + σG− µD) is the solution to (7) with R = D = D̂TD̂, where D̂

acting on a discretized field u is equivalent to performing a derivative on the continuous
quantity that u represents. This choice of R is used to incorporate the idea that
Gaussian Schell-modes are generally smooth and hence contain less high-frequency
content. With Hermite functions as the spatial basis, the (i, j) entry of D̂ is given by

D̂i,j =


−
√
j + 1 if i = j + 1

√
j if i = j − 1

0 otherwise.

The noise level parameter σ was allowed to take on 11 different values exponentially equally
spaced between 10−3‖X?‖F and 10−1‖X?‖F. For each noise level, the regularization parameter
µ that minimized the average reconstruction error was found using the bisection method, with
different parameters for the R = I and R = D cases. The resulting spread of reconstruction
error across 256 realizations for each method and noise level is shown in Figure 1. While
adding a tr(X) term to the optimization results in an improvement in reconstruction quality
over the unregularized result, using tr

(
DHX

)
results in even less error due to incorporating

a priori information about the smoothness of the solution. We also display a scatter of the
reconstruction error as a function of both tr(X) and tr

(
DHX

)
in Figure 2. Note that the trace

regularization terms and the reconstruction error are positively correlated in the unregularized
case; while desiring a less energetic solution is a good physical rule of thumb, this correlation
could explain why it is good mathematically with further study.D
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Figure 1. Normalized reconstruction error ‖X −X?‖F/‖X?‖ as a function of the normalized noise level
σ/‖X?‖. The mean is plotted for the four different solution methods, where X is set to XU, X0, XI, and XD

for the “unconstrained,” “unregularized,” “with R=I,” and “with R=D” cases, respectively. Error bars indicate
three standard deviations for each case.
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Figure 2. Normalized reconstruction error ‖X −X?‖F/‖X?‖ versus normalized trace tr(X)/ tr(X?) (left)
and tr

(
DHX

)
/ tr(DHX?) (right) for the four different reconstruction approaches, represented as a scatter plot

showing each of the 256 realizations.

3. Numerical algorithm. We will now briefly review the APG method [6] and then present
a novel restart condition for solving (7).

3.1. The APG method. Define

(8) f(X) = 1
2

∥∥A (X)− b
∥∥2
2

+ µ〈R,X〉, g(X) = ιSN+
(X),D
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where 〈A,B〉 = tr(AHB) is the inner product and ιSN+
(·) is the indicator function for the set

of positive semidefinite Hermitian matrices, i.e., ιSN+
(X) = 0 if X ∈ SN+ and ιSN+

(X) = +∞
if X /∈ SN+ . Then (7) is equivalent to the composite convex minimization problem

(9) minimize
X∈SN

h(X) = f(X) + g(X).

One representative method to solve (9) is the so-called APG method [6]. Given a function g
and α > 0, define the proximal operator of g as

Proxαg (X) = arg min
Y

{
g(Y ) + 1

2α‖Y −X‖
2
F

}
,

where ‖·‖F is the Frobenius norm. Then the APG method constructs two sequences {Xk}
and {Yk} via the following steps:

tk =
(√

4(tk−1)2 + 1 + 1
)
/2(10a)

Yk = Xk +
tk−1−1
tk

(Xk −Xk−1)(10b)

Xk+1 = Proxαk
g (Yk − αk∇f(Yk))(10c)

where t0 = 1, 0 < αk ≤ 1/L, and L is the maximal eigenvalue of A HA with A H being the
adjoint operator for A . With X? being the set of minimizers of (9) and h? being the minimal
value, it is well known that the APG method has the following convergence property [6].

Theorem 3.1. Let Xk be the sequence generated by (10a)–(10c) and αk = 1/L ∀k. Then
for any k ≥ 1,

h(Xk)− h? ≤
2Ldist(X0,X?)2

(k + 1)2
,

where dist(X,X?) = inf{‖X − Y ‖F : Y ∈ X?}.

3.2. The proposed algorithm. Indeed, the attractive O(1/k2) convergence rate of the
APG method is optimal when solving a convex problem when only first-order information is
available [29]. However, it has been observed that the objective value (the value of f in this
case) sequence generated by the APG method shows oscillations, which slows down conver-
gence speed in practice [32]. To avoid these oscillations, restarting techniques were proposed
in [32] wherein tk is reset to 1 when certain criteria are met. Despite the numerical success
of this adaptive restart APG method, it is still unknown whether this method is guaranteed
to converge. We therefore propose a new restart criterion that leads to a globally convergent
numerical algorithm for solving the trace-regularized coherence retrieval problem (7). Given
per-iteration step size αk > 0, define

(11) Zk+1 = Proxαk
g (Yk − αk∇f(Yk)), Uk = Yk −Zk+1, Vk = Xk −Zk+1.

When Xk 6= Yk, we restart our APG method by setting tk = 1 if the following does not hold:

(12) 〈Uk,Vk〉 − αk〈A (Uk),A (Vk)〉 ≥ γ‖Vk‖2F.D
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Here, γ > 0 is a small constant. We note that no extra computation is needed for checking
criterion (12) due to the linearity of A and the necessary quantities having been computed
either during step size estimation or in a previous iteration. We summarize our proposed
adaptive APG algorithm in Algorithm 1.

Remark 3.2. Proxαg (X) is equal to a projection onto SN+ , independent of the value of α:

Proxαg (X) = ProjSN+
(X) =

∑N

i=1
max(λi, 0)qiq

H
i ,

where {λi }i and { qi }i are the eigenvalues and eigenvectors, respectively, of X. The gradient
of quadratic function f(X) is equal to

∇f(X) = A H
[
A (X)− b

]
+ µRH.

In practice, the majority of computation is spent on evaluating A and A H as well as the
eigenvalue decomposition in the proximal operator. Eigenvalue decomposition scales asymp-
totically as O

(
N3
)
, whereas evaluating A and A H scales as O

(
N2M

)
in the worst case, with

O
(
N3
)

being the best possible complexity via reduced measurements [14] or exploiting the
structure of A using fast Fourier transforms or separable tensor contractions [37].

Algorithm 1. Adaptive APG algorithm.

1: Initialize X1 = Y1 = Y0 = X0, t1 = 1, kmax, kmaxres ∈ N, k = 1, kres = 0, and ρ ∈ (0, 1)
2: while k ≤ kmax do
3: Estimate step size αk using Algorithm 2 and obtain Zk+1 = Proxαk

g (Yk−αk∇f(Yk)).
4: if { Xk = Yk or (12) holds } and k − kres ≤ kmaxres then
5: Set Xk+1 = Zk+1.

6: Set tk+1 = 1
2

(√
4t2k + 1 + 1

)
.

7: Set Yk+1 = Xk+1 + tk−1
tk+1

(Xk+1 −Xk).

8: Set k = k + 1.
9: else

10: Reset tk = 1 and update kres = k.
11: Set Yk = Xk.
12: end if
13: end while

3.2.1. Step size estimation. Setting αk = 1/L might be too conservative when the Lip-
schitz constant L is large. We would like to adaptively choose αk by first initializing with
the Barzilai–Borwein (BB) method [5]; our choice of the form with the squared norm in the
denominator is motivated by numerical considerations—an inner product is sensitive to can-
cellation errors, and placing it in the denominator can result in numerical instability. After
initialization, we then use a standard backtracking technique and adopt the step size αk at
Yk whenever the following inequality holds:

(13) h(Yk)− h(Zk+1) ≥ δ‖Yk −Zk+1‖2F,D
ow

nl
oa

de
d 

10
/2

9/
18

 to
 1

8.
10

1.
8.

12
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

688 C. BAO, G. BARBASTATHIS, H. JI, Z. SHEN, AND Z. ZHANG

where δ > 0 is a small constant. It is noted that (13) holds whenever αk ≤ 1/(L + δ), and
hence backtracking must terminate. In practice, we find that BB initialization gives a good
estimate for the step size and that backtracking is rare. A detailed listing for this step size
estimation algorithm is given in Algorithm 2.

Algorithm 2. Estimation of step size αk.

1: Inputs: Xk, Yk, Yk−1, ∇f(Yk), ∇f(Yk−1), ρ < 1 and αmin, αmax > 0.
2: Outputs: Step size αk, proximal point Zk+1

3: if k=1 then
4: Initialize β = ‖b−A (Yk)‖2F/

∥∥A H[b−A (Yk)]
∥∥2
F
.

5: else
6: Calculate Sk = Yk − Yk−1 and Tk = ∇f(Yk)−∇f(Yk−1).
7: Initialize β = |〈Sk,Tk〉|/‖Tk‖2F.
8: end if
9: for j = 1, 2 . . . do

10: Calculate Zk+1 = Proxβg [Yk − β∇f(Yk)].
11: if { Xk 6= Yk and (12) fails to hold } or (13) holds or β < αmin then
12: break
13: else
14: Backtrack β = ρβ.
15: end if
16: end for
17: Set αk = min[max(αmin, β), αmax].

4. Convergence analysis. In this section, we focus on convergence analysis for Algorithm
1, including an analysis regarding global convergence as well as on the convergence rate. Before
proceeding, we first introduce some notation and definitions to be used in the analysis.

4.1. Notation and definitions. Denote X? to be the solution set of (7). Given a point x
and ε > 0, we define B(x, ε) = {y : ‖x− y‖2 ≤ ε }. Given a set X , the relative interior of X ,
denoted by ri(X ), is defined as

ri(X ) := {x ∈ X : ∃ε > 0,B(x, ε) ∩ aff(X ) ⊆ X } ,

where aff(X ) is the affine hull of X . Given a set X and a member x, the distance from x to X ,
denoted by dist(x,X ), is defined as dist(x,X ) = inf { ‖x− y‖2 : y ∈ X }. Given a function f
and b ∈ R, we define the sublevel set [f(x) ≤ b] to be {x : f(x) ≤ b }. We use ∂f to denote
the (limiting) subgradient of f .

Let A and B be finite dimensional Euclidean spaces and Γ : A ⇒ B be a set-valued
mapping. The graph, domain, and inverse of Γ are defined by

gph(Γ ) := { (u,v) : v ∈ Γ (u) } , dom(Γ ) := {u : Γ (u) 6= ∅ } , Γ−1(v) := {u : Γ (u) = v } .

In the following context, we define a useful property for set-valued mappings.D
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Definition 4.1. A set-valued mapping Γ : A ⇒ B is said to be metrically subregular at
x̄ ∈ A for ȳ ∈ B if (x̄, ȳ) ∈ gph(Γ ) and there exist κ, ε > 0 such that

(14) dist(x, Γ−1(ȳ)) ≤ κdist(ȳ, Γ (x)) ∀x ∈ B(x̄, ε).

4.2. Global convergence. We first show that Algorithm 1 converges to a global minimum,
provided the generated sequence is bounded.

Theorem 4.2. Let {Xk} be the sequence generated by Algorithm 1. If {Xk} is bounded,
then {Xk} converges to a global minimum of (7), denoted as X̄.

Proof. See Appendix A.

Remark 4.3. The proof is based on the recently established Kurdyka– Lojasiewicz (KL)
property [2, 8], which provides a framework for typical descent algorithms whose generated
sequences are bounded. However, the boundedness condition might not hold for semidefinite
programming problems such as (7).

In coherence retrieval, we will show that the boundedness condition on {Xk} holds when
the measurement operator A satisfies a certain mild condition. Let A = (K̂1, . . . , K̂M )H ∈
CMN×N , where the K̂ms ∈ CN×N are such that Km = K̂mK̂

H
m for all m ∈ { 1, . . . ,M }. We

make the following assumption on A.

Assumption 4.4. The matrix A has full column rank.

In practice, Assumption 4.4 always holds because either the measurements are designed to
ensure A is full rank or a smaller set of basis functions are used to remove the ambiguity; e.g.,
we can choose a larger sampling interval in the case of sinc basis functions, or we can use the
nonzero right singular vectors of A to set a new basis based on our original basis.

Proposition 4.5. Let {Xk} be the sequence generated by Algorithm 1. Suppose Assumption
4.4 holds. Then {Xk} is bounded.

Proof. See Appendix B.

Combining Theorem 4.2 and Proposition 4.5, we obtain that Algorithm 1 is globally convergent
under Assumption 4.4.

Corollary 4.6. Let {Xk} be the sequence generated by Algorithm 1. Suppose Assumption
4.4 holds. Then {Xk} converges to a global minimum of (7), denoted as X̄.

4.3. Convergence rate analysis. In this section, we first impose a reasonable condition
on the solution set X?. Using this condition, we prove that Algorithm 1 converges linearly.

Assumption 4.7. We make the following assumptions on X?: (a) X? 6= ∅, and (b) there
exists an X? ∈ X? satisfying

(15) 0 ∈∇f(X?) + ri
(
NSN+ (X?)

)
,

where NSN+ (X) denotes the normal cone of SN+ at X.
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Remark 4.8. The first-order optimality condition of h implies

(16) 0 ∈∇f(X) +NSN+ (X) ∀X ∈ X?.

Condition (15) is slightly more restrictive than (16), but (15) only needs to hold at one point
of X?. Moreover, from the proof of Proposition 4.9, one sufficient condition for ensuring (15)
is that there exists some X? ∈ X? such that rank(X?) = N , i.e., X? is full rank.

Based on recent work [16], we ensure ∂h is metrically subregular at any X̄ ∈ X? for 0 in the
next proposition.

Proposition 4.9. Let h = f + g be defined in (8). Suppose Assumption 4.7 holds. Then for
any X̄ ∈ X?, ∂h is metrically subregular at X̄ for 0.

Proof. See Appendix C.

Remark 4.10. Proposition 3.2 in [16] is a characterization of metric subregularity for real
symmetric positive semidefinite matrices. However, the analysis in [16] can easily be extended
for Hermitian positive semidefinite matrices over R.

Now, we can establish local linear convergence for Algorithm 1 via the following.

Theorem 4.11. Let h = f + g be defined in (8) and the sequence {Xk} be generated by
Algorithm 1. Suppose Assumptions 4.4 and 4.7 hold. Then there exists some X̄ ∈ X? such
that one of the following assertions holds:

1. {Xk } converges to X̄ in finite steps.

2. {h(Xk) } and {Xk } linearly converge to h(X̄) and X̄, respectively, i.e., there exist
c1, c2 > 0, w1, w2 ∈ (0, 1) and k` > 0 such that

h(Xk)− h(X̄) ≤ c1wk1 and ‖Xk − X̄‖F ≤ c2wk2 ∀k > k`.

Proof. See Appendix D.

5. Results. We now apply our algorithm to two data sets from translation-only one-
dimensional phase-space tomography [35, 44]. One is a simulation with realistic noise of two
coherent Gaussian beams that are slightly decohered with respect to each other. Another is
experimental data from [49] consisting of a Schell-model source imaged by a single positive
lens. In both cases, the data consist of intensity profiles captured at 250-µm axial intervals by
a single row of pixels in a 3.2-µm pitch camera with wavelength λ equal to 532 nm.

While our approach can be applied to more complicated tomographic apparatuses [27, 26]
as long as the amplitude transfer function K(p, qm) is known, we focus on the translation-only
one-dimensional phase-space tomography example, as it is well studied and a good base from
which to extrapolate insights.

With one-dimensional phase-space tomography, the optical field as well as the mutual
intensity are assumed to be constant along one of the spatial axes; i.e., U(p) can be written
as a one-dimensional function U(x), being constant along y, and thus J(p1,p2) can also be
written as J(x1, x2). We assume that the optical field can be Nyquist sampled at intervalsD
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of ∆ and has negligible energy when |x| > N∆/2. Thus, we employ the following sinc basis
functions:

ξn(x) =
√
∆ sin

[
π(x/∆− n+ n0)

]/[
π(x/∆− n+ n0)

]
,

where n = 1, . . . , N and n0 = (N + 1)/2.
For translation-only one-dimensional phase-space tomography, the light from the source

propagates through free space toward the measurement points rm, each of which can be fully
specified by transverse position xm and axial position zm; a camera sensor is translated to
the various axial positions, and intensity measurements are obtained from the pixel values in
a single row. We assume ∆� λ and thus use the Fresnel diffraction integral to compute the
forward model km’s and thus the measurement operators Km’s:

km[n] =

∫
ξn(x) exp

[
i2π

λzm
(xm − x)2

]/√
iλzm dx

=
exp(αm,n)

2
√

iλzm/∆

{
erf

[
−√αm,n +

√
iπλzm
2∆

]
− erf

[
−√αm,n −

√
iπλzm
2∆

]}
,

where i is the imaginary constant,
√

i = (1 + i)/
√

2, erf(ζ) = 2√
π

∫ ζ
0 exp(−t2) dt is the error

function, and αm,n = iπ(xm − n∆+ n0∆)2/(λzm). Since these km’s are deterministic, Km =
kTmk

∗
m.

The constant parameters we chose for our numerical algorithm were

X0 = 0 δ = 10−8 γ = 10−5 ρ = 1
2

αmin = 10−8 αmax = 108 kmax = 1000 kmaxres = 250.

For comparison, we also run standard proximal gradients (PG), APG, and adaptive restart
APG using publicly available code accompanying [32]. For instrumentation, we added code to
the official source code in order to record the time taken and acceleration parameter at each
iteration. Furthermore, each algorithm was run a second time wherein the value of X at each
iteration was recorded in order to compute the value of the merit function at each iteration.
All computations were performed using MATLAB running on an Intel Xeon E5-2630 CPU.

5.1. Simulated data. We simulate a mostly coherent sum of two parallel Gaussian beams
with coplanar waists, as given by the following mutual intensity function:

J(x1, x2) = G(x1;x0)G(x2;x0) +G(x1;−x0)G(x2;−x0)
+ χ

[
G(x1;x0)G(x2;−x0) +G(x1;−x0)G(x2;x0)

]
,

where G(x; a) = exp[−(x − a)2/(2σ2)], x0 = 64 µm, σ = 32 µm, and χ = 0.9. This partially
coherent field, discretized into a 51× 51 mutual intensity matrix (N = 51) using a sampling
interval of ∆ = 6.4 µm, is then propagated to 201 axial positions spaced 250 µm apart. For
each axial position, we consider 101 intensity point samples spaced 3.2 µm apart for the mea-
surements. This set of true intensities is shown in Figure 3 under the heading “noiseless.”
The smallest and largest singular values of matrix A as it is defined in subsection 4.2 were
amin = 3.094 and amax = 7.925, respectively.D
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Figure 3. Noisy measurements of the intensity are shown on the left, with the true intensity shown on
the right. Propagated intensity of a regularized reconstructed result is shown in the center. In all images, light
propagates from left to right, and the intensity is in arbitrary units.

To emulate real-world conditions where the σm’s are unknown, we simulate collecting
16 measurements for each intensity point sample, with their mean treated as the ym’s in
our model and the standard deviation across these 16 samples used as an approximation to
σm
√

16. The noisy data for each measurement are generated by first drawing from a Poisson
distribution whose rate parameter is proportional to the true intensity at that point, with the
sum of all the rate parameters made to equal 1.02× 105 photons. We then add Gaussian noise
with standard deviation equal to 0.01 times the maximum of all the rate parameters; this is to
simulate readout and quantization noise that would be typically expected of an 8-bit sensor.
This set of simulated measurements is shown in Figure 3 under the heading “noisy.” We then
run our algorithm with the following inputs:

• noiseless: The ym’s are set to the ideal noiseless intensity, with the σm’s set to 1
and µ = 0 (i.e., no regularization).
• unregularized: The ym’s and σm’s are set to our simulated noisy data, with µ = 0

(i.e., no regularization).
• nuclear: This uses the simulated noisy data and R = I (i.e., nuclear norm regular-

ization). µ is set such that 1
2‖A (X) − b‖22 ≈ αM/2 upon convergence. The αM/2

threshold for 1
2‖A (X) − b‖22 arises from the fact that the norm-squared expression

follows a chi-squared distribution with M degrees of freedom assuming that the σm’s
are correct values for the standard deviations of the Gaussian noise. M/2 would be
the mean for such a distribution, and α is used to adjust the threshold to take into
account how well estimated the σm’s are and how much of the distribution we want
to include. For this particular set of data, we are fairly confident of our estimates of
σm and have thus set α = 1.5.
• gradient: This uses the simulated noisy data and R = D, a tridiagonal matrix with

all the elements in the diagonal equal to 1 and all the off-diagonal elements equal
to −1

2 . µ is set such that 1
2‖A (X) − b‖22 ≈ αM/2 upon convergence. The penalty

term tr(DHX) is thus equivalent to applying a Haar wavelet to both the rows and
the columns of X, keeping only the high-frequency components and then taking the
trace. The application of D is a simple approximation for a derivative operator on x1
and x2 in the continuous domain, and it physically corresponds to a desire to reduce
the energy present in the first-order spatial derivative of the optical wave function.D
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Figure 4. Magnitude of the mutual intensity functions for the simulated data. They are all drawn using
the same scale, normalized to the maximum magnitude of the ground truth.

Mathematically, it penalizes nonsmooth solutions to our problem, and it is motivated
by our a priori knowledge that the true solution is smooth.
• early stop: This is the same as the unregularized case, except we terminate our

algorithm when 1
2‖A (X)−b‖22 drops below αM/2, where α = 1.5. This result is used

as a point of reference for comparison with the regularized results since these results
all have approximately the same level of measurement mismatch, and therefore the
differences are due to the presence of and choice of regularizer.

The magnitude of the reconstructed mutual intensity functions is shown in Figure 4, and
the magnitude of their coherent modes [48] is given in Figure 5.2 The propagated inten-
sity using the gradient result is shown in Figure 3. Since the ground truth is known, we
give a summary of the reconstruction error using various metrics in Table 1. A convergence
comparison between algorithms for the gradient input is shown in Figure 6.

As is evident from the results, especially Figure 5, noise introduces additional energy
(as seen in the increased amplitude for the second mode) as well as an additional mode,
resulting in a reconstructed mutual intensity that appears less coherent than the ground
truth. Furthermore, noise also induces additional high-frequency content in the reconstructed
result. For the specific value of α used, regularization using the nuclear norm only yields
marginal improvements over the unregularized reconstruction, whereas regularization using
the smoothness-inducing regularizer both smooths the result and reduces the number of sig-
nificant modes back down to the correct number of modes. Of course, we can increase the
µ parameter for the nuclear norm case to reduce the number of modes, but it does not fully
smooth the result and results in a mutual intensity that does not match the measurements as

2The ith coherent mode is
√
λiv

T
iξ(x), where X =

∑
i λiviv

H
i is X’s eigenvalue decomposition.D
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Figure 5. Amplitude plots of the three highest energy coherent modes for each mutual intensity function.

Table 1
Quantitative measurements of error for the different reconstructed mutual intensity matrices. The normal-

ized error is defined as ‖X −Xtrue‖F/‖Xtrue‖F. The trace distance, a quantity used to describe the difference
between two quantum states, is equal to half the sum of the singular values of ρ − ρtrue, where ρ and ρtrue are
equal to X/ tr(X) and Xtrue/ tr(Xtrue), respectively.

noiseless unregularized nuclear gradient early stop

Normalized error 7.524× 10−5 0.1147 0.1438 0.039 79 0.3977

Trace distance 6.103× 10−5 0.079 08 0.076 58 0.025 34 0.2887

well as the smooth-prior regularized result. We note that the early stop result has the same
amount of measurement mismatch as the two regularized solutions, showing how ill-posed the
problem is and the necessity for regularization.

Our algorithm also converges faster than the three other methods given in Figure 6, albeit
restart APG converges asymptotically as fast. Nonrestarting APG oscillates due to excess
critical momentum, as described in [32]. The advantages of our algorithm are that (1) it
is provably convergent, whereas to the best of our knowledge no proof of convergence has
been given for the algorithm given in [32], and (2) it converges much faster than the provably
convergent nonrestarting APG (i.e., FISTA [6]).
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Figure 6. Comparison of convergence across different algorithms for the simulated data. The vertical axis
is the difference between the value of f(X) and the lowest attained value of f(X) across all algorithms, which
in turn gives an upper bound on the suboptimality. On the left, the horizontal axis is the number of iterations.
On the right, the horizontal axis is time taken. The ×s mark where restarts occurred.

5.2. Experimental data. We use the experimental data from [49], wherein the intensity
profile of a partially coherent beam is imaged at 201 positions along the optical axis. The
partially coherent beam was generated by focusing an LED light source through a 532-nm
band-pass filter onto a 100-µm slit located at the front focal plane of a 100-mm focal length
cylindrical lens. A 500-µm slit placed at the back focal plane is illuminated by light passing
through the cylindrical lens, and this slit is imaged using a 50-mm cylindrical lens placed
150-mm after the slit. Based on visual inspection, the axial positions captured were located
between z = −30.25 mm and z = 19.75 mm relative to the image of the slit.

The experimental data ym’s are taken from a single row on a camera with 3.2-µm pitch,
and the standard deviation σm’s were estimated from the neighboring 16 rows. A visualization
of the measured and theoretical intensities is shown in Figure 7. We use a sinc basis with
sampling interval ∆ = 6.4 µm to discretize the mutual intensity into a 101× 101 matrix
(N = 101). We note that the field does not necessarily have a spatial band limit compatible
with the sampling interval, but since we only measure the intensity at intervals of 3.2 µm,
it would be very difficult to recover any information at a higher sampling rate, and hence
we ignore the higher-frequency components. The smallest and largest singular values of the
matrix A as it is defined in subsection 4.2 were amin = 7.625 and amax = 14.18.

An aberration-free theoretical estimate of the mutual intensity is

J(x1, x2) ∝ rect(β1x1) rect(β1x2) sinc
[
β2(x1 − x2)

]
exp
[
iβ3(x

2
1 − x22)

]
⊗ sinc(x1/∆) sinc(x2/∆),D
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Figure 7. Noisy measurements of the intensity are shown on the left, with the theoretical aberration-free
intensity profile shown on the right. Propagated intensity of a regularized reconstructed result is shown in the
center. In all images, light propagates from left to right, and the intensity is in arbitrary units. The theoretical
intensity is provided as a point of reference and is not necessarily the ground truth.

where β1 = 4 mm−1, β−12 = 532 µm, β3 = 1.9684× 10−4 µm−2 and ⊗ denotes convolution.
Since ground truth is not available, we use this aberration-free estimate as a rough point of
reference; it is not intended to be interpreted as the ground truth, which may be slightly
blurred or distorted by aberrations.

We again use several different sets of parameters for our algorithm, although we replaced
two of the input sets and used a different value of α for the target value of 1

2‖A (X)−b‖22 in the
regularized reconstructions. Instead of the early stop and noiseless input parameter sets,
we added the nuclear+support and window input parameter sets. The former uses the same
regularizer as the nuclear data set but additionally forces coefficients of basis functions whose
centers lie outside the center 250-µm region to be zero as a way to demonstrate the state-of-
the-art nuclear norm regularizer combined with a hard support constraint. The window input
parameter set uses R = W , a diagonal matrix whose entries are unity in the center 250-µm
region and increase linearly away from this region, up to a maximum of 391 at the ends.
The idea with these additional input sets is to demonstrate how one can incorporate a priori
information about the support of the solution—since we know our slit should be imaged to
a region that wide, we would like to penalize any contributions outside of this region. While
nuclear+support uses a hard constraint, it is not necessarily appropriate because the field
may not actually be exactly zero outside the region due to the presence of possible aberrations
in the system. The window approach is a gentler way of finding a less energetic solution while
at the same time preferring to remove energy from areas where we do not expect much energy
to be present; i.e., it is a soft support constraint. Coincidentally, this regularizer is also
equivalent to imposing a smoothness constraint on the intensity in the far field of the partially
coherent beam. We also chose a value of α = 5 to account for additional possible errors in A
(due to imperfect equipment and calibration) and standard deviation estimation.

The reconstructed mutual intensity functions are shown in Figure 8 with modes shown
in Figure 9. We give quantitative comparisons between the theoretical mutual intensity and
the reconstructed mutual intensity in Table 2, and a comparison of algorithm convergence for
the window input set is given in Figure 10. All regularized solutions remove some amount of
noise, as evident in the increased smoothness and reduction of high-order mode energy in the
coherent modes visualization. The nuclear result cleans up the reconstruction compared to
the noisy reconstruction, but it still leaves a lot of excess energy in the higher-order modes,D
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Figure 8. Magnitude of the mutual intensity functions for the experimental data. They are all drawn using
the same scale, with values in arbitrary units.
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Figure 9. Magnitude plots of the four highest-energy coherent modes for each mutual intensity function.D
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Table 2
Quantitative measurements of the difference between the mutual intensity matrices reconstructed from ex-

perimental data and the aberration-free mutual intensity estimate. The quantities are defined in the same way
as Table 1, with the aberration-free mutual intensity estimate taken as the “truth.”

unregularized nuclear+support nuclear gradient window

Normalized RMSE 0.2363 0.2336 0.2317 0.2189 0.2176

Trace distance 0.1795 0.1717 0.1666 0.1743 0.1486
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Figure 10. Comparison of convergence across different algorithms for the experimental data. The vertical
axis is the difference between the value of f(X) and the lowest attained value of f(X) across all algorithms,
which in turn gives an upper bound on the suboptimality. On the left, the horizontal axis is the number of
iterations. On the right, the horizontal axis is time taken. The ×s mark where restarts occurred.

especially energy outside the region occupied by the slit. The gradient regularizer is good at
reducing the number of modes, but it oversmoothes the result—the third mode spills outside
of the region occupied by the slit and resembles neither the third mode from the theoretical
results nor that of the noisy results, and the sharp edges of the second mode are gone. The
image of the magnitude of the mutual intensity in Figure 8 is also quite blurry. While the
nuclear result is an improvement over the unregularized result, it is obvious that applying
additional prior information about the support yields a much better reconstruction, as can be
seen in the nuclear+support and window cases. However, the application of a hard support
constraint might not be suitable in this particular situation, as we do not know about the
extent of aberrations in the imaging system. Furthermore, window does manage to reconstruct
the third mode better than all of the other methods; nuclear+support still does not perform
as well and leaves excess energy in the fourth mode.
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The experimental data convergence results in Figure 10 are quite similar to the one for the
simulated data—our algorithm has an asymptotic convergence rate comparable to gradient
restart APG, albeit we again reach the fast convergence regime faster.

6. Conclusion. We have demonstrated that trace-regularized coherence retrieval can be
a powerful tool in recovering the mutual intensity when the inverse problem is ill-conditioned.
The generalization of the nuclear norm enables flexibility in applying a priori information,
leading to higher-quality reconstructions. Furthermore, we have demonstrated an efficient
numerical scheme for our coherence retrieval model, with performance at worst comparable to
the state-of-the-art adaptive restart APG scheme while simultaneously being provably globally
convergent, with mild conditions required for linear convergence.

This work uses very simple R matrices for regularization, with good results, but more flex-
ibility and power can be attained by leveraging the framework of tight frames through further
study. Furthermore, a method for exploiting redundant information in the measurements to
calibrate real-world Km’s as well as methods to reduce the memory and computational foot-
print for high-dimensional structured mutual intensity matrices are all potential avenues for
future exploration.

Appendix A. Proof of Theorem 4.2. Given η ∈ (0,+∞], define Φη to be the class of all
concave and continuous functions φ : [0, η)→ R+ that satisfy φ(0) = 0, φ is C1 on (0, η) and
continuous at 0, and φ

′
(s) > 0 ∀s ∈ (0, η).

Definition A.1. Let f : Rn → (−∞,+∞] be proper and lower semicontinuous. The function
f is said to satisfy the KL inequality at x̄ ∈ dom(∂f) if there exist η ∈ (0,+∞], a neighborhood
U of x̄ and a function φ ∈ Φη, such that for all x ∈ U∩[f(x̄) < f(x) < f(x̄) + η], the following
inequality holds:

(17) φ
′
(f(x)− f(x̄)) dist(0, ∂f(x)) ≥ 1.

A function f(x) is called a KL function if f satisfies the KL property at every x ∈ dom(∂f).

We will now show some basic properties of Algorithm 1 in the following lemmas and use them
to prove the global convergence of Algorithm 1.

Lemma A.2. Let {Xk} be the sequence generated by Algorithm 1. Then there exists a, b > 0
and w̄ ∈ [0, 1) such that for all k ≥ 0, we have

h(Xk)− h(Xk+1) ≥ a‖Xk −Xk+1‖2F(18)

dist(0, ∂h(Xk+1)) ≤ b(‖Xk+1 −Xk‖F + w̄‖Xk −Xk−1‖F).(19)

Proof. Define

(20) Wk+1 = Proxαk
g (Xk − αk∇f(Xk)).

Let Ω1 = { k : Xk+1 = Wk+1, k > 1 } and Ω2 = { k : Xk+1 = Zk+1 }, where Zk+1 is defined
in (11). Then Ω1 ∩ Ω2 = ∅ and Ω1 ∪ Ω2 = N. We consider two cases: (I) k ∈ Ω1 and (II)
k ∈ Ω2.
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Case I. k ∈ Ω1 implies that Xk = Yk, and hence h(Xk) − h(Xk+1) ≥ δ‖Xk −Xk+1‖2F
due to inequality (13) from the step size estimation process. From the optimality condition
of (20), we know

(21) 1
αk

(Xk −Xk+1)−∇f(Xk) ∈ ∂g(Xk+1).

The inequality (21) implies

dist(0, ∂h(Xk+1)) ≤
∥∥∥∇f(Xk+1) + 1

αk
(Xk −Xk+1)−∇f(Xk)

∥∥∥
F

≤ (L+ 1/αmin)‖Xk+1 −Xk‖F
since αk ≥ αmin > 0,∀k.

Case II. k ∈ Ω2. From the first-order optimality condition of (11), we have

(22) 1
αk

(Yk −Zk+1)−∇f(Yk) ∈ ∂g(Zk+1).

Then, together with the convexity of h and the fact that Xk+1 = Zk+1, we have

h(Xk)− h(Xk+1) ≥
〈
∇f(Zk+1) + 1

αk
(Yk −Zk+1)−∇f(Yk),Xk −Zk+1

〉
=
〈(

1
αk

I−A HA
)

(Yk −Zk+1),Xk −Zk+1

〉
≥ γ

αmax
‖Xk −Xk+1‖2F

since the inequality (12) holds and 0 < αmin ≤ αk ≤ αmax. Moreover, the inequality

dist(0, ∂h(Xk+1)) ≤
∥∥∥∇f(Zk+1) + 1

αk
(Yk −Zk+1)−∇f(Yk)

∥∥∥
F

≤ (L+ 1/αmin)(‖Xk+1 −Xk‖F + w̄‖Xk −Xk−1‖F)

holds where w̄ ∈ [0, 1) since (tk − 1)/tk+1 < 1 for all k ≤ kmaxres.
Consequently, the two cases yield that the inequality (18) holds with a = min(δ, γ/αmax) >

0 and that the inequality (19) holds with b = L+ 1/αmin > 0.

Denote w(X0) to be the limiting points of {Xk}. The next lemma shows that Algorithm 1
is subsequence convergent; i.e., all the convergent subsequences converge to a minimal point
when the generated sequence is bounded.

Lemma A.3. Let {Xk} be the sequence generated by Algorithm 1 starting from X0. If
{Xk} is bounded, then w(X0) is a nonempty compact set and w(X0) ⊆ X? 6= ∅.

Proof. Since the sequence {Xk} is bounded, w(X0) is nonempty. Meanwhile, w(X0) is
compact since it is the intersection of compact sets, i.e., w(X0) = ∩q∈N∪k≥q{Xk}, where
A denotes the closure of set A. Let X̄ be any point in w(X0) and {Xkj} be a convergent

subsequence of {Xk} such that Xkj → X̄ as j → +∞. Since R ∈ SN+ , h(X) ≥ 0 ∀X.
Together with the inequality (18), we know there exists some h̄ such that h(Xk) → h̄ as
k → +∞. Moreover, (18) implies

a

∞∑
k=0

‖Xk −Xk+1‖2F ≤
∞∑
k=0

(h(Xk)− h(Xk+1)) ≤ h(X0)− h̄ < +∞.
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So, we have ‖Xkj+1 −Xkj‖F → 0 and ‖Xkj −Xkj−1‖F → 0 as k → +∞. Moreover, from
the above facts, it is easy to prove that {Xkj+1} also converges to X̄. Together with (19), we
know dist(0, ∂h(Xkj+1)) → 0 as j → +∞. Let U be a neighborhood of X̄ with radius M .
Then we have

(23) h(X) ≥ h(Xkj+1)− dist(0, ∂h(Xkj+1))‖X −Xkj+1‖F ∀X ∈ U .

Since lim
j→+∞

h(Xkj+1) = h(X̄), taking the limit j → +∞ in (23), we have h(X) ≥ h(X̄) for

all X ∈ U . By the convexity of h, X̄ is a global minima of (7), i.e., 0 ∈ ∂h(X̄).

Based on the proof of Theorem 1 in [8], we can prove Theorem 4.2 as follows.

Proof. It is noted that the objective function h in (7) is a KL function as both f and
g are semialgebraic. Since {Xk} is bounded, w(X0) is not empty. Denote h(X) = h̄ for
all X ∈ w(X0) as 0 ∈ ∂h(X) ∀X ∈ w(X0) from Lemma A.3. Let {Xkj} be a convergent

subsequence of {Xk} such that Xkj → X̄ as j → +∞. Since Xk ∈ SN+ ∀k, the decreasing
property (18) yields lim

k→+∞
h(Xk) = lim

j→+∞
h(Xkj ) = h̄. Moreover, we assume that h(Xk) > h̄

for all k. Otherwise, if there exists some k0 such that h(Xk0) = h̄, from the decreasing
property (18) and h(Xk) ≥ h̄, we know Xk = Xk0 for all k ≥ k0. By the definition of w(X0),
we have lim

k→+∞
dist(Xk, w(X0)) = 0. Applying the uniformized KL property ([8], Lemma 6)

of h on w(X0), there exist k` > 0, η > 0 and φ ∈ Φη such that for all X̄ ∈ w(X0), we have

(24) φ
′
(h(Xk)− h̄) dist(0, ∂h(Xk)) ≥ 1 ∀k > k`.

By the inequality (19), (24) implies

(25) φ
′
(h(Xk)− h̄) ≥ 1

b(‖Xk −Xk−1‖F + w̄‖Xk−1 −Xk−2‖F)
∀k > k`.

By the concavity of φ (18) and (25), we know that

∆k,k+1 : = φ(h(Xk)− h̄)− φ(h(Xk+1)− h̄)

≥ φ′(h(Xk)− h̄)(h(Xk)− h(Xk+1)) ≥
a‖Xk+1 −Xk‖2F

b(‖Xk −Xk−1‖F + w̄‖Xk−1 −Xk−2‖F)
.

(26)

Define C = b/a > 0 in (26), and from the geometric inequality, we have

(27) 2‖Xk −Xk+1‖F ≤ ‖Xk −Xk−1‖F + w̄‖Xk−1 −Xk−2‖F + C∆k,k+1.

For any k > k`, summing up (27) from i = k` + 1, . . . , k, we have

2

k∑
i=k`+1

‖Xi −Xi+1‖F ≤
k∑

i=k`+1

‖Xi −Xi−1‖F + w̄‖Xi−1 −Xi−2‖F + C∆i,i+1

≤ (1 + w̄)

k∑
i=k`−1

‖Xi+1 −Xi‖F + C∆k`+1,k+1,

(28)

D
ow

nl
oa

de
d 

10
/2

9/
18

 to
 1

8.
10

1.
8.

12
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

702 C. BAO, G. BARBASTATHIS, H. JI, Z. SHEN, AND Z. ZHANG

where the last inequality is from the fact that ∆p,q + ∆q,r = ∆p,r for all p, q, r ∈ N. Since
φ ≥ 0 and w̄ ∈ [0, 1), the inequality (28) implies

(29) (1− w̄)
k∑

i=k`+1

‖Xi −Xi+1‖F ≤ (1 + w̄)

k∑̀
i=k`−1

‖Xi+1 −Xi‖F + Cφ
(
h(Xk`)− h̄

)
.

Let k → +∞ in (29), and thus
∑+∞

k=1‖Xk−Xk−1‖F < +∞, which implies that {Xk} converges
to an X̄, the sole member of w(X0). Hence, 0 ∈ ∂h(X̄).

Appendix B. Proof of Proposition 4.5. By the decreasing property (18), it is sufficient
to show that the sublevel set [h(X) ≤ h0] is bounded where h0 = h(X0). Given any X ∈
[h(X) ≤ h0], we have X ∈ SN+ and f(X) ≤ h0. Then there exists some Y ∈ CN×N such that
X = Y Y H with

(30) 1
2

∥∥∥A (Y Y H
)
− b
∥∥∥2
2

+ µ〈R,Y Y H〉 ≤ h0.

By the triangle inequality, (30) implies∥∥∥A (Y Y H
)∥∥∥

2
≤
√

2h0 + ‖b‖2,

as R ∈ SN+ and µ ≥ 0. Standard norm inequalities give∥∥∥A (Y Y H
)∥∥∥

1
≤
√
M
(√

2h0 + ‖b‖2
)

.

We note here that we can also write

A
(
Y Y H

)
= C

[
(AY )� (AY )∗

]
1,

where � denotes the elementwise (Hadamard) product, 1 ∈ RN of all 1’s, and C ∈ RM×MN is
a blockwise diagonal matrix whose mth block is equal to 1T/σm. Let σmax denote the minimal
value among the σm’s. Since the bracketed expression is the elementwise magnitude squared
of AY and hence nonnegative, we then have

‖AY ‖2F ≤ σmax

√
M
(√

2h0 + ‖b‖2
)

.

Since A has full column rank, we obtain that

‖Y ‖2F ≤
σmax

√
M

a2min

(√
2h0 + ‖b‖2

)
,

where amin > 0 the smallest nonzero singular value of A. Since X = Y Y H, the above
inequality implies that the nuclear norm of X is bounded:

‖X‖∗ ≤
σmax

√
M

a2min

(√
2h0 + ‖b‖2

)
,
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and hence X must be bounded assuming bounded b and finite σmax, and hence the sublevel
set must also be bounded.

Appendix C. Proof of Proposition 4.9. The dual problem of (7) is

(31) min
w,S

1
2‖w − b‖

2
2 + ιSN+

(S), s.t. A H(w) + S = R.

The Lagrangian function ` associated with (31) is

`(w,S;X) = 1
2‖w − b‖

2
2 + ιSN+

(S) + 〈X,A H(w) + S −R〉.

Since (31) is strongly convex with respect to w and S is uniquely determined by w, (31)
admits a unique solution, denoted by (w̄, S̄). By Slater’s condition and X? ∈ X?, the point
(w̄, S̄,X?) satisfies the KKT equations:

(32) 0 = w̄ − b+ A (X?), 0 ∈X? +NSN+ (S̄), 0 = A H(w̄) + S̄ −R.

Combining the first and the last equalities in (32), we know S̄ = (A H(A (X?) − b)) +R =
∇f(X?). It is from (15) and Proposition 3.2 in [16] that rank(X?) + rank(S̄) = N . Then,
applying the Corollary 3.1 in [16], we obtain that for any X̄ ∈ X?, ∂h is metrically subregular
at X̄ for 0.

Appendix D. Proof of Theorem 4.11. We first present a lemma that establishes the
relationship between metric subregularity of ∂h and the KL inequality at critical points.

Lemma D.1. Let h = f + g be defined as they are in (8), and assume X? 6= ∅. If ∂h is
metrically subregular at X̄ for 0, then h satisfies the KL inequality at X̄ with φ(x) = c

√
x for

some c > 0.

Proof. Since h is convex, we know X? = ∂h−1(0). If ∂h is metrically subregular at X̄ for
0, then there exist κ and ε > 0 such that

(33) dist(X,X?) = dist
(
X, ∂h−1(0)

)
≤ κdist(0, ∂h(X)), ∀x ∈ B

(
X̄, ε

)
.

Thus, for any X ∈ B(X̄, ε) ∩ [h(X) > h(X̄)], we have

h(X)− h(X̄) = h(X)− h(X?) ≤ ‖U‖F‖X? −X‖F, ∀X? ∈ X?, ∀U ∈ ∂h(X),(34)

where the inequality is a consequence of the convexity of h and the Cauchy–Schwartz inequal-
ity. Taking the infimum over all X? ∈ X? and over all U ∈ ∂h(X) in (34) and then using
(33), we have

h(X)− h(X̄) ≤ κdist(0, ∂h(X))2,

which implies h satisfies the KL property with φ(x) = 2
√
κx.

Now, inspired by the analysis in [2], we are ready to present the proof for Theorem 4.11.D
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Proof. Let X̄ ∈ X? be such that lim
k→+∞

Xk = X̄. Assume that h(Xk) > h(X̄) for all k.

Otherwise, by the decrease property (18), it is easy to know that h(Xk) = h(X̄) and Xk = X̄
for all k > k0 whenever h(Xk0) = h(X̄). Define rk = h(Xk)− h(X̄). The fact that Xk → X̄
as k → +∞ combined with Proposition 4.9 and Lemma D.1 establishes the existence of some
k` > 0 such that the following inequality holds:

(35) h(Xk)− h(X̄) ≤ κdist(0, ∂h(Xk))
2 ∀k > k`.

Applying (19) and (18) to (35), we obtain that

(36)

rk ≤ κb2(‖Xk −Xk−1‖F + w̄‖Xk−1 −Xk−2‖F)2

≤ 2κb2
(
‖Xk −Xk−1‖2F + w̄2‖Xk−1 −Xk−1‖2F

)
≤ 2κa−1b2

{
F (Xk−1)− F (Xk) + w̄2

[
F (Xk−2)− F (Xk−1)

]}
= c (rk−1 − rk + w̄ (rk−2 − rk−1)) ,

where c = 2κa−1b2 and the second inequality is from the geometric inequality. Since rk ≤ rk−1
for all k, the inequality (36) implies

rk ≤
c

1 + c
[(1− w̄)rk−1 + w̄rk−2] ≤

crk−2
1 + c

≤ rk`
(

c

1 + c

) k−k`−1

2

∀k > k`.

Furthermore, using (29), for all k̂ > k > k`, we have

(37)

(1− w̄)‖Xk̂ −Xk‖F ≤ (1− w̄)
∑k̂−1

i=k
‖Xi+1 −Xi‖F

≤ (1 + w̄)
∑k

i=k−2
‖Xi+1 −Xi‖F + b

√
rk/a

≤ (1 + w̄)
k∑

i=k−2

√
h(Xi+1)− h(Xi)

a
+ b
√
rk/a ≤ ν̃

√
rk−2,

where ν̃ = (1 + w̄)
√

2/a+ b/a. Letting k̂ → +∞ in (37), we thus know that for all k > k` + 2,

‖Xk − X̄‖F ≤ ν
√
rk`

(
c

1 + c

) k−k`−3

4

,

where ν = (1− w̄)−1ν̃.
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