Developing Modern Graphite Exponential Pile Experiments to Augment Reactor Physics Education
by
Micah D. Gale
SUBMITTED TO THE DEPARTMENT OF NUCLEAR SCIENCE AND ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
BACHELOR OF SCIENCE IN NUCLEAR SCIENCE AND ENGINEERING
AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
JUNE 2018
© 2018 Massachusetts Institute of Technology. All rights reserved.

Signature of Author: \qquad
Micah D. Gale
Department of Nuclear Science and Engineering
May 18, 2018

Certified by: \qquad
Kord Smith
Korea Electric Power Company (KEPCO) Professor of the Practice of Nuclear
Engineering Thesis Supervisor

Accepted by: \qquad
Michael Short
Assistant Professor of Nuclear Science and Engineering Chairman, NSE Committee for Undergraduate Students

Developing Modern Graphite Exponential Pile Experiments to Augment Reactor Physics Education

by

Micah D. Gale
Submitted to the Department of Nuclear Science
and Engineering on May 18, 2018 in Partial
Fulfillment of the Requirements for the Degree of
Bachelor of Science in Nuclear Science and
Engineering

Abstract

Reactor Physics is not always an intuitive subject for students to understand. When nuclear engineering was beginning as a field it was common for students to complete measurements on sub-critical reactors, which could not sustain a fission chain reaction, in order to develop student intuition. The Massachusetts Institute of Technology has one such reactor, a graphite exponential pile, which went unused for decades. In this thesis the MIT Graphite Exponential Pile was returned to experimental operation, and a prototypic student experiment was completed. The material buckling was found by indium foil activations completed with a plutonium-beryllium source in the pile. From the experimental results it was calculated the pile would have to be a cube with sides that are 5.42 m long to become a critical reactor. This proof of concept experiment makes it possible for mens et manus based education at MIT for reactor physics.

Thesis Supervisor: Kord Smith
Title: Korea Electric Power Company (KEPCO) Professor of the Practice of Nuclear Engineering

acknowledgement

I would like to thank first and foremost Professor Kord Smith for making this project a reality, and his support as a professor and a mentor. This wouldn't be complete though without thanking Professor Smith's partner in crime, Professor Benoit Forget, for his help with working on the pile. This project was made possible by the effort of the staff of the MIT Nuclear Reactor Laboratory, and MIT Environment Health, and Safety, many of whom went out of their way to offer assistance. From EHS I would like to thank Bill McCarthy and Mitch Galanek. From MIT NRL I would like to specifically thank Gordon Kohse, Eddie lau, Susan Tucker, Kaichao Sun, and Taylor Tracy. Thank you to Chris Sheratt of MIT Libraries for the research help into 1950's nuclear graphite and uranium, and the many interesting and obscure sources. Finally I would like to thank my Family and Girlfriend for their support and writing critiques.

Contents

1 Introduction 10
2 Pile Description 12
2.1 History 12
2.1.1 Fuel Slug Origin 13
2.1.2 Graphite Origin 13
2.2 Pile Geometry 14
2.2.1 Measurement Capabilities 16
2.2.2 Tolerances 16
2.3 Fuel Properties 17
2.4 Graphite Properties 18
3 Background 20
3.1 Foil Activation for Flux Measurement 20
3.1.1 Calculating Activity 20
3.1.2 Activity Error Propagation 22
3.1.3 Calculating Flux from Activity 22
3.1.4 Flux Error Propagation 23
3.2 Solution to the One-Energy Diffusion Equation in Pile 24
3.2.1 Solution in X and Y 26
3.2.2 Solution in Z 26
3.2.3 Combined Solution 27
3.3 Finding Critical Reactor Size 28
4 Methodologies 30
4.1 Fuel Loading 30
4.2 Stringer Configuration 30
4.3 Foil Positions 32
4.4 Source 32
4.5 Foil Counting 33
5 Results 34
6 Conclusions 37
References 39
Appendices 41
A Experimental Results 42
A. 1 Indium Foil Properties 42
A. 2 Foil Positions in Pile 42
A. 3 Foil Counting Data 45
B Graphite Pile Engineering Drawings 48
C Graphite Purity Measurements 67
D Documents Pertaining to the Procurement of Graphite, and Neutron Sources 69
D. 1 Budget Modification to Allow for Purchase of 100 tons of Graphite for the MIT Reactor 70
D. 2 Letter authorizing the sale of 100 tons of graphite to MIT. 72
D. 3 Memo RR-26, Trip to Brookhaven to Inspect Graphite. 73
D. 4 Quotation NE-2195-Revised 74
D. 5 Estimate of Cost of Graphite Machining 76
D. 6 Letter to George A. Anderson on updated plans for graphite machinig 81
D. 7 Quotation NE6-1286 for Graphite Foil Stringer 83
D. 8 Letter to Mr. H. N. Townsend. 85
D. 9 MIT Graphite Machining, Trip to National Carbon Co., Cleveland, Ohio, July 10,1956 88
D. 10 Work Order 6711-5: Shipping Data: Plutonium Neutron Source 90
E Data Analysis Scripts 93
E. 1 Data Parser And Plotting Script 93
E. 2 Data Structures for Activity Calculations 98
F Fuel Slug Measurements 102
F. 1 Summary of Measurements 102
F. 2 Complete Slug data 102

List of Figures

2.1 Pile North Face 15
2.2 Pile East Face 16
2.3 Uranium fuel slug design 19
3.1 Diffusion Model Geometry 25
4.1 Fuel Loading Pattern 31
5.1 Radial Flux Distribution 35
5.2 Axial Flux Distribution 36
5.3 Axial Flux with Fundamental Mode 36

List of Tables

2.1 Important dimensions of the Pile 14
2.2 Summary of slug measurements made. 17
2.3 Uranium mass in single slug 18
2.4 Graphite Density 19
4.1 Pile Stringer Loading 32
5.1 Pile Buckling 35
A. 1 Indium Foil Properties 43
A. 2 Indium Foil Positions 44
A. 3 Indium Foil Counts 45
A. 3 Indium Foil Counts 46
A. 4 Interpreted Activity Data 47
F. 1 Summary of slug measurements made. 102

Chapter 1

Introduction

Reactor Physics is a difficult subject with many non-intuitive non-linearities. Currently there are no hands-on or experimental components in the reactor physics curriculum at MIT. This has made it difficult for students to develop an intuition for reactor physics. In the early days of nuclear engineering in the '50's and '60's it was commonplace to use hands on experiments to augment reactor physics lectures. At its peak there were hundreds of these university owned reactor physics experiments.

Graphite sub-critical reactors, or graphite exponential piles, have been used for decades to model and understand reactor physics. These sub-critical reactors are nuclear reactors which cannot sustain a fission chain reaction, and cannot produce power. This is because more of the neutrons from the fission of uranium-235 are lost than those neutrons that cause new fissions. The neutrons are lost by either being absorbed by materials other than the uranium- 235 fuel or by leaking out of the reactor and not returning. When an external neutron source is placed in the reactor, the source of neutrons and loss of neutrons come into equilibrium such that there is a steady-state condition for the neutron population in the reactor. Usual neutron sources include californium-252, which produces neutrons through spontaneous fission, and plutonium-beryllium (PuBe), where the alphas emitted from plutonium decay induce neutron emission from beryllium-9.

A reactor is usually a heterogeneous assembly of two main components: a fuel, and a moderator. The fuel is composed of a material that is very likely to fission, and release energy and neutrons when it is hit by a neutron of any energy. These are considered fissile materials, and uranium- 235 is the most commonly used. However the neutrons produced from fission are at such a high energy they are very likely to escape the reactor before hitting fuel. So a moderator is added to the reactor. This moderator absorbs most of the neutron energy, slowing it down, which makes the probability of the neutron inducing a fission much higher. The moderator must be more likely to cause the neutron to scatter than to be absorbed.

Since these sub-critical reactors require an external neutron source they are extremely safe. They are very low power, and can not undergo power excursions. The only risk during operation is the neutron and gamma radiation, which is at extremely manageable levels. This makes the reactors ideal for teaching and student experiments. Students can predict the neutron flux distribution in a sub-critical reactor and then experimentally verify or disprove their predictions.

MIT has one such sub-critical reactor, the MIT Graphite Exponential Pile (MGEP), which has been at MIT since 1957. The pile is made of a graphite moderator and natural uranium fuel. The natural uranium is only about 0.7% uranium- 235 .

The MGEP is the largest university-owned graphite pile in the United States. It is made of two parts: a graphite-uranium lattice, and a graphite pedestal. The lattice is comprised of graphite blocks with a 12×12 square array of fuel channels drilled completely through the lattice horizontally. The separation between the channels is $7.25{ }^{\prime \prime}$. Ten fuel slugs can be loaded in each channel. This allows for a maximum loading in the pile of 1,440 slugs. However MIT only has access to 1,288 slugs. The graphite-uranium lattice is located on top of a graphite pedestal, which is about 2 feet tall, and made of graphite blocks. The neutron source is placed in source channels in this pedestal. The graphite then removes energy from the neutrons from the source through collisions as the neutrons travel through the pile. This continues until the neutrons are at thermal equilibrium with the graphite. This process is called thermalization.

In this thesis the MGEP was used to improve the reactor physics curricula for the undergraduate reactor physics class, 22.05. The purpose of this thesis was to bring the MGEP back into operation. This included cleaning and inventorying the pile, and assisting in applying for an amended license from the Nuclear Regulatory Commission. An experiment was designed to test the prediction of the neutron flux profile from student models.

Chapter 2

Pile Description

The MIT Graphite Exponential Pile (MGEP) is a sub-critical reactor constructed of graphite and natural uranium. The Pile is comprised of a lattice and a pedestal. The lattice is a cube of graphite with natural uranium lying in horizontal channels in the lattice. The lattice rests on top of the pedestal. The pedestal is comprised of graphite designed to thermalize neutrons from the external neutron source. The Pile is usually shrouded in aluminum sheeting. It was originally designed to hold Cadmium sheets, which have since been re-purposed. Now the aluminum sheeting is primarily used as a part of the security system for the pile's uranium fuel.

2.1 History

The story of the MIT Graphite Exponential Pile (MGEP) began in 1954 with then MIT President, Dr. Killian, deciding to build a nuclear reactor on campus. While investigating research reactors, Manson Benedict met Theos J. Thompson at Los Alamos. Manson Benedict was the institute's first Professor of Nuclear Engineering, and later on became the first Department Head of the Nuclear Engineering Department. In the spring of 1955, Professor Thompson joined the MIT Nuclear Engineering faculty with the goal of creating the MIT Reactor (MITR-I). Construction of MITR-I began in June of 1956 at the site of a cheese storage warehouse previously used by the Kraft-Phenix Cheese Company [1].

While searching for a source for nuclear grade graphite, the team was fortunate enough to discover that Brookhaven National Laboratory (BNL) had 100 short tons of surplus nuclear graphite [2]. MIT was able to purchase this graphite for about 7% of the market price. This much graphite was in excess of the needs of the MITR-I so it was proposed to make a reactor that was similar to Argonne's CP-5 reactor [3]. Thus the idea of making the Graphite Exponential Pile was born.

The design was quickly scaled back from a critical reactor such as CP-5 to a subcritical reactor with a 13×13 lattice of fuel channels with a $7.25^{\prime \prime}$ pitch between channels. This called for 169 fuel channels[4]. It is unclear when the lattice was scaled down to be the 12×12 channel lattice it is today. This was likely caused by an inability to procure enough fuel, as they were never able to procure enough fuel for a full loading of the 12×12 lattice.

The pile was constructed in 1957 in the middle laboratory at what is now the MIT Nuclear Reactor Laboratory (NRL) as part of Richard W. Knapp's undergraduate thesis, under the supervision of Professor Thompson. The construction took a little over a month spanning from March 28 through the end of April. This was made possible by the aid of the students from Professor Thompson's Nuclear Engineering Laboratory class (N41)[5][6]. That following summer another of Professor Thompson's students, William F. Reilly, constructed a standard pile, which contained no uranium, for his master's thesis next to the MGEP. This standard pile was meant to measure the nuclear properties of the graphite and was constructed of the excess graphite not needed for the MITR-I or the MGEP [7].

The Graphite Exponential Pile continued to be used as an experimental facility. Pearson and Sims completed their master's thesis on the Pile in 1959 under the supervision of Professor Thompson[8]. It does not appear that any more theses were conducted on the pile since Pearson and Sims, but it continued to be used for various experiments. By the time Professor Kord Smith entered the MIT department of Nuclear Engineering as a graduate student in 1976 the pile was not common knowledge, as he graduated without ever hearing of its existence. However, student experiments were still being run intermittently on the pile until at least 1991 [9].

In 2016 the Department of Nuclear Science and Engineering "rediscovered" the pile when a curious Professor Michael Short asked about the large aluminum shroud box in the middle lab of the NRL[10]. This led to Professor Smith proposing this thesis topic in order to incorporate a hands-on experiment into the Department's Reactor Physics curriculum.

2.1.1 Fuel Slug Origin

Little is known about the exact origin of these slugs, and therefore their exact composition. In Pearson and Sims there is a one-line mention that the slugs are "standard AEC [Atomic Energy Commission] issue for educational use..." [8]. This lack of details may have been due to cold war secrecy. It is possible that these slugs were initially intended for production of weapons-grade plutonium at either the Hanford or Savannah River sites. The slugs are $1.084^{\prime \prime}$ in diameter and $8.41^{\prime \prime}$ in length, and made of metallic natural uranium clad in aluminum. They are described in more detail later.

This hypothesis is supported by declassified documents on uranium slug production at the Savannah River Plant. In this process $1^{\prime \prime}$ diameter by $8^{\prime \prime}$ long natural uranium metallic slugs are used. These slugs are dipped in a series of baths including bronze, tin, and aluminum-silicon. The slugs are then bonded to the aluminum cans and caps are welded on [11]. This method does agree with the physical measurements which have been taken of the slugs.

2.1.2 Graphite Origin

The plan to create a graphite exponential pile began in April 1955, when it was discovered that Brookhaven National Laboratory (BNL) had 100 short tons of surplus nuclear graphite available[3]. This graphite contained multiple batches all of varying purities.

The lowest purity graphite in these batches was AGHT graphite[4]. AGHT and AGOT are both forms of nuclear graphite. AGOT has a lower boron content than AGHT and is the higher quality reactor graphite of the two[12]. AGOT contains about 0.4 ppm boron and has a thermal absorption cross-section of 4.07 millibarns [13]. The graphite was then sent from Brookhaven to the National Carbon Company in Columbus, Ohio to be machined to the appropriate size for the pile and the MITR[14]. During machining it was apparent that there would not be enough blocks which were long enough to span the length of the pile with two pieces, so it was decided that blocks which were not foil or fuel stringers would be any length that was manageable[15].

2.2 Pile Geometry

Very detailed documentation of the design of the Graphite Exponential Pile and its components are given in appendix B. An overall photograph of the pile is shown in Figure 2.1. As can be seen in the figure, the pile is made of graphite blocks with cross-sections that are less than four inches to a side. Each layer alternates orientation so the long axis of the blocks are perpendicular to the adjacent layers' long axes. No single block is the same length as the entire pile. The longest blocks go half the length of a side with most blocks being far less than that length. During manufacturing there was not enough stock to make all of the blocks the same length so each layer is pieced together with various lengths of blocks [15]. The pile has a set of covers which cover all of the pile which is above ground. The covers were originally all made of aluminum with cadmium sheets $0.02^{\prime \prime}$ thick lining the inside of the cover. This was intended to isolate the pile from the room and remove thermal neutrons before they were reflected by the surrounding walls back into the pile. Cadmium is useful for this purpose since it has a very high thermal absorption cross-section. However, the cadmium has mostly been scavenged for other shielding uses and now there is only cadmium on the top of pile and on the western face.

To generate the drawings in appendix B many sources of information were combined. An initial model was created from Knapp[6], Pearson \& Sims[8], and educated guessing. When the graphite documents in appendix D were discovered the pile was measured and matched to the nominal block sizes which were ordered. These drawings are not true as-built documents. Measurements were used to find the number and nominal size of the blocks. The documentation is based on nominal values. The important dimensions are shown in table 2.1.

Table 2.1: Important dimensions of the Pile

Dimension	Inch	cm
East-west length (X)	90.75 ± 0.28	230.5 ± 0.7
North-south length (Y)	91.00 ± 0.33	231.1 ± 0.84
Height (lattice) (Z)	90.75 ± 0.24	230.5 ± 0.61
Height (pedestal) (Z)	26.25 ± 0.07	66.68 ± 0.18
Height (total) (Z)	117.0 ± 0.31	297.2 ± 0.79
Lattice pitch	7.25 ± 0.03	18.4 ± 0.08

Figure 2.1: The north face of the Graphite Exponential Pile with the covers removed. Half of the floor grates have been removed to show the source channels as well. The fuel channels will normally be filled the uranium fuel slugs. The foil stringers in the center of the pile can be removed and loaded with foils for foil activation analysis. In the pedestal of the pile are many source channels where the neutron source can be inserted.

Figure 2.2: The Graphite Exponential Pile East face. Only one cover is removed from this face. Here both types of neutron measuring blocks can be seen. These blocks are removable and can be moved to create a desired configuration. The extra fuel channels have been re-purposed for use with neutron detector probes.

2.2.1 Measurement Capabilities

The Graphite Exponential Pile has many possible locations for instrumentation, and is highly configurable. The main approaches to measuring the neutron flux is by either foil activation or directly with a neutron detector, such as a $B F_{3}$ or a helium-3 probe. As can be seen in Figures 2.1 and 2.2 there are detection blocks which run east to west, north to south, and run through the center of the pile. For foil activations a foil stringer is used which has multiple pockets for positioning foils inside of the pile. For neutron detector probes an extra fuel channel is used. These blocks can be swapped out and moved around for the desired measurement. In appendix B the measurement blocks are shown as they were set up by Pearson and Sims. Note that this was not the configuration which was used for collecting data.

2.2.2 Tolerances

All tolerances are included with appendix B. Here are all of the tolerances to which the pile was machined to, including the source of this information.

- All graphite Blocks
- Lengths of cross-sectional sides: ± 0.010 " [14]
- Long edges feathering: $<1 / 32^{" 1}$ deep [14]
- Maximum chip size: $1 / 4^{\prime \prime}$ deep x $1 / 2^{\text {" }}$ long [16]
- Flatness: within 0.010 " of flat [16]
- Perpendicularity: Vary from perpendicular by <0.010 " in 4 " $[16]$
- Fuel Stringer
- Hole Position: $\pm \frac{1 "}{8}$ [14]
- Hole Inner Diameter: $\pm \frac{1 \text { " }}{16}$ with no steps. [14]
- Foil Stringer
- Hole Positions, depths, and diameters: $\pm \frac{11}{16}[17]$.
- Angle of bottom of foil trays: $\pm 2^{\circ}$ [18]

2.3 Fuel Properties

The pile contains 1,288 fuel slugs, with each slug being a cylinder about 1 inch in diameter and 8 inches long. The slugs are comprised of metallic natural uranium slugs with an aluminum clad. Unlike modern ceramic fuel the cladding is bonded directly to the uranium metal.

The slugs' length, diameter, and mass were all measured. For the first 140 slugs all three measurements were taken. After this point it was determined that the standard deviation was low enough on the dimensional measurements that it wasn't necessary to measure the dimensions for all the slugs. The mass was taken for 1,286 slugs. Two slugs were not measured due to clerical errors. The entire set of data is presented in appendix F. A summary of these data is presented in table 2.2. The design of a typical fuel slug is shown in figure 2.3.

The natural enrichment of the uranium was verified using gamma spectroscopy with a Canberra GL0515R-DET low-energy high-purity germanium detector. The enrichment was calculated using the Canberra U/Pu inspector software package. This did not consider attenuation in the aluminum cladding. There is too much uncertainty due to this attenuation to quote an exact enrichment level, but it can be said with some certainty this uranium was not enriched past natural levels.

Table 2.2: Summary of slug measurements made.

Property	Units	mean	Std. Dev.	Maximum	Minimum
Mass	grams	2006	7	2026	1960
Length	inches	8.41	0.01	8.452	8.387
Diameter	inches	1.084	0.001	1.088	1.081

From these data in table 2.2 it is then possible to calculate the volume fraction of the slug which is uranium, if it is assumed that only the uranium and aluminum clad make up a significant portion of the slug volume. The total density would then be given by equation 2.1.

$$
\begin{equation*}
\rho_{t}=\frac{V_{U}}{V_{t}} \rho_{U}+\left(1-\frac{V_{U}}{V_{t}}\right) \rho_{A l} \tag{2.1}
\end{equation*}
$$

In this equation ρ is density, V is volume, and subscript t is the total value. For convenience I will define the uranium volume fraction to be $X=V_{U} / V_{t}$. The solution for X from equation 2.1 is presented in equation 2.2.

$$
\begin{equation*}
X=\frac{\rho_{t}-\rho_{A l}}{\rho_{U}-\rho_{A l}} \tag{2.2}
\end{equation*}
$$

Pearson and Sims reported a number density for the metallic uranium, and not a density so the density was found with equation 2.3 .

$$
\begin{equation*}
\rho=n \frac{M}{N_{A}} \tag{2.3}
\end{equation*}
$$

Here n is the number density, N_{A} is Avagadro's number, and M is the molar mass. The data for solving these equations are presented in table 2.3.

Calculation of the volumes was done assuming all regions were perfect right circular cylinders. It is suggested by the Savannah River document[11] that the metallic uranium slug is $1.00^{\prime \prime}$ in diameter. If it is assumed that this is true, then the uranium slug has a length of $8.07^{\prime \prime}$. This means the end caps of aluminum have a thickness, T , of $0.17^{\prime \prime}$.

Table 2.3: Various values necessary to calculate the mass of uranium in a fuel slug, and various properties calculated thereof.

Variable	Value
n_{U}	$4.7325 \times 10^{22} \mathrm{~cm}^{-3}[8]$
$\rho_{A l}$	$2.7 \frac{g}{\mathrm{~cm}^{3}}[19]$
N_{A}	$6.0221415 \times 10^{23}[20]$
M_{U}	$237.98[21]$
ρ_{U}	$18.702 \frac{g}{\mathrm{~cm}^{3}}$
ρ_{t}	$15.77 \frac{g^{c}}{c 口^{3}}$
X	0.8169
V_{U}	$103.9 \mathrm{~cm}^{3}$
mass $_{U}$	1.94 kg
T	0.17^{I}

2.4 Graphite Properties

The purity of the graphite was tested by neutron activation analysis. For the neutron activation analysis (NAA) four samples were taken from the same graphite block. This

Figure 2.3: The design of the Uranium fuel slugs used in the MGEP. The values shown are nominal and are not universal.

Table 2.4: Density of the Graphite Pile's graphite as measured by different theses.

Source	Density
Knapp $[6]$	$1.69 \mathrm{~g} / \mathrm{cm}^{3}$
Reilly $[7]$	$1.662 \mathrm{~g} / \mathrm{cm}^{3}$

graphite was from the surplus graphite for the pile which was in storage. The analysis was completed by the NRL. It should be noted that NAA relies on a (n, γ) reaction, however boron-10 undergoes a (n, α) reaction, so boron is not detectable by NAA. The data from this analysis are presented in appendix C.

The density of the graphite was calculated two separate ways by Knapp and Reilly. Knapp took a small sample of the graphite from the MGEP, machined it into a cube, and weighed and measured the cube to calculate the density[6]. Reilly weighed every bar while assembling the standard pile, and calculated the average graphite density using the calculated volume of each bar[7]. These data are presented in table 2.4. Due to its more accurate and precise nature, Reilly's datum was used.

Chapter 3

Background

3.1 Foil Activation for Flux Measurement

One way to measure neutron flux in an exponential pile is by foil activation, in which a foil is activated with neutron radiation, and the radioactivity is then measured to obtain the neutron fluence at that point. Indium is a favorable material for this application for many reasons. Indium has a large thermal absorption cross-section, which forms a radioactive isotope. This isotope has about a one hour half-life which is ideal for taking activity measurements. The capture reaction for indium-115, which is the most abundant naturally ocuring indium isotope[21], is shown in equation 3.1. In these competing reactions both the ground-state and metastable state of indium-116 are possible products of the reaction. The metastable state is at an excited energy state with respect to the ground state.

$$
{ }^{115} I n+{ }_{0}^{1} n \rightarrow\left\{\begin{array}{l}
\gamma_{1}+{ }^{116 m} I n \tag{3.1}\\
\gamma_{2}+{ }^{116} I n
\end{array}\right.
$$

However ${ }^{116}$ In has a half-life of 2.18 seconds, whereas ${ }^{116 m}$ In has a half-life of 54.29 minutes[22]. In any reasonable experiment only the ${ }^{116 m}$ In will be detectable, due to almost all of the ${ }^{116}$ In decaying away in the time between the samples being removed from the neutron field and the samples being measured.

3.1.1 Calculating Activity

To be able to measure the flux it is first necessary to measure the activity of the foils after foil activation. The radioactive decay of a substance is governed by differential equation 3.2.

$$
\begin{equation*}
\frac{d N}{d t}=-\lambda N \tag{3.2}
\end{equation*}
$$

In this equation N is the number of atoms of the isotope present, and λ is the decay constant for the isotope. This first-order linear ordinary differential equation has a solution of the form in equation 3.3.

$$
\begin{equation*}
N(t)=N_{0} e^{-\lambda t} \tag{3.3}
\end{equation*}
$$

Where N_{0} is the initial activity when the foil is removed from the neutron field at time, $t=0$. However this solution describes the amount of atoms present and not the activity level. The activity, A, is given by equation 3.4.

$$
\begin{equation*}
A=-\frac{d N}{d t}=\lambda N_{0} e^{-\lambda t} \tag{3.4}
\end{equation*}
$$

If it is assumed that the detector setup being used has a constant efficiency, η, which includes both the detector and geometric efficiency, then the number of counts detected will be described by equation 3.5.

$$
\begin{equation*}
C=\int_{t_{1}}^{t_{2}} \eta \lambda N_{0} e^{-\lambda t} d t \tag{3.5}
\end{equation*}
$$

In this integral C is the total number of counts detected, and t_{1} and t_{2} are the times at which the count began and ended. To solve this integral first the constant terms η and N_{0} can be removed from the integrand. Next a change of variable is used by defining $u=\lambda t$. This then implies that $d u=\lambda d t$. With these changes the integral is then solved in equation 3.6.

$$
\begin{align*}
& C=\eta N_{0} \int_{\lambda t_{1}}^{\lambda t_{2}} e^{-u} d u \\
& C=\eta N_{0}\left[-e^{-u}\right]_{\lambda t_{1}}^{\lambda t_{2}} \\
& C=\eta N_{0}\left(e^{-\lambda t_{1}}-e^{-\lambda t_{2}}\right) \tag{3.6}
\end{align*}
$$

It may be desirable to do multiple counting sessions that are not contiguous in time for a single foil. This would be helpful to get better average statistics for a batch of foils removed simultaneously rather than having very good statistics for the first foil, and poor statistics for the last foil. In this case the totals counts can be more generically written as in equation 3.7.

$$
\begin{equation*}
\sum_{n=1}^{N} C_{n}=\sum_{n=1}^{N} \int_{t_{n, 1}}^{t_{n, 2}} \eta \lambda N_{0} e^{-\lambda t} d t \tag{3.7}
\end{equation*}
$$

Since η and N_{0} are constant with respect time it is possible to solve this integral, which is shown in equation 3.8.

$$
\begin{equation*}
\sum_{n=1}^{N} C_{n}=\eta N_{0} \sum_{n=1}^{N}\left(e^{-\lambda t_{n, 1}}-e^{-\lambda t_{n, 2}}\right) \tag{3.8}
\end{equation*}
$$

Now to find the initial activity at the end of the activation it is just necessary to solve equation 3.8 for N_{0}, which is presented in equation 3.9

$$
\begin{equation*}
N_{0}=\frac{\sum_{n=1}^{N} C_{n}}{\eta \sum_{n=1}^{N}\left(e^{-\lambda t_{n, 1}}-e^{-\lambda t_{n, 2}}\right)} \tag{3.9}
\end{equation*}
$$

3.1.2 Activity Error Propagation

To quantify the error in these measurements, all sources of error and uncertainties must be propagated through to the final activity calculation. The largest source of uncertainty is the radioactive decay of the activated foil due to its entirely stochastic nature. Since it is a truly random process, the process will be Gaussian and have a standard deviation, σ, described by equation 3.10.

$$
\begin{equation*}
\sigma_{c, n}=\sqrt{C_{n}} \tag{3.10}
\end{equation*}
$$

However these counts are not taken in complete isolation and background needs to be subtracted out. The net counts would then be given by equation 3.11.

$$
\begin{equation*}
C_{n e t}=C_{n}-\frac{C_{b g} t_{n}}{t_{b g}} \tag{3.11}
\end{equation*}
$$

In this case subscript n is the count taken with the sample and subscript $b g$ is the background count. The standard deviation would be found by summing the standard deviations for the counts in quadrature as shown in equation 3.12.

$$
\begin{equation*}
\sigma_{n e t}=\sqrt{\sigma_{c, n}^{2}+\left(\frac{t_{n} \sigma_{b g}}{t_{b g}}\right)^{2}} \tag{3.12}
\end{equation*}
$$

For a single counting session the standard deviation for the activity calculated will be described by equation 3.13.

$$
\begin{equation*}
\sigma_{N_{0}}=\frac{\sigma_{n e t}}{\eta\left(e^{-\lambda t_{n, 1}}-e^{-\lambda t_{n, 2}}\right)} \tag{3.13}
\end{equation*}
$$

If multiple counting sessions are used the standard deviations would add in quadrature. The total standard deviation is shown in equation 3.14.

$$
\begin{equation*}
\sigma_{T}=\sqrt{\sum_{n=1}^{N}\left(\frac{\sigma_{c, n}}{\eta\left(e^{-\lambda t_{n, 1}}-e^{-\lambda t_{n, 2}}\right)}\right)^{2}} \tag{3.14}
\end{equation*}
$$

3.1.3 Calculating Flux from Activity

While activating indium with the neutron capture reaction shown in equation 3.1 there is the competing decay of the daughter products. The concentration of indium- $116 \mathrm{~m}, I$, is described in differential equation 3.15.

$$
\begin{equation*}
\frac{d I}{d t}=\phi \Sigma_{c} V-\lambda I \tag{3.15}
\end{equation*}
$$

In this case ϕ is the neutron scalar flux measured in neutrons per square centimeter per second. The macroscopic cross-section $\left(\Sigma_{c}\right)$ is the microscopic capture cross-section for the indium-115 times the indium number density. The microscopic cross section is the effective nucleus cross-sectional area for a neutron capture reaction, and is energydependent. However in this setup it is safe to assume all the foils will be exposed to the
same neutron energy spectrum, so the energy dependence will be naturally integrated out. With this multiplication the macroscopic cross-section has units of cm^{-1}, and is thus a path length probability. The volume of the foil is represented by V. This differential equation has the solution shown in equation 3.16.

$$
\begin{equation*}
I(t)=\frac{\Sigma_{c} \phi V}{\lambda}\left(1-e^{-\lambda t}\right) \tag{3.16}
\end{equation*}
$$

This equation then needs to be solved for the flux. It is convenient to replace the volume with $V=m / \rho$, where m is the mass, ρ is the density. This is shown in equation 3.17.

$$
\begin{equation*}
\phi=\frac{I_{0} \lambda \rho}{\Sigma_{c} m\left(1-e^{-\lambda t}\right)} \tag{3.17}
\end{equation*}
$$

It should be noted that the time in this case is the time since the beginning of the foil activation. A more useful form of this equation is finding the relative flux. This allows for finding the flux profile without having to find an accurate capture cross-section. The relative flux between two foils is shown in equation 3.18.

$$
\begin{equation*}
\frac{\phi_{1}}{\phi_{2}}=\frac{I_{1} m_{2}\left(1-e^{-\lambda t_{2}}\right)}{I_{2} m_{1}\left(1-e^{-\lambda t_{1}}\right)} \tag{3.18}
\end{equation*}
$$

However this is not very helpful as taking the quotient of two random variables could lead to an increase of uncertainty by up to $\sqrt{2}$. A more useful quantity to use would be $\phi \Sigma_{c} / \rho$, or r, which is the reaction rate per mass, or the specific reaction rate. This will depend solely on the flux as it is safe to assume in this situation the Σ_{c} and ρ are constant. The specific reaction rate is given in equation 3.19.

$$
\begin{equation*}
r=\frac{\phi \Sigma_{c}}{\rho}=\frac{I_{0} \lambda}{m\left(1-e^{-\lambda t}\right)} \tag{3.19}
\end{equation*}
$$

3.1.4 Flux Error Propagation

When calculating the scalar flux from the foil activation the dominant uncertainty is from the activity level of the foils. This uncertainty is given by equation 3.13. The standard deviation for the flux calculation in equation 3.17 is given by equation 3.20. The standard deviation for the specific reaction rate found in equation 3.19 is given by equation 3.21.

$$
\begin{align*}
\sigma_{\phi} & =\frac{\sigma_{I_{0}} \lambda \rho}{\Sigma_{c} m\left(1-e^{-\lambda t}\right)} \tag{3.20}\\
\sigma_{r} & =\frac{\sigma_{I_{0}} \lambda}{m\left(1-e^{-\lambda t}\right)} \tag{3.21}
\end{align*}
$$

If the relative flux is what is of interest in these measurements. The relative flux is a quotient of random variables. The standard deviation for quotients also sum in quadrature[23]. Thus the standard deviation for the relative flux would be given by equation 3.22.

$$
\begin{equation*}
\sigma_{\phi_{\phi_{2}}}=\sqrt{\left(\frac{\sigma_{I_{1}} \lambda \rho}{\Sigma_{c} m\left(1-e^{\left.-\lambda t_{1}\right)}\right.}\right)^{2}+\left(\frac{\sigma_{I_{2}} \lambda \rho}{\Sigma_{c} m\left(1-e^{-\lambda t_{2}}\right)}\right)^{2}} \tag{3.22}
\end{equation*}
$$

3.2 Solution to the One-Energy Diffusion Equation in Pile

The derivation of the neutron diffusion theory from the neutron transport equation is beyond the scope of this thesis, and may be found in most reactor physics textbooks. The important thing to note is that diffusion theory is based on the assumption that the angular flux at a point can be represented by a linear function with Ω. This assumption holds in only certain parts of the graphite pile when measurements are taken far enough away from the heterogeneities that the pile can be treated as being homogeneous. The one group diffusion equation is given in equation 3.23.

$$
\begin{equation*}
-\nabla \cdot D \nabla \phi(x, y, z)+\Sigma_{a} \phi(x, y, z)=\nu \Sigma_{f} \phi(x, y, z) \tag{3.23}
\end{equation*}
$$

In this equation D is the diffusion constant, which is a material property, ν is the average number of neutrons produced per fission, Σ_{f} is the macroscopic fission crosssection, and Σ_{a} is the absorption cross-section. In the graphite pile it can be assumed that the diffusion constant does not vary. A new term the, material buckling, can be defined by equation 3.24. This term is related to the behavior of a reactor which has same material properties as the pile, but is infinitely large. So this buckling is related to how a reactor would behave if there was no neutron leakage.

$$
\begin{equation*}
B_{m}^{2} \equiv \frac{\nu \Sigma_{f}-\Sigma_{a}}{D} \tag{3.24}
\end{equation*}
$$

Equation 3.23 then becomes equation 3.25.

$$
\begin{equation*}
\nabla^{2} \phi(x, y, z)+B_{m}^{2} \phi(x, y, z)=0 \tag{3.25}
\end{equation*}
$$

To solve this differential equation it is helpful to use a separation of variables to redefine ϕ with equation 3.26.

$$
\begin{equation*}
\phi(x, y, z)=\Phi(x) \psi(y) \theta(z) \tag{3.26}
\end{equation*}
$$

Expanding the Laplacian operator on the change of variable used in equation 3.26 is shown in equation 3.27.

$$
\begin{equation*}
\nabla^{2} \phi=\frac{\partial^{2} \Phi}{\partial x^{2}} \psi \theta+\frac{\partial^{2} \psi}{\partial x^{2}} \Phi \theta+\frac{\partial^{2} \theta}{\partial x^{2}} \Phi \psi \tag{3.27}
\end{equation*}
$$

Equation 3.25 can then be divided by ϕ, which is shown in equation 3.28

$$
\begin{equation*}
\frac{1}{\Phi} \frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{1}{\psi} \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{1}{\theta} \frac{\partial^{2} \theta}{\partial x^{2}}+B_{m}^{2}=0 \tag{3.28}
\end{equation*}
$$

If only the x -axis is examined in a 1-D situation (y and z are constant) all of the other components of the flux, and the material buckling can be clumped into a constant term, F^{2}, and the whole equation multiplied by Φ.

$$
\begin{equation*}
\frac{\partial^{2} \Phi}{\partial x^{2}}=-F^{2} \Phi \tag{3.29}
\end{equation*}
$$

This differential equation is satisfied by the functions sin, cos, sinh, and cosh. Since this is a second order ordinary differential equation a complete solution needs to be the sum of two functions. So the solution will either be Acos+Bsin or Acosh+Bsinh. Similar arguments can be made for all dimensions, and it becomes clear that the solution in all dimensions must be a combination of these functions. To find an exact solution boundary conditions must be imposed. First for all of space the flux must be finite and non-negative. Next it is assumed that the flux is negligible at an extrapolated distance from the pile on all faces except next to the source, and can be said to be zero. For such a large pile the extrapolation distance would be much less than the overall dimensions of the pile, and the extrapolation length is neglected. Thus the second boundary condition is that at the faces the flux is zero. The geometry for this problem is defined as shown in figure 3.1, with the origin located in the bottom z-plane of the lattice and centered in x and y. Thus the boundary condition for the x direction can be written as shown in equation 3.30 .

Figure 3.1: The geometry used for the diffusion model. the origin is centered in x and y and located on the plane of the bottom of the lattice. X is aligned with a and Y with b .

3.2.1 Solution in X and Y

$$
\begin{equation*}
\Phi\left(\frac{a}{2}\right)=\Phi\left(\frac{-a}{2}\right)=0 \tag{3.30}
\end{equation*}
$$

It is not possible for cosh and sinh to meet these conditions. Thus it must be a summation of sines and cosines of the form below.

$$
\begin{equation*}
\Phi(x)=A \cos (F x)+B \sin (F x) \tag{3.31}
\end{equation*}
$$

For cosines to be the solution the following condition must be true.

$$
\begin{equation*}
\frac{F_{\cos } a}{2}=\frac{(2 n+1) \pi}{2} \tag{3.32}
\end{equation*}
$$

Where n is an integer. Similarly for sines to be the solution the following condition must hold.

$$
\begin{equation*}
\frac{F_{\sin } a}{2}=\frac{2 n \pi}{2} \tag{3.33}
\end{equation*}
$$

Thus for cosines the angular frequency, F , is given by:

$$
\begin{equation*}
F_{c o s}=\frac{(2 n+1) \pi}{a} \tag{3.34}
\end{equation*}
$$

For sines the angular frequency is given by:

$$
\begin{equation*}
F_{\text {sin }}=\frac{2 n \pi}{a} \tag{3.35}
\end{equation*}
$$

This could also be rewritten as using only cosines for odd values of n, and only sines for even values of n. Thus the flux in the x-direction is given by equation 3.36. It can be easily seen that this would also apply to the y-direction, will be some combination of harmonic sines and cosines.

$$
\begin{align*}
& \Phi(x)=\sum_{n=1}^{\infty} \begin{cases}A_{n} \cos \left(\frac{n \pi x}{a}\right) & n \in \mathbb{Z}_{\text {odd }} \\
A_{n} \sin \left(\frac{n \pi x}{a}\right) & n \in \mathbb{Z}_{\text {even }}\end{cases} \tag{3.36}\\
& \psi(y)=\sum_{m=1}^{\infty} \begin{cases}A_{m} \cos \left(\frac{m \pi y}{b}\right) & m \in \mathbb{Z}_{\text {odd }} \\
A_{m} \sin \left(\frac{m \pi y}{b}\right) & m \in \mathbb{Z}_{\text {even }}\end{cases} \tag{3.37}
\end{align*}
$$

3.2.2 Solution in Z

In the z-direction the top face has a zero-flux boundary condition, and the bottom face is constrained by the neutron source as an initial condition. This asymmetry could never be created with periodic sines and cosines, so the solution in z must be composed of cosh and sinh functions. So theta must take the following form.

$$
\begin{equation*}
\theta(z)=C \cosh (\gamma z)+D \sinh (\gamma z) \tag{3.38}
\end{equation*}
$$

If the zero-flux boundary condition is applied the following condition is found.

$$
\begin{gather*}
\theta(c)=0=C \cosh (\gamma c)+D \sinh (\gamma c) \tag{3.39}\\
D=-C \frac{\cosh (\gamma c)}{\sinh (\gamma c)} \tag{3.40}
\end{gather*}
$$

Substituting these conditions back into equation 3.38 yields the following which may be manipulated.

$$
\begin{gather*}
\theta(z)=C \cosh (\gamma z)-C \frac{\cosh (\gamma c)}{\sinh (\gamma c)} \sinh (\gamma z) \tag{3.41}\\
\theta=C \frac{\sinh (\gamma c)}{\sinh (\gamma c)} \cosh (\gamma z)-C \frac{\cosh (\gamma c)}{\sinh (\gamma c)} \sinh (\gamma z) \tag{3.42}\\
\theta=\frac{C}{\sinh (\gamma c)}[\sinh (\gamma c) \cosh (\gamma z)-\cosh (\gamma c) \sinh (\gamma z)] \tag{3.43}
\end{gather*}
$$

Now to simplify this expression a difference of arguments identity of sinh comes in handy.

$$
\begin{equation*}
\sinh (x-y)=\sinh (x) \cosh (y)-\cosh (x) \sinh (y) \tag{3.44}
\end{equation*}
$$

This identity can be used to simplify equation 3.43 . In addition the term $\sinh (\gamma c)$ will be constant and can be combined into the constant, C.

$$
\begin{equation*}
\theta(z)=C \sinh [\gamma(c-z)] \tag{3.45}
\end{equation*}
$$

3.2.3 Combined Solution

All positive values for γ will satisfy the finite flux condition, but the ones which will be able to exist in this problem will be constrained by the boundary conditions. These discrete solutions will be noted as γ_{k}. All solutions must be able to solve the beginning equation, 3.28. The $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and solutions will be combined from equations $3.36,3.37 \&$ 3.45, and substituted into equation 3.28.
$0=B_{m}^{2}+ \begin{cases}\frac{-A_{n}\left(\frac{n \pi}{a}\right)^{2} \cos \left(\frac{n \pi x}{a}\right)}{A_{n} \cos \left(\frac{n \pi x}{a}\right)}+\frac{-A_{m}\left(\frac{m \pi}{b}\right)^{2} \cos \left(\frac{m \pi y}{b}\right)}{A_{m} \cos \left(\frac{m \pi y}{b}\right)}+\frac{C_{k} \gamma_{k}^{2} \sinh \left[\gamma_{k}(c-z)\right]}{c_{k} \sinh \left[\gamma_{k}(c-z)\right]} & m \in \mathbb{Z}_{\text {odd }}, n \in \mathbb{Z}_{\text {odd }} \\ \frac{-A_{n}\left(\frac{n \pi}{a}\right)^{2} \sin \left(\frac{n \pi x}{a}\right)}{A_{n} \sin \left(\frac{n \pi x}{a}\right)}+\frac{-A_{m}\left(\frac{m \pi}{b}\right)^{2} \sin \left(\frac{m \pi y}{b}\right)}{A_{m} \sin \left(\frac{m \pi y}{b}\right)}+\frac{\left.C_{k} \gamma_{k}^{2} \sinh h \gamma_{k}(c-z)\right]}{c_{k} \sinh \left[\gamma_{k}(c-z)\right]} & m \in \mathbb{Z}_{\text {even }}, n \in \mathbb{Z}_{\text {even }} \\ \cdots & \cdots\end{cases}$
These equations were not extended to all possible permutations of $m \& n$ even, odd parity, as it can be seen that in all cases the majority of the equation cancels leaving a simple relationship.

$$
\begin{equation*}
0=B_{m}^{2}-\left(\frac{n \pi}{a}\right)^{2}-\left(\frac{m \pi}{b}\right)^{2}+\gamma_{k}^{2} \tag{3.47}
\end{equation*}
$$

Since B_{m}^{2} is constrained by the material properties and is constant there are only two possible values for γ_{k} for any combination of $\mathrm{m} \& \mathrm{n}$. One is positive and the other negative. Since γ_{k} must be positive to give positive flux values only the positive value of γ_{k} is possible. Since there is only one value of γ_{k} for every combination of $\mathrm{m} \& \mathrm{n}$ it is conventional to denote γ_{k} as: $\gamma_{n, m}$. Any harmonic mode could be used to solve for the material buckling, however the fundamental mode $(\mathrm{m}=\mathrm{n}=1)$ will be dominant and the easiest mode to measure as shown in equation 3.48.

$$
\begin{equation*}
B_{m}^{2}=\left(\frac{\pi}{a}\right)^{2}+\left(\frac{\pi}{b}\right)^{2}-\gamma_{1,1}^{2} \tag{3.48}
\end{equation*}
$$

Finally combining the solutions found in equations $3.36,3.37 \& 3.45$ yields the flux distribution at any point in the pile as shown in equation 3.49.

$$
\phi(x, y, z)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \begin{cases}A_{m, n} \sinh \left[\gamma_{m, n}(c-z)\right] \cos \left(\frac{n \pi x}{a}\right) \cos \left(\frac{m \pi y}{b}\right) & n_{\text {odd }}, m_{\text {odd }} \tag{3.49}\\ A_{m, n} \sinh \left[\gamma_{m, n}(c-z)\right] \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi y}{b}\right) & n_{\text {even }}, m_{\text {even }} \\ A_{m, n} \sinh \left[\gamma_{m, n}(c-z)\right] \cos \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi y}{b}\right) & n_{\text {odd }}, m_{\text {even }} \\ A_{m, n} \sinh \left[\gamma_{m, n}(c-z)\right] \sin \left(\frac{n \pi x}{a}\right) \cos \left(\frac{m \pi y}{b}\right) & n_{\text {even }}, m_{\text {odd }}\end{cases}
$$

3.3 Finding Critical Reactor Size

When a reactor becomes critical $(\mathrm{k}=1)$ the neutron flux distribution becomes independent of the external neutron sources. The boundary conditions imposed on Z will no longer hold when the reactor becomes critical, and $\theta(z)$ will become a series of sines and cosines. When critical equation equation 3.48 will change to be as follows.

$$
\begin{equation*}
B_{m}^{2}=\left(\frac{\pi}{a}\right)^{2}+\left(\frac{\pi}{b}\right)^{2}+\left(\frac{\pi}{c}\right)^{2} \tag{3.50}
\end{equation*}
$$

Commonly the geometric buckling B_{g}^{2} is used. This is defined as shown below.

$$
\begin{equation*}
B_{g}^{2}=\left(\frac{\pi}{a}\right)^{2}+\left(\frac{\pi}{b}\right)^{2}+\left(\frac{\pi}{c}\right)^{2} \tag{3.51}
\end{equation*}
$$

Thus for a reactor to be critical the following condition must be true:

$$
\begin{equation*}
B_{g}=B_{m} \tag{3.52}
\end{equation*}
$$

If it is assumed that a critical reactor would be made from a large cube, with side s , with the same material properties as the pile the critical geometry is given by the following relationship.

$$
\begin{equation*}
B_{m}^{2}=3\left(\frac{\pi}{s}\right)^{2} \tag{3.53}
\end{equation*}
$$

Thus the critical reactor size would be found by equation 3.54.

$$
\begin{equation*}
s=\frac{\sqrt{3} \pi}{B_{m}} \tag{3.54}
\end{equation*}
$$

Chapter 4

Methodologies

In order to measure the material buckling of the Graphite Exponential Pile, indium foils were activated in the loaded pile with an external neutron source. All the fuel was loaded and foils were positioned to allow measurement of the radial and axial flux distribution of the pile.

4.1 Fuel Loading

The fuel was loaded in order to maximize the fuel loading nearest to the source. Layers 1-10 were loaded to capacity. Layer 11 did not have enough fuel for a full loading so it was loaded in order to be symmetric about the central plane. The central 8 channels were filled to capacity. The next channels out were filled with four slugs each. The slugs were then centered in their channels north to south. This was accomplished by placing a locking collar on an aluminum rod at the calculated depth. The slugs were pushed from the north face until the collar came into contact with the pile. For channels with 10 slugs the slugs were pushed to be $3 \frac{1 "}{2} \pm \frac{1^{\prime \prime}}{8}$ from the north face. For channels with 4 slugs they were pushed to be $28 \frac{3^{\prime \prime}}{4} \pm \frac{1^{\prime \prime}}{8}$ from the north face. This loading pattern is shown in Figure 4.1.

4.2 Stringer Configuration

As stated before, the pile can be configured for whatever measurements are desired. For this activation it was desired to establish radial and axial flux distributions. All measurements were taken using the east-to-west stringers. A complete radial profile with 14 positions was established at layer 5 . Seven positions running from east to the center were taken at layer 1. An axial profile was taken near the center for layers 1-10. The foil stringers were moved to accommodate this. The fuel channel blocks were moved to fill in the voids. The channel of the lower layers were filled with graphite rods to remove the void from the center of these channels. The foil stringers were centered in the channels. Nominally the stringers would extend $1 / 2^{\prime \prime}$ past the eastern face of the pile. Table 4.1 shows the configuration which was used.

	A	B	C	D	E	F	G	H	I	J	K	L
12	0	0	0	0	0	0	0	0	0	0	0	0
11	0	4	10	10	10	10	10	10	10	10	4	0
10	10	10	10	10	10	10	10	10	10	10	10	10
9	10	10	10	10	10	10	10	10	10	10	10	10
8	10	10	10	10	10	10	10	10	10	10	10	10
7	10	10	10	10	10	10	10	10	10	10	10	10
6	10	10	10	10	10	10	10	10	10	10	10	10
5	10	10	10	10	10	10	10	10	10	10	10	10
4	10	10	10	10	10	10	10	10	10	10	10	10
3	10	10	10	10	10	10	10	10	10	10	10	10
2	10	10	10	10	10	10	10	10	10	10	10	10
1	10	10	10	10	10	10	10	10	10	10	10	10

Figure 4.1: The fuel loading pattern for the foil activation as seen from the north face. The number indicates the number of slugs loaded into a channel. All of the slugs were centered in each channel.

Table 4.1: Loading pattern of the foil and fuel channel stringers for the foil activation. F stands for a foil stringer. O symbolizes a fuel channel with a void, and G is a fuel channel with the channel filled with a graphite rod. The offset was measured by how far the stringers extended past the east face. Measurements are $\pm 1 / 8^{\prime \prime}$.

Layer	East	West	Offset
11	O	O	-
10	F	O	$3 / 8^{\prime \prime}$
9	F	G	$3 / 8^{\prime \prime}$
8	F	G	$1 / 2^{\prime \prime}$
7	F	G	$5 / 8^{\prime \prime}$
6	F	G	$5 / 8^{\prime \prime}$
5	F	F	$1 / 2^{\prime \prime}$
4	F	G	$1 / 2^{\prime \prime}$
3	F	G	$3 / 8^{\prime \prime}$
2	F	G	$3 / 8^{\prime \prime}$
1	F	G	$1 / 2^{\prime \prime}$

4.3 Foil Positions

Indium foil activation was used for measuring the neutron flux levels. Indium foils were prepared by punching out foils. The foils were punched from 0.010 thick indium foil using a 0.95 " punch. The measured properties of these foils are presented in table A.1. All the foils were marked with an identifier with a fine-tipped marker, which dented the foils. For some of the foils the letter identifiers were ambiguous, such as: F,H,I,N and Z. To reduce this confusion the letters on these foils were underlined to show the proper orientation of the foil. Foil D was easily confused with O so the symbol Δ was added.

The foils were positioned to allow for finding the radial and axial neutron distributions. The radial distributions were measured on layers 1 and 5 . On layer 5 a full profile from east to west was measured with 14 positions in total. On layer 1 a half profile was measured from the east face to the center with 7 foil positions. For the axial profile, layers 1-10 were measured. The foils were placed in position 7 which is the closest position to the center from the east face. Table A. 2 lists the positions for all the foils.

4.4 Source

For this foil activation, MIT's 1 Curie Pu-Be, M-52, source was used[24]. It produced approximately 1.73×10^{6} neutrons per second at the time of the experiment. The source was inserted into the source channel, which is just to the west of the center, or the $14^{\text {th }}$ channel from the east. The source was inserted $44.5^{\prime \prime}$ into the channel as measured from the north face to the top of the source.

The source was inserted to the correct location by taking a tape measure and pushing the source to the correct distance. The neutron source has a steel cable attached to it's attachment point. This was attached by a screw closure carabiner to a string. The
string was ended with a figure- 8 knot and a safety knot. These were used due to their demonstrated ability to withstand large loads and to not easily untie. The source was inserted on May 4, 2018 at 12:05 PM EDT.

4.5 Foil Counting

The counting of the foils' activity was done in such a way to maximize the amount of decays detected. This was accomplished in many ways. First, "online retrieval" was used where foils were removed while the source was still in the pile, allowing small batches to be counted each time. For a batch, each foil was counted for a short duration and the foils cycled through these counting cycles multiple times. This prevented the first foil getting very good statistics and the last one the worst statistics. The counting was completed with a Protean Instruments Corporation WPC 9550 automated gas flow proportional counter, which is designed for detecting α and β particles from a large set of samples automatically and has an efficiency of 42.64%.

The foils were counted in four batches of 7-8 foils. For each foil stringer a time for removal of the stringer was determined 30 seconds before. When that time was reached ($\pm 1 s$) on the author's watch, the stringer was removed from the pile expeditiously. The foils were then transported to the detector and loaded onto sample trays and the automated counted process initiated. This process usually took less than 5 minutes. Each foil in the batch was counted for 2 minutes, and the entire batch went through 4 cycles of this counting cycle. To improve the statistics on the axial traverse, which had the lowest neutron fluxes, 5 cycles were used. The counting data are presented in table A.3.

Chapter 5

Results

In order to determine the material buckling of the MIT Graphite Exponential Pile, when fully loaded with fuel the neutron flux was found using indium foil activation. The indium foils were used to find the radial flux distribution in the east-west (X) axis, and the axial flux distribution. The radial distribution was found on layers 1 and 5. The axial distribution was found on layers 1-10.

The foils were then counted in a way to decrease the uncertainty in the measurements. These counts were then used to calculate an uncorrected specific reaction rate $\left(\eta \phi \Sigma_{c} / \rho\right)$ using equation 3.19. This is a very good corollary for neutron flux since in this experiment η, the detector efficiency, Σ_{c}, the macroscopic capture cross-section, and ρ the indium density are constant. All of the data were entered into a Office Open XML (Excel) spreadsheet. This sheet was then parsed and analyzed using a script written in Python3. This script is included in appendix E. All of the raw data collected is presented in appendix A. The radial data are presented in Figure 5.1, and the axial data are presented in Figure 5.2.

To find the material buckling it is necessary to find the $\gamma_{1,1}$ value. This was found by performing a least-square non-linear regression on $\theta(z)$. However the data aren't entirely dominated by the first harmonic, and the high-order harmonics are more prominent near the source. To remove these effects the two data points nearest the source were not included in the fit. The axial profile with the regression line is shown in figure 5.3. From this regression it was found that $\gamma_{1,1}=0.01621 \mathrm{~cm}^{-1}$. This regression had a R^{2} value of 0.944 . From this data and equation 3.48 it was possible to calculate the geometric buckling. These data are presented in table 5.1.

With knowledge of the material buckling it is now possible to calculate the critical reactor size for this lattice configuration. This is done by setting the material and geometric buckling equal. For a cube the side length,s, for a critical reactor can be found with equation 3.54. It was found that the Graphite Exponential Pile would have to be a cube 5.42 m to a side in order to become critical.

Figure 5.1: The uncorrected specific reaction rate radial profiles for the MIT graphite Exponential pile with a full loading of fuel. The data are uncorrected since the detector efficiency was not included in the calculations, however all measurements used the same detector set-up. On Layer 5 a full profile was found, whereas for layer 1 only a half-profile was measured. Error bars show 1σ. The fundamental cosine mode has been superimposed for convenience.

Table 5.1: The Geometric buckling and other pile properties found experimentally

Parameter	Value
$\gamma_{1,1}$	$0.01621 \mathrm{~cm}^{-1}$
R^{2}	0.944
B_{m}^{2}	$107.9 \times 10^{-6} \mathrm{~cm}^{-2}$
B_{m}	$0.01039 \mathrm{~cm}^{-1}$
s	$5.24 \mathrm{~m}\left(206{ }^{\text {" }}\right)$

Figure 5.2: The uncorrected specific reaction rate rate axial profile as measured from foil position 7 , which is just east of center $(x \approx-12 \mathrm{~cm})$. The detector efficiency was not factored into these calculations, however the same detector setup was used for all measurements. The axial profile was taken for layers 1-10. Error bars show 1σ uncertainties.

Figure 5.3: The axial reaction rate profile with the $\gamma_{1,1}$ regression super-imposed on the plot. The regression is the least accurate near the source, which is to be expected as the higher modes have not died out at that distance yet. Due to these higher harmonics the first two data points were not included in the regression fit.

Chapter 6

Conclusions

In this thesis the MIT Graphite Exponential Pile was characterized as one demonstration of the many possible uses of the pile for student reactor physics experiments. This was completed safely and in compliance with pertinent regulations; showing this can be safely done by undergraduates. This will start the use of the graphite pile as a class experiment for the MIT reactor physics courses.

It was found that the graphite pile would become critical if it were a cube with a side length of 5.24 m . The results agreed well with one-group diffusion theory, and showed that for this system these models are accurate predictors. This confirms one desired use for the pile to help students bring physical meaning to these seemingly arbitrary solutions to diffusion theory. In this one-group model it was shown that it was possible to excite sinusoidal modes due to the source asymmetry.

This thesis is just the beginning of restarting a 60 year old experimental facility. This pile may go a long way towards augmenting reactor physics education, and creating a more mens et manus approach to education. To maximize this impact clear and quantifiable educational metrics should be implemented to clearly and demonstrably measure the effectiveness of this pile as an educational tool. Using the input from these metrics, and other means student experiments should be iteratively improved. Great thought needs to be put into the best way to achieve this, and how best to present these student experiments. One possible approach would be to frame the experiment as an engineering problem. The students would be given a clear set of goals to achieve, and given the tools necessary to achieve them by their own ingenuity.

With modern detectors and computational tools many new student experiments may be done, which were not done in the 50 s . With the pile available as a potential neutron source it is possible to generate many short lived isotopes, such as indium-116m, and measure their activities at multiple times in order to calculate the half-lives of these isotopes. It is now possible to create models with dozens of the harmonic modes present. Using these models it would be of interest to complete extremely asymmetric problems with many sinusoidal modes active. These data could then be analyzed by a method similar to a Fourier transform to determine which modes are present. In addition since the asymmetric modes have a faster exponential decay in z it would be of interest to note how different exponential decays can be activated with different source loading patterns. Students may be interested in completing post-irradiation gamma-spectroscopy of a fuel
slug to determine which fission products are present.
Finally this pile can still be useful for completing academic research, such as creating a criticality safety benchmark experiment. To work towards these ends many of the uncertainties must be reduced about the pile's material properties. The boron-content of the graphite must be precisely found. It may be useful to complete a precise-sigma pile experiment to benchmark impurity modeling of the graphite. More information about the internal structure and composition of the fuel slugs must be found by destructive or non-destructive means. This especially includes finding the purity of the aluminum clad, and what compounds were used in the slug canning process. Extreme caution should be used in extrapolating information about the canning process as it is possible not all of the slugs were canned the same way.

Bibliography

[1] Nuclear engineering at MIT: the first 25 years. Cambridge, Mass.: Massachusetts Institute of Technology, 1984, 68 pp.
[2] C. H. Keenan, Letter authorizing the sale of 100 tons of graphite to mit. Private Correspondance with T. Cantwell, Brookhaven National Laboratory Associated Universities Inc., Apr. 1955.
[3] T. Cantwell, Budget modification to allow for purchase of 100 tons of graphite for the mit reactor, Internal Memorandum, Massachusetts Institute of Technology, Apr. 1955.
[4] T. Cantwell and T. J. Thompson, Memo rr-26, trip to brookhaven to inspect graphite. Internal Memorandum, Apr. 1955.
[5] Course catalogue of the massachusetts institute of technology 1956-1957, Jul. 1956. [Online]. Available: http://hdl.handle.net/1721.3/82789.
[6] R. W. Knapp, "An investigation of the relevant parameters of an exponential pile," Bachelor's Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1957, 35 pp. [Online]. Available: http://hdl.handle.net/1721.1/106713.
[7] W. F. Reilly, "CONSTRUCTION AND CALIBRATION OF a STANDARD PILE," Master's Thesis, Massachusetts Institute of Technology, Cambridge, Mass., May 26, 1958, 52 pp. [Online]. Available: http://hdl.handle.net/1721.1/106714.
[8] J. F. J. Pearson and R. B. Sims, "An investigation of reciprocity in the exponential assembly," Master's Thesis, Massachusetts Institute of Technology, Cambridge, MA, May 25, 1959, 79 pp. [Online]. Available: http://hdl.handle.net/1721.1/110877.
[9] M. Ames, Private Communication, MIT Nuclear Reactor Lab, Jan. 2018.
[10] D. L. Chandler. (Dec. 4, 2017). On 75th anniversary of first nuclear fission reactor, MIT stages tribute to seminal experiment | MIT news, MIT News, [Online]. Available: https:/ / news.mit.edu / 2017/75th-anniversary-first-nuclear-fission-reactor-mit-re-enacts-seminal-experiment-1204 (visited on 01/17/2018).
[11] "Savannah river plant engineering and design history. volume 4: 300/700 areas \& general services and facilities," Du Pont de Nemours (E.I.) and Co., Wilmington, DE (United States). Engineering Dept., DPE-973-Del.Ver.; SR/H-736, Jan. 1, 1957. DOI: $10.2172 / 10158632$. [Online]. Available: https://www.osti.gov/scitech/ biblio / 10158632-savannah-river-plant-engineering-design-history-volume-areas-general-services-facilities (visited on 01/08/2018).
[12] F. J.-P. Hu, R. N. Reciniello, and E. N. Holden, "Characterization of dosimetry of the BMRR horizontal thimble tubes and broad beam facility," in Reactor Dosimetry State of the Art 2008: proceedings of the 13th International Symposium on Reactor Dosimetry, Akersloot, Netherlands: World Scientific, Mar. 25, 2008, pp. 442-453, ISBN: 978-981-4271-10-3.
[13] The industrial graphite engineering handbook. New York, N.Y.: Union Carbide Corporation, 1959.
[14] Quotation ne-2195-revised, private correspondance, National Carbon Company, Dec. 1955.
[15] T. Thompson, Letter to mr. h. n. townsend. private correspondance, Massachusetts Insitute of Technology, Jun. 1956.
[16] S. V. Nicastro, Letter to george a. anderson on updated plans for graphite machinig, private correspondance, ACF Industries, May 1956.
[17] Quotation ne6-1286 for graphite foil stringer, Private Correspondance, National Carbon Company, May 1956.
[18] _-, Mit graphite machining, trip to national carbon co., cleveland, ohio, july 10,1956, Memorandum, ACF Industries, Jul. 1956.
[19] (Apr. 10, 2010). Aluminum, al, Elmhurst College, [Online]. Available: http : / / chemistry.elmhurst.edu/vchembook/102aluminum.html (visited on 06/21/2017).
[20] R. F. Fox, T. P. Hill, and R. M. Fox, "Macroscope: An exact value for avogadro's number," American Scientist, vol. 95, no. 2, pp. 104-107, 2007, ISSN: 00030996. [Online]. Available: http://www.jstor.org.libproxy.mit.edu/stable/27858920.
[21] J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. De Bievre, M. Groening, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, and T. Prohaska, "Isotopic compositions of the elements 2013 (IUPAC technical report)," Pure Applied Chemistry, vol. 88, no. 3, pp. 293-306, Dec. 8, 2015. DOI: $10.1515 /$ pac-2015-0503. [Online]. Available: http:// pubman.mpdl.mpg.de/pubman/item/escidoc:2251148/ component/escidoc:2262960/BGC2412.pdf (visited on 04/21/2018).
[22] J. Blachot, "Nuclear data sheets for a = 116," Nuclear Data Sheets, vol. 111, no. 3, pp. 717-895, Mar. 1, 2010, ISSN: 0090-3752. DOI: $10.1016 / \mathrm{j} . \mathrm{nds} .2010$. 03.002. [Online]. Available: http:/ / www.sciencedirect.com / science / article / pii / S0090375210000281.
[23] M. Palmer, "Propagation of uncertainty through mathematical operations," Massachusetts Institute of Technology, Cambridge, Mass. [Online]. Available: http: / / web . mit.edu / fluids-modules / www / exper__ techniques / 2 . Propagation __ of _ Uncertaint.pdf (visited on 05/08/2018).
[24] J. L. Richmond, Work order 6711-5: Shipping data: Plutonium neutron source, Work Order, Monsanto Chemical Company, Aug. 1961.
[25] T. J. Thompson, Estimate of cost of graphite machining, Internal Document, Massachusetts Institute of Technology, Apr. 1956.

Appendices

Appendix A

Experimental Results

A. 1 Indium Foil Properties

All foils were punched from two sheets of indium foil using the same 0.95 " punch. The thickness was measured near the center of each foil which was punched out with an Anytime Tools $0-1^{\prime \prime} 0.0001^{\prime \prime}$ micrometer, which was zeroed prior to use. The masses were measured using a Sartorius BP 160P analytical balance. The balance was capable of measuring to 0.1 mg for mass less than 30 g . These data are reported in table A.1.

A. 2 Foil Positions in Pile

The foils were placed in the foil stringers that run east to west. Numbering of the layers begins at 1 at the bottom layer. Positions within a layer begin at 1 on the far eastern side and go to 14 on the far western side. All position measurements are relative to the same datum, which is centered north to south, east to west, and is in the bottom plane of the lattice. X is east to west, Y is north to south, and Z is vertical. All times are measured in Eastern Daylight Time synchronized with internet time. Some measurements were based the author's watch's time which was synchronized to within 3 seconds of internet time the morning of the data collection. The source was inserted On May 4, 2018 at 12:05 PM. The foil positions in the pile are reported in table A. 2

Table A.1: Indium Foil Properties

Foil	Diameter (in)	Thickness (in)	Mass (g)
A	0.95	0.0097	0.7375
B	0.95	0.0096	0.7511
C	0.95	0.0092	0.7380
D	0.95	0.0096	0.7485
E	0.95	0.0099	0.7492
F	0.95	0.0096	0.7607
G	0.95	0.0095	0.7508
H	0.95	0.0094	0.7373
I	0.95	0.0099	0.7543
J	0.95	0.0100	0.7657
K	0.95	0.0096	0.7397
L	0.95	0.0110	0.7284
M	0.95	0.0110	0.7494
N	0.95	0.0099	0.7621
O	0.95	0.0096	0.7290
P	0.95	0.0099	0.7378
Q	0.95	0.0091	0.6770
R	0.95	0.0092	0.6886
S	0.95	0.0093	0.6953
T	0.95	0.0089	0.6805
U	0.95	0.0091	0.6994
V	0.95	0.0090	0.7111
W	0.95	0.0095	0.7192
X	0.95	0.0089	0.7044
Y	0.95	0.0102	0.7119
Z	0.95	0.0091	0.7213
AA	0.95	0.0093	0.7310
AB	0.95	0.0098	0.7233
AC	0.95	0.0101	0.7206
AD	0.95	0.0094	0.7307
AE	0.95	0.0101	0.7414
AF	0.95	0.0100	0.7367

Table A.2: Indium Foil Positions

Foil	Layer	Position	$\mathbf{X}[\mathbf{c m}]$	$\mathbf{Y}[\mathbf{c m}]$	$\mathbf{Z}[\mathbf{c m}]$	Finish Activation
A	5	1	-100.33	0	110.49	$5 / 7 / 201810: 30$
B	5	2	-85.725	0	110.49	$5 / 7 / 201810: 30$
C	5	3	-71.12	0	110.49	$5 / 7 / 201810: 30$
D	5	4	-56.515	0	110.49	$5 / 7 / 201810: 30$
E	5	5	-41.91	0	110.49	$5 / 7 / 201810: 30$
F	5	6	-27.305	0	110.49	$5 / 7 / 201810: 30$
G	5	7	-12.7	0	110.49	$5 / 7 / 201810: 30$
H	5	8	1.905	0	110.49	$5 / 7 / 201811: 57$
I	5	9	16.51	0	110.49	$5 / 7 / 201811: 57$
J	5	10	31.115	0	110.49	$5 / 7 / 201811: 57$
K	5	11	45.72	0	110.49	$5 / 7 / 201811: 57$
L	5	12	60.325	0	110.49	$5 / 7 / 201811: 57$
M	5	13	74.93	0	110.49	$5 / 7 / 201811: 57$
N	5	14	89.535	0	110.49	$5 / 7 / 201811: 57$
O	1	1	-100.33	0	36.83	$5 / 7 / 201815: 23$
P	1	2	-85.725	0	36.83	$5 / 7 / 201815: 23$
Q	1	3	-71.12	0	36.83	$5 / 7 / 201815: 23$
R	1	4	-56.515	0	36.83	$5 / 7 / 201815: 23$
S	1	5	-41.91	0	36.83	$5 / 7 / 201815: 23$
T	1	6	-27.305	0	36.83	$5 / 7 / 201815: 23$
U	1	7	-12.7	0	36.83	$5 / 7 / 201815: 23$
V	2	7	-12.3825	0	55.245	$5 / 7 / 201813: 23$
W	3	7	-12.3825	0	73.66	$5 / 7 / 201813: 22$
X	4	7	-12.7	0	92.075	$5 / 7 / 201813: 21$
Y	6	7	-13.0175	0	128.905	$5 / 7 / 201813: 20$
Z	7	7	-13.0175	0	147.32	$5 / 7 / 201813: 19$
AA	8	7	-12.7	0	165.735	$5 / 7 / 201813: 18$
AB	9	7	-12.3825	0	184.15	$5 / 7 / 201813: 17$
AC	10	7	-12.3825	0	202.565	$5 / 7 / 201813: 16$

A. 3 Foil Counting Data

All counts were taken using a Protean Instruments Corporation WPC 9550 automated gas flow proportional counter with an efficiency of: 42.6402327%. The counting data are reported in table A.3.

Table A.3: Indium Foil Counts

Foil	Count Start Time	Count End Time	Counts	Background Counts	Background count time (minutes)
A	5/7/2018 10:36	5/7/2018 10:38	115	9	10
A	5/7/2018 10:53	5/7/2018 10:55	76	9	10
A	5/7/2018 11:11	5/7/2018 11:13	72	9	10
A	5/7/2018 11:28	5/7/2018 11:30	48	9	10
AA	5/7/2018 13:30	5/7/2018 13:32	199	9	10
AA	5/7/2018 13:50	5/7/2018 13:52	165	9	10
AA	5/7/2018 14:10	5/7/2018 14:12	130	9	10
AA	5/7/2018 14:30	5/7/2018 14:32	95	9	10
AA	5/7/2018 14:50	5/7/2018 14:52	66	9	10
AB	5/7/2018 13:28	5/7/2018 13:30	146	9	10
AB	5/7/2018 13:48	5/7/2018 13:50	123	9	10
AB	5/7/2018 14:08	5/7/2018 14:10	94	9	10
AB	5/7/2018 14:28	5/7/2018 14:30	76	9	10
AB	5/7/2018 14:48	5/7/2018 14:50	51	9	10
AC	5/7/2018 13:25	5/7/2018 13:28	110	9	10
AC	5/7/2018 13:46	5/7/2018 13:48	80	9	10
AC	5/7/2018 14:06	5/7/2018 14:08	60	9	10
AC	5/7/2018 14:26	5/7/2018 14:28	66	9	10
AC	5/7/2018 14:45	5/7/2018 14:48	45	9	10
B	5/7/2018 10:38	5/7/2018 10:40	221	9	10
B	5/7/2018 10:56	5/7/2018 10:58	151	9	10
B	5/7/2018 11:13	5/7/2018 11:15	120	9	10
B	5/7/2018 11:31	5/7/2018 11:33	94	9	10
C	5/7/2018 10:40	5/7/2018 10:43	302	9	10
C	5/7/2018 10:58	5/7/2018 11:00	228	9	10
C	5/7/2018 11:15	5/7/2018 11:17	168	9	10
C	5/7/2018 11:33	5/7/2018 11:35	145	9	10
D	5/7/2018 10:43	5/7/2018 10:45	348	9	10
D	5/7/2018 11:00	5/7/2018 11:02	279	9	10
D	5/7/2018 11:18	5/7/2018 11:20	221	9	10
D	5/7/2018 11:35	5/7/2018 11:37	181	9	10
E	5/7/2018 10:45	5/7/2018 10:47	415	9	10
E	5/7/2018 11:03	5/7/2018 11:05	308	9	10
E	5/7/2018 11:20	5/7/2018 11:22	243	9	10
E	5/7/2018 11:38	5/7/2018 11:40	204	9	10
F	5/7/2018 10:48	5/7/2018 10:50	466	9	10
F	5/7/2018 11:05	5/7/2018 11:07	333	9	10
F	5/7/2018 11:23	5/7/2018 11:25	247	9	10
F	5/7/2018 11:40	5/7/2018 11:42	200	9	10
G	5/7/2018 10:50	5/7/2018 10:52	443	9	10
G	5/7/2018 11:07	5/7/2018 11:09	358	9	10
G	5/7/2018 11:25	5/7/2018 11:27	294	9	10
G	5/7/2018 11:43	5/7/2018 11:45	236	9	10
H	5/7/2018 12:16	5/7/2018 12:18	467	9	10
H	5/7/2018 12:34	5/7/2018 12:36	391	9	10
H	5/7/2018 12:51	5/7/2018 12:53	299	9	10
H	5/7/2018 13:09	5/7/2018 13:11	258	9	10
I	5/7/2018 12:14	5/7/2018 12:16	439	9	10
I	5/7/2018 12:31	5/7/2018 12:33	411	9	10
I	5/7/2018 12:49	5/7/2018 12:51	305	9	10
I	5/7/2018 13:06	5/7/2018 13:08	261	9	10
J	5/7/2018 12:11	5/7/2018 12:13	403	9	10
J	5/7/2018 12:29	5/7/2018 12:31	363	9	10
J	5/7/2018 12:46	5/7/2018 12:48	276	9	10
J	5/7/2018 13:04	5/7/2018 13:06	210	9	10
K	5/7/2018 12:09	5/7/2018 12:11	351	9	10
K	5/7/2018 12:26	5/7/2018 12:29	307	9	10
K	5/7/2018 12:44	5/7/2018 12:46	236	9	10
K	5/7/2018 13:02	5/7/2018 13:04	176	9	10
L	5/7/2018 12:06	5/7/2018 12:09	299	9	10
L	5/7/2018 12:24	5/7/2018 12:26	222	9	10
L	5/7/2018 12:42	5/7/2018 12:44	211	9	10
L	5/7/2018 12:59	5/7/2018 13:01	168	9	10
M	5/7/2018 12:04	5/7/2018 12:06	183	9	10
M	5/7/2018 12:22	5/7/2018 12:24	152	9	10
M	5/7/2018 12:39	5/7/2018 12:41	153	9	10
M	5/7/2018 12:57	5/7/2018 12:59	113	9	10
N	5/7/2018 12:02	5/7/2018 12:04	116	9	10
N	5/7/2018 12:19	5/7/2018 12:22	71	9	10
N	5/7/2018 12:37	5/7/2018 12:39	71	9	10
N	5/7/2018 12:55	5/7/2018 12:57	69	9	10
O	5/7/2018 15:27	5/7/2018 15:29	284	9	10

Table A.3: Indium Foil Counts

Foil	Count Start Time	Count End Time	Counts	Background Counts	Background count time (minutes)
O	5/7/2018 15:45	5/7/2018 15:47	198	9	10
O	5/7/2018 16:02	5/7/2018 16:04	145	9	10
O	5/7/2018 16:20	5/7/2018 16:22	137	9	10
P	5/7/2018 15:29	5/7/2018 15:32	514	9	10
P	5/7/2018 15:47	5/7/2018 15:49	434	9	10
P	5/7/2018 16:04	5/7/2018 16:07	324	9	10
P	5/7/2018 16:22	5/7/2018 16:24	253	9	10
Q	5/7/2018 15:32	5/7/2018 15:34	747	9	10
Q	5/7/2018 15:49	5/7/2018 15:51	666	9	10
Q	5/7/2018 16:07	5/7/2018 16:09	488	9	10
Q	5/7/2018 16:24	5/7/2018 16:26	396	9	10
R	5/7/2018 15:34	5/7/2018 15:36	1148	9	10
R	5/7/2018 15:52	5/7/2018 15:54	927	9	10
R	5/7/2018 16:09	5/7/2018 16:11	751	9	10
R	5/7/2018 16:27	5/7/2018 16:29	576	9	10
S	5/7/2018 15:37	5/7/2018 15:39	1282	9	10
S	5/7/2018 15:54	5/7/2018 15:56	1127	9	10
S	5/7/2018 16:12	5/7/2018 16:14	866	9	10
S	5/7/2018 16:29	5/7/2018 16:31	648	9	10
T	5/7/2018 15:39	5/7/2018 15:41	1448	9	10
T	5/7/2018 15:56	5/7/2018 15:59	1267	9	10
T	5/7/2018 16:14	5/7/2018 16:16	979	9	10
T	5/7/2018 16:31	5/7/2018 16:34	734	9	10
U	5/7/2018 15:41	5/7/2018 15:43	1924	9	10
U	5/7/2018 15:59	5/7/2018 16:01	1544	9	10
U	5/7/2018 16:16	5/7/2018 16:18	1259	9	10
U	5/7/2018 16:34	5/7/2018 16:36	1012	9	10
V	5/7/2018 13:42	5/7/2018 13:44	1272	9	10
V	5/7/2018 14:02	5/7/2018 14:04	903	9	10
V	5/7/2018 14:22	5/7/2018 14:24	736	9	10
V	5/7/2018 14:42	5/7/2018 14:44	576	9	10
V	5/7/2018 15:02	5/7/2018 15:04	499	9	10
W	5/7/2018 13:40	5/7/2018 13:42	864	9	10
W	5/7/2018 14:00	5/7/2018 14:02	668	9	10
W	5/7/2018 14:20	5/7/2018 14:22	561	9	10
W	5/7/2018 14:40	5/7/2018 14:42	425	9	10
W	5/7/2018 15:00	5/7/2018 15:02	329	9	10
X	5/7/2018 13:37	5/7/2018 13:40	654	9	10
X	5/7/2018 13:57	5/7/2018 14:00	522	9	10
X	5/7/2018 14:17	5/7/2018 14:20	382	9	10
X	5/7/2018 14:37	5/7/2018 14:39	296	9	10
X	5/7/2018 14:57	5/7/2018 14:59	234	9	10
Y	5/7/2018 13:35	5/7/2018 13:37	337	9	10
Y	5/7/2018 13:55	5/7/2018 13:57	280	9	10
Y	5/7/2018 14:15	5/7/2018 14:17	217	9	10
Y	5/7/2018 14:35	5/7/2018 14:37	163	9	10
Y	5/7/2018 14:55	5/7/2018 14:57	120	9	10
Z	5/7/2018 13:33	5/7/2018 13:35	246	9	10
Z	5/7/2018 13:53	5/7/2018 13:55	207	9	10
Z	5/7/2018 14:13	5/7/2018 14:15	159	9	10
Z	5/7/2018 14:33	5/7/2018 14:35	133	9	10
Z	5/7/2018 14:53	5/7/2018 14:55	116	9	10

The data above were entered into an Office Open XML (Excel) spreadsheet, which was then parsed and analyzed by a script written in Python3. The interpreted data of the uncorrected activity, and specific reaction rates are presented in table A.4.

Table A.4: Interpreted Activity Data

Layer	X Po- sition $[\mathrm{cm}]$	Y po- sition $[\mathrm{cm}]$	Z po- sition $[\mathrm{cm}]$	Net Counts	Uncorrect- ed Initial Activity [Bq]	$\begin{aligned} & \text { Uncorrect- } \\ & \text { ed Specific } \\ & \text { Reaction } \\ & \text { Rate }\left[g^{-1} s^{-1}\right] \end{aligned}$	Standard Deviation for reaction rate
1	-100.33	0	68.58	756.3	10114.9	3	0.4
1	-85.725	0	68.58	1517.3	20917	6	0.6
1	-71.12	0	68.58	2289.3	32454.2	10.2	0.9
1	-56.515	0	68.58	3394.3	49692.1	15.4	1.0
1	-41.91	0	68.58	3915.3	59068.7	18.1	1.0
1	-27.305	0	68.58	4420.3	68731.5	21.5	1.0
1	-12.7	0	68.58	5731.3	91830.5	27.9	2.0
2	-12.3825	0	86.995	3976.4	59109	17.7	2.0
3	-12.3825	0	105.41	2837.4	41324.3	12.2	1.0
4	-12.7	0	123.825	2078.4	29806.5	9	1.0
5	-100.33	0	142.24	303.3	4161.3	1.2	0.3
5	-85.725	0	142.24	578.3	8137.9	2.3	0.4
5	-71.12	0	142.24	835.3	12086.8	3.5	0.5
5	-56.515	0	142.24	1021.3	15293.4	4.3	0.6
5	-41.91	0	142.24	1162.3	17869.3	5.1	0.6
5	-27.305	0	142.24	1238.3	19623.4	5.5	0.6
5	-12.7	0	142.24	1323.3	21657.3	6.1	0.7
5	1.905	0	142.24	1407.1	21992.1	6.3	0.7
5	16.51	0	142.24	1408.3	22102.4	6.2	0.7
5	31.115	0	142.24	1244.3	18951.4	5.3	0.6
5	45.72	0	142.24	1062.3	15658.9	4.5	0.6
5	60.325	0	142.24	892.3	12832.6	3.7	0.5
5	74.93	0	142.24	593.3	8258.6	2.3	0.4
5	89.535	0	142.24	319.3	4313.3	1.2	0.3
6	-13.0175	0	160.655	1107.4	15593.8	4.7	0.7
7	-13.0175	0	179.07	851.4	11782.2	3.5	0.7
8	-12.7	0	197.485	645.4	8776.3	2.6	0.5
9	-12.3825	0	215.9	480.4	6433.5	1.9	0.5
10	-12.3825	0	234.315	351.4	4616	1.4	0.4

Appendix B

Graphite Pile Engineering Drawings

1
8 characters long.
Begins with an upper case letter
Begins with an upper case
May be prefaced with a "-"
$\not \subset 1.084 \pm 0.001$

UNLESS OTHERWISE SPECIFIED:	TITLE:		
dimenions are in inches RRACTIONALI 			
INTERPRET GEOMETRIC TOLERANCING PER:			
$\begin{aligned} & \text { MATERMU } \end{aligned} \& A I$	$\begin{aligned} & \text { SIZE DWG. NO. } \\ & \mathbf{A} \\ & \text { FUEL SLUG } \end{aligned}$		REV
do not scale drawing	SCALE: 1:1	SHEET 16 Of 13	

1. Radius of Fillet unkown.
2. All internal measurements and mass based on assumptions and calculations. Read section 3.3 for further details.

Appendix C

Graphite Purity Measurements

Samples of the graphite were taken and analyzed for their purity. Neutron Activation Analysis (NAA) was performed on one sample. This was completed at the MIT Nuclear Reactor Lab. These data are presented below.

Element	NAA Impurity by mass (ppm)	NAA 1σ uncertainty (ppm)
Na	0.36	0.01
Mg	<80	
Al	2.7	1.6
Cl	3.3	0.3
K	1.1	0.3
Sc	0.024	0.001
Ti	11	3
V	77	1
Cr	3.5	0.1
Mn	0.019	0.003
Fe	4.4	1.2
Co	<0.012	
Cu	<23	
Zn	<1.03	
As	0.026	0.001
Se	<0.11	
Br	0.046	0.003
Rb	<0.53	
Sr	4.9	0.8
Mo	0.022	0.004
Ag	<0.0105	
Sb	0.0060	0.0005
Cs	0.012	0.005
Ba	3.6	0.6
La	0.062	0.003
Ce	0.11	0.01
Nd	<0.23	
Sm	0.048	0.002
Eu	0.032	0.003
Tb	<0.0075	
Dy	0.008	0.001
Yb	0.014	0.001
Lu	0.001	0.000
Hf	0.013	0.003
Ta	<0.024	
W	0.004	0.001
Au	0.00017	0.00003
Hg	0.17	0.01
Th	0.030	0.004
U	<0.007	

Appendix D

Documents Pertaining to the Procurement of Graphite, and Neutron Sources

D. 1 Budget Modification to Allow for Purchase of 100 tons of Graphite for the MIT Reactor

```
T. Cantweli
Fing.4-103
Aprd1 6, }295
            Mesmris. C. Ro Soderberg
            H. Benediot
            E.R.EL1111and
            J.J. Sxyder
            2.J. Thompmon
SUBNkcr: Budget Modification to Allow for Purchase of 200 Tons of
            Graphlte for the HIM iseactor
```

The total cost of acquiring this material is estimated at \$12,000, with $\$ 6000$ for the graphite itself. The other 36000 covers shipping, packing, and supervision of shipping. Graphite has to be handied with extreme care to prevent breakage.
We have gotien quotes from two other sources; the AEC at hanford wants 44d per pound, and National Carbon's price 1/ 41-1/4 per pound. Investigation has Indicated that the Brookhaven material is as useful for our purposes as this higher-priced graphite.
Obtaining this surplus graphite from Broolchaven at 36 per pound will be a atroke of good fortune. Negotiations have been carried out quietiy, zince many other reactor projects could easlly use this material. To take advantage of this offer irom brookhaven, we ought to act as quicksy as possabie.
I hope that in the next Budget Comittee meeting 1t will be possible to comit funde to the purchase of this graphite.

```
```

 We have an opportunity to purehase 100 tons of re-
    ```
    We have an opportunity to purehase 100 tons of re-
actor grade graphite from Brookhaven at 3f per pound,
actor grade graphite from Brookhaven at 3f per pound,
while the goingswarket price 1s 42-444 per pound. This
while the goingswarket price 1s 42-444 per pound. This
graphite will be used in the reflector and thermal.
graphite will be used in the reflector and thermal.
colum of our reactor, and 200 tons is enough to allow
colum of our reactor, and 200 tons is enough to allow
us to dupllcate the Argomne CP-5 reactor desiga.
```

us to dupllcate the Argomne CP-5 reactor desiga.

```

TC:ENK
F. Centwell

\title{
D. 2 Letter authorizing the sale of 100 tons of graphite to MIT.
}

\title{
BROOKHAVEN NATIONAL LABORATORY ASSOCIATED UNIVERSITIES, INC.
}

UPTON, L.I., N. Y.
tel. PAtChogue 3-2600
xP
XP-11
\(\mathrm{CHK} / \mathrm{amh}\)

Apri1 5, 1955
```

Mr. T. Cantwell, Project Engineer
Department of Chemical Engineering
Massachusetts Institute of Technology
Cambridge 39, Massachusetts.
Dear Tom:
We have received permission from AEC by their letter dated March 30, 1955 to sell to you approximately one hundred (100) tons of graphite which is excess to the needs of the Laboratory at a cost of $.03 \phi$ per pound "as is" and "where is" with M.I.T. assuming all handling and transportation costs.
On the basis of our 'phone conversation today, we will not process any papers until some of your personnel have had the opportunity to visit Brookhaven and select from the items which are excess to our needs, the graphite which would be acceptable to you.

```


\section*{D. 3 Memo RR-26, Trip to Brookhaven to Inspect Graphite.}


\section*{D. 4 Quotation NE-2195-Revised}



\section*{D. 5 Estimate of Cost of Graphite Machining}



These Priec to hold ourplee

\[
\frac{931}{96 \frac{3}{2}}
\]
\[
\begin{aligned}
& 76 \frac{1}{2} \\
& 18 \frac{1}{4} \\
& \hline 65 \frac{1}{7}
\end{aligned}
\]

For Exponentiab pile.
1) Set bxsic pile Dimenscine

Cassume \(88^{\frac{1}{3}} \times 8\) 较 \(\times 8\) 年
 Pedectals 7 blochedeap.
2) Divide it into lenyth swish ue

3) Ont ull stingers to these Nimenciscs end drill ost 170 sbingers \(76 \frac{1}{2}\) "lory and 120 strengers \(3>\) s \(^{2}\) " Cory.
4) Anake i10 blochs slighty maler sover to , lide easily in others drell sut ces shorm

5) need one louen of frol lemy blon tienput fachatte.
1) cost ve shypime Tranturt
3) Dicul \(k\) job cost
4) Manumirn size of olocke that eno ledare 5)




\title{
D. 6 Letter to George A. Anderson on updated plans for graphite machinig
}

\(-2=\)
File
M HR org
1212.)

George A. Anderson S. V. Nicastro
MIT File Mad Masons M, ja
GRAPHEmES MACHLNLHO (MIT REACTOR)
1) Machining of graphite stringers will be started \(5-2-56\) at
National Carbon, Teat 127 th St. Itidison Ave., Cleveland, ohio.
a) 412 pos that will clean up to \(31 / 2^{\text {" }}\) on the marrow dimension. w111 be machined. The other two sides w121 be machined when National Carbon obtains additional
 information from ACF and Dx. Thomson. This informed. tron 18 E
2) Humber of pos to be mechtnod to \(1 \mathrm{al} 31 / 2^{\mathrm{n}} \times 3.3 / 2^{n}\) on
ind cross action (all the long pos should be used/rop
goscThoeval ( Column and Exponential 21108).
2) The remainder \(w i 12\) be machined to the largest
possible cross section \(\left(33 / 4^{\text {in }} \times 32 / 2^{\text {in }}\right)\) and \(\left(31 / 2^{\text {m }}\right.\)
a) Nee X possible \(3^{n 1}\) or \(3 \quad 2 / 2^{n}\) ).
11) waxtmun ehtp allowable on edges of stringer \(1 / 4^{\text {" }}\) deep \(x\) \(2 / 2^{11} 10\).

(Do not use a grinding wheel. Use a steel cutting tool nus for machining graphite.)
III) Hint sh of graphite stringer surface ole, as shown \(4-30=56\) to ACF representative and Dr. Thompson when they visited
2) the Ilational Carbon Company, oof.
Iv) Square off both ends? (Last operation)
v) Rlatneag The stringers wi ll be flat within 20 mils (come paring the upper face of the stringer lying on an optical SLat, with the optical flat, by mesne of gauge).
VI) The sides of the stringers will be perpendicular and not very from the perpendicular by more then 10 mila in 4 inches.
VII) Length of stringer - if ACF decides to have them out to a set length. Representative from ACE w112 notify National carbon. (See IV)

V115) Posaible delivery \(4-5\) montha (A carlond at a two w111 be shipped to ini\%.) S. ? NHeastro

Jx) Iaponeatial P1Lee:



Dia. of cyllader to be (Strelnger with holea \(31 / 2^{2} \times 31 / 2^{n}\) ) placed 12 these holee tia foroses seetlong \(21 / 4^{3}\) dia. holos \(12 / 16^{\prime \prime}\)
a) Use Longest atw Lager for pes \(31 / 2^{n} \times 31 / 2^{\text {m }}\) wh \(21 / 4^{\text {n }}\) da. hole bored through the iength. (340 pes wequired) (mor: peo required is length is less thin 48)

\(21 / 4^{\text {n }}\) dia. hole ohamber butt ends
b) Holes to have no step and to be coftered piut ow minus \(2 / 8^{6}\).
c) Removable stringer. (Dx. Thompson) (xin \(58.4-30016\)
x) paoking must be romd dust proof.
xI) Obtaln B12x of Ladlag. (Hact propechemf
XII) Hational Carbon mould ahe to quote on wtacking reetor graphite and outting al2 aeceseary holet.


 intheds
S. V. Nicastro
(Wa) Eancth as atuluces o
 caytame \{tos प8)

\section*{D. 7 Quotation NE6-1286 for Graphite Foil Stringer}



\section*{D. 8 Letter to Mr. H. N. Townsend.}


June 28, 1956

Mr. H. N. Townsend
National Caxbon Company
West 117 th Street and Madison Avenue
Cleveland, Ohlo
Dear Mr. Townsend:
I am writing to confirm our somewhat sketchy arrangements made by telephone this aftemoon conceming disposal of the graphite.
```

According to your statement, the entire stock of $31 / 2^{\text {II }}$ x $31 / 2^{\text {I }}$ cross section stringers will amount to approximately 225 pieces with lengths of $461 / 2^{11}$ or greater. In addition, there are about 225 pieces whose cross section is $33 / 4^{\prime \prime} x$ $31 / 4^{\prime \prime}$ with lengths greater than $4.6 \mathrm{I} / 2^{\text {II }}$. Also, there are approximately sixty pleces whose length is $461 / 2^{\prime \prime}$ or greater which have already been machined whose cross section is $33 / 4^{\prime \prime}$ x $31 / 2^{\prime \prime}$. From your statement it would appear that there do not exist any other stringers with these lengths and cross sections.
700 For the special pleces required by ACF and MIT a total of 940 long stringers are needed. These are split inta $440 \quad 300$ pieces with a cross section $31 / 2^{\text {II }}$ x $^{3} 31 / 2^{\text {II }}$ required by ACs for use in the themal colum, 400 pieces with a $11 / 4$ hole through the length of the pieces and $31 / 2^{11} x 31 / 2^{11}$ in cross section required by MIP for the exponential pile; 100epleces specially prepared for 'ramples required by MIT. It is clear that these requirements cannot be met by the long stringers presently avallable.

```

In view of tha situation, it is suggested that the following procedure by adopted:
(1) The sixty pieces which have already been machined ( \(3 \frac{1}{2} \times 3 \frac{3}{4} \times 46 \frac{1}{5}\) should be prepared as sample containing pieces for the exponential as per the sketch supplied earlier by National Carbon. with Ther hid F Neng 3/
You also stated today on the telephone that it still appears that approximately eighty percent of the stringers were sleaned up to a cross section

Mr. H. N. Towserd


June 28, 1956 most of \(31 / 2^{\text {m }} \times 33 / 4^{\text {" }}\). Apparently, none of these pieces have lengths between \(40^{\prime \prime}\) and \(42^{\text {\# . Please do not }}\) machine any further stringers in this form. The necessary requiroments for stringers with the \(11 / 4^{\text {m }}\) hole through the conter will have to be met from shorter stock. Required for this purpose will be 169 pleces ach 92 long. (This accounts for the 340 figure given previously for \(46^{\prime \prime}\) long stock.) The cross section of these pieces should be \(3 \mathrm{I} / 2^{\text {un }}\) x \(31 / 2^{11}\).
(2) Thirty pieces are required each of which must be \(92^{\prime \prime}\) long. The oross section of these pleces may be \(33 / 4^{\prime \prime} \times 31 / 4^{\prime \prime}\).
(3) In the case of all stringers containing the \(11 / 4^{14}\) hole, the stringers will be faced off at one end only (the and from which the hole is drilled in order to insure oentering as near as possible) and a taper sunk at this point so as to insure that one inch diameter elght inch long fuel slugs will slide easily from one section to the next. These pleces will be cut to length at MTT and a taper put on the other end of the hole as required. The pieces should be made from as long a stock as possible, but not including any stock which can be used by ACP for their special \(31 / 2^{n} \times 31 / 4^{n}\) themal column stock.
(4) The \(225^{\prime} 31 / 2^{\prime \prime} \times 31 / 2^{n} \times 46^{\text {B }}\) pleces now avallable w111 be turned over to ACF for thermal column use. All of the remaining longest stock will be turned over to ACF to help with the construction of the thermal column. A real effort should be made to find sufficient stock which can be trimmed to \(31 / 2^{\text {n }}\) I \(31 / 2^{\prime \prime}\) so that the entire themal column requirements of ACF can be met.
(Aside to ACP: In no case should stock other than \(31 / 2^{n} \times 3 \cdot 1 / 2^{\text {th }}\) in oross section be used in the thermal column above the bottom edge of the lowest port. Briefly, the entire thermal column should still be made from \(31 / 2^{\text {m }} \times 31 / 2^{\text {II }}\) stock.)

It is our hope that the cost on the graphlte machining can be maintained at the lowest possible price. We realize the difficulties you have encountered on this job and very much appreciste your help and assistance in regard to its

completion, Please feel free to call or write at any time. In order to insure accord on this problem, I an sending a copy of this letter to Mr. Micastro and to George Anderson at ACP Industries.

Thank you very much.
\[
\begin{aligned}
& \text { Sincerely yours, } \\
& \text { T. J. Thompson } \\
& \text { Director, MIT Reactor project }
\end{aligned}
\]
```

TJT:sm
co: Mr. Anderson
Mr. NLoastro

```

\title{
D. 9 MIT Graphite Machining, Trip to National Carbon Co., Cleveland, Ohio, July 10,1956
}

\author{
Nuclear Energy Products Division Mitr graphte \\ 
}

July 11,1956 and atock other than \(3-1 / 2^{*}\)
\(\times 3-2 / 2^{u}\) in croos soction be uaed in the thormal colum ahove tho bottons odge of the zevest port. Rriefly, the MEMORANDUM ontire thermal colums should stil2 be made tran \(3-1 / 2^{4}\) Re: MIT Graphite Machining
(Trip to National Carbon Co. \(341 / 2\) Cleveland, ohio, July 10,1956 ) \(3-3 / 4\) " \(x 3^{n}\) or \(3-3 / 4\) " \(x 2-1 / 2^{2}\) untr issod,
(1) All available pieces up to 100 pieces that measure \(3-3 / 4^{n} \times 3-1 / 2^{n}\) over \(46^{n}\) long which have already been machined will be spectally prepared for foll samples for the exponential pile as per following sketch:


One end only on these bloeks will be trimed. \(z 24-1 / 2^{n} 20 \mathrm{~ns}\).
(2) The necessary requirements for stringers with the 1-1/4" hole through the center will have to be met from shorter stock. Required for this purpose will be 169 pieces each \(92^{\prime \prime}\) long. (This accounts for the 340 figure given previously for \(46^{\prime \prime}\) long stock.) The cross section of these pleces should be \(3-1 / 2^{n} \times 3-1 / 2^{n}\).

In the case of all stringers containing the \(1-1 / 4_{4}\) bole, the stringers will be faced off at one end only (the end from which the hole is drilled in order to insure centering as near as possible) and a taper sunk at this point so as to insure that one inch diameter eight inch long fuel slugs will slide easily from one section to the next. These pieces will be cut to length at MIT and a taper put on the other end of the hole as required. The pieces should be made from as long a stock as possible, but not including any stock which can be used by \(A C R\) for their special \(3-1 / 2^{n} \times 3-1 / 2^{n}\) thermal column stock.
(3) Thirty pieces containing the \(1-1 / 4^{n}\) diameter hole are required each of which must be \(92^{\prime \prime}\) long or longer. The eross section of these pieces may be \(3-3 / 4^{n} \times 3-1 / 4^{n}\). The 225 pieces \(46^{\prime \prime}\) long or longer can be used to supply this stock. They w1il be finished at one end and tapered as in (2).
(4) The \(2253-1 / 2^{\prime \prime} \times 3-1 / 2^{\prime \prime} \times 46^{\prime \prime}\) pleces now available will be turned over to ACF for thermal column use. All of the remaining longest stock will be turned over to ACF to help with the acl Dr. Fas. monpson G.A, inderson B. Barnet
construction of the thermal column. A real effort should be made to find sufficient stock which can be trimmed to \(3-1 / 2^{10} \times 3-1 / 2^{11}\) so that the entire thermal column requirements of ACF can be met.
(Aside to ACF: In no case should stock other than \(3-1 / 2^{\prime \prime}\) \(x 3-1 / 2^{\prime \prime}\) in cross section be used in the thermal column above the botton edge of the lowest port. Briefly, the entire thermal colum should still be made from \(3-1 / 2^{\prime \prime}\) x \(3-1 / 2^{n}\) stock.)
(5) The remalnder of the stock w111 be cleaned up to \(3-1 / 2^{n} \times 3-3 / 4^{n}\) or \(3-3 / 4^{n} \times 3-1 / 4^{n \prime}\) or \(3-3 / 4^{n \prime} \times 3^{\prime \prime}\) or \(3-3 / 4^{n \prime} \times 2-1 / 2^{n}\) using the largest possible cross section, and the ends will be left untrimmed.
(6) The following additional graphite stringers will be machined as follows:
(a) 85 pleces, \(3-1 / 2^{n} \times 3-1 / 2^{n} \times 46^{\prime \prime}\) long will be made from shorter length pleces. (Made from two short pieces with a minimum length of any one plece to be \(22^{\prime \prime}\).) Examples one pe. \(3^{4{ }^{11}}\) long and one plece \(12^{n}\) long.
(b) 61 pleces, \(3-1 / 2^{n} \times 3-1 / 2^{\prime \prime} \times 2^{4}-1 / 2^{\text {t }}\) long.

(d) 22 pieces, \(3-1 / 2^{n} \times 3-1 / 2^{n} \times 14^{n}\) long.
(e) 81 pieces, \(3-1 / 2^{n} \times 3-1 / 2^{n} \times 11^{n \prime}\) long.
*Note: Item (6), ( ( \()\), (b), (c), (d), and (e) will be made from the nearest size stringer to give the desired length stated or any two sizes will be made by a combination of leng ths to minimize graphite waste.
(7) Machining waste for National Carbon Company standard \(4-3 / 16^{\prime \prime}\) sq. stringer is approximately \(3 \%\).
(8) Machining waste for the MIT (Brookhaven) graphite is approximately \(18-20 \%\).
\[
\begin{aligned}
& \text { S.V. Nicastro } \\
& \text { co. Drecaete } \\
& \text { C. ToJ. Thompson } \\
& \text { G.A.Anderson } \\
& \text { E. Barnett }
\end{aligned}
\]

\section*{D. 10 Work Order 6711-5: Shipping Data: Plutonium Neutron Source}
0.582

Rev 1.29 .59

SHIPPING DATA
PLUTONIUM NEUTRON SOURCE

\section*{Monsanto Chemical Company}

Mound Laboratory Mramisburg, Ofro

type of source - PuBe
grams of be . 7.92
grams of pu . 16.03
container material Tantalum and stajuless steel

method of sealing - welded
NEUTRON EMISSION \(1.63 \times 10^{6} \mathrm{~N} / \mathrm{SEC}\)
8. tolerance distance in air for 8 hours. 21 inches
(BASED ON \(\mathrm{X} / \mathrm{SEC} / \mathrm{CM}^{2}\) )
55
SHipping container is a paraffinefilled 15 gallon drum
source(s) is in a slot at the bottom of a paraffinofilled tube which may be lifted after removing the sealed Closure of the drum.
\begin{tabular}{ll} 
price of source \(\ldots \ldots \ldots \ldots \ldots \ldots \ldots\) & Recanned \\
plus cóst of shipping container \(\ldots \ldots \ldots\) & No Charge \\
\hline
\end{tabular}

U.S.GOVERNMENT CONTRACT NO. AT-33-1-GEN-53



\section*{Appendix E}

\section*{Data Analysis Scripts}

\section*{E. 1 Data Parser And Plotting Script}
data/foilDataParser.py
```

\#!/ bin/python3
Copyright 2018 Micah Gale
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions.
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software
THE SOFTWARE IS PROVIDED "AS IS ", WITHOUT WARRANTY OF ANY KIND
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE
import xlrd
import csv
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats \#for the linear regression
from scipy.optimize import least_squares \#regression
import math
\#internal API
from dataStruct import position, foil, count, DAY_TO_SEC
Parser object that just parses all of the positions with foils
and counts
class foilExper():
A class for parsing foil activation excel filesi
@param Name- the filename of the .xlsx file
def
___init___(self, Name)
self.book=xlrd.open_workbook(filename=Name)
self.foil=
self.parse()
Discovers all foils and creates an internal array of foils
def parseFoils(self):
if (self.foil==',): \#if foilMass isn't set populate it
\#pulls out the excel sheet with the foil properties
sheet=self.book.sheet_by_name('foilData')

```
```

 #pulls out the header row and searches for the right columns
 #makes it tolerant to people moving around columns
 headers=sheet.row (0)
 maxR= sheet.nrows #get the number of rows
 massCol=foilExper.findColumn(headers,'Mass')
 foilCol=foilExper.findColumn(headers,', Foil')
 thickCol=foilExper.findColumn(headers,' Thickness')
 self.foil={}
 for i in range(1,maxR):
 #add all of the foil masses to the dictionary
 #TODO actually care about the materials which are used
 buffer=foil('In', sheet.cell(i, thickCol).value, sheet.cell(i,massCol).value)
 #parses the foil object properties
 self.foil[sheet.cell(i, foilCol).value]=buffer
 Parses the counts data, and stores them inside the appropriate foils
def parseCounts(self):
sheet=self.book.sheet__by__name('CountData')
headers=sheet.row (0) \#get the header row
\#finds the columns which are desired.
foilCol=foilExper.findColumn(headers,' Foil')
startCol=foilExper.findColumn(headers,'Count\sqcupStart')
endCol=foilExper.findColumn(headers, 'CountbEnd')
countCol=foilExper.findColumn(headers, 'Counts',)
bgCol=foilExper.findColumn(headers,'Background')
bgTimeCol=foilExper.findColumn(headers,'BG_TIME')
end=sheet.nrows
\#parses the data
for i in range(1, end):
if(sheet.cell(i, foilCol).value!=',): \#if an actual data row
buffer=count(sheet.cell(i, startCol).value, sheet.cell(i, endCol).value,
sheet.cell(i, countCol).value, sheet.cell(i, bgCol).value,
sheet.cell(i, bgTimeCol).value)
\#add the counts to the appropriate foil
self.foil[sheet.cell(i, foilCol).value].addCount(buffer)
Parses the position data. Adds foils to appropriate positions.
def parsePosition(self):
sheet=self.book.sheet_by__name('PositionData')
header=sheet.row(0)
foilCol=foilExper.findColumn(header, 'Foil')
layerCol=foilExper.findColumn(header,,'Layer')
posCol=foilExper.findColumn(header,',Position'')
endCol=foilExper. findColumn(header, 'Finish
xCol=foilExper.findColumn(header, ' }\mp@subsup{X}{\sqcup}{}[\textrm{cm}]'
yCol=foilExper.findColumn(header, 'Y}[\textrm{cm}],')
zCol=foilExper.findColumn(header, ' Z
\#pulls out all of the layer numbers
\#finds the max one and then useds that to initialize
\#the list of dictionaries
layers=[]
for cell in sheet.col(layerCol):
if(cell.ctype==2): \#if this cell is a number
layers.append(cell.value)
end= sheet.nrows
\#initializes the list with enough space to breath
self.positions=[{} for i in range(0, int (max(layers))+1)]
for i in range(1, end):
if(sheet.cell(i, foilCol).value!=','): \#if it isn't blank
foil=sheet.cell(i, foilCol).value
self.foil[foil].addEndTime(sheet.cell(i, endCol).value)
\#update the end of the irradiation for the foil
layer=int(sheet.cell(i, layerCol).value)
pos=int(sheet.cell(i, posCol).value)
X=sheet.cell(i, xCol).value
Y=sheet.cell(i, yCol).value
Z=sheet.cell(i, zCol).value
\#check for initialization
if layer not in self.positions or pos not in self.positions[layer]:
self.positions[layer][pos]= position(self.foil[foil],X,Y,Z)
\#if the object doesn't exist make it and add the foil
else
\#otherwise just pop the appropriate foil onto the stack
self.positions[layer][pos].addFoil(self. foil[foil])
Parses the start time for the experiment.
def parseStart(self):
garseStart(self):
sheet=self.book.sheet__by__name('ExperimentInfo')

```
    col=foilExper.findColumn(header,'TimeStamp')
    header=sheet.col(0)
    row=foilExper.findColumn(header,'Source
    self.start=sheet.cell(row, col).value*DAY_TO_SEC #caches the
    self.start=sheet.cell(row, col).val
,,,
Automatically parse all data
Runs:
parseFoils()
parseCounts()
parsePosition()
parseStart()
def parse(self)
    self.parseFoils()
    self.parseCounts()
    self.parsePosition()
    self.parseStart()
Pulls out the radial specific reaction rate data for a layer
@param layer the layer to examine
@return (pos,flux, sigma) Pos=position in x data
    flux=specific reaction rate
        sigma=uncertainty
def getRadData(self, level):
    row=self.positions[level] #pull out underlying dict
    size=len(row)
    pos=np.zeros(size)
    flux=np.zeros(size)
    sigma=np.zeros(size)
    pointer=0
    for key, val in row.items(): #iterate over the things
        try: #catches exception for unitialized object
            f(val.getCounts()>0): #tests that there is actual data aswell
                    pos[pointer]=val.X
                    ret=val.calcSpecRxRate(self.start)
                    flux[pointer]=ret [0]
                    sigma[pointer]=ret[1]
                pointer=pointer+1
        except NameError: #if uninit have no data and don't care
            pass
    return (pos,flux,sigma)
Plots the radial specific reaction rate for a given level
@param level the level at which to do the radial traverse
@param fileName the fileName to which to save the pdf do not include
extension
@param ax the subplot object. This allows you to combine plots on a
    figure
@param font the font specification for the axis labels
<https://matplotlib.org/api/matplotlib__configuration__api.html#matplotlib.rc>
@param save If true the plot will be saved to FileName
@param xAxisLabel If true will add a X axis Label
@param yAxisLabel if True will add y axis label. Usefule for making a
common label
@param title the title for the plot. Useful for combined plots
def plotRadial(self, level, ax, fileName=None, font={'family':'normal',
    'weight':'normal',
                        size' :18},save=True, xAxisLabel=True, yAxisLabel=True,title=','):
        ret=self.getRadData(level)
        ret=sely
        pos=ret[0]
        flux=ret[1]
    sigma=ret
    ax. errorbar(pos, flux, yerr=sigma, fmt='s', color='k', capsize= = 5)
    #add labels
    if(xAxisLabel):
        ax.set__xlabel(" Position }\sqcup\textrm{on}\sqcup\textrm{X}[\textrm{cm}]" ",** font
    if(yAxisLabel): #sets the yaxis
        ax.set_ylabel("Uncorrected Specific " "\
            "Reaction_Rate\n($\\eta\\phi\\Sigma_c/\\rho$)[$s^{-1}g`{-1}]$", ** font)
    plt.xlim((-105,105)) #statically sets the x-axis. Change for non-GEP
    ax.set_title(title,**font) #sets the title
    if(save):
        plt.savefig(fileName+'..pdf')
*
Gets the axial spec. reaction rate data for a specific position.
```

```
@param position the radial position to use
@return (pos, flux,sigma) pos=axial position in z
        flux=spec reaction rate
        sigma=uncertainty
def
    f getAxialData(self, position):
        size=len(self.positions)-1
        pos=np.zeros(size)
        flux=np.zeros(size)
        sigma=np.zeros(size)
        pointer=0
        for key, val in enumerate(self.positions): #iterate over the things
        if(val!={})
            if(val[position].getCounts ()>0):
                pos[pointer]=val[position].Z
                ret=val[position].calcSpecRxRate(self.start)
                flux[pointer]=ret[0]
                    sigma[pointer]=ret [1]
                pointer=pointer+1
        return (pos,flux, sigma)
,,
Plots the axial specific reaction rate for a given position
@param level the level at which to do the radial traverse
@param fileName the fileName to which to save the pdf do not include
extension
@param ax the subplot object. This allows you to combine plots on a
    figure
@param font the font specification for the axis labels
<https://matplotlib.org/api/matplotlib__configuration__api.html#matplotlib.rc>
@param save If true the plot will be saved to FileName
@param xAxisLabel If true will add a X axis Label
@param yAxisLabel if True will add y axis label. Usefule for making a
common label
@param If true will create a log-log plot else it will be lin-lin
@param title the title for the plot. Useful for combined plots
def plotAxial(self, position, ax, fileName=None, font={'family'':'normal',
            weight':'normal',
                'size':18}, save=True, xAxisLabel=True,
                yAxisLabel=True, logLog=False, title=''):
    ret= self.getAxialData(position) #gets axial data
    pos=ret[0]
    flux=ret[1]
    sigma=ret[2]
    #plot it!
    ax.errorbar(pos, flux, yerr=sigma,fmt='s', color='k', capsize=5)
    #turn on or off log-log
    if ( logLog):
        ax.set_yscale('log')
    # ax.set_xscale('log')
    #add x-label
    if(xAxisLabel):
```



```
    #add the y-labe
    if(yAxisLabel):
        ax.set_ylabel(" Uncorrected Specific!"\
            "Reaction }\checkmark\mathrm{ Rate \n($\\\eta \\phi\\Sigma_c/\\rho$ ) [$s`{-1}g`{-1}]$" ,** font)
    ax.set_title(title,** font)
    if (save):
        plt.savefig(fileName+".pdf")
Creates a csv table for viewing raw interpreted data
@param fileName the fileName to dump the data to
def writeTable(self, fileName):
    # open file for writing
    with open(fileName, 'w') as file:
        dumper=csv.writer(file)
        dumper.writerow (['Layer','X','Y','Z',' counts','$I__0$',',Reaction 
            ,'Error',,'Relative Error',])
            for key, layer in enumerate(self.positions): #iterate over layers
            if(layer!={}):
                for key2, pos in layer.items(): #iterate over all positions
                    X=pos.X
                    Y=pos.Y
                    Z=pos.Z
                counts=pos.getCounts()
```

```
                                    IO=pos.calcN0()
                                    rx=pos.calcSpecRxRate(self.start)
                                    if (counts>0)
                                    dumper.writerow([key,X,Y,Z, counts,IO[0],rx[0],rx[1],rx[1]/rx[0]])
Looks through the header row provided to find the desired column number
@param header an array of the column headers
@param target the string of the column that is desired
@return the column number
def findColumn(header, target):
    i=0
    for col in header:
            if(target in col.value):
            return i
        i=i+1
    return -1
```

, , ,
Represents an experimental Subcritical Pile
class subCritPile():
, , ,
Creates an object which isn meant to analyze foil data for a sub-crit pile
@param fileName the name of the xlsx file which contains the foil counts
@param a - the width of the pile in X in cm
@param b- the depth of the pile in Y in cm
@param c- the height of the pile in Z above the source plane in cm
def___init__(self, fileName, a, b, c) :
self.data=foilExper (fileName) \#loads the data in
self. $a=a$
self. $\mathrm{b}=\mathrm{b}$
self.c=c
, , ,
Goal function for sinh fit
@param g the paramaters [0]A [1]gamma
$y=A \sinh (\operatorname{gamma}(c-x))$
@param x xvalue
@param y actual y value of data
def goalSinh(self, g, x, y):
return $g[0] * n p . \sinh (g[1] *(\operatorname{self} . c-x))-y$
, , ,
Goal function for cos amplitude fit
@param g- the paramters [0]A
@param x x-value
@param y y-value from data
def goalCos(self, g, x,y):
return $g[0] * n p \cdot \cos (m a t h \cdot p i * x / s e l f . a)-y$
Calculates \gamma_\{ 1,1$\}$ stores to self.gamma
gamma [0] is amplitude of mode. gamma[1] is the \gamma
@param position the radial position to use
def calcFundGamma(self, position):
ret=self.data.getAxialData(position)
pos=ret [0]
flux=ret [1]
pointer $=0$
$\mathrm{x} 0=\mathrm{np}$. ones (2)
$\mathrm{x} 0=\left[\begin{array}{ll}10, & 0.02\end{array}\right]$
fit= least_squares (self.goalSinh, x0, args=(pos[2:], flux[2:]))
self.gamma=fit.x
fitFunc=fit. $x[0] * n p . \sinh (f i t . x[1] *(\operatorname{self} . c-p o s))$
\#\#\#\#Calculates $\mathrm{R}^{\wedge} 2$
y Bar=np. mean(flux) \#calculates mean y
SST $=0$ \#total sum squares
SSRes=0 \#residual sum of squares
for i in range (0, pos.size): \#iterate over all elements
$\mathrm{SST}+=(\mathrm{flux}[\mathrm{i}]-\mathrm{yBar}) * * 2$

```
            SSRes+=(flux[i]-self.goalSinh(fit.x, pos[i],0))**2 #sum residuals
    self.R2=1-SSRes/SST#saves r`2
Plots the axially fitted function on the given subplot
Note: pulls out self.gamma must be invoked after self.calcFundGamma
@param ax the subplot object for plotting the figure
@param printGamma- will print gamma value on the figure if true
def plotAxialFunc(self, ax, printGamma=True):
    x=np.linspace(0, self.c,100)
    if (printGamma) :
        title="$\\gamma_{ 1, 1} $=%.5f\n$R^2$=%.3f" %(self.gamma[1], self.R2)
        ax.text(200,30, title, fontsize=15)
    line=self.gamma[0]*np.sinh(self.gamma[1]*(self.c-x))
    ax.plot(x,line, color='k')
Calculates the Material Buckling, and the critical Reactor size
Note: uses self.gamma needs to be invoked after self.calcFundGamma
@return (Bm2,s) Bm2=B_m`2-material buckling, s=side length of critical
                                    reactor cube
def calcGeoBuckle(self, position):
    Bm2=(math.pi/self.a)}**2+(math.pi/self.b)**2-self.gamma[1]**
    s=np.sqrt(3)*math.pi/math.sqrt(Bm2)
    return(Bm2,s)
Fits the fundamental cosine to the data
@param layer -the layer to examine
@return the amplitude of the fundamental mode
def fitFundRadial(self, layer):
    ret=self.data.getRadData(layer) #pulls out the radial data desired
    x0=[1] #guess 1 first
    fit=least__squares(self.goalCos,x0, args=(ret[0],ret[1])) #fits data
    return fit.x[0] #return the amplitude
Plots the cosine fit on the given plot
@param ax the given subplot to print on
@param A the amplitude of the cosine from the fit before
def plotFundRad(self, ax,A):
    x=np.linspace(-self.a/2,self.a/2,100) #make dummy x
    line=A*np.cos(math.pi*x/self.a) #defines the line function
    ax.plot(x,line, color='k') #plots it
```


E. 2 Data Structures for Activity Calculations

data/dataStruct.py

```
#!/ bin/python3
Copyright 2018 Micah Gale
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software
```

```
THE SOFTWARE IS PROVIDED "AS IS ", WITHOUT WARRANTY OF ANY KIND
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE
S,,,
import math
#" constant" for converting days to seconds
DAY_TO_SEC=86400
MIN_TO_SEC=60 #const for minutes to seconds
Represents a single location in the pile. May contain multiple foils.
class position():
    @param foil a single foil object at this postion
    @param X position in x in cm
    @param y " "
    @param z " "
    def___init__(self, foil, X,Y,Z):
        self.foil=[foil]
        self. X=X
        self.Y=Y
    self. Z=Z
    Appends another foil to list of foils at position
    @param the new foil object
    def addFoil(self, foil):
    self.foil.append(foil)
    ,,,
    Calculates the total initial activity here.
    Sums over all foils
    def calcN0(self):
        NO=0
        sigmaAcum=0
        for foil in self.foil:
            ret=foil.calcNO()
            NO=NO+ret[0] #accumulates the total
            sigmaAcum=sigmaAcum+ret[1]**2 #add std dev in quadrature
        return (NO, math.sqrt(sigmaAcum)) #return tuple of value and std dev
    ,,,
    Calculates the specific reaction rate for this position.
    This should just be a pass through for a single foil position, but can
    handle multiple foils if neeeded. See foil.calcSpecRxRate() for math
    @param startAct- the start time of the foil activation in seconds.
    @return (rx,sigma) rx-the specific reaction rate
    def calcSpecRxRate(self, start):
        rx=0
        sigmaAcum=0
        for foil in self.foil: #iterate over all foils
            ret=foil.calcSpecRxRate(start)
            rx=rx+ret [0]
            sigmaAcum=sigmaAcum+ret[1]**2
    ,,, return (rx,math.sqrt(sigmaAcum))
    Just gets the total number of counts at positon
    Just gets the total number of 
    def getCounts(self):
        sum=0
        for foil in self.foil:
            sum=sum+foil.getCounts()
        return sum
    def___repr__(self):
        return self.__str___()
    def __str_,_(self):
        \out=
        for foil in self.foil.
            out=out+"\nFoil\sqcup"+str(i)+": " "+foil.___str___()
            i=i+1
        return out
```

```
,,,
Represents a single foil. Holds it properties and the counts which were taken
of it
,,,
class foil():
    @param mat- foil material
    @param thick-foil thicness
    @param mass-foil mass in g
    def ___init___(self,mat, thick,mass):
        self.mat=mat
        self.thick=thick
        self.mass=mass
        self.counts=[] #the child counts for this dohickey
        ,,,
    Adds the end time of the foil activation
    @param the foil activation end time in days
    def addEndTime(self,end):
    self.end=end *DAY_TO_SEC
    Adds a count object to the current foil
    @param a completely initialized count object
    def addCount(self, count):
    self.counts.append(count) #adds it to the array of counts
    ,,,
    Calculates the specific reaction rate [ s^-1g^-1](\phi\Sigma_c/ \rho)
    @param startAct- the starting time of the foil activation in seconds.
        Not the time of the start of counting!
    def calcSpecRxRate(self, startAct):
        NO=self.calcNO() #gets quasi initial activity
        #must init deccayConst in calcNO
        #lambda/(m*(1- e^(-lambda t))
        #t is the total time in seconds of the foil activation
        divider=(self.mass*(1-math.exp(-self.decayConst*(self.end-startAct))))
        multiplier=self.decayConst/divider
        rx=N0[0]*multiplier
        sigma=NO[1]*multiplier
        return (rx,sigma)
    ,,,
    Calculates the Initial activity of the activated foil.
    this isn't a true activity as the detector efficiency isn't factored in (
    Finds \eta N_0. Only gives meaningful data is the exact same detector
    setup is used for all foils
    def calcN0(self):
        #TODO switch from hardcoded half-lives
        self.halfLife=3257.4 #[s] half life for Indium 116-m from NuDat 2.7
        self.decayConst=math.log(2)/self.halfLife #calculate the decay constant
        counts=0
        denominator=0
        sigma=0
            for counter in self.counts: #iterate overr all counting sessions
                #retrieves counting cotribution for counting session
                ret=counter.getCountContribs(self.end, self.decayConst)
                counts=counts+ret [0]
                denominator=denominator+ret [2]
                sigma=sigma+(ret[1]/ret[2])**2
            if (counts>0):
                #completes the division of the accumulated sums
            activity=(counts)/denominator #[Bq]
            sigma=math.sqrt(sigma)
        else: #if no counts were taken say it was 0
            activity=0
            sigma=0
        return (activity,sigma)
    Gets the total counts
    @return the total counts detected
    def getCounts(self):
        sum=0
        for count in self.counts:
        sum=sum+count.counts
        return sum
```

```
def___repr___(self):
        return self. str
def str (self).
    out="Material: "+str(self.mat)+"\nThickness:""+str(self.thick)
    out=out+"\nMass: " + str(self.mass) +"\nEnd: " " str(self.end)
    i=0
    for count in self.counts
        out=out+"\nCount\sqcup"+str(i)+" : }\sqcup\mathrm{ " +count.___str___()
        i=i+1
    return out
,'
Represents a single counting session for a single foil.
class count ():
    Creates a new count object representing one contiguous counting session.
    @param start- the start time is days since some epoch. (Excel default)
                    Do not convert to seconds! Will be done internally
    @param end- the end time of the count. Same formatting as above
    @pararm counts - the number of raw counts
    @paramm bgCounts- number of background counts
    @param bgTime -length of background counting in minutes. Will convert
                to seconds
    def ___init__(self, start, end, counts, bgCounts, bgTime):
        global DAY_TO_SEC
        global MIN_TO_SEC
        self.start=start*DAY__TO_SEC
        self.end=end *DAY_TO_\overline{SEC}
        bgTime= bgTime*MIN_TO_SEC #converrts bg time to seconds
        #C__net=C__n-c__bg*t__cn/t__bg
        self.counts=counts-(self.end-self.start)*bgCounts/bgTime
        #calculates std dey
        #s__net=sqrt(s__n`2+(s__bg*t__cn/t__bg)^2)
        #s_net=sqrt(s_n 2+(s
        #this-simplifies to:
        #s__net=sqrt(C__n+C__bg*(t__cn/t__bg)^2
        self.sigma=math.sqrt(
                float(counts+bgCounts*((self.start-self.end)/bgTime)**2))
    def___repr__(self):
        return self.__str__
    def__str___(self):
        return_"Strart: " "+str(self.start) +" "End: " ")
                +str(self.end)+" Counts:"+str(self.counts)
    returns the data necessary to combine the counts to get an activity term
    The formula used is :
    N 0=(Sum(counts)*lambda) / (e^(-lambda*t 1)- - ( - (-lambda*t 2 ))
    @param endAct - the end of activation t__ in seconds and not days!!
    @param decayCNST- the decay constant lambda in s^-1
    @return touple (counts, sigma, exponential term)
    def getCountContribs(self, endAct, decayConst):
        #calculates
        #(e^(-L*t__1)-e^(-Lt__2))
        decay=math. exp(-decayConst*(self.start -endAct))
        decay=decay }-\mathrm{ math.exp(-decayConst*(self.end-endAct))
        return (self.counts, self.sigma, decay)
```


Appendix F

Fuel Slug Measurements

F. 1 Summary of Measurements

Total slugs in inventory: 1,288.
Total slugs with dimensions measured: 140 .
Total slugs with mass measured: 1,286 .

Table F.1: Summary of slug measurements made.

| Property | Units | mean | Std. Dev. | Maximum | Minimum |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Mass | grams | 2006 | 7 | 2026 | 1960 |
| Length | inches | 8.41 | 0.01 | 8.452 | 8.387 |
| Diameter | inches | 1.084 | 0.001 | 1.088 | 1.081 |

Note: " X " is not used in the serial numbers but the author used " X " to replace characters which were illegible in the serial numbers.

F. 2 Complete Slug data

| Serial Number | Mass (g) | Length (in) | Diameter (in) | Notes |
| :---: | :---: | :---: | :---: | :--- |
| B0771923 | 2010 | 8.420 | 1.083 | |
| B0172212 | 2006 | 8.401 | 1.088 | |
| D1371171 | 2005 | 8.452 | 1.084 | |
| B0672078 | 2008 | 8.421 | 1.084 | |
| D0470700 | 2002 | 8.405 | 1.085 | |
| 1471045 | 2008 | 8.405 | 1.084 | |
| D472257 | 2011 | 8.421 | 1.084 | has been dropped on one end |
| 1472200 | 2006 | 8.409 | 1.084 | |
| B1171998 | 2004 | 8.409 | 1.084 | |
| B1371488 | 2006 | 8.418 | 1.085 | |
| B1170799 | 2009 | 8.405 | 1.084 | |
| B1470458 | 2008 | 8.402 | 1.084 | |
| B0170300 | 2010 | 8.406 | 1.083 | small drop on one end |
| B14xxx59 | 2004 | 8.401 | 1.085 | part of serial number has been removed.
 Marked illegible 1 |
| B2070106 | 2017 | 8.415 | 1.085 | |
| B2071441 | 2010 | 8.398 | 1.083 | |
| D0xxxx57 | 2008 | 8.405 | 1.083 | part of serial number illegible. Marked illeg-
 ible 2 |
| B2070832 | 2005 | 8.408 | 1.085 | |
| B281781 | 2008 | 8.416 | 1.082 | |
| D0671299 | 2010 | 8.404 | 1.085 | |
| D1371071 | 1999 | 8.387 | 8.418 | 1.087 |

| Serial Number | Mass (g) | Length (in) | Diameter (in) | Notes |
| :---: | :---: | :---: | :---: | :---: |
| B0770725 | 2014 | 8.410 | 1.085 | |
| B0170636 | 2008 | 8.426 | 1.084 | |
| B2171519 | 2001 | 8.404 | 1.087 | |
| B1471132 | 2010 | 8.390 | 1.081 | |
| D0471132 | 2003 | 8.420 | 1.081 | |
| -L2265176 | 2017 | 8.422 | 1.085 | |
| -N2091687 | 2006 | 8.417 | 1.083 | |
| B2778041 | 2009 | 8.400 | 1.084 | |
| D0970113 | 1994 | 8.424 | 1.084 | |
| 2671446 | 2008 | 8.398 | 1.084 | |
| B1370963 | 2008 | 8.416 | 1.085 | |
| B0473035 | 2000 | 8.413 | 1.084 | |
| B2570267 | 2014 | 8.431 | 1.087 | |
| B2673275 | 2015 | 8.425 | 1.085 | |
| B1272487 | 2010 | 8.406 | 1.085 | |
| B2770413 | 2000 | 8.404 | 1.084 | |
| B1800803 | 2000 | 8.420 | 1.082 | |
| B1170787 | 2006 | 8.403 | 1.086 | |
| D0870414 | 1967 | 8.413 | 1.083 | |
| D207837 | 2003 | 8.407 | 1.082 | |
| B1472585 | 2010 | 8.417 | 1.084 | |
| B1872239 | 2007 | 8.422 | 1.084 | |
| -D2661234 | 2008 | | | alpha contamination. Taken from F9. Has pinhole near serial number. Possible contam source. Painted red near pinhole. |
| B2072930 | 2012 | | | alpha contamination. Taken from C4. Completely decontaminated by RP |
| B1271623 | 2004 | | | alpha contamination. Taken from J4. Completely decontaminated by RP. |
| xxx72496 | 2002 | 8.422 | 1.082 | marked illegible 3 |
| B2670940 | 2009 | 8.416 | 1.085 | |
| B0671319 | 1989 | 8.423 | 1.086 | |
| -L226514 | 2019 | 8.425 | 1.085 | |
| -L2266550 | 2020 | 8.421 | 1.087 | |
| B2773292 | 2004 | 8.397 | 1.085 | |
| x2773228 | 2011 | 8.406 | 1.082 | |
| 1370992 | 1994 | 8.404 | 1.085 | |
| B1271815 | 2007 | 8.409 | 1.085 | |
| D1170125 | 2000 | 8.413 | 1.083 | |
| D0871349 | 1989 | 8.401 | 1.082 | |
| B1172132 | 2009 | 8.398 | 1.085 | |
| B2070160 | 2010 | 8.412 | 1.086 | |
| B2870434 | 2015 | 8.420 | 1.087 | |
| B1871744 | 1988 | 8.410 | 1.085 | |
| B1470554 | 2013 | 8.425 | 1.085 | |
| B0671582 | 2008 | 8.411 | 1.086 | |
| -L226391 | 2013 | 8.399 | 1.084 | |
| B2073093 | 2003 | 8.421 | 1.085 | |
| B1572843 | 2010 | 8.415 | 1.083 | |
| B2070768 | 2010 | 8.402 | 1.083 | |
| B137215 | 2009 | 8.403 | 1.084 | |
| B2170838 | 2005 | 8.399 | 1.086 | |
| B7281447 | 2010 | 8.417 | 1.082 | |
| B2671574 | 2009 | 8.411 | 1.084 | |
| B1872215 | 1996 | 8.411 | 1.085 | |
| B2xx2104 | 2007 | 8.414 | 1.085 | Marked as illegible 4 |
| D1370855 | 2006 | 8.411 | 1.085 | |
| D2070815 | 2000 | 8.403 | 1.083 | |
| B2671816 | 2004 | 8.411 | 1.085 | |
| B2773202 | 2011 | 8.419 | 1.085 | |
| B1572329 | 2006 | 8.416 | 1.084 | |
| B0472594 | 2008 | 8.413 | 1.085 | |
| B0471997 | 2002 | 8.425 | 1.082 | |
| B0171710 | 2004 | 8.405 | 1.084 | |
| B1872254 | 2000 | 8.424 | 1.081 | |
| B1872007 | 2007 | 8.402 | 1.082 | |
| B0871581 | 1976 | 8.421 | 1.081 | |
| B1370250 | 2003 | 8.416 | 1.082 | |
| B0772939 | 2013 | 8.393 | 1.085 | |
| B1172252 | 2010 | 8.406 | 1.084 | |
| D0771068 | 2002 | 8.406 | 1.085 | |
| B1171166 | 2010 | 8.412 | 1.083 | |
| B177184 | 2004 | 8.418 | 1.086 | |
| B2771793 | 1999 | 8.391 | 1.082 | |
| B1370051 | 2004 | 8.413 | 1.083 | |
| B2670424 | 2002 | 8.404 | 1.085 | |
| B1972932 | 2010 | 8.402 | 1.084 | |
| D1571306 | 2000 | 8.436 | 1.083 | |
| B2770189 | 2007 | 8.396 | 1.084 | |
| B1572466 | 2008 | 8.405 | 1.086 | |
| B0170523 | 2016 | 8.408 | 1.083 | |
| B2770526 | 2008 | 8.396 | 1.084 | |
| -L2166534 | 2003 | 8.408 | 1.085 | |
| B1571808 | 2011 | 8.408 | 1.085 | |
| B1800492 | 1999 | 8.401 | 1.087 | |
| B0471819 | 2012 | 8.424 | 1.083 | |

| Serial Number | Mass (g) | Length (in) | Diameter (in) | Notes |
| :---: | :---: | :---: | :---: | :---: |
| -L2266545 | 2019 | 8.417 | 1.082 | |
| -L2266566 | 2019 | 8.402 | 1.086 | |
| B2172562 | 2011 | 8.408 | 1.084 | |
| B0671453 | 2007 | 8.419 | 1.085 | |
| B0771376 | 2004 | 8.410 | 1.085 | |
| B1473189 | 2008 | 8.391 | 1.084 | |
| B2772415 | 2010 | 8.405 | 1.082 | |
| B2874376 | 2015 | 8.395 | 1.083 | |
| D1470503 | 2007 | 8.417 | 1.085 | |
| B197272 | 2007 | 8.412 | 1.085 | |
| D0571615 | 2007 | 8.417 | 1.086 | |
| 50871605 | 2010 | 8.423 | 1.084 | |
| B2172516 | 2009 | 8.439 | 1.085 | |
| B1472072 | 2006 | 8.406 | 1.082 | |
| B1872911 | 2004 | 8.429 | 1.085 | |
| B2870720 | 2013 | 8.411 | 1.085 | |
| B1970888 | 2004 | 8.413 | 1.083 | |
| B1872358 | 2004 | 8.412 | 1.085 | |
| B0570448 | 2005 | 8.400 | 1.086 | |
| B1500833 | 1996 | 8.409 | 1.085 | |
| B1272184 | 2014 | 8.417 | 1.085 | |
| xxxxxxxx | 2010 | 8.401 | 1.084 | marked illegible 5 |
| B2770679 | 2000 | 8.397 | 1.084 | |
| D0870138 | 1992 | 8.399 | 1.083 | |
| -L2265105 | 2015 | 8.418 | 1.085 | |
| B12782280 | 2010 | 8.422 | 1.084 | |
| B2871216 | 2011 | 8.413 | 1.086 | |
| B207118 | 2009 | 8.420 | 1.083 | |
| B27721430 | 2011 | 8.411 | 1.085 | |
| B1800885 | 1969 | 8.401 | 1.082 | |
| B2772841 | 2004 | 8.414 | 1.085 | |
| D0871133 | 2007 | 8.425 | 1.085 | |
| D0870187 | 1995 | 8.399 | 1.083 | |
| B2170862 | 2003 | 8.411 | 1.084 | |
| B1871758 | 1995 | 8.411 | 1.085 | |
| B0570267 | 2009 | 8.415 | 1.086 | |
| B1570459 | 2011 | 8.409 | 1.085 | |
| B1370660 | 2008 | 8.420 | 1.083 | |
| B2070702 | 2009 | | | |
| B0171080 | 2009 | | | |
| B0173020 | 2003 | | | |
| B0171370 | 2008 | | | |
| B0670450 | 2009 | | | |
| B0472429 | 2012 | | | |
| B1870593 | 2006 | | | |
| -L2266522 | 2018 | | | |
| B1970420 | 2007 | | | |
| D0171281 | 2001 | | | |
| B2570443 | 2011 | | | |
| B2070184 | 2015 | | | |
| B1372056 | 2006 | | | |
| B077136 | 2009 | | | |
| B19771335 | 2009 | | | |
| B0472349 | 2012 | | | |
| B072220 | 2011 | | | |
| B0473129 | 2008 | | | |
| 2570186 | 2011 | | | |
| B1872418 | 2001 | | | |
| B1171806 | 2009 | | | |
| B2870634 | 2008 | | | |
| D1570113 | 2004 | | | |
| D1471015 | 2007 | | | |
| -L226655 | 2021 | | | |
| B2570115 | 2007 | | | |
| D0172080 | 2001 | | | |
| B2071938 | 2012 | | | |
| B1970657 | 2004 | | | |
| B1379288 | 2009 | | | |
| D1270621 | 2008 | | | |
| B1971310 | 2009 | | | |
| B0770120 | 2009 | | | |
| D0165822 | 2003 | | | |
| D0570746 | 2005 | | | |
| B2570468 | 2008 | | | |
| B1773078 | 2006 | | | |
| D1471504 | 1997 | | | |
| B2772363 | 2004 | | | |
| D1471002 | 2008 | | | |
| B2670332 | 2015 | | | |
| 2670305 | 2007 | | | |
| D0172875 | 1985 | | | |
| B1800119 | 1993 | | | |
| B2579248 | 2015 | | | |
| B2172238 | 2005 | | | |
| Bxx7x552 | 2003 | | | marked illegible 6 |
| B1171105 | 2011 | | | |

| Serial Number | Mass (g) | Length (in) | Diameter (in) | Notes |
| :---: | :---: | :---: | :---: | :---: |
| D3070225 | 2006 | | | |
| B1573084 | 2016 | | | |
| B01772589 | 2009 | | | |
| B1800462 | 1995 | | | |
| B2170459 | 2011 | | | |
| D16770206 | 2003 | | | |
| B1800300 | 1997 | | | |
| A2971893 | 2011 | | | |
| B2672952 | 2009 | | | |
| B1271666 | 2006 | | | |
| B2776961 | 2007 | | | |
| B0671482 | 2010 | | | |
| B0172760 | 2008 | | | |
| B2771602 | 2010 | | | |
| B1471159 | 2011 | | | |
| B1872180 | 2001 | | | |
| A2970128 | 2009 | | | |
| B2671423 | 2008 | | | |
| D0870192 | 2004 | | | |
| B2770661 | 2011 | | | |
| D1470648 | 1999 | | | |
| B0173003 | 2007 | | | |
| B1572192 | 2000 | | | |
| B0172488 | 1998 | | | |
| D5731100 | 2010 | | | |
| B2872221 | 2010 | | | |
| B1872719 | 2014 | | | |
| B0770151 | 2014 | | | |
| B1970729 | 2009 | | | |
| K1853939 | 2011 | | | |
| D1371124 | 2004 | | | |
| D1171642 | 2006 | | | |
| D1471210 | 2004 | | | |
| B2570875 | 2011 | | | |
| 1471097 | 2007 | | | |
| B1472041 | 2010 | | | |
| A3170236 | 2007 | | | |
| 2873215 | 2004 | | | |
| B1871425 | 1992 | | | |
| B0770643 | 2007 | | | |
| B0679404 | 2003 | | | |
| -L223512 | 2019 | | | |
| B27628329 | 1995 | | | |
| -L216650 | 2000 | | | |
| -L2265118 | 2011 | | | |
| B2772501 | 2016 | | | |
| B1800649 | 2002 | | | was dropped on one end |
| B27714258 | 2002 | | | was dropped on both ends |
| D2471203 | 2004 | | | |
| D0570331 | 2012 | | | mild dings |
| B1472497 | 2009 | | | |
| B0771395 | 2008 | | | |
| B2570141 | 2006 | | | |
| B1570161 | 2008 | | | |
| B2570731 | 2010 | | | |
| B0770200 | 2007 | | | |
| B0670447 | 2014 | | | |
| B2172504 | 2013 | | | |
| B1972801 | 2015 | | | |
| B2571949 | 2008 | | | |
| B2870797 | 2005 | | | |
| A9070524 | 2001 | | | |
| D571859 | 2009 | | | |
| B2172836 | 2011 | | | |
| B2872972 | 2004 | | | |
| 1371541 | 2011 | | | has solder on serrial numbers |
| D1471099 | 2006 | | | |
| B1972849 | 2012 | | | |
| B1472871 | 2010 | | | |
| B1570348 | 2007 | | | |
| B2072162 | 2013 | | | |
| B217042 | 2007 | | | |
| B2878291 | 2013 | | | |
| D1170946 | 2005 | | | |
| B2570223 | 2015 | | | |
| D0671359 | 2003 | | | |
| D1470199 | 2008 | | | |
| B1172131 | 2007 | | | |
| B2171832 | 2013 | | | |
| B2772468 | 2007 | | | |
| D0177772 | 2002 | | | |
| B0670749 | 2001 | | | |
| B1171553 | 2015 | | | |
| B1972345 | 2011 | | | |
| D047459 | 2010 | | | |
| B1471241 | 2004 | | | |

| Serial Number | Mass (g) | Length (in) | Diameter (in) | Notes |
| :---: | :---: | :---: | :---: | :---: |
| B017140 | 2009 | | | |
| B2871463 | 2012 | | | |
| D0870130 | 1998 | | | |
| B2870273 | 2008 | | | |
| B0172356 | 2011 | | | |
| B0772683 | 2013 | | | |
| B0570424 | 2007 | | | |
| 11569059 | 2000 | | | also has second s/n:00362241 |
| B0771242 | 2008 | | | |
| B2670657 | 2009 | | | |
| B2770194 | 2011 | | | |
| B2771412 | 2006 | | | |
| -L2266532 | 2019 | | | |
| B2871201 | 2011 | | | |
| D14X243 | 2002 | | | |
| B1606449 | 1996 | | | |
| B0671889 | 2009 | | | |
| B1872234 | 2004 | | | |
| B0471085 | 2008 | | | |
| 1800389 | 1974 | | | |
| 20671993 | 2014 | | | |
| B0671174 | 2006 | | | |
| D1271379 | 2000 | | | |
| B2771948 | 2005 | | | |
| -L260368 | 2017 | | | Has multiple conflicting stamps. Marked il- legible 7 |
| B1970656 | 2006 | | | |
| B0671238 | 2004 | | | |
| B0671750 | 2008 | | | |
| B0571236 | 2008 | | | |
| D1570191 | 2006 | | | |
| B2672289 | 2013 | | | |
| B1972341 | 2008 | | | |
| -L226655 | 2016 | | | |
| B2671868 | 2010 | | | |
| D0470453 | 2008 | | | |
| D1674179 | 2006 | | | |
| B0572057 | 2010 | | | |
| D0670234 | 2004 | | | |
| B1471167 | 2007 | | | |
| B2670361 | 2002 | | | |
| D1170357 | 2001 | | | |
| B1800445 | 1973 | | | |
| B1470549 | 2004 | | | |
| B0673011 | 2011 | | | |
| B2672869 | 2008 | | | |
| D2070877 | 2008 | | | |
| 51472581 | 2006 | | | |
| D0171954 | 1999 | | | |
| B2570210 | 2011 | | | |
| B2770517 | 2014 | | | |
| D0571670 | 2006 | | | |
| B0872200 | 1986 | | | |
| D1470131 | 1993 | | | |
| D0670283 | 1998 | | | |
| B2570212 | 2010 | | | |
| B2670971 | 2010 | | | |
| B2770503 | 2005 | | | |
| B1912112 | 2005 | | | |
| D1374262 | 2003 | | | |
| B2670871 | 2008 | | | |
| B2073226 | 2010 | | | |
| B1872521 | 1993 | | | |
| A2373219 | 2005 | | | |
| B0571957 | 2006 | | | |
| B0772954 | 2009 | | | |
| D1370239 | 2007 | | | |
| B0470360 | 2005 | | | |
| B2571391 | 2008 | | | |
| B1372241 | 2005 | | | Has long gashes; burs on end |
| B1800813 | 2006 | | | |
| D0570729 | 2006 | | | |
| B1800474 | 2000 | | | |
| B2671478 | 2010 | | | |
| D1370658 | 2005 | | | |
| B2570246 | 2013 | | | |
| xx271910 | 1986 | | | |
| B0874120 | 1977 | | | |
| B1372002 | 2007 | | | |
| B1471499 | 2001 | | | |
| B0771955 | 2011 | | | |
| B1870786 | 2007 | | | |
| D0172513 | 2014 | | | |
| B1371942 | 2011 | | | |
| B1871949 | 1983 | | | |
| B2671850 | 2006 | | | |

| Serial Number | Mass (g) | Length (in) | Diameter (in) | Notes |
| :---: | :---: | :---: | :---: | :---: |
| B1972114 | 2003 | | | |
| B2071424 | 2013 | | | |
| B1372094 | 2013 | | | |
| B2570598 | 2011 | | | |
| B1970779 | 2011 | | | |
| B1371189 | 1998 | | | |
| D0171013 | 1998 | | | |
| B1872225 | 2000 | | | |
| B1271143 | 2005 | | | |
| x1170112 | 2004 | | | ILLEGIBLE 9 |
| B2570253 | 2008 | | | |
| B1571815 | 2013 | | | |
| B0670729 | 2013 | | | |
| B1X7X143 | 2004 | | | ILLEGIBLE 10 |
| B2672065 | 2011 | | | |
| K195134 | 2019 | | | |
| B2070422 | 2010 | | | |
| B2070174 | 2008 | | | |
| B1571187 | 2007 | | | |
| B0573075 | 2010 | | | |
| A0070996 | 1999 | | | |
| D017008 | 2011 | | | |
| B2672296 | 2007 | | | |
| -L226659 | 2018 | | | |
| B1272377 | 2010 | | | |
| B1970677 | 2014 | | | |
| -L216656 | 2010 | | | |
| -K3164032 | 2000 | | | |
| B1800312 | 2009 | | | |
| B170988 | 2013 | | | |
| B1872085 | 1982 | | | |
| D0172807 | 2001 | | | |
| D0870660 | 2001 | | | |
| B1600792 | 1996 | | | |
| B0472606 | 2006 | | | |
| B4372384 | 2010 | | | |
| B1171910 | 2006 | | | |
| B1872154 | 2000 | | | |
| D0571544 | 2004 | | | |
| B2570247 | 2006 | | | |
| D0879459 | 1997 | | | |
| 472069 | 2011 | | | BOTH ENDS BANGED UP |
| B1571921 | 2008 | | | |
| B2072615 | 2006 | | | |
| D0172600 | 2008 | | | |
| A3072416 | 2009 | | | |
| B1571483 | 2009 | | | |
| B2770224 | 2007 | | | |
| B0871072 | 1993 | | | |
| 91470164 | 2005 | | | |
| B2470431 | 2011 | | | |
| B2571946 | 2007 | | | |
| B0671270 | 2008 | | | |
| B1472592 | 2016 | | | |
| B2870968 | 2015 | | | |
| B271104 | 2011 | | | |
| 2770490 | 2010 | | | |
| B1472620 | 2013 | | | |
| B1572792 | 2011 | | | |
| B0770148 | 2006 | | | |
| D1370680 | 2003 | | | |
| B0171863 | 2010 | | | |
| B2770579 | 2004 | | | |
| D1371120 | 2004 | | | |
| A2970740 | 2017 | | | |
| A1573094 | 2015 | | | |
| B19731131 | 2011 | | | |
| B1572975 | 2012 | | | |
| B087252 | 2002 | | | |
| B0470608 | 2011 | | | |
| B2771073 | 2008 | | | |
| B1970456 | 2013 | | | |
| B1872671 | 2000 | | | |
| B0470854 | 2009 | | | |
| A0871703 | 1992 | | | |
| B2870220 | 2011 | | | |
| D171215 | 2010 | | | |
| B1572419 | 2010 | | | |
| B1573112 | 2008 | | | |
| B0573036 | 2011 | | | |
| B1572687 | 2010 | | | |
| B1372687 | 2004 | | | |
| B1870889 | 2011 | | | |
| B127145 | 2003 | | | |
| B2773229 | 2010 | | | |
| D0173072 | 2004 | | | |

| Serial Number | Mass (g) | Length (in) | Diameter (in) | Notes |
| :---: | :---: | :---: | :---: | :---: |
| A2972431 | 2011 | | | |
| B1370585 | 2017 | | | |
| D0670472 | 2004 | | | |
| B2572323 | 2015 | | | |
| 1872050 | 1986 | | | |
| B277050 | 2006 | | | |
| B0172172 | 2004 | | | |
| B1271794 | 2010 | | | |
| B1573233 | 2014 | | | |
| B1271096 | 2007 | | | |
| B1973084 | 2011 | | | |
| B1972179 | 2008 | | | |
| B1872224 | 2010 | | | |
| B0770692 | 2015 | | | |
| D036220 | 2004 | | | |
| B0472309 | 2011 | | | |
| B2770558 | 2000 | | | |
| B1472539 | 2015 | | | |
| B1271717 | 2008 | | | |
| B1970362 | 2000 | | | |
| B0872170 | 2003 | | | |
| B0671916 | 2010 | | | |
| B2070738 | 2012 | | | |
| B0670725 | 2015 | | | |
| D1570685 | 2004 | | | |
| B1470182 | 2007 | | | |
| B1273045 | 2008 | | | |
| B1471157 | 2013 | | | |
| B0871618 | 1997 | | | |
| B1471710 | 2008 | | | |
| D1871323 | 2007 | | | |
| B2570211 | 2011 | | | |
| D0171251 | 2007 | | | |
| B0671319 | 2008 | | | |
| B0573237 | 2003 | | | |
| B1800828 | 2004 | | | |
| -L226653 | 2020 | | | |
| D0770823 | 2004 | | | |
| B2572849 | 2011 | | | |
| B0572637 | 2010 | | | |
| B1500100 | 2007 | | | |
| 11569072 | 2000 | | | SECOND S/N: 0036X292 |
| -L1562750 | 2006 | | | |
| B1170816 | 2011 | | | |
| B1872596 | 2003 | | | |
| D1471039 | 2004 | | | |
| D2661237 | 2007 | | | |
| B1271004 | 1998 | | | |
| D1371031 | 2002 | | | |
| D671306 | 2005 | | | |
| B1271352 | 2009 | | | |
| B1370355 | 2009 | | | |
| B271548 | 2010 | | | |
| D0470733 | 2004 | | | |
| B1800883 | 1981 | | | |
| B1472687 | 2012 | | | |
| B2771371 | 2006 | | | |
| D0871316 | 1999 | | | |
| D0870145 | 1999 | | | |
| D0871306 | 1997 | | | |
| B0172524 | 1998 | | | |
| B1871391 | 2004 | | | |
| D1370924 | 2006 | | | |
| B1471120 | 2009 | | | |
| B1473192 | 2009 | | | |
| B1372794 | 2004 | | | |
| B1800354 | 1996 | | | |
| B147251 | 2014 | | | |
| D1471212 | 1996 | | | |
| B1973312 | 2009 | | | |
| B1571703 | 2009 | | | |
| D1170153 | 2006 | | | |
| B1671577 | 2007 | | | |
| -N2061689 | 2004 | | | |
| B150010 | 2012 | | | |
| B1270702 | 2009 | | | |
| B2771903 | 2011 | | | |
| B0172965 | 2001 | | | |
| A3071790 | 2002 | | | |
| B2170457 | 2010 | | | |
| -L2265164 | 2016 | | | |
| D0670432 | 2001 | | | |
| A2870158 | 2010 | | | |
| 50672150 | 2004 | | | |
| D0470816 | 2004 | | | |
| B26782603 | 2004 | | | |

| Serial Number | Mass (g) | Length (in) | Diameter (in) | Notes |
| :---: | :---: | :---: | :---: | :---: |
| B2670317 | 2007 | | | |
| 1371122 | 2002 | | | |
| B0672146 | 2008 | | | |
| B1472321 | 2014 | | | |
| B2671844 | 2005 | | | |
| B1270468 | 2013 | | | |
| D0770991 | 2001 | | | |
| D1370232 | 2004 | | | |
| B2570271 | 2011 | | | |
| B0472864 | 2007 | | | |
| B1872954 | 2000 | | | |
| D1471272 | 2005 | | | |
| B0672896 | 2005 | | | |
| B1970815 | 2004 | | | |
| B2171503 | 2010 | | | |
| D0770235 | 2004 | | | |
| B1872152 | 1996 | | | |
| B1472094 | 2004 | | | |
| D1471060 | 2007 | | | |
| B2870205 | 2008 | | | |
| D0571605 | 2003 | | | |
| 2070454 | 2002 | | | |
| B1800239 | 1980 | | | DINGS ON BOTH ENDS |
| B0570405 | 2009 | | | |
| D0172720 | 1989 | | | |
| B1572806 | 2011 | | | |
| B2670815 | 2011 | | | |
| D01471595 | 1997 | | | |
| B2170474 | 2013 | | | |
| B2670455 | 2012 | | | |
| B1270245 | 2012 | | | |
| B1371653 | 2001 | | | |
| D0870637 | 2000 | | | |
| -L2266595 | 2019 | | | |
| B1271743 | 2011 | | | |
| B2073203 | 2009 | | | |
| B1471265 | 1997 | | | |
| D0870427 | 1999 | | | |
| B0670219 | 2015 | | | |
| D0571602 | 2004 | | | |
| D0770844 | 2007 | | | |
| B2770199 | 2013 | | | |
| B2670851 | 2010 | | | |
| B0871109 | 1989 | | | |
| D0571086 | 2002 | | | |
| B1372458 | 2008 | | | |
| D1471234 | 2002 | | | |
| D0870452 | 1996 | | | |
| XXX70305 | 2009 | | | ILLEGIBLE 11 |
| B2873032 | 2009 | | | |
| B0172206 | 2008 | | | |
| B1273206 | 2006 | | | |
| B2670951 | 2011 | | | |
| B2670722 | 2006 | | | |
| B1872798 | 2002 | | | |
| B0872492 | 2002 | | | |
| -L2266571 | 2017 | | | |
| B0472393 | 2007 | | | |
| D0571015 | 2000 | | | |
| -N2001685 | 2005 | | | SECOND S/N: -A1164589 |
| B0772699 | 2010 | | | |
| B1571813 | 2011 | | | |
| D1371367 | 2002 | | | |
| D1371195 | 2006 | | | |
| B1970007 | 2008 | | | |
| D2070821 | 2002 | | | |
| B1372740 | 2011 | | | |
| D1571369 | 2004 | | | |
| B2070766 | 2009 | | | |
| B1472068 | 2009 | | | |
| B2078282 | 2010 | | | |
| B1970772 | 2011 | | | |
| B0571058 | 2000 | | | |
| B0772336 | 2008 | | | |
| B0773207 | 2008 | | | |
| B1871607 | 1997 | | | |
| B1872228 | 2008 | | | |
| D1470534 | 2003 | | | |
| B2851178 | 2010 | | | |
| B1972373 | 2007 | | | |
| B2170442 | 2002 | | | |
| D1472462 | 2009 | | | |
| B1472097 | 2005 | | | |
| B0172098 | 2010 | | | |
| B174098 | 2005 | | | |
| D0171794 | 2004 | | | |

| Serial Number | Mass (g) | Length (in) | Diameter (in) | Notes |
| :---: | :---: | :---: | :---: | :---: |
| B2771060 | 2010 | | | |
| B0772214 | 2008 | | | |
| B1872425 | 1992 | | | |
| B1670781 | 2009 | | | |
| B2070705 | 2007 | | | |
| B0772690 | 2005 | | | |
| D1370820 | 2004 | | | |
| B671365 | 2008 | | | |
| B1372913 | 2008 | | | |
| B2770554 | 2001 | | | |
| D0569273 | 2001 | | | |
| B0472377 | 2013 | | | |
| B2770591 | 2004 | | | |
| B0670629 | 2012 | | | |
| B2772533 | 2015 | | | |
| B1972621 | 2014 | | | |
| D1371372 | 2006 | | | |
| B1370855 | 2007 | | | |
| B0673176 | 2011 | | | |
| B0472883 | 2008 | | | |
| B1600417 | 1973 | | | |
| D0570402 | 2010 | | | |
| B1800362 | 1995 | | | |
| B1571810 | 2012 | | | |
| D1571305 | 2003 | | | |
| B1271590 | 2004 | | | |
| B2070495 | 2009 | | | |
| B1872411 | 1996 | | | |
| B1672340 | 1995 | | | |
| B1872060 | 1989 | | | |
| D0172059 | 1986 | | | |
| D1370819 | 2007 | | | |
| B2872297 | 2011 | | | |
| B1571857 | 2011 | | | |
| B1800195 | 2000 | | | |
| D0771026 | 1999 | | | |
| B2871329 | 2012 | | | |
| B1800605 | 1994 | | | |
| B1870462 | 2005 | | | |
| B0670436 | 2011 | | | |
| B1872119 | 2011 | | | |
| B0573262 | 2009 | | | |
| B1171650 | 2008 | | | |
| B0571317 | 2010 | | | |
| B1570665 | 2009 | | | |
| B1972471 | 2007 | | | |
| B2671892 | 2008 | | | |
| B0170735 | 2012 | | | |
| D0571682 | 2005 | | | |
| B1871659 | 1986 | | | |
| B2671324 | 2008 | | | |
| D0670961 | 1982 | | | |
| B9671597 | 2005 | | | |
| B1172227 | 1999 | | | |
| B1571223 | 2008 | | | |
| B1272848 | 2004 | | | |
| B1472717 | 1994 | | | |
| B1572525 | 2011 | | | |
| B0771334 | 2012 | | | |
| B0670449 | 2005 | | | |
| B0472694 | 2009 | | | |
| B0472422 | 2010 | | | |
| B2572381 | 2015 | | | |
| B1472155 | 2009 | | | |
| X1170168 | 2000 | | | ONE END DINGED UP |
| B2570554 | 2009 | | | |
| D0171224 | 1993 | | | |
| B2771694 | 2009 | | | |
| B2870429 | 2014 | | | |
| B2570291 | 2008 | | | |
| B1170197 | 2003 | | | |
| B0571681 | 2011 | | | |
| B0770818 | 2012 | | | |
| A3071713 | 2007 | | | |
| B2770598 | 2003 | | | |
| B1171566 | 2008 | | | |
| D0171022 | 2004 | | | |
| A5072433 | 2009 | | | |
| A2273426 | 1974 | | | |
| D0172742 | 2006 | | | |
| B1871502 | 1996 | | | |
| B1672399 | 2010 | | | |
| B1800341 | 1994 | | | |
| B0870100 | 1960 | | | |
| A2470129 | 2007 | | | |
| B0470388 | 2009 | | | |

| Serial Number | Mass (g) | Length (in) | Diameter (in) | Notes |
| :---: | :---: | :---: | :---: | :---: |
| D0171515 | 2000 | | | |
| -L226659 | 2013 | | | |
| D0570977 | 2005 | | | |
| D1170344 | 2004 | | | |
| D0770295 | 2004 | | | |
| B0573040 | 2008 | | | |
| B0470744 | 2004 | | | |
| D0871392 | 2006 | | | |
| D0670118 | 2003 | | | |
| B2772453 | 2009 | | | |
| B0471440 | 2009 | | | |
| B1800789 | 2008 | | | |
| -L226551 | 2018 | | | |
| B2571908 | 2008 | | | |
| A2173082 | 2008 | | | |
| B0572822 | 2011 | | | |
| B2770720 | 2003 | | | |
| 42170659 | 2007 | | | |
| B2570777 | 2012 | | | |
| D0172693 | 1999 | | | |
| B1470662 | 2004 | | | |
| D0770675 | 1999 | | | |
| D0172859 | 1972 | | | |
| B0575563 | 2008 | | | |
| B27703188 | 2004 | | | |
| B0171607 | 2009 | | | |
| 43172766 | 1999 | | | |
| B1970675 | 2004 | | | |
| B1372178 | 2009 | | | |
| D1471045 | 2003 | | | |
| B0170635 | 2008 | | | |
| B0570182 | 2010 | | | |
| B0170991 | 2012 | | | |
| B2871354 | 2014 | | | |
| B1572231 | 2006 | | | |
| B1872528 | 2000 | | | |
| D1471843 | 2008 | | | |
| B1800579 | 1972 | | | |
| -L226656 | 2018 | | | |
| B1872247 | 2005 | | | |
| B2570565 | 1999 | | | |
| B1172425 | 2007 | | | |
| B2770160 | 2008 | | | |
| B0873184 | 1997 | | | |
| B0171838 | 2010 | | | |
| D1371188 | 2006 | | | |
| 11568845 | 2001 | | | SECOND S/N: -00362238 |
| B1970949 | 2011 | | | |
| D1270670 | 2001 | | | |
| B1970307 | 2004 | | | |
| B2572169 | 2008 | | | |
| B1271594 | 2008 | | | |
| B2671218 | 2008 | | | |
| D1471225 | 2003 | | | |
| B19872177 | 1999 | | | |
| B1871303 | 2012 | | | |
| B2073052 | 2007 | | | |
| B047075 | 2010 | | | |
| A3072106 | 2000 | | | |
| B0470518 | 2010 | | | |
| B1970769 | 2013 | | | |
| B1970923 | 2011 | | | |
| A1873288 | 2006 | | | |
| -K2663043 | 2008 | | | |
| B1572345 | 2011 | | | |
| B1271003 | 1999 | | | |
| B2072661 | 2007 | | | |
| 1170196 | 2007 | | | |
| B1572088 | 2012 | | | |
| B1572948 | 2014 | | | |
| B1970666 | 2006 | | | |
| B1471116 | 2007 | | | |
| B2570844 | 2012 | | | |
| B1572878 | 2012 | | | |
| B1571211 | 2009 | | | |
| B2571995 | 2009 | | | |
| B2773051 | 2011 | | | |
| B1971720 | 2010 | | | |
| B2770698 | 2011 | | | |
| B1171288 | 2001 | | | |
| B2776676 | 2005 | | | |
| B1871598 | 1972 | | | |
| B0771448 | 2006 | | | |
| D0770254 | 2002 | | | |
| B1871563 | 2004 | | | |
| B1471591 | 2005 | | | |

| Serial Number | Mass (g) | Length (in) | Diameter (in) | Notes |
| :---: | :---: | :---: | :---: | :---: |
| -D0362267 | 2000 | | | SECOND S/N: L1569038 |
| B2672288 | 2003 | | | |
| D087352 | 1996 | | | |
| D0171279 | 2003 | | | |
| B0770119 | 2015 | | | |
| B1872505 | 1991 | | | |
| D1370839 | 2006 | | | |
| B1573150 | 2014 | | | |
| B1872078 | 2001 | | | |
| B2770952 | 2006 | | | |
| A7570541 | 2008 | | | |
| B0572109 | 2008 | | | |
| B2870203 | 2009 | | | |
| B1172476 | 2006 | | | |
| XXX70273 | 2009 | | | ILLLEGIBLE 12 |
| B0472338 | 2008 | | | |
| 0017-097 | 2000 | | | |
| B1271537 | 2004 | | | |
| B2770994 | 2005 | | | |
| D017154 | 2001 | | | |
| B2770853 | 2011 | | | |
| B1571100 | 2001 | | | |
| B1472088 | 2013 | | | |
| B0871915 | 1992 | | | |
| B01171930 | 2005 | | | |
| B0472767 | 2008 | | | |
| D1171505 | 2006 | | | |
| B1970070 | 2012 | | | |
| B1472756 | 1995 | | | |
| B2070467 | 2011 | | | |
| B2571944 | 2011 | | | |
| -D2565319 | 2007 | | | |
| B2076771 | 2011 | | | |
| B1970665 | 2008 | | | |
| B2070459 | 2005 | | | |
| B0872104 | 2001 | | | |
| D1170865 | 2005 | | | |
| B2770973 | 2010 | | | |
| B2171415 | 2011 | | | |
| B1971379 | 2012 | | | |
| B1871506 | 2004 | | | |
| D1471004 | 2006 | | | |
| B0870243 | 1970 | | | |
| B0472196 | 2011 | | | |
| B1371007 | 2005 | | | |
| B1470749 | 2007 | | | |
| B0672442 | 2010 | | | |
| B0474436 | 2010 | | | |
| B0572892 | 2011 | | | |
| -L2268404 | 2023 | | | |
| D1370282 | 2000 | | | |
| B1171827 | 2008 | | | |
| B0170950 | 2013 | | | |
| B0172949 | 2011 | | | |
| B0771840 | 2001 | | | |
| -D026223 | 2000 | | | |
| D0870492 | 1995 | | | |
| D1171563 | 2005 | | | |
| B2771355 | 2009 | | | |
| -D0362251 | 2001 | | | |
| D0871383 | 1997 | | | |
| B1470376 | 2002 | | | |
| B2771354 | 2008 | | | |
| B1472639 | 2008 | | | |
| B1971734 | 2007 | | | |
| B1800859 | 2000 | | | |
| B1800881 | 1983 | | | |
| -L2266559 | 2015 | | | |
| B1800743 | 1983 | | | |
| B1171231 | 2003 | | | |
| B1573161 | 2015 | | | |
| A2670279 | 2007 | | | |
| -L226511 | 2016 | 8.419 | 1.082 | |
| D1171537 | 2005 | | | |
| B1X7X192 | 2014 | | | ILLEGIBLE 13 |
| B1972034 | 2010 | | | |
| B2570252 | 2009 | | | |
| B1800466 | 1993 | | | |
| B0471778 | 2017 | | | |
| -L2266596 | 2019 | | | |
| B2770576 | 2005 | | | |
| B2071445 | 2011 | | | |
| D0470485 | 2008 | | | |
| B1471161 | 2008 | | | |
| B2570251 | 2010 | | | HAS AIR POCKETS IN AL |
| B1972558 | 2012 | | | |

| Serial Number | Mass (g) | Length (in) | Diameter (in) | Notes |
| :---: | :---: | :---: | :---: | :---: |
| D1271114 | 1999 | | | |
| B17572088 | 2010 | | | |
| B0872277 | 1989 | | | |
| B1800645 | 1994 | | | |
| B0771452 | 2008 | | | |
| B2070724 | 2013 | | | |
| a2971808 | 2012 | | | |
| B2772462 | 2004 | | | |
| B2773285 | 2011 | | | |
| B0871730 | 1980 | | | |
| B1271446 | 2008 | | | |
| B0870748 | 1983 | | | |
| B2772476 | 2011 | | | |
| B0471366 | 2006 | | | |
| B1872489 | 2002 | | | |
| B2171478 | 2013 | | | |
| B2771099 | 2008 | | | |
| D0172622 | 1998 | | | |
| B1572810 | 2013 | | | |
| B254x215 | 2008 | | | |
| A2171753 | 2010 | | | |
| B0571484 | 2004 | | | |
| A3173084 | 2010 | | | |
| B1471101 | 2008 | | | |
| B2070751 | 2009 | | | |
| B01673098 | 2012 | | | |
| B0571916 | 2013 | | | |
| B2770239 | 2001 | | | |
| B2571923 | 2006 | | | |
| D0172743 | 1991 | | | |
| B2670275 | 2012 | | | |
| B2070185 | 2008 | | | |
| B137129 | 2004 | | | |
| D0172174 | 2001 | | | |
| B0172589 | 2005 | | | |
| B0871205 | 2011 | | | |
| D0172864 | 2001 | | | |
| B1672074 | 1993 | | | |
| B0771793 | 2012 | | | |
| B1972479 | 2006 | | | |
| B1470827 | 2006 | | | |
| B1472099 | 2007 | | | |
| B28727896 | 2004 | | | |
| B2671628 | 2009 | | | |
| b2771524 | 2013 | | | |
| D0173052 | 1998 | | | |
| D1271137 | 2006 | | | |
| B2772426 | 2004 | | | |
| B2670005 | 2019 | | | |
| B2671487 | 2014 | | | |
| B1800676 | 1973 | | | |
| B0470105 | 2009 | | | |
| B2771762 | 2004 | | | |
| B2872287 | 2014 | | | |
| B0870189 | 1963 | | | |
| B0771047 | 2016 | | | |
| B1800855 | 1994 | | | |
| D1370286 | 2004 | | | |
| D0172587 | 1995 | | | |
| D0672069 | 2002 | | | |
| B2070799 | 2009 | | | |
| D0553558 | 2001 | | | |
| -L2266532 | 2016 | | | |
| B2873019 | 2004 | | | |
| B0171141 | 2010 | | | |
| D1871785 | 2001 | | | |
| D1571127 | 2002 | | | |
| B1272480 | 2009 | | | |
| A2971858 | 2005 | | | |
| B1970724 | 2005 | | | |
| B1572264 | 2013 | | | |
| B2871132 | 2015 | | | |
| B2772207 | 2009 | | | |
| -L2285112 | 2017 | | | |
| B1270564 | 2009 | | | |
| D0670586 | 2003 | | | |
| B207010X | 2014 | | | |
| B0872913 | 1994 | | | |
| D1271188 | 2011 | | | |
| B1572298 | 2017 | | | |
| D1270864 | 2005 | | | |
| B0870826 | 2010 | | | |
| B2771710 | 2011 | | | |
| B1372436 | 2009 | | | |
| D0171205 | 2007 | | | |
| B1170362 | 2006 | | | |

| Serial Number | Mass (g) | Length (in) | Diameter (in) | Notes |
| :---: | :---: | :---: | :---: | :---: |
| B3872522 | 2004 | | | |
| B1478129 | 2010 | | | |
| B2571926 | 2009 | | | |
| B1270838 | 2015 | | | |
| B1172196 | 2007 | | | |
| B1572851 | 2011 | | | |
| B2770382 | 2007 | | | |
| B0873264 | 2004 | | | |
| B1800679 | 2013 | | | |
| B2871911 | 2009 | | | |
| B1800403 | 1997 | | | |
| B1472842 | 2008 | | | |
| B2772470 | 2007 | | | |
| D1170008 | 2003 | | | |
| B1871388 | 1991 | | | |
| B0770670 | 2015 | | | |
| B0171518 | 2013 | | | |
| B1472136 | 2006 | | | |
| B2171501 | 2012 | | | |
| B0873208 | 2007 | | | |
| B0671683 | 2012 | | | |
| B2772877 | 2006 | | | |
| B2070868 | 2005 | | | |
| B2870082 | 2009 | | | |
| B0870148 | 1995 | | | |
| D0172134 | 2006 | | | |
| D1470821 | 2008 | | | |
| B2570234 | 2009 | | | |
| D0871381 | 1991 | | | |
| -L2205196 | 2017 | | | |
| B1471347 | 2006 | | | |
| B2073055 | 2011 | | | |
| B1472932 | 2008 | | | |
| -L2205133 | 2016 | | | |
| B1971729 | 2006 | | | |
| B2873087 | 2009 | | | |
| B1472516 | 2015 | | | |
| D0470712 | 2006 | | | |
| B2873057 | 2005 | | | |
| B0471156 | 2008 | | | |
| -L226652 | 2021 | | | |
| D1371327 | 2007 | | | |
| B2571582 | 2009 | | | |
| B2870417 | 2007 | | | |
| D1471061 | 2007 | | | |
| -L2266597 | 2020 | | | |
| B1672667 | 2001 | | | |
| D0870605 | 2004 | | | |
| B0172814 | 2004 | | | |
| B1272178 | 2014 | | | |
| B2770732 | 2011 | | | |
| D1271374 | 2006 | | | |
| B0770721 | 2017 | | | |
| B1970717 | 2014 | | | |
| B2270268 | 2004 | | | |
| B1472040 | 2012 | | | |
| D0670426 | 2000 | | | |
| B1800427 | 2000 | | | |
| A3071944 | 2008 | | | |
| A2570294 | 2010 | | | |
| D0670407 | 2007 | | | |
| B1272547 | 2009 | | | |
| -N1364X7 | 2015 | | | |
| B2773225 | 2014 | | | |
| D0570708 | 2011 | | | |
| D1370601 | 2004 | | | |
| D1671409 | 1994 | | | |
| B1800768 | 1987 | | | |
| B1572600 | 2013 | | | |
| B2572255 | 2011 | | | |
| B1172134 | 2013 | | | |
| B2870216 | 2010 | | | |
| B2570126 | 2010 | | | |
| D0172871 | 1996 | | | |
| -N2283325 | 2010 | | | |
| D0770535 | 2007 | | | |
| D1271164 | 2004 | | | |
| D1371359 | 2008 | | | |
| B2570474 | 2011 | | | |
| B1970625 | 2006 | | | |
| B1472656 | 2012 | | | |
| B2771795 | 1997 | | | |
| -L2266585 | 2015 | | | |
| B2570547 | 2006 | | | |
| B2872952 | 2006 | | | |
| B1472076 | 2008 | | | |

| Serial Number | Mass (g) | Length (in) | Diameter (in) | Notes |
| :---: | :---: | :---: | :---: | :---: |
| D0870477 | 2003 | | | |
| B0571436 | 2011 | | | |
| B2872809 | 2008 | | | |
| B2671402 | 2008 | | | |
| B2773082 | 2013 | | | |
| B0871460 | 1984 | | | |
| B2770959 | 2008 | | | |
| B0170183 | 2011 | | | |
| XXX70879 | 2010 | | | |
| D0870494 | 1989 | | | |
| B0472347 | 2013 | | | |
| -L2266567 | 2019 | | | |
| B0670985 | 2009 | | | |
| B0172013 | 2009 | | | |
| XXXX831 | 2010 | | | |
| B2670862 | 2008 | | | |
| B0572522 | 2012 | | | |
| B2670824 | 2015 | | | |
| B1570165 | 2015 | | | |
| B1872236 | 2003 | | | |
| B0672559 | 2011 | | | |
| B0672931 | 2011 | | | |
| B2570200 | 2015 | | | |
| B0570928 | 2008 | | | |
| B0770888 | 2013 | | | |
| h1570661 | 2012 | | | |
| B1571413 | 2002 | | | |
| B2070575 | 2010 | | | |
| B1972549 | 2012 | | | |
| B2670754 | 2011 | | | |
| A2571528 | 2012 | | | |
| B012741X | 2010 | | | |
| B1371332 | 2011 | | | |
| B0872379 | 2002 | | | |
| B2771461 | 2005 | | | |
| B2570447 | 2011 | | | |
| B171413 | 2008 | | | |
| A0571912 | 2011 | | | |
| B2771469 | 2007 | | | |
| B2672001 | 2004 | | | |
| B2171578 | 2008 | | | |
| B1371841 | 2008 | | | |
| D0671085 | 2004 | | | |
| B1871302 | 2011 | | | |
| X2770678 | 2001 | | | |
| D1470193 | 2006 | | | |
| SB2070444 | 2011 | | | |
| B2171508 | 2011 | | | |
| B1473067 | 2013 | | | |
| D1471254 | 2003 | | | |
| B0571250 | 2009 | | | |
| B1800320 | 1995 | | | |
| D1371102 | 1989 | | | |
| D0172857 | 1963 | | | |
| B2070752 | 2012 | | | |
| B0870304 | 2001 | | | |
| B2072993 | 2010 | | | |
| B2073231 | 2007 | | | |
| B0472557 | 2012 | | | |
| B0570446 | 2010 | | | |
| B1871101 | 2005 | | | |
| D1371310 | 2002 | | | |
| B0672606 | 2013 | | | |
| -L2366692 | 2004 | | | |
| B2873062 | 2006 | | | |
| B2770710 | 2012 | | | |
| B0671027 | 2004 | | | |
| B2572820 | 2010 | | | |
| B2571999 | 2011 | | | |
| B1571822 | 2011 | | | |
| B2673232 | 2015 | | | |
| B2171513 | 2012 | | | |
| B1471147 | 2011 | | | |
| B0771040 | 2001 | | | |
| B2572315 | 2019 | | | |
| B1970882 | 2006 | | | |
| B1572232 | 2011 | | | |
| D1570196 | 2008 | | | |
| -L2166100 | 2007 | | | |
| D3070880 | 2011 | | | |
| D1570119 | 2004 | | | |
| D1370119 | 2004 | | | |
| D1370639 | 2004 | | | |
| B2770632 | 2003 | | | |
| B2870280 | 2001 | | | |
| D0871706 | 1984 | | | |

| Serial Number | Mass (g) | Length (in) | Diameter (in) | Notes |
| :---: | :---: | :---: | :---: | :---: |
| B0572342 | 2011 | | | |
| A2270545 | 1996 | | | |
| -L2265158 | 2016 | | | |
| B2770166 | 2009 | | | |
| B1272979 | 2011 | | | |
| -L2266577 | 2019 | | | |
| B0871521 | 1993 | | | |
| B1371598 | 2008 | | | |
| B0471697 | 2008 | | | |
| B2770174 | 2011 | | | |
| B07171300 | 2006 | | | |
| B207148 | 2017 | | | |
| B1871122 | 2000 | | | |
| B1600993 | 1985 | | | |
| B0772541 | 2013 | | | |
| D0171082 | 2005 | | | |
| B1871910 | 1986 | | | |
| B2570576 | 2009 | | | |
| B1371785 | 2010 | | | |
| B2670328 | 2009 | | | |
| B2870613 | 2008 | | | |
| D0071317 | 2006 | | | |
| D0470883 | 2004 | | | |
| B2670736 | 2015 | | | |
| B0871716 | 2002 | | | |
| B1571497 | 2002 | | | |
| B0671847 | 2015 | | | |
| B2571961 | 2012 | | | |
| B0670425 | 2008 | | | |
| B1471151 | 2010 | | | |
| B2070466 | 2009 | | | |
| B2772799 | 2015 | | | |
| B2572909 | 2010 | | | |
| B0770544 | 2008 | | | |
| B1872426 | 1994 | | | |
| B207271X | 2009 | | | |
| B2672026 | 2011 | | | |
| D1470876 | 2006 | | | |
| B0571091 | 2007 | | | |
| B0971361 | 1997 | | | |
| -L1562740 | 2008 | | | |
| B2673249 | 2014 | | | |
| B0372004 | 2012 | | | |
| D2071440 | 2004 | | | |
| B0871611 | 1999 | | | |
| B2671057 | 2011 | | | |
| B2770198 | 2012 | | | |
| D1872930 | 2000 | | | |
| B1270259 | 2013 | | | |
| A3071217 | 2008 | | | |
| B2770793 | 2007 | | | |
| D1371397 | 1995 | | | |
| B1172080 | 2007 | | | |
| B1272308 | 2013 | | | |
| B1571029 | 2007 | | | |
| B1472230 | 2007 | | | |
| B1978340 | 2012 | | | |
| D1371084 | 2006 | | | |
| B2170475 | 2013 | | | |
| B187249X | 2004 | | | |
| B2773061 | 2009 | | | |
| B2271533 | 2007 | | | |
| B0572751 | 2011 | | | |
| B2572146 | 2012 | | | |
| B0570374 | 2012 | | | |
| A3770535 | 2008 | | | |
| -L2265117 | 2017 | | | |
| B2070790 | 2005 | | | |
| D1370241 | 2005 | | | |
| B1170668 | 2006 | | | |
| K1951338 | 2026 | | | |
| B1372442 | 2011 | | | |
| B1471130 | 2012 | | | |
| B2872040 | 2013 | | | |
| -L2266500 | 2016 | | | |
| D0670516 | 2007 | | | |
| A1472904 | 2018 | | | |
| B2070180 | 2011 | | | |
| B1570943 | 2016 | | | |
| B1873162 | 2000 | | | |
| B1872223 | 1996 | | | |
| -D026603 | 2000 | | | |
| B2872919 | 2007 | | | |
| B2573224 | 2019 | | | |
| -D2565355 | 2004 | | | |
| D1471226 | 2006 | | | |

| Serial Number | Mass (g) | Length (in) | Diameter (in) | Notes |
| :---: | :---: | :---: | :---: | :---: |
| B1570410 | 2013 | | | |
| B2572950 | 2013 | | | |
| A3071645 | 2011 | | | |
| B2507X0 | 2009 | | | |
| D2172246 | 2011 | | | |
| D1371343 | 2006 | | | |
| A3170605 | 2011 | | | |
| B2570796 | 2014 | | | |
| D1470641 | 2007 | | | |
| B1570254 | 2008 | | | |
| -L0165209 | 2000 | | | |
| D0870468 | 1984 | | | |
| B2770485 | 1999 | | | |
| B0370412 | 2012 | | | |
| B4XX0274 | 2012 | | | |
| B2771430 | 2011 | | | |
| B2673333 | 2014 | | | |
| D1370214 | 2003 | | | |
| B2671482 | 2008 | | | |
| -D0302282 | 2000 | | | second label: -001x0015 |
| B1571636 | 2011 | | | |
| B2770154 | 2002 | | | |
| D1270675 | 2005 | | | |
| B1471934 | 2011 | | | |
| D1470894 | 2007 | | | |
| B2270001 | 1991 | | | |
| B1800467 | 2000 | | | |
| B2872500 | 2011 | | | |
| B1571585 | 2001 | | | |
| B1371172 | 2013 | | | |
| B1371880 | 2008 | | | |
| B0473136 | 2012 | | | |
| B2572812 | 2009 | | | |
| B2070484 | 2010 | | | |
| B0172818 | 1981 | | | |
| B1972136 | 2008 | | | |
| A3172792 | 2010 | | | |
| A2971876 | 2011 | | | |
| -D1865331 | 2015 | | | |
| D0871390 | 1993 | | | |
| B2873006 | 2008 | | | |
| D1471215 | 2003 | | | |
| B1471846 | 2012 | | | |
| D0870471 | 2004 | | | |
| K1951816 | 2024 | | | |
| B0672447 | 2007 | | | |
| B18X2612 | 2001 | | | |
| B1371115 | 2007 | | | |
| X0470278 | 2007 | | | |
| B2771220 | 2008 | | | |
| B1572609 | 2015 | | | |
| B0670346 | 2004 | | | |
| B134XX41 | 2009 | | | |
| B1300158 | 2004 | | | |
| B2572366 | 2017 | | | |
| B0472131 | 2011 | | | |
| B1971968 | 2011 | | | |
| D0172178 | 2004 | | | |
| B1271947 | 2009 | | | |
| B0770939 | 2010 | | | |
| B1471814 | 2011 | | | |
| B0570826 | 2007 | | | |
| B0X72635 | 2006 | | | |
| B0473135 | 2008 | | | |
| B4871920 | 1999 | | | |
| | | | | |

