
Full Core 3D Neutron Transport Simulation Using the

Method of Characteristics with Linear Sources
by

Geoffrey Alexander Gunow
B.S.E., University of Michigan (2012)

M.S., Massachusetts Institute of Technology (2015)
Submitted to the Department of Nuclear Science and Engineering

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computational Nuclear Science and Engineering

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018
© Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Nuclear Science and Engineering

March 1, 2018

Certified by .
Kord Smith

KEPCO Professor of the Practice of Nuclear Science and Engineering
Thesis Supervisor

Certified by .
Benoit Forget

Associate Professor of Nuclear Science and Engineering
Thesis Supervisor

Accepted by .
Nicolas G. Hadjiconstantinou

Professor of Mechanical Engineering
Co-Director, Computational Science and Engineering Program

Accepted by .
Ju Li

Battelle Energy Alliance Professor of Nuclear Science and Engineering
Professor of Materials Science and Engineering

Chair, Committee on Graduate Students

3D Method of Characteristics Simulation of Full-core Reactor

Problems

by

Geoffrey A. Gunow

Submitted to the Department of Nuclear Science and Engineering
on March 1, 2018, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computational Nuclear Engineering

Abstract

The development of high fidelity multi-group neutron transport-based simulation tools
for full core Light Water Reactor (LWR) analysis has been a long-standing goal of the
reactor physics community. While direct transport simulations have previously been far
too computationally expensive, advances in computer hardware have allowed large scale
simulations to become feasible. Therefore, many have focused on developing full core
neutron transport solvers that do not incorporate the approximations and assumptions
of traditional nodal diffusion solvers.

Due to the computational expense of direct full core 3D deterministic neutron trans-
port methods, many have focused on 2D/1D methods which solve 3D problems as a
coupled system of radial and axial transport problems. However, the coupling of radial
and axial problems also introduces approximations. Instead, the work in this thesis
focuses on explicitly solving the 3D deterministic neutron transport equations with the
Method of Characteristics (MOC).

MOC has been widely used for 2D lattice physics calculations due to its ability to
accurately and efficiently simulate reactor physics problems with explicit geometric detail.
The work in this thesis strives to overcome the significant computational cost of solving
the 3D MOC equations by implementing efficient track generation, axially extruded ray
tracing, Coarse Mesh Finite Difference (CMFD) acceleration, linear track-based source
approximations, and scalable domain decomposition. Transport-corrected cross-sections
are used to account for anisotropic without needing to store angular-dependent sources.

Additionally, significant attention has been given to complications that arise in full
core simulations with transport-corrected cross-sections. The convergence behavior
of transport methods is analyzed, leading to a new strategy for stabilizing the source
iteration scheme for neutron transport simulations. The methods are incorporated into
the OpenMOC reactor physics code and simulation results are presented for the full core
BEAVRS LWR benchmark. Parameter refinement studies and comparisons with reference
OpenMC Monte Carlo solutions show that converged full core 3D MOC simulations are
feasible on modern supercomputers for the first time.

3

Thesis Supervisor: Kord Smith
Title: KEPCO Professor of the Practice of Nuclear Science and Engineering

Thesis Supervisor: Benoit Forget
Title: Associate Professor of Nuclear Science and Engineering

4

Acknowledgments

This thesis was supported in part by the Center for Exascale Simulation of Advanced

Reactors (CESAR), a co-design center under the U.S. Department of Energy Contract

No. DE-AC02-06CH11357. The author was also a recipient of the DOE Office of Nuclear

Energy’s Nuclear Energy University Programs Fellowship. The research was partially

funded from the DOE Office of Nuclear Energy’s Nuclear Energy University Programs

(contract number: DE-NE0008578). This research made use of the resources of the High

Performance Computing Center at Idaho National Laboratory, which is supported by

the Office of Nuclear Energy of the U.S. Department of Energy and the Nuclear Science

User Facilities under Contract No. DE-AC07-05ID14517. Additionally, this research

used resources of the Argonne Leadership Computing Facility, which is a DOE Office of

Science User Facility supported under Contract DE-AC02-06CH11357.

I would like to thank my research advisors Kord Smith and Benoit Forget for their

incredible support and expanding my knowledge of both nuclear science and computa-

tional science. The flexibility they gave me allowed me to pursue my academic interests

in computing, greatly expanding both my knowledge and practical skills. Their guidance

was critical during my time at MIT, pushing me to conquer larger goals. They were

patient, supportive, and helpful when confronting difficult challenges throughout the

research. I am incredibly grateful for their support and leadership and hope to maintain

my collegial friendship with them as I embark on new challenges.

I am incredibly grateful for the support and guidance of my peers within the Com-

putational Reactor Physics Group (CRPG). I am especially grateful to Sam Shaner and

Will Boyd for their guidance in developing OpenMOC. Both were original developers of

the OpenMOC code for 2D simulations and have helped me learn good software habits

when developing OpenMOC. Sam Shaner also helped lay the groundwork for the 3D

MOC solver presented in this thesis. Additionally, his work on track laydown algorithms

was particularly helpful in implementing an efficient solver. Without his support, devel-

oping the 3D MOC solver have been tremendously difficult. In addition to his help in

developing OpenMOC, Will Boyd’s thesis on multi-group cross-section generation was

5

directly used in this thesis for determining the input multi-group cross-sections for the

BEAVRS benchmark. Both Sam Shaner and Will Boyd were extremely helpful when

problems arose during the development of the 3D MOC solver in this thesis.

I would also like to thank my family: my parents Nancy and Sandy and my sister

Genna. They have all been extremely supportive of my academic career and have been

there for me every step of the way. From early grade school studies through graduate

studies, they have always been encouraging. I would also like to thank my girlfriend

Ankita for being there for me during the last difficult years of my graduate studies.

She was incredibly patient during my long nights and weekends at the office, finishing

my graduate work. She helped me remain focused on my work during the past years,

allowing me to achieve my academic goals.

6

Table of Contents

Table of Contents . 7
List of Figures . 13
List of Tables . 17
List of Algorithms . 19
1 Introduction . 21

1.1 Motivation . 21
1.2 Background . 22
1.3 Literature Review of 3D MOC . 24

1.3.1 CACTUS . 24
1.3.2 DRAGON . 26
1.3.3 MOCFE . 27
1.3.4 MMOC . 28
1.3.5 MPACT . 29
1.3.6 APOLLO3 . 30
1.3.7 The LEAF Method . 33

1.4 Objective . 34
1.5 Thesis Outline . 35

Definitions and Acronyms . 21
2 The Method of Characteristics . 37

2.1 The Multi-Group Transport Equation . 37
2.2 Derivation of Continuous Angle MOC Equations 40
2.3 Track Discretization of the MOC Equations 41
2.4 Track Simplifications and Calculation of Volumes 46
2.5 Flat Source Approximation . 47
2.6 Track-based Linear Source Approximation 48

2.6.1 Derivation of the Linear Source Approximation 48
2.6.1.1 Calculation of Average Scalar and Angular Fluxes 49
2.6.1.2 Linear Source Defined By Region 50
2.6.1.3 Relating Linear Source Components To Moments 52
2.6.1.4 Calculation of Scalar Flux Moments 54

2.7 MOC Algorithm with Linear Sources . 58
2.7.1 Identifying Invariant Constants . 58
2.7.2 Transport Sweeps . 60

3 Software Design and Development . 63
3.1 OpenMOC Overview . 63

7

3.2 Object Oriented Design . 66
3.2.1 Geometry Class Updates . 67
3.2.2 TrackGenerator Class Updates . 67
3.2.3 Solver Class Updates . 68

3.3 Modular Structure . 69
3.3.1 MOCKernel Classes . 69
3.3.2 TraverseSegments Classes . 71

3.4 Computing Systems . 73
3.5 Performance Considerations . 73

3.5.1 Addressing Performance in Object-Oriented Modular Software
Design . 73

3.5.2 Data Organization . 74
3.5.3 Scratch Pads for Temporary Storage 75
3.5.4 Minimizing Parallel Contention . 76
3.5.5 Computing Exponentials . 77
3.5.6 Floating Point Precision . 81
3.5.7 Organizing Looping Structures . 83

3.6 User Input . 85
3.7 Version Control and Licensing . 86

4 Track Laydown . 87
4.1 2D Track Generation . 87
4.2 Angular Quadrature . 89

4.2.1 Azimuthal Quadrature . 90
4.2.2 Polar Quadrature . 90

4.3 3D Track Generation . 92
4.3.1 Requirements for Cyclic Track Laydown in 3D 92
4.3.2 The Modular Ray Tracing Method 94

4.4 OpenMOC Implementation . 98
4.5 Conclusion . 100

5 Ray Tracing . 101
5.1 Introduction to Ray Tracing . 101
5.2 Forming an Axially Extruded Geometry . 103
5.3 On-the-fly Axial Ray Tracing . 106

5.3.1 Ray Tracing Individual 3D Tracks 106
5.3.2 Ray Tracing 3D Track z-Stacks . 107

5.4 Performance Considerations . 110
5.4.1 Cache Considerations for Segment Traversal 111
5.4.2 Temporary Storage of Segments . 113

5.5 Results . 114
5.5.1 Simulation Parameters . 115
5.5.2 Single Thread Performance Comparison 115
5.5.3 Parallel Scaling . 116
5.5.4 Performance on Cetus . 117

5.6 Conclusion . 120

8

6 Domain Decomposition . 123
6.1 Geometrical Decomposition . 123
6.2 MPI Communication . 125

6.2.1 MPI Fundamentals . 126
6.2.2 The Buffered Synchronous Algorithm 127

6.3 MOC Inter-domain Communication . 129
6.3.1 Identification of Communicated Quantities 129
6.3.2 Communication Algorithm . 129

6.4 CMFD Inter-domain Communication . 132
6.4.1 The CMFD Eigenvalue Solver . 132
6.4.2 Identification of Communicated Quantities 133
6.4.3 Communication of Boundary Currents 134

6.4.3.1 Handling Edge and Vertex Currents 134
6.4.3.2 Communicating Edge and Vertex Currents 138

6.4.4 Communication of Boundary Scalar Fluxes 139
6.5 Results . 139

6.5.1 Strong Scaling Studies . 140
6.5.2 Weak Scaling Studies . 144

6.5.2.1 2D Lattice of the Single Assembly Geometry 145
6.5.2.2 3D Lattice of the SDSA Geometry 146

6.6 Conclusion . 147
7 Convergence of MOC Source Iteration . 149

7.1 Introduction . 149
7.2 Equivalence with Collision Probability Methods 150
7.3 Iteration Schemes . 151

7.3.1 Power Method . 151
7.3.2 Source Iteration . 152

7.4 Stabilization of Source Iteration . 154
7.5 Convergence Criteria . 156
7.6 Convergence of Source Iteration . 157
7.7 Convergence Results with CMFD Acceleration 158

7.7.1 Single Assembly Convergence with Water Reflectors 159
7.7.2 Single Assembly Convergence with Stabilization 160
7.7.3 Single Assembly without Axial Water Reflectors 161
7.7.4 Full Core Behavior . 162

7.7.4.1 2D Extruded Model . 162
7.7.4.2 Explicit 3D Model . 163
7.7.4.3 Explicit 3D Model with Linear Source 164

7.8 Conclusion . 165
8 MOC Parameter Sensitivity Studies . 167

8.1 Radial Sensitivity . 167
8.1.1 Core Radial Mesh Refinement . 168

8.1.1.1 Ring Divisions . 170
8.1.1.2 Sector Divisions . 171

8.1.2 Reflector Radial Mesh Refinement 172

9

8.1.3 Radial Ray Refinement . 176
8.1.3.1 Radial Ray Spacing Sensitivity 176
8.1.3.2 Azimuthal Angle Sensitivity 177

8.2 Axial Sensitivity . 179
8.2.1 Axial Source Height Sensitivity . 181
8.2.2 Axial Ray Spacing Sensitivity . 182
8.2.3 Polar Angle Sensitivity . 183

8.3 Axial Sensitivity on a Rodded Assembly . 184
8.3.1 Axial Source Height Sensitivity . 185
8.3.2 Axial Ray Spacing Sensitivity . 186
8.3.3 Polar Angle Sensitivity . 188

8.4 Comparison with Flat Source MOC . 189
8.5 CMFD Acceleration . 190

8.5.1 Axial Mesh Sensitivity . 191
8.5.2 Energy Group Sensitivity . 192

8.6 Domain Decomposition . 193
8.7 Conclusion . 194

9 Full Core Results . 197
9.1 Comparison with OpenMC . 197
9.2 Computational Performance . 200
9.3 Comparison with Flat Source MOC . 202
9.4 Parameter Refinement . 203
9.5 Conclusions . 203

10 Conclusions . 205
10.1 Summary of Work . 206

10.1.1 3D MOC Implementation . 206
10.1.2 Diagonal Stabilization . 208
10.1.3 Simulation Results . 209

10.2 Future Work . 210
10.2.1 Accuracy Improvements of Full Core Simulations 210
10.2.2 Further Full Core Analysis . 210
10.2.3 OpenMOC Improvements . 211
10.2.4 Spatial Source and Cross-section Approximations 212
10.2.5 Treatment of Angular Dependence of Total Cross-sections 212
10.2.6 Convergence of Source Iteration with Linear Sources and CMFD

Acceleration . 213
10.2.7 Reducing the Computational Requirements of Full Core Simulations213

Appendices . 214
A Matrix Representation of MOC . 215
B CMFD Acceleration . 223

B.1 Multigrid Methods . 223
B.2 Derivation of the CMFD Equations . 225
B.3 Solving the CMFD Equations for MOC Acceleration 232
B.4 Convergence Criteria . 234
B.5 Prolongation . 234

10

C Energy Group Structures . 239
D On-the-fly Ray Tracing by z-Stack . 245
E The BEAVRS Benchmark . 249

E.1 Introduction to the BEAVRS Benchmark . 249
E.2 Description of BEAVRS Models . 253

E.2.1 Full Core 3D Model . 254
E.2.2 Full Core 2D Model . 254
E.2.3 Single Assembly Model . 255
E.2.4 Single Assembly Model without Reflectors 256
E.2.5 SDSA Model . 256
E.2.6 Short Single Assembly Model . 257
E.2.7 Rodded Single Assembly Model . 257

F Cross-section Generation . 259
F.1 Cross-section Generation . 259
F.2 Angular Dependence of Total Cross-Sections 260
F.3 The Transport Correction . 261
F.4 Monte Carlo Cross-section Generation with OpenMC 266

References . 269

11

List of Figures

1-1 A depiction of the current multi-level simulation process for full core
reactor analysis . 23

4-4 An illustration of track cycles. Each plot highlights one of the 2D track
cycles labeled T i

R,k denoting the kth track cycle for the ith azimuthal angle. 93

4-6 An illustration of 2D periodic track cycles T i
P,k for the kth periodic track

cycle with the azimuthal index i in a sample geometry split into four
sub-domains. 95

5-1 Depiction of 2D ray tracing for superposition of all radial detail. 104

5-3 Illustration of the on-the-fly axial ray tracing process with axial inter-
sections colored in blue and radial intersections colored in red. For the
chosen track, the distance to the next axial intersection is denoted Lz and
the the distance to the next radial intersection is denoted Ls. 107

5-4 Illustration of the on-the-fly axial ray tracing process for an entire z-stack.
The green arrows denote the first track to traverse the highlighted Source
Region (SR)s calculated by Eq. 5.2 and the red arrows denote the last
tracks to traverse the SRs calculated by Eq. 5.3. In SR A, a group of tracks
traverse the entire 2D segment length. In SR B, one track traverses the
entire axial source height. 108

5-5 A depiction of optimizing 2D radial SR ordering for the track highlighted
in blue. A perpendicular track, highlighted in red, experiences a very
sub-optimal SR ordering over its traversal with larger strides between
sequential SRs. 111

5-6 A depiction of optimizing SR ordering for vertical intersections. SRs are
ordered sequentially in the axial direction, causing all vertical intersec-
tions to only have a stride of one SR (the stride of scalar flux, neutron
source, and moment information) in memory. 112

5-9 Strong scaling performance on the SDSA test problem using the Cetus
partition of the Argonne BlueGene/Q supercomputer with on-the-fly ray
tracing by z-stacks. 120

13

7-2 Convergence behavior of different stabilization schemes. TY Stabilization
refers to the approach presented by Tabuchi whereas Diagonal Stabi-
lization refers to the approach presented in this paper with damping
coefficient ρ. 158

7-3 Convergence behavior for a variety of Coarse Mesh Finite Difference
(CMFD) group structures with GC CMFD groups and without Method of
Characteristics (MOC) source iteration stabilization. 160

7-4 Convergence behavior for a variety of CMFD group structures with GC

CMFD groups and with Diagonal MOC source iteration stabilization (ρ =
1/4). 161

7-5 Convergence behavior for the single assembly without axial reflectors
with a variety of CMFD group structures with GC CMFD groups and
without MOC source iteration stabilization. 162

7-6 Convergence behavior of CMFD group structures with GC CMFD groups
and Diagonal MOC source iteration stabilization with stabilization coeffi-
cient ρ. 163

7-7 Convergence behavior of OpenMOC on the full core Benchmark for
Evaluation and Validation of Reactor Simulations (BEAVRS) benchmark
with and without Diagonal Stabilization (ρ = 1/4). 164

7-8 Convergence behavior of OpenMOC’s linear source solver on the full core
BEAVRS benchmark with and without Diagonal Stabilization (ρ = 1/4). 165

9-1 Pin-wise radial fission rate distribution for the BEAVRS benchmark formed
by OpenMOC with reaction rates axially integrated. 198

9-2 Axial fission rate distribution for the BEAVRS benchmark formed by
OpenMOC with reaction rates radially integrated. 198

9-3 Radial distribution of normalized fission rate errors of OpenMOC com-
pared with a reference OpenMC solution on the BEAVRS benchmark. . . 200

9-4 Axial error distribution of normalized fission rates of OpenMOC compared
with a reference OpenMC solution on the BEAVRS benchmark. 200

9-5 1/8 core folded assembly fission rate error of OpenMOC compared with
the reference OpenMC solution for the BEAVRS benchmark. 201

10-1 Convergence behavior of OpenMOC’s linear source solver on the full core
BEAVRS benchmark with and without diagonal stabilization. 208

E-1 A radial illustration of the BEAVRS benchmark with fuel pins colored by
enrichment. 250

E-2 Fuel rod pincell axial specification . 251
E-3 A radial view of the BEAVRS benchmark with regions colored by material.253
E-4 An axial view of the BEAVRS benchmark with regions colored by material.254
E-5 A radial view of the 1.6% enriched fuel assembly in the BEAVRS bench-

mark with regions colored by material. 255
E-6 An axial view of 1.6% enriched fuel assembly in the BEAVRS benchmark

with regions colored by material. 256

14

E-7 Control Rod Insertion . 257

F-1 A comparison of the η factor defined in Eq. F.27 for cross-sections gen-
erated with OpenMC and the CASMO-4 cross-sections for water in 70
energy groups. 268

15

List of Tables

3.1 Description of single node supercomputer architectures 73
3.2 MOC ray parameters for the SDSA test problem for computational profiling 79
3.3 Computational profiles of flat and linear source solvers on a single node

of the Falcon supercomputer . 80
3.4 Effect of floating point precision on performance of the SDSA test problem 82

5.1 MOC parameters for the SDSA test problem for ray tracing studies . . . 115
5.2 Single thread performance of ray tracing schemes using one node of the

Falcon supercomputer . 116
5.3 Performance on the SDSA test problem using full computational resources

of a single Falcon node with 36 cores . 118
5.4 MOC ray parameters for the SDSA test problem for ray tracing studies

on the Cetus partition of the Argonne BlueGene/Q supercomputer . . . 118
5.5 Performance on the SDSA test problem using full computational resources

of a single Cetus node with 16 cores . 119

6.1 MOC parameters for the strong scaling studies of the single assembly test
problem . 141

6.2 Expected MOC parameters to accurately converge a full core PWR fission
distribution . 143

6.3 Timing breakdown of the single assembly test problem with the linear
source solver domain decomposed into 20 axial domains 144

7.1 MOC parameters for single assembly convergence studies 157

8.1 Expected radial MOC parameters to sufficiently resolve the MOC fission
distribution using a linear source approximation 168

8.2 MOC ray parameters for core mesh refinement studies 168
8.3 MOC sensitivity to mesh refinement by radial rings in fuel, guide tube,

and moderator regions . 170
8.4 The MOC parameters used in the radial water reflector mesh refinement

studies . 173
8.5 MOC ray and mesh parameters for radial ray refinement studies 176
8.6 MOC ray and mesh parameters for radial ray refinement studies 180

17

8.7 MOC ray and mesh parameters determined to accurately and efficiently
simulate PWR problems . 195

9.1 Simulation accuracy of OpenMOC relative to an OpenMC reference solution199
9.2 Computational requirements of OpenMOC on the full core 3D BEAVRS

benchmark using the Mira partition of the Argonne BlueGene/Q super-
computer . 201

9.3 Computational profile of OpenMOC on the full core 3D BEAVRS bench-
mark using the Mira partition of the Argonne BlueGene/Q supercomputer202

9.4 Comparison of Flat and Linear source 3D MOC solvers on the BEAVRS
benchmark with fixed mesh and ray spacing parameters 203

9.5 Differences observed from refining 3D MOC parameters for the BEAVRS
benchmark relative to the first solution . 203

10.1 Simulation results of OpenMOC on the full core 3D BEAVRS benchmark
using the Mira partition of the Argonne BlueGene/Q supercomputer
compared with a reference OpenMC solution 209

10.2 Axial MOC ray and mesh parameters determined to accurately and effi-
ciently simulate the BEAVRS benchmark . 210

C.1 One group energy boundaries. 239
C.2 Two group energy boundaries. 239
C.3 Four group energy boundaries. 239
C.4 Eight group energy boundaries. 240
C.5 Eleven group energy boundaries. 240
C.6 Sixteen group energy boundaries. 240
C.7 Twenty-five group energy boundaries. 241
C.8 Seventy group energy boundaries. 242

18

List of Algorithms

3-1 Kernel for applying MOC linear source equations on a segment 84
4-1 3D track generation using the Modular Ray Tracing Method 99
6-1 Buffered Synchronous algorithm for transferring information with neigh-

boring nodes . 128
6-2 MOC boundary angular flux communication algorithm for transferring

information with neighboring nodes . 132
B-1 MOC Eigenvalue Solver with CMFD Acceleration 238

19

Definitions and Acronyms

API Application Programming Interface

BEAVRS Benchmark for Evaluation and Validation of Reactor Simulations

BP Burnable Poison

CCM Chord Classification Method

CSG Constructive Solid Geometry

CMFD Coarse Mesh Finite Difference

FLOP Floating Point Operation

GMRES Generalized Minimal Residual

HZP Hot Zero Power

LWR Light Water Reactor

MOC Method of Characteristics

MPI Message Passing Interface

MRT Modular Ray Tracing

s-MRT Simplified Modular Ray Tracing

PWR Pressurized Water Reactor

RMS Root Mean Square

SR Source Region

SWIG Simplified Wrapper Interface Generator

20

Chapter 1

Introduction

1.1 Motivation

Numerical simulation of neutron physics inside a nuclear reactor is fundamental to

the design and operation of nuclear power plants. Neutron physics simulations are

necessary for determining core reactivity, power distributions, isotopic depletion, and

transient behavior. Accurate and predictive simulations can improve the operation of

current nuclear reactors by reducing overly-conservative safety margins, incorporating

accident tolerant fuels, and extending to longer operating cycle lengths. In addition,

predictive neutron physics simulations are critical to the evaluation of advanced reactor

designs, many of which operate in very different physics regimes than currently operating

reactors.

Currently operating nuclear reactors often rely on nodal diffusion methods to sim-

ulate neutron physics. These methods are very fast and efficient, but have difficulty

capturing localized details. In current generation nuclear reactor designs, such as the

Westinghouse AP 1000™Pressurized Water Reactor (PWR), there is much greater geo-

metric and material complexity than previous generations. These new complexities, such

as axial and radial enrichment zoning and partial length Burnable Poisons (BPs), allow

for greater efficiency and longer cycle lengths by reducing power peaking. However, the

increase in axial and radial heterogeneity poses significant issues for nodal methods.

Specifically, nodal diffusion solvers often assume smooth axial and radial variation of

21

scalar flux distributions within fuel assemblies. Therefore, these complex features lead

to axial and radial profiles which are not smooth enough for modern nodal methods to

be accurate.

While higher-fidelity methods are capable of resolving local gradients and fine

heterogeneous detail, they are often significantly slower. This can be prohibitive in

reactor analysis where many simulations are required in a relatively short time frame.

The goal of high-fidelity modeling in this realm is to create a tool that can benchmark

and inform the development of nodal diffusion solvers. Even as a benchmark tool,

high-fidelity neutron physics simulations can be too computationally intense to be

useful. Therefore, there is a need for 3D high-fidelity neutron physics simulations

that are accurate and reliable, but also computationally efficient. This thesis focuses

on developing a high-fidelity 3D MOC neutron transport method capable of forming

benchmark solutions in reasonable computational time.

1.2 Background

Nodal methods are the standard for full core neutron physics simulation in modern

reactor analysis. In order to form reasonable solutions, these simulations rely on accurate

multi-group cross-section data formed from a multi-level approach to decouple the energy,

angular, and spatial dimensions as depicted in Figure 1-1 [1]. The multi-level approach

typically combines high-fidelity models of energy self-shielding physics with low fidelity

geometric models of unique core components. The energy complexity is then reduced

as larger geometric models are considered.

The first stage of typical Light Water Reactor (LWR) multi-group cross-section gener-

ation attempts to capture self-shielding effects within an infinite array of fuel pins. This

step typically condenses the continuous energy behavior of cross-sections to a ≈ 100

energy group cross-section set. The next stage captures spatial self-shielding effects

between pins by using this cross-section set to simulate every unique fuel assembly

assuming an infinite lattice and further reducing the group structure to a few group

cross-section set. Lastly, these cross-sections are used in a full core nodal diffusion solver

22

Figure 1-1: A depiction of the current multi-level simulation process for full core reactor
analysis

where the neutron cross-sections over each assembly are homogenized. The resulting

coarse mesh solution is then superimposed onto the individual single assembly solution

to reconstruct local pin-powers.

Each step of the multi-level approach introduces assumptions and approximations. In

order to develop a high-fidelity neutron transport simulation tool, these approximations

should be removed. Monte Carlo simulations incorporate minimal approximations and

are often viewed as the gold standard for accurate neutron physics simulation. However,

an extremely large number of Monte Carlo histories is required to produce accurate

pellet-level fission rates, leading to a very large computational cost.

An alternative approach can be taken whereby the full core is directly simulated using

many-group transport methods. The multi-group cross-sections can be formed from

direct Monte Carlo simulation of the full core problem where reaction rate tallies within

regions are used to form accurate approximations of the multi-group cross-sections.

Since these cross-section tallies can converge significantly faster than the Monte Carlo pin-

powers using machine learning techniques [1], the computational cost of cross-section

generation can be significantly reduced.

While the use of transport methods in place of nodal diffusion methods leads to a dra-

matic increase in computational requirements for reasonable solutions, recent advances

in computational power for both engineering clusters and large scale supercomputers

have enabled the computation of extremely large scale reactor simulations.

23

One such transport method is the Method of Characteristics (MOC), which discretizes

the neutron transport equation using many characteristic neutron paths and directions

which traverse the reactor geometry. MOC has seen widespread use for the 2D lattice

physics analysis of single assemblies, as described previously in the multi-level approach.

Additionally, 2D radial core slices of reactor geometries have been simulated using MOC.

However, for reactors with significant axial heterogeneity, 3D methods should be used

to capture the axial detail.

Due to the computational expense of direct full core 3D deterministic neutron trans-

port methods, many have focused on 2D/1D methods [2–7] which solve 3D problems

as a coupled system of radial and axial transport problems. A chosen number of radial

slices are simulated with some 2D transport method, such as 2D MOC. Transverse

leakage terms couple the radial problems through a 1D transport or diffusion method.

While this approach reduces the computational burden in comparison with direct 3D

transport simulations, it also introduces approximations. Instead of making such 2D/1D

approximations, the work in this thesis focuses on explicitly solving the 3D deterministic

neutron transport equations with MOC.

1.3 Literature Review of 3D MOC

Previously, others have attempted to simulate reactor physics problems using 3D MOC

but have been limited to small models due to computational constraints of their particular

3D MOC implementations. Therefore, this thesis concentrates on efficiently solving the

3D MOC system of equations in order to make full core calculations feasible. Here, a

variety of past and present 3D MOC implementations are discussed.

1.3.1 CACTUS

CACTUS was one of the first developed 2D MOC neutron transport simulators [8]. It

is part of the WIMS core physics simulator and has been the standard lattice physics

code used by the simulator for over 20 years. Recently, a new 3D MOC solver named

CACTUS3D was added [9], reusing much of the CACTUS code. 3D geometry and ray

24

tracing abilities were added for CACTUS3D, with much of the framework of the flux

solver imported from CACTUS. Since CACTUS3D observed significant changes in track

laydown for small changes in tracking parameters, a new 3D MOC solver was created

as the main simulation tool in WIMS for solving core calculations [10]. This solver is

named CACTUSOT since rays are treated in a “once-through” approach.

In the once-through scheme, each track assumes zero incoming angular flux and is

only followed until it reaches the boundary of the geometry. Therefore this approach is

limited to core problems with vacuum boundaries. Since tracks do not pass their angular

fluxes to other tracks, as would be the case in problems with reflected boundaries, a cyclic

track laydown with track linking at boundaries does not need to be enforced. Instead,

tracks are generated to uniformly fill the geometry. This is accomplished by generating

parallel tracks at every angle on each boundary surface, separated by constant spacing

in all directions. This approach was largely adopted due to concerns over untracked

elements and calculation of element volumes.

Both CACTUS3D and CACTUSOT explicitly save tracking data for segments. Whereas

CACTUS3D stores tracking information for every segment, CACTUSOT uses a slice-based

geometry treatment. In this approach, the geometry is split into different slices. Each

slice represents the geometry over a certain axial interval. In common reactor problems

there might only be a few unique slices. Tracks are generated on each slice rather than

the full problem and the tracking data is only stored for each unique slice.

Since tracks are generated for each slice and are not guaranteed to align at slice

interfaces, this creates an issue for determining connecting angular fluxes. This is

overcome by using track cross-sectional area and outward-directed angular fluxes to

compute leakage rates out of the slices on each radial mesh cell on the interface boundary.

Inward-directed angular fluxes are then computed by using tack cross-sectional areas

and the computed leakage rates.

CACTUSOT also implements features found in CACTUS including CMFD acceleration

restricted to Cartesian mesh, treatments for both transport-corrected P0 and anisotropic

P1 scatter, and a diamond difference representation of the neutron source along track

segments. Parallelism is introduced with Message Passing Interface (MPI) in which work

25

is decomposed by track direction.

1.3.2 DRAGON

DRAGON is a neutron transport code concentrating on lattice physics calculations for

CANDU reactors. Since CANDU reactors contain fuel elements with reactivity control

devices placed perpendicularly to the fuel channels, accurate calculations require full 3D

treatment of the physics. Therefore, a 3D MOC solver named MCI [11]was implemented.

MCI solves the flat source MOC equations using a nested iterative process. In outer

iterations, the fission source is updated along with the eigenvalue estimate. During inner

iterations, the scattering source is updated and transport sweeps yield currents and

fluxes. Outward currents are tallied at boundaries with an albedo boundary condition

yielding new inward angular fluxes for the following inner iteration. Acceleration is

provided with a self-collision rebalancing scheme in which the energy distribution is

recalculated during every inner iteration.

A track merging technique was also implemented in which tracks crossing the same

regions in the same order are merged. While this may be useful for simple geometries,

there would not be many tracks that have the same crossings in complex geometries.

Typical full core problems have many radial complexities, reducing the effectiveness of

this scheme.

Distributed memory parallelism was also introduced into MCI [12] in which each

process received a copy of all scalar fluxes and a group of tracks to handle. After

completing each transport sweep, a global reduction communicates flux information

through a sum operation on every region. Angular fluxes were also communicated

through global broadcasts. In order to optimize load balancing, many partitioning

schemes for the tracks across processes were tested. While the parallel efficiency was

decent for the tested cases, the largest case only used 8 CPU cores. For the time of the

tests, this was standard. However, for modern parallel computing, this number of cores

is quite small, especially for large scale neutron transport calculations.

26

1.3.3 MOCFE

MOCFE is a finite element MOC code created at Argonne National Laboratory [13]. Using

a finite element approach, the MOC system of equations with a flat source approximation

are solved in matrix form. The iteration scheme consists of iterations over between-

group and within-group components. In this nested iteration scheme, the inner iterations

iteratively converged the within-group flux solution. Each inner iteration is a transport

sweep. Though this scheme is not unusual, it does increase the number of transport

sweeps needed to converge the problem.

MOCFE also does not link tracks at boundaries. Due to this implementation decision,

approximations are required to treat reflective or periodic boundary conditions. However,

the lack of track linking requirements allows for less constraints when constructing a

quadrature set. MOCFE implements a quadrature set in which projections to spheri-

cal harmonics of the scattering kernel are exactly preserved. Tracks are also created

symmetric in z with each track representing both forward and backward angular fluxes.

The parallelism in MOCFE is implemented with MPI [14] parallelization over trajec-

tories such that each process receives a copy of all source regions. On every transport

sweep, each process computes the variation of angular fluxes over its trajectories and

accumulates their contribution to all source regions. In order to communicate the results,

global reductions are required at the end of each transport sweep, which can be quite

expensive.

Application of MOCFE to large scale problems distributed across many processors

was studied at length [15]. In order to increase scalability, the entire space, angle,

and energy variables were decomposed across MPI processes. While this does indeed

increase the parallelism, it can lead to dramatically inefficient designs due to poor cache

efficiency.

The decision to explicitly store MOC information in matrices can also lead to poor

performance. Typical efficient MOC implementations implicitly compute matrix elements

of the transport equations on-the-fly rather than storing the data in some typical matrix

representation. MOCFE uses a Generalized Minimal Residual (GMRES) linear solver to

27

solve the MOC equations. While GMRES can be quite efficient for arbitrary matrices, the

MOC application is quite unique in which matrices can be easily inverted in a transport

sweep due to the matrix structure. A GMRES implementation oblivious to this structure

can incur significant overhead.

Since the computational demands of MOCFE were too large in comparison with other

neutron transport simulation tools, the 3D MOC solver was abandoned when the code

was merged into the PROTEUS neutron simulation suite. Instead of using a 3D MOC

solver, the code was re-purposed to solve the transport equations using approximate

2D/3D methods in PROTEUS-MOC [16].

1.3.4 MMOC

Liu created a 3D MOC implementation based on modular ray tracing [17] named MMOC.

His track laydown algorithm, which allows natural track linking over modular domains, is

used in this thesis and thoroughly discussed in Chapter 4. This track laydown is efficient

with only slight adjustments needed from desired user parameters, allowing for greatly

reduced computational costs in comparison with other track laydown methods which

are less flexible and require extra tracks to be inserted in order to ensure track linking at

boundaries [18]. By considering entire 2D cycle lengths rather than individual 2D track

lengths when forming track linking relationships, the requirements are significantly less

stringent, allowing for the added flexibility.

In this thesis, the modular ray tracing algorithm for track generation is useful for

linking tracks at domain boundaries during domain decomposition across many nodes.

However, Liu used the modular tracking mainly to reduce ray tracing costs. MMOC

approaches the MOC problem by splitting it into many modules. Over many of the

modules, Liu notes that the geometry and track laydown are the same. Therefore, typical

cells are identified and ray tracing is only computed for unique cells. For applications in

this thesis, ray tracing costs can be trivial in comparison with the overall work of solving

the MOC equations so the ray tracing aspect of MMOC is less applicable.

28

1.3.5 MPACT

Kochunas implemented a 3D MOC solver in MPACT [19, 20], the standard neutron

transport code in the VERA core simulator [21]. This was the first 3D MOC solver

implemented with the intention of solving full core PWR problems with full geometric

detail. The solver used many of the common principles and structure of 2D MOC solvers

at the time. For instance, it used a flat source approximation and explicitly stored

segment information during a pre-processing ray tracing step at the beginning of the

solver. Unlike other solvers, it used a strict source iteration scheme without any inner

iterations.

The track laydown implemented in the 3D MOC solver relied on the Modular Ray

Tracing scheme [17]. However, simplifications were made leading to the s-MRT method,

discussed further in Chapter 4. One of the reasons presented for these simplifications

was to avoid tracks intersecting corners. While the s-MRT method leads to a much

simpler track laydown algorithm, it has serious drawbacks. Specifically, the axial ray

spacing must be finer than the radial ray spacing. This is problematic for full core PWR

problems in which there is much greater geometric detail in the radial direction than the

axial direction. This can lead to an artificial increase in the number of tracks required

to resolve typical PWR problems. Since the computational cost (both in memory usage

and run time) scales linearly with the number of tracks, any large artificial increase in

the number of tracks can significantly hinder the computational performance. Published

MPACT results show only a modest artificial increase in the number of tracks, but a fine

axial ray spacing was assumed to be necessary.

One of the benefits of using a modular ray tracing track laydown is the ability to

naturally link tracks at domain boundaries when using spatial domain decomposition.

The 3D MOC solver in MPACT implemented both spatial domain decomposition and

angular domain decomposition using non-blocking MPI communication [14]. For spatial

domain decomposition, the geometry is decomposed into N sub-domains where N

is equal to the number of MPI processes per number of angular decompositions. An

algorithm is implemented to subdivide the geometry in order to maximize the volume-

29

to-surface area ratio of each sub-domain, reducing the relative communication costs

which scale with surface area. For angular domain decomposition, each MPI process

replicates the scalar fluxes of the associated sub-domain, using global reductions to sum

all of the tallied contributions to local scalar fluxes across all processes. This reduction

operation was shown to be a bottleneck in the parallel scalability of the algorithm.

During each transport sweep, the sweeping algorithm first loops over energy groups,

then over angles within the angular sub-domain, then over all tracks within the angular

sub-domain in parallel using OpenMP. In this shared memory parallelism implementa-

tion, each thread receives a full copy of the scalar fluxes within the sub-domain. This

replication of information allows contention between threads to be reduced, but also

greatly increases the memory footprint of storing scalar fluxes. In addition, a reduction

operation is required to sum together all of the local thread scalar fluxes.

CMFD acceleration was implemented in MPACT using the GMRES linear solver in

PETSc with a block ILU preconditioner to solve the associated linear system. The solver

was domain decomposed spatially and a procedure was implemented to update angular

fluxes at sub-domain boundaries [22].

Various benchmarks were evaluated for the MPACT 3D MOC solver. These bench-

marks include the Takeda benchmark [23] and the C5G7 benchmark [24]. Unfortunately,

the results did not seem to match well with the reference solution. To understand per-

formance on realistic PWR problems, a realistic PWR assembly was constructed and

modeled.

A theoretical computational performance model was developed, showing a very

high computational cost for full resolving a full core PWR problem using the MPACT

implementation of 3D MOC. No attempt was made to perform full core PWR simulations

due to the exorbitant computing requirements.

1.3.6 APOLLO3

APOLLO3 is a nuclear reactor analysis code which recently incorporated a 3D MOC

solver named TDT [25]. TDT solves the MOC equations in a nested iterative process,

30

much like the MCI solver in DRAGON. However, TDT adds another layer of iterations.

In the outer iterations, new fission sources are computed. Within each outer iteration,

thermal iterations are performed in which the scattering source is recomputed. Within

each thermal iteration, internal iterations are conducted in which the spatial distribution

is resolved. These innermost iterations require computing transport sweeps at every

step.

One of the main differences between TDT and other MOC solvers is the explicit

treatment of boundaries. TDT classifies boundaries as open or closed. At open boundaries

the angular flux is known. For example, at vacuum boundaries the incoming angular

flux is known to be exactly zero. At closed boundaries, such as reflective or periodic

boundaries, the angular flux is unknown. Whereas many solvers treat closed boundaries

by estimating the angular flux as being the value from the previous iteration, TDT

explicitly computes the angular flux at boundaries by following tracks from an open

boundary (where the angular flux is known) along a connecting cycle until it reflects

onto the track of interest.

This boundary treatment is of course not possible if the geometry is encompassed

entirely by closed boundaries. In these cases, TDT guesses an initial angular flux and

follows the track cycle until the initial guess becomes irrelevant. It is unclear whether

this is only implemented for cases with all closed boundaries or if this technique is used

more generally.

Another critical feature of TDT is the Chord Classification Method (CCM). In this

method, storage requirements are reduced by characterizing segments (or chords) into

different groups: horizontal, vertical, and mixed. For horizontal and vertical chords,

their lengths can trivially be computed, and are referred to as recognized chords. In

addition, all recognized chords of the same type (horizontal or vertical) of the same

region will have the same length. Some mixed chords may become recognized chords

under certain circumstances, but it is far more difficult than horizontal or vertical chords.

During an initial ray trace, the tracking information is compactly stored in Hit Surface

Sequences, which only detail the type of intersections a track observes. These sequences,

which only consist of one integer per segment or chord, can determine both the type of

31

intersections encountered (recognized or unrecognized) as well as the regions which

the segments overlap.

For all unrecognized chords, segment lengths as well as exponential terms are com-

puted and explicitly stored. During transport sweeps, they are simply loaded from

memory. For all recognized chords, their segment lengths and exponential terms are

computed on-the-fly during the transport sweeps with no upfront storage of segment

information. Before the transport sweep an interpolation table is stored for the expo-

nential term. During the transport sweep, this table is used for the computation of

exponential terms for recognized chords.

The effectiveness of the storage technique relies on many recognized chords. Many of

the tests conducted on CCM have a high ratio of axial source height to axial ray spacing,

therefore having many recognized chords, and yielding favorable computational results.

However, if the axial ray spacing could be coarsened while maintaining solution accuracy,

the number of potential recognized chords would be significantly lowered.

Initially, the TDT solver was dependent on a flat source approximation. Its accuracy

was verified on a variety of benchmark problems [26,27]. More recently, it has been

extended to allow for axial polynomial expansions of the source [28]. The radial

variation of the neutron source within each source region is still assumed to be flat. The

authors cite radial heterogeneity and complexity for not using a higher order source

approximation in the radial plane. The higher order source approximation requires

significantly more computational work per segment but allows a much coarser axial

mesh to be used. CCM is emphasized for its ability to mitigate the additional work

required for the higher order source approximation as it allows for chords of equal

lengths to be efficiently computed. While developed for arbitrary order axial polynomial

expansions, the published results focus on quadratic axial sources.

The TDT implementation is parallelized with OpenMP. The work is divided in a

task-based parallelism approach. Each thread receives a set of tracks and a full copy

of the scalar flux accumulators. When a given thread changes angle, the local copy

of scalar flux accumulators are synchronized with the global scalar flux accumulator.

Since this synchronization can be a bottleneck for parallel scaling, tracks are sorted into

32

groups to minimize the frequency of changing angle.

The TDT implementation has also recently extended its capabilities by adding DPn

synthetic acceleration which supports polynomial flux fields [29]. This is perhaps

the first publication of explicitly treating higher order spatial source components with

acceleration techniques.

1.3.7 The LEAF Method

A successor to the ASMOC3D method [30], the LEAF method [31,32] approaches the 3D

MOC problem in a very unique manner. Instead of basing the method on characteristic

lines, vertically oriented characteristic planes are used instead. These methods ray trace

over certain axial zones, much like a 2D/1D method, assuming an axially extruded

geometry in which every radial plane has the same meshing. The vertically oriented

characteristic planes are chosen to link at interfaces – both between axial zones and

between connecting planes along the same radial direction within the current axial

zone. In the LEAF method, the angular flux at interfaces is represented with a 2nd order

Legendre expansion.

The equations are cast in terms of collision probabilities, escape probabilities, and

transmission probabilities for the planes. Numerical integration is applied for each

characteristic plane in order to determine these probabilities. This numerical integration

is accomplished by laying axially stacked tracks across the plane for a given polar angle.

These tracks form the abscissa of the integration.

At this point, the method described is very similar to 3D MOC. Aside from the

angular flux being represented at interfaces by a 2nd order Legendre expansion, the

numerical integration by laying axially stacked tracks in the plane causes the method

to be equivalent to filling the geometry full of characteristic lines. It is essentially a

re-working of the equations to cast the problem in a different context.

However, the main difference for practical application comes when these probabilities

are computed as part of a pre-processing step. Rather than explicitly computing the

probabilities (collision, escape, and transmission) of all vertical planes in the problem,

33

the probabilities are computed and tabulated for a range of conditions and interpolated

during transport sweeps. The interpolation parameters are: polar angle, axial height

of the vertical plane, radial thickness, and total cross-section. By creating the lookup

tables only using the chosen abscissa, the amount of work can be greatly reduced.

Since the goal of this method is to treat coarse axial regions, higher order source

approximations are introduced. Specifically, sources are formed up to 2nd order in

the axial direction and first order in the radial direction. These higher order source

approximations allow for a significantly coarsened mesh while maintaining accuracy,

reducing the computational requirements of the method.

So far the method has only been tested on somewhat small problems. However, it

shows great potential. As long as the required probabilities can be accurately interpolated

from somewhat coarse abscissa and the 2nd order Legendre approximation of angular

flux is sufficiently accurate, this method should outperform 3D MOC methods. However,

if a very large number of abscissa are required or the 2nd order Legendre approximation

is not sufficient, then explicit 3D MOC methods would be preferable.

1.4 Objective

This thesis seeks to develop an efficient 3D MOC solver which can solve large 3D reactor

physics problems. The behavior of 3D MOC and the sensitivity of its solution to input

parameters, such as mesh refinement, is studied on a variety of realistic reactor physics

problems. However, the primary goal of this thesis is to directly use 3D MOC to accurately

and efficiently simulate full core LWR problems. While simulation accuracy is highly

dependent on input cross-section data, accuracy in this context refers to fully converging

the problem in both space and angle for a cross-section set which allows for reasonable

accuracy. The computational scale of full core LWR problems is extremely large with

approximately 100 billion region-wise unknowns, assuming a 70 group cross-section

library with a geometry defined by a 17× 17 assembly lattice, each with 17× 17× 200

pin-cells, and each pin-cell containing 24 source regions with one average scalar flux

and three scalar flux moments for each group in each source region. Additionally, the

34

angular space must be sufficiently covered for each region, leading to approximately 100

trillion angular-dependent unknowns for a segment density of ten thousand segments

per source region.

1.5 Thesis Outline

This thesis starts with an introduction to the MOC method and derives its associated

equations in Chapter 2. The traditional flat source approximation is discussed and a 3D

track-based linear source approximation is introduced. Then, the implementation of

the MOC algorithm in OpenMOC is discussed. An emphasis is placed on how the imple-

mentation aspects allow for computational efficiency. Chapter 3 introduces the software

design of OpenMOC and how the internal structure was re-designed to accommodate

3D MOC methods studied in this thesis. Chapter 4 discusses the efficient modular track

laydown which reduces the total number of tracks required to converge common reactor

physics problems. Chapter 5 discusses the on-the-fly ray tracing used in OpenMOC to

reduce the total memory footprint and increase cache efficiency. Chapter 6 discusses the

efficient spatial domain decomposition introduced for both the MOC and CMFD solvers

in OpenMOC.

With these components allowing for efficient computation, the convergence aspects

of MOC are studied, illuminating issues with the traditional source iteration process with

transport-corrected cross-sections. Significant discussion is given to the iteration process

used to converge the equations from a linear algebra perspective. A diagonal stabilization

fix is introduced in Chapter 7 which alleviates the convergence issues through damping

of MOC flux updates. The effect of CMFD acceleration is also discussed.

Finally, simulation results of OpenMOC are presented on PWR geometries. Chapter 8

conducts sensitivity studies of MOC parameters on cut-outs of the BEAVRS benchmark.

The optimal parameters are then used in Chapter 9 for full core simulations of the

BEAVRS benchmark. Resulting fission distributions are compared with an OpenMC

reference solution and slight sensitivity studies are also conducted for the full core in

order to ensure the chosen MOC parameters sufficiently converge the full core fission

35

distribution. The thesis ends with a summary of progress made in this research for full

core deterministic transport methods in Chapter 10.

36

Chapter 2

The Method of Characteristics

Standard MOC solvers, such as the one developed and discussed in this thesis, solve

the multi-group transport equations, relying on multi-group cross-sections, allowing the

computation of reaction rates across any reactor geometry. This chapter discusses the

MOC method, including both theoretical and practical aspects.

First, the multi-group transport equation is discussed. Then, the MOC equations are

derived from the multi-group transport equation for both flat and linear source approxi-

mations. This chapter highlights the important equations for an MOC implementation

and algorithmic considerations are noted.

2.1 The Multi-Group Transport Equation

The ultimate goal in neutron transport analysis is to determine the rates of neutron-

induced reactions throughout the reactor core. Neutrons can undergo various reactions

when they strike materials of the reactor core, often referred to as target nuclei. These

interactions include scattering, capture, and fission, though others exist as well, and

understanding neutron behavior is critical to determining the reaction rates.

The neutron population can be categorized by location r, direction of travel Ω, and

energy. In this thesis, multi-group transport is studied in which the continuous energy

variable has been discretized into a number of energy groups. Reaction rates Rg
X of

type X in energy group g can be calculated with multi-group cross-sections Σg
X and the

37

neutron angular flux ψg as

Rg
X (r,Ω) = Σg

X (r,Ω)ψg(r,Ω) (2.1)

where the neutron angular flux ψg characterizes neutrons along a certain direction.

Often, the cross-sections are independent of angle and integrated reaction rates over

all angles are desired. This motivates the determination of neutron scalar fluxes φg(r),

defined by

φg(r) =

∫

4π

dΩψg(r,Ω), (2.2)

to often be the goal of neutron simulations. Cross-sections have a continuous energy

dependence but reaction rates can be preserved with multi-group cross-sections through

the use of the scalar flux. Specifically, the multi-group cross-sections Σg
X for group g

with energy bounds Eg and Eg−1 are formed using the continuous-energy scalar flux φ

as

Σg
X (r) =

∫ Eg−1

Eg
dEΣX (r, E)φ(r, E)
∫ Eg−1

Eg
dEφ(r, E)

. (2.3)

It is important to note that the scalar flux is the solution of neutron transport simulation.

Therefore, the correct scalar flux solution is necessary in order to form accurate cross-

sections. Since such knowledge is not practical, approximations of the neutron flux are

used to form multi-group cross-sections [1]. A depiction of this process is shown in

Figure 2-1. Once multi-group cross-sections are formed, a balance of neutron losses and

gains can yield the steady-state neutron transport equations. The relevant losses are

net neutron leakage and total reaction rate with materials. The relevant neutron gains

are neutron production from fission and in-scattering from other energy groups. This

leads to the neutron transport equation [33–37] which describes the balance of loss and

source terms in Eq. 2.4.

Ω · ∇ψg(r,Ω) + Σg
t (r,Ω)ψg(r,Ω) =

1
4π

χg (r)

k

G
∑

g ′=1

νg ′ (r)Σ
g ′

f (r)φg ′ (r) +
G
∑

g ′=1

Σg ′→g
s (r)φg ′(r)

!

(2.4)

38

Figure 2-1: An illustration of forming multi-group cross-sections from continuous energy
cross-sections showing the continuous energy capture cross-section of U-238 (blue), the
neutron flux (green), and the multi-group representation with 16 groups (red).

where Σg
t is the total cross-section, χg is the neutron emission spectrum, ν is the average

number of neutrons released per fission, Σg
f is the fission cross-section, Σg ′→g

s is the

scattering cross-section from group g ′ to group g, and the total number of energy groups

is G. The eigenvalue k is applied to the fission term as one way of forcing a non-trivial

solution when cross-sections are imperfectly known. If cross-sections and geometry

were known to infinite precision for a steady-state system, k would be exactly 1.0. The

deviation of k from 1.0 shows the degree to which the system is unbalanced for the

supplied cross-sections.

It is important to note that the multi-group transport equation used here assumes

isotropic scattering. However, neutron scattering off of light isotopes, such as hydrogen

found in water, is highly anisotropic. Therefore, a transport correction [36] is often ap-

plied to the cross-sections to retain solution accuracy. This is discussed more thoroughly

in Appendix F.3.

39

2.2 Derivation of Continuous Angle MOC Equations

Starting from the multi-group transport equation in Eq. 2.4, the neutron source qg(r)

can be defined by Eq. 2.5 as

qg(r) =
1

4π

χg (r)

k

G
∑

g ′=1

νg ′ (r)Σ
g ′

f (r)φg ′ (r) +
G
∑

g ′=1

Σg ′→g
s (r)φg ′(r)

!

(2.5)

which leads to the neutron balance expression,

(2.6)Ω · ∇ψg(r,Ω) + Σg
t (r)ψg(r,Ω) = qg(r).

Next, a coordinate transformation is performed, casting the position as a displacement

from an origin r0 along the direction of travel Ω as r = r0+sΩ. Under this transformation,

the new balance equation becomes:

(2.7)Ω · ∇ψg(r0 + sΩ,Ω) + Σg
t (r0 + sΩ)ψg(r0 + sΩ,Ω) = qg(r0 + sΩ)

In this form, the gradient reduces to a simple derivative by the distance s traveled from

the origin r0 as

(2.8)
dψg(r0 + sΩ,Ω)

ds
+ Σg

t (r0 + sΩ)ψ(r0 + sΩ,Ω) = qg(r0 + sΩ).

Considering a region i with constant total cross-section Σi,g
t , the angular flux for a

distance s from the origin can be evaluated analytically as

(2.9)ψg(r0 + sΩ,Ω) =ψg(r0,Ω)e−Σ
i,g
t s +

s
∫

0

ds′ e−Σ
i,g
t (s−s′)qg(r0 + s′Ω).

Eq. 2.9 reveals an important relationship. For any region of constant total cross-

section with known source distribution qg(r) and angular flux at a single pointψg(r0,Ω),

the angular flux for all points along the direction of travel Ω can be calculated. Therefore,

knowledge of incoming angular fluxes on the surface of any enclosed boundary is

sufficient for the calculation of all angular fluxes within the region.

If the problem domain can be represented (or approximated) as the composition

of a finite number of source regions over which the total cross-section is constant and

40

the neutron source qg(r) takes some known distribution, the calculation of all angular

fluxes throughout the problem is straightforward.

Realistically, the source distribution is not known before solving the neutron transport

equation, since it depends on the scalar fluxes. However, if the geometry is sufficiently

discretized, a low-order approximation of the shape of the neutron source within each

region can be made with little impact on solution accuracy. An example of geometry

discretization is shown in Fig. 2-2 where a fuel pin-cell is discretized radially. The image

on the left shows a radial view of the fuel pin-cell geometry, colored by (constant cross-

section) material region. The image on the right shows a discretized geometry, colored

by source region over which the neutron source is assumed to have some low-order

form.

(a) (b)
Figure 2-2: A description of source region discretization and mesh refinement. The
geometry is shown (a) colored by material and (b) colored by source region.

2.3 Track Discretization of the MOC Equations

MOC discretizes the angular space by choosing a finite number of directions to lay down

tracks across the geometry. For each direction, tracks span the entire geometry between

outer boundaries. A collection of tracks is termed the track laydown. A radial view

of a coarse track laydown for a simple pin-cell geometry is shown in Figure 2-3. The

41

geometry is colored by material region; namely water, clad, gap, and fuel. Note that

the final track laydown traverses tracks forward and backward, rather than generating

tracks in each direction, for computational efficiency [38].

(a) (b) (c)
Figure 2-3: A description of the track laydown process. The geometry (a) is shown
followed by the track laydown (b) for one particular direction. Finally the entire track
laydown for 4 azimuthal angles is shown (c) with arrows showing that each track is
traversed both forward and backward. Note that the track laydowns shown here are
significantly coarser than usual track laydowns for illustration purposes.

For each track crossing a given constant cross-section region, the variation of angular

flux follows Eq. 2.9. Therefore, each track is discretized into segments, in which each

segment is the portion of the track that crosses a particular region. Across each segment,

Eq. 2.9 applies. An illustration of the segmentation process for the simple pin-cell

geometry is shown in Figure 2-4. The presented track, with the geometry drawn along

its direction of travel is discretized into segments by material region. For simplicity, this

illustration does not discretize the source regions further than material boundaries. A

real segmentation process might discretize segments over the domain shown in Figure 2-

2b. This process would treat all tracks shown in the track laydown (eg. Figure 2-3) in a

similar manner. These images show track laydown and segmentation in just the radial

plane, but the same methodology applies to three dimensional geometries.

Now that tracks have been segmented, a system of equations can be formed governing

the variation of angular flux through each region as presented in Eq. 2.9. However, this

expression has a dependence on the incoming angular flux. For segments originating in

the bulk of the geometry, continuity of angular flux is naturally enforced. The outgoing

flux of the preceding segment in the track provides the incoming flux of the segment.

42

Figure 2-4: The segmentation of a track horizontally traversing a pin-cell domain
with coarse source discretization wherein the boundaries of source regions are no finer
than their material region. The formed segments are colored by material region. For
illustration purposes, the geometry is not shown to scale.

Specifically, the position-dependent angular flux ψt,ς
p,g(r) in group g along track t and

segment ς can be expressed as the angular flux of the preceding segment ς− 1 at the

interface point rint where the segments meet as

(2.10)ψt,ς
p,g(rint) =ψ

t,ς−1
p,g (rint).

Defining the angular flux along a segment in terms of distance traveled along the segment

rather than position, this can equivalently be written as

(2.11)ψt,ς
g (0) =ψ

t,ς−1
g (`t,ς−1)

where `t,ς refers to the length of segment ς along track t. For angular fluxes originating

at the geometry boundary, the boundary condition provides the relationship for the

angular flux.

For reflective boundary conditions, the incoming angular flux is equal to the outgoing

angular flux of the reflected angle. This requires that a track be present with the correct

reflecting angle, meeting at precisely the same point on the boundary. This is enforced

during the track laydown, further discussed in Chapter 4.

43

Tracks are defined to originate at one boundary and span the geometry until they

terminate at another boundary. The segments of a track are ordered in the direction of

the track so that only the first segment is affected by a boundary condition. Track t is

defined to have S(t) segments. For vacuum boundaries,

(2.12)ψt,1
g (0) = 0.

For boundary conditions (such as reflective, periodic, and rotational) that connect with

another track, the function C is defined which yields the linking track. For instance, the

incoming angular flux of track t would connect with the outgoing angular flux of track

C(t) as
(2.13)ψt,1

g (0) =ψ
C(t),S(C(t))
g (`C(t),S(C(t)))

With the angular and spatial discretization from the track laydown, the angular flux

relationship along a characteristic path given in Eq. 2.9 can be presented in terms of

the discretized track segments in Eq. 2.14 where i is the region traversed by track t and

segment ς.

(2.14)ψt,ς
g (s) =ψ

t,ς
g (0)e

−Σi,g
t s +

s
∫

0

ds′ e−Σ
i,g
t (s−s′)qt,ς,g(s)

Note that when the transformation to distance s is performed on the source, it also

becomes dependent on the track segment even though the source is assumed to be

isotropic. This is because the source can have a shape within the region and track

segments traverse the region at different positions.

Still, these equations only determine the behavior of the neutron flux along a partic-

ular track. However, the region-averaged scalar flux is often desired. The average scalar

flux φi,g in a region i for group g can be computed by integrating over all directions as

(2.15)φi,g =
1
Vi

∫

V

dV

∫

4π

dΩψg(r,Ω).

In order to numerically calculate the integral, each track represents a volume formed

by the product of its length and both the radial and axial perpendicular distances to

tracks of the same direction. Those perpendicular lengths form the track cross-sectional

area as illustrated in Figure 2-5. This illustration just shows the radial view of the

44

Figure 2-5: An illustration of the spatial volume represented by each track as the product
of track length and track cross-sectional area δAt . The volume represented by each track
is shaded in blue.

tracks. However, in three dimensions, axial distances also exist between tracks, so the

track cross-sectional area does indeed represent an area rather than a distance. With

a fine track laydown, the discretization error becomes small. Similarly, each track t

has an angular weight αt relating to the width of the angular space represented by the

track. Therefore the overall weight of the track wt is calculated as the product of track

cross-sectional area and angular weight as given in Eq. 2.16.

wt = δAtαt (2.16)

With each track representing a discretized portion of the spatial and angular domain,

Eq. 2.15 can be transformed to reflect the track discretization in Eq. 2.17, yielding a

closed-form relationship to calculate the scalar flux.

(2.17)φi,g =
1
Vi

∑

(t,ς)∈Vi

wt

∫ `t,ς

0

dsψt,ς
g (s)

45

2.4 Track Simplifications and Calculation of Volumes

In the previous section, the track discretization of the MOC equation was introduced. In

the section, it was noted that tracks are used in both forward and backward directions. In

the notation, a given track t represents only a single direction. Due to the two directional

tracks traversing the same line, simplifications can sometimes be made to the equations.

Consider the weighted summation of values rt,ς which are potentially dependent on

the traversed segment ς of track t. The summation can be cast as

∑

(t,ς)∈Vi

wt rt,ς =
∑

(t,ς)∈V F
i

wt rt,ς +
∑

(t,ς)∈V B
i

wt rt,ς (2.18)

where V F
i refers to the volume tracked by forward traversed tracks and V B

i refers to

the volume tracked by backward traversed tracks. Note that the corresponding for-

ward/backward tracks have opposite directions. Therefore, if quantity r̃t,ς does not

depend on the direction Ω, then for any direction v ∈ (x , y, z) and any odd integer d,

∑

(t,ς)∈Vi

wt

�

Ωv,t

�d
r̃t,ς = 0. (2.19)

Similarly, for any even integer d,

∑

(t,ς)∈Vi

wt

�

Ωv,t

�d
r̃t,ς = 2

∑

(t,ς)∈V F
i

�

Ωv,t

�d
wt r̃t,ς. (2.20)

The calculation of region volumes is one example where this simplification can be used.

In order for the MOC equations to be accurate, the condition

(2.21)
1
Vi

∑

(t,ς) ∈Vi

wt

∫ `t,ς

0

ds 1= 1

should apply. However, for a coarse track laydown the volume is not perfectly accurate,

causing the condition not to be met. Therefore, volumes are calculated with the tracked

lengths and weights as
(2.22)Vi =

∑

(t,ς)∈Vi

wt`t,ς

46

which forces the aforementioned condition to be met. This can be simplified by noting

that `t,ς is not dependent on direction, allowing the volume to be calculated only using

forward-directed tracks as

Vi = 2
∑

(t,ς)∈V F
i

wt`t,ς. (2.23)

2.5 Flat Source Approximation

One common low-order approximation for the neutron source is the flat source approxi-

mation. This approximation assumes the neutron source for a given energy group qg(r)

is spatially constant over each source region. The flat source approximation is also the

most frequently used approximation in standard MOC solvers [9,11,17,20,27,39,40].

For this approximation, the angular flux relationship given in Eq. 2.14 reduces to

(2.24)ψt,ς
g (s) =ψ

t,ς
g (0)e

−Σi,g
t s +

q0
i,g

Σi,g
t

F1

�

Σi,g
t s
�

with region i having constant neutron source q0
i,g where

F1(τ) = 1− e−τ. (2.25)

This equation allows for the computation of all angular fluxes within a region of

neutron source q0
i,g . From the definition of the neutron source in Eq. 2.5, the constant

neutron source q0
i,g in the region i can be computed as

q0
i,g =

1
4π

χi,g

k

G
∑

g ′=1

νi,g ′Σ
i,g ′

f φi,g ′ +
G
∑

g ′=1

Σi,g ′→g
s φi,g ′

!

(2.26)

where φi,g is the average scalar flux in the region and the cross-sections have been taken

to be constant over each region i. Combining Eq. 2.17 with Eq. 2.24, the scalar flux can

be calculated using the relationship in Eq. 2.27.

(2.27)φi,g =
q0

i,g

Σi,g
t

+
1

Σi,g
t Vi

∑

(t,ς)∈Vi

wt

�

ψt,ς
g (0)−ψ

t,ς
g (`t,ς)

�

47

The calculated fluxes can then be used to construct the neutron sources q0
i,g for each

region i and each energy group g with the relationship in Eq. 2.26. The solution of the

MOC system of equations is discussed in great detail in Appendix A. It is important to

note that the application of MOC equations over all segments (Eq. 2.17 and Eq. 2.24)

for a given source distribution is termed a transport sweep.

2.6 Track-based Linear Source Approximation

In the previous section, the MOC equations were derived using a flat source approxi-

mation. While this approximation is convenient and used by many, a linear approxima-

tion can potentially reduce the computational requirements of simulating a spatially

converged reactor problem. While the linear source approximation increases the com-

putational cost for a fixed discretization, the higher-order source can capture source

gradients, allowing for a much coarser mesh discretization while maintaining solution

accuracy [41]. In this section, the track-based linear source approximation developed

by Ferrer [42] for 2D MOC is extended to 3D MOC. A discussion of the subtleties in the

derivation and implementation is presented.

2.6.1 Derivation of the Linear Source Approximation

With a linear source approximation, the source is assumed to vary linearly over a given

track t on segment ς that traverses region i as

qt,ς,g(s) = q0
t,ς,g + q1

t,ς,g(s− `t,ς/2) (2.28)

where `t,ς is the length of the track t over the region i and the track-dependent coefficients

are q0
t,ς,g and q1

t,ς,g . It is important to note that in this definition the source components

are dependent on the track. Later, the track description of the source will be transformed

into one dependent on only the source region, not on the track. For a linear source

defined by the spatial region, the source for each track varies since tracks enter the

source regions at different positions and different angles. This motivates track-dependent

48

source components.

By inserting the linear source definition into the balance equation, the angular flux

follows the relationship

ψt,ς
g (s) =ψ

t,ς
g (0)e

−Σi,g
t s +

s
∫

0

ds′ (q0
t,ς,g + q1

t,ς,g(s
′ − `t,ς/2))e

−Σi,g
t (s−s′). (2.29)

In this form, it is possible to analytically calculate the angular flux variation along any

track given the track-based linear source components. In the following subsections, the

linear source equations will be derived starting from this equation and the definition of

the linear source.

2.6.1.1 Calculation of Average Scalar and Angular Fluxes

The calculation of average scalar fluxes is often the goal of neutron transport simulations.

Therefore, this derivation of the track-based linear source approximation starts with

a discussion of their calculation given the linear source definition. The angular flux

relationship previously presented in Eq. 2.29 can be simplified to

ψt,ς
g (s) =ψ

t,ς
g (0)+

�

q0
t,ς,g

Σi,g
t

−ψt,ς
g (0)

�

F1

�

Σi,g
t s
�

+

q1
t,ς,g

2
�

Σi,g
t

�2

!

F2

�

Σi,g
t s,Σi,g

t `t,ς

�

(2.30)

where the function F1 follows the form given in Eq. 2.25 and F2 is defined in terms of F1

as

F2(τ1,τ2) = 2 [τ1 − F1(τ1)]−τ2F1(τ1) (2.31)

Recall that the average flux can be computed by integrating angular fluxes as presented

in Eq. 2.17. This can be re-written in terms of average angular fluxes as

φi,g =
1
Vi

∑

(t,ς)∈Vi

wtψ
t,ς

g `t,ς (2.32)

49

where the angular average angular flux ψ
t,ς

g over a segment is defined by

ψ
t,ς

g =
1
`t,ς

∫ `t,ς

0

dsψt,ς
g (s). (2.33)

After the MOC transform and with the linear source approximation, the neutron transport

equation takes the form

dψi,g(s)

ds
+ Σi,g

t ψ(s) = q0
t,ς,g + q1

t,ς,g(s− `t,ς/2) (2.34)

when the angular and spatial discretization is applied. This relationship can be rear-

ranged to solve for the average angular flux ψ
t,ς

g as

ψ
t,ς

g =
q0

t,ς,g

Σi,g
t

+
ψt,ς

g (0)−ψ
t,ς
g (`t,ς)

Σi,g
t `t,ς

(2.35)

From a neutron source definition presented in Eq. 2.28, the angular fluxes and their

segment averages can be calculated using Eq. 2.35 with Eq. 2.30, respectively. The scalar

fluxes can also be computed by combining Eq. 2.32 with Eq. 2.35, yielding

φi,g =
1
Vi

∑

(t,ς)∈Vi

wt`t,ς

�

q0
t,ς,g

Σi,g
t

+
ψt,ς

g (0)−ψ
t,ς
g (`t,ς)

Σi,g
t `t,ς

�

(2.36)

which can be simplified as

φi,g =
qi,g

Σi,g
t

+
1

Σi,g
t Vi

∑

(t,ς)∈Vi

wt

�

ψt,ς
g (0)−ψ

t,ς
g (`t,ς)

�

(2.37)

which is the same analytic form as derived from the flat source approximation in Eq. 2.27.

2.6.1.2 Linear Source Defined By Region

Until now, the linear source approximation has been introduced in the perspective of

each track. This is convenient for simplifying the MOC equations, but not convenient

for computing region-dependent components. Therefore, a region-wise linear source qg
i

50

for region i and energy group g is defined in terms of position r as

qi,g(r) = qi,g + ~qi,g ·
�

r− rC
i

�

(2.38)

where qi,g is the flat source component, ~qi,g is a vector representing the gradient of the

source, and rC
i is the centroid of the region i. The source gradient can be defined in

terms of its components as ~qi,g =
�

qx ,i,g , qy,i,g , qz,i,g

�T
where qx ,i,g , qy,i,g , and qz,i,g are the

source gradients in the x , y, and z directions, respectively. Here the vector notation ~q

was chosen to avoid confusion with q, the vector of all sources across all regions and

energy groups. With this formalism, the track-based linear source components defined

in Eq. 2.28 can be computed as:

q0
t,ς,g = qi,g(r

m
t,ς) = qi,g + ~qi,g ·

�

rm
t,ς − rC

i

�

(2.39)

q1
t,ς,g = ~qi,g ·Ωt (2.40)

where rm
t,ς is the midpoint of segment ς along track t and Ωt is its unit vector direction.

In Cartesian coordinates, the source defined in Eq. 2.38 can be defined as

qi,g(x , y, z) = qi,g + qx ,i,g

�

x − xC
i

�

+ qy,i,g

�

y − yC
i

�

+ qz,i,g

�

z − zC
i

�

(2.41)

where xC
i , yC

i , and zC
i represent the x , y, and z coordinates of the region i centroid,

respectively. The centroid represents the midpoint of the cell, as observed by traversing

segments. The source can be written more compactly as

qi,g(x , y, z) = qi,g +
∑

v∈(x ,y,z)

qv,i,g

�

v − vC
i

�

(2.42)

where v represents the spatial variables x , y , and z. Using this notation, the track-based

source components can be expressed as:

q0
t,ς,g = qi,g +

∑

v∈(x ,y,z)

qv,i,g

�

vm
t,ς − vC

i

�

(2.43)

51

q1
t,ς,g =

∑

v∈(x ,y,z)

Ωv,tqv,i,g (2.44)

where Ωv,t refers to the v ∈ (x , y, z) component of the unit vector direction Ωt for track

t and vm
t,ς refers to the v coordinate of the midpoint of segment ς along track t. The v

coordinate of the centroid, vC
i , can be computed as

vC
i =

∑

(t,ς)∈Vi

wt

∫ `t,ς

0

ds v ∀v ∈ (x , y, z). (2.45)

The variables x , y , and z corresponding to v can be cast in terms of the distance s along

a segment as

v = vm
t,ς +Ωv,t

�

s−
`t,ς

2

�

∀v ∈ (x , y, z) (2.46)

which can be inserted in Eq. 2.45 to yield the simplified form as

vC
i =

∑

(t,ς)∈Vi

wt`t,ςv
m
t,ς ∀v ∈ (x , y, z). (2.47)

The flat source component qi,g can be computed using the scalar fluxes in the same way

as the flat source approximation,

qi,g =
1

4π

χi,g

k

G
∑

g ′=1

νi,g ′Σ
i,g ′

f φi,g ′ +
G
∑

g ′=1

Σi,g ′→g
s φi,g ′

!

. (2.48)

2.6.1.3 Relating Linear Source Components To Moments

With the neutron source defined in terms of spatial variables rather than track-based

variables, it is possible to relate the linear source components to source moments. The

moment Qv,i,g of the source in the v ∈ (x , y, z) direction can be calculated as

Qv,i,g =

∫

Vi

dr
�

v − vC
i

�

q(r) ∀v ∈ (x , y, z) (2.49)

52

where Vi is the volume of region i. With the track discretization, the integral can be

calculated as

Qv,i,g =
∑

(t,ς)∈Vi

wt

∫ `t,ς

0

ds
�

v − vC
i

�

qi,g +
∑

v′∈(x ,y,z)

qv′,i,g

�

v′ − v′Ci
�

!

∀v ∈ (x , y, z).

(2.50)

This can be separated as

(2.51)

Qv,i,g =
∑

(t,ς)∈Vi

wt

∫ `t,ς

0

ds
�

v − vC
i

�

qi,g +

∑

(t,ς)∈Vi

wt

∫ `t,ς

0

ds
�

v − vC
i

�

∑

v′∈(x ,y,z)

qv′,i,g

�

v′ − v′Ci
�

!

∀v ∈ (x , y, z)

and simplified to

Qv,i,g =
∑

(t,ς)∈Vi

wt

∫ `t,ς

0

ds
�

v − vC
i

�

∑

v′∈(x ,y,z)

qv′,i,g

�

v′ − v′Ci
�

!

∀v ∈ (x , y, z) (2.52)

due to the definition of the region centroid in Eq. 2.45. Defining moment coefficients

Mv,v′ such that

Mi,v,v′ =
∑

(t,ς)∈Vi

wt

∫ `t,ς

0

ds
�

v − vC
i

� �

v′ − v′Ci
�

∀(v, v′) ∈ (x , y, z)× (x , y, z), (2.53)

it becomes clear that this can be cast as a linear problem such that

Mi~qi,g = ~Q i,g (2.54)

where ~Q i,g =
�

Q x ,i,g ,Q y,i,g ,Qz,i,g

�T
and the matrix Mi is defined by Eq. 2.53 where

Mi =













Mi,x x Mi,x y Mi,xz

Mi,x y Mi,y y Mi,yz

Mi,xz Mi,yz Mi,zz













. (2.55)

53

Altogether, the linear system is defined by













Mi,x x Mi,x y Mi,xz

Mi,x y Mi,y y Mi,yz

Mi,xz Mi,yz Mi,zz

























qx ,i,g

qy,i,g

qz,i,g













=













Q x ,i,g

Q y,i,g

Qz,i,g













. (2.56)

The source moments can then be calculated similarly to the flat source components,

using the relationship

Qv,i,g =
1

4π

χi,g

k

G
∑

g ′=1

νi,g ′Σ
i,g ′

f φ̂v,i,g ′ +
G
∑

g ′=1

Σi,g ′→g
s φ̂v,i,g ′

!

∀v ∈ (x , y, z) (2.57)

where φ̂v,i,g is the moment of the scalar flux in the v direction. These scalar fluxes can

be computed in parallel over all regions based on scalar flux moments.

2.6.1.4 Calculation of Scalar Flux Moments

The previous section allowed for the calculation of linear source moments given scalar

flux moments. These scalar flux moments can be calculated by

φ̂v,i,g =
∑

(t,ς)∈Vi

wt

∫ `t,ς

0

ds
�

v − vC
i

�

ψt,ς
g (s) ∀v ∈ (x , y, z). (2.58)

Converting the variable v into the tracked distance s using Eq. 2.46, this can be recast as

φ̂v,i,g =
∑

(t,ς)∈Vi

wt

∫ `t,ς

0

ds

�

vm
t,ς +Ωv,t

�

s−
`t,ς

2

�

− vC
i

�

ψt,ς
g (s) ∀v ∈ (x , y, z) (2.59)

and simplified to

φ̂v,i,g =
∑

(t,ς)∈Vi

wt`t,ς

�

Ωv,tψ̂
t,ς
g +

�

vm
t,ς − vC

i −
Ωv,t`t,ς

2

�

ψ
t,ς

g

�

∀v ∈ (x , y, z) (2.60)

54

where ψ
t,ς

g is the average angular flux which can be calculated using Eq. 2.35 and ψ̂t,ς
g

is the angular flux moment defined by

ψ̂t,ς
g =

∫ `t,ς

0

ds sψt,ς
g (s). (2.61)

To solve for the angular flux moment, the definition for angular flux in Eq. 2.30 is

inserted, yielding

ψ̂t,ς
g =

∫ `t,ς

0

ds s

ψt,ς
g (0) +

�

q0
t,ς,g

Σi,g
t

−ψt,ς
g (0)

�

F1

�

Σi,g
t s
�

+

q1
t,ς,g

2
�

Σi,g
t

�2

!

F2

�

Σi,g
t s,Σi,g

t `t,ς

�

!

(2.62)

which can be simplified to

ψ̂t,ς
g =

ψt,ς
g (0)`t,ς

2
+

�

q0
t,ς,g

Σi,g
t

−ψt,ς
g (0)

�

G1(Σ
i,g
t `t,ς)

Σi,g
t

+
`t,ςq

1
t,ς,g G2(Σ

i,g
t `t,ς)

2
�

Σi,g
t

�2 (2.63)

where the functions G1(τ) and G2(τ) are mathematically defined as

G1(τ) = 1+
τ

2
−
�

1+
1
τ

�

F1(τ) (2.64)

and

G2(τ) =
2
3
τ−

�

1+
2
τ

�

G1(τ). (2.65)

With these definitions, the scalar flux moments can be calculated by inserting the

definitions of average angular flux ψ
t,ς

g (Eq. 2.35) and angular flux moments ψ̂t,ς
g

(Eq. 2.63) into the definition of the scalar flux moments in Eq. 2.60. This results in a

long expression which, for simplicity, can be decomposed into four terms as

φ̂v,i,g = K1 + K2 + K3 + K4 (2.66)

55

where the terms are defined by:

K1 =
1

Σi,g
t

∑

(t,ς)∈Vi

wt`t,ςq
0
t,ς,g

�

Ωv,t G1(Σ
i,g
t `t,ς)

Σi,g
t

+ vm
t,ς − vC

i −
Ωv,t`t,ς

2

�

(2.67)

K2 =
1

Σi,g
t

∑

(t,ς)∈Vi

wtΩv,t`t,ςψ
t,ς
g (0)

�

Σi,g
t `t,ς

2
− G1(Σ

i,g
t `t,ς)

�

(2.68)

K3 =
1

2
�

Σi,g
t

�2

∑

(t,ς)∈Vi

wtq
1
t,ς,gΩv,t`

2
t,ςG2(Σ

i,g
t `t,ς) (2.69)

K4 =
1

Σi,g
t

∑

(t,ς)∈Vi

wt

�

vm
t,ς − vC

i −
Ωv,t`t,ς

2

�

�

ψt,ς
g (0)−ψ

t,ς
g (`t,ς)

�

(2.70)

Each of the terms can be simplified. First, K1 can be simplified by inserting the definition

of q0
t,ς,g from Eq. 2.43. After expanding terms, K1 can be cast as

K1 =
qi,g

Σi,g
t

∑

(t,ς)∈Vi

wt`t,ς

�

vm
t,ς − vC

i

�

+
qi,g

Σi,g
t

∑

(t,ς)∈Vi

wtΩv,t`t,ς

�

G1(Σ
i,g
t `t,ς)

Σi,g
t

−
`t,ς

2

�

+

1

Σi,g
t

∑

p∈(x ,y,z)

qp,i,g

∑

(t,ς)∈Vi

wt`t,ς

�

pm
t,ς − pC

i

�

�

Ωv,t G1(Σ
i,g
t `t,ς)

Σi,g
t

+ vm
t,ς − vC

i −
Ωv,t`t,ς

2

�

(2.71)

Note that the first term of K1 is zero due to the definition of the centroid in Eq. 2.47.

The second term also becomes zero by noting that all tracks are traversed forwards and

backwards, utilizing the simplification discussed in Section 2.4. Therefore, after further

expanding terms, K1 is simplified to

K1 =
1

Σi,g
t

∑

p∈(x ,y,z)

qp,i,g

∑

(t,ς)∈Vi

wt`t,ς

�

pm
t,ς − pC

i

��

vm
t,ς − vC

i

�

+

1

Σi,g
t

∑

p∈(x ,y,z)

qp,i,g

∑

(t,ς)∈Vi

wtΩv,t`t,ς

�

pm
t,ς − pC

i

�

�

G1(Σ
i,g
t `t,ς)

Σi,g
t

−
`t,ς

2

�

.

(2.72)

Notice that the bracketed quantity in the second term is not dependent on direction.

Therefore, by again utilizing the forward and backward tracking relationships discussed

in Section 2.4, the first term can be simplified and the second term can be eliminated,

56

resulting in

K1 =
2

Σi,g
t

∑

p∈(x ,y,z)

qp,i,g

∑

(t,ς)∈V F
i

wt`t,ς

�

pm
t,ς − pC

i

��

vm
t,ς − vC

i

�

(2.73)

where V F
i represents the forward tracked volume of Vi, therefore using only half of the

directional tracks. Next, K2 can be simplified to

K2 =
1

Σi,g
t

∑

(t,ς)∈Vi

wtΩv,t`t,ςψ
t,ς
g (0)H(Σ

i,g
t `t,ς) (2.74)

by defining the function H as

H(τ) =
τ

2
− G1(τ). (2.75)

The K3 term can be simplified by inserting the definition of q1
t,ς,g in Eq. 2.44 and again

using the forward and backward tracking relationships discussed in Section 2.4 as

K3 =
1

�

Σi,g
t

�2

∑

p∈(x ,y,z)

qp,i,g

∑

(t,ς)∈V F
i

wtΩv,tΩp,t`
2
t,ςG2(Σ

i,g
t `t,ς). (2.76)

The fourth and final term K4 can be simplified as

K4 =
1

Σi,g
t

∑

(t,ς)∈Vi

wt v
in
t,ς

�

ψt,ς
g (0)−ψ

t,ς
g (`t,ς)

�

(2.77)

by defining the entering coordinate vin
t,ς of the segment on the source region relative to

the centroid as

vin
t,ς = vm

t,ς − vC
i −
Ωv,t`t,ς

2
. (2.78)

Altogether, these equations can be combined and written compactly as

φ̂v,i,g =
1

Σi,g
t

qx ,i,g C i,g
v,x+qy,i,g C i,g

v,y + qz,i,g C i,g
v,z

!

+

1

Σi,g
t

∑

(t,ς)∈Vi

wt

�

Ωv,t`t,ςψ
t,ς
g (0)H(Σ

i,g
t `t,ς) + vin

t,ς

�

ψt,ς
g (0)−ψ

t,ς
g (`t,ς)

��

(2.79)

57

where for v, p ∈ (x , y, z)× (x , y, z)

C i,g
v,p = 2

∑

(t,ς)∈V F
i

wt`
2
t,ςΩv,tΩp,t G2(Σ

i,g
t `t,ς) +

1

Σi,g
t

∑

(t,ς)∈V F
i

wt`t,ς

�

pm
t,ς − pC

i

��

vm
t,ς − vC

i

�

.

(2.80)

The equations derived in this section form the basis of the linear source MOC algorithm.

2.7 MOC Algorithm with Linear Sources

The linear source equations are much more complex and greater in number than the

flat source equivalent, so this section will highlight the important equations and discuss

how to implement an algorithm.

2.7.1 Identifying Invariant Constants

Before starting transport sweeps, it is important to identify constants which are not

dependent on iterative estimates of scalar and angular fluxes. These constants can

be computed and re-used at each iteration. These constants must not consume too

much memory or else their storage may have significant computational drawbacks. In

the context of MOC, since the number of segments is often significantly larger than

the number of regions, explicit storage should be implemented for region-dependent

constants and not for segment-dependent constants.

One example of region dependent constants that should be stored are the C i,g
v,p terms

defined in Eq. 2.80. Note these constants are solely dependent on the geometry and track

laydown which are invariant over the iterative process. These constants are therefore

computed and stored for every region i.

In addition, the computation of linear source components involves solving the system

described in Eq. 2.54,

Mi~qi,g = ~Q i,g

for every region i and energy group g where ~qi,g =
�

qx ,i,g , qy,i,g , qz,i,g

�T
and ~Q i,g =

�

Q x ,i,g ,Q y,i,g ,Qz,i,g

�T
. The matrix Mi which is a 3×3 matrix for every region i represented

58

in Eq. 2.55 by

Mi =













Mi,x x Mi,x y Mi,xz

Mi,x y Mi,y y Mi,yz

Mi,xz Mi,yz Mi,zz













and the matrix components are computed with Eq. 2.53 as:

Mi,v,v′ =
∑

(t,ς)∈Vi

wt

∫ `t,ς

0

ds
�

v − vC
i

� �

v′ − v′Ci
�

∀(v, v′) ∈ (x , y, z)× (x , y, z)

Note that these terms, and therefore also M−1
i , are invariant and the explicit computation

and storage of M−1
i is performed for every region.

The computation of M−1
i should be handled with great care. For regions that are

thin in a particular Cartesian direction (for instance the x direction), the associated

moments in that direction can also become very small. For instance, a region thin in

the x direction can have extremely small Mi,x x . This can cause the matrix to be poorly

conditioned. In OpenMOC, this is handled by treating thin regions in which the single

direction moments (such as Mi,x x) are small (< 10−4cm2) as having spatially constant

source in the thin direction. In the case of a thin x direction, instead of handling the

full 3× 3 matrix, the system is simplified to a 2× 2 matrix as

M−1
i =















0 0 0

0

0





Mi,y y Mi,yz

Mi,yz Mi,zz





−1















which is solved to determine the y and z linear source components and the x component

of the linear source is assumed to be zero. Similar simplifications are handled for thin y

and thin z directions with the elimination of rows and columns involving the variable. If

two directions are thin, then the source in both directions is treated as flat, with a simple

1× 1 system evaluated to determine the source in the third direction. For example, for a

59

region thin in both x and y , the system reduces to

M−1
i =













0 0 0

0 0 0

0 0 1/Mi,zz













which is used to form the source in the z direction. For a region thin in all Cartesian

directions, it is treated as having a flat source. In the linear source framework this means

setting all elements of M−1
i to zero.

In addition to region-dependent terms, the functions F1, F2, and H often arise in

the MOC equations. These terms are dependent on optical path length and therefore

are segment and group-dependent. Therefore, they are not explicitly stored since the

storage requirements would be computationally infeasible. Instead, they are computed

on-the-fly, often through interpolation. This will be further discussed in Chapter 3.

2.7.2 Transport Sweeps

Before each transport sweep, the source moments Qv,i,g can be computed from scalar

flux moments using Eq. 2.52 as:

Qv,i,g =
1

4π

χi,g

k

G
∑

g ′=1

νi,g ′Σ
i,g ′

f φ̂v,i,g ′ +
G
∑

g ′=1

Σi,g ′→g
s φ̂v,i,g ′

!

∀v ∈ (x , y, z)

These moments are then used with Eq. 2.54 as

~qi,g = M−1
i
~Q i,g

Recall that the M−1
i matrices are explicitly computed and stored before iterations. There-

fore, the matrix values are simply loaded and only a matrix-vector multiplication is

necessary during the computation of source components. The flat source components

60

can then be computed in the same way as flat source MOC using Eq. 2.48 as

qi,g =
1

4π

χi,g

k

G
∑

g ′=1

νi,g ′Σ
i,g ′

f φi,g ′ +
G
∑

g ′=1

Σi,g ′→g
s φi,g ′

!

.

The angular fluxes ψt,ς
g can be computed using Eq. 2.30 as

ψt,ς
g (s) =ψ

t,ς
g (0) +

�

q0
t,ς,g

Σi,g
t

−ψt,ς
g (0)

�

F1

�

Σi,g
t s
�

+

q1
t,ς,g

2
�

Σi,g
t

�2

!

F2

�

Σi,g
t s,Σi,g

t `t,ς

�

where the track-based flat source q0
t,ς,g and the track-based linear source q1

t,ς,g are

evaluated using Eq. 2.43 and Eq. 2.44:

q0
t,ς,g = qi,g +

∑

v∈(x ,y,z)

qv,i,g

�

vm
t,ς − vC

i

�

q1
t,ς,g =

∑

v∈(x ,y,z)

Ωv,tqv,i,g

The scalar fluxes φi,g and flux moments φ̂v,i,g can therefore be calculated with Eq. 2.37

and Eq. 2.79:

φi,g =
qi,g

Σi,g
t

+
1

Σi,g
t Vi

∑

(t,ς)∈Vi

wt

�

ψt,ς
g (0)−ψ

t,ς
g (`t,ς)

�

φ̂v,i,g =
1

Σi,g
t

∑

p∈(x ,y,z)

qp,i,g C i,g
v,p+

1

Σi,g
t

∑

(t,ς)∈Vi

wt

�

Ωv,t`t,ςψ
t,ς
g (0)H(Σ

i,g
t `t,ς) + vin

t,ς

�

ψt,ς
g (0)−ψ

t,ς
g (`t,ς)

��

The equations presented in this section form the basis of the track-based linear source

MOC implementation.

61

Chapter 3

Software Design and Development

The work in this thesis develops the OpenMOC [43] neutron transport code, which

was developed for 2D MOC simulations, and significant work was required to extend

OpenMOC to 3D MOC calculations. This chapter explains the structure of OpenMOC

and the changes that were necessary to increase code flexibility and accommodate 3D

MOC calculations.

3.1 OpenMOC Overview

OpenMOC is neutron transport code that is written in C++ with a Simplified Wrapper

Interface Generator (SWIG) [44] to expose the C++ classes and routines to the Python

scripting language. This allows users to take advantage of the simplicity and flexibility of

the Python language while also having the performance benefits of C++ compiled code.

In this way, users can work entirely in Python without having to touch the underlying

C++ code. In addition, users do not have to learn a new input file syntax, only the names,

functionality, and input variables of functions constituting the Application Programming

Interface (API). This allows for users to write code with greater ease.

The underlying C++ code of OpenMOC also leverages the use of OpenMP [45] for

shared memory parallelism. In this framework, all on-node data is shared between

threads. With the emergence of the 3D solver, distributed parallelism has also been

implemented with MPI [14] in the form of domain decomposition, discussed in Chapter 6.

63

With this hybrid parallelism design, OpenMOC is able to scale to both many CPU cores

and many nodes.

OpenMOC is built on the use of Constructive Solid Geometry (CSG), which allows

complex geometries to be built out of boolean operations – such as intersections and

unions – of simple surfaces and building blocks termed primitives. In addition, a hierarchy

is used to agglomerate collections of primitives together. This approach is particularly

useful for reactor geometries which are often highly structured. For example, a typical

reactor core is built out of simple fuel pins, each describing the geometric detail of a fuel

rod, which are grouped together into assemblies. Assemblies are then grouped together

to form the reactor core. An example of a 2D CSG construction of a single assembly is

given in Figure 3-1.

One of the benefits of the CSG approach is a reduced memory requirements of storing

the geometry. Instead of explicitly storing the geometry information of each fuel pin

within the reactor core, only unique fuel pin types need to be stored. They are then

referenced by their parent structure. For instance, an assembly containing a lattice of

fuel pins creates a mapping of lattice location to the unique fuel pin type, rather than

replicating the full geometric information for each fuel pin.

In addition, the formation of a CSG allows ray tracing to be conducted in a general

framework, agnostic of the individual primitives. Each cell in OpenMOC is defined in

terms of surface objects and the half-space of each surface. A half-space determines

on which side of the surface the cell is located. Ray tracing fundamentally involves

calculating the distance to intersection along a direction. With the CSG framework, each

of the bounding surfaces is queried for the distance to intersection. This naturally speeds

up ray tracing by not having to check each instance of a surface within the geometry,

but rather only the local surfaces.

Once the geometry is built, OpenMOC generates tracks across the constructed geome-

try, and solves the neutron transport equation iteratively. The solver can then be queried

to return the scalar flux distribution as well as reaction rates. In order to visualize

the data, OpenMOC includes Python plotting routines for scalar flux data, computed

reaction rates, as well as geometric detail and visual diagnostics.

64

Figure 3-1: The hierarchical CSG construction of a typical assembly.

The interested reader can find a more complete description of the OpenMOC code

in Boyd’s thesis [46] in which the object-oriented structure and geometry handling is

explicitly defined.

65

3.2 Object Oriented Design

OpenMOC uses the object oriented programming paradigm whereby data structures

called classes are created that encapsulate both the data and associated subroutines.

Object oriented programming generally leads to more resilient code since only the class

itself can access its private attributes. An instantiation of a class is termed an object.

OpenMOC applies many of the principles of object oriented programming including

information hiding, inheritance, and polymorphism.

An OpenMOC simulation requires three main components: a geometry, a track

generator, and a solver. All of these are C++ classes in OpenMOC are exposed to

the user. The user first describes the surfaces, cells, universes, and materials which

constitute the geometry in a hierarchical CSG arrangement. The user then instantiates a

Geometry object and provides it the root cell of the CSG. Next, a TrackGenerator is

instantiated which is provided the Geometry object as well as track generation parameters

such as radial ray spacing and number of azimuthal angles. Lastly, a Solver object is

instantiated and provided the TrackGenerator object along with convergence criteria.

The solver can then be called to solve the MOC equations, such as the MOC neutron

transport eigenvalue problem, using the track and segmentation information found in

the TrackGenerator.

Extending the OpenMOC solver to 3D simulations required restructuring all of

these classes in order to make them more flexible. A focus in extending the sovler to

3D simulations was to still maintain the ability to run 2D simulations. A benefit of

maintaining the ability to run 2D simulations is to allow the user to compare 2D and 3D

simulations on the same problem. To accommodate this, the input structure between

2D and 3D simulations is very similar. In order to make the code more resilient and

simpler, common code reuse was emphasized. Many of the routines present in the 2D

simulations are also used in the 3D simulations so both should use the same code. These

points illustrate the need for maximum cohesion between the 2D and 3D solver modes.

This was accomplished by expanding the 2D classes to be more general.

66

3.2.1 Geometry Class Updates

The Geometry class was altered to accommodate piecewise axially extruded geometries.

Axially extruded geometries are geometric configurations in which the geometry looks

the same at every axial level. A piecewise axially extruded geometry is a geometry that

can be formed as the union of a finite number of extruded geometries. For instance, a fuel

rod with end caps would fit the description of a piecewise axially extruded geometry but

a sphere would not. Most practical reactor applications are indeed piecewise extruded

geometries so this is not a very strong limitation.

With the change from 2D geometries to piecewise axially extruded geometries, circles

are transformed to z-cylinders (cylinders with a vertical major axis) and z-planes are

added with a similar structure to the x and y planes already incorporated in OpenMOC.

With this new geometry paradigm, 2D problems are thought of as simulating a radial

slice of a 3D geometry at a given z height.

3.2.2 TrackGenerator Class Updates

The TrackGenerator class was updated to generate tracks and ray trace, compatible

with the updated Geometry class. 2D ray tracing is imagined as ray tracing tracing

perpendicular to the z-axis at some z-height. By default this height is assumed to be 0.0

in order to limit the complexity of user input for 2D simulations. The user can specify a

different z-height using the setZCoord function of the TrackGenerator class.

For 3D simulations, a new TrackGenerator3D class was created which inherits from

the TrackGenerator class. In object oriented programming, a class that inherits from a

parent class has access to all the parent class data and subroutines. Since tracks are built

on a 2D projection, the 3D track generator must have all the functionality of the regular

2D track generator. This is the typical paradigm where class inheritance is useful.

During ray tracing, a TrackGenerator3D object first ray traces all 2D tracks (de-

termined from the parent TrackGenerator functionality) over all potentially unique

z-planes in the geometry to form the equivalent of a ray trace over the composite of all

radial detail in the geometry. Since this can potentially be expensive, users are allowed

67

to indicate the unique piecewise axially extruded ranges in the Geometry through the

setSegmentationZones function in the TrackGenerator3D class. If these zones are

not specified, all z-planes in the geometry are viewed as a potential divider between

different axially extruded regions, leading to longer setup time.

Once the 2D ray trace is conducted over all axially extruded regions, the full 3D

ray trace can be calculated. Due to the expense of explicitly storing all 3D tracks in

a typical geometry, the TrackGenerator3D class generates tracks on-the-fly. Similarly,

segments can be prohibitively expensive to store. Therefore, the default mode is to

calculate segments on-the-fly rather than upfront, although both options are available.

Ray tracing and segmentation is discussed in greater detail in Chapter 5.

3.2.3 Solver Class Updates

The Solver class has also been reformulated to support both 2D and 3D simulations.

The Solver class is an abstract class, meaning it contains the description of data and as-

sociated subroutines, but cannot be instantiated on its own. Instead, there are subclasses

that inherit from the abstract class that can be instantiated. In this case the CPUSolver

and GPUSolver classes are both subclasses of the Solver class. Rather than supporting

both the CPUSolver and GPUSolver classes, this thesis focuses on the CPUSolver class

to allow for easier implementation of the object oriented structures.

The CPUSolver was altered to support the calculation of both 2D MOC and 3D

MOC equations. By referring to the supplied TrackGenerator object, it can determine

whether a 2D or 3D simulation should be calculated. If a TrackGenerator3D object

was provided to the solver, it runs a 3D simulation. Otherwise, a 2D simulation is run.

While much code is shared between the 2D and 3D simulations in the solver, the code

which calculates the variation of angular flux over segments has separate 2D MOC and

3D MOC code sections in order to maximize performance.

In addition to the existing CPUSolver, a new CPULSSolver class has been added

to OpenMOC which is capable of using a linear source approximation. Since the lin-

ear source solver needs much of the code present in the regular flat source solver,

68

CPULSSolver was implemented as a subclass of CPUSolver.

3.3 Modular Structure

In altering OpenMOC to support both 2D and 3D simulations, it was quickly realized that

without a massive overhaul, there would be a very large amount of repeated code. The

goal was to create code that was capable of conducting both 2D and 3D MOC simulations,

but also to compare multiple types of ray tracing and mathematical approximations

(such as linear source). For all these options to be supported, there is the possibility for

much of the same functionality to be implemented at multiple points in the code.

For example, MOC can largely be described as an algorithm that performs a ray

trace and then computes equations over the segments formed from the ray trace. Many

different ray tracing algorithms could be used with the underlying equations and solver

remaining theoretically unchanged. However, if the code is rigid, each new ray tracing

algorithm would require an entire code re-write.

Therefore, a goal in developing OpenMOC to support work presented in this thesis

is to maximize code reuse. A structure was created in which segment traversal, ray

tracing, and the algorithms that use segment information could be easily decoupled.

In this new structure, MOCKernel classes dictate what operations to perform on each

segment and a TraverseSegments class dictates how to iterate over segments and

which ray tracing method to use. Both of these classes are virtual classes which have

subclass implementations. Specific algorithms that use segment information are formed

as subclasses of the TraverseSegments class, each defining operations to perform on

groups of segments. The algorithms should also specify which MOCKernel objects to use.

3.3.1 MOCKernel Classes

Since the MOCKernel class operates directly on segments, it appears in the inner-most

loop in algorithms. The MOCKernel parent class contains common information used for

most of its subclass implementations. These attributes include:

69

• A counter for the number of segments encountered by the kernel

• The maximum path length allowed for segments before they must be split

• The number of energy groups

An MOCKernel class also has a few virtual functions that must be implemented by

subclasses. Notable functions include:

• An execute function which dictates what to do on a segment

• A newTrack function that dictates functionality when a new group of segments is

encountered.

The execute function is applied immediately when a segment is formed from ray tracing

(or loaded in the case of explicitly stored segments) whereas the newTrack function is

applied at the start of sequencing through a group of segments. The segments comprising

a track is an example of a common grouping of segments, though other groupings could

be chosen.

Since the MOCKernel class is a virtual class, it is meant to have subclasses which can

be instantiated. The current MOCKernel subclasses implemented in OpenMOC are:

• CounterKernel: Counts the number of segments encountered by the kernel

• VolumeKernel: Uses track weights and segment lengths to form an estimate of

the volumes of regions encountered

• TransportKernel: Directly applies the transport equation on the encountered

segments

• SegmentationKernel: Caches segment information for use in later calculations

Since the SegmentationKernel object just caches information it is useful for complicated

operations or operations which can be most efficient when applied to a bulk grouping

of data. For this efficiency reason, the TransportKernel is not currently used in the

default solver. Instead, a SegmentationKernel is used in its place so that the operations

can be applied to flux data at once instead of interleaving ray tracing with transport

calculations.

70

3.3.2 TraverseSegments Classes

Unlike the MOCKernel parent class, the TraverseSegments virtual class contains a

significant amount of algorithmic information. Specifically, the virtual class contains

all segment iteration and ray tracing algorithms. The algorithm has a loopOverTracks

function that takes an MOCKernel as an argument. Subclasses of TraverseSegments

can call this function which iterates over groups of segments (eg. tracks).

Inside the loopOverTracks function, a conditional block calls the appropriate seg-

ment looping scheme, passing along the provided kernel. The currently implemented

segment iteration schemes are:

• loopOverTracks2D: Iteration scheme for looping over explicitly stored 2D seg-

ments

• loopOverTracks3DExplicit: Iteration scheme for looping over explicitly stored

3D segments

• loopOverTracksByTrackOTF: Iteration scheme for looping over and generating

segments on-the-fly where segments with ray tracin by individual track, described

in Chapter 5

• loopOverTracksByStackOTF: Iteration scheme for looping over and generating

segments on-the-fly with ray tracing by z-stack, described in Chapter 5

Each of the iteration schemes loops over all tracks and segments in the problem in

some order, performing the associated ray tracing algorithm when appropriate. The ray

tracing scheme is provided information relevant to ray tracing or loading the segments

of interest. Before calling the ray tracing scheme, the newTrack function of the provided

kernel is called. Then the ray tracing scheme is called and provided the kernel so that it

can call the execute function immediately when the segment is formed or loaded.

After the ray tracing scheme is completed, an onTrack function is called which details

operations to perform on the group of segments. The cached segment information is also

provided if a SegmentationKernel was used. The transport sweep algorithm currently

71

used in OpenMOC applies all of the MOC equations inside the onTrack function using

the provided cached segment information.

In general, algorithms which require track or segment information should form a

small subclass of the TraverseSegments function and define the onTrack function.

Additionally, an execute function should be defined which details the general structure

of the algorithm. It should include the setup, call the loopOverTracks function to loop

over all segments and apply the algorithm defined by the onTrack function and the

provided kernel, and then detail any operations to perform after looping over all tracks

and segments.

An example of an execute function is given below for the VolumeCalculator class

which calculates the volumes of all regions in the geometry. Since it performs all

operations directly on segments using VolumeKernel objects, the onTrack function is

defined to simply return.

void VolumeCalculator::execute() {

#pragma omp parallel

{

MOCKernel* kernel = getKernel<VolumeKernel>();

loopOverTracks(kernel);

}

}

For algorithms in which only operations need to be performed on tracks, a NULL

kernel can be provided which alerts the segment iteration scheme to skip the ray trac-

ing step. Numerous subclasses of TraverseSegments are present in OpenMOC since

every algorithm which loops over segments or tracks is contained in a subclass of

TraverseSegments. They all appear in the files TrackTraversingAlgorithms.h and

TrackTraversingAlgorithms.cpp.

72

3.4 Computing Systems

In this thesis, all computational results either use the Argonne BlueGene/Q supercom-

puter or the Falcon supercomputer at the Idaho National Laboratory. An overview of

system parameters is shown in Table 3.1. Note that the BlueGene/Q architecture have

significantly lower clock speeds. In addition, these cores have limited branch prediction

capabilities, causing them to be much slower. The Argonne BlueGene/Q supercomputer

contains two partitions of interest in this thesis: the Cetus partition and the Mira parti-

tion. The Cetus partition is intended for small simulations whereas the Mira partition is

intended for large simulations.

Table 3.1: Description of single node supercomputer architectures

Argonne BlueGene/Q Falcon

CPU Type Single Socket Dual Socket

CPU Name BlueGene/Q E5-2695 v4

Architecture PowerPC A2 Broadwell

Cores per Node 16 36

Hardware Threads per Node 64 36

Speed (GHz) 1.6 2.1

Node Memory (GB) 16 128

3.5 Performance Considerations

So far this chapter has emphasized software design for code resiliency and flexibility.

However, a useful application should also minimize runtime. This section concentrates

on software design considerations to maximize performance and minimize runtime.

3.5.1 Addressing Performance in Object-Oriented Modular Software

Design

While the object-oriented and modular design is useful for code reuse, minimizing

the number of potential bugs and allowing for greater flexibility, it does add some

73

computational overhead. The overhead is largely due to added function calls. This can

be overcome through the use of inline functions which inject their code directly into

sections where they are called at compile time. While this increases the performance of

the code, it can radically increase the size of the executable, especially for large inline

functions. Therefore, functions should only be inline functions if they are small.

However, successfully using inline functions can sometimes be difficult where logic

is required to determine which function to call. Therefore, performance-sensitive code

should be designed such that the number of function calls which are not inline functions

are minimized.

The optimal code design blends object oriented and modular design for code that is

not performance-critical while using optimized and less flexible code for the performance-

sensitive sections. In terms of the MOC algorithm, over 95% of the runtime is typically

spent applying the MOC equations for segments. In OpenMOC, the application of the

MOC equations occurs in the CPUSolver::tallyScalarFlux function. This function,

which is quite small in size, should be thoroughly optimized for performance while the

rest of the code should rely heavily on object oriented and modular design principles.

3.5.2 Data Organization

One critical consideration when designing performance-sensitive code is the memory

layout. When CPU cores load information from memory, they load entire cache lines

into local caches rather than just the desired variable. This allows the number of loads

to be reduced if nearby memory is accessed. When desired memory is already within

cache, it is termed a cache hit. If it is not, it is termed a cache miss, requiring an extra

load. Optimizing cache performance to maximize cache hits is critical when designing

efficient software, as loads from main memory can be quite expensive. Locality refers to

how well memory is organized such that nearby or local memory is accessed frequently.

To maximize locality in MOC applications, most data should be structured to be

contiguous in energy groups. Generally, the MOC equations can be approached as being

applied to segments over energy groups. Since MOC tracks traverse regions in different

74

orderings, it is difficult to optimize the cache efficiency of data accessed by region.

However, the data for each region can easily be structured and always traversed in the

same ordering. Therefore, the maximal amount of work should be completed on each

region before moving to the next. This implies that the energy groups should all be

treated together and the data structures should be contiguous in energy groups to reflect

this memory access pattern.

For linear source MOC, the data is laid out in a slightly different way. While it is still

important for energy groups to be close in memory for linear source solvers, multiple

quantities are tallied and used for each energy group due to the addition of moments in

each Cartesian direction. Therefore, scalar flux moments and source moments are laid

out contiguous in Cartesian direction (x , y , and z). Specifically, the arrays of scalar flux

moments and source moments are indexed by i × 3G + 3× g + d where i is the region

ID, g is the energy group, and d represents the x , y , and z directions.

3.5.3 Scratch Pads for Temporary Storage

There are several points throughout the MOC algorithm where quantities need to be

temporarily stored by region or by group. One example is calculating total reaction rates.

To compute a total reaction rate in the reactor, the reaction rates from all regions and

energy groups need to be calculated and summed. It is possible to add each contribution

from a region and group to a tally for the total reaction rate immediately after calculation,

but this can lead to significant roundoff error. Alternatively, if the summed values could

be first stored in an array and then added in a pairwise fashion, the roundoff error can

be significantly reduced [47].

The number of summed quantities is NG where N is the number of source regions

and G is the number of energy groups. An array of NG could be allocated, but this would

require a significant amount of additional storage. Instead, two arrays are allocated –

one of size G and another of size N . Reaction rates for all G groups for an individual

region are computed and then stored in a temporary array of size G. This array is then

summed using a pairwise sum. The result is then stored in an array of size N . After this

75

conducted for all N regions, the array of size N is then summed in a pairwise fashion.

Since temporary arrays of size N and size G are often found throughout OpenMOC,

memory for these arrays is allocated at the beginning of the solver for each thread.

Allocating memory can often be quite costly. If the arrays were allocated just before use,

there would be a significant number of memory allocations. By allocating the memory

upfront and later referencing the allocated memory, the number of memory allocations

is minimized, improving performance.

3.5.4 Minimizing Parallel Contention

When multiple threads modify shared data, bugs can be incurred due to race conditions

where the outcome of a program is dependent on the order in which threads execute

operations. For instance, consider multiple threads adding numbers to a shared counter.

The fundamental operations that access the data are reads and writes. Therefore, one

thread could read a value of the counter and before the thread adds the read value with

its added value, the counter updates. The thread then writes the computed value to

the shared counter, disregarding the update that occurred after the read, leading to an

error in the computation. This occurs because the read, addition, and write are separate

operations where the data can be modified between the operations [48].

Because of these considerations, care must be taken to ensure correctness in multi-

threaded applications. A common way to ensure correctness is to place a lock around

critical sections. A critical section is where shared data is potentially modified by multiple

threads. A lock ensures that at most one thread can access the critical section at any

time. While locks do ensure correctness, they can also cause a bottleneck in the code,

especially when many threads are present and attempting to access the same critical

section. This situation is termed contention.

In terms of the MOC algorithm, in which each thread is responsible for applying the

MOC equations to a group of segments, threads can be handling segments which access

and modify data (such as the scalar flux) for the same region. A naive implementation

would place a lock around the modification of the local scalar flux data for each energy

76

group when the segment’s contribution is computed. While this ensures correctness, it

requires that each thread attempt to acquire a lock for each energy group, which can

incur significant overhead cost.

Instead, each thread tallies the contributions to each energy group in its local tempo-

rary storage array, described in the previous section. This allows for the thread to modify

the array without any contention with other threads. After the contributions are com-

puted and stored for every energy group, a lock is acquired for the region and the local

thread contributions are summed to the global tally of scalar flux. This allows for only

one lock to be acquired for each segment traversal. In addition, it allows for increased

cache efficiency and vectorization. Lock operations require communication between

cache levels to ensure correctness and are not vectorizable. By decreasing the frequency

to which locks are accessed, these issues can be minimized. This was thoroughly tested

during the development of a prototype application named SimpleMOC [49].

3.5.5 Computing Exponentials

One major bottleneck of MOC solvers, particularly for flat source MOC, is the computation

of exponentials. Since an exponential term is present in the MOC equations, dependent

on optical path length, an exponential needs to be computed for each segment and

group. Specifically, 1− e−τ needs to be computed, where τ is the optical path length.

A naive approach would just use the intrinsic exp function available in the standard

C++ library. While this would accurately compute the exponential, the intrinsic exp

function can be quite expensive. Boyd showed that for the initial flat source imple-

mentation of OpenMOC, it was far more efficient to compute exponentials with a table

interpolation [46].

OpenMOC calculated exponentials with a table interpolation instead of using the

intrinsic exponential function. One important consideration with MOC implementations

is the behavior in optically thin regions. For instance, consider the flat source equation

ψt,ς
g (`t,ς) =ψ

t,ς
g (0) +

�

q0
i,g

Σi,g
t

−ψt,ς
g (0)

�

F1

�

Σi,g
t `t,ς

�

77

in which the total cross-section Σi,g
t becomes zero. The fundamental MOC equations

still apply, but this form poses computational difficulties as the total cross-section is in

the denominator. However, this equation can be recast as

ψt,ς
g (s) =ψ

t,ς
g (0) +

�

q0
i,g`t,ς −

�

Σi,g
t `t,ς

�

ψt,ς
g (0)

� F1

�

Σi,g
t `t,ς

�

Σi,g
t `t,ς

(3.1)

and instead of building a table of F1 which is interpolated, the table is built for the term

F1(τ)/τ where τ is the optical path length Σi,g
t `t,ς. When calculating this term for low

optical path length during table formation, a quadratic expansion around zero is used

rather than the direct computation of F1(τ)/τ. Note that the limit of F1(τ)/τ at zero

is 1.0. Similarly, the exponential terms that arise in linear source (such as F2) are also

computed in a similar fashion (F2(τ)/τ) with a quadratic expansion for low optical path

length.

While the interpolation approach has been used by many, others have implemented

specialized exponential functions which can more efficiently calculate exponentials [50].

These specialized exponential functions allow for variable precision, which is useful for

the MOC application where reduced precision on exponential terms can still maintain

solution accuracy.

In comparison with table interpolation, the specialized exponential functions trade

a decrease in loads for an increase in Floating Point Operations (FLOPs). In recent

years, the computational capabilities of computing FLOPs have increased while the

performance of loading from memory has plateaued [51]. Therefore, this trade-off can

be beneficial.

For flat source MOC implementations, the specialized exponential functions can

indeed lead to computational improvements. However, for linear source MOC imple-

mentations, the exponential terms F2 and H need to be computed in addition to F1.

These two additional terms have far more complicated analytic forms than F1. Therefore,

the increased FLOP work induced from computing exponentials explicitly is far greater

for linear source than flat source MOC. For this reason, table interpolation is used for all

three exponential terms (F1, F2, and H) in the linear source implementation. They are

78

stored sequentially in memory for each interpolation point such that all three exponential

terms can be retrieved with minimal loads. Again, they are stored in terms of F1(τ)/τ,

F2(τ)/τ, and H(τ)/τ for numerical stability using a quadratic expansion for low optical

path length.

Both the specialized exponentials and table interpolation were implemented for flat

source MOC whereas only table interpolation was implemented for linear source MOC.

To test the impact of the different formulations on the computational profile of the

solver, the SDSA problem detailed in Appendix E.2.5 is simulated using the parameters

presented in Table 3.2.

Table 3.2: MOC ray parameters for the SDSA test problem for computational profiling

Radial Ray Spacing 0.1 cm

Axial Ray Spacing 1.5 cm

Number of Azimuthal Angles 16

Number of Polar Angles 4

These parameters are selected to be quite coarse in order to feasibly run in-depth

profiling diagnostics. In particular, the problem is simulated in Intel VTune to record

the number of floating point operations performed. The floating point utilization, often

represented in GFLOPs per second, shows how well the implementation is using the

available floating point units. Since usable code cannot achieve optimal floating point

performance due to the need to load and store information, the LINPACK benchmark is

often used for comparison. The LINPACK benchmark represents dense linear algebra

computation, in which floating point units are well suited. Many regard LINPACK as

the maximum floating point utilization achievable in practice. The results are shown in

Table 3.3 with only one test conducted per configuration, yielding no error estimates.

Note that all cases use on-the-fly ray tracing by z-stack, explained later in Chapter 5.

In this thesis, the integration time is often used as a performance metric, referring to

the time required to compute the angular flux variation over a segment and tally its

79

contribution to the local scalar flux for a single energy group. It is calculated as

T NC

NI

where T is the average time to compute one transport sweep, NC is the number of CPU

cores used, and NI is the number of integrations, which can be computed as NI = 2SG

where S is the number of segments and G is the number of energy groups. The factor of

two arises since each segment represents forward and backward directed angular fluxes.

All results also use one node of the Falcon supercomputer, utilizing all 36 cores with

shared memory parallelism.

Table 3.3: Computational profiles of flat and linear source solvers on a single node of
the Falcon supercomputer

Source Exponential Integration

Approximation Computation Time (ns) GFLOPs/s % LINPACK

Flat Sp. Function 8.4 56.49 5.4

Flat Interpolation 9.7 23.56 2.3

Linear Interpolation 27.1 36.7 3.5

These results show that linear source incurs a ≈ 2 – 3× performance overhead.

Since the specialized exponential function incurs added FLOP work, it allows for greater

floating point utilization. For the exponential interpolation implementations, the floating

point utilization is significantly lower and performance is instead heavily reliant on

the speed of loading from nearby caches. The linear source solver has greater floating

point utilization than the associated flat source solver due to the equations being signifi-

cantly more complicated, leading to increased FLOP work. Note that both flat source

implementations are able to achieve less than 10 ns integration times on the Falcon

supercomputer. In order to simplify the code, the specialized exponentials were later

removed from the code base, as they are not useful in the targeted linear source solver.

80

3.5.6 Floating Point Precision

Another performance consideration is the precision to use for floating point variables –

either single or double precision. In general, all accumulators, which store the summation

of many terms, are stored in double precision because they are sensitive to roundoff

error. Common examples include the eigenvalue k and residual estimates. On the other

hand, values which are less likely to have an impact on results due to roundoff error are

stored in single precision. For instance, the angular fluxes are always stored in single

precision. This allows for the memory footprint to be reduced and cache efficiency to be

maximized as twice as much data can be stored in cache.

Some variables allow for either single or double precision, depending on specified

compiler options. Specifically, the types FP_PRECISION, SF_PRECISION, and

CMFD_PRECISION are all defined to be either single or double precision floating point

types at compile time. The FP_PRECISION type dictates the precision of the most accessed

data, including the exponential table and cross-section data. The SF_PRECISION type

dictates the precision of scalar flux data and the CMFD_PRECISION dictates the precision

of CMFD matrices and linear algebra solvers.

The SF_PRECISION type, dictating the precision of scalar flux data is defined separate

from FP_PRECISION to independently treat the way scalar flux tallies are handled. On

one hand, scalar flux data can be viewed as accumulators since many segments tally

their contribution to the scalar flux in each region. However, the data footprint of scalar

flux data can also be significant and impact the performance of the solver.

For high performance computing problems, all the precision types are typically

set to single precision in order to maximize performance. However, when very tight

convergence is desired, for debugging or convergence analysis, all precision types are

set to double precision. In this thesis, all timing results presented use single precision,

but double precision is used for cases where convergence behavior is analyzed to tight

convergence.

To test the effect of floating point precision, simulations of the SDSA test problem

described in Appendix E.2.5 are conducted with the modular track laydown which will

81

be introduced in Chapter 4, on-the-fly ray tracing by z-stack introduced in Chapter 5,

and with the linear source approximation described in Chapter 2. The aim is to show

performance differences from using single or double precision. Here, only one transport

sweep iteration is conducted in each test. The MOC parameters used in the tests are

those presented later in Table 8.7 and the results are presented in Table 3.4. In these tests,

the reported precision refers to the precision of both SF_PRECISION and FP_PRECISION.

The tests were conducted using all 36 cores on one node of the Falcon supercomputer.

For each precision, three simulations were conducted with the runtime uncertainty

reported as the maximum difference from the mean of the three tests.

Table 3.4: Effect of floating point precision on performance of the SDSA test problem

Single Precision Double Precision

Total Memory (GB) 12.49 12.81

Boundary Angular Flux Storage (GB) 12.15 12.15

Scalar Flux Storage (GB) 0.39 0.76

Scalar Flux Moments Storage (GB) 0.78 1.52

Runtime (sec) 98 +/- 7 100 +/- 6

Note that boundary angular fluxes are always stored in single precision. The single

precision boundary angular flux storage accounts for 94.8% of total memory when

the SF_PRECISION and FP_PRECISION types set to double precision. When these types

are set to single precision, boundary angular flux storage accounts for 97.3% of total

memory. Since boundary angular flux storage accounts for the vast majority of memory

consumption, the memory footprint of OpenMOC would almost directly double if the

boundary angular fluxes were stored in double precision.

The effect of single or double precision for the SF_PRECISION and FP_PRECISION

types on runtime is not obvious, as the difference is less than the reported uncertainties.

The total memory footprint is only slightly reduced by using single precision. The effect

of CMFD precision on runtime is not tested in these studies, but the final results presented

in this thesis will show the computational cost of the CMFD solver to be insignificant for

the targeted full core simulations with MOC parameters chosen to sufficiently converge

the solution is space and angle.

82

3.5.7 Organizing Looping Structures

With the linear source approximation, the amount of computational work is significantly

increased per segment traversal. The algorithm is split into tight loops over specific

operations that access similar memory. This was shown to have performance benefits in

the early prototype work [49]. Specifically, the algorithm presented in Alg. 3-1 is used

for each segment traversal during transport sweeps. Note that the temporary buffers Bk

for 1≤ k ≤ 7 are allocated at the beginning of the simulation for each thread in order

to reduce the number of allocations and reduce thread contention.

83

Algorithm 3-1: Kernel for applying MOC linear source equations on a segment

Consider a segment ς on track t traversing region i with length `t,ς

G is the number of energy groups
Σi,g

t represents the total cross-section for each group g
φi,g is the array of average scalar fluxes
φ̂v,i,g is the array of scalar flux moments for each Cartesian direction v
ψt

g is the array of current angular fluxes along the track
B1, B2, B3, B4, B5, and B6 are arrays of length G
B7 is an array of length 3G
for all g ∈ G do . Loop over all groups and compute exponentials

τ← Σi,g
t `t,ς

B1[g]← F1(τ) . Eq. 2.25
B2[g]← F2(τ) . Eq. 2.31
B3[g]← H(τ) . Eq. 2.75

end for

for all g ∈ G do . Loop over all groups and compute track-based source terms

Compute track-based flat source q0
t,ς,g . Eq. 2.43

Compute track-based linear source q1
t,ς,g . Eq. 2.44

B4[g]← q0
t,ς,g

B5[g]← q1
t,ς,g

end for

Compute direction independent terms in Eq. 2.31
for all g ∈ G do . Loop over all groups and apply linear source MOC equations

Using arrays B1, B2, B3, B4, and B5 compute the change in angular flux
Tally contribution to local average scalar flux tally B6[g] . Eq. 2.81
for all v ∈ (x , y, z) do

Directional index d maps v ∈ (x , y, z) to d ∈ (0,1, 2)
Calculate contribution to local scalar flux moment tally . Eq. 2.81
Tally contribution to array B7 at B7[3g + d]

end for

Update angular flux ψt
g

end for

Acquire lock for region i
for all g ∈ G do . Loop over all groups and tally contributions to fluxes

Tally average scalar flux contributions in B6 to φi,g

Tally average scalar flux contributions in B7 to φ̂v,i,g

end for

Release lock for region i

84

3.6 User Input

In terms of input structure, the 3D MOC updates to OpenMOC were structured to

minimize the amount of work required to convert a 2D input to a 3D input. From a fully

defined 3D geometry, including z-planes, the only difference in input between a 2D and

3D simulation is the definition of the track generator. A regular 2D TrackGenerator

object supplied to a solver will trigger the 2D MOC solver, whereas a TrackGenerator3D

object will trigger the 3D MOC solver. Similarly, a CPUSolver object triggers the flat

source solver, whereas a CPULSSolver object triggers the linear source solver.

If the Geometry was written in two dimensions without specifying z-planes, the

geometry will need to be bounded in order to have a well defined 3D MOC problem. In

theory, a 2D simulation implies infinite dimensions axially so if a bounded 3D geometry

is provided to a regular 2D TrackGenerator object, a warning will be triggered, but the

simulation will still run assuming infinite axial dimensions.

To facilitate running on systems which do not have thorough Python support or have

difficulty transferring MPI communicator objects between Python and C++ for domain

decomposed simulations, an alternative C++ build was implemented in the profile

directory. This build uses a standard C++ Makefile and sample C++ inputs are provided

as well. This alternative build might also be advantageous for developers that would

like quick turnaround between updates in the core OpenMOC code rather than having

to re-install OpenMOC after each source code update.

The downside of using the C++ build is that a C++ input file is required, which can be

quite inflexible compared with regular scripting languages such as Python. This difficulty

mainly arises during geometry and material definitions. Therefore, new routines were

created in the Geometry class that save the geometry and material descriptions to a

geometry binary file (usually with the *.geo extension). The file can then be easily

loaded in either Python or C++ using the OpenMOC geometry reader. This allows the

user to take advantage of both the flexibility of the Python build for inputs and the C++

build for universality and ease of installation. This process of creating geometry and

material definitions in Python while running the simulations using the C++ build was

85

used for the vast majority of the results presented in this Thesis.

3.7 Version Control and Licensing

OpenMOC utilizes Git version control and an open source distribution is hosted on GitHub

at https://github.com/mit-crpg/OpenMOC.git. Git is a free and open source version

control distribution that is becoming the software industry standard for version control.

GitHub uses the Git distribution to host software distributions, both open source and

closed source. Pull requests to the develop branch form the basis by which the code

evolves. Anyone in the public can contribute to the code by making a pull request to

the develop branch. The work presented in this thesis is found on the 3DMOC branch,

which has not yet been merged with the develop branch since it does not contain all the

functionality currently available on the develop branch for 2D MOC simulations.

The OpenMOC code has been approved for open source release by the MIT Technology

Licensing Office (TLO) under the MIT/X license. This license allows anyone to download

the software without restriction. In addition, modifications to the software may be

published, distributed, or sold. OpenMOC is designed with the intent of experimenting

with new ideas within MOC simulations. This is further aided by the new flexible

structure detailed in this chapter. The goal of OpenMOC is to promote an active reactor

physics community where transparent research is possible and new ideas encourage the

improvement of nuclear reactor modeling and simulation.

86

https://github.com/mit-crpg/OpenMOC.git

Chapter 4

Track Laydown

In Chapter 2 the concept of laying down tracks in the MOC method was briefly introduced.

In this chapter, the strategies for laying down tracks are discussed in great detail. First,

this chapter discusses the relatively straightforward 2D track laydown. Then, the 2D track

laydown is used to form a 3D track laydown. This chapter highlights the importance of

3D track laydown decisions on the overall computational cost of MOC, closely following

the track laydown analysis of Shaner, et al [18].

4.1 2D Track Generation

As presented in Chapter 2, MOC lays tracks across the geometry over which the MOC

equations are applied. While one dimensional, each track represents a particular three

dimensional volume and angular subspace. The first step in setting up the MOC problem

is creating tracks that span the spatial and angular space of the problem.

When creating the tracks, it is important to consider the boundary conditions as

these determine whether the outgoing angular flux needs to be passed as the incoming

flux to another track. While analysis of full-core problems typically involves only vacuum

boundaries, it is helpful to have the option for reflective boundaries to compare the

results of small-core benchmarks, such as the C5G7 benchmark [24], to other codes. For

flexibility, OpenMOC focuses on generating tracks that are cyclic and can therefore be

used for reflective, periodic, or vacuum boundary conditions.

87

In this discussion, it is important to make clear the distinction between tracks and

segments (sometimes also referred to as intersections). Tracks are defined to span an

entire geometry or geometry sub-domain and pass through region boundaries. On the

other hand, segments do not cross region or material boundaries.

Tracks for a 2D MOC problem are typically laid down using the cyclic tracking

approach and a product quadrature. Users input a desired radial ray spacing δ̃φ and

number of azimuthal angles nφ in [0, 2π]. With this approach, desired azimuthal angles

are created to evenly subdivide the angular space such that the ith desired azimuthal

angle φ̃i ∈ [0, π2] is paired with a complementary azimuthal angle φ̃ nφ
2 −i−1 as described

in Eq. 4.1 and Eq. 4.2.

φ̃i =
2π
nφ

�

1
2
+ i
�

∀ i =
�

0,
nφ
2

�

(4.1)

φ̃ nφ
2 −i−1 = π− φ̃i ∀ i =

�

0,
nφ
4

�

(4.2)

Other valid angular quadrature sets can also be used [17]. By tracking both forward

and backward along a track, the full 2π angular space is covered as shown in Figure 4-

1 for four azimuthal angles. Tracks are laid down such that they intersect with a

complementary track at the boundaries.

(a) (b)
Figure 4-1: Illustration of (a) forward and (b) backward tracking for 2D MOC track
laydown. The geometry has dimensions ∆x ×∆y .

88

In order to guarantee cyclic wrapping of 2D tracks, there must be an integer number

of tracks on x and y axes for each azimuthal angle. This requires the actual spacing

between tracks be chosen as:

δi
x =
∆x
ni

x

δi
y =
∆y
ni

y

(4.3)

where ni
x is the integer number of tracks along the x-axis for the ith azimuthal angle.

The same notation applies to the y direction. Using the input value of δ̃φ, the integer

number of tracks along the axes for the ith azimuthal angle are computed as:

ni
x =

&

∆x sin φ̃i

δ̃φ

!'

ni
y =

&

∆y cos φ̃i

δ̃φ

!'

(4.4)

where the ceiling is taken to ensure at least one track intersects with each axis. The

azimuthal angle also needs to be corrected as:

φi = tan−1
�δi

y

δi
x

�

(4.5)

where φi is used to denote the ith corrected azimuthal angle. Using the corrected

azimuthal angle, the radial ray spacing for each angle is also corrected as:

δi
φ
= δi

x sinφi (4.6)

where δi
φ

is used to denote the corrected radial ray spacing. Using the corrected values,

φi and δi
φ

, the 2D tracks are laid down on the geometry.

4.2 Angular Quadrature

In any MOC implementation, angular quadratures are needed. An angular quadrature

is a set of angles and weights that can accurately integrate the angular space. In this

thesis, a product quadrature is assumed which allows azimuthal and polar quadratures

to be separable. For a given azimuthal and polar angle combination, the weight from

89

the azimuthal quadrature is multiplied with the weight from the polar quadrature to

determine the total angular weight.

4.2.1 Azimuthal Quadrature

For the azimuthal space, equal angle separation is chosen since it is expected that all

azimuthal directions are equally important, as given in Eq. 4.1. The angles need to

be corrected to ensure track linking at reflective and periodic boundaries. Azimuthal

weights wi
φ

for azimuthal index i = 1...nφ/2 are then chosen as:

wi
φ
=
φi+1 −φi−1

2π
(4.7)

Virtual angles are introduced at the extremes for notational convenience. These angles,

φ0 and φnφ/2+1, are defined to be:

φ0 = −φ1 φnφ/2+1 = π−φnφ/2 (4.8)

The computed weights account for the angular space represented by each track. Note

that these relationships define weights for azimuthal angles φ ∈ [0,π], only accounting

for half the azimuthal angular space, since tracking both forward and backward along

tracks accounts for the full 2π azimuthal space.

4.2.2 Polar Quadrature

In 2D, the axial dimension is assumed infinite and therefore linking is not required

beyond the radial plane. This allows any polar angle quadrature to be chosen without

having to correct polar angles. One interpretation is that tracks in 2D MOC are allowed

to continue unbounded axially, with their z-height insubstantial, since behavior must be

the same along the axial direction due to symmetry. Popular quadratures include the

Gauss-Legendre polar quadrature and the TY quadrature [52]. Both are important polar

quadrature sets for MOC solvers.

The Gauss-Legendre quadrature set is based on the Gaussian quadrature rule which

90

allows polynomials of order up to 2n−1 to be integrated exactly using only n quadrature

points over the interval [-1, 1]. This is accomplished by choosing quadrature points x j

and weights w j
gl such that

∫ 1

−1

d x Pm(x) =
n
∑

j=1

x jw
j
gl ∀m= [0, 2n− 1] (4.9)

where Pm(x) is the Legendre polynomial of order m. The quadrature points x j are chosen

to be the roots of the Legendre polynomial Pn(x) and the weights w j
gl are computed as

w j
gl =

2(1− x2
j)

(n+ 1)2
�

Pn+1(x j)
�2 (4.10)

Since the polar angle θ is bounded by [0,π], and therefore cosθ is bounded by [−1, 1],

this quadrature rule can be used by the taking polar angles to be cos−1 x j.

Another useful quadrature for 2D MOC, and the most widely used in production

MOC codes, is the TY polar quadrature [52]. This quadrature set notes the relation

of MOC to collision probability methods, allowing an analytic form for MOC scalar

fluxes in terms of collision probabilities. These collision probabilities can then be cast in

terms of MOC equations along a strip associated with a 2D track to show that the polar

quadrature is optimal when it minimizes the error of approximating Bickley functions.

With this insight, the TY quadrature is computationally formed by minimizing the error to

Bickley functions, which can be numerically evaluated. In practice, most simulation tools

hard-code the published polar angle quadrature points and associated polar weights.

While the TY quadrature has been quite successful in 2D simulations, it relies on an

analytic form for the neutron transport over a 2D strip. Therefore, the Gauss-Legendre

quadrature is typically used in 3D MOC simulations.

Together, the azimuthal and polar quadrature combine to form a product quadrature.

An example of a quadrature for 3D MOC is shown in Figure 4-2 where the product

quadrature is plotted on a octant of the unit sphere using the Gauss-Legendre polar

quadrature.

91

(a) (b) (c)
Figure 4-2: Illustration of a product quadrature for a 3D MOC problem on an octant of
the unit sphere with the Gauss Legendre polar quadrature using 32 azimuthal angles
and (a) 2 polar angles, (b) 6 polar angles, and (c) 10 polar angles.

4.3 3D Track Generation

Once the 2D tracks are laid down, 3D tracks can be formed from the 2D tracks. In

generating 3D tracks, it is assumed that 3D tracks are laid down as z-stacked groups of

tracks that project down onto the 2D track layout. A sparse 2D and associated 3D track

laydown for a simple pin-cell is illustrated in Fig 4-3.

(a) (b)
Figure 4-3: Illustration of (a) 2D and (b) 3D tracks for a simple pin-cell.

4.3.1 Requirements for Cyclic Track Laydown in 3D

Before discussing the conditions required to generate cyclic tracks in 3D, it is important

to understand the concept of a track cycle. Figure 4-4 shows a track laydown in 2D for

reflective track cycles with T i
R,k denoting the kth reflective track cycle for the ith azimuthal

angle.

To generate 3D tracks, users input a desired track axial ray spacing δ̃z and number of

polar angles nθ in [0,π], as well as the parameters required to generate 2D tracks. With

92

Figure 4-4: An illustration of track cycles. Each plot highlights one of the 2D track
cycles labeled T i

R,k denoting the kth track cycle for the ith azimuthal angle.

this approach, desired polar angles are created according to the chosen polar quadrature

set. In OpenMOC, it is assumed that quadrature sets are symmetric such that the desired

polar angle θ̃ j with polar angle index j follows

θ̃ j = π− θ̃nθ− j−1 ∀ j =
�

0,
nθ
2

�

, (4.11)

where θ̃nθ− j−1 is the complement of the desired polar angle. Most useful quadrature sets,

such as the Gauss Legendre quadrature set, are indeed symmetric.

Note that the polar angles are initially defined to be independent of azimuthal angle

index. Later, the corrected polar angle will be dependent on the azimuthal angle to

ensure the tracks are cyclic. Following the same notation used to describe the azimuthal

angles, the corrected polar angles will be denoted by θi, j for azimuthal index i and polar

index j. By tracking both forward and backward along a track, the full 4π angular space

can be covered, as previously shown in Figure 4-3 for four azimuthal and two polar

angles.

Tracks are laid down such that they intersect with a complementary track at the

boundaries. Selecting an arbitrary cycle T i
R,k a set of 3D tracks are followed as they

complete one 2D cycle. Figure 4-5 highlights a particular 2D track cycle and a set of 3D

tracks projected along that cycle.

To guarantee cyclic track wrapping of the 3D tracks, two conditions must be met:

1. The distance between the beginning and end of a 3D track projection along a 2D

track cycle must be an integer number of track spacings for each 3D cycle.

93

(a) (b)
Figure 4-5: Illustration of (a) an arbitrary 2D track cycle T i

R,k and (b) a set of 3D tracks
projected along the 2D track cycle. The geometry height is ∆z, the track z-spacing is
δi, j

z , and the perpendicular axial distance between tracks is δi, j
θ

.

2. There must be an integer number of track spacings along the z-axis over the depth

of geometry, ∆z for each azimuthal/polar angle combination.

The first condition guarantees that a 3D track cycle wraps back onto another 3D

track when the 2D reflective cycle is completed. The second condition guarantees that a

3D track cycle that contains a reflection off a top or bottom surface still reflects into an

existing 3D track when the 2D cycle is completed. All cyclic 3D track generation schemes

must comply with these conditions, though many make additional assumptions.

4.3.2 The Modular Ray Tracing Method

Modular Ray Tracing (MRT) is a popular method for generating tracks, as tracks from

different modules naturally link at boundaries. Liu presented the first thorough de-

scription of this method for 3D MOC [17] based on a similar approach introduced by

Filippone for 2D MOC [53]. MRT uses the previously stated conditions for 3D cyclic

ray tracing to generate tracks for a rectangular geometry. After 2D track information

has been generated, the 3D track information can be computed using the requirements

for 3D cyclic tracking. MRT relies on the principle that a geometry can be uniformly

decomposed into a series of rectangular cuboids of equal dimensions, which are referred

to as sub-domains. For a sub-domain, the number of tracks and spacing between tracks

94

in x and y are described in Eq. 4.12 and Eq. 4.13, respectively, as

ni
x =

&

∆x sin φ̃i

Dx δ̃φ

'

ni
y =

&

∆y cos φ̃i

Dy δ̃φ

'

(4.12)

δi
x =

∆x
Dx ni

x

δi
y =

∆y
Dy ni

y

, (4.13)

where Dx and Dy are the integer number of sub-domains in the x and y directions,

respectively. This guarantees that an integer number of tracks lie along the x and y

boundaries of each sub-domain cell and that tracks on one surface line up with adjoining

tracks in the neighbor sub-domain cell.

When generating tracks using the MRT method, it is important to remember that

a track crossing a sub-domain interface needs to connect with another track on the

neighboring sub-domain. Note that connecting tracks on modular sub-domains are

periodic in nature. This allows tracks at sub-domain boundaries to be naturally linked

through periodic track linking.

A periodic track cycle is defined to be the series of sub-domain tracks that repeats

when a global track traverses a geometry. Figure 4-6 shows the periodic track cycles for

one azimuthal angle in our sample geometry when it is split into four sub-domains.

Figure 4-6: An illustration of 2D periodic track cycles T i
P,k for the kth periodic track cycle

with the azimuthal index i in a sample geometry split into four sub-domains.

Note that all 2D track cycles for a particular azimuthal angle index i have the same

95

periodic cycle length L i
P that can be computed as

L i
P =

δi
x

cosφi
lcm

�

ni
x ,

∆y
Dyδi

x tanφi

�

, (4.14)

where lcm is the least common multiple. Using the periodic cycle length for each

azimuthal angle, the integer number of track spacings ni, j
l between the beginning and

end of a set of 3D tracks after one complete 2D cycle can be computed as

ni, j
l =

&

L i
P cot θ̃ j

δ̃z

'

, (4.15)

where the subscript l is used to signify that ni, j
l is measured along the direction of a

track cycle. Next, the number of track spacings along the z-axis needs to be set to an

integer number. The number of tracks on the z-axis can be found by considering the

relation between the number of track spacings in the z-direction and the spacing along

the length of the 2D track in Eq. 4.16.

tan θ̃ j =
δi

L

δ̃z

=
L i

P

ni, j
l

ni, j
z

∆z
(4.16)

Rearranging and inserting the desired polar angle θ̃i, j, this equation yields an expression

for the number of tracks ni, j
z on the z-axis as

ni, j
z =

&

∆zni, j
l tan θ̃i, j

L i
P

'

, (4.17)

where the ceiling ensures at least one track crossing on the z-axis. The corrected

z-spacing δi, j
z between 3D tracks is computed in Eq. 4.18.

δi, j
z =

∆z

ni, j
z

(4.18)

Using the 2D cycle length and number of track crossings on the z-axis and along the

length of the 2D cycle, the polar angle can be corrected using Eq. 4.19.

96

θi, j = tan−1
� L i

P

ni, j
l δ

i, j
z

�

(4.19)

It is important to note that when polar angles are adjusted, the Gauss-Legendre quadra-

ture set no longer is guaranteed to exactly integrate Legendre polynomials of order up

to 2n− 1 with n quadrature points. In fact, it is not guaranteed to exactly integrate any

Legendre polynomials beyond the zeroth order. This could either be ignored, assuming

that the quadrature can still integrate the polar angle space with reasonable accuracy,

or the weights can be re-computed to ensure that Legendre polynomials of order n

are exactly integrated. Both options are implemented in OpenMOC, but all the results

presented in this thesis ignore the weight correction for simplicity. The angular track

weight αt of track t with azimuthal angle index i and polar index j using a Gauss

Legendre quadrature can be computed as

αt = wi
φ

w j
gl. (4.20)

The procedure for identifying the periodic track cycles and finding the start and

end points for all tracks using the MRT method can seem a bit tedious, so others have

simplified the MRT method by noticing that the lengths of all 2D tracks are an integer

multiple of the shortest 2D track [20]. For example, the length of the first three 2D

tracks, t i
1, t i

2, and t i
3, for azimuthal index i are shown in Eq. 4.21, Eq. 4.22, and Eq. 4.23.

l i
1 =

√

√

√

�

δi
x

2

�2

+
�δi

y

2

�2

=
1
2

q

(δi
x)2 + (δi

y)2 (4.21)

l i
2 =

√

√

√

�3δi
x

2

�2

+
�3δi

y

2

�2

=
3
2

q

(δi
x)2 + (δi

y)2 = 3l i
1 (4.22)

l i
3 =

√

√

√

�5δi
x

2

�2

+
�5δi

y

2

�2

=
5
2

q

(δi
x)2 + (δi

y)2 = 5l i
1 (4.23)

Since the length of all 2D tracks is an integer number of lengths of the first track, l i
1,

97

any valid track laydown for the first track is also valid for all other tracks. Therefore, the

cycle length L i
P for azimuthal index i can be set to the length of the shortest track, l i

1.

This simplified form is termed Simplified Modular Ray Tracing (s-MRT). The algorithm

for generating tracks for the MRT and the s-MRT method can be described by Alg. 4-1.

It is important to note that the track generation procedure described in Alg. 4-1

favors correcting the axial ray spacing over correcting the polar angle. Alternative

algorithms could easily be designed to favor correcting the polar angle over the axial ray

spacing, but it is expected that correcting the axial ray spacing results in less induced

error and this is in line with previous work on MRT [20].

When the periodic cycle length is small relative to the desired axial ray spacing, the

correction to the axial ray spacing can be very large. This has significant implications for

the s-MRT method where the periodic cycle length is always on the order of the radial ray

spacing. Shaner showed that for realistic 3D MOC problems where the axial ray spacing

can be quite coarser than the radial ray spacing, s-MRT introduces far more tracks than

necessary [18]. This was shown to increase the number of tracks generated by at least

an order of magnitude for common full-core PWR problems. Since the computational

cost of MOC scales directly with the number of tracks, an order of magnitude increase

in the number of tracks translates directly into an order of magnitude increase in the

run time.

4.4 OpenMOC Implementation

Due to the great flexibility of modular ray tracing methods and the run-time concerns of

s-MRT, MRT was chosen as the track generation technique for OpenMOC. In earlier devel-

opment stages, multiple track generation options existed, but since MRT outperformed

all options in both flexibility and efficiency, the other options were eliminated.

In addition to implementing MRT for 3D Track Generation, OpenMOC generates

tracks on-the-fly rather than pre-computing and saving all track data. With the large

number of tracks involved in a 3D calculation, the storage of 3D track information can be

expensive. Therefore, 3D tracks are computed on-the-fly with track indexes. The track

98

Algorithm 4-1: 3D track generation using the Modular Ray Tracing Method

User specifies nφ, δ̃φ, nθ , δ̃θ , Dx , Dy , and Dz.

for all i ∈ I do . Loop over all azimuthal angles

Compute desired azimuthal angle φ̃i

Compute the # of tracks in x and y directions, ni
x and ni

y (Eq. 4.12)
Compute radial spacings between tracks δi

x and δi
y (4.13).

Correct the azimuthal angle and ray spacing, φi and δi
φ

(Eq. 4.3 and Eq. 4.4).

if MRT then
Compute the length of the 2D periodic track cycles, L i

P (Eq. 4.14).
else

Compute the length of the shortest track, l i
1 (Eq. 4.21).

Set L i
P ← l i

1.
end if

for all j ∈ J do . Loop over all polar angles

Compute the # of track spacings after one complete 2D cycle, ni, j
l .

ni, j
l =

&

L i
P cot θ̃ j

δ̃z

'

Compute the # of tracks on the z axis, ni, j
z .

ni, j
z =

&

∆zni, j
l tan θ̃i, j

L i
P

'

Compute the z-distance between 3D tracks, δi, j
z .

δi, j
z =

∆z

Dzni, j
z

Correct the polar angle, θi, j.

θi, j = tan−1
� L i

P

ni, j
l δ

i, j
z

�

end for
end for

indexes used to identify a track are: the azimuthal angle index, the x y track number,

the polar angle index, and the axial track number. As a pre-processing step, auxiliary

information is saved, such as the actual ray spacings, the actual polar angles, the 2D

99

track information, and the number of tracks in a cycle. Since retrieving track data is

simple given this auxiliary information, track retrieval adds trivial computational cost to

the simulation.

4.5 Conclusion

Efficiently laying down tracks is important to any MOC solver. In this chapter, the

methodology for laying down 3D tracks to guarantee cyclic relationships at boundaries

was discussed in detail. The MRT track laydown scheme was chosen for its flexibility.

Under this scheme, tracks can link at domain boundaries through periodic conditions.

More importantly, corrected ray parameters do not deviate significantly from desired

ray parameters. This is especially important for typical 3D reactor physics problems in

which the radial plane contains much more complexity than the axial direction, allowing

for a potentially coarser ray spacing in the axial direction than radial direction which

MRT can easily accommodate. Other track laydown schemes, such as s-MRT, have great

difficulties in accommodating these conditions, leading to significantly more tracks being

generated than needed, and therefore directly leading to a higher computational cost.

100

Chapter 5

Ray Tracing

In the previous chapter, track generation was discussed. Once the tracks are laid across

the geometry, they need to be partitioned by source region intersections into segments

across which the MOC equations can be applied. At a minimum, the segment lengths

and associated source region identifiers need to be recorded for each track. During the

transport sweep, the MOC equations described in Chapter 2 are applied to all segments.

This chapter discusses ray tracing procedures in which the segments are formed from

the track and geometry information.

This chapter introduces a ray tracing approach for axially extruded geometries in

which ray tracing is performed in a 2D/1D fashion for efficiency. It is important to note

the distinction between a 2D/1D approach to ray tracing and a 2D/1D approach to MOC.

In this thesis, all problems are solved using 3D MOC but the ray tracing approach splits

radial and axial detail to efficiently form 3D segments.

5.1 Introduction to Ray Tracing

Ray tracing fundamentally solves the problem of determining the next intersection with a

surface along a direction of travel and which new region is entered after the intersection.

Since complicated geometries contain many surfaces, this can be expensive if all surfaces

in the geometry need to be tested for intersections. Much of the work in complex ray

tracing, often for animations, relies on somehow forming acceleration structures which

101

limit the number of surfaces that need to be tested [54]. Traditional methods form

acceleration structures that resemble some hierarchy of cells and surfaces grouped by

location so that only nearby surfaces are considered [55].

In traditional reactor physics problems, an acceleration structure is naturally formed

by the hierarchical structure of the geometry. For instance, a core can largely be viewed

as an arrangement of assemblies, each of which is comprised of an arrangement of fuel

rods. Therefore, by just using the hierarchical CSG form of the geometry, the ray tracing

requirements are naturally reduced.

However, ray tracing can still be expensive, especially for cases which do not form

an easily structured form, such as reactor baffles, grid spacers, and neutron shields. A

ray tracing algorithm which is capable of handling all of these complexities becomes

significantly more complicated, leading to a loss in computational efficiency. In moving

from 2D simulations to 3D simulations, even more surfaces are introduced, exacerbating

the issue.

Most MOC implementations avoid this issue by treating ray tracing as a pre-processing

step whereby the segment information, which includes its length and the ID of the

traversed source region (SR), is calculated and explicitly stored at the beginning of

the simulation. During the transport sweeps, the information is then loaded from

memory. In this way, the amount of repeated ray tracing work is reduced and the cost

of ray tracing is effectively amortized over the number of transport sweeps. While this

approach is straightforward, its memory and compute requirements for 3D MOC can be

prohibitive, even for small problems, due to the vast number of segments present in 3D

MOC simulations [56]. Reducing the memory footprint is important for many reasons

including improved cache efficiency and reducing bulk memory requirements.

In this thesis, an alternative approach is presented that greatly reduces the segment

storage and generation requirements by taking advantage of the extruded geometry

structure common to many reactor physics problems. This alternative approach saves no

3D segment data, rather treating the ray tracing problem as a coupled 2D and 1D system

whereby 2D radial ray tracing information is combined with 1D axial information to

compute the 3D intersections [56].

102

Another ray tracing scheme, termed the CCM [25], also sought to reduce the memory

requirements for ray tracing axially extruded geometries by only saving the unique chords

(or segments). However, this method still requires that the segmentation procedure

be performed for all 3D tracks prior to performing transport sweeps, which can be

prohibitively expensive for complex geometries. In addition, while it does indeed reduce

the storage requirements, the storage scales with the number of unique 3D segment

lengths. This can be problematic for problems in which there are a large number of

unique segments.

The implementation in this thesis aims to most efficiently solve typical PWR problems.

From experience in simulating single PWR assemblies, the axial ray separation can be

on the same order as the axial source height [57], potentially causing there to be a large

number of unique segments. This motivates using concepts from the CCM method to

identify repeated segment lengths but also relying on the 2D/1D ray tracing approach

to reduce storage.

5.2 Forming an Axially Extruded Geometry

As previously stated, OpenMOC only supports piece-wise axially extruded geometries.

Most common reactor problems are naturally piece-wise axially extruded so this is not

a strong limitation in practice. Here, an axially extruded geometry is defined to be a

geometry in which every radial plane in the geometry is identical whereas a piece-wise

axially extruded geometry can be defined as the collection of a finite number of axial

zones where the geometry over each axial zone constitutes an extruded geometry.

For ray tracing in a 2D/1D scheme, a single axially extruded geometry is required.

Therefore, all radial detail must be gathered in order to effectively convert the piece-wise

axially extruded geometry to an axially extruded geometry. While common reactor

cores contain variations from axially extruded geometries, such as end plugs for control

rods, these variations can be fully captured by implicitly inserting additional geometric

intersections. Note the axially extruded requirement is only applied to the geometry,

not the materials. Each axial zone in an axially extruded region could be a different

103

material.

Given an axially extruded geometry, it is possible to store only the 2D segments

associated with intersections in the radial geometry. The 3D segments can then be

formed on-the-fly using a simple axial mesh.

First, 2D segments need to be formed which reflect intersections of the 2D tracks with

a superposition of all radial surfaces in the geometry. This is done by simultaneously ray

tracing across all the unique radial planes in the geometry, as depicted in Fig. 5-1. This

creates an implicit geometry containing all radial information, termed the superposition

plane. Each 2D geometric region in the superposition plane corresponds to an axially

extruded region with an associated unique identifier that contains an axial mesh and an

array of associated 3D SRs.

Figure 5-1: Depiction of 2D ray tracing for superposition of all radial detail.

Each 2D segment formed during the ray tracing contains its length and the unique

identifier of the axially extruded region being traversed. After 2D segmentation, axial

meshes need to be created for on-the-fly axial ray tracing. If a global axial mesh is

desired, whereby all axially extruded regions have the same axial mesh, all the unique

z-planes in the geometry are collected and sorted into a single axial mesh. Otherwise,

local meshes are populated for each axially extruded region during initialization of the

3D SRs. To initialize the 3D SRs, a temporary vertical ray is created for each axially

104

extruded region. These rays are all upward directed, starting from the bottom of the

root geometry, and segmented to determine distances between axial intersections while

initializing the associated SRs. During this step, the location of a point within each SR

is noted, and the data structures associated with managing the SRs are initialized. An

illustration of this process is presented in Fig. 5-2.

(a) (b) (c)
Figure 5-2: Illustration of SR initialization starting from the superposition plane (a)
where a radial point is chosen in each unique region, vertical tracks (b) are generated
at the chosen points to map the axial detail, yielding (c) the 1D axial meshes for each
region, and (optionally) a global 1D axial mesh

Implicitly, this strategy can create extra radial intersections since some of the axial

levels might not have originally contained the full radial detail of the superposition

plane. However, the number of additional intersections should be low due to the regular

structure of most reactor cores. For instance, fuel rods with end plugs present only a

slight deviation from an axially extruded geometry.

The advantage of local axial meshes is the ability to have different axial refinements

within the reactor. For instance, a partially inserted control rod might require a finer

SR discretization near the control rod tip. If a global axial mesh were used, the finer

discretization would need to be applied to the whole geometry at that axial height.

With local axial meshes, only the regions which need refinement would use a finer

discretization.

105

5.3 On-the-fly Axial Ray Tracing

During the transport sweeps, all 3D tracks are traversed across their span of the geometry.

The common method mentioned in Section 5.1, in which segments are formed in a

pre-processing step, accomplishes this by splitting every 3D track into 3D segments

before the transport sweeps and then simply cycling through all the segments.

In the methods presented here, 3D segments are recreated on-the-fly using informa-

tion from the 2D ray trace over all radial detail and the 1D axial meshes, both formed

at the beginning of the simulation. Due to the manner in which the 3D tracks were

generated, as detailed in Chapter 4, each 3D track has a corresponding 2D segmented

track. From the starting z coordinate of a track along with its polar angle, it is possible

to determine the distance along the track to both intersections with axial planes and

intersections with radial surfaces, defined by the 2D segments. On-the-fly axial ray

tracing can either be performed on each 3D track individually or on an entire z-stack.

5.3.1 Ray Tracing Individual 3D Tracks

For ray tracing each 3D track individually, the associated 2D segments are traversed

until the 3D track reaches its endpoint. First, the starting point is used to determine the

appropriate starting 2D segment and index into the axial mesh. If local axial meshes

are used, the index needs to be recomputed with a binary search at the start of each

2D segment. If a global mesh is used, the axial index only needs to be calculated at

the beginning of the track. The 2D segments are traversed and the shorter distance to

either an axial or radial intersection is calculated. This computed distance is the 3D

segment length and has an associated 3D SR indicated by the axial index. To form the

next 3D segment, the position along the 2D track is moved by the appropriate distance.

This process is repeated until the endpoint is reached. An illustration of this concept is

presented in Fig. 5-3.

106

Figure 5-3: Illustration of the on-the-fly axial ray tracing process with axial intersections
colored in blue and radial intersections colored in red. For the chosen track, the distance
to the next axial intersection is denoted Lz and the the distance to the next radial
intersection is denoted Ls.

5.3.2 Ray Tracing 3D Track z-Stacks

The structure of the 3D track laydown can be used to ray trace an entire z-stack. Specif-

ically all tracks in the z-stack have the same polar angle θ , project onto the same 2D

track, and are separated by a constant axial ray spacing δz. Therefore, the axial height

zi of the ith lowest track (starting from 0) can be given as a function of distance s along

the associated 2D track as

zi(s) = z0(0) + iδz + s cotθ (5.1)

where z0(0) is the z-coordinate at the intersection of the lowest track with the z-axis at

the start of the associated 2D track. Combining this with 2D track information is enough

to completely describe the trajectory and location of 3D tracks in the stack. Therefore, it

is possible to determine which tracks will traverse a given SR.

For each 2D segment in the 2D track, there is an associated axially extruded 2D

region which contains a list of 3D SRs in the region. With this structure, the SRs can

be traversed rather than the tracks. Using the boundaries of the SR and Eq. 5.1, it is

possible to analytically compute the indexes in the z-stack of tracks that will cross the

107

SR as

istart =

&

zmin −max (z0(sstart), z0(send))
δz

'

(5.2)

iend =

$

zmax −min (z0(sstart), z0(send))
δz

%

(5.3)

where istart is the index of the first track to cross the SR, iend is the index of the last track

to cross the SR, sstart is the 2D distance traversed at the start of the segment and send

is the 2D distance traversed at the end of the segment. A detailed derivation of these

relationships can be found in Appendix D. A depiction of this process is shown in Fig. 5-4.

Figure 5-4: Illustration of the on-the-fly axial ray tracing process for an entire z-stack.
The green arrows denote the first track to traverse the highlighted SRs calculated by
Eq. 5.2 and the red arrows denote the last tracks to traverse the SRs calculated by Eq. 5.3.
In SR A, a group of tracks traverse the entire 2D segment length. In SR B, one track
traverses the entire axial source height.

Notice that for SR A depicted in Fig. 5-4 there are multiple track segments that cross

the entire 2D length of the SR and are therefore identical. Their 3D segment length L3D

108

would simply be

L3D =
send − sstart

sinθ
. (5.4)

Due to the radial direction having much greater complexity than the axial direction,

SRs will tend to be longer in the axial direction than in the radial plane, especially when

higher order sources allow for coarse discretization in the axial direction. The high

aspect ratio causes some tracks to cross the entire 2D length of the SR.

To take advantage of the repeated lengths, it is possible to calculate the indexes of

the first and last tracks to traverse the entire 2D segment length. For this condition

to be met, the axial height of the tracks over the entire 2D segment must be greater

than the minimum axial boundary of the SR and less than the maximum axial boundary.

Therefore, the indexes of interest are the first track to have its lowest point above the

minimum boundary and the first track to have its highest point above the maximum

boundary. These indexes, iin and iout, respectively, can be calculated as:

iin =

&

zmin −min (z0(sstart), z0(send))
δz

'

(5.5)

iout =

&

zmax −max (z0(sstart), z0(send))
δz

'

(5.6)

A derivation of these relations can be found in Appendix D. For each SR these indexes

are calculated along with the beginning and end track indexes given in Eq. 5.2 and

Eq. 5.3. It is possible that iin will be greater than iout when the polar angle is steep

enough, allowing for the SR to be fully traversed axially without traversing the entire

2D length. These tracks can be determined with indexes iin and iout and have a common

3D segment length L3D given by

L3D =
zmax − zmin

|cosθ |
. (5.7)

Therefore, 3D segments are classified into four categories named by Sciannan-

drone [25]:

109

• Mixed Tracks – Case A: Tracks that partially traverse the SR and cross the lower

SR boundary. They are defined by track indexes istart ≤ i <min (iin, iout). For these

tracks, each 3D segment is computed individually.

• Mixed Tracks – Case B: Tracks that partially traverse the SR and cross the upper

SR boundary and each 3D segment is again computed individually. They are

defined by track indexes max (iin, iout)≤ i ≤ iend.

• Horizontal Tracks: Tracks that fully traverse the entire 2D radial distance of the

SR and are defined by indexes iin ≤ i < iout.

• Vertical Tracks: Tracks that traverse the entire axial distance of the SR and are

defined by iout ≤ i < iin.

This classification of segments allows the computational work involved in calculating

track intersections to be greatly reduced. In addition, the horizontal and vertical tracks

for each SR have common segment lengths, allowing for the potential reduction in

computational work. While not implemented for this thesis, these common segment

lengths all have the same exponential term for the MOC equations, allowing these terms

to only be computed once for the group of equal length segments.

Another important distinction between this scheme and ray tracing by individual 3D

track is the traversal order of segments. Since the ray tracing by z-stack scheme describes

intersections of all tracks with a given region, segments are traversed by region rather

than by track. In this scheme, the algorithm loops over all regions which are intersected

by the z-stack, treating all segments which intersect the region before moving to the

next region. This has profound implications on cache performance and is the subject of

the next section.

5.4 Performance Considerations

Now that the on-the-fly ray tracing algorithms have been defined, performance con-

siderations on typical computer hardware are discussed. This section focuses on how

110

these algorithms interact with the hardware design of computers in order to maximize

performance.

5.4.1 Cache Considerations for Segment Traversal

In the context of ray tracing, an efficient algorithm should traverse regions in a similar

order in which the data is organized. This means information relating to SRs, including

the neutron source and scalar fluxes, should also be allocated contiguously in memory

according to the traversed order. However, complex geometric detail in the radial plane

causes any ordering to be very difficult. For instance, a completely optimized ordering

of source regions in one direction might be a completely sub-optimal ordering in the

perpendicular direction. This is illustrated in Figure 5-5 for a simplified pin-cell. As

the geometric complexity and number of regions grows, the stride between SRs along

the perpendicular track would also grow, leading to a cache miss on almost every new

source region along the sub-optimal track.

Figure 5-5: A depiction of optimizing 2D radial SR ordering for the track highlighted
in blue. A perpendicular track, highlighted in red, experiences a very sub-optimal SR
ordering over its traversal with larger strides between sequential SRs.

However, the axial geometric detail for axially extruded geometries is far more

regular. This allows for the ordering of regions in the axial direction to be organized,

leading to improved cache performance when operating on nearby regions with the

same 2D projection. This ordering is illustrated in Figure 5-6. Note that this ordering is

naturally created by the SR initialization scheme discussed in Section 5.2.

111

Figure 5-6: A depiction of optimizing SR ordering for vertical intersections. SRs are
ordered sequentially in the axial direction, causing all vertical intersections to only have
a stride of one SR (the stride of scalar flux, neutron source, and moment information)
in memory.

For ray tracing by individual 3D tracks, this memory layout means that intersections

with vertical surfaces cause a likely cache hit whereas intersections with horizontal

surfaces, dictated by the 2D segments, likely incur cache misses. For ray tracing by

z-stack, segments are traversed by SR rather than track. In this scheme, SRs are traversed

in order axially with all segments of a given SR treated together. This greatly improves

the locality for loading SR information.

However, the improved locality for loading SR information does come at a cost.

When ray tracing individual 3D tracks, all segments correspond to the same track and

thus only one set of boundary angular flux data is updated while traversing segments.

This means the angular flux data for the track is always kept in a low level cache. When

ray tracing an entire z-stack, the segments belong to various tracks. While these tracks

are generally close in memory, there is a possibility of cache misses when switching

tracks. Due to the nature of the z-stack traversal, the algorithm switches tracks on nearly

every traversed segment. When the number of energy groups becomes large, the angular

flux data associated with a track also becomes large, and the possibility of incurring

cache misses when switching tracks increases.

112

5.4.2 Temporary Storage of Segments

The 3D segments that are computed from the axial on-the-fly ray tracing can either

be directly used to apply the MOC equations on-the-fly or stored in buffers in the

order in which they are formed. It is important to remember that in the OpenMOC

implementation, as well as many other MOC implementations, each segment represents

both a forward and backward angular flux in order to maximize efficiency. Therefore, if

segments are stored in buffers, the ray tracing cost can be halved since the ray tracing

operation would not need to be repeated in the reverse direction. With the segments

stored in buffers, the buffer can be traversed forward and backward, representing

forward and backward angular fluxes.

Another benefit of storing the segments in a buffer is the ability to group together

similar operations. All segments for a selected track or z-stack are ray traced, yielding a

buffer of segments. Afterwards, the MOC equations are applied to all segments in the

buffer. This allows for improved locality since the two tasks are separated and nearby

data is used more frequently during each task.

The cost of storing segments in buffers is the additional memory cost. The memory

for the buffer is allocated as an array at the beginning of the solver. Since each thread

handles different segments simultaneously, each tread needs its own buffer. The size of

each buffer should be sufficient to store the computed segments. For ray tracing by track,

this is equal to the maximum number of segments for a single track. For ray tracing

by z-stack, it is equal to the maximum number of segments for an entire z-stack. The

memory required for the maximum segments per track is trivial in comparison with the

total memory footprint of the solver since there are many tracks in the problem and

buffers only need to be created for each thread. The memory cost of the buffers is higher

when ray tracing by z-stack, but still very small in comparison with the overall memory

footprint. However, the need to store information into buffers could lead to detrimental

latency effects when loading the segment information.

113

5.5 Results

Since there are trade-offs between the different ray tracing schemes, they should be

analyzed within the context of full core 3D MOC simulations. Previous work studied

these schemes on a portion of a single C5G7 assembly [56]. It is important to note that

the geometry had the same axial discretization in each radial region such that using a

global axial mesh incurs no penalty. The results showed that:

• Storing segment information in temporary buffers outperforms on-the-fly applica-

tion of the MOC equations

• Ray tracing by stack was more efficient than ray tracing by track for all configura-

tions

• Using a global axial mesh did not improve performance over local axial meshes

for ray tracing by z-stack

• Using a global axial mesh was more efficient than local axial meshes for ray tracing

by individual 3D track

• All on-the-fly ray tracing schemes significantly outperformed explicit storage of

segment information in storage requirements with practically no computational

overhead

From these results, temporary storage of segment information was chosen for the

final OpenMOC implementation and used for the calculation of all results in this thesis.

Additionally, explicit storage of segment information as a preprocessing step was not

considered. Most of these results are expected to hold for a wide variety of problems.

The aim of this thesis is to analyze full core problems with a high number of energy

groups (70) whereas the C5G7 benchmark uses 7-group cross-section data. Higher

group counts have the potential to significantly change the performance characteristics

as ray tracing costs become trivial in comparison with work done applying the MOC

equations. Therefore, the cost of using local axial meshes should be trivial in comparison

114

with other costs, motivating the use of local axial meshes in all cases. However, the order

in which segments are traversed could still have a substantial impact on performance.

5.5.1 Simulation Parameters

The results presented here concentrate on the differences between ray tracing by indi-

vidual 3D track and ray tracing by z-stack with both schemes using local axial meshes.

The SDSA test problem, described in Appendix E.2.5, is simulated with the simulation

parameters given in Table 5.1, which resemble expected MOC ray spacing and mesh

parameters for the linear source solver. Note that no ring divisions are used in this

study. For all computational results, each case is run three times, reporting the mean

and estimating the error margin using the maximum deviation from the mean.

Table 5.1: MOC parameters for the SDSA test problem for ray tracing studies

Number of Sectors in Moderator 8

Number of Sectors in Guide Tubes 8

Number of Sectors in Fuel 4

Height of Flat Source Regions 2.0 cm

Radial Ray Spacing 0.05 cm

Axial Ray Spacing 0.75 cm

Number of Azimuthal Angles 64

Number of Polar Angles 10

Number of Transport Sweeps 1

5.5.2 Single Thread Performance Comparison

First, the single thread performance of the two on-the-fly ray tracing schemes is compared.

Results using one node of the Falcon supercomputer are presented in Table 5.2, showing

ray tracing by z-stack to have slightly better single-threaded performance than ray tracing

by individual track. Both schemes result in integration times near 10 ns for the flat

source approximation. The linear source approximation adds a factor of 2×–3× the

runtime for the fixed mesh, but recall that linear source allows for a coarser mesh to be

115

used. In these trials, each test is run three times. The reported uncertainty indicates the

maximum deviation from the average value.

Table 5.2: Single thread performance of ray tracing schemes using one node of the
Falcon supercomputer

Source Ray Tracing Transport Sweep Integration

Approx. Scheme Time (s) Time (ns)

Flat By Track 923.4 +/- 0.7 12.2 +/- 0.01

Flat By z-Stack 820.6 +/- 0.8 10.8 +/- 0.01

Linear By Track 2385.9 +/- 6.1 31.41 +/- 0.08

Linear By z-Stack 2268.7 +/- 2.1 29.87 +/- 0.03

5.5.3 Parallel Scaling

As noted in Chapter 3, the on-node parallelism of OpenMOC uses OpenMP shared

memory parallelism. In this section, the strong scaling performance is considered for

both ray tracing schemes in which the number of created threads is varied for the SDSA

problem of fixed size. In this analysis, the number of threads never exceeds the number

of cores such that cores and threads become synonymous as each core is assigned at

most one thread.

To analyze parallel performance, the speedup metric is considered which for n threads

is defined by T1/Tn where T1 is the single-threaded computation time and Tn is the

computation time with n threads. When each core is assigned at most one thread, the

ideal speedup with n threads is n. The parallel performance on the SDSA test problem

of flat source MOC is presented in Fig. 5-7 for both ray tracing schemes. The same

comparison is shown in Figure 5-8 for linear source MOC.

For practical purposes, performance using the full available resources is more impor-

tant than single thread performance or scalability. Therefore, it is important to compare

the runtime of the algorithms using the maximum number of available cores on a single

node. This comparison is shown in Table 5.3, showing that ray tracing by z-stack seems

to have slightly better performance than ray tracing by individual 3D track for both flat

and linear source approximations of the neutron source.

116

Figure 5-7: Strong scaling performance on the SDSA test problem using the Falcon
supercomputer with on-the-fly ray tracing by tracks and by z-stacks, both using the flat
source MOC solver.

Figure 5-8: Strong scaling performance on the SDSA test problem using the Falcon
supercomputer with on-the-fly ray tracing by tracks and by z-stacks, both using the
linear source MOC solver.

5.5.4 Performance on Cetus

Since the aim of this thesis is accurately simulating full core PWR problems, which

requires immense computational resources, the performance should be compared on

117

Table 5.3: Performance on the SDSA test problem using full computational resources of
a single Falcon node with 36 cores

Source Ray Tracing Transport Sweep Integration

Approx. Scheme Time (s) Time (ns)

Flat By Track 49.9 +/- 3.9 23.8 +/- 1.8

Flat By z-Stack 43.1 +/- 2.3 20.5 +/- 1.1

Linear By Track 103.3 +/- 3.4 49.0 +/- 1.8

Linear By z-Stack 101.2 +/- 4.4 47.9 +/- 2.2

a machine capable of solving very large problems. This work targets the Argonne

BlueGene/Q supercomputer. Since the architecture of this machine is very different

from traditional nodes, with comparatively slow cores and the ability to host four

hyper-threads per core, the performance of algorithms on this machine should also be

compared.

For testing performance on the Argonne BlueGene/Q supercomputer, the Cetus

partition is utilized. One limitation in terms of testing performance on the Cetus partition

is a one hour runtime limit of all jobs. Because of this limitation, the MOC ray parameters

are significantly coarsened to those shown in Table 5.4 so the problem can run on one

thread in under an hour.

Table 5.4: MOC ray parameters for the SDSA test problem for ray tracing studies on
the Cetus partition of the Argonne BlueGene/Q supercomputer

Radial Ray Spacing 0.1 cm

Axial Ray Spacing 1.5 cm

Number of Azimuthal Angles 16

Number of Polar Angles 6

First, the performance is tested using the full computational resources of a single

node of the Cetus partition. Since each node features 16 cores with 4 hyper-threads per

core, this means using 64 threads. The results are shown in Table 5.5.

From these results, it seems that yet again the on-the-fly ray tracing by z-stack

performs slightly better than on-the-fly ray tracing by individual 3D track. It is important

to note the slowdown in integration time from Falcon to Cetus, highlighting the extent

118

Table 5.5: Performance on the SDSA test problem using full computational resources of
a single Cetus node with 16 cores

Source Ray Tracing Transport Sweep Integration

Approx. Scheme Time (s) Time (ns)

Flat By Track 13.83 +/- 0.06 76.3 +/- 0.3

Flat By z-Stack 13.52 +/- 0.04 74.6 +/- 0.2

Linear By Track 31.88 +/- 0.52 176.0 +/- 2.9

Linear By z-Stack 31.68 +/- 0.26 174.9 +/- 1.4

to which the cores on Cetus are slower than the cores on Falcon.

Since the scaling studies on Falcon showed scaling to be quite similar between ray

tracing methods, only the scaling using on-the-fly ray tracing by z-stack is analyzed on

Cetus.

It is also important to note the role of hyper-threads in scaling studies. Since hyper-

threads share computational resources with other hyper-threads on the same core, ideal

scaling is only tangible when the number of threads is less than the number of cores.

In this case, the number of cores is 16 and the parallel speedup of the algorithm is

91.9% of ideal for flat sources and 90.9% for linear sources when one thread is used per

core, which is significantly better than the scaling observed on Falcon. At 64 threads,

where all available hyper-threads are utilized, the average speedup is 42.15 for flat

sources and 37.8 for linear sources. This shows that the algorithm benefits greatly from

the addition of hyper-threads, showing that there latency is a major contributor to the

overall run-time. The full scaling results are plotted in Figure 5-9.

119

Figure 5-9: Strong scaling performance on the SDSA test problem using the Cetus
partition of the Argonne BlueGene/Q supercomputer with on-the-fly ray tracing by
z-stacks.

5.6 Conclusion

In this chapter, the MOC ray tracing problem was thoroughly discussed. Alternative

approaches to ray tracing for 3D MOC were presented whereby only 2D segments are

stored and 3D segments are computed on-the-fly. Two approaches were analyzed: one in

which each individual 3D track is ray traced and another where an entire z-stack of tracks

is ray traced. Both approaches offer significant memory reduction with minimal or no

computational overhead. Results comparing these two on-the-fly ray tracing algorithms

show that the ray tracing by entire z-stacks of 3D tracks was most efficient. Parallel

scaling of the algorithms was also studied, showing similar scaling between the two

ray tracing algorithms. Parallel scaling was quite close to ideal linear scaling for the

targeted Argonne BlueGene/Q architecture, even into the hyper-thread regime. This

supports the expectation that OpenMOC should make efficient use of the BlueGene/Q

computational resources for full core simulations.

120

Highlights

• On-the-fly ray tracing is chosen to alleviate the computational burden of

explicitly storing an immense number of 3D segments

• All 2D radial geometric detail forms a superposition plane which is used in

conjunction with axial meshes to form an axially extruded geometry

• On-the-fly ray can either be accomplished for each individual track or with

an entire z-stack of tracks together assuming constant axial ray spacing

• For a high number of energy groups, differences in performance of ray tracing

schemes are mostly dependent on the memory access patterns for traversing

source regions

• Results show the on-the-fly ray tracing by z-stack to be slightly preferable to

on-the-fly ray tracing by individual track for the 70-group energy structure

used in this thesis

• The parallel scaling of the flat source solver using on-the-fly ray tracing

methods achieves near-linear over threads for the targeted Argonne BG/Q

architecture

121

Chapter 6

Domain Decomposition

In the previous chapters, the on-node shared memory parallelism of OpenMOC was

discussed in which data is shared and available to all threads on a single computational

node. However, this thesis concentrates on solving large scale reactor physics problems

which cannot be solved with just one computational node. When extending to multiple

computational nodes, communication of data between nodes becomes extremely costly.

This makes a shared parallelism model computationally infeasible across nodes. There-

fore, hybrid parallelism is introduced in which on-node parallelism uses the OpenMP

shared parallelism model, but MPI [14] is used to communicate information across

nodes. Specifically, spatial domain decomposition is implemented in which each MPI

process is responsible for the work over a geometrical sub-domain.

6.1 Geometrical Decomposition

There are a wide variety of options for decomposing a problem into sub-domains,

each of which are assigned to a single MPI process. In this thesis, spatial domain

decomposition is selected for both its simple interpretation and scalability. In spatial

domain decomposition, the geometry is partitioned into many rectangular parallelepiped

sub-domains. Each MPI process (usually one per node) is assigned one of the geometrical

sub-domains and is responsible for simulating the neutron behavior over the region. A

2D depiction is given in Figure 6-1.

123

Figure 6-1: An illustration of partitioning a geometry into sub-domains. The partition,
shown in green, forms a 2× 2 lattice of sub-domains.

Each geometrical sub-domain can be approached as a somewhat independent reactor

physics problem. However, the MOC equations require estimates of the incoming bound-

ary angular fluxes. Since these angular fluxes are carried along tracks, this requirement

can be satisfied by linking tracks at sub-domain boundaries and communicating the

angular flux information. To enforce the linking of tracks, the MRT track laydown algo-

rithm is implemented, as discussed in Chapter 4, with each sub-domain required to be of

identical dimensions and track laydown. Under the MRT scheme, tracks automatically

link at reflective and periodic boundaries. By ensuring periodic track linking, tracks

naturally meet at sub-domain boundaries. This is illustrated in Figure 6-2.

It is important to note that while the track laydown across each sub-domain is

identical, the internal geometry of each sub-domain can be different. Therefore, ray

tracing must be conducted on each sub-domain separately, using the techniques described

in Chapter 5. Each sub-domain forms a separate superposition of radial detail. Since

only the local sub-domain superposition plane is used during ray tracing, the extra

intersections formed from transforming piece-wise axially extruded geometries to pure

axially extruded geometries (discussed in Chapter 5) can be reduced as the number of

124

Figure 6-2: An illustration of track-liking with an MRT track laydown. Tracks are shown
for just one direction. Notice that the track laydown on every domain is the same and the
linking track can be found by examining the periodic connecting track on the domain.

axial sub-domain partitions increases.

6.2 MPI Communication

In any domain decomposition scheme, it is important to identify the data that needs

to be communicated between sub-domains. The communication between nodes in

OpenMOC is entirely handled by MPI, which is an industry standard for inter-node

communication in scientific applications. An MPI process is defined as the series of

programmed instructions which can be managed independently by an operating system

scheduler [58]. Each MPI process is responsible for exactly one sub-domain. In the

context of this thesis, one MPI process is used per node. However, it is possible to run

multiple MPI processes per node with the node splitting its computational resources

between its assigned MPI processes. Since the domain decomposition algorithm in this

thesis is designed with the expectation of one MPI process per node, communication

will be discussed as being between nodes rather than MPI processes.

125

The communicated quantities in this thesis fall into two categories: boundary quanti-

ties and global quantities. Boundary quantities only need to be communicated between

the neighboring nodes whereas global quantities need to be communicated between all

nodes. Since communication costs scale with the number of communicating nodes, com-

munication of global quantities is far more costly than the communication of boundary

quantities. Therefore, an optimal domain decomposition algorithm should keep the data

associated with global quantities small, such as scalar values. Once the communication

data is identified, algorithms can be formed to transmit the data.

6.2.1 MPI Fundamentals

The fundamental MPI communication protocols are sends and receives, which can either

be blocking or non-blocking. During blocking sends and receives, if node A sends data

with an MPI_Send function to node B, it will wait until node B calls a corresponding

MPI_Recv function to receive data from node A. Likewise, node B will wait until it finds

the matching send from node A. Once there is a match, node A sends the data to node B

at the specified memory addresses and once the communication is complete both nodes

A and B then continue their operations.

In contrast, non-blocking sends and receives do not wait for the matching send /

receive functions to continue. Instead, the send and receive are merely posted and when

they match the data is transmitted. When using non-blocking sends and receives it is

important to manage the send and receive statuses with care in order to ensure that

the data is actually received before use. Therefore, the non blocking MPI send and

receive functions (MPI_Isend and MPI_Irecv, respectively) are also created with an

MPI_Request object which monitors the communication. The object can be queried using

the MPI_Test function to determine whether the data transfer has been completed. In

general, non-blocking communication can be much faster than blocking communication

since processes are not required to wait but requires extra book-keeping to monitor the

status of MPI messages.

In addition to standard send and receive messages, MPI also contains functions for

126

global reductions. A reduction is an operation applied to data across many nodes. A

global reduction is a reduction over all nodes. An example of this is a summation of values

across all nodes, though other operations exist such as maximum and minimum. For

instance, consider a domain decomposed problem in which the total neutron production

rate is desired. To compute this quantity, each node could first compute the local neutron

production on its sub-domain. A reduction can be used to then sum the local neutron

production rates to form the total neutron production rate.

Global reductions come in both blocking and non-blocking forms. The blocking and

non-blocking reduction functions are MPI_Allreduce and MPI_Iallreduce, respec-

tively. Since reductions in OpenMOC are usually implemented on scalar data rather than

vectors, the communicated data is small, so the cost of the communication is relatively

small. Therefore, blocking communication is always chosen for reductions in OpenMOC

for simplicity and for guaranteeing synchronization across all nodes during reductions.

6.2.2 The Buffered Synchronous Algorithm

A common theme in the MPI communication algorithms for both the MOC and CMFD

solvers is the need to communicate information with nodes of neighboring sub-domains.

Since most of the communication in OpenMOC falls into this category, it is important

to use an algorithm that is efficient. Here, an efficient algorithm for communication

with any collection of neighbors is presented. The concept is to use separate buffers for

transferring data with each neighbor with non-blocking communication. All send and

receive messages are posted in a non-blocking fashion. Then, each node waits for all its

sends and receives to complete before unpacking the data. This process is described in

detail in Algorithm 6-1 from the perspective of a single node communicating with its

neighbors.

It is important to underscore that this algorithm works for any collection of neighbors

a given node might have, which do not need to be adjacent. For application in OpenMOC,

this algorithm is applied to spatially adjacent neighbors. Boundary communication for

angular flux data is limited to face-adjacent and corner-adjacent neighbors whereas

127

Algorithm 6-1: Buffered Synchronous algorithm for transferring information with
neighboring nodes

Consider a node with neighbors U
Send buffer Su and receive buffer Ru have been initialized for each neighbor u

for all u ∈ U do . Loop over all buffers for neighboring nodes

Fill send buffer Su with information to transfer to node u

end for

for all u ∈ U do . Loop over all neighboring nodes

Post non-blocking send message Msend,u to u with data from buffer Su

Post non-blocking receive message Mreceive,u to u, which will fill buffer Ru

end for

A← true . A indicates whether communication is active
while A do

A← false
for all u ∈ U do . Loop over all messages to neighboring nodes

if Msend,u is active or Mreceive,u is active then
A← true

end if

end for
end while

for all u ∈ U do . Loop over all buffers for neighboring nodes

Copy data from buffer Ru into local data structures

end for

CMFD boundary data is only communicated with face-adjacent neighbors.

A major advantage of the Buffered Synchronous Algorithm over blocking communi-

cation is the ability for a single MPI process to communicate with multiple neighbors

at once. Since nodes often have physical connections with more than one other node,

it is important to make full use of all the available connections in order to maximize

efficiency.

128

6.3 MOC Inter-domain Communication

6.3.1 Identification of Communicated Quantities

For MOC, there is relatively little data that needs to be communicated between nodes,

since each sub-domain can be approached as a nearly stand-alone reactor physics prob-

lem. Most of the communication deals with boundary angular flux data. With the tracks

linked at sub-domain boundaries, each node should communicate the outgoing bound-

ary flux information for its tracks with neighboring sub-domains. Ignoring boundary

sub-domains, which might not need to communicate information across outer boundary

surfaces, the number of boundary angular fluxes each node needs to communicate with

its neighbors is 2T G where T is the number of tracks per sub-domain, G is the number

of MOC energy groups, and the factor of two arises from angular fluxes existing in both

the forward and reverse directions of each track.

While the boundary angular flux communication accounts for the vast majority of the

MOC communication, a few global quantities need to also be calculated. First, residuals

are required to evaluate convergence criteria. Second, total reaction rates are necessary

to form estimates of the eigenvalue k when no CMFD acceleration is present. This is

computed with the fission, leakage, and absorption rates. In addition, reaction rates are

necessary to normalize the MOC scalar fluxes, which are normalized by the total fission

source. Since all of these global quantities are scalar values, they add very little to the

overall inter-node communication costs of OpenMOC.

6.3.2 Communication Algorithm

Since the bulk of the MOC communication costs relate to the communication of boundary

angular fluxes, the algorithm for transferring boundary angular flux information is

described in great detail here. In order to simplify the algorithms for communicating

angular flux data, a bulk synchronous communication scheme is chosen whereby all

angular fluxes are communicated after the transport sweep, rather than during the

transport sweep. This implies that angular fluxes at domain interfaces are lagged, which

129

might slow convergence. This effect is studied later in Section 8.6, as part of the MOC

convergence sensitivity studies presented in Chapter 8.

Before and after the communication step, there are synchronization barriers which

force all nodes to wait until all other nodes have reached the barrier before continuing.

This ensures that data is not overwritten that is necessary for the transport sweeps. In

addition, it allows for simple recording of the run-time spent in the MOC communication

stage.

Determining connecting tracks is important for communicating angular flux data.

Recall that the MRT track laydown scheme allows for each node to compute the con-

necting tracks on neighboring sub-domains since the track laydown is identical on all

sub-domains. The index of the connecting track on the neighboring sub-domain is

simply the index of the periodic track in the current sub-domain. Since tracks run in both

forward and reverse directions, the direction of the connecting track is also relevant.

By providing the neighboring node with the track index, the track direction, and the

boundary angular flux data, the neighboring node can copy the angular flux data into

its local boundary angular flux arrays.

The communication of angular fluxes between nodes can be accomplished by using

the Buffered Synchronous algorithm with corner-adjacent neighbors in addition to face-

adjacent neighbors since tracks can cross sub-domain corners. However, due to the

structure of the MRT track laydown, there are no tracks through x y corners. Therefore,

there is a maximum of 14 neighboring sub-domains. Nodes are assigned with an

MPI_Cart object which groups neighbors together by locality.

In order to use the Buffered Synchronous algorithm, buffers need to be setup that

temporarily store the communication data. A naive approach would create buffers capa-

ble of storing all boundary angular flux data. While this would accurately communicate

the data, it would significantly add to the on-node memory footprint of the algorithm

and would also likely have slow communication due to the large size of data being sent

at once.

Instead, the Buffered Synchronous algorithm is applied iteratively in which smaller

buffers are packed with some angular flux and connecting track data. After the Buffered

130

Synchronous algorithm completes, new data is packed into the buffers and the process

repeats until all boundary angular flux data has been successfully communicated with

neighbor domains. Structuring the communication algorithm in this way allows for all

communication channels to be filled frequently with significantly lower bandwidth usage

per communication round, yielding improved performance. The buffer size chosen in

this thesis was large enough to fill the information of 1000 tracks. With 70 group data,

this amounts to approximately 1 MB, which was found to be ideal during early prototype

tests [49].

The algorithm is given in Algorithm 6-2 which assumes that all tracks link with a

neighbor sub-domain. This might not be true for geometry boundaries where there is no

neighbor domain, but this can be overcome for notational convenience by assuming these

tracks communicate with their own domain where their own domain is a neighboring

domain. To simplify the presentation of the algorithm, tracks are assumed to be in

only one direction, though abstraction to traversing tracks in both forward and reverse

directions is simple.

131

Algorithm 6-2: MOC boundary angular flux communication algorithm for transferring
information with neighboring nodes

Consider a node with neighbors U
Send buffer Su and receive buffer Ru have been initialized for each neighbor u
Buffers have size LG, where L is defined by the user, G is the number of groups
The current node contains T tracks
Initialize vector V of size equal to the number of neighbors |U | with elements Vu

Vu← 0 ∀u ∈ U

A← true
while A do . While there are boundary angular fluxes to communicate

for all u ∈ U do . Loop over all neighboring nodes

z← 0
t ← Vu

while t < T and z < L do . Loop over all un-seen tracks

if Track t connects with neighbor domain u then
Place data of size G for track t in buffer Su at location zG
z← z + 1

end if
t ← t + 1
Vu← t + 1

end while
end for
Run the Buffered Synchronous algorithm described in Algorithm 6-1 for U neigh-

bors
if Vu = T ∀u ∈ U then

A← false
end if

end while

6.4 CMFD Inter-domain Communication

6.4.1 The CMFD Eigenvalue Solver

Before discussing the domain decomposition implementation of CMFD, the specific

algorithm used to solve the CMFD equations should be discussed. The CMFD equations

described in Appendix B form a generalized eigenvalue problem in which the elements

of the standard matrices can be easily formed. This allows the CMFD system to be solved

by more standard solvers than the MOC equations.

132

While many algorithms exist to solve generalized eigenvalue problems, the CMFD

implementation in OpenMOC focuses on power iteration with a red-black SOR algorithm

to invert the linear system during every inner iteration. A notable aspect of the red-

black SOR algorithm is that all cells are assigned a color in a checkerboard pattern, as

illustrated in Figure 6-3.

(a) (b)
Figure 6-3: A depiction of the red-black cells in the CMFD solver. Here a single assembly
geometry (a) is modeled with a uniform CMFD mesh (b) with cells encoded in a red-black
checkerboard pattern.

Each iteration is split into two stages: one dealing with the red cells and one dealing

with the black cells. Note that the solution in each cell only depends on its neighbors,

which are of the opposite color. First, the solution in the red cells is updated with the

previous solution on black cells. Then, the solution of the black cells is updated with

the new solution in the red cells. In this way, all cells in each stage can be computed in

parallel. For structuring the communication algorithm, it is important to note that this

scheme only solves for half of the scalar fluxes in each iteration. This means only half

the boundary terms need to be communicated at each stage.

6.4.2 Identification of Communicated Quantities

In solving the CMFD equations, the main communication between nodes involves the

boundary CMFD scalar fluxes at every red/black stage during the red-black SOR algo-

133

rithm. In addition, boundary CMFD diffusion coefficients, volumes, and surface currents

must be communicated at the start of the CMFD eigenvalue solver setup during each

transport sweep iteration.

A few global quantities need to be communicated. Similar to MOC, these are limited

to residuals and reaction rates. The only difference with CMFD global quantities is their

definition. Rather than being defined in terms of MOC scalar fluxes, they are defined in

terms of CMFD scalar fluxes.

6.4.3 Communication of Boundary Currents

At the beginning of the formation of the CMFD eigenvalue solver during each transport

sweep, some boundary values are communicated. Boundary diffusion coefficients and

volumes can be handled easily using the Buffered Synchronous algorithm described in

Alg. 6-1. Communicating surface currents is more difficult due to nuances from edge

and corner cases. Specifically, the CMFD solver treats currents as existing on CMFD cell

faces, decisions need to be made when MOC tracks intersect cell edges (here defined

to be x y, xz, or yz corners) or cell vertexes (x yz corners). In OpenMOC, any track

within 10−12 cm of a corner is treated as a corner crossing. In handling these edges and

vertexes, it is critically important that an MOC track’s full current arrive in the CMFD

cell that the track traverses.

6.4.3.1 Handling Edge and Vertex Currents

Before discussing how OpenMOC treats the communication of CMFD surface currents,

the process for handling edge and vertex currents needs to be described. A track is

assumed to intersect a surface when it is within 10−12 cm of the surface. This leads

to the possibility of intersecting cell edges and vertexes. In OpenMOC, currents are

directly tallied on cell faces, edges, and vertexes during transport sweeps. This means

that each CMFD cell has 26 tally surfaces (6 face surfaces, 12 edge surfaces, and 8 vertex

surfaces) in 3D rather than just the 6 face surfaces used in the CMFD calculation. In

OpenMOC all currents are defined as leakage from a particular CMFD cell. For instance

134

the current shown in Figure 6-4 would be tallied as a current leaking from the positive

x surface of CMFD cell C rather than a current entering cell D along the negative x

surface. Therefore, currents entering a cell are gathered from current tallies leaving

neighboring cells across opposite surface directions.

Figure 6-4: An illustration of an MOC track traversing CMFD cells. The current from
the blue portion of the MOC track is tallied as an outgoing current on the positive x
surface of cell C .

After the transport sweep, currents are split from edges and vertexes onto faces

such that the current is delivered to the cell with which the MOC track connects. This

is accomplished by having the current traverse across neighboring cells and into the

connecting cell.

For edge currents, this is easy to visualize, as shown in Figure 6-5. In this instance

the current from the MOC track is split onto the faces that meet at the edge, as shown

in red. Each split current receives half the current of the original MOC tallied current.

In order for the two split currents to transmit to the connecting CMFD cell, they then

traverse the other surface composing the edge through the neighboring cell.

135

Figure 6-5: Illustration of splitting currents from an MOC track (blue) crossing an edge
surface to currents on surface faces (red).

It is important to note that this process involves tallying currents on neighboring

CMFD cells in order to properly transmit currents. For vertex currents, a similar approach

is taken. However, rather than splitting the vertex current directly onto faces, the current

is split onto the three corresponding edges, as shown in Figure 6-6. Since edges comprise

to surfaces (such as x y), the remaining face (in this case z) must be crossed in the

appropriate neighboring cell in order to properly deliver the current to the connecting

cell. For vertex currents, each split current takes one third of the original current since

it is split along three edges.

Since the splitting of vertex currents tallies current to edges, the vertex splits must

be done before edge splits. Otherwise, the splitting of edge currents would need to be

done twice. One way to conceptualize this methodology is by artificially perturbing an

MOC track’s location by an infinitely small amount such that the imagined virtual track

does not cross an edge or corner. The perturbation is applied in all relevant directions

(i.e., shifted both positively and negatively in x or y for an x y edge) with equal weight

so that no bias is induced.

For each of the virtual tracks, it is important to treat boundaries carefully to consis-

136

Figure 6-6: Illustration of an MOC track (blue) crossing from the red cell to the green
cell through a vertex surface split into currents (red) intersecting edges (highlighted
in orange). The currents (red) then continue to the green cell through surface face
intersections.

tently capture the effect the virtual track would have on a boundary. For instance, if the

virtual track encounters a vacuum boundary, it needs to be counted as current leaking

the geometry. However, if it encounters a reflective boundary, the track needs to reflect

onto the correct surface. This is illustrated in Figure 6-7.

137

(a) Vacuum (b) Reflective
Figure 6-7: Split currents (red) for an MOC track (blue) intersecting a boundary edge
for (a) vacuum boundary conditions and (b) reflective boundary conditions.

6.4.3.2 Communicating Edge and Vertex Currents

Since the process of splitting edge and vertex currents tallies face and edge currents onto

neighboring cells, nodes may need to tally currents onto another node’s sub-domain. In

order to keep the off-domain tallied currents local with the 6 communicating neighbors,

the communication is conducted in two steps. First, the vertex currents are split and

the corresponding off-domain edge and face currents are communicated. Then, edge

currents are split and off-domain face currents are communicated. When these currents

are communicated, the off-domain currents are received by the appropriate domain and

added to the local tally of the corresponding surface current.

Since vertex currents are split before communication, only the 18 face and edge

currents need to be communicated between nodes. The two stage communication process

allows current to be transmitted with corner neighbors with only direct communication

between the 6 nodes representing face-adjacent sub-domains. Again, this communication

138

can be implemented using the Buffered Synchronous algorithm.

6.4.4 Communication of Boundary Scalar Fluxes

The most important communication component of the CMFD algorithm is the communi-

cation of domain boundary scalar fluxes. Since the number of boundary CMFD scalar

fluxes on a typical sub-domain are usually quite small in comparison with the MOC

boundary angular fluxes, the Buffered Synchronous algorithm can be applied directly to

the red-black SOR scheme with face-adjacent neighbors. Since only half the boundary

scalar fluxes are communicated in each red/black iteration, the communication buffers

can be chosen to be half the size of the number of scalar fluxes on each boundary.

Since the CMFD cells are laid out in a uniform grid and each buffer location corre-

sponds to at most two CMFD cells, the mapping of cells to buffer locations is straightfor-

ward, eliminating the need to communicate indexes.

6.5 Results

In order to evaluate the performance of the domain decomposition implementation,

both strong scaling and weak scaling studies are conducted. Strong scaling studies

analyze the performance as cores are added to solve a problem of fixed size, as we have

seen in the past for on-node parallel performance. Weak scaling studies analyze the

performance with a fixed problem size per node. Therefore, weak scaling studies deal

with problems of variable size.

Since we expect transport sweeps to dominate run time of an MOC solver, such as

OpenMOC, this thesis focuses on just the scalability of transport sweeps. However, it is

important to note that domain decomposing the CMFD acceleration is critical to being

able to accelerate using any significant number of CMFD groups since a many-group

CMFD can be quite costly for a large problem when solved on a single node. However,

once the problem is distributed over the available nodes, its cost becomes trivial in

comparison with the transport sweeps.

139

In each trial, only one MOC transport sweep is conducted. Each domain decomposed

configuration is simulated three times. Each node is assigned a domain and each

node makes use of all of its cores with shared memory parallelism, as outlined in

previous chapters. The presented results take into account the average run time, as

well as the minimum and maximum runtime to form estimates of the uncertainty. All

presented results in this chapter use the Argonne BlueGene/Q supercomputer on the

Cetus partition. The Argonne BlueGene/Q supercomputer is designed for many-node

parallelism, reserving a large number of adjacent nodes for each submitted job. The

reservation of many adjacent nodes allows for much better reproducibility in timing

studies. The results in this chapter focus on solving geometries found in the BEAVRS

benchmark. These geometries may be replicated in a lattice for weak scaling studies.

6.5.1 Strong Scaling Studies

For the strong scaling studies the single assembly modeled detailed in Appendix E.2.3 is

chosen. It is important to note that this model includes full axial detail, including grid

spacers and axial water reflectors. The problem is then domain decomposed only in the

axial direction.

The MOC ray spacing parameters for these strong scaling tests are given in Table 6.1.

Due to the one hour time limit of jobs on the Cetus partition of the Argonne BlueGene/Q

supercomputer, these parameters are significantly coarser than those required to accu-

rately converge the fission source distribution. When domain decomposing the geometry,

tracks are generated such that the track laydown is guaranteed to be the same for all

the domain decomposed configurations.

The strong scaling results are presented in Figure 6-8 for both linear source and flat

source solvers. For these results the uncertainties are not shown because they are so

small in comparison with differences in run-time from scaling, causing them to not be

noticeable.

Note that the scaling is far better for the linear source solver than the flat source

solver since there is significantly more on-node computational work for the linear source

140

Table 6.1: MOC parameters for the strong scaling studies of the single assembly test
problem

Number of Sectors in Moderator 8

Number of Sectors in Fuel 4

Height of Flat Source Regions 2.0 cm

Radial Ray Spacing 0.1 cm

Axial Ray Spacing 1.5 cm

Number of Azimuthal Angles 16

Number of Polar Angles 6

Figure 6-8: Strong scaling of axial domain decomposition for a single assembly model
with the flat and linear source solvers.

solver while the inter-node communication costs are the same as the flat source solver.

In fact, the strong scaling performance for the linear source solver is better than the

ideal linear scaling. Since the aim of this thesis is to solve full core problems with the

linear source solver, its performance will be the main focus of discussion.

These results might be difficult to understand as performance would not be ex-

pected to exceed ideal. However, recall from Chapter 5 that additional intersections,

and therefore segments, are inserted when a piece-wise axially extruded geometry is

converted to an axial extruded geometry on each sub-domain. As a given geometry is

domain decomposed axially, the deviations from a true axially extruded geometry on

141

each sub-domain decrease, and therefore the number of additional intersections inserted

to ensure an axially extruded geometry on each sub-domain also decrease.

This implies that runtime should be normalized by the number of segments to capture

the pure computational performance of the algorithm. The results when normalizing

runtime by the number of segments is shown in Figure 6-9.

Figure 6-9: Strong scaling of axial domain decomposition for a single assembly model
of the (a) flat and (b) linear source solver, normalized by the number of segments treated
in the simulation.

After the normalization, the linear source results are no longer better than ideal. It is

important to note that here a fixed 400 cm tall single assembly is domain decomposed

axially all the way to 200 domains (each of 2 cm height), which is quite excessive. At

200 domains there is only one source region axially for each domain. The expected

MOC ray parameters to fully resolve the fission distribution produce approximately

27× more rays than the coarse ray parameters simulated here, greatly increasing the

on-node work and improving the domain decomposition performance. Using finer MOC

ray parameters on this benchmark, we would expect to only domain decompose to 20

domains axially. For a problem of this size with the ray parameters given in Table 6.1,

any domain decomposition might be excessive. Still at 8 axial domains, the speedup of

the linear source solver is 97% of ideal. The efficiency then decreases to 87% and 67%

142

at 20 and 200 axial domains, respectively.

Since the desired MOC parameters are significantly finer than those shown in these

scaling studies, the performance should be tested using the desired parameters. Due

to the one hour time limit on Cetus runs, this can only be tested using at least several

domains. Therefore, the linear source solve is tested with a domain decomposition of

20 axial domains and with the the expected MOC parameters to accurately converge

the fission distribution, given in Table 6.2.

Table 6.2: Expected MOC parameters to accurately converge a full core PWR fission
distribution

Number of Sectors in Moderator 8

Number of Sectors in Fuel 4

Height of Flat Source Regions 2.0 cm

Radial Ray Spacing 0.05 cm

Axial Ray Spacing 0.75 cm

Number of Azimuthal Angles 64

Number of Polar Angles 10

From the strong scaling studies with coarse rays, 67% efficiency was observed for

the linear source solver with 20 axial domains. In order to judge the efficiency with

desired ray parameters, the timing breakdown for the single assembly case is presented

in Table 6.3. Here, three timing statistics are considered: total transport sweep execution

time, angular flux communication time, and idle time between sweeps. The angular

flux communication time is the total time required to communicate all angular flux

information between domains. The idle time between sweeps is the average time that

nodes remain idle after doing all on-node work and before transferring angular fluxes

with other domains. Therefore, the idle time is an indication of load imbalance.

These results show the angular flux communication time to be almost trivial for this

single assembly case but the idle time is measurable. This indicates a cost to the modular

ray tracing structure where domains are required to be of equal size. For this single

assembly problem, there are many more segments in the core, and thus more work, than

in reflector regions. Domains in the reflector region need to wait for in-core domains to

143

Table 6.3: Timing breakdown of the single assembly test problem with the linear source
solver domain decomposed into 20 axial domains

Procedure Time (s) % of Total Transport Sweep

Total Transport Sweep 1059 +/- 11 –

Angular Flux Communication 15 +/- 8× 10−3 1.4

Idle Time Between Sweeps 145 +/- 10 13.7

finish their work before moving on, leading to wasted computational resources. Still, the

combined 15.1% of transport sweep time spent to accommodate domain decomposition

is a small cost for a problem of this size. Since this problem is run with the desired

MOC parameters, it should be a good measure of the expected performance on realistic

problems.

6.5.2 Weak Scaling Studies

For the weak scaling studies, chosen geometries are replicated in a lattice. The first set

of tests radially replicate the single assembly geometry used in the previous section and

detailed in Appendix E.2.3 in a 2D lattice. These series of tests are true to the design of

common reactor cores, as they typically resemble arrangements of assemblies placed

in some radial format. The disadvantage of this test problem is that it only tests weak

scaling of the domain decomposition in the radial directions. Therefore, another set of

tests is performed that replicate the SDSA test problem detailed in Appendix E.2.5 in

a 3D lattice. This test problem more precisely tests the scalability of the algorithm as

every domain has the same geometry and material composition.

Since the emphasis of this work is to both solve real problems and solve them

efficiently, these tests provide great insight into the capabilities and behavior of the

OpenMOC implementation. For these weak scaling tests, all test problems use the desired

MOC parameters, as given in Table 6.2. All results in this section focus on the scalability

of the linear source solver.

144

6.5.2.1 2D Lattice of the Single Assembly Geometry

First, the 2D lattice of full-height assemblies is considered. The geometry needs to be

domain decomposed axially in order to run with these desired parameters in less than

the one hour time limit set by the Cetus policies. Therefore, all geometries are domain

decomposed into 20 axial domains and then further domain decomposed such that each

domain simulates an assembly in the radial direction. The base case is therefore the

single assembly decomposed into 20 domains, which was analyzed at the end of the

strong scaling studies.

All efficiency results are relative ot the base case of a single assembly. The ideal case is

for runtime to stay fixed as the problem size is increased with 20 nodes assigned to each

assembly. The geometry is expanded in a N ×N square lattice where N is the number of

domains in both the x and y directions. The results are shown in Fig. 6-10 where the

efficiency is plotted as a function of the number of nodes used in the computation. Note

the logarithmic scale on the x-axis.

Figure 6-10: Weak scaling inter-node parallel efficiency of the domain decomposition
implementation of the linear source solver on a replicated 2D lattice of assemblies.

These results show the domain decomposition implementation is able to efficiently

scale to many nodes. Even at 2000 nodes (32,000 cores), the efficiency is above 95%.

145

6.5.2.2 3D Lattice of the SDSA Geometry

The next sets of tests are similar to the 2D lattice tests but expand the domain in all 3

Cartesian directions using a 3D lattice. Instead of replicating the single assembly test

problem, the SDSA test problem is replicated, causing each domain to have the same

geometry and equal computational work. The geometry is replicated in a N × N × N

cubic lattice where N is the number of domains in each Cartesian direction.

Figure 6-11: Weak scaling inter-node parallel efficiency of the domain decomposition
implementation of the linear source solver on a replicated 3D lattice of the SDSA test
problem.

Again, excellent scaling is observed with the efficiency above 90% for all tested cases.

At 1728 nodes (27,648 cores) the efficiency is 92%.

146

6.6 Conclusion

In order to scale to large problems, inter-node parallelism is essential. To accomplish

this, domain decomposition has been implemented in OpenMOC with MPI, utilizing

the natural track linking of the MRT structure. This allows angular fluxes to be easily

communicated by referring to connecting periodic tracks. The domain decomposition

implementation has been tested and observed to scale very well to many nodes. Commu-

nication costs of transferring angular fluxes were at most only a few percent of overall

runtime for realistic cases. The biggest hindrance to inter-node scaling of the domain

decomposition implementation is the potential load imbalance created by domains of

unequal work. For domains with uniform work, the inter-node parallel efficiency was

above 90% for all weak scaling studies. Significant degradation in performance was

only noticed in strong scaling studies for cases with an unrealistically low amount of

on-node work.

147

Highlights

• Domain decomposition is implemented by partitioning the geometry into

regions of equal dimensions with tracks naturally linking at sub-domain

boundaries due to the MRT ray tracing scheme

• Both MOC and CMFD solvers are domain decomposed with MPI used to com-

municate information between nodes, often using the Buffered Synchronous

Algorithm

• Currents at corner and edge boundaries need to be carefully treated in a

domain decomposed setting to ensure consistency between MOC and CMFD

solvers

• The largest hindrance to the scalability of the domain decomposition imple-

mentation is the potential for load imbalance between sub-domains of equal

size but unequal work

• Results show the domain decomposed implementation to have very low

communication costs, allowing for over 90% parallel scaling in weak scaling

studies with expected MOC parameters

148

Chapter 7

Convergence of MOC Source Iteration

In the previous chapters, the implementation of methods in OpenMOC has been discussed

in great detail. All of these methods rely on the MOC form of the transport equation,

presented in Chapter 2. More specifically, these methods rely on source iteration to

converge the solution. In this chapter, the MOC equations are addressed from a general

linear algebra perspective illuminating the deficiencies of source iteration, whose stability

is addressed. While convergence is straightforward for physical cross-sections, transport

correction can cause convergence issues. A stabilization technique is proposed, termed

diagonal stabilization, which can alleviate the convergence issues.

7.1 Introduction

The MOC system of equations leads to a linear system of the form

φ = J
�

1
k

F + S
�

φ. (7.1)

where φ is a vector representing all scalar fluxes and J , F , and S are matrices. Matrix-

vector multiplications with J are termed transport sweeps in which the MOC equations

are applied over segments. A more complete description of the MOC linear system

is found in Appendix A in which the structure of matrices J , F , and S are explicitly

identified. The form in Eq 7.1 is not unique to MOC, but rather many methods solve the

149

multi-group transport equation in the same form, differing only in the way matrix-vector

products with J are computed.

For physical cross-sections, the matrices J , F , and S are all positive. However, when

transport correction is introduced, discussed further in Appendix F.3, components of the

scattering matrix can become negative. Specifically, for a region i and energy group

g, the transport correction ∆Σi,g
tr is applied to both the total cross-section Σi,g

t and

within-group scattering cross-section Σi,g→g
s resulting in a transport cross-section Σi,g

tr

and transport-corrected within-group scattering cross-section Σ̃g→g
s,i as

Σi,g
tr = Σ

i,g
t −∆Σ

i,g
tr

Σ̃i,g→g
s = Σi,g→g

s −∆Σi,g
tr

(7.2)

When using large numbers of energy groups, the within-group scattering cross-

sections can become small, and the modified within-group scattering cross-section can

become negative with transport correction. Tabuchi discovered negative within-group

scattering cross-sections to be an issue when converging within-group scattering itera-

tions of MOC [59]. The study used an iteration scheme in which the spatial distribution

is converged for each estimate of the neutron source. The iterations to converge the

spatial distribution are termed inner iterations. It was identified that the iteration matrix

for inner iterations could have a spectral radius greater than unity, causing the system not

to converge. Tabuchi later proposed a stabilization technique for inner iterations [60].

7.2 Equivalence with Collision Probability Methods

Deterministic methods such as flat source MOC are equivalent to the collision probability

form, aside from discretization errors [59]. Although collision probabilities do not

explicitly enter the MOC equations, the neutron balance equation takes the form in

Eq. 7.3:

Σi,g
tr φi,g Vi =

∑

j

Pji,gq j,g Vj (7.3)

150

where Pji,g represents the collision probability of a neutron of energy group g from

region j to region i, Vi represents the volume of region i, qi,g represents the neutron

source and φi,g represents the average scalar flux in region i and group g. In general,

the neutron source can be computed by summing contributions from all G energy groups

as

qi,g =
G
∑

g ′=1

�

Σi,g ′→g
s φi,g ′ +χi,gνΣ

i,g ′

f φi,g ′

�

(7.4)

where Σi,g ′→g
s is the scattering cross-section in region i from group g ′ to group g, χi,g

is the fission emission probability for group g in region i, and νΣi,g ′

f is the fission

production in region i from group g ′. Combining this definition with Eq. 7.3, as well as

the reciprocity relationship,

Pi j,gΣ
i,g
tr Vi = Pji,gΣ

j,g
tr Vj, (7.5)

neutron balance can be presented in the form of Eq. 7.6.

φi,g =
∑

j

Pi j,g

∑G
g ′=1

�

Σ j,g ′→g
s φ j,g ′ +χ j,gνΣ

j,g ′

f φ j,g ′

�

Σ j,g
tr

(7.6)

Notice that this is in the form of Eq. 7.1. Therefore, the matrix A = J
�

1
k F + S

�

, with

rows and columns indexed by (i, g) where i is the region and g is the energy group, can

be expressed as

A(i,g),(j,g ′) = P g
i j

χ j,gνΣ
j,g ′

f /k+Σ
j,g ′→g
s

Σ j,g
tr

!

. (7.7)

Matrix A is square and dense with length equal to the number of scalar fluxes.

7.3 Iteration Schemes

7.3.1 Power Method

The power method is one common method to solve an eigenvalue problem, such as

the form given in Eq. 7.1, which yields the dominant eigenvector corresponding to the

151

steady-state flux distribution. To invoke the power method, Eq. 7.1 can be re-arranged

to the form in Eq. 7.8 where I represents the identity matrix.

Z ≡ (I − JS)−1 J F

Zφ = kφ
(7.8)

With the power method scheme, repeated multiplication by Z yields the dominant

eigenvector [61]. Rather than performing strict power method iterations, the estimate of

the eigenvalue kn at iteration n is often included in the source. This scheme is presented

in Eq. 7.9. These iterations are often termed outer iterations.

φn+1 = (I − JS)−1 J
F
kn
φn (7.9)

Since explicitly taking the matrix inverse of I − JS is unwise, an iterative scheme

is necessary to solve the linear system. In many transport methods, such as MOC,

computing each element of J can be just as expensive as computing a matrix-vector

product. In addition, each matrix-vector product with matrix J is usually quite expensive

(often termed transport sweeps). Therefore, few methods are available to efficiently

solve the linear system in practice.

7.3.2 Source Iteration

An alternative way to solve the transport equation is to directly apply the transport

sweep to the full neutron source. Note that the neutron source q can be computed as

q=
�

1
k

F + S
�

φ.

The transport sweep matrix J therefore yields the scalar flux distribution associated

with the computed source distribution. In this form, a new iterative process could be

introduced in which a new source distribution is computed at each iteration, yielding a

new estimate of the associated scalar flux distribution. Therefore, solving the transport

equation in this form where source terms are lagged is termed source iteration. Specif-

152

ically, the eigenvalue problem in Eq. 7.1 is iteratively solved with the left hand side

updated and the right hand side lagged as

φn+1 = J
�

Fφn

kn
+ Sφn

�

. (7.10)

It is important to note that this process is non-linear due to the iteration matrix J
�

1
kn

F + S
�

being dependent on the iteration number n. To simplify this relationship, assume that

the eigenvalue k is perfectly known to be kcrit, the eigenvalue associated with the dom-

inant mode of the system. In reality, the exact value of kcrit is not known a priori but

observations and intuition suggests that it does not strongly impact convergence. With

the eigenvalue fixed, the system becomes

φn+1 = Aφn (7.11)

where matrix A is defined in Eq. 7.7 with k = kcrit. This process is equivalent to power

method iterations with the matrix A, which converges to the eigenvector associated with

the dominant eigenvalue of A. Since kcrit is the dominant eigenvalue of the original

system, 1.0 must be an eigenvalue of A. In addition, if an everywhere positive solution

exists, it must be associated with the physical solution.

Recall from Eq. 7.7 that the iteration matrix A is everywhere positive and real as long

as the within-group scattering cross-section is positive. According to the Perron-Frobenius

Theorem [62], square matrices of all positive real entries have a unique largest real

eigenvalue which is dominant and associated with an everywhere positive eigenvector.

In addition, all other eigenvectors must have a negative component. Without transport

correction, the iteration matrix A is an all positive and real matrix, implying that the

largest eigenvalue is 1.0 and is associated with the physical solution. Therefore, the

process detailed in Eq. 7.10 will converge to the physical solution.

However, with the transport correction, it is possible to have negative within-group

scattering, causing this condition not to hold. Therefore, the system might still converge,

but convergence cannot be guaranteed under the Perron-Frobenius Theorem. Therefore,

153

the iteration scheme should be updated to ensure convergence.

7.4 Stabilization of Source Iteration

Note that Eq. 7.12 is a mathematically valid rewriting of Eq. 7.1 for any matrix D where

I + D is invertible.

φ = (I + D)−1
�

J
�

1
k

F + S
�

+ D
�

φ (7.12)

Next, the same source iteration scheme is applied where the left hand side is updated

with the right hand side constant. Since I + D needs to be easily invertible for this new

scheme to be efficient, D is chosen to be diagonal. The convergence discussion then

follows the same discussion as before except the new iteration matrix now has the form

Ã= (I + D)−1
�

J
�

1
kcrit

F + S
�

+ D
�

with the matrix Ã is described by

Ã(i,g),(j,g ′) =
1

1+ D(i,g),(i,g)



P g
i j

χ j,gνΣ
j,g ′

f /kcrit +Σ j,g ′→g
s

Σ j,g
tr

!

+ D(i,g),(j,g ′)



 (7.13)

where the rows and columns are again indexed by region, energy group pairs. The

diagonal elements of D are chosen to be:

D(i,g),(i,g) =











−ρΣi,g→g
s

Σi,g
tr

, for Σi,g→g
s < 0

0, otherwise

(7.14)

where the damping coefficient ρ is a positive value chosen by the user. For ρ = 1, the

diagonal update ensures that there are no negative diagonal elements in the iteration

matrix.

The diagonal stabilization scheme has the effect of shifting the iteration matrix

eigenvalues to be more positive. The intuition for this shift is due to the Gershgorin Disk

Theorem where eigenvalues exist in disks around diagonal elements. Since the diagonal

elements are increased and all matrix elements are contracted, the Gershgorin Disks are

likewise shifted positive with their radii contracted. While this improves stability, it also

154

tightens the positive-eigenvalue modes, causing larger dominance ratios in the iteration

matrix, and slower convergence. Therefore, ρ should be chosen to be small while still

ensuring convergence. An illustration of the shift in eigenvalues is shown in Figure 7-1.

(a) (b)
Figure 7-1: The effect of diagonal dominance shifting the eigenvalues λ of a matrix with
initial Gershgorin disks (blue) and eigenvalues (red) in the complex plane (a) shifted
positively with diagonal stabilization (b). Note that the eigenvalue at 1.0 stays at 1.0.

Tabuchi suggested a similar scheme for converging inner within-group scattering

iterations of MOC transport sweeps [60]. Though originally limited to MOC transport

sweeps with inner within-group scattering iterations, Tabuchi’s scheme is equivalent to

the diagonal stabilization scheme presented here for damping the scalar flux update

except for the choice of diagonal matrix D̃ in place of D with elements

D̃(i,g),(i,g) =max
j

�

�

�

�

�

Σ j,g→g
s

Σ j,g
tr

�

�

�

�

�

(7.15)

which is far larger than the equivalent formulation given in Eq. 7.14. Not only is the

damping applied to all fluxes, not just those with negative within-group scattering, but

it also takes the maximum ratio of within-group scattering to transport cross-section

Σ j,g→g
s /Σ j,g

tr across all regions j, which may already be positive.

It is important to note that in the OpenMOC implementation, negative sources are

set to zero in the first 20 iterations. In addition, negative fluxes are always set to zero.

155

Whenever the correction is applied during an iteration, a warning message is displayed,

alerting the user to the behavior. Negative sources and fluxes are an important indicator

of convergence issues, as a solution corresponding with a negative eigenvalue will have

negative components in its associated eigenvector. While setting negative sources and

fluxes to zero helps the convergence behavior by more quickly eliminating non-physical

behavior, it does not remedy the fundamental convergence issues introduced by negative

cross-sections without the use of a stabilization technique such as diagonal stabilization.

7.5 Convergence Criteria

Since the MOC equations are converged iteratively with source iteration, a convergence

tolerance must be chosen for the simulation. In this thesis, convergence is determined

by iterative change in the neutron production rate. Specifically, the neutron production

rate fi in a source region i can be computed with a sum of contributions from all G

energy groups as

fi =
G
∑

g=1

νΣi,g
f φi,g (7.16)

for the current estimate of scalar fluxes φi,g . The relative change in fission rate, termed

eps-MOC, in iteration n can be computed as

esp-MOC=
1
Nf

√

√

√

√

∑

i∈N f

�

f n
i − f n−1

i

f n−1
i

�2

(7.17)

where Nf is the number of regions with a nonzero neutron production rate and f n
i

refers to the neutron production rate of region i in iteration n. For all results in this

thesis, convergence is determined when esp-MOC is reduced to 10−4 and the change in

eigenvalue estimate from the previous iteration is less than 1 pcm.

156

7.6 Convergence of Source Iteration

In order to test the convergence behavior of the stabilization methods, the stabilization

methods were implemented in OpenMOC. The single assembly test problem described in

Appendix E.2.3 is used to test convergence behavior. Results in this section focus on the

flat source 3D MOC solver in OpenMOC for simplicity, using the MOC parameters given

in Table 7.1. While finer MOC parameters would be necessary to accurately resolve the

solution, convergence has not been observed to change substantially from refining MOC

parameters.

Table 7.1: MOC parameters for single assembly convergence studies

Source Approximation Flat

Number of Sectors in Moderator 8

Number of Sectors in Fuel 4

Height of Flat Source Regions 2.0 cm

Radial Ray Spacing 0.1 cm

Axial Ray Spacing 1.5 cm

Number of Azimuthal Angles 32

Number of Polar Angles 6

Domain Decomposition 1× 1× 100

To analyze the convergence behavior, an error metric is needed. Usually, error is

analyzed in terms of Root Mean Square (RMS) error in the fission distribution over all

fissile regions. During simulations, this can only be compared in terms of results from

previous iterations. However, for these convergence studies, a reference solution is used

which represents the final fission distribution of a tightly converged case. Therefore,

error can reliably be assessed rather than the difference with previous iterations.

In order to focus on the asymptotic convergence behavior, rather than the behavior

far from convergence, the MOC simulations start with a good guess of the scalar flux

distribution. Specifically, the MOC convergence criteria is chosen to be extremely tight

and a converging simulation where the error drops below 3× 10−5 on RMS fission rate

error is chosen as the starting point.

The convergence behavior is presented in Figure 7-2 in which the relative error is

157

plotted as a function of iteration number for a variety of stabilizing schemes. Notice

Figure 7-2: Convergence behavior of different stabilization schemes. TY Stabilization
refers to the approach presented by Tabuchi whereas Diagonal Stabilization refers to
the approach presented in this paper with damping coefficient ρ.

that the case without stabilization diverges while all the stabilization cases converge

except for the new diagonal stabilization scheme with damping factor ρ = 1/128. This

is expected since as ρ approaches zero, the stabilization method becomes equivalent

to source iteration without stabilization. This clearly shows that this problem requires

stabilization to converge with source iteration. In addition, the more conservative

the stabilization scheme, the more convergence is slowed. The scheme proposed by

Tabuchi slows convergence the most. The diagonal damping scheme hinders convergence

significantly less, especially for ρ < 1.

7.7 Convergence Results with CMFD Acceleration

In Section 7.6, the convergence of source iteration and its stability properties were

discussed. When CMFD acceleration is applied, as detailed in Appendix B, the behavior is

much more difficult to analyze since CMFD is a non-linear process. Therefore, discussion

of CMFD results will focus on hypotheses to explain the observed results rather than

rigorous analysis.

In this section, the CMFD mesh is always chosen to be uniform with cells of pin-

158

cell pitch in the radial dimensions and 2.0 cm in the axial dimension. In addition,

a relaxation factor of 0.7 is applied to the CMFD acceleration scheme for computing

corrected diffusion coefficients. Many CMFD implementations choose to collapse to

a fewer number of energy groups in order to improve the speed of the CMFD solver.

While the CMFD equations are computationally less expensive in collapsed few-group

structures, it is possible that collapsing group structures could cause slower convergence

by not fully resolving spectral effects. Results with a variety of CMFD group structures

are presented. While the MOC calculation always uses a 70 group structure, CMFD

group structures are formed with GC CMFD groups, with group ranges taken from the

CASMO-4 Manual [63], as presented in Appendix C.

All of the stability results presented in this section use the parameters in Section 7.1

unless otherwise specified.

7.7.1 Single Assembly Convergence with Water Reflectors

The single assembly model previously analyzed for pure source iteration in Section 7.6

is first analyzed with CMFD acceleration using the same parameters. It is important

to remember that this problem includes axial water reflectors. These large regions of

water where the transport-correction is large could potentially have a strong impact on

convergence. The results with CMFD applied and without any MOC source iteration

stabilization are shown in Figure 7-3 for a variety of CMFD group structures with the

error once again relative to a tightly converged reference. As expected, most of the

trials have trouble converging. This is likely due to the convergence issue observed

with pure source iteration. However, the 70 group CMFD scheme appears to be stable.

It is important to remember that the CMFD equations do not suffer from the issue of

a negative dominant eigenvalue since the CMFD equations can be written such that

within-group scattering does not arise when removal cross-sections are used instead of

total cross-sections.

If 70 group CMFD is driving the convergence process, then the instability in the

underlying source iteration technique appears to be overcome by the CMFD acceleration

159

Figure 7-3: Convergence behavior for a variety of CMFD group structures with GC

CMFD groups and without MOC source iteration stabilization.

prolongation in which MOC scalar fluxes are updated with the CMFD solution. One

way of interpreting this behavior is to think of the convergence as being dominated

by the CMFD acceleration where MOC transport sweeps are used purely to resolve

local behavior, integrate reaction rates to form CMFD cross-sections, and tally currents

crossing CMFD mesh surfaces.

However, with a reduced CMFD group structure, the flux distribution in energy within

a single CMFD group must be resolved by the MOC source iteration process. Since the

underlying MOC source iteration process is unstable, any reliance on the process for

convergence using a reduced group structure appears to lead to instability.

7.7.2 Single Assembly Convergence with Stabilization

To verify that the convergence issue can be remedied with MOC source iteration stabi-

lization, the same single assembly test is conducted but using diagonal stabilization with

ρ = 1/4. For pure source iteration, this was sufficient for stabilization, as previously

shown in Figure 7-2. The results using this stabilization with CMFD acceleration are

shown in Figure 7-4. As expected, the MOC source iteration stabilization fixes the

convergence issues for all CMFD group structures, indicating that the convergence issue

160

Figure 7-4: Convergence behavior for a variety of CMFD group structures with GC

CMFD groups and with Diagonal MOC source iteration stabilization (ρ = 1/4).

was caused by the underlying MOC source iteration.

7.7.3 Single Assembly without Axial Water Reflectors

Next, the truncated single assembly model is studied, as detailed in Appendix E.2.4. This

model is the same as the single assembly model but without the axial water reflectors,

using a 1× 1× 90 domain decomposition. Without reflectors, this model is more similar

to lattice physics models. The convergence behavior is analyzed without source iteration

stabilization. The results with CMFD acceleration for a variety of CMFD group structures

are presented in Figure 7-5. Notice that the convergence issues are not present in this

model. This indicates the issue is caused by the axial water reflectors. More generally, it

appears to be a problem with deep water reflectors that have negative cross-sections.

Recall from the theory discussion that iteration matrix components in Eq. 7.7 were formed

with the product of collision probability and self-scattering cross-sections. In deep water

reflectors, the probability of transport between water regions containing negative cross-

sections is significantly higher than in the active fuel where many neutrons collide with

fuel. This motivates neutron behavior in deep reflectors causing the instability.

161

Figure 7-5: Convergence behavior for the single assembly without axial reflectors with
a variety of CMFD group structures with GC CMFD groups and without MOC source
iteration stabilization.

7.7.4 Full Core Behavior

The previous results were focused on a single assembly with and without axial reflectors

which proved the existence of source iteration instability. Since this issue seems to

only appear at very low errors, the reader might judge this issue to be purely academic.

However, for problems where deeper reflectors exist, such as a typical full core LWR

problem, this issue is exacerbated. To test this effect, full core models are simulated

using the same cross-section set applied in the single assembly studies. The geometry

outside the core is radially discretized into a 3× 3 square grid within each pin-cell-sized

region.

7.7.4.1 2D Extruded Model

Before simulating the explicit 3D model, the 2D extruded model detailed in Appendix E.2.2

is studied. This model lacks the axial water reflectors but still contains significant water

reflectors in the radial direction. A 17× 17× 1 domain decomposition is used. The

results are shown in Figure 7-6. The simulation is run with 8 group and 70 group CMFD

with Diagonal Stabilization. The damping coefficient ρ is chosen for both cases to be

162

Figure 7-6: Convergence behavior of CMFD group structures with GC CMFD groups
and Diagonal MOC source iteration stabilization with stabilization coefficient ρ.

zero (equivalent to no stabilization) and 1/4. For all reduced CMFD group structures,

similar results are observed as seen with the 8 group CMFD structure in Figure 7-6 in

which reasonable convergence can only be obtained by applying the MOC diagonal

stabilization.

7.7.4.2 Explicit 3D Model

Now the full core 3D BEAVRS model is simulated, as detailed in Appendix E.2.1. Since the

problem is large, the MOC angular quadrature is significantly coarsened to 4 azimuthal

angles and 2 polar angles in order to run a significant number of iterations on the

Cetus partition of the Argonne BlueGene/Q supercomputer. These parameters are very

coarse, but still exhibit the convergence issue. Since the run time with coarse angles can

become dominated by the CMFD solution time, it is infeasible to use 70 CMFD groups

on the Cetus partition. Therefore, results are presented only for a reduced 8 group

CMFD structure. A 17× 17× 5 domain decomposition is used. The results are shown

in Figure 7-7 both with and without using the Diagonal Stabilization technique with

ρ = 1/4.

These results show that for the 3D full core PWR problem, a stabilization tech-

163

Figure 7-7: Convergence behavior of OpenMOC on the full core BEAVRS benchmark
with and without Diagonal Stabilization (ρ = 1/4).

nique is necessary in order to reach any reasonable convergence, especially when it is

computationally infeasible to use a many-group CMFD solver.

7.7.4.3 Explicit 3D Model with Linear Source

The preceding tests have all been conducted using a flat source approximation. However,

the goal of this thesis is to solve full core LWR problems with a linear source approxi-

mation. While the theory of the diagonal stabilization was developed for flat source, it

can also be applied to simulations with a linear source approximation. In the OpenMOC

implementation, the same damping of each flat source flux is applied to the associated

linear source moments. Again, a 17× 17× 5 domain decomposition is used. The results

using a linear source approximation are presented in Figure 7-8 for the full core 3D

BEAVRS benchmark, showing similar results to those with a flat source approximation.

164

Figure 7-8: Convergence behavior of OpenMOC’s linear source solver on the full core
BEAVRS benchmark with and without Diagonal Stabilization (ρ = 1/4).

7.8 Conclusion

In this chapter, a theoretical analysis of source iteration convergence was presented

which showed the possibility for source iteration instabilities with transport-corrected

cross-sections. The theory was broadened to include source iterations without inner

within-group scattering iterations. A new diagonal stabilization technique was presented

which is substantially less conservative than previously proposed techniques. Realistic

reactor physics problems were presented that showed instability with the source iteration

process. The diagonal stabilization technique was shown to successfully stabilize the

source iteration process without having much impact on convergence rate.

Results were also presented for convergence with CMFD acceleration which showed

that CMFD acceleration without group collapse was able to stabilize the source itera-

tion process. For CMFD acceleration with a collapsed group structure, the previously

discussed stabilization techniques were necessary to ensure convergence. In the case of

full core PWR problems, a collapsed group structure is often attractive to reduce run

time, necessitating a stabilization method in order to converge.

165

Highlights

• With transport correction, source iteration is not guaranteed to converge

• Convergence issues were observed for models with deep reflectors, but never

observed when using full-group CMFD acceleration

• A stabilization scheme, termed diagonal stabilization, is introduced which

stabilizes source iteration convergence in all tested cases

166

Chapter 8

MOC Parameter Sensitivity Studies

In this chapter, sensitivities to both spatial mesh refinement and MOC ray refinement

are studied in detail. Radial sensitivities, which have been studied extensively in 2D

MOC are first discussed. Then, the axial sensitivities are studied. Both radial and

axial sensitivities include mesh refinement as well as ray refinement studies with the

OpenMOC linear source solver on BEAVRS geometries. These studies all involve models

without control rod insertions. The axial sensitivity studies are then repeated for the

case of a single assembly with a partially inserted control rod. In addition, the sensitivity

of convergence to CMFD parameters and domain decomposition is also studied. This

chapter concludes by presenting the chosen parameters to accurately and efficiently

conduct PWR simulations with 3D MOC. The uninterested reader can skip to the

conclusion of this chapter where the chosen parameters are presented.

8.1 Radial Sensitivity

Due to extensive experience with 2D MOC, the radial parameters required to achieve

sufficient accuracy – both in mesh and ray refinement – are relatively well known. These

requirements for linear source were thoroughly studied by Ferrer [41]. Based on these

studies and CASMO-5 default parameters [40], the expected radial parameters needed

to achieve a sufficiently accurate solution are given in Table 8.1. Each of the parameters

listed in the table will be thoroughly discussed and undergo a refinement study.

167

Table 8.1: Expected radial MOC parameters to sufficiently resolve the MOC fission
distribution using a linear source approximation

Number of Rings in Fuel and Moderator 1

Number of Sectors in Fuel 4

Number of Sectors in Moderator 8

Number of Sectors in Guide Tubes 8

Radial Ray Spacing 0.05 cm

Number of Azimuthal Angles 64

Reflector Mesh 3× 3 cells per pin-cell mesh

8.1.1 Core Radial Mesh Refinement

First, the radial mesh within the core is studied. The core is composed of a lattice of

assemblies. Therefore, the mesh refinement can be studied on a single assembly model.

Since the axial dimensions should not largely impact the radial sensitivity, the short

single assembly model is used, which is a 10 cm tall single assembly region without any

grid spacers and reflective boundary conditions placed in both axial directions. This

model is described in detail in Appendix E.2.6. This problem is simulated with the MOC

ray parameters given in Table 8.2. These parameters are quite fine in the radial direction

in order to accurately test the impact of the radial mesh. In the axial direction, the

source height and axial ray spacing are quite coarse as the problem is uniform axially

with no physical axial flux shape.

Table 8.2: MOC ray parameters for core mesh refinement studies

Radial Ray Spacing 0.025 cm

Number of Azimuthal Angles 128

Axial Ray Spacing 3.0 cm

Number of Polar Angles 10

Axial Source Height 10.0 cm

The radial profile of the fission rate distribution of the short assembly fuel rods is

shown in Figure 8-1. The fission rates are calculated by running OpenMOC on the model

with fine radial mesh. The radial distribution is formed by integrating the fission rates

of all materials within each pin-cell.

168

Figure 8-1: The fission rate distribution over pin-cells for the short single assembly
model.

Typically, pin-cells are discretized into rings and sectors, as presented in Figure 8-2.

Ring divisions help to capture radial variation within the pin-cell and sector divisions

help to capture azimuthal variation.

(a) (b) (c)
Figure 8-2: A simplified pin-cell (a) of just moderator and homogenized fuel is dis-
cretized (b) into 8 sectors in the moderator and 4 sectors in the fuel and further dis-
cretized (c) into 2 rings in the fuel and 3 rings in the moderator.

While the illustration in Figure 8-2 only shows fuel and moderator regions, realistic

pin-cells contain fuel, gap, clad, and moderator. For mesh refinement, ring divisions are

never added in gap and clad regions since they are so thin. In our studies, the sector

divisions within fuel is also applied to the associated gap and clad regions.

169

Since both fuel pins and guide tubes exist in fuel assemblies, there are three main

zones of interest that could be independently discretized: fuel pins, guide tubes, and

moderator.

8.1.1.1 Ring Divisions

First, ring divisions are studied. The sensitivity studies of ring divisions are shown in

Table 8.3. All fission rate errors are for a pin-wise mesh. Relative error in this thesis is

always computed as

relative error=
trial− reference

reference
. (8.1)

For all cases, the expected radial mesh parameters are used unless otherwise specified.

For each zone, a separate parameter refinement is conducted using 1, 2, and 3 rings.

The 3 ring case is always chosen as the reference. For the other radial mesh parameters,

expected parameters are used (1 ring in all regions with 4 sectors in fuel and 8 sectors

in the moderator and guide tube).

Table 8.3: MOC sensitivity to mesh refinement by radial rings in fuel, guide tube, and
moderator regions

No. of keff RMS Fission Max Fission

Region Rings keff Error Rate Error Rate Error

Fuel 1 1.21568 0.9 pcm 0.002 % 0.003 %

Fuel 2 1.21569 0.4 pcm 0.001 % 0.002 %

Fuel 3 1.21569 – – –

Guide Tube 1 1.21569 0.1 pcm 0.002 % 0.004 %

Guide Tube 2 1.21569 <0.1 pcm 0.002 % 0.004 %

Guide Tube 3 1.21569 – – –

Moderator 1 1.21569 4.7 cm 0.003 % 0.007 %

Moderator 2 1.21564 -0.3 pcm 0.002 % -0.004 %

Moderator 3 1.21564 – – –

These results show very little sensitivity. With a linear source approximation, gra-

dients can be accurately captured without further radial discretization, causing ring

170

divisions to be less important. Therefore, all tests in this study do not use ring discretiza-

tions.

8.1.1.2 Sector Divisions

Next, azimuthal sector discretization in analyzed. Since these discretizations largely

account for azimuthal differences rather than radial gradients, they might still be needed

with a linear source approximation. Again, the three regions (fuel, guide tubes, and

moderator) are analyzed separately. Recall that gap and clad are discretized into the

same number of sectors as the rod they surround.

For all of the cases, the RMS and maximum fission rate error is inconsequential,

similar to that observed with discretization by rings. The maximum error occurred when

comparing a case without any sector discretization for moderator, in which the RMS

fission rate error was 0.1% and the maximum fission rate error was 0.3%, which are

both fairly low. However, the effect on the eigenvalue keff is substantial. Therefore, the

results for sector discretization focus on the impact on eigenvalue.

Similar to the approach taken for discretizing by rings, all mesh parameters are taken

to be the expected parameters except the parameter being tested. All error estimates are

formed relative to 16 sectors. Figure 8-3 shows the sensitivity to the sector discretization

of fuel, guide tubes, and moderator.

These results show the moderator region is again the most sensitive. After 8 sectors

in the moderator and 4 in fuel and guide tubes, very little sensitivity is observed. This

would imply that requiring 8 sectors in the guide tubes may be excessive, but guide

tubes are relatively sparse throughout the core so the increased discretization has little

impact on computational requirements. Therefore, in order to be conservative, 8 sectors

remains the choice for guide tube discretization.

171

Figure 8-3: The bias in eigenvalue keff decreasing as the number of sector discretizations
increased in fuel rod, guide tube, and moderator regions.

8.1.2 Reflector Radial Mesh Refinement

Ring and sector discretizations form a well-defined mesh refinement within the core.

However, for full core problems, the radial water reflector also needs to be discretized.

To simplify the sensitivity study, a uniform global mesh is overlaid across the reflector

regions. In addition, the discretization is chosen to align with CMFD cell boundaries.

In OpenMOC, CMFD cell boundaries naturally create mesh discretizations as cells are

split at the mesh boundaries. Since a pin-cell width uniform CMFD mesh is chosen for

acceleration of BEAVRS problems, the reflector is naturally discretized into pin-cell-sized

regions. The radial mesh refinement then takes the form of a uniform mesh discretization

within a pin-cell-sized region in which a square mesh refinement is chosen. Since each

assembly contains a lattice of 17× 17 cells and an assembly width is ≈ 21.5 cm (when

including inter-assembly gap), the radial reflector mesh refinement takes the form of an

N × N discretization of each 1.264 cm × 1.264 cm region within the reflector.

In order to conduct radial reflector mesh refinement sensitivity studies, a full core

model is necessary. However, the full 3D BEAVRS model is computationally demanding.

Therefore, the 2D BEAVRS model described in Appendix E.2.2 is chosen. This model

represents a radial cut of the full core BEAVRS geometry that has been extruded 10

172

cm in height with reflective boundary conditions placed on the top and bottom of the

geometry. With the height greatly reduced from the full 3D model, the computational

requirements are far less. In addition, since this model contains no axial variation, the

radial sensitivity can be tested more directly. The MOC parameters used in this sensitivity

study are presented in Table 8.4.

Table 8.4: The MOC parameters used in the radial water reflector mesh refinement
studies

Radial Ray Spacing 0.1 cm

Number of Azimuthal Angles 32

Axial Ray Spacing 1.5 cm

Number of Polar Angles 10

Axial Source Height 2.0 cm

The radial profile of the fission rate distribution of the 2D BEAVRS model is shown

in Figure 8-4. The fission rates are calculated by running OpenMOC on the model with

fine radial mesh in the reflector.

Figure 8-4: The fission rate distribution of pin-cells for the 2D BEAVRS model.

173

The results of the sensitivity study are presented in Figures 8-5 and 8-6 for eigenvalue

and fission rate, respectively. All sensitivities are compared to a reference solution which

uses a 5× 5 radial reflector mesh discretization. The results show little sensitivity to the

reflector mesh, likely since the linear source approximation is able to accurately capture

gradients. At the expected 3× 3 reflector mesh refinement, the eigenvalue bias is below

1 pcm and all relative fission rate errors are below 0.1%. Therefore, the 3× 3 radial

reflector mesh discretization is sufficient to accurately resolve the solution and is chosen

for all further studies and results.

Figure 8-5: The bias in eigenvalue keff decreasing as reflector mesh of square discretiza-
tion N × N , where N is the number of mesh discretizations in each pin-cell width, is
refined within the radial water reflector.

A depiction of the mesh refinement of a cutout encompassing both core and reflector

regions is shown in Figure 8-7. The left side of the illustration shows the discretization

of the core, in which pin-cells are carved into sectors. The baffle and water reflector on

the right side are cut into rectangular regions formed by the superposition of material

boundaries and the uniform mesh overlay.

174

Figure 8-6: The relative pellet-wise fission rate error decreasing as reflector mesh of
square discretization N × N , where N is the number of mesh discretizations in each
pin-cell width, is refined within the radial water reflector.

Figure 8-7: The chosen radial mesh refinement depicted near the periphery of the core,
illustrating both core and reflector mesh.

175

8.1.3 Radial Ray Refinement

Next, the MOC radial ray parameters are investigated. The single assembly model is

used in these tests, as described in Appendix E.2.3. This model has full axial height

and includes grid spacers and axial water reflectors. For the radial discretization, the

previous studies are used to inform the selected parameters, as given in Table 8.5. The

number of azimuthal angles in [0,2π] and radial ray spacing required for accurate

simulations are then tested using these assumed parameters. The radial mesh in the

upper and lower water reflectors follows the same discretization present within the core.

The radial profile of the fission rate distribution is very similar to the short assembly

model, shown in Figure 8-1.

Table 8.5: MOC ray and mesh parameters for radial ray refinement studies

Number of Fuel Sectors 4

Number of Guide Tube Sectors 8

Number of Moderator Sectors 8

Axial Ray Spacing 0.75 cm

Number of Polar Angles 10

Axial Source Height 2.0 cm

8.1.3.1 Radial Ray Spacing Sensitivity

First, the radial ray spacing is tested. In these tests, the number of azimuthal angles

is chosen to be 32. This is a factor of 2 away from the expected parameter, but still

reasonably fine so it is assumed the radial ray spacing sensitivity is not significantly

altered. The results of the sensitivity study are presented in Figures 8-8 and 8-9 for

eigenvalue and fission rate, respectively. All errors and biases are reported relative to

the case with 0.0125 cm radial ray spacing. These results show the expected radial ray

spacing of 0.05 cm is sufficient to achieve less than 0.1% maximum pellet-wise fission

rate error and less than 5 pcm bias.

176

Figure 8-8: The bias in eigenvalue keff decreasing as radial ray spacing is refined.

Figure 8-9: The relative pellet-wise fission rate error decreasing as radial ray spacing is
refined.

8.1.3.2 Azimuthal Angle Sensitivity

The number of azimuthal angles is the last radial parameter to be tested. For these

studies the radial ray spacing is chosen to be 0.1 cm, again a factor of 2 coarser than the

expected parameter. The results of the sensitivity study are presented in Figures 8-10

and 8-11 for eigenvalue and fission rate, respectively. All errors and biases are reported

177

relative to the case with 256 azimuthal angles.

Figure 8-10: The bias in eigenvalue keff decreasing as the number of azimuthal angles
is increased.

Figure 8-11: The relative pellet-wise fission rate error decreasing as the number of
azimuthal angles is increased.

Here there seems to be significant sensitivity to the number of azimuthal angles. At

the expected 64 azimuthal angles in [0,2π], there is a 48.3 pcm bias. However, the

error in pellet-wise reaction rates is significantly less with the 64 azimuthal angle case

producing less than 0.1% RMS error and less than 0.5% maximum error. Therefore, the

178

expected 64 azimuthal angles are assumed to be sufficient for accurately resolving the

fission rate distribution.

8.2 Axial Sensitivity

The previous section studied radial sensitivities, which are known quite well due to

extensive experience with 2D MOC. Therefore, the studies were a verification that

the expected parameters were sufficient to accurately simulate typical geometries and

materials found in PWRs.

In this section, the axial sensitivities are studied, for which there is much less collec-

tive experience. 3D MOC solvers have only recently been investigated in great detail.

Therefore, rather than verifying a set of MOC parameters to be sufficient for accurate

simulations, a search is required to find the accurate parameters. This requires some

metric for determining whether a simulation is sufficiently accurate.

The following criteria is selected to constitute an accurate simulation: less than 1.0%

RMS pellet fission rate error, less than 3.0% maximum pellet fission rate error, and less

than 20 pcm bias on eigenvalue compared with a converged reference solution. The

pellet fission rate is defined to be the fission rate within a given 2.0 cm tall fuel pin

region. The reference solution for every case is chosen by further refining the parameter

of interest, similar to the radial studies. This allows each parameter to be independently

studied.

In this study, the single assembly model detailed in Appendix E.2.3 is chosen which

contains axial water reflectors and grid spacers. It does not contain any inserted rods.

Later, a single assembly with inserted rods is analyzed to determine the MOC parameters

when there are significant axial gradients. The axial profile of the fission distribution for

the single assembly model without rod insertions is presented in Figure 8-12, formed

from an OpenMOC run with fine MOC parameters and radially integrating fission rates.

Notice the fission distribution dips around grid spacers.

This section focuses on understanding the sensitivity to three axial parameters: the

axial source height, the axial ray spacing, and the number of polar angles in [0,π]. For

179

Figure 8-12: The axial fission rate distribution of the single assembly model formed
from radially integrating reaction rates in each 2 cm tall region.

the axial source height sensitivity tests, a uniform axial mesh is imposed in order to

simplify the study. Due to the structure of the test geometries presented in Appendix E,

all material boundaries occur at even intervals. Therefore, to impose a uniform axial

mesh, the maximum axial source height is 2.0 cm. The axial ray spacing and polar angle

tests are conducted in a similar fashion to the radial ray spacing and azimuthal angle

sensitivity tests. For all tests, the radial parameters presented in Table 8.6 are used. The

radial mesh in the axial water reflectors follows the same discretization as that present

within the core.

Table 8.6: MOC ray and mesh parameters for radial ray refinement studies

Number of Fuel Sectors 4

Number of Guide Tube Sectors 8

Number of Moderator Sectors 8

Number of Azimuthal Angles 32

Radial Ray Spacing 0.1 cm

180

8.2.1 Axial Source Height Sensitivity

First, the axial source height sensitivity study is conducted. For these tests, 10 polar

angles and an axial ray spacing of 0.09375 cm (3/32 cm) are selected. The reference

case has an axial source height of 0.25 cm. The results are presented in Figures 8-13

and 8-14 for eigenvalue and fission rate, respectively.

Figure 8-13: The bias in eigenvalue keff decreasing as axial source height is refined.

Figure 8-14: The relative pellet-wise fission rate error decreasing as axial source height
is refined.

Notice that there is a sensitivity to axial source height but with 2.0 cm source height,

181

the accuracy criteria is satisfied. However, if less than 1.0% maximum fission rate error

were required, the axial source height would need to be 1.0 cm.

8.2.2 Axial Ray Spacing Sensitivity

Next, the axial ray spacing sensitivity is studied. For these tests, 10 polar angles and

an axial source height of 2.0 cm are selected. Since, the axial ray spacing should be

less than the axial source height to ensure at least one crossing of each source region

per angle, the coarsest axial ray spacing is chosen to be 1.5 cm. Then the ray spacing

is halved each time the ray spacing is refined. The reference is chosen to be 0.09375

cm (3/32 cm). The results are presented in Figures 8-13 and 8-14 for eigenvalue and

fission rate, respectively. These results show that 1.5 cm axial ray spacing is sufficient to

satisfy the accuracy criteria. However, if less than 1.0% maximum fission rate error is

required, the axial ray spacing would need to be 0.75 cm.

Figure 8-15: The bias in eigenvalue keff decreasing as axial ray spacing is refined.

This result is quite similar to the axial source height sensitivity whereby a refinement

of the parameter may be useful. Since it is not possible to refine axial source height

further with an axial ray spacing of 1.5 cm while ensuring each axial source region is

traversed, the axial ray spacing is chosen to be 0.75 cm to allow for a source height

182

Figure 8-16: The relative pellet-wise fission rate error decreasing as axial ray spacing is
refined.

refinement if necessary.

8.2.3 Polar Angle Sensitivity

Lastly, the polar angle sensitivity study is conducted using an axial ray spacing of 0.25 cm

and an axial source height of 2.0 cm. This fine axial ray spacing allows the trend to be less

sensitive to small perturbations in track laydown when changing polar angles, causing

the trend to be more directly visible. All results use the Gauss-Legendre polar quadrature.

The reference is chosen to be 32 polar angles in [0,π]. The results are presented in

Figures 8-17 and 8-18 for eigenvalue and fission rate, respectively. These results show

that only 6 polar angles are necessary to achieve the accuracy criteria. However, 2D

MOC simulations with Gauss-Legendre quadrature typically use a minimum of 5 polar

angles in [0,π/2], equivalent to 10 polar angles for 3D MOC in [0,π]. Therefore, 10

polar angles are assumed to be necessary.

183

Figure 8-17: The bias in eigenvalue keff decreasing as the number of polar angles is
increased.

Figure 8-18: The relative pellet-wise fission rate error decreasing as the number of
polar angles is increased.

8.3 Axial Sensitivity on a Rodded Assembly

In the previous section, the axial MOC parameters were studied for a single assembly

problem with no control rod insertions, allowing for smooth axial gradients. When

control rods are inserted, the gradients can become significant. To observe this effect, the

184

rodded single assembly model discussed in Appendix E.2.7 is selected. In this problem,

a rod is halfway inserted into the assembly, creating a significant distortion in the power

profile. The axial profile of this model is presented in Figure 8-19, again formed from

an OpenMOC run with fine MOC parameters and radially integrating fission rates.

Figure 8-19: The axial fission rate distribution of the rodded single assembly model
formed from radially integrating reaction rates in each 2 cm tall region.

The presence of significant gradients mean finer axial parameters may be required.

Therefore, the axial sensitivity study is repeated for the rodded single assembly test

problem. Again, the radial parameters described in Table 8.6 are selected. Since

the fission distribution drops significantly past the control rod tip, fission rate error

comparisons in this section only consider the region below the axial height of 250 cm.

8.3.1 Axial Source Height Sensitivity

First, the axial source height is again analyzed using 10 polar angles and an axial ray

spacing of 0.09375 cm. The reference again has 0.25 cm axial source height. The results

are presented in Figures 8-17 and 8-18 for eigenvalue and fission rate, respectively. Now,

a finer axial source discretization is required, with a source height of 1.0 cm necessary

to achieve the accuracy criteria.

185

Figure 8-20: The bias in eigenvalue keff decreasing as axial source height is refined.

Figure 8-21: The relative pellet-wise fission rate error decreasing as axial source height
is refined.

8.3.2 Axial Ray Spacing Sensitivity

Next, the axial ray spacing is analyzed using 10 polar angles and a source height of 0.5

cm. The reference axial ray spacing is chosen to be 0.023 cm (3/128 cm). Since the

source height has been decreased from 2.0 cm to 0.5 cm in comparison with the tests

in Section 8.2.2, the coarsest axial ray spacing present in the previous tests that still

186

traverses every axial source region is 0.375 cm (3/8 cm). Again, the axial ray spacing

is halved at each refinement. The results are presented in Figures 8-22 and 8-23 for

eigenvalue and fission rate, respectively. An axial ray spacing of 0.375 cm (3/8 cm) is

sufficient to achieve less than 1% maximum fission rate error.

Figure 8-22: The bias in eigenvalue keff decreasing as axial ray spacing is refined.

Figure 8-23: The relative pellet-wise fission rate error decreasing as axial ray spacing is
refined.

187

8.3.3 Polar Angle Sensitivity

Lastly, the polar angle sensitivity is conducted with the same parameters as the case

without rod insertions in Section 8.2.3: 0.25 cm axial ray spacing and 2.0 cm axial source

height. Again, the reference is 32 polar angles. While the axial source height is coarser

than necessary to accurately converge the problem, it is assumed that the sensitivity is

similar with the necessary parameter. The results are presented in Figures 8-22 and 8-23

for eigenvalue and fission rate, respectively, showing very little difference from the case

without rod insertions. Again, 6 polar angles are sufficient to meet the criteria but 10

polar angles are selected due to the 2D MOC considerations outlined in Section 8.2.3.

Figure 8-24: The bias in eigenvalue keff decreasing as the number of polar angles is
increased.

188

Figure 8-25: The relative pellet-wise fission rate error decreasing as the number of
polar angles is increased.

8.4 Comparison with Flat Source MOC

In the previous sections, the radial and axial parameters required to achieve accurate

3D MOC solutions were investigated. In this section, the parameters which were found

to be sufficient in accurately simulation PWR problems – and presented later during the

conclusion in Table 8.7 – are used to simulate the single assembly model described in

Appendix E.2.3 for both linear source and flat source solvers. Since the parameters were

derived with the linear source parameters, there should be some bias introduced with

the flat source solver.

The results show a bias of 41 pcm was incurred with the flat source solver compared

with the linear source solution. Additionally, the pellet-wise RMS relative fission rate

difference was 2.1% and the maximum relative fission rate difference was 12.9%.

A reference OpenMC solution was generated for the problem to compare the accuracy

of flat and linear solutions. The reference OpenMC results simulated 400 batches of

neutrons (300 inactive, 100 active) with 107 particles per batch on the single assembly

model. The axial fission rate error relative to the OpenMC reference solution is presented

in Figure 8-26 where the fission rates in each axial interval are formed by radially

integrating all region-wise fission rates within the axial interval.

189

Figure 8-26: The axial fission rate error of flat source and linear source simulations
relative to an OpenMC reference solution on the single assembly test problem.

From the axial fission rate error distribution in Figure 8-26, the largest errors occur

near the axial water reflectors. This is due to the flat source approximation not being

able to capture the strong axial gradients that occur near the reflectors. In order to

achieve comparable accuracy using the flat source solver, a significantly finer source

discretization in the axial direction would likely need to be used, causing the axial ray

spacing to also be further refined.

8.5 CMFD Acceleration

In all of the previous sections of this chapter, only solution accuracy was investigated

as a function of MOC parameters. CMFD acceleration is often necessary to achieve

reasonable convergence rates, as detailed in Appendix B. Therefore, the sensitivity of

convergence rate to CMFD parameters is discussed in this chapter. It is important to

note that the acceleration does not impact solution accuracy.

CMFD is implemented in OpenMOC with uniform mesh on any reduced group

structure. Therefore, the important parameters for defining CMFD acceleration are the

mesh dimensions and the number of energy groups. For the PWR problems investigated

190

in this thesis, pin-cell mesh is always chosen in the radial plane. This is chosen based

on extensive experience in 2D MOC. Therefore, this section focuses on understanding

the sensitivity to two remaining parameters: the axial mesh and the number of energy

groups used in the CMFD solver. In order to decrease run-time requirements of the CMFD

solver, the parameters should be chosen to be as coarse as possible while maintaining

an optimal convergence rate.

For this investigation, the single assembly model described in Appendix E.2.3 is used

with the MOC parameters determined in the previous sections to obtain reasonable

solution accuracy, presented later in Table 8.7. For all the trials, MOC diagonal damping

is applied, as discussed in Chapter 7, with ρ = 1/4. A CMFD damping factor of 0.7 is

also applied for all trials.

8.5.1 Axial Mesh Sensitivity

First, the axial mesh sensitivity is investigated. Since a uniform mesh is required by the

CMFD solver, the number of axial CMFD cells NZ uniquely defines the axial mesh. The

axial height of the single assembly problem is 400 cm and the axial source height is

2.0 cm. When CMFD boundaries intersect source regions, the source regions are split

such that each source region belongs to uniquely one CMFD cell. Therefore, in order to

have the same source region discretization for all tested cases, the number of axial cells

NZ is chosen such that 200/NZ is an integer. The convergence results are presented in

Figure 8-27 for a variety of CMFD axial mesh cells.

The results show that further mesh discretization improves convergence rate all the

way to the maximum number of axial CMFD cells (NZ = 200) in which each CMFD

spans only the height of one MOC source region. Therefore, 200 CMFD cells should be

used in all calculations. At just 25 axial CMFD cells, it is not clear that the solution will

even converge, as the residual does not drop significantly in the first 50 iterations.

191

Figure 8-27: Convergence with a variety of CMFD axial mesh cells, NZ .

8.5.2 Energy Group Sensitivity

Next, the sensitivity to the number of CMFD energy groups is studied. Since the number

of MOC energy groups is 70, the maximum number of CMFD groups is 70. For less

than 70 energy groups, certain groups are combined. There are many configurations

in which the group structure can be collapsed into a reduced CMFD group structure.

In OpenMOC, any collapse is possible, but the CASMO-4 group structures [63] are

implemented for convenience. These group structures can be found in Appendix C.

Using these reduced group structures and varying the number of CMFD groups GC , the

sensitivity of convergence rate to the CMFD group structure is tested. The results are

shown in Figure 8-28.

Notice that the convergence history is not significantly different for 8 or more

CMFD groups. However, when the number of CMFD groups is reduced beyond 8,

the convergence suffers. With one CMFD group, the residual does not drop significantly

during the first 50 iterations. Therefore, this study shows that 8 CMFD groups should

be used in simulation as it captures the optimal convergence rate with the minimum

number of energy groups.

192

Figure 8-28: Convergence with a variety of CMFD energy group structures with number
of groups GC .

8.6 Domain Decomposition

In Chapter 6, it was noted that domain decomposition could slow the convergence rate

since angular fluxes are lagged at domain interfaces. Here, the sensitivity to axial domain

decomposition is studied on a single assembly model. The MOC and CMFD parameters

presented later during the conclusion in Table 8.7 are used in this study, except the

number of azimuthal angles is reduced to 32 and the radial ray spacing is coarsened to

0.1 cm in order to run in reasonable time without domain decomposition. The sensitivity

of convergence to the number of axial domains DZ is shown in Figure 8-29.

The results show a slight but constant degradation in convergence rate as the as-

sembly is decomposed into more axial domains up to 100 axial domains. At 200 axial

domains, where each domain only covers one axial source region, the convergence rate

is significantly degraded. However, a very fine axial decomposition is not intended. In

order to most effectively reduce the memory storage per domain, nearly cubic domains

should be created, as on-node computational work scales with domain volume but

on-node memory storage scales with domain surface area. For the full core BEAVRS

benchmark, a radial domain decomposition of single assemblies is intended, which have

193

Figure 8-29: Convergence with a 1× 1× DZ domain decomposition used on the single
assembly model.

width approximately 21.42 cm. Since the height of the simulated BEAVRS model is

400 cm, an axial domain decomposition of 20 axial domains would lead to nearly cubic

domains, and is the intended domain decomposition for the BEAVRS benchmark in this

thesis. At 20 axial domains, the single assembly convergence is only slightly degraded

from the single domain case.

8.7 Conclusion

In this chapter, the sensitivity of solution accuracy to MOC parameters was investigated

in great detail. In addition, the convergence of CMFD was studied as a function of

CMFD energy group structure and axial mesh. From these studies, the parameters

given in Table 8.7 are chosen to accurately and efficiently simulate PWR problems

using OpenMOC’s 3D MOC linear source solver. Using the flat source solver with these

parameters incurs significant error.

194

Table 8.7: MOC ray and mesh parameters determined to accurately and efficiently
simulate PWR problems

Radial Ray Spacing 0.05 cm

Axial Ray Spacing 0.75 cm

Number of Azimuthal Angles 64

Number of Polar Angles 10

Number of Fuel Sectors 4

Number of Guide Tube Sectors 8

Number of Moderator Sectors 8

Axial Source Height 2.0 cm

Radial Reflector Mesh 3× 3 cells per pin-cell mesh

CMFD Cell Height 2.0 cm

Number of CMFD Energy Groups 8

Highlights

• The presence of rod insertions requires axial source height and axial ray

spacing to be refined, but there is little polar angle sensitivity.

• Significant error is introduced when the MOC parameters necessary for

accuracy with the linear source solver are used with the flat source MOC

solver

• For optimal CMFD convergence, the CMFD axial mesh should be the same as

the MOC axial mesh, but the number of CMFD energy groups can be reduced

to 8 from the 70 group MOC structure without reduction in convergence rate

195

Chapter 9

Full Core Results

The objective of this thesis is to efficiently simulate a full core LWR using 3D MOC,

converged in space and angle. In this chapter, the OpenMOC implementation described

in previous chapters is used to directly simulate the full core BEAVRS benchmark. In

past presentations, the 3D MOC solver implemented in this thesis has been verified on a

variety of simpler, conventional reactor physics models [56,64]. The BEAVRS benchmark

represents a far more computationally demanding challenge, especially with a 70 group

cross-section library. The computed OpenMOC solution using 3D MOC is compared with

the reference OpenMC Monte Carlo solution. Then, the computational performance and

profile of OpenMOC on the full core problem is analyzed. To ensure the chosen MOC

parameters are sufficient for spatial and angular convergence, a parameter refinement

study is also conducted. The chapter concludes by summarizing and highlighting

important results.

9.1 Comparison with OpenMC

In Chapter 8, parameter refinement studies were conducted for each MOC parameter.

Using the MOC parameters sufficient to accurately and efficiently resolve pellet-wise

fission rates, as presented in Table 8.7 with the mesh shown in Figure 8-7, the BEAVRS

benchmark is simulated on the Mira partition of the Argonne BlueGene/Q supercomputer

using the linear source 3D MOC solver in OpenMOC. The resulting radially and axially

197

integrated reaction rates are presented in Figure 9-1 and Figure 9-2.

Figure 9-1: Pin-wise radial fission rate distribution for the BEAVRS benchmark formed
by OpenMOC with reaction rates axially integrated.

Figure 9-2: Axial fission rate distribution for the BEAVRS benchmark formed by Open-
MOC with reaction rates radially integrated.

198

The OpenMOC results are compared with the OpenMC Monte Carlo solution from

which the multi-group cross-sections were derived. The Monte Carlo simulation used

400 batches (300 inactive, 100 active) with 2× 108 particles per batch. A comparison of

the OpenMOC and OpenMC solutions is presented in Table 9.1 in which fission rates are

calculated on a pellet-wise scale (2.0 cm axial height).

Table 9.1: Simulation accuracy of OpenMOC relative to an OpenMC reference solution

Avg. Fission Rate RMS Fission Max Fission

keff eigenvalue Std. Dev. Rate Error Rate Error

OpenMC 0.99927 +/- 1× 10−5 1.82% – –

OpenMOC 0.99677 – 2.14% 7.52%

Notice that since Monte Carlo simulations introduce statistical noise, each pellet-wise

Monte Carlo fission rate has an associated standard deviation. The RMS pellet-wise

fission rate error of OpenMOC is 2.14% which is close to the average standard deviation

in OpenMC tallies. The error in keff comes from ignoring the angular dependence of

total cross-sections, leading to incorrect accounting of spatial self-shielding, particularly

in U-238 [65,66]. The radial and axial error distributions are presented in Figure 9-3

and Figure 9-4, respectively, showing a radial tilt from the center to the core periphery.

Figure 9-5 shows these assembly rate errors and the associated OpenMC reference

folded into a 1/8 map. Similar to the radial distribution shown in Figure 9-3, the error

again appears as a pure tilt. This tilt is due to the particular transport correction that is

not able to fully capture the effects of anisotropic scattering. It is possible that a better

transport correction – particularly in reflector regions – would be able to eliminate this

tilt. However, accurate cross-section formation is not the objective of this thesis, and

other ongoing projects at MIT are seeking to improve the transport correction across

the core [66,67]. The low number of inactive iterations (300) used in the Monte Carlo

simulation could also be a significant contributor to the observed differences.

199

Figure 9-3: Radial distribution of normalized fission rate errors of OpenMOC compared
with a reference OpenMC solution on the BEAVRS benchmark.

Figure 9-4: Axial error distribution of normalized fission rates of OpenMOC compared
with a reference OpenMC solution on the BEAVRS benchmark.

9.2 Computational Performance

The computational requirements of the full core solution in OpenMOC is presented in

Table 9.2. Note that while the number of core-hours required to converge the problem is

200

Figure 9-5: 1/8 core folded assembly fission rate error of OpenMOC compared with
the reference OpenMC solution for the BEAVRS benchmark.

high (717,465), the solution was computed on the Argonne BlueGene/Q supercomputer,

which has extremely slow cores for energy efficiency reasons. The requirements on

modern computing cores, such as those on the Falcon supercomputer, is estimated by

comparing the integration time of the SDSA problem tested in Chapter 5 on the Falcon

supercomputer (47.9 ns) to those on the Argonne BlueGene/Q supercomputer (174.9 ns)

for one node and all available cores. However, this case cannot be explicitly simulated

due to the small aggregate memory of the Falcon supercomputer.

Table 9.2: Computational requirements of OpenMOC on the full core 3D BEAVRS
benchmark using the Mira partition of the Argonne BlueGene/Q supercomputer

Runtime 7.76 hours

Number of Transport Sweeps 20

Number of Segments 3.44× 1012

Number of Source Regions 3.85× 108

Nodes 5780 (17× 17× 20)

CPU Cores 92480

Integration Time 256.7 ns

Computational Cost 717,465 core-hours

Estimated Computational Cost on Falcon ≈ 200,000 core-hours

Further analysis of the computational profile is presented in Table 9.3. The results

201

show the computational overhead of CMFD acceleration was insignificant. In addition,

the time spent communicating boundary angular fluxes between domains was quite

small. However, there was significant idle time between sweeps when nodes are waiting

for others to finish their current iteration. This imbalance is due to more work being

required in core domains than in reflector domains.

Table 9.3: Computational profile of OpenMOC on the full core 3D BEAVRS benchmark
using the Mira partition of the Argonne BlueGene/Q supercomputer

Computation Fraction of

Solver Component Time (s) Runtime

Total 2.79× 104 100%

Transport Sweeps 2.67× 104 95.8%

Angular Flux Communication 7.05× 102 2.5%

Idle Time Between Sweeps 7.74× 103 27.7%

CMFD Solver 97.4 0.3%

9.3 Comparison with Flat Source MOC

Using the same MOC parameters, the BEAVRS core is simulated using the flat source

solver. It is important to note that this case is not expected to be spatially converged

since the mesh discretization was derived from linear source MOC sensitivity studies.

Instead, the purpose is to compare the computational performance of the flat and linear

source solvers to understand the overhead of the linear source approximation as well

as possible differences in convergence behavior. The results are presented in Table 9.4,

which again shows a factor of two to three overhead for the linear source solver. Also,

the flat source solution converges 3 iterations faster than the linear source equivalent.

202

Table 9.4: Comparison of Flat and Linear source 3D MOC solvers on the BEAVRS
benchmark with fixed mesh and ray spacing parameters

Flat Source Linear Source

Transport Sweeps 17 20

Run Time (hours) 3.13 7.76

Time per Iteration (minutes) 11.0 23.3

Core-hours 289,488 717,465

Integration Time (ns) 116.2 256.7

9.4 Parameter Refinement

In order to verify that the chosen MOC parameters were sufficiently converged in space

and angle, simulations are conducted in which each 3D parameter is refined, with the

results shown in Table 9.5. Ideally, all parameters should be refined together, but the

computational burden would be too large to run on Mira with the allocation used in

this study. Therefore, each parameter is refined separately. Due to memory constraints

per domain, ray parameters were only able to be refined by ≈ 1.5× but the axial mesh

could be refined by a factor of 2.

Table 9.5: Differences observed from refining 3D MOC parameters for the BEAVRS
benchmark relative to the first solution

Polar Axial Ray Source keff RMS Fission Max Fission

Angles Spacing Height Bias Rate Diff. Rate Diff.

10 0.75 cm 2.0 cm – – –

14 0.75 cm 2.0 cm 2 pcm 0.010 (0.51%) 0.074 (1.92%)

10 0.50 cm 2.0 cm 5 pcm 0.008 (0.41%) 0.044 (1.76%)

10 0.75 cm 1.0 cm 13 pcm 0.001 (0.28%) 0.055 (3.33%)

9.5 Conclusions

In this Chapter, full core simulation results were presented for the BEAVRS benchmark.

The results show reasonable agreement with the OpenMC Monte Carlo solution, though

a radial tilt does exist, indicating either the need for a better transport correction or a

203

better converged reference solution. Parameter refinement studies were conducted on

the full core, showing some sensitivity to axial mesh. However, all parameter refinements

nearly met the desired sensitivity criteria. The full core solution required 717,465 core-

hours on the Argonne BlueGene/Q supercomputer with slow CPU cores. For Falcon CPU

cores, representative of modern computer CPUs, it is estimated that only ≈ 200,000

core-hours would be required, and full core 3D MOC simulations are now feasible on

modern supercomputers.

204

Chapter 10

Conclusions

The main goal of this thesis was to develop a 3D MOC solver capable of accurately and

efficiently simulating LWR models for a fixed but reasonable choice of cross-sections.

This goal was motivated by the desire to develop methods which can explicitly handle

axial as well as radial variation within PWR reactor cores. The following summarizes

the key accomplishments demonstrated by this thesis to meet this challenge:

• The implementation of an efficient 3D MOC solver. A 3D MOC solver was im-

plemented in OpenMOC which is capable of efficiently solving the MOC equations

using an efficient track laydown, on-the-fly ray tracing, and spatial domain de-

composition. In addition, an efficient linear source solver was added, allowing for

accurate solutions with relatively coarse mesh.

• Theoretical and practical evaluation of source iteration convergence. The

convergence of transport codes using source iteration (such as MOC) with transport-

corrected cross-sections has plagued researchers in the past. In this thesis, a robust

theoretical framework is introduced to understand convergence characteristics.

The diagonal stabilization scheme was presented which alleviates the convergence

issues.

• 3D MOC parameter refinement studies. Since previous 3D MOC solvers have

not been capable of solving large PWR problems, parameter refinement studies

205

have not been fully explored. In this thesis, the sensitivity of solution accuracy to

each 3D MOC parameter is thoroughly explored.

• Evaluation of computational requirements for solving full core PWR prob-

lems. Since OpenMOC is the first solver capable of solving the BEAVRS benchmark

with deterministic methods, it provides a useful indicator for the computational

cost of solving such a large problem.

Past 3D deterministic solvers have not been capable of fully resolving full core PWR

models to pellet-level precision. This thesis shows that these large scale simulations are

now possible with careful consideration of implementation details critical to performance.

10.1 Summary of Work

10.1.1 3D MOC Implementation

In this thesis, the track-based linear source approximation introduced by Ferrer [42]

for 2D MOC is extended to 3D MOC and implemented in OpenMOC. While the higher

order source approximation adds a factor of ≈ 2 – 3× computational cost for a fixed

mesh, it also allows for a coarser mesh in the radial and axial directions while preserving

solution accuracy.

The work in this thesis requires cyclic tracking in order to explicitly treat vacuum,

periodic, and reflective boundary conditions. There are a variety of ways cyclic tracking

can be enforced by adjusting MOC ray parameters. Depending on the track laydown

algorithm, the parameter adjustment can be significant, often inserting far more tracks

than necessary. Inefficient track laydown algorithms can lead to an order of magnitude

increase in the number of tracks required for realistic PWR problems [18]. Since

the computational cost of MOC scales directly with the number of tracks, an order of

magnitude increase in the number of tracks translates directly into an order of magnitude

increase in the run time. This thesis implements track laydown using Modular Ray

Tracing (MRT), which has less stringent constraints, allowing for the number of

unnecessary track insertions to be minimal [17].

206

Traditional MOC implementations conduct ray tracing upfront, storing the associated

ray tracing data, and referencing it during the solve. While this approach is straight-

forward, its memory and compute requirements for 3D MOC are prohibitive, even for

small problems, due to the vast number of segments present in 3D MOC simulations.

The explicit storage of 3D segments in OpenMOC for a single assembly of the C5G7

benchmark with coarse MOC parameters required 79 GB [56]. Reducing the memory

footprint is important for improving computational efficiency. In this thesis, an alter-

native approach is presented that greatly reduces the segment storage by taking

advantage of the extruded geometry structure common to many reactor physics

problems. This approach saves no 3D segment data, but instead stores 2D radial ray

tracing information and combines this information with 1D axial meshes to compute 3D

intersections on-the-fly [56].

Shared memory parallelism was implemented in OpenMOC for on-node parallelism.

While shared memory parallelism is feasible for on-node scaling, it is infeasible for

inter-node scaling due to significant latency when transferring information between

nodes. Therefore, a hybrid parallelism model is adopted in which on-node scaling

is handled with OpenMP shared memory parallelism and inter-node scaling is han-

dled with spatial domain decomposition using MPI [14]. Scalable spatial domain

decomposition was implemented in OpenMOC by partitioning the geometry using a

uniform Cartesian grid into many geometrical sub-domains and imposing a modular

track laydown [17] to naturally link tracks between sub-domains. The implementation

shows nearly ideal weak scaling to a large number of nodes. CMFD acceleration was

implemented in OpenMOC to reduce the number of transport sweeps necessary for con-

vergence. This CMFD solver was also domain decomposed, such that its incorporation

adds trivial overhead.

All of these implementation components in OpenMOC lead to an efficient 3D MOC

solver, allowing for feasible large scale reactor physics simulations on modern super-

computers.

207

10.1.2 Diagonal Stabilization

While the implementation allows for efficient 3D MOC simulations, full core problems

with transport-corrected cross-sections can be impossible to converge with conventional

source iteration. This thesis introduces a novel strategy to overcome the conver-

gence issues of source iteration using damping of the MOC scalar fluxes, termed

diagonal stabilization. A robust description of the source of convergence issues with

transport-corrected cross-sections was discussed in this thesis. Figure 10-1 illustrates

the need for diagonal stabilization, depicting the convergence history of a full core

BEAVRS simulation not converging with conventional source iteration but converging

when diagonal stabilization is introduced.

Figure 10-1: Convergence behavior of OpenMOC’s linear source solver on the full core
BEAVRS benchmark with and without diagonal stabilization.

Results show that for reactor problems with large water reflector regions and a high

number of energy groups, convergence of MOC with reduced-group CMFD acceleration

is not possible without a stabilization scheme, such as diagonal stabilization. Full group

CMFD, in which the number of CMFD groups match the number of MOC groups, was

always observed to converge. However, a reduced-group CMFD acceleration scheme is

often desired in order to reduce overhead.

It is important to note that this stabilization strategy has implications for all neutron

208

transport solvers – not just MOC solvers. Any solver which relies on source iteration

has the potential to experience these same convergence issues when using transport-

corrected cross-sections. Due to its wide-ranging applicability, this diagonal stabilization

method is one of the most important contributions of this thesis to the reactor physics

community.

10.1.3 Simulation Results

The OpenMOC 3D MOC solver was used to simulate a variety of problems formed from

the BEAVRS benchmark. Using the parameters necessary to reach spatial and angular

parameter convergence, the full core BEAVRS benchmark was simulated. The results are

summarized in Table 10.1, showing reasonable agreement with a reference continuous

energy OpenMC Monte Carlo solution, from which the multi-group cross-sections were

derived.

Table 10.1: Simulation results of OpenMOC on the full core 3D BEAVRS benchmark
using the Mira partition of the Argonne BlueGene/Q supercomputer compared with a
reference OpenMC solution

OpenMOC keff 0.99677

OpenMC keff 0.99927 +/- 1× 10−5

OpenMOC RMS Fission Rate Error 2.14%

OpenMC Avg. Fission Rate Std. Dev. 1.82%

OpenMOC Runtime 7.76 hours

CPU Cores 92480

OpenMOC Computational Cost 717,465 core-hours

Estimated Computational Cost on Falcon ≈ 200,000 core-hours

Note that while the number of core-hours required to converge the problem is high

(717,465), the solution was computed on the Argonne BlueGene/Q supercomputer,

which has extremely slow cores for energy efficiency reasons. The requirements on

modern computing cores, such as those on the Falcon supercomputer was estimated to

be 200,000 core-hours.

To verify the chosen parameters were sufficient in converging the spatial and angular

209

effects, a perturbation study was conducted on the full core, showing little sensitiv-

ity when parameters were refined. A recap of the axial MOC parameters is given in

Table 10.2.

Table 10.2: Axial MOC ray and mesh parameters determined to accurately and efficiently
simulate the BEAVRS benchmark

Axial Ray Spacing 0.75 cm

Number of Polar Angles 10

Axial Source Height 2.0 cm

This thesis was able to accomplish the full core simulation of an LWR reactor, for

the first time, using full core 3D deterministic neutron transport. These simulations

can provide useful insight into the neutron behavior of rector geometries with complex

geometric detail, such as the Westinghouse AP 1000™. With this insight, safety margins

could potentially be lowered, leading to more efficient and economic operation of

modern nuclear reactors.

10.2 Future Work

10.2.1 Accuracy Improvements of Full Core Simulations

The MOC solver developed in this thesis was able to reasonably simulate the BEAVRS

benchmark. However, there was a noticeable tilt across the core due to the transport

correction not properly accounting for anisotropic scattering. Therefore, this thesis

illuminates the need for a better transport correction, particularly in reflector regions

where the traditional flux-limited transport correction might not be sufficient. With an

improved transport correction, the simulation results could be more accurate for the

same computational cost.

10.2.2 Further Full Core Analysis

Future work in OpenMOC should also concentrate on reducing computational cost. Using

the current solver, only uniform mesh refinement was studied for the axial direction in

210

this thesis. A finer mesh could be used near reflector regions with a coarser mesh in

the central core to improve accuracy and decrease computational cost. This would not

require any further software development, only expanded analysis of full core reactor

problems.

10.2.3 OpenMOC Improvements

Algorithmic implementation aspects of the OpenMOC could also be improved, including:

• Non-uniform Domain Decomposition: The requirement of uniform spatial do-

main decomposition leads to load balancing inefficiencies, as observed on the

BEAVRS benchmark. If domains could be merged, this issue might be alleviated.

• Reduced Boundary Angular Flux Storage: OpenMOC currently requires double

storage of boundary angular fluxes so that information is not overwritten during

their exchange between nodes. However, it might be possible to only store the

information once if a clever algorithm is implemented to prevent overwriting of

information. Since the memory usage is dominated by boundary angular flux

storage, this would reduce the overall memory requirements by nearly a factor

of two. Other approaches could also be examined where no boundary fluxes are

explicitly stored, as implemented in APOLLO3 [29] and ARRC [68].

• Non-uniform CMFD Lattice: Currently the OpenMOC CMFD implementation

requires uniform mesh for CMFD acceleration. This is problematic for realistic full

core problems where inter-assembly gaps exist. The inclusion of a uniform CMFD

lattice inserts extra discretization into the problem as CMFD cell boundaries split

MOC source regions.

• Splitting of CMFD Cells Across Domain Boundaries: Currently, domain bound-

aries cannot exist between CMFD cells. This is not ideal for the BEAVRS benchmark

in which assemblies contain a 17× 17 lattice of pins. Since pin-cell CMFD mesh

is standard, this imposes limitations on how the assembly can be domain decom-

posed.

211

• Inclusion of a GPU Solver: For 2D MOC, Graphics Processing Units (GPUs) have

shown the ability to solve MOC equations efficiently. Similar results should be

possible for 3D MOC.

10.2.4 Spatial Source and Cross-section Approximations

In addition to specific OpenMOC improvements, other 3D MOC strategies could be

introduced that have the potential for increased efficiency or accuracy using different

spatial approximations.

First, different source approximations could also be studied in greater detail. Cur-

rently, a single source approximation (either flat or linear) is used for all regions in the

core during a single simulation. However, within the modular framework, it is possible

to create a solver which mixes flat and linear source approximations. For instance,

moderator regions could always be simulated with a linear source approximation where

there is a significant gradient, but gap and clad regions could be simulated with a flat

source approximation where the neutron source is quite small. Additionally, source

approximations restricted to only the axial direction, such as linear or quadratic, could

be implemented for regions where radial variation is not significant.

In addition to implementing different source approximations, it would be useful to

store spatial dependent cross-sections for depletion analysis. In current methodologies,

fuel is discretized into many regions in order to account for burnup gradients. If the

variation could be captured with a spatially-dependent cross-section approximation,

coarser mesh could allow for decreased computational cost of depletion studies.

10.2.5 Treatment of Angular Dependence of Total Cross-sections

It was noted in Appendix F.2, the multi-group total cross-sections have an angular

dependence and other authors have found a bias introduced by not accounting for

the angular dependence [65]. Therefore, this should be treated in order to develop

more accurate simulations capable of matching a fully converged continuous energy

Monte Carlo solution. This could either be done by defining angular-dependent cross-

212

sections, which could be computationally costly, or by correcting cross-sections through

equivalence models [66].

10.2.6 Convergence of Source Iteration with Linear Sources and

CMFD Acceleration

An important issue studied in this thesis was the convergence behavior of source iteration

with transport-corrected cross-sections. However, the theoretical discussion of source

iteration presented in this thesis relied on a flat source approximation without CMFD

acceleration. The diagonal stabilization scheme was shown to also work for CMFD

accelerated cases as well as the linear source solver, but a theoretical study would be

useful, perhaps leading to an improved stabilization strategy.

10.2.7 Reducing the Computational Requirements of Full Core Sim-

ulations

Finally, the development of 3D transport methods should focus on making high fidelity

reactor simulations even more efficient. The results presented in this thesis used many-

group cross-section libraries and solution of the BEAVRS benchmark required a large

supercomputer. These many-group cross-section libraries were used to reduce the

spatial variation of cross-sections such that they are only dependent on the material, not

the spatial location. However, LWR simulations would be far more feasible if region-

dependent several-group cross-sections were capable of accurately capturing neutron

behavior. Therefore, future analysis should investigate several-group cross-section

formations which maintain solution accuracy.

213

Appendices

214

Appendix A

Matrix Representation of MOC

This appendix focuses on how to solve the MOC system of equations, focusing on the

flat source approximation, as the equations are far simpler. However, a linear source

approximation would lead to a similar discussion. In Chapter 2, Eq. 2.24 and Eq. 2.27

provided ways to calculate the angular fluxes and scalar fluxes, respectively. The source

can be computed from the scalar fluxes with Eq. 2.26. This forms a system of equations

that can be solved to determine the neutron distribution inside a nuclear reactor core.

In this discussion, the problem will be cast as a set of matrix equations that could

theoretically be solved with common linear algebra packages. However, this discussion

will show that blindly solving the system of equations with a general linear algebra

package is computationally infeasible since it loses sight of inherent structure the physics-

based approach naturally captures.

The system of equations to be solved is formed by Eq. 2.26, Eq. 2.24, and Eq. 2.27.

Turning Eq. 2.26 into matrix form, a fission matrix F and a scattering matrix S are

defined such that

q=
1
k

Fφ + Sφ (A.1)

where q is a vector of size M containing all neutron sources and φ is a vector of size M

containing all scalar fluxes. Since there must be a neutron source and scalar flux for

every source region and every energy group, M = LG where L is the number of source

regions and G is the number of groups. The scalar fluxes φ as well as the sources q

215

are ordered such that they are contiguous in group with the index calculated as iG + g.

In the context of this discussion, elements relating to region quantities are indexed by

source region i and group g, yielding the following definitions for the fission matrix F

and scattering matrix S as

F(i,g), (i,g ′) =
1

4π
χi,gνΣ

i,g ′

f (A.2)

and

S(i,g), (i,g ′) =
1

4π
Σi,g ′→g

s (A.3)

where all other unspecified matrix elements are zero. Both of these matrices are of size

M ×M and sparse since there are no inter-regional terms.

The relationship in Eq. 2.24 can be rearranged to form the relationship in Eq. A.4.

This form is much easier to work with in the translation to matrix definitions.

ψt,ς
g (0)

�

F1

�

Σi,g
t s
�

− 1

F1

�

Σi,g
t s
�

�

+ψt,ς
g (s)

�

1

F1

�

Σi,g
t s
�

�

=
q0

i,g

Σi,g
t

(A.4)

This relationship can be turned into matrix form by defining an angular flux vector ψ

that contains all outgoing angular fluxes. This is represented in Eq. A.5 by an angular

flux transport matrix T defining relationships between angular fluxes, a source selection

matrix H which selects the source of the region being traversed, and a diagonal matrix

U containing the total cross-sections which scale the source appropriately to match the

relationship in Eq. A.4.

Tψ= HU−1q (A.5)

The number of angular fluxes is N = β LG where β is the average number of track

crossings per source region. Since there must be a significant number of track crossings

per region for convergence we expect N >> M . T is size N×N as it defines relationships

between angular fluxes, the size of H is N ×M since for each angular flux pair it must

pick out the appropriate source region, and the size of U is M ×M since it relates only

216

to the source regions. The elements relating to angular flux quantities are indexed by

track t, segment ς, and group g. For notational convenience, a function R is created

which maps a track t and segment number ς to the traversed region R(t,ς). The source

selection matrix H can therefore be defined as

H(t,ς,g), (R(t,ς),g) = 1. (A.6)

This matrix therefore, has only one non-zero value per row, indicating which region is

being traversed, relating track-based quantities such as angular fluxes to region based

quantities such as the scalar fluxes. Its transpose similarly relates the regions to the tracks

traversing the region. The matrix HT H is a M ×M diagonal matrix with each diagonal

element representing the number of tracks that traverse the region multiplied by the

number of groups. Since it is diagonal, it is easily invertible, which will be important in

the later discussion. The diagonal matrix U containing the total cross-sections is defined

by

U(i,g), (i,g) = Σ
i,g
t . (A.7)

The angular flux transport matrix T is defined by

T(t,ς,g), (t,ς,g) =
1

F1

�

ΣR(t,ς),g
t `t,ς

� (A.8)

and

T(t,ς,g), (t,ς−1,g) =
F1

�

ΣR(t,ς),g
t `t,ς

�

− 1

F1

�

ΣR(t,ς),g
t `t,ς

� . (A.9)

Again, all non-specified quantities are zero.

Lastly, Eq. 2.27 describes how the scalar flux is calculated in terms of both a weighted

sum of angular fluxes and the neutron source. Specifically, an angular flux weighting

matrix W of size M × N is defined such that

φ = U−1q+ U−1Wψ. (A.10)

217

In order to expose its structure, W is expressed as a multiplication of matrices

W = V−1HT W̃ (A.11)

where the volume matrix V is a M ×M diagonal matrix containing region volumes as

V(i,g), (i,g) = Vi (A.12)

and W̃ is an N × N matrix defined by

W̃(t,ς,g), (t,ς,g) = −wt (A.13)

and

W̃(t,ς,g), (t,ς−1,g) = wt (A.14)

with all other elements being zero. Now that all matrix elements have been defined, the

transport equation can be written as a matrix eigenvalue problem. Combining Eq. A.1

and Eq. A.10 yields

φ = U−1
�

1
k

F + S
�

φ + U−1Wψ (A.15)

which combined with Eq. A.5 yields

φ = U−1
�

I +W T−1HU−1
�

�

1
k

F + S
�

φ (A.16)

where I is the identity matrix of dimension M × M . This relationship can be further

simplified by defining a matrix J such that

J = U−1
�

I +W T−1HU−1
�

(A.17)

leading to the expression

φ = J
�

1
k

F + S
�

φ (A.18)

218

This results in the generalized eigenvalue equation given in Eq. A.19

Aφ = kBφ (A.19)

where

A= J F (A.20)

and

B = I − JS. (A.21)

This can of course be turned into a regular eigenvalue problem by explicitly taking the

inverse as

B−1Aφ = kφ. (A.22)

At this point, the matrix B−1A could be explicitly calculated and then input into any

standard eigenvalue solver. However, taking matrix inverses is very computationally

intense, especially due to the internal structure of A and B. Specifically, since J involves

the inverse of T , even the explicit computation of its elements is infeasible. Therefore,

doing this would be very unwise. Even if a generalized eigenvalue solver is available

capable of solving equations of the form given in Eq. A.19, the problem would still rely

on computing explicit components of J . Even though the steady-state neutron transport

equation is an eigenvalue problem defined in terms of the angular fluxes, they only enter

the equation implicitly with the inversion of T .

Therefore, instead of using a common eigenvalue solution technique, a variation

of fixed point iteration termed source iteration is chosen to solve the system. In this

procedure, the relationship in Eq. A.16 is used with the right hand side of the equation

lagged as

φn+1 = U−1
�

I +W T−1HU−1
�

�

1
kn

F + S
�

φn (A.23)

where the subscript n indicates iteration number. Mechanically, the process iterates over

estimations of the neutron source, calculating the corresponding fluxes. First, an initial

flux distribution is guessed along with a value for the eigenvalue k. At the start of each

219

iteration, the source distribution q is calculated using Eq. A.1 from the current guess of

scalar fluxes φ and eigenvalue k. Then, during the transport sweep, new angular fluxes

are computed as

ψ= T−1HU−1q. (A.24)

First, the computation of HU−1q is trivial since H is just the source selection matrix and

U is diagonal. Physically, this just relates to selecting the source region being traversed

and calculating the source divided by the total cross-section.

Due to the simple structure of T , solving its implicit inversion is rather simple for a

matrix of its size. T has just one element on the diagonal and one off-diagonal element

per row. However, since the size of T is so large, any operation involving the matrix is still

expensive. Note that the angular fluxes are only related to their associated connecting

angular flux. For some boundary conditions (e.g. reflective), the connecting angular

flux might be from another track. This could cause the inversion to be more difficult. If

all boundaries have this characteristic, all the angular fluxes within a cycle of connecting

tracks would be dependent on each other.

To alleviate this issue, the angular fluxes at boundaries are approximated by the

calculated angular flux at the boundary from the previous iteration. Specifically, the

relationship in Eq. 2.11 relating connecting angular fluxes at the start of a track is

approximated by
(A.25)ψt,1

g (0) = eψC(t),S(C(t))
g (`C(t),S(C(t)))

where eψ represents the calculated angular fluxes from the previous iteration so that

eψC(t),S(C(t))
g is the angular flux of the connecting track from the previous iteration. This

transformation allows the inversion of T to be calculated using an altered matrix T̃

which lacks dependency between different tracks, then adding the contribution of the

previous iteration angular fluxes, if applicable. The structure of T̃ is block-diagonal and

within each block the matrix is upper triangular. Physically this means that all tracks

can be calculated independently of each other during an iteration. For each track, the

angular fluxes can be solved sequentially by segment. This is where the transport sweep

owes its name as the algorithm simply sweeps over segments. Since each row has at

most two elements, very little calculation is required for each angular flux.

220

During this process, it is noted that only the boundary angular fluxes along with the

neutron source are needed to determine all angular fluxes. Therefore, non-boundary

angular fluxes are computed on-the-fly. Furthermore, the elements of T are re-computed

on-the-fly. Once an angular flux is computed, its contribution to the scalar fluxes is

tallied before it is discarded, since the computation of the scalar fluxes φ relies on a

weighted sum of the full angular flux vector ψ.

After the transport sweep, the source is added to the scalar flux tally, consistent with

Eq. A.10, to produce a new estimate of the scalar fluxes φ. To form a new estimate of k,

note that

Tψ=
1
k

HU−1Fφ +HU−1Sφ (A.26)

which then is re-arranged and multiplied with a vector of ones 1M of length M as

1T
M UH−1

leftTψ=
1
k
1T

M Fφ + 1T
MSφ. (A.27)

Since H is rectangular, it cannot be simply inverted. But since it is of full rank, HT H

can be inverted. From the previous discussion of H, recall that HT H is diagonal so its

inversion is simple. Therefore the left inverse H−1
left of matrix H is defined to be

H−1
left =

�

HT H
�−1

HT . (A.28)

This allows the eigenvalue k to be computed as

k =
1T

M Fφ

1T
M UH−1

leftTψ− 1
T
MSφ

. (A.29)

Combining Eq. A.5 and Eq. A.10, note that

UH−1
leftTψ= Uφ −Wψ (A.30)

and therefore

k =
1T

M Fφ

1T
M (U − S)φ − 1T

MWψ
. (A.31)

221

where 1T
M Fφ refers to the fission rate, 1T

M (U − S)φ refers to the absorption rate, and

−1T
MWψ refers to the leakage rate. Physically, this shows that k is simply a ratio of

neutron production to neutron loss terms.

Notice that each source iteration relies on simply taking the inverse of the transport

matrix T rather than the full B matrix, which includes the scattering matrix, as would

normally be taken during an eigenvalue solver, e.g. power iteration. While this choice

does ease the computational burden of each iteration, it also requires many more

iterations to converge to the correct solution as each iteration does little work in resolving

the angular fluxes as the scattering matrix is not included in the inversion.

Physically, this relates to not treating the scattering source as directly coupled to

the total neutron source. Therefore, un-accelerated MOC is inherently plagued by

slow convergence. In OpenMOC, CMFD acceleration is used to resolve the issue of

slow convergence for source iteration, as described in Appendix B. This allows for the

computational burden of each iteration to be eased without giving up anything in terms

of convergence rate by iteration.

222

Appendix B

CMFD Acceleration

Often CMFD acceleration is necessary to achieve reasonable convergence on practical

reactor physics problems [69]. This appendix explains CMFD acceleration, as imple-

mented in OpenMOC. During CMFD acceleration, a coarse mesh problem is solved that

is consistent with the fine mesh MOC problem. Since the coarse mesh problem can be

solved quickly, it can be fully converged and used to update the MOC solution allowing

global behavior to be communicated in fewer iterations. This appendix discuss CMFD as

a multigrid method, shows how the CMFD equations are derived from the fundamental

multi-group transport equation, and then the process of applying CMFD acceleration is

discussed.

B.1 Multigrid Methods

Multigrid methods are popular in numerical analysis for solving differential equations.

The fundamental idea is that global information can be transferred much quicker over a

coarse mesh than a fine mesh. Using this principle multigrid methods alternate between

solving the set of equations on a coarse mesh, where the problem size is reduced

and information propagates much quicker, and a fine mesh where the discretization

accurately captures the solution of the problem. It is vital that the coarse mesh solution

be consistent with the fine mesh solution. In this context, consistency means that at

convergence the coarse mesh and fine mesh solutions agree over the coarse mesh.

223

Multigrid methods can be structured in many different ways but they generally

involve two important stages: restriction and prolongation.

• Restriction - Collapsing the fine mesh solution down to a consistent form on a

coarse mesh.

• Prolongation - Using the coarse mesh solution to interpolate corrections to the

fine mesh solution.

Multigrid methods in general can involve many layers of mesh. At each layer,

restriction and prolongation are used to transfer to coarser and finer mesh layers,

respectively. However, for the CMFD acceleration scheme implemented in this thesis,

only two layers of mesh are used: the fine MOC mesh and the coarse CMFD mesh.

Figure B-1 illustrates the process of solving the MOC equations using CMFD acceleration.

Figure B-1: A depiction of the multigrid approach to solving the MOC transport equa-
tions with CMFD acceleration.

224

One important difference between usual multigrid approaches and CMFD is that

the CMFD equations are solved using consistent but fundamentally different equations.

Instead of solving the coarse mesh problem using the same MOC form of the neutron

transport equation, where the angular space is discretized using tracks, the CMFD

equations rely on a diffusion-like formulation. This alternate form of the transport

equation relies strictly on cell averaged quantities rather than having a dependence on

angular directions.

B.2 Derivation of the CMFD Equations

The CMFD equations can be derived from multi-group transport. The general concept is

to turn the transport equation, which is fundamentally based on angular fluxes into a

diffusion-like problem which is fundamentally based on scalar fluxes averaged over some

volume in the reactor. During this process, some approximations will be introduced.

However, all of these approximations introduce no bias at convergence. Therefore they

do not impact solution accuracy. First recall the multigroup approximation given in

Eq. 2.4:

Ω·∇ψg(r,Ω)+Σg
t (r)ψg(r,Ω) =

1
4π

χg (r)

k

G
∑

g ′=1

νg ′ (r)Σ
g ′

f (r)φg ′ (r) +
G
∑

g ′=1

Σg ′→g
s (r)φg ′(r)

!

(B.1)

To transform this equation into one based on the scalar fluxes φg(r) rather than the

angular fluxes ψg(r,Ω), the equation is integrated over the entire 4π angular space. In

doing so, recall from Eq. 2.2 that the integral of angular flux over the entire angular

space is simply the scalar flux, leading to the relationship in Eq. B.2.

∫

4π

dΩΩ·∇ψg(r,Ω)+Σg
t (r)φg(r) =

χg (r)

k

G
∑

g ′=1

νg ′ (r)Σ
g ′

f (r)φg ′(r)+
G
∑

g ′=1

Σg ′→g
s (r)φg ′(r)

(B.2)

Notice that only the streaming term has any dependence on the angular flux ψg(r,Ω).

Since the angular variable Ω is independent of the spatial variable r, the gradient can be

225

brought outside the integral in the streaming term as shown in Eq. B.3.

∇·
∫

4π

dΩΩψg(r,Ω)+Σg
t (r)φg(r) =

χg (r)

k

G
∑

g ′=1

νg ′ (r)Σ
g ′

f (r)φg ′(r)+
G
∑

g ′=1

Σg ′→g
s (r)φg ′(r)

(B.3)

Next, the net current Jg (r) is defined as

Jg (r) =

∫

4π

dΩΩψg(r,Ω). (B.4)

Inserting this definition and integrating the equation over an arbitrary volume V leads

to Eq. B.5.

∫

V

dr∇ · Jg (r) +

∫

V

drΣg
t (r)φg(r) =

∫

V

dr

χg (r)

k

G
∑

g ′=1

νg ′ (r)Σ
g ′

f (r)φg ′(r) +
G
∑

g ′=1

Σg ′→g
s (r)φg ′(r)

! (B.5)

The entire geometry is then partitioned into CMFD cells. Defining a volume Vj for CMFD

cell j which is the composition of a finite number of non-overlapping MOC source regions,

the transport equation can be cast in terms of the fluxes and constant cross-sections for

the MOC source regions i with volumes Vi as given in Eq. B.6.

∫

Vj

dr∇ · Jg (r)+
∑

i∈ j

∫

Vi

drΣi,g
t φg(r) =

∑

i∈ j

∫

Vi

dr

χi,g

k

G
∑

g ′=1

νi,g ′Σ
i,g ′

f φg ′(r) +
G
∑

g ′=1

Σi,g ′→g
s φg ′(r)

! (B.6)

It is important to note that in this definition, CMFD boundaries are not allowed to

intersect MOC source region boundaries. In practice, source regions with an intersecting

CMFD boundary are split so that each source region has only one CMFD cell within its

domain. Since the MOC equations are often solved for the average flux within source

226

regions, φi,g , the transport equation can be re-written as:

∫

Vj

dr∇ · Jg (r) +
∑

i∈ j

Σi,g
t φi,g Vi =

∑

i∈ j

χi,g

k

G
∑

g ′=1

νi,g ′Σ
i,g ′

f φi,g ′Vi +
G
∑

g ′=1

Σi,g ′→g
s φi,g ′Vi

!

(B.7)

All of the variables given in this equation are present in the MOC equations except for the

net current found in the streaming term. The bounding surface of CMFD cell j is defined

as S j with surface normal n. Applying gauss-divergence theorem to the streaming term,

it can be cast as a surface integral, shown in Eq. B.8.

∫

S∈S j

dS Jg (r) · n+
∑

i∈ j

Σi,g
t φi,g Vi =

∑

i∈ j

χi,g

k

G
∑

g ′=1

νi,g ′Σ
i,g ′

f φi,g ′Vi +
G
∑

g ′=1

Σi,g ′→g
s φi,g ′Vi

!

(B.8)

In order to make the CMFD problem even less computationally intense, the group

structure is coarsened. A group collapse is performed in which a given CMFD group e is

formed from the incorporation of one or more MOC groups. To arrive at this relationship,

the transport equation is summed over all MOC groups g within the CMFD group e,

shown in Eq. B.9.

∑

g∈e







∫

S∈S j

dS Jg (r) · n+
∑

i∈ j

Σi,g
t φi,g Vi






=

∑

i∈ j

∑

g∈e χi,g

k

G
∑

g ′=1

νi,g ′Σ
i,g ′

f φi,g ′Vi +
G
∑

g ′=1

�

∑

g∈e

Σi,g ′→g
s

�

φi,g ′Vi

!

(B.9)

CMFD cross-sections over coarse mesh and coarse group structures are defined in terms

of the fine mesh MOC quantities. The CMFD cross-sections are given the subscript C

and their definitions are given in equations B.10 – B.13.

χ
j,e
C =

∑

i∈ j

��

∑

g∈e χi,g

��

∑G
g ′=1 νi,g ′Σ

i,g ′

f φi,g ′Vi

��

∑

i∈ j

∑G
g=1 νi,gΣ

i,g
f φi,g Vi

(B.10)

227

ν
j,e
C Σ

j,e
C , f =

∑

i∈ j

∑

g∈e νi,gΣ
i,g
f φi,g Vi

∑

i∈ j

∑

g∈eφi,g Vi

(B.11)

Σ j,e′→e
C ,s =

∑

i∈ j

∑

g ′∈e′

�

∑

g∈eΣ
i,g ′→g
s

�

φi,g ′Vi
∑

i∈ j

∑

g∈eφi,g Vi

(B.12)

Σ j,e
C ,t =

∑

i∈ j

∑

g∈eΣ
i,g
t φi,g Vi

∑

i∈ j

∑

g∈eφi,g Vi

(B.13)

Notice that these cross-sections involve a weighting over the MOC fluxes. Therefore

the CMFD solution depends on the MOC scalar fluxes. At convergence, there is no

approximation error, allowing the CMFD solution to be entirely consistent. CMFD cell

volumes V j
C and cell-averaged scalar fluxes φ j,e

C are defined by Eq. B.14 and Eq. B.15,

respectively.

V j
C =

∑

i∈ j

Vi (B.14)

φ
j,e
C =

∑

i∈ j

∑

g∈eφi,g Vi
∑

i∈ j Vi
(B.15)

These definitions, along with the CMFD cross-section definitions, form the basis of the

restriction component of CMFD acceleration. It is important to note that the CMFD mesh

is significantly coarser - both in space and energy – than the MOC mesh. A comparison

of the spatial mesh is given in Figure B-2 with the MOC mesh on the left. The depicted

mesh are the actual mesh sizes used in the final results for this thesis. The MOC mesh is

quite coarser than typical MOC mesh due to the use of a linear source approximation.

The CMFD calculations in this thesis use pin-cell sized mesh. Even with the coarse MOC

mesh, the CMFD mesh is significantly coarser.

For the energy condensation, the MOC calculations in this thesis use 70 energy groups

whereas the CMFD solver uses 25 or less energy groups. The combination of coarse

spatial mesh and coarse energy groups causes the CMFD problem size to be incredibly

small in comparison with the MOC problem size. With the collapsed cross-sections

on the coarse mesh, the CMFD transport equation looks very similar to the original

228

(a) (b)
Figure B-2: A depiction of the spatial mesh used in MOC (a) and CMFD (b) solvers.
The mesh refinements correspond to those used in the final results for this thesis.

multi-group transport equation and is given in Eq. B.16.

1

V j
C

∑

g∈e







∫

S∈S j

dS Jg (r) · n






+Σ j,e

C ,tφ
j,e
C =

χ
j,e
C

k

E
∑

e′=1

ν
j,e′

C Σ
j,e′

C , fφ
j,e′

C +
E
∑

e′=1

Σi,e′→e
C ,s φ

j,e′

C (B.16)

Returning to the streaming term, the entire surface S j of CMFD cell j is partitioned into

H surfaces that form an interface between cell j and exactly one other CMFD cell. This

allows the total net current of CMFD cell j to be defined in terms of the sum over net

currents over these interfacial surfaces as given in Eq. B.17.

1

V j
C

∑

g∈e

H
∑

h=1







∫

S∈S j,h

dS Jg (r) · n






+Σ j,e

C ,tφ
j,e
C =

χ
j,e
C

k

E
∑

e′=1

ν
j,e′

C Σ
j,e′

C , fφ
j,e′

C +
E
∑

e′=1

Σi,e′→e
C ,s φ

j,e′

C

(B.17)

The integrated net current over each interfacial surface for an MOC group g can be cast

in terms of angular fluxes using the definition given in Eq. B.4 to produce the relationship

in Eq. B.18.
∫

S j,h

dS Jg (r) · n=
∫

S∈S j,h

dS

∫

4π

dΩψg(r,Ω) (Ω · n) (B.18)

229

Figure B-3 shows the geometric relationship between a given MOC track and CMFD

surfaces. This shows that the surface area penetrated on surface S j,h by track t can be

calculated as δAt/(Ω · n). With this geometric relationship in mind and factoring in

Figure B-3: A depiction of a CMFD surface with normal vector n being penetrated by a
track with cross-sectional area δAt traveling in direction Ω. The area of the penetrated
surface area is δAt/(Ω · n).

angular weights from Eq. 2.16, the integrated net current over the interfacial surface

can be calculated using Eq. B.19.

∫

S∈S j,h

dS Jg (r) · n=
∑

(t,s)∈S j,h

wi,tψ
t,s
g (s j,h) (B.19)

Similar to the CMFD cross-sections, these currents are formed from the MOC calculation,

so they are only approximate until convergence. Summing over all MOC groups g within

CMFD group e gives a representation for the net current J̃ j,h,e across surface h of cell j

for CMFD group e in Eq. B.20.

J̃ j,h,e =
∑

g∈e

∑

(t,s)∈S j,h

wtψ
t,s
g (s j,h) (B.20)

It is important to note that these estimates rely on angular fluxes. Since the entire

angular flux vector is not stored explicitly, as discussed in Appendix A, when a CMFD

surface is encountered during the MOC transport sweep, the contribution of angular

fluxes along the track to the net current on the CMFD surface must be tallied. This is

usually a relatively cheap operation, not adding much work to the transport sweep. With

230

these calculated currents, the new transport equation is given in Eq. B.21.

1

V j
C

H
∑

h=1

J̃ j,h,e +Σ
j,e
C ,tφ

j,e
C =

χ
j,e
C

k

E
∑

e′=1

ν
j,e′

C Σ
j,e′

C , fφ
j,e′

C +
E
∑

e′=1

Σi,e′→e
C ,s φ

j,e′

C (B.21)

With this new representation of neutron balance, it is possible to solve for new scalar

fluxes. However, this is not in the form of an eigenvalue problem since the streaming term

has no dependence on the scalar flux. Therefore, new terms are introduced that relate

the current to the scalar flux via diffusion coefficients. This is shown in Eq. B.22 [69].

J̃ j,h,e

A j,h
= −u(j, h)D̂j,e

�

φ
I(j,h),e
C −φ j,e

C

�

− D̃j,h,e

�

φ
I(j,h),e
C +φ j,e

C

�

(B.22)

The function u(j, h) is the sense of the surface h on cell j, A j,h is the area of surface S j,h,

D̂j,e is the surface diffusion coefficient, and D̃j,h,e is the nonlinear corrected diffusion

coefficient. The inspiration of the first term involving D̂j,e comes from diffusion theory.

Specifically it can be calculated using Eq. B.23 under a CMFD uniform mesh assumption

D̂j,h,e =
Dj,eDI(j,h),e

∆rh

�

Dj,e + DI(j,h),e

� (B.23)

where ∆rh is the distance between the CMFD cell and the interfacial surface h, the

function I(j, h) computes the index of the neighboring CMFD cell of j on surface h, and

Dj,e is the diffusion coefficient of cell j in group e. Due to the uniform mesh assumption,

the distance between the centroid of cell j and surface h is the same as that of the

neighboring cell I(j, h). In this thesis, the uniform mesh assumption is imposed, but a

more general treatment is possible. The diffusion coefficients are defined in Eq. B.24,

with motivation from how diffusion coefficients are calculated in common nodal diffusion

theory.

Dj,e =

∑

i∈ j

∑

g∈e
1

3Σi,g
t
φi,g Vi

∑

i∈ j

∑

g∈eφi,g Vi

(B.24)

The sense u(j, h) is calculated by Eq. B.25 where 1 is just the vector of ones in three

dimensions and n j,h is the normal vector of surface S j,h. For a Cartesian uniform mesh,

231

the sense is +1 if the surface is a positive x , y , or z surface and −1 if it is a negative x ,

y , or z surface.

u(j, h) =
1 · n j,h

|1 · n j,h|
(B.25)

Lastly, the corrected diffusion coefficients D̃j,h,e are computed based on the relationship

in Eq. B.22 for fluxes computed after the MOC transport sweep and before the CMFD

solve. This makes the CMFD calculation consistent with the MOC calculation at con-

vergence [69]. The calculation of the corrected diffusion coefficients therefore follows

Eq. B.26 where φ̃ j,e
C are the CMFD cell-averaged scalar fluxes calculated from the MOC

iteration with the tilde indicating the quantity comes from the MOC calculation and

does not change throughout the CMFD iterations.

D̃j,h,e =
−u(j, h)D̂j,h,e

�

φ̃
I(j,h),e
C − φ̃ j,e

C

�

− J̃ j,h,e

A j,h

φ̃
I(j,h),e
C + φ̃ j,e

C

(B.26)

Returning to balance equation and inserting the relationship for net current yields the

new balance equation given in Eq. B.27.

1

V j
C

H
∑

h=1

A j,h

�

−u(j, h)D̂j,e

�

φ
I(j,h),e
C −φ j,e

C

�

− D̃j,h,e

�

φ
I(j,h),e
C +φ j,e

C

��

+Σ j,e
C ,tφ

j,e
C =

χ
j,e
C

k

E
∑

e′=1

ν
j,e′

C Σ
j,e′

C , fφ
j,e′

C +
E
∑

e′=1

Σi,e′→e
C ,s φ

j,e′

C

(B.27)

B.3 Solving the CMFD Equations for MOC Acceleration

The CMFD balance equation in Eq. B.27 represents a physically equivalent system to

solve the transport equation as the MOC balance equation in Eq. 2.24. Re-arranging

terms in the balance equation and grouping by scalar flux yields the relationship in

232

Eq. B.28.

�

Σ j,e
C ,t V

j
C +

H
∑

h=1

A j,h

�

u(j, h)D̂j,e − D̃j,h,e

�

�

φ
j,e
C −

H
∑

h=1

A j,h

�

D̃j,h,e + u(j, h)D̂j,e

�

φ
I(j,h),e
C

−
E
∑

e′=1

Σi,e′→e
C ,s V j

Cφ
j,e′

C =
χ

j,e
C

k

E
∑

e′=1

ν
j,e′

C Σ
j,e′

C , f V j
Cφ

j,e′

C

(B.28)

This can be written in terms of a matrix eigenvalue problem by defining a scalar flux

vector ΦC which incorporates all of the CMFD cell-averaged scalar fluxes φ j,e
C , a loss

matrix A, and a multiplicative matrix M in Eq. B.29.

AΦC =
1
k

MΦC (B.29)

This can be related to a regular eigenvalue problem by taking the inverse of A as

A−1MΦC = kΦC . (B.30)

Any common eigenvalue solver can be used to solve this system. In this thesis, simple

power iteration is employed. This requires that every iteration solve a linear system.

In this thesis, the linear system is solved with the red-black SOR algorithm [70]. The

power iteration algorithm and its application to the CMFD equations is described later

in Alg. B-1.

Often, a relaxation factor is applied to the corrected diffusion coefficients in order to

ensure stability [71]. With the relaxation factor ω, the computed corrected diffusion

coefficients are damped in iteration n+ 1 by

D̃n+1
j,h,e =ωD̃n+1/2

j,h,e + (1−ω)D̃
n
j,h,e (B.31)

where the half-iterations refer to the computed diffusion coefficient without damping,

as given in Eq. B.26. The relaxation factor ω can be any real number in the interval

[0,1] chosen by the user. A lower relaxation factor leads to greater stability, but also

233

leads to slower convergence.

B.4 Convergence Criteria

Convergence for source iteration is determined when esp-MOC defined in Eq. 7.17 is

reduced to 10−4 and the change in eigenvalue estimate from the previous iteration is less

than 1 pcm. The same criteria is imposed for convergence with CMFD accelerationn.

When CMFD acceleration is applied, there are also tolerances for the CMFD solver.

Since the CMFD equations are solved with power iteration and during each iteration

a linear system is solved with red-black SOR, two CMFD tolerances are required: the

tolerance for power iteration and the tolerance for the linear solver.

If a constant tolerance were set, significant computational time could be wasted

when the system is far from convergence. In the context of CMFD acceleration for MOC,

early MOC source iterations will have significant error in neutron sources. Therefore,

the resulting CMFD solution will also have significant error, even with strict convergence

criteria. For this reason, the convergence criteria is always relative to either the current

residual of the MOC solution or the reduction in error from the starting guess. In every

iteration, the starting guess is the previously converged solution, and therefore also

implicitly tied to the MOC residual.

In this thesis, the tolerance on CMFD power iteration is chosen to be an error

reduction by a factor of 0.03 from the first iteration residual. For the linear solve, an

error reduction by a factor of 0.1 is required or a neutron production residual of less

than 0.01 eps-MOC. For both the power iteration and linear solve, a minimum of 25

iterations is enforced.

B.5 Prolongation

Once the CMFD equations are solved, the solution is used to update MOC fluxes, hence

producing a new source for the next iteration. The updating of MOC fluxes is the

prolongation step of the CMFD process. There are a variety of ways for which the CMFD

234

fluxes can be updated. One simple approach is just updating all MOC fluxes in source

region i and MOC group g encompassed by CMFD cell j and CMFD group e by applying

Eq. B.32:

φnew
i,g = φ

old
i,g

φ
j,e
C , new

φ
j,e
C , old

(B.32)

where φnew
i,g refers to the updated MOC flux after prolongation, φold

i,g refers to the MOC

flux before prolongation, φ j,e′

C , old refers to the CMFD cell-averaged flux at the start of

the CMFD solution (calculated directly from the MOC fluxes), and φ j,e′

C , new refers to the

CMFD cell-averaged flux at convergence of the CMFD solution. It is important to ensure

that both new and old scalar fluxes are normalized in the same manner.

While this prolongation approach works well when the CMFD mesh is fine, the CMFD

acceleration could be aided by interpolating the CMFD solution if the shape is known.

For the axial direction, we expect smoothly varying flux shapes due to the simplistic

geometric axial structure. Therefore, the flux shape in each cell is approximated as

being quadratic. Both the before and after CMFD flux shapes are fit with a quadratic

interpolation using neighboring domains. The interpolant is chosen to preserve the

average flux in each of the three nodes (the current cell and two axial neighbors).

Specifically, the axial flux distribution a CMFD cell j for energy group e is represented as

φ
j,e
C (z)≈φ

j−1,e
C





�

z − zC
j

�2

2
−
�

z − zC
j

�

−
1

24



+φ j,e
C

�

−
�

z − zC
j

�2
+

26
24

�

+

φ
j+1,e
C





�

z − zC
j

�2

2
−
�

z − zC
j

�

−
1

24





(B.33)

for axial height z with the centroid of the CMFD cell at height zC
j and CMFD cells j − 1

and j + 1 representing the lower and upper neighboring axial cells, respectively. For

boundary CMFD cells on the domain, the expansion from the neighboring CMFD cell is

used. The quadratic expansions are then used to update MOC fluxes as

φnew
i,g = φ

old
i,g

φ
j,e
C , new(z

C
i)

φ
j,e
C , old(z

C
i)

(B.34)

235

where zC
i is the centroid of MOC source region i. If only two axial CMFD cells are present

on the domain, then a linear fit is used instead of a quadratic fit. If only one axial CMFD

cell is present on the domain, no fit is performed and MOC fluxes are updated with the

simple relationship shown in Eq. B.32. A depiction of the axial fitting of CMFD fluxes is

shown in Figure B-4.

Figure B-4: A depiction of the axial prolongation for updating MOC fluxes with CMFD
acceleration. The green dashed line shows the expansion in the top two axial CMFD
cells and the orange dashed line shows the expansion used in the bottom two CMFD
cells. The black dashed line shows the composite of the expansions.

236

Updating the MOC fluxes with the CMFD solution allows convergence to be greatly

accelerated, quickly capturing the flux shape over the coarse mesh. In addition, the

computational cost of fully converging the CMFD solution is small in comparison with

just one MOC transport sweep. Therefore, using the process laid out at the beginning

of this chapter in Figure B-1, the CMFD equations are formed and solved after every

transport sweep. This process for solving the MOC neutron transport eigenvalue problem

with CMFD acceleration is detailed in Alg. B-1.

237

Algorithm B-1: MOC Eigenvalue Solver with CMFD Acceleration

1: procedure COMPUTEEIGENVALUE(geomet r y , t racks, N)
2: Implicitly define F , S, H, D, and T from geomet r y . Definitions in App. A
3: φ← 1 . Initialize scalar fluxes to all ones
4: ψ← 0 . Initialize angular fluxes to zeros

(only boundary stored)
5: k← 1 . Initialize the eigenvalue to 1
6: φ← φ /

�

1T Fφ
�

. Normalize by total fission source
7: while not converged do
8: q← 1

4π

�

Sφ + 1
k Fφ

�

. Compute neutron sources
9: ψ← T−1HD−1q

p←Wψ
. Transport Sweep: these equations are

solved simultaneously for computational
efficiency. Currents on CMFD surfaces are
tallied. Only angular fluxes on the bound-
ary are explicitly stored.

10: φ← D−1q+ D−1p . Scalar fluxes computed from tally p
11: Form CMFD matrices A and M . Defined by Eq. B.28 and Eq. B.29

(restriction)
12: Compute CMFD scalar fluxes ΦC . Defined by Eq. B.15 (restriction)
13: ΦC ← ΦC /

�

1T MΦC

�

. Normalize by total CMFD fission rate
14: Φ̃C ← ΦC . Save pre-CMFD scalar fluxes
15: while not converged do
16: ΦC ← A−1MΦC . Compute inverse with a linear solver

(Gauss-Seidel)
17: k← 1T MΦC . Implicitly computing

�

1T MA−1MΦC

�

/
�

1T MΦC

�

18: ΦC ← ΦC /
�

1T MΦC

�

. Normalize by total CMFD fission rate
19: end while
20: Update φ by interpolating the

ratio of ΦC and Φ̃C

. This is the prolongation step

21: φ← φ /
�

1T Fφ
�

. Normalize by total fission source
22: end while
23: return φ and k . Return scalar fluxes and the eigenvalue
24: end procedure

238

Appendix C

Energy Group Structures

The energy group structures are from the CASMO-4 lattice physics code [63].

Table C.1: One group energy boundaries.

Group No. Lower Bound [MeV] Upper Bound [MeV]
1 0.0000E+00 2.0000E+01

Table C.2: Two group energy boundaries.

Group No. Lower Bound [MeV] Upper Bound [MeV]
2 0.0000E+00 6.2500E-07
1 6.2500E-07 2.0000E+01

Table C.3: Four group energy boundaries.

Group No. Lower Bound [MeV] Upper Bound [MeV]
4 0.0000E+00 6.2500E-07
3 6.2500E-07 5.5300E-03
2 5.5300E-03 8.2100E-01
1 8.2100E-01 2.0000E+01

239

Table C.4: Eight group energy boundaries.

Group No. Lower Bound [MeV] Upper Bound [MeV]
8 0.0000E+00 5.8000E-08
7 5.8000E-08 1.4000E-07
6 1.4000E-07 2.8000E-07
5 2.8000E-07 6.2500E-07
4 6.2500E-07 4.0000E-06
3 4.0000E-06 5.5300E-03
2 5.5300E-03 8.2100E-01
1 8.2100E-01 2.0000E+01

Table C.5: Eleven group energy boundaries.

Group No. Lower Bound [MeV] Upper Bound [MeV]
11 0.0000E+00 5.8000E-08
10 5.8000E-08 1.4000E-07
9 1.4000E-07 2.8000E-07
8 2.8000E-07 6.2500E-07
7 6.2500E-07 4.0000E-06
6 4.0000E-06 9.8770E-06
5 9.8770E-06 1.5968E-05
4 1.5968E-05 2.7700E-05
3 2.7700E-05 5.5300E-03
2 5.5300E-03 8.2100E-01
1 8.2100E-01 2.0000E+01

Table C.6: Sixteen group energy boundaries.

Group No. Lower Bound [MeV] Upper Bound [MeV]
16 0.0000E+00 3.0000E-08
15 3.0000E-08 5.8000E-08
14 5.8000E-08 1.4000E-07
13 1.4000E-07 2.8000E-07
12 2.8000E-07 3.5000E-07
11 3.5000E-07 6.2500E-07
10 6.2500E-07 8.5000E-07
9 8.5000E-07 9.7200E-07
8 9.7200E-07 1.0200E-06
7 1.0200E-06 1.0970E-06
6 1.0970E-06 1.1500E-06
5 1.1500E-06 1.3000E-06
4 1.3000E-06 4.0000E-06
3 4.0000E-06 5.5300E-03
2 5.5300E-03 8.2100E-01
1 8.2100E-01 2.0000E+01

240

Table C.7: Twenty-five group energy boundaries.

Group No. Lower Bound [MeV] Upper Bound [MeV]
25 0.0000E+00 3.0000E-08
24 3.0000E-08 5.8000E-08
23 5.8000E-08 1.4000E-07
22 1.4000E-07 2.8000E-07
21 2.8000E-07 3.5000E-07
20 3.5000E-07 6.2500E-07
19 6.2500E-07 9.7200E-07
18 9.7200E-07 1.0200E-06
17 1.0200E-06 1.0970E-06
16 1.0970E-06 1.1500E-06
15 1.1500E-06 1.8550E-06
14 1.8550E-06 4.0000E-06
13 4.0000E-06 9.8770E-06
12 9.8770E-06 1.5968E-05
11 1.5968E-05 1.4873E-04
10 1.4873E-04 5.5300E-03
9 5.5300E-03 9.1180E-03
8 9.1180E-03 1.1100E-01
7 1.1100E-01 5.0000E-01
6 5.0000E-01 8.2100E-01
5 8.2100E-01 1.3530E+00
4 1.3530E+00 2.2310E+00
3 2.2310E+00 3.6790E+00
2 3.6790E+00 6.0655E+00
1 6.0655E+00 2.0000E+01

241

Table C.8: Seventy group energy boundaries.

Group No. Lower Bound [MeV] Upper Bound [MeV]
70 0.0000E+00 5.0000E-09
69 5.0000E-09 1.0000E-08
68 1.0000E-08 1.5000E-08
67 1.5000E-08 2.0000E-08
66 2.0000E-08 2.5000E-08
65 2.5000E-08 3.0000E-08
64 3.0000E-08 3.5000E-08
63 3.5000E-08 4.2000E-08
62 4.2000E-08 5.0000E-08
61 5.0000E-08 5.8000E-08
60 5.8000E-08 6.7000E-08
59 6.7000E-08 8.0000E-08
58 8.0000E-08 1.0000E-07
57 1.0000E-07 1.4000E-07
56 1.4000E-07 1.8000E-07
55 1.8000E-07 2.2000E-07
54 2.2000E-07 2.5000E-07
53 2.5000E-07 2.8000E-07
52 2.8000E-07 3.0000E-07
51 3.0000E-07 3.2000E-07
50 3.2000E-07 3.5000E-07
49 3.5000E-07 4.0000E-07
48 4.0000E-07 5.0000E-07
47 5.0000E-07 6.2500E-07
46 6.2500E-07 7.8000E-07
45 7.8000E-07 8.5000E-07
44 8.5000E-07 9.1000E-07
43 9.1000E-07 9.5000E-07
42 9.5000E-07 9.7200E-07
41 9.7200E-07 9.9600E-07
40 9.9600E-07 1.0200E-06
39 1.0200E-06 1.0450E-06
38 1.0450E-06 1.0710E-06
37 1.0710E-06 1.0970E-06
36 1.0970E-06 1.1230E-06
35 1.1230E-06 1.1500E-06
34 1.1500E-06 1.3000E-06
33 1.3000E-06 1.5000E-06
32 1.5000E-06 1.8550E-06
31 1.8550E-06 2.1000E-06
30 2.1000E-06 2.6000E-06
29 2.6000E-06 3.3000E-06
28 3.3000E-06 4.0000E-06
27 4.0000E-06 9.8770E-06
26 9.8770E-06 1.5968E-05

242

25 1.5968E-05 2.7700E-05
24 2.7700E-05 4.8052E-05
23 4.8052E-05 7.5501E-05
22 7.5501E-05 1.4873E-04
21 1.4873E-04 3.6726E-04
20 3.6726E-04 9.0690E-04
19 9.0690E-04 1.4251E-03
18 1.4251E-03 2.2395E-03
17 2.2395E-03 3.5191E-03
16 3.5191E-03 5.5300E-03
15 5.5300E-03 9.1180E-03
14 9.1180E-03 1.5030E-02
13 1.5030E-02 2.4780E-02
12 2.4780E-02 4.0850E-02
11 4.0850E-02 6.7340E-02
10 6.7340E-02 1.1100E-01
9 1.1100E-01 1.8300E-01
8 1.8300E-01 3.0250E-01
7 3.0250E-01 5.0000E-01
6 5.0000E-01 8.2100E-01
5 8.2100E-01 1.3530E+00
4 1.3530E+00 2.2310E+00
3 2.2310E+00 3.6790E+00
2 3.6790E+00 6.0655E+00
1 6.0655E+00 2.0000E+01

Appendix D

On-the-fly Ray Tracing by z-Stack

In Chapter 5, on-the-fly ray tracing was introduced. In this appendix, the relationships

formed for calculating segment crossings of a z-stack are more thoroughly explained.

Recall that all tracks in a z-stack have the same polar angle θ , project onto the same

2D track, and are separated by a constant axial ray spacing δz. Therefore, the axial

height zi of the ith lowest track (starting from 0) can be given as a function of distance s

along the associated 2D track as

zi(s) = z0(0) + iδz + s cotθ (D.1)

where z0(0) is the z-coordinate at the intersection of the lowest track with the z-axis at

the start of the associated 2D track.

For each 2D segment in the 2D track, there is an associated axially extruded region

which contains a list of 3D SRs in the region. Using the boundaries of each SR and

Eq. D.1, it is possible to analytically compute the indexes in the z-stack of tracks that

will cross the SR.

To begin, the first track to traverse the SR (lowest index i) is determined. All tracks

that traverse the SR must have their highest z-height above the lowest boundary of the

SR, zmin. Specifically,

max
sstart≤ s≤ send

zi(s)> zmin (D.2)

where sstart is the s distance along the 2D track at the start of the 2D segment and send is

245

the s distance along the 2D track at the end of the 2D segment. Inserting the relationship

in Eq. D.1, this can be expanded to

max
sstart≤ s≤ send

z0(0) + iδz + s cotθ > zmin. (D.3)

Noting the linear relationship of the tracks and the constant axial ray spacing, this can

be simplified in terms of the lowest track with height z0 as

max (z0(sstart), z0(send)) + iδz > zmin (D.4)

and cast in terms of the index i as

i >
zmin −max (z0(sstart), z0(send))

δz
. (D.5)

Since i is an integer, the lowest track index istart to traverse the region can be given by

istart =

&

zmin −max (z0(sstart), z0(send))
δz

'

(D.6)

Next, the last track to traverse the SR (highest index i) is determined. All tracks that

traverse the SR must have their lowest z-height below the highest boundary of the SR,

zmax. Specifically,

min
sstart≤ s≤ send

zi(s)< zmax (D.7)

which can be expanded to

min
sstart≤ s≤ send

z0(0) + iδz + s cotθ < zmax. (D.8)

Similar to the arguments for the first track index, the last track index follows the criteria

i <
zmax −min (z0(sstart), z0(send))

δz
. (D.9)

246

Therefore, the last track to cross the SR has index iend given by

iend =

$

zmax −min (z0(sstart), z0(send))
δz

%

. (D.10)

In addition to analytically calculating the first and last track indexes, it is possible

to calculate the indexes of tracks with the same length. Specifically, it is possible to

calculate the first and last tracks to cross the entire 2D segment length or the entire 3D

source height.

For a track to cross the entire 2D segment length, both its beginning and ending

heights must be between the minimum and maximum SR boundaries. For a track to

cross the entire axial height of the SR, its beginning and ending heights must be above

and below the minimum and maximum SR boundaries, respectively.

Two indexes iin and iout are calculated. The index iin represents the first track to

start above the lowest SR boundary and iout represents the first track to end above the

maximum SR boundary. All tracks with index between iin and iout traverse the entire

2D segment length. All tracks with index between iout and iin will traverse the entire SR

height. Notice that these are mutually exclusive: if some tracks traverse the entire 2D

segment length, none will traverse the entire SR height.

Tracks that start above the minimum boundary satisfy

min
sstart≤ s≤ send

zi(s)> zmin (D.11)

and tracks that end above the maximum boundary satisfy

max
sstart≤ s≤ send

zi(s)> zmax. (D.12)

Therefore, in a similar process to determining the first and last tracks to cross the SR,

the indexes iin and iout can be calculated as:

iin =

&

zmin −min (z0(sstart), z0(send))
δz

'

(D.13)

247

iout =

&

zmax −max (z0(sstart), z0(send))
δz

'

(D.14)

248

Appendix E

The BEAVRS Benchmark

The results presented in this thesis are based on models formed from the BEAVRS

benchmark [72]. This appendix introduces the BEAVRS benchmark in Section E.1,

including a description of axial alterations made to the benchmark. Section E.2 details

the particular models formed from cutouts of the BEAVRS model.

E.1 Introduction to the BEAVRS Benchmark

The BEAVRS benchmark [72] was released in 2013, representing a Westinghouse 4-loop

nuclear power reactor. This reactor is representative of common PWR designs in the

United States. The benchmark contains core loadings and detector measurements for

the first two cycles of operation, but this thesis concentrates on Hot Zero Power (HZP)

simulations at the beginning of the first cycle in an all rods out configuration.

The reactor contains 193 fuel assemblies. Each assembly contains a 17× 17 lattice

of fuel rods, guide tubes, and instrument tubes. The pin-pitch is 1.26 cm inside each

assembly. All fuel rods within the same assembly contain uranium of the same enrich-

ment. In the first cycle, three uranium enrichments are used: 1.6%, 2.4%, and 3.1%.

Wet annular burnable absorbers are present throughout the core to flatten the power

distribution. The active fuel height is 365.76 cm. A radial description of the core is

shown in Figure E-1.

One of the goals of this thesis is to simulate the BEAVRS benchmark using the explicit

249

Figure E-1: A radial illustration of the BEAVRS benchmark with fuel pins colored by
enrichment.

detail provided in the BEAVRS specification. However, in order to conduct uniform axial

mesh refinement studies, the axial heights of material regions are altered such that each

material discontinuity occurs at an even number of cm. The top and bottom grid spacers

in the BEAVRS benchmark are 3.36 cm with intermediate grid spacers 5.72 cm. These

lengths were altered to 2.0 cm and 6.0 cm, respectively. The starting height of the grid

spacers were rounded to the nearest even integer. All other z-heights in the geometry

were similarly rounded to the nearest even integer. The altering of axial heights allows

regions to be formed which all have the same axial height, which simplifies axial uniform

mesh refinement sensitivity studies. The altered axial heights are depicted in Figure E-2.

While these alterations do change the benchmark slightly, and therefore also change

the computed solutions, these solutions are still very close to those of the true BEAVRS

benchmark.

Although the BEAVRS model is defined inside a cylindrical geometry, a rectangular

250

Water 0 [0.000] Lowest Extent

Nozzle / Support Plate Stainless Steel
20 [20.000] Bottom of Support Plate

Zircaloy Pin
34 [35.000] Bottom of Fuel Rod

Fuel Rod Pincell 36 [36.748] Bottom of Active Fuel

Fuel Rod Pincell w/ Grid
38 [37.162] Grid 1 Bottom

Fuel Rod Pincell 40 [40.520] Grid 1 Top

Fuel Rod Pincell w/ Grid
98 [98.025] Grid 2 Bottom

Fuel Rod Pincell 104 [103.740] Grid 2 Top

Fuel Rod Pincell w/ Grid
150 [150.222] Grid 3 Bottom

Fuel Rod Pincell 156 [155.937] Grid 3 Top

Fuel Rod Pincell w/ Grid
202 [202.419] Grid 4 Bottom

Fuel Rod Pincell 208 [208.134] Grid 4 Top

Fuel Rod Pincell w/ Grid
254 [254.616] Grid 5 Bottom

Fuel Rod Pincell 260 [260.331] Grid 5 Top

Fuel Rod Pincell w/ Grid
306 [306.813] Grid 6 Bottom

Fuel Rod Pincell 312 [312.528] Grid 6 Top

Fuel Rod Pincell w/ Grid
360 [359.010] Grid 7 Bottom

Fuel Rod Pincell 366 [364.725] Grid 7 Top

Fuel Rod Plenum Pincell 402 [402.508] Top of Active Fuel

Fuel Rod Plenum Pincell w/ Grid
412 [411.806] Grid 8 Bottom

Fuel Rod Plenum Pincell 414 [415.164] Grid 8 Top

Zircaloy Pin
418 [417.164] Top of Fuel Rod Plenum

Water 420 [419.704] Top of Fuel Rod

Nozzle / Support Plate Stainless Steel
424 [423.049] Bottom of Upper Nozzle

Water 432 [431.876] Top of Upper Nozzle
460 [460.000] Highest Extent

Elevation [BEAVRS] (cm) Description

Figure E-2: Fuel rod pincell axial specification.

251

bounding geometry is often used in MOC methods for cyclic tracking. Therefore, the

BEAVRS model is modeled with a rectangular prism bounding the geometry. In the

radial plane, the bounding dimensions are square with sides equal to 17 assembly widths.

Since the BEAVRS model has a maximum of 15 assemblies along each x and y direction,

this allows at least one assembly of radial reflector to be modeled outside the core. In

addition, the corners have very deep water reflectors. In the axial direction, the BEAVRS

benchmark is modeled over a height of 400 cm, from 20 cm to 420 cm in the model

specification, allowing approximately 20 cm of axial reflector in each direction. Vacuum

boundaries are assumed on all surfaces.

Cross-sections are generated for each unique material in the BEAVRS model. The

cross-section generation procedures are discussed in Appendix F. A plot of the BEAVRS

benchmark colored by unique material region is shown in Figure E-3. In addition,

an axial plot of the materials is shown in Figure E-4. Similarly the radial and axial

material plots of a 1.6% enriched fuel assembly are shown in Figure E-5 and Figure E-6,

respectively.

252

Figure E-3: A radial view of the BEAVRS benchmark with regions colored by material.

E.2 Description of BEAVRS Models

All models which are simulated in this thesis are derived from cutouts of the BEAVRS

benchmark with 70 group cross-sections, as described in Appendix F. Cutouts are formed

in order to evaluate smaller problems which are representative of computational perfor-

mance or physical behavior of the large full core problem.

253

Figure E-4: An axial view of the BEAVRS benchmark with regions colored by material.

E.2.1 Full Core 3D Model

The first model is the full core 3D BEAVRS model, incorporating all the details discussed

in previous sections. The simulation of this model directly corresponds with the OpenMC

simulations from which the cross-sections are derived.

E.2.2 Full Core 2D Model

A 2D extruded cutout of the reactor is formed in order to determine the physical behavior

of the BEAVRS model in the radial direction. This cutout is taken from a 10 cm axial

254

Figure E-5: A radial view of the 1.6% enriched fuel assembly in the BEAVRS benchmark
with regions colored by material.

interval over which there are no grid spacers. Reflective boundary conditions are placed

on the top and bottom of the problem. While this model lacks any axial variation, it

still contains all radial detail except grid spacers. Due to the lack of axial detail, 2D

MOC and 3D MOC simulations with sufficient parameter refinement should produce

equivalent solutions. Only this model and the full core 3D model contain the full radial

water reflector. Therefore, this model is very useful in determining the effect of large

radial water reflectors.

E.2.3 Single Assembly Model

A single assembly model is formed which represents the full axial detail of a single 1.6%

enriched fuel assembly. While this model lacks radial water reflectors, it contains the

full axial detail of the full core problem, including grid spacers. Outside the core, full

geometrical detail is also captured including support plate / nozzles and, most notably,

water reflectors of approximately 20 cm above and below the fuel. Reflective boundaries

255

Figure E-6: An axial view of 1.6% enriched fuel assembly in the BEAVRS benchmark
with regions colored by material.

are placed on the x and y boundaries. Physically, this is equivalent to an infinite 2D

lattice of 1.6% enriched fuel assemblies. Vacuum boundaries remain on the top and

bottom of this model.

E.2.4 Single Assembly Model without Reflectors

In addition to the single assembly model, a single assembly model without reflectors is

also formed which contains all the detail of the single assembly model, but without the

axial water reflectors. Specifically, 20 cm are removed from both the bottom and top of

the model, resulting in a model that only covers the active fuel and is 360 cm tall. Axial

boundaries conditions are vacuum.

E.2.5 SDSA Model

The Single Domain Single Assembly (SDSA) model represents a 20 cm tall cutout

within the single assembly model which contains no grid spacers. Reflective boundary

256

conditions are imposed on all surfaces.

E.2.6 Short Single Assembly Model

Similar to the SDSA model, the short single assembly model is created which allows for

more feasible testing due to its far reduced size. This model is the same as the SDSA

model except it is only 10 cm in axial height and contains 3.1% enriched fuel. This

enrichment is the highest enrichment found in the cycle 1 BEAVRS model. The greater

fuel enrichment allows for slightly larger gradients with a flux peak in the moderator.

E.2.7 Rodded Single Assembly Model

The rodded single assembly model is the only model which uses a geometry not explicitly

found in the full core 3D BEAVRS model. The model is constructed in the same way as

the single assembly model described in Section E.2.3, but with 3.1% enriched fuel and

with all rods inserted, covering approximately half of the active fuel height. The axial

zones of guide tubes containing the inserted control rods are shown in Figure E-7.

Water
0 Lowest Extent

Nozzle / Support Plate Stainless Steel
20 Bottom of Support Plate

Guide Tube Pincell
34 Bottom of Fuel Rod

Lower Control Rod Fitting
240 Botton of Control Rod

Control Rod Lower Absorber Pincell 242 Bottom of Lower Absorber (AIC)

Control Rod Upper Absorber Pincell
344 Bottom of Upper Absorber (B4C)
460 Highest Extent

Elevation (cm) Description

Figure E-7: Control rod pincell axial specification for the single assembly control rod
insertion model.

The large control rod insertion causes significant gradients within the axial scalar

flux distribution, allowing for robust testing of 3D MOC on problems with significant

axial variation. As mentioned previously, this model uses a separate cross-section library.

Instead of simulating the all rods out configuration, which lacks control rods within

the core, the rodded single assembly model is explicitly simulated in OpenMC to form

257

cross-section estimates. This allows reasonable estimates of control rod material cross-

sections.

258

Appendix F

Cross-section Generation

In this thesis, the same 70 group cross-section library is used for all results involving the

BEAVRS benchmark or cutouts of the BEAVRS benchmark, except for rod insertion studies

in which a separate 70 group cross-section library was formed in order to have accurate

control rod material cross-sections. All cross-section libraries and group structures use

the CASMO-4 energy group boundaries [63], as given in Appendix C. In this appendix,

the process used to form cross-sections is thoroughly discussed.

This appendix is split into four sections. First, the basics of multi-group cross-section

generation are discussed in Section F.1. Then the subtleties of angular dependence of

total cross-sections and the formation of transport-corrected cross-sections are discussed

in Section F.2 and Section F.3, respectively. Finally, the process to generate cross-sections

using OpenMC is discussed in Section F.4

F.1 Cross-section Generation

The multi-group transport equation yields solutions equivalent to those from the con-

tinuous energy transport equation if cross-sections are appropriately defined. This is

obtained for a given energy group g by integrating the continuous energy transport

equation over the associated energy range of [Eg , Eg−1]. The resulting multi-group

259

cross-section definitions are:

Σg
t (r,Ω) =

∫ Eg−1

Eg
dEΣt(r, E)ψ(r,Ω, E)
∫ Eg−1

Eg
dEψ(r,Ω, E)

(F.1)

νΣg
f (r) =

∫ Eg′−1

Eg′
dE ν(r, E)Σ f (r, E)φ(r, E)
∫ Eg′−1

Eg′
dEφ(r, E)

(F.2)

χg (r) =

∫ Eg′−1

Eg′
dE χ(r, E)

∑G
g ′=1 νΣ

g ′

f (r)φg ′(r)
∑G

g=1 νΣ
g
f (r)φg(r)

(F.3)

Σg ′→g
s (r) =

∫ Eg−1

Eg
dE

∫ Eg′−1

Eg′
dE′Σs(r, E′→ E)φ(r, E′)

∫ Eg−1

Eg
dEφ(r, E)

(F.4)

While seemingly straightforward, these equations require knowledge of the neutron

fluxes, which are the goal of transport simulations. Therefore, approximations need to

be made for the fluxes. One way to implicitly do this is through Monte Carlo simulations

in which reaction rates are tallied. These tallied reaction rates can be used in conjunction

with a tallied scalar flux estimate to produce multi-group cross-sections.

F.2 Angular Dependence of Total Cross-Sections

From the definition of the multi-group total cross section Σg
t in Eq. F.1 as

Σg
t (r,Ω) =

∫ Eg−1

Eg
dEΣt(r, E)ψ(r,Ω, E)
∫ Eg−1

Eg
dEψ(r,Ω, E)

,

it is clear that the multi-group total cross-section should be angular dependent even

though we assume the continuous energy total cross-section is angular independent.

This is because the total cross-section multiplies the angular flux rather than the scalar

flux. In turn, this causes its collapsed multi-group form to be angular dependent since

both the numerator and denominator of the expression in Eq. F.1 are angular dependent.

This would be true of any cross-section that multiplies the angular flux, but with the

260

isotropic scattering approximation, there are no other terms that multiply cross-sections

by the angular flux.

This angular dependence is often neglected, but can introduce a bias [65]. With

the angular dependence ignored, the relationship can be integrated over all directions

leading to the form in Eq. F.5.

Σg
t (r) =

∫ Eg−1

Eg
dEΣt(r, E)φ(r, E)
∫ Eg−1

Eg
dEφ(r, E)

(F.5)

The work in this thesis also relies on the approximation of angular independent multi-

group total cross-sections. With this approximation, the new multi-group transport

equation can be formed, as given in Eq. F.6 whose solution is the subject of this thesis.

Ω·∇ψg(r,Ω)+Σg
t (r)ψg(r,Ω) =

1
4π

χg (r)

k

G
∑

g ′=1

νg ′ (r)Σ
g ′

f (r)φg ′ (r) +
G
∑

g ′=1

Σg ′→g
s (r)φg ′(r)

!

(F.6)

It is important to remember that some error is expected from the absence of angular

dependent total cross-sections so that the multi-group transport solution does not strictly

match the corresponding continuous energy transport solution, such as that computed

by Monte Carlo methods.

F.3 The Transport Correction

Previously it was mentioned that the assumption of isotropic scattering introduces sig-

nificant bias, but is remedied by a transport correction. In this section, the transport

correction is derived and its implications are discussed. Many different transport correc-

tions have been implemented, such as those described in the TRANSX [73] and NJOY [74]

manuals. The basis for these transport corrections was formulated by Bell, Hansen and

Sandmeier [36]. However, this section largely follows Hebert’s derivation [37].

261

The scattering term, without the isotropic assumption, follows the relationship

∞
∫

0

dE′
∫

4π

dΩ′Σs(r,Ω′→ Ω, E′→ E)ψ(r,Ω′, E′). (F.7)

In the laboratory system, in which neutron behavior is modeled, scattering may be

strongly anisotropic. However, in the center-of-momentum framework, scattering is

nearly isotropic in the energy range of interest. This implies that the angular dependence

relies on the magnitude of the deflection from scattering Ω ·Ω′, reducing this relationship

to
∞
∫

0

dE′
∫

4π

dΩ′Σs(r,Ω ·Ω′, E′→ E)ψ(r,Ω′, E′).

The scattering kernel can be expressed as an expansion of Legendre polynomials P` with

angular-independent coefficients Σs,` (r, E′→ E) as shown in Eq. F.8 where µ= Ω ·Ω′.

Σs(r,µ, E′→ E) =
∞
∑

`=0

2`+ 1
2
Σs,`

�

r, E′→ E
�

P`(µ) (F.8)

The coefficients can be determined by taking advantage of the orthogonality of Legendre

polynomials, leading to the relationship in Eq. F.9.

Σs,`

�

r, E′→ E
�

=

∫ 1

−1

dµΣs(r,µ, E′→ E)P`(µ) (F.9)

The scattering kernel can be approximated by a finite number L of Legendre polynomials

with modified coefficients Σ̃s,` (r, E′→ E) and a transport correction term∆Σtr (r, E′→ E)

in Eq. F.10.

Σs(r,µ, E′→ E)≈
L
∑

`=0

2`+ 1
2
Σ̃s,`

�

r, E′→ E
�

P`(µ) +∆Σtr

�

r, E′→ E
�

δ (µ− 1) (F.10)

Here δ represents the Dirac delta function, whose application to the transport correc-

tion makes the term forward peaked in the direction of travel to capture higher order

anisotropies. Taking advantage of the relationship in Eq. F.9 and the approximation of

262

the scattering kernel in Eq. F.10, the true Legendre polynomial scattering coefficients

can be related to the modified coefficients in Eq. F.11

Σs,`

�

r, E′→ E
�

≈
∫ 1

−1

dµ
L
∑

`′=0

2`′ + 1
2
Σ̃s,`′

�

r, E′→ E
�

P`′(µ)P`(µ)

+

∫ 1

−1

dµ∆Σtr

�

r, E′→ E
�

δ (µ− 1) P`(µ)

(F.11)

For 0≤ `≤ L, Eq. F.11 can be simplified using the orthogonality of Legendre polynomials

and the property P`(1) = 1. This leads to the simplified relationship in Eq. F.12.

Σs,`

�

r, E′→ E
�

≈ Σ̃s,`

�

r, E′→ E
�

+∆Σtr

�

r, E′→ E
�

(F.12)

In order to capture the next order scattering after L, the transport correction term is set

to capture scattering of order L + 1 as shown in Eq. F.13.

∆Σtr

�

r, E′→ E
�

= Σs,L+1

�

r, E′→ E
�

(F.13)

For isotropic in lab scattering with L = 0, the scattering kernel takes the form of Eq. F.14,

following the form of Eq. F.10, where the transport correction term compensates for first

order scattering in the direction of travel.

Σs(r,Ω′→ Ω, E′→ E)≈
1

4π

�

Σs,0(r, E′→ E)−Σs,1(r, E′→ E)
�

+ Σs,1(r, E′→ E)δ(Ω′ ·Ω− 1)
(F.14)

Inserting this definition of the scattering kernel into Eq. F.7, the continuous energy and

263

angle transport equation becomes:

Ω · ∇ψ(r,Ω, E)+Σt(r, E)ψ(r,Ω, E) =

χ(r, E)
4πk

∞
∫

0

dE′ ν(r, E′)Σ f (r, E′)φ(r, E′)

+

∞
∫

0

dE′
∫

4π

dΩ′

1
4π

�

Σs,0(r, E′→ E)−Σs,1(r, E′→ E)
�

+ Σs,1(r, E′→ E)δ(Ω′ ·Ω− 1)

!

ψ(r,Ω′, E′)

(F.15)

Taking advantage of the Dirac delta function in the transport correction term as well

as the angular independence of the other scattering terms, this relationship can be

simplified, as shown in Eq. F.16.

Ω · ∇ψ(r,Ω, E)+Σt(r, E)ψ(r,Ω, E)−

∞
∫

0

dE′Σs,1(r, E′→ E)ψ(r,Ω, E′) =

χ(r, E)
4πk

∞
∫

0

dE′ ν(r, E′)Σ f (r, E′)φ(r, E′)

+
1

4π

∞
∫

0

dE′
�

Σs,0(r, E′→ E)−Σs,1(r, E′→ E)
�

φ(r, E′)

(F.16)

A transport correction independent of outgoing neutron energy is defined in Eq. F.17.

Similar to how the multi-group total cross-section is angle dependent, but the continuous

energy total cross-section is independent of angle, the transport correction also becomes

angular dependent.

(F.17)∆Σt r(r,Ω, E) =

∫∞
0

dE′Σs,1(r, E′→ E)ψ(r,Ω, E′)

ψ(r,Ω, E)

However, similar to how the angular dependence of the total cross-section is ignored,

the angular dependence of the transport correction is also ignored. In this thesis the

same approximation is invoked. Although this approximation could be significant, the

264

use of a first order correction for the transport correction already introduces some bias.

Taking the transport correction to be angular independent, the transport correction is

defined in terms of scalar fluxes in Eq. F.18.

(F.18)∆Σt r(r, E) =

∫∞
0

dE′Σs,1(r, E′→ E)φ(r, E′)

φ(r, E)

This leads to the transport equation shown in Eq. F.19

Ω · ∇ψ(r,Ω, E)+Σtr(r, E)ψ(r,Ω, E) =

χ(r, E)
4πk

∞
∫

0

dE′ ν(r, E′)Σ f (r, E′)φ(r, E′) +
1

4π

∞
∫

0

dE′ Σ̃s(r, E′→ E)φ(r, E′)
(F.19)

where the modified total cross sectionΣtr(r, E) and modified scattering kernel Σ̃s(r, E′→ E)

are defined in Eq. F.20 and Eq. F.21, respectively.

Σtr(r, E) = Σt(r, E)−∆Σt r(r, E) (F.20)

Σ̃s(r, E′→ E) = Σs,0(r, E′→ E)−∆Σt r(r, E)δ(E′ − E) (F.21)

The modified total cross-section is often referred to as the transport cross-section. Note

that the Dirac delta function enters the expression in Eq. F.21 since the transport correc-

tion term is now independent of the outgoing neutron energy, but it enters the scattering

kernel which is dependent on outgoing neutron energy.

An equivalent multi-group form can also be derived in Eq. F.22

Ω·∇ψg(r,Ω)+Σtr(r)ψg(r,Ω) =
1

4π

χg (r)

k

G
∑

g ′=1

νg ′ (r)Σ
g ′

f (r)φg ′ (r) +
G
∑

g ′=1

Σ̃g ′→g
s (r)φg ′(r)

!

(F.22)

where the multi-group transport cross section Σg
tr(r) and modified scattering kernel

definitions are given in Eq. F.23 and Eq. F.24, respectively. Both are based on a multi-

group transport correction term ∆Σg
t r(r) which is given in Eq. F.25.

Σg
tr(r) = Σ

g
t (r)−∆Σ

g
t r(r) (F.23)

265

Σ̃g ′→g
s (r) = Σg ′→g

s (r)−∆Σg
t r(r)δg ′,g (F.24)

∆Σg
t r(r) =

∫ Eg−1

Eg
dE

∫∞
0

dE′Σs,1(r, E′→ E)φ(r, E′)
∫ Eg−1

Eg
dEφ(r, E)

(F.25)

In Eq. F.24, δg ′,g represents the Kronecker delta function. Its application to the transport

correction term indicates that it is only applied to in-group scattering. The unmodified

scattering kernel Σg ′→g
s (r) represents the scattering kernel assuming isotropic scattering.

This definition is often termed the flux-limited approximation [75].

In practice, the transport correction can easily be incorporated into codes that rely on

isotropic scattering since it is equivalent to just modifying the underlying cross-section

data. Therefore, from the perspective of designing a transport solver, the transport

correction is just treated as a modification to the cross-section inputs.

F.4 Monte Carlo Cross-section Generation with OpenMC

Using direct Monte Carlo simulation of the BEAVRS benchmark with the OpenMC

code, reaction rate tallies are generated for each unique material. These allow for the

computation of multi-group cross-sections with the methodology discussed in Section F.1

using the mgxs package implemented by Boyd [1]. The Monte Carlo simulation used the

JEFF-3.2 cross-section data at a temperature of 566.483K. 400 batches (300 inactive, 100

active) were simulated with 2×108 particles per batch to tally the 70 group cross-section

library.

The flux-limited transport correction described in Section F.3 is applied to the cross-

sections using anisotropic scattering rate tallies. Note that using these tallies to form

the transport correction introduces approximation since the true tallies should involve

angular fluxes rather than scalar fluxes. Since the anisotropic scattering rate tallies could

vary significantly between core and reflector regions, the water is split into two materials

for which cross-sections are independently formed: core water and outer reflector water.

In addition, a third water material is also formed near the support plate / nozzle as

the isotopic composition differs due to boron concentration. Instrument tubes are also

266

scattered through the core, causing the problem to not be quadrant symmetric. Plots of

the unique materials for which cross-sections are generated can be found in Appendix E.

The computed cross-sections were compared with CASMO-4 cross-sections and

significant differences were found in the transport cross-section for water. In preliminary

tests, the CASMO-4 multi-group cross-sections for core water were also able to much

more accurately simulate the radial fission distribution. Therefore, instead of solely

using the OpenMC mgxs cross-sections for core water which had an inaccurate transport

correction, or solely using CASMO-4 cross-sections which are generated for more general

problems, a new cross-section set was formed specifically for core water. Since CASMO-

4 is a lattice physics code, it is designed to have accurate estimates of core water

cross-sections. Therefore, the transport correction from CASMO-4 is used to modify

the cross-sections formed by the OpenMC mgxs package. Specifically, the transport

cross-section Σg
t r for group g is formed by computing

Σg
t r = Σ

g
a +η

�

Σg
t −Σ

g
a

�

(F.26)

where Σg
a and Σg

t are the associated absorption and total cross-sections formed by mgxs,

respectively. The factor η is computed by

η=
Σg,CASMO

t r −Σg,CASMO
a

Σg,CASMO
t −Σg,CASMO

a

(F.27)

where the CASMO superscript denotes CASMO-4 cross-sections. It is important to note

that this is only done for core water. All other materials use the cross-sections formed

directly from the mgxs package in OpenMC. A comparison of η computed by OpenMC

and by CASMO-4 for water is shown in Figure F-1.

In this appendix, the mechanics and theory behind multi-group cross-section genera-

tion were discussed. The focus was placed on Monte Carlo generation of cross-sections

for full core simulation. In this process, it is important to highlight that while continuous

energy cross-sections only depend on material properties, multi-group cross-sections are

region-dependent due to dependence on the flux spectrum within each region. This effect

267

Figure F-1: A comparison of the η factor defined in Eq. F.27 for cross-sections generated
with OpenMC and the CASMO-4 cross-sections for water in 70 energy groups.

can be quite significant. However, at large number of energy groups, the cross-sections

more closely resemble the continuous energy cross-sections and the spatial dependence

is diminished. This thesis concentrates on using a relatively large number of energy

groups so that cross-sections can be treated as largely material dependent rather than

having additional spatial dependence.

268

References

[1] W. R. D. BOYD, Reactor Agnostic Multi-Group Cross Section Generation for Fine-Mesh
Deterministic Neutron Transport Simulations, PhD thesis, Massachusetts Institute
of Technology, 2017.

[2] B. W. KELLEY and E. W. LARSEN, “A consistent 2D/1D approximation to the 3D
neutron transport equation,” Nuclear Engineering and Design, 295, 568 (2015).

[3] Z. LIU, L. LIANG, C. LIANGZHI, and W. HONGCHUN, “A 2D/1D coupling method
for transport calculation,” Proc. Int’l Conf. on Mathematics & Computational Methods
Applied to Nuclear Science & Engineering, Jeju, Korea, 2017.

[4] X. TANG, Q. LI, X. TU, W. WU, and W. K., “Efficient Procedure for Radial MOC
and Axial SN coupled 3D Neutron Transport Calculation,” Proc. Int’l Conf. on
Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, 2017.

[5] A. GRAHAM, B. COLLINS, and T. DOWNAR, “Improvement of the 2D/1D Method
in MPACT Using the Subplane Scheme,” Proc. Int’l Conf. on Mathematics & Compu-
tational Methods Applied to Nuclear Science & Engineering, Jeju, Korea, 2017.

[6] M. JARRETT, B. KOCHUNAS, E. LARSEN, and T. DOWNAR, “Progress in Character-
izing 2D/1D Accuracy in MPACT,” Proc. Int’l Conf. on Mathematics & Computational
Methods Applied to Nuclear Science & Engineering, Jeju, Korea, 2017.

[7] W. WU, Q. LI, and K. WANG, “Verification of the 2D/1D Coupling 3D Transport Code
TIGER with C5G7 Benchmarks,” Proc. Int’l Conf. on Mathematics & Computational
Methods Applied to Nuclear Science & Engineering, Jeju, Korea, 2017.

[8] M. HALSALL, “CACTUS, A Characteristics Solution to the Neutron Transport Equa-
tion in Complicated Geometries,” United Kingdom Atomic Energy Establishment
(1980).

[9] T. NEWTON, G. HOSKING, L. HUTTON, D. POWNEY, B. TURLAND, and T. SHUT-
TLEWORTH, “Developments within WIMS 10,” Proc. International Conference on
the Physics of Reactors, Interlaken, Switzerland, 2008.

[10] B. LINDLEY et al., “Developments within the WIMS Reactor Physics Code for Whole
Core Calculations,” Proc. Int’l Conf. on Mathematics & Computational Methods
Applied to Nuclear Science & Engineering, Jeju, Korea, 2017.

269

[11] G. WU and R. ROY, “A new characteristics algorithm for 3D transport calculations,”
Annals of Nuclear Energy, 30, 1, 1 (2003).

[12] M. DAHAMANI, G. WU, R. ROY, and J. KOCLAS, “Development and Parallelization
of the Three-Dimensional Characteristics Solver MCI of DRAGON,” Proc. PHYSOR,
Seoul, South Korea, 2002.

[13] C. RABITI, M. SMITH, Y. SIK, D. KAUSHIK, and G. PALMIOTTI, “Parallel method
of characteristics on unstructured meshes for the UNIC code,” Proc. International
Conference on the Physics of Reactors, Interlaken, Switzerland, 2008.

[14] W. GROPP, E. LUSK, N. DOSS, and A. SKJELLUM, “A High-Performance, Portable
Implementation of the MPI Message Passing Interface Standard,” Parallel computing,
22, 6, 789 (1996).

[15] M. SMITH, A. MARIN-LAFLECHE, W. YANG, D. KAUSHIK, and A. SIEGEL, “Method
of Characteristics Development Targeting the High Performance Blue Gene/P
Computer at Argonne National Laboratory,”.

[16] A. MARIN-LAFLECHE, M. SMITH, and C. LEE, “PROTEUS-MOC: A 3D Deter-
ministic Solver Incorporating 2D Method of Characteristics,” Proc. International
Conference on Mathematics and Computational Methods Applied to Nuclear Science
and Engineering, Sun Valley, ID, USA, 2013.

[17] Z. LIU, H. WU, L. CAO, Q. CHEN, and Y. LI, “A new three-dimensional method of
characteristics for the neutron transport calculation,” Annals of Nuclear Energy,
38, 447 (2011).

[18] S. SHANER, G. GUNOW, B. FORGET, and K. SMITH, “Theoretical Analysis of Track
Generation in 3D Method of Characteristics,” Proc. International Conference on
Mathematics and Computational Methods Applied to Nuclear Science and Engineering,
Nashville, TN, USA, 2015.

[19] B. KOCHUNAS, T. DOWNAR, and Z. LIU, “Parallel 3-D Method of Characteristics
in MPACT,” Proc. International Conference on Mathematics and Computational
Methods Applied to Nuclear Science and Engineering, Sun Valley, ID, USA, 2013.

[20] B. KOCHUNAS, A Hybrid Parallel Algorithm for the 3-D Method of Characteristics
Solution of the Boltzmann Transport Equation on High Performance Computing
Clusters, PhD thesis, University of Michigan, 2013.

[21] B. KOCHUNAS, B. COLLINS, S. STIMPSON, R. SALKO, D. JABAAY, A. GRAHAM,
Y. LIU, K. S. KIM, W. WIESELQUIST, A. GODFREY, K. CLARNO, S. PALMTAG,
T. DOWNAR, and J. GEHIN, “VERA Core Simulator Methodology for Pressurized
Water Reactor Cycle Depletion,” Nuclear Science and Engineering, 185, 1, 217
(2017).

270

[22] B. KOCHUNAS, T. DOWNAR, and Z. LIU, “Application of the SDD-CMFD Accel-
eration Method to Parallel 3-D MOC Transport,” Proc. PHYSOR, Kyoto, Japan,
2014.

[23] T. TAKEDA and H. IKEDA, “3-D Neutron Transport Benchmarks,” Organisation for
Economic Co-operation and Development’s Nuclear Energy Agency (1991).

[24] M. SMITH, E. LEWIS, and B. NA, Benchmark on Deterministic Transport Calcu-
lations Without Spatial Homogenisation: MOX Fuel Assembly 3-D Extension Case,
Organisation of Economic Co-operation and Development - Nuclear Energy Agency
(2005).

[25] D. SCIANNANDRONE, S. SANTANDREA, and R. SANCHEZ, “Optimized tracking
strategies for step MOC calculations in extruded 3D axial geometries,” Annals of
Nuclear Energy, 87, 49 (2016).

[26] P. ARCHIER, J. PALAU, S. SANTANDREA, and D. SCIANNANDRONE, “Validation
of the Newly Implemented 3D TDT-MOC Solver of APOLLO3 Code on a Whole 3D
SFR Heterogeneous Assembly,” Proc. PHYSOR, Sun Valley, ID, USA, 2016.

[27] J. PALAU et al., “Recent Progress in the V&V of the New CEA APOLLO3 Code:
Advanced SFR/LWR Assembly Calculations,” Proc. PHYSOR, Sun Valley, ID, USA,
2016.

[28] L. GRAZIANO, S. SANTANDREA, D. SCIANNANDRONE, and I. ZMIJAREVIC, “Poly-
nomial Characteristics Method for Neutron Transport in 3D extruded geometries,”
Proc. Int’l Conf. on Mathematics & Computational Methods Applied to Nuclear Science
& Engineering, Jeju, Korea, 2017.

[29] S. SANTANDREA, L. GRAZIANO, and D. SCIANNANDRONE, “Optimized tracking
strategies for step MOC calculations in extruded 3D axial geometries,” Annals of
Nuclear Energy, 113, 194 (2018).

[30] A. GIHO, K. SAKAI, Y. IMAMURA, H. SAKURAGI, and K. MIYAWAKI, “Development
of Axially Simplified Method of Characteristics in Three-Dimensional Geometry,”
Journal of Nuclear Science and Technology, 45, 10, 985 (2008).

[31] Y. KATO, T. ENDO, and A. YAMAMOTO, “Development of Legendre Expansion
of Angular Flux Method for 3D MOC Calculation,” Proc. PHYSOR, Kyoto, Japan,
2014.

[32] A. YAMAMOTO, A. GIHO, Y. KATO, and T. ENDO, “GENESIS: A Three-Dimensional
Heterogeneous Transport Solver Based on the Legendre Polynomial Expansion of
Angular Flux Method,” Nuclear Science and Engineering, 186, 1 (2017).

[33] A. F. HENRY, Nuclear Reactor Analysis, The MIT Press (1975).

[34] J. J. DUDERSTADT and L. J. HAMILTON, Nuclear Reactor Analysis, John Wiley &
Sons (1976).

271

[35] J. J. DUDERSTADT and W. R. MARTIN, Transport Theory, John Wiley & Sons
(1979).

[36] G. BELL, G. HANSEN, and H. SANDMEIER, “Multitable Treatments of Anisotropic
Scattering in S N Multigroup Transport Calculations,” Nuclear Science and Engi-
neering, 28, 3, 376 (1967).

[37] A. HÉBERT, Applied Reactor Physics, Presses inter Polytechnique (2009).

[38] B. KOUCHUNAS, T. DOWNAR, S. MOHAMED, and J. THOMAS, “Improved Par-
allelization of the Modular Ray Tracing in the Method of Characteristics Code
DeCART,” Proc. Joint Int’l Topical Meeting on Math. & Comp. and Supercomp. in
Nucl. Appl., Monterey, CA, 2007.

[39] D. GASTON, B. FORGET, K. SMITH, and R. MARTINEAU, “Verification of MOCking-
bird, an Unstructured-Mesh, Method of Characteristics Implementation Using the
MOOSE Multiphysics Framework,” Proc. Int’l Conf. on Mathematics & Computational
Methods Applied to Nuclear Science & Engineering, Jeju, Korea, 2017.

[40] J. RHODES, K. SMITH, and D. LEE, “CASMO-5 Development and Applications,”
Proc. ANS Topical Meeting on Reactor Physics (PHYSOR), p. 10–14, 2006.

[41] R. FERRER, J. RHODES, and K. SMITH, “Linear Source Approximation in CASMO5,”
Proc. PHYSOR, Knoxville, TN, USA, 2012.

[42] R. FERRER and J. RHODES, “A Linear Source Approximation Scheme for the
Method of Characteristics,” volume 77, p. 119–136, 1981.

[43] W. Boyd, S. Shaner, L. Li, B. Forget, and K. Smith, “The OpenMOC Method of
Characteristics Neutral Particle Transport Code,” Annals of Nuclear Energy (2014).

[44] D. M. BEAZLEY, “Automated Scientific Software Scripting with SWIG,” Future
Generation Computer Systems, 19, 5, 599 (2003).

[45] O. A. R. BOARD, “OpenMP Application Program Interface, Version 3.1,” http:
//www.openmp.org, 2011.

[46] W. BOYD, S. SHANER, L. LI, B. FORGET, and K. SMITH, “The OpenMOC Method
of Characteristics Neutral Particle Transport Code,” Annals of Nuclear Energy, 68,
43 (2014).

[47] N. J. HIGHAM, “The Accuracy of Floating Point Summation,” SIAM Journal on
Scientific Computing,, 14, 4, 783 (1993).

[48] M. HEARLIHY and N. SHAVIT, The Art of Multiprocessor Programming, Morgan
Kaufmann Publishers (2008).

[49] G. GUNOW, J. TRAMM, B. FORGET, K. SMITH, and T. HE, “SimpleMOC – A
performance Abstraction for 3D MOC,” International Conference on Mathematics
and Computational Methods Applied to Nuclear Science and Engineering (2015).

272

http://www.openmp.org
http://www.openmp.org

[50] C. JOSEY, Personal Communication (2017).

[51] D. PATTERSON, T. ANDERSON, N. CARDWELL, R. FROMM, K. KEETON,
C. KOZYRAKIS, R. THOMAS, and K. YELICK, “A Case for Intelligent RAM,” IEEE
Micro, 17, 2, 34 (1997).

[52] A. YAMAMOTO, M. TABUCHI, N. SUGIMURA, T. USHIO, and M. MORI, “Derivation
of Optimum Polar Angle Quadrature Set for the Method of Characteristics Based
on Approximation Error for the Bickley Function,” Journal of Nuclear Science and
Technology, 44, 2, 129 (2007).

[53] W. L. FILIPPONE, S. WOOLF, and R. J. LAVIGNE, “Particle Transport Calculations
with the Method of Streaming Rays,” Nuclear Science and Engineering, 77, 119
(1981).

[54] J. ARVO and D. KIRK, An Introduction to Ray Tracing, Academic Press (1989).

[55] S. RUBIN and T. WHITTED, “A 3D representation for fast rendering of complex
scenes,” Proc. SIGGRAPH, p. 110–116, 1980.

[56] G. GUNOW, S. SHANER, B. FORGET, and K. SMITH, “Reducing 3D MOC Storage
Requirements with Axial On-the-fly Ray Tracing,” Proc. PHYSOR 2016, Sun Valley,
ID, USA, May, 2016.

[57] G. GUNOW, S. SHANER, W. BOYD, B. FORGET, and K. SMITH, “Accuracy and
Performance of 3D MOC for Full-Core PWR Problems,” Proc. Int’l Conf. on Math-
ematics & Computational Methods Applied to Nuclear Science & Engineering, Jeju,
Korea, 2017.

[58] L. LAMPORT, “How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs,” IEEE Transactions on Computers, C-29, 9, 690 (1979).

[59] M. TABUCHI, A. YAMAMOTO, T. ENDO, and N. SUGIMURA, “Convergence analysis
of MOC inner iterations with large negative self-scattering cross-section,” Journal
of Nuclear Science and Technology, 50, 5, 493 (2013).

[60] M. TABUCHI, M. TATSUMI, A. YAMAMOTO, and T. ENDO, “Improvement of a
Convergence Technique for MOC Calculation with Large Negative Self-scattering
Cross-section,” Proc. PHYSOR, Kyoto, Japan, September, 2014.

[61] B. BRADIE, A Friendly Introduction to Numerical Analysis, Pearson Prentice Hall,
Upper Saddle River, New Jersey (2006).

[62] A. GRAHAM, Nonnegative Matrices and Applicable Topics in Linear Algebra, John
Wiley & Sons (1987).

[63] M. EDENIUS, K. EKBERG, B. H. FORSSÉN, and D. KNOTT, “CASMO-4, A Fuel As-
sembly Burnup Program, User’s Manual,” Studsvik0SOA-9501, Studsvik of America,
Inc. (1995).

273

[64] S. SHANER, G. GUNOW, B. FORGET, and K. SMITH, “Verification of the 3D Method
of characteristics solver in OpenMOC,” Proc. PHYSOR 2016, Sun Valley, ID, USA,
May, 2016.

[65] W. BOYD, N. GIBSON, B. FORGET, and K. SMITH, “An Analysis of Condensation
Errors in Multi-Group Cross Section Generation for Fine-Mesh Neutron Transport
Calculations,” submitted to Annals of Nuclear Energy.

[66] G. GIUDICELLI, K. SMITH, and B. FORGET, “Generalized equivalence methods for
3D multi-group neutron transport,” Annals of Nuclear Energy, 112, 9 (2018).

[67] Z. LIU, K. SMITH, B. FORGET, and J. ORTENSI, “Cumulative migration method for
computing rigorous diffusion coefficients and transport cross sections from Monte
Carlo,” Annals of Nuclear Energy, 112, 507 (2018).

[68] J. TRAMM, K. SMITH, B. FORGET, and A. SIEGEL, “ARRC: A random ray neutron
transport code for nuclear reactor simulation,” Annals of Nuclear Energy, 112, 693
(2018).

[69] K. S. SMITH, “Nodal Method Storage Reduction by Non-linear Iteration,” vol-
ume 44, 1983.

[70] C. HANSEN, Numerical Methods of Reactor Analysis, Academic Press (1964).

[71] K. S. SMITH and J. D. RHODES, “Full-Core, 2-D, LWR Core Calculations with
CASMO-4E,” Proc. PHYSOR, Seoul, South Korea, 2002.

[72] N. HORELIK, B. HERMAN, B. FORGET, and K. SMITH, “Benchmark for Evaluation
and Validation of Reactor Simulations (BEAVRS), v1.0.1,” Proc. Int. Conf. Math.
and Comp. Methods Applied to Nuc. Sci. & Eng., Sun Valley, Idaho, USA, 2013.

[73] R. MACFARLANE, “TRANSX 2: A Code for interfacing MATXS Cross-Section
Libraries to Nuclear Transport Codes,” Los Alamos National Laboratory (1993).

[74] R. MACFARLANE, “PSR-480/NJOY99.0: Code System for Producing Pointwise and
Multigroup Neutron and Photon Cross Sections from ENDF/B Data,” Los Alamos
National Laboratory (2000).

[75] A. YAMAMOTO, Y. KITAMURA, and Y. YAMANE, “Simplified Treatments of
Anisotropic Scattering in LWR Core Calculations,” Journal of Nuclear Science
and Technology, 45, 3, 217 (2008).

274

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Definitions and Acronyms
	Introduction
	Motivation
	Background
	Literature Review of 3D MOC
	CACTUS
	DRAGON
	MOCFE
	MMOC
	MPACT
	APOLLO3
	The LEAF Method

	Objective
	Thesis Outline

	The Method of Characteristics
	The Multi-Group Transport Equation
	Derivation of Continuous Angle MOC Equations
	Track Discretization of the MOC Equations
	Track Simplifications and Calculation of Volumes
	Flat Source Approximation
	Track-based Linear Source Approximation
	Derivation of the Linear Source Approximation
	Calculation of Average Scalar and Angular Fluxes
	Linear Source Defined By Region
	Relating Linear Source Components To Moments
	Calculation of Scalar Flux Moments

	MOC Algorithm with Linear Sources
	Identifying Invariant Constants
	Transport Sweeps

	Software Design and Development
	OpenMOC Overview
	Object Oriented Design
	Geometry Class Updates
	TrackGenerator Class Updates
	Solver Class Updates

	Modular Structure
	MOCKernel Classes
	TraverseSegments Classes

	Computing Systems
	Performance Considerations
	Addressing Performance in Object-Oriented Modular Software Design
	Data Organization
	Scratch Pads for Temporary Storage
	Minimizing Parallel Contention
	Computing Exponentials
	Floating Point Precision
	Organizing Looping Structures

	User Input
	Version Control and Licensing

	Track Laydown
	2D Track Generation
	Angular Quadrature
	Azimuthal Quadrature
	Polar Quadrature

	3D Track Generation
	Requirements for Cyclic Track Laydown in 3D
	The Modular Ray Tracing Method

	OpenMOC Implementation
	Conclusion

	Ray Tracing
	Introduction to Ray Tracing
	Forming an Axially Extruded Geometry
	On-the-fly Axial Ray Tracing
	Ray Tracing Individual 3D Tracks
	Ray Tracing 3D Track z-Stacks

	Performance Considerations
	Cache Considerations for Segment Traversal
	Temporary Storage of Segments

	Results
	Simulation Parameters
	Single Thread Performance Comparison
	Parallel Scaling
	Performance on Cetus

	Conclusion

	Domain Decomposition
	Geometrical Decomposition
	MPI Communication
	MPI Fundamentals
	The Buffered Synchronous Algorithm

	MOC Inter-domain Communication
	Identification of Communicated Quantities
	Communication Algorithm

	CMFD Inter-domain Communication
	The CMFD Eigenvalue Solver
	Identification of Communicated Quantities
	Communication of Boundary Currents
	Handling Edge and Vertex Currents
	Communicating Edge and Vertex Currents

	Communication of Boundary Scalar Fluxes

	Results
	Strong Scaling Studies
	Weak Scaling Studies
	2D Lattice of the Single Assembly Geometry
	3D Lattice of the SDSA Geometry

	Conclusion

	Convergence of MOC Source Iteration
	Introduction
	Equivalence with Collision Probability Methods
	Iteration Schemes
	Power Method
	Source Iteration

	Stabilization of Source Iteration
	Convergence Criteria
	Convergence of Source Iteration
	Convergence Results with CMFD Acceleration
	Single Assembly Convergence with Water Reflectors
	Single Assembly Convergence with Stabilization
	Single Assembly without Axial Water Reflectors
	Full Core Behavior
	2D Extruded Model
	Explicit 3D Model
	Explicit 3D Model with Linear Source

	Conclusion

	MOC Parameter Sensitivity Studies
	Radial Sensitivity
	Core Radial Mesh Refinement
	Ring Divisions
	Sector Divisions

	Reflector Radial Mesh Refinement
	Radial Ray Refinement
	Radial Ray Spacing Sensitivity
	Azimuthal Angle Sensitivity

	Axial Sensitivity
	Axial Source Height Sensitivity
	Axial Ray Spacing Sensitivity
	Polar Angle Sensitivity

	Axial Sensitivity on a Rodded Assembly
	Axial Source Height Sensitivity
	Axial Ray Spacing Sensitivity
	Polar Angle Sensitivity

	Comparison with Flat Source MOC
	CMFD Acceleration
	Axial Mesh Sensitivity
	Energy Group Sensitivity

	Domain Decomposition
	Conclusion

	Full Core Results
	Comparison with OpenMC
	Computational Performance
	Comparison with Flat Source MOC
	Parameter Refinement
	Conclusions

	Conclusions
	Summary of Work
	3D MOC Implementation
	Diagonal Stabilization
	Simulation Results

	Future Work
	Accuracy Improvements of Full Core Simulations
	Further Full Core Analysis
	OpenMOC Improvements
	Spatial Source and Cross-section Approximations
	Treatment of Angular Dependence of Total Cross-sections
	Convergence of Source Iteration with Linear Sources and CMFD Acceleration
	Reducing the Computational Requirements of Full Core Simulations

	Appendices
	Matrix Representation of MOC
	CMFD Acceleration
	Multigrid Methods
	Derivation of the CMFD Equations
	Solving the CMFD Equations for MOC Acceleration
	Convergence Criteria
	Prolongation

	Energy Group Structures
	On-the-fly Ray Tracing by z-Stack
	The BEAVRS Benchmark
	Introduction to the BEAVRS Benchmark
	Description of BEAVRS Models
	Full Core 3D Model
	Full Core 2D Model
	Single Assembly Model
	Single Assembly Model without Reflectors
	SDSA Model
	Short Single Assembly Model
	Rodded Single Assembly Model

	Cross-section Generation
	Cross-section Generation
	Angular Dependence of Total Cross-Sections
	The Transport Correction
	Monte Carlo Cross-section Generation with OpenMC

	References

