
Unlocking the potential of neural networks in resource and

data constrained environments

by

Otkrist Gupta

S.M., Massachusetts Institute of Technology (2012)

Submitted to the Program in Media Arts & Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Media Arts & Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

@ Massachusetts Institute of Technology 2018. All rights reserved.

Signature redacted
Author...............................

Progiram in Media Arts & Sciences,
School of Architecture and Planning,

May 4, 2018

Signature redacted
Certified by...

Ramesh Raskar
Associate Professor

Program in Media Arts & Sciences
Thesis Supervisor

Signature redacted-
A ccepted by

Tod Machover

Ac demic Head, Program in Media Arts and Sciences

MASSACHUSMTS INSTITUTE
OF TECHNOLOGY

JUN 27 2018

LIBRARIES
ARCHIVES

Unlocking the potential of neural networks in resource and data

constrained environments

by

Otkrist Gupta

Submitted to the Program in Media Arts & Sciences,
School of Architecture and Planning,

on May 4, 2018, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Media Arts & Sciences

Abstract

Data driven methods based on deep neural networks (DNNs) have ushered in a new era in

the field of machine learning computer vision. Conventional algorithmic approaches are be-

ing replaced by end-to-end deep learning systems that can leverage big data. Deep learning

has begun revolutionizing human centric fields such as health-care and finance, finding its

way into automated screening and diagnoses. At present, developing and training artificial

neural network architectures requires both human expertise and labor, requiring millions

of labeled data-points to train and hours of engineering effort to develop best performing

architectures.

In this dissertation, my goal is to make deep learning more accessible by develop-

ing algorithms for low shot learning (learning from a few examples). This work includes

new semi-supervised approaches to learn from unlabeled datasets with only a fraction of la-

beled examples, deep learning methods to learn from generated data using simulation based

techniques, and learning to optimize neural networks for smaller data sets. Specifically, this

dissertation focuses on two proposed directions which will contribute towards both technical

and conceptual advances in literature.

" How can we use invariant-based approaches when training from small datasets ?

" How to enable training from multiple data sources carrying very small amounts of

data ?

" How to use meta-modeling approach to automatically generate high-performing

DNNs ?

To address these questions, this dissertation describes machine learning algorithms as

follows (a) an action recognition autoencoder which learns over very small datasets; (b) an

algorithm to train deep neural networks over multiple entities; (c) a meta-modeling approach

to automatically generate high-performing architectures. We also provide a dataset of neural

network topologies used for predicting accuracy of a deep neural network.

Thesis Supervisor: Ramesh Raskar
Title: Associate Professor
Program in Media Arts & Sciences

2

Unlocking the potential of neural networks in resource and data

constrained environments

by

Otkrist Gupta

The following person served as a reader for this thesis:

Signature redacted
Reader:

Dan Raviv

School of Electrical Engineering, Faculty of Engineering

Tel-Aviv University, Israel

3

Unlocking the potential of neural networks in resource and data

constrained environments

by

Otkrist Gupta

The following person served as a reader for this thesis:

Signature redacted
Reader:

David Cox

Assistant Professor of Molecular & Cellular Biology & Computer Science

Center for Brain Science, Harvard University

4

Acknowledgments

I would like to express my exceeding gratitude to the following people: my advisor, Ramesh

Raskar, for his support and guidance; to Dan Raviv for being an amazing mentor and

helping me learn machine learning from fundamentals; to David Cox for valuable career

advice and suggestions on the thesis; to Nikhil Naik who was a great friend and source of

valuable advice.

I greatly appreciate my group members and collaborators for their invaluable support

and feedback. Thanks to Dan McDuff for helping me enter in the field of affect recognition

and Hisham Bedri for his invaluable help in gesture recognition over WiFi. Abhimanyu

Dubey was a great person to take advice on about the caffe infrastructure. Tristan Swedish

and Guy Satat were invaluable collaborators and friends. In addition, I would like to express

my thanks to Ayush Bhandari for being there for discussions on scientific merits and impact

of work; to Anshuman Das for a great collaboration in hyperspectral imagery. Thank you

to Barmak Heshmat and Micha Feign for their invaluable feedback on signal processing

and hardware projects; to Pratik Shah for guidance on health related projects. Thank

you to Greg Yauney, Aman Rana, Matt Tancik, Bowen Baker and Mrinal Mohit for being

lively collaborators on some of these projects. I would like to express my thanks to Pratik

Kapasi, Vruddhi Shah, Leo Pauly and Rohit Bhaskar for their invaluable input in facial

video annotation tools.

I wish to express my gratitude to my parents, Ashok Kumar Gupta and Suman Gupta,

for their considerable support and invaluable advice without which I would have never

finished. I would also like to acknowledge and express my thanks to my wife, Marcia

Gupta, for her partnership and support.

5

Contents

1 Introduction

1.1 Advent of deep neural networks

1.2 Data and resource constraints in DNN training

1.3 Thesis roadm ap .

1.4.1 Learning invariants and semi-supervised application

1.4.2 Generating neural network topologies .

1.4.3 Distributed learning approaches

1.4.4 Conclusions

1.4 Summary of thesis contributions

2 Learning with fewer examples using deep invariant

2.1 Related work .

2.2 Neural networks on video data

2.2.1 Action autoencoder

2.2.2 Semi-supervised learner

2.2.3 Multi-velocity semi-supervised learner

2.2.4 Illumination invariant learner

2.3 D atasets .

2.3.1 Autoencoder dataset

2.3.2 Asevo dataset

2.3.3 Cohn Kanade Dataset

2.3.4 Man Machine Interaction Dataset

2.4 Experiments and Results

2.4.1 Deep autoencoder

6

learning

17

18

19

20

20

23

23

24

24

26

27

30

30

31

34

35

37

37

38

38

38

39

39

2.4.2 Multi-velocity video autoencoder 40

2.4.3 Multi-velocity predictor . 41

2.4.4 Illumination-invariant semi-supervised predictor 41

2.4.5 Learning calibration invariant sensing 45

2.5 Concluding Remarks . 47

3 Optimizing neural network topologies 49

3.1 Related work . 50

3.2 Generating architectures using context free grammars 51

3.3 Application of Reinforcement Learning . 53

3.4 D atasets . 54

3.4.1 Mixed NIST . 55

3.4.2 Canadian Institute For Advanced Research 55

3.4.3 Street View House Numbers . 55

3.5 Experimental Details . 56

3.5.1 The state space . 57

3.5.2 The action space . 58

3.5.3 Training procedure . 59

3.6 R esults . 59

3.7 Concluding Remarks . 64

4 Distributed learning approaches 65

4.1 Related work . 66

4.2 Theoretical underpinnings . 67

4.2.1 Algorithm for training over a single entity 67

4.2.2 Generalization for training over multiple entities 69

4.2.3 Online learning . 71

4.2.4 Semi-supervised application over multiple entities 71

4.2.5 Training without label propagation 73

4.3 Network implementation for distributed learning 74

4.3.1 Training request .. 74

4.3.2 Tensor transmission . 74

4.3.3 Weight update . 75

7

40

4.4 Experimental evaluation and comparison . 76

4.4.1 Empirical verification of algorithm 77

4.4.2 Accuracy validation . 77

4.4.3 Performance analysis . 78

4.5 Concluding Remarks . 78

5 Conclusions 83

5.1 Key Results . 84

5.1.1 Neural network layers to learn invariants 84

5.1.2 Optimization of neural network layers 84

5.1.3 Distributing layers over the network 85

5.1.4 Datasets and collection methodologies 85

5.2 Limitations and Future Work . 87

5.3 Concluding Remarks . 88

8

List of Figures

2-1 Schematic representation of deep neural networks for supervised and unsu-

pervised learning. We use pink boxes to denote convolutional layers, yellow

boxes denote rectified linear unit layers and green boxes indicate normaliza-

tion layers. Our technique combines unsupervised learning approaches (a)

with labeled prediction (b) to predict expressions using massive amounts of

unlabeled data and few labeled samples. 29

2-2 We learn 7 different facial emotions from short (about 1 sec, 25 frames) video

clips. The Illumination invariant aspect is achieved by adding an illumina-

tion invariant neural network to induce illumination invariance on original

input. Our prediction system is based on slow temporal fusion neural net-

work, trained by hybridization of autoencoding a huge collected dataset and

a loss prediction on a small set of labeled expressions. 32

2-3 Complete architecture of multi-video semi supervised learner comprises of

temporal filters for generating video frames at multiple velocities serving as

input to 3 separate autoencoders. The predictor merges deep features from

all 3 autoencoders and learns classification labels using deep neural net on

top of these. 33

2-4 Results from reconstruction using temporal convolutional autoencoder on a

face video. (a) Input video sequence. (b) Reconstruction after using 4 con-

volutional layers. (c) Reconstruction after using 8 layers. (d) Reconstruction

after using 12 layers. 39

9

2-5 Results from reconstruction using multi velocity encoders, bottom 3 images

are output from autoencoder ensemble. (a) Input video sequence from MMI

dataset ([72]). (b) Reconstruction using encoder with sampling factor of

1/3. (c) Reconstruction using sampling factor of 2/3. (d) Reconstruction at

original velocity. ..40

2-6 Results from autoencoder reconstruction while using scale invariant autoen-

coder. (a), (b) Input video sequence. (c), (d) Output video sequence from

illumination invariant neural network. 42

2-7 CNN learns to be invariant to model parameters. The CNN is trained with

the complete random training set (based on the MNIST dataset), and eval-

uated with test sets in which all model parameters are fixed except for one

that is randomly sampled from distributions with growing variance. Three

parameters are demonstrated (other parameters show similar behavior). a)

Diffuser scattering profile variance DD ~ N(0, a) , o - U(1 - a, 1 + a) ra-

dians, b) Camera field of view CFV ~ U(0.15 - a,0.15 + a) radians, and c)

Illumination source position Lp ~ U(-a, a) cm. The top plots shows the

classification accuracy as a function of the parameter distribution variance

in the test set. Red lines show the ranges used for training. The 'X' marks

point to specific locations sampled for PCA projections in the bottom part

of the figure. PCA projections show a color map where each digit has differ-

ent color. Performance is maintained beyond the training range and starts

to slowly degrade further from it, as can be observed in PCA projection III

where more mixing is apparent. 46

3-1 Our system involves exploration of neural network topology space by sam-

pling and training of topologies. The validation accuracies obtained from

training is used to derive statistics behind layer selection and neural network

accuracies. This information about expected reward is used to influence the

layer distribution when selecting next batch of topologies. The agent learns

by exploring the state of topologies and then exploits the information it ac-

quired to sample well performing architectures. 50

10

3-2 We demonstrate results on three separate datasets: (a) MNIST dataset com-

posed of 28x28 handwritten digits, (b) CIFAR-10 contains 32x32 RGB images

of real world objects and (c) SVHN contains 32x32 images of digits taken from

Google Street View images. 54

3-3 Here we show state and action space associated with the context free gram-

mar based reinforcement learning agent. States are denoted in circles and

actions are depicted using arrows. The agents starts from initial state and

samples layers until it reaches the termination state. C(n, f, 1) represents a

convolutional layer with n outputs, filter size f, and stride 1. P(f, 1) denotes

a pooling layer with filter size of f and stride 1. L denotes a termination

state which can be softmax or global average pooling. An example topology

is sampled (denoted by yellow arrows) leading to topological configuration

shown on the right. 56

3-4 In the plots, the blue line shows a rolling mean of model accuracy versus

iteration, where in each iteration of the algorithm the agent is sampling a

model. Each bar (in light blue) marks the average accuracy over all models

that were sampled during the exploration phase with the labeled E. As C

decreases, the average accuracy goes up, demonstrating that the agent learns

to select better-performing CNN architectures. 60

3-5 Figure 3-5a shows the mean model accuracy at each c for each independent

experiment. Figure 3-5b shows the mean model accuracy and standard de-

viation at each c over 10 independent runs of the Q-learning procedure on

10% of the SVHN dataset. Despite some variance due to a randomized ex-

ploration strategy, each independent run successfully improves architecture

perform ance. 63

4-1 We are interested in distributed learning approaches bridging the gap between

data sources (Alice) and supercomputing resources (Bob). 66

4-2 Two modalities of our algorithm. In centralized mode (4-2a) we use a central

server to save encrypted weights. In peer to peer (4-2b) data entities (Al-

ice(s)) share weights and download them from last data entity which trained

with supercomputing resource (Bob). 68

11

4-3 Figure (4-3a) shows the normal training procedure while figure (4-3b) demon-

strates how to train without transmitting labels, by wrapping the network

around at its last layers. 73

4-4 We explore several interesting extensions of distributed learning platform.

The figure above shows the eight different configurations we implemented

and tested. These include (a) Simple vanilla configuration (b) Wrap around

configuration with labels (c) Multi-agent learner (d) Semi-supervised learner

(e) Ensemble learner (f) Splitting data in space or time over different agents

(g) Multi-task learner (h) Tor like configuration involving several nodes. . . 75

4-5 Convergence characteristics with iteration count for MNIST (4-5a) and CIFAR-

10 (4-5b). We observe same convergence rate using multi agent algorithm

v/s when training using a single machine. 77

4-6 We compare client side computational cost of our method against existing

state of the art methods when training with multiple clients. Red line denotes

distributed learning using our method, blue lines indicate federated averaging

and green line indicates large batch stochastic gradient descent. As shown

above, we reduce the computational burden on clients dramatically while

maintaining higher accuracies when training over large number of clients. . 79

4-7 We compare data transmission costs of our method against existing state

of the art methods when training with multiple clients. Red line denotes

distributed learning using our method, blue lines indicate federated averaging

and green line indicates large batch stochastic gradient descent. As shown

above, the validation accuracy for our method remains higher with same

number of bytes transferred, making our method overall a better choice when

training over large number of clients. 80

4-8 We summarize the computational and data bandwidth requirements using

schematic diagrams in Figure (4-8a, 4-8b). 82

5-1 We introduce semi-supervised learning to video clips when learning facial

expressions. We train an autoencoder of facial videos and learn the facial

expressions using a semi-supervised predictor. Additionally we introduce

topological modifications to aid in learning invariants. 84

12

5-2 Limitations of out method when using fewer clients. In this figure we demon-

strate how split neural networks can have higher communication overhead

when fewer clients are being used to train. Red line denotes distributed

learning using our method, blue lines indicate federated averaging and green

line indicates large batch stochastic gradient descent. 89

5-3 Iso curves for data transmission when using different values of p and w. We

compare data transmission requirements between our method and federated

learning and plot iso curves for when both are equal. Hyperparameter p

represents fraction of network on client side, and w represents feature vector

size in kilobytes. Our method beats federated learning for all points above

the graph, demonstrating the scalability of our method. 90

13

List of Tables

1.1 Summary of methods and applications we will address through this thesis. . 24

2.1 Accuracies for various values of scale(a) and shift(3) for illumination invari-

ant neural net. We do a grid search for T varying from 0.5 to 5 and 'q varying

from 0.1 to 10. Yello columns show corresponding values scale and shift and

blue columns show test accuracies. Cells marked with asterisk(*) indicate

configurations that did not converge during training. 37

2.2 Comparison of illumination invariant learner to plain semi supervised learner

with Local Response Normalization layers in the beginning. We try changing

coeffecients of Local Response Normalization and got good results when set-

ting /3 at 0.75. Our method continued to win for both small and large datasets

(winning method is shown in blue and the leading method is showed using

yellow). 42

2.3 Comparison of results using Illumination Invariant Techniques for datasets

under standard conditions. Results from both scale invariant and simple (vanilla)

architecture are compared . 43

2.4 Comparison of results from various techniques on CKPlus, MMI and Asevo

datasets. The dataset was divided into 3 parts test, train and val randomly.

Training set was 50%, test and validation were 30% and 20% respectively. We

compare the performance with and without scale invariant architecture. The

table on the top shows results on original data while the one on the bottom

shows results after we added illumination changes. Our method consistently

won for both small and large datasets (winning method is shown in blue and

the leading method is showed using yellow). 43

14

2.5 Confusion matrices over test results for Cohn Kanade and Asevo datasets

using our methods and best performing external method which uses Ex-

pressionlets for CKPlus [61] and covariance Riemann kernel for Asevo [62].

On the left we show results for the proposed illumination invariant semi-

supervised approach across various facial expressions, while on the right we

present confusion matrix from external methods. Highest accuracy in each

category is marked using blue color. For CKPlus we outperform competing

method in 5 verticals by getting 100% accuracy on happiness, 100% on sur-

prise, 94% on disgust, 92% in anger and 50% in sadness. For both methods

misclassification occur when emotions like sadness get recognized as anger

and vice-versa. 44

3.1 We describe the various types of layers and corresponding hyperparameters

used when describing them. 58

3.2 We summarize the training schedule when learning topologies using e greedy

descent. The learning agent trains the specified number of unique models at

each e. 59
3.3 We compare our performance with CNNs that only use convolution, pooling,

and fully connected layers. We report results for CIFAR-10 and CIFAR-100

with moderate data augmentation and results for MNIST and SVHN without

any data augmentation. 61
3.4 We compare our error rate with state-of-the-art methods with complex layer

types. We report results for CIFAR-10 and CIFAR-100 with moderate data

augmentation and results for MNIST and SVHN without any data augmen-

tation . 62

3.5 We summarize our prediction errors for the top AutoML (CIFAR-10) model

trained for other tasks. Finetuning refers to initializing training with the

weights found for the optimal CIFAR-10 model. 63

4.1 We observe same accuracies when training using multi-agent algorithm vs

when training on a single machine. MNIST dataset is verified using LeNet

topology. We use modified VGG to verify accuracy on CIFAR 10 and CIFAR

100. Finally we verify our method on very large dataset (ILSVRC 12) using

AlexNet topology. 76

15

4.2 We show significant improvements in accuracy as more data-sources are added. 78

4.3 Computation resources consumed per client when training CIFAR 10 over

V G G (in teraflops). 81

4.4 Computation bandwidth required per client when training CIFAR 100 over

ResNet (in gigabytes). 81

5.1 We summarize the top 5 model architectures when training over CIFAR-10

using CFG based topology generation pipeline. We observe that number of

parameters in top performing deep neural architectures may vary widely. . . 85

5.2 Data distribution for Asevodataset for various emotions. Posed clips refer to

the artificially generated clips, while non-posed refer to those captured using

the stimulus activation procedure. 86

5.3 Message specification for communication between multiple parties in split

neural network algorithm. 93

5.4 Top 5 model architectures: SVHN. Note that we do not report the best

accuracy on test set from the above models in Tables 3.3 and 3.4 from the

main text. This is because the model that achieved 2.28% on the test set

performed the best on the validation set. 94

5.5 Top 10 model architectures: MNIST. We report the top 10 models for MNIST

because we included all 10 in our final ensemble. Note that we do not report

the best accuracy on test set from the above models in Tables 3.3 and 3.4

from the main text. This is because the model that achieved 0.44% on the

test set performed the best on the validation set. 95

16

Chapter 1

Introduction

The fields of Artificial Intelligence and Computer Vision have long aspired to synthetically

create human levels of perceptive and cognitive abilities. Defining intelligence remains a

challenging task and computer science researchers often rely upon indirect methods such

as the Turing Test[1] when identifying what it means to be a human level Al. In hopes of

matching the diversity and creativity of a human brain, we have resorted to borrowing from

biology, genetics and human physiology when designing Al algorithms. In fact, biologically

inspired methods such as perceptrons and connectionist architectures have proven to be

effective at solving basic artificial intelligence tasks[2, 3]. Similarly, experiential techniques

such as decision trees[4] have been shown to be quite effective in modeling the complex

nuances of real world phenomenon.

A perceptron[5] forms a singular biologically inspired computational unit which is ca-

pable of activating based on several inputs. Over the years, many flavors of perceptron

algorithm have emerged, aiding in the design and creation of Support Vector Machines[6].

Support Vector Machines (or SVMs for short) have well defined convergence characteris-

tics and can greatly enhance classification accuracy by introducing nonlinearities into the

training and test procedures. Some of the theoretical limitations when using a singular per-

ceptron are discussed in [7], arguing that some classes of problems remain intractable under

the perceptron framework. This fundamental issue in the generalization power of percep-

trons was one of their greatest hurdles - solved only recently when multi-layer connectionist

architectures were introduced as a viable alternative to them. Adding multiple layers in

a network with multiple neurons in each layer, greatly enhances the representative power

17

of neural networks, allowing them to represent almost any complex function with sufficient

ease[8]. Such multi-layered perceptron architectures are one of the closest counterpart to

the human brain in both form and functioning and have proven to be dramatically robust

and efficient in dealing with real world Al problems.

1.1 Advent of deep neural networks

Modern improvements in computing technology have helped accelerate research in the fields

of artificial intelligence and machine learning. The rise of the Internet has enabled creation

of very large datasets from which machines can learn - there would be no ImageNet[9]

without the Internet coming first. Smartphones have become ubiquitous and have changed

the way we produce and consume data. Looking at the hardware advancements over last

decade, computing speeds have grown exponentially. Volatile memory and hard drive have

shown similar growth with persistent storage expanding by several orders of magnitudes.

Advances in sensing technologies has made a huge impact in making very small and low

power sensors for measuring physiology and biometrics. Advent of such advancements has

enabled us to study human behavior and societal problems at a large scale and follow the

trajectories of evolution of people at micro and macro levels. Analyzing data from such

sources might be crucial in devising impactful interventions that can help improve human

lives.

Training of multi-layered neural networks (DNNs), was surmised to be a computationally

infeasible task - until recently when [10] introduced a new method for fast training of Re-

stricted Boltzmann Machines using energy based methods. Contrastive divergence learning

and convolutional architectures have greatly simplified computational burden when training

multi-layered perceptrons; such models have become a strong driving force in modern com-

puter vision and excel at object classification[9], segmentation and recognition[11, 12]. In

most cases DNNs have proven to be more successful than algorithms engineered specifically

to solve such problems. Success of deep neural networks has begun influencing fields such as

finance, biomedicine and health-care, while mustering the possibility of better-than-human

accuracies at daunting tasks in these fields.

Learning a deep neural network can be data and resource intensive, because it involves

learning the conditional distributions of multiple hidden layers given its input and output

18

data vectors. Training convolutional neural networks using a large labeled dataset has

become the standard methodology when learning neural network layers [13]. Modern algo-

rithms learn deep neural networks using greedy strategies involving training one layer at a

time while using unsupervised learning and RBMs [10], requiring specialized software and

hardware resources.

1.2 Data and resource constraints in DNN training

Conventional supervised training methods may suffer from multiple challenges requiring hu-

man intervention at large scale. The first challenge involves accumulation of labeled datasets

at a large scale. Accumulation of large amounts of labeled data can be expensive and may

suffer from risks and responsibilities associated with storing training data in a centralized

location. For example, the original ImageNet[9] dataset included over one million images

spanning one thousand classes, which were collected and labeled using crowdsourced label-

ing techniques. The data and resources required to create such massive datasets continues

to be a challenge when training deep neural networks on other problem domains.

Large expert labeled dataset, can be hard to obtain due to privacy converns. Publicly

available datasets tend to be very small, making it harder to use them for deep learning,

thereby creating a need to develop specialized Al algorithms that can learn from multiple

data sources without the need for data and resource aggregation. When deploying, real

world models need to work under varying conditions of camera and lighting requiring de-

velopment of invariant architectures. Deploying such architectures requires development of

methods for easy scalability and distributed computation.

These methodologies also involve expert intervention when designing topologies and se-

lecting hyperparameters, especially when engineering algorithms over new problem domains

and data modalities. While neural networks trained on large amounts of labeled data gen-

eralize well to randomly selected validation sets, they may overfit to the data distribution

leading to poor real world performance under real world scenarios. Removing these chal-

lenges continues to be an area of active research in machine learning, as we describe in the

upcoming chapters.

19

1.3 Thesis roadmap

Over the upcoming chapters we present algorithms that will aid in training of neural net-

works while reducing the resource burden. Our second chapter includes techniques that

reduce expert intervention on data labeling side. It describes low shot learning techniques

involving new topologies to learn invariants over the video data, and semi-supervised ap-

proaches while learning from very small number of examples. The third chapter describes

meta-modeling techniques that reduce expert intervention on the algorithm side, reducing

effort required when hand crafting topologies. We will also introduce a method that enables

distributed learning over multiple entities, without direct data sharing. We demonstrate

how to incorporate distributed learning in the network itself using a specialized layer that

connects the local neural network to other nodes, while jointly optimizing the neural net-

work over several entities. We present an overview of these methods in following sections.

Chapter 2: Learning invariants and semi-supervised application'

Semi-supervised methods are one of the most well studied approaches for learning from

unlabeled data in absence of labeled examples[14, 15]. In this thesis we will demonstrate

how to use a semi-supervised approach for facial expression recognition using a deep neural

network, by combining an autoencoder with a classification loss function; and training both

of them in parallel. We develop a multilayer stacked autoencoder which is trained hierar-

chically, by adding layers in an iterative fashion. Such hierarchical contrastive divergence

minimization techniques have been shown to work well when training autoencoders over

large datasets[16]. While training the stacked autoencoder, we adaptively add layers to the

autoencoder, train the resulting neural network, and use the produced weights as initializa-

tions for the next step. We fine tune all of the layers once the neural network weights have

converged to an acceptable value.

We also collected a diverse dataset comprising of 162 million facial images over 6.5

million video clips with 25 frames each (1 second duration). We used public sources such as

local broadcast television networks and YouTube for data acquisition. We used Viola-Jones

'An abridged version of this work appeared as "Multi-velocity neural networks for facial expression
recognition in videos", Gupta, Otkrist and Raviv, Dan and Raskar, Ramesh. IEEE Transactions in Affective
Computing (2017).

20

face detector to find and segment out the faces and isolated clips which contained more than

25 overlapping facial frames. We localized landmarks for each frame using a deformable

model for the face and detected the facial pose by fitting a 3D model to the landmarks,

which allowed us to restrict the dataset to videos which contain faces tilted less than 30

degrees and remove any faces looking sideways. We removed clips with static gestures or

those where the faces were rapidly altering, either due to some high speed movement or

simply due to appearance of a different face. We achieved this by blurring the clips and

calculating the difference between consecutive frames. To our knowledge this is the biggest

facial dataset reported in literature, and we plan to make it public

Since video data is extremely high dimensional we rely on a deep convolutional autoen-

coder to extract meaningful features from this data by embedding it into R4096. Our action

autoencoder comprises of stacked convolutional layers with spatio-temporal convolutions

for learning deep features and reducing the dimensionality of the data. We extended the

convolution layers in the time domain and use slow fusion model which slowly combines

temporal information in successive layers[17]. The deconvolution layers are extended in

time as well and reverse the slow fusion generating temporal features successively. Once

trained, the middle layers of autoencoder are combined with a softmax loss function for

classification purposes i.e. we propose a semi-supervised approach for gesture classification

using a deep neural network, by combining an autoencoder with a classification loss func-

tion, and training both of them in parallel. This semi-supervised methodology allows us to

learn from dramatically fewer labeled data points.

Learning Invariants3

Invariants in computer science refer to conditions that continue to be true during the course

of execution of a program. Learning invariants in computer vision and machine learning

refers to developing features which are robust to modification in translation or rotation

or other image properties. One of the main challenges in action recognition is related to

assigning similar classification to objects at different velocities. In this thesis we propose to

learn the velocity of the sequence in parallel to its classification by adaptive temporal inter-

2 An abridged version of this work appeared in "Real-Time Physiological Measurement and Visualiza-

tion Using a Synchronized Multi-Camera System", Gupta, Otkrist and McDuff, Dan and Raskar, Ramesh.

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2016).
3 An abridged version of this work appeared as "Illumination invariants in deep video expression recogni-

tion", Otkrist Gupta, Dan Raviv, Ramesh Raskar, The Journal of Pattern Recognition Society (2017)

21

polation. Our multi-velocity autoencoder consists of three action autoencoders combined

together to access temporal features for different velocities. We achieve this by adding a

convolution layer as the first layer which uses cubic b-spline interpolation to slow down the

video and generate intermediate frames inside the neural network itself.

We will also demonstrate how to induce scale invariance to pixel intensities by adding

additional layers as an illumination invariant neural network in the beginning of the semi-

supervised learner. The illumination invariant layers include a convolutional layer, an ab-

solute value layer, a reciprocal layer followed by a Hadamard product layer combined to

achieve a normalization function (). Scale invariance is achieved by applying

element wise multiplication between the output layers of proposed architecture and the

original input layer. The convolutional layer is used to emulate various types of filters and

select the best performing functions, the rest of hyperparameters are selected using standard

grid search.

While semi-supervised methods and transfer learning still dominate low shot learning

approaches, a new set of challenges apply to problems which lack high quality data sam-

ples. A way around this involves using generative approaches to virtually up-sample input

space[18] thereby generating fresh training samples. In this thesis, we demonstrate how

to use only synthesized data to train a CNN that is both invariant to changes in forward

model physical parameters and is able to correctly classify hidden objects behind scattering

media. Resulting neural network robustness depends on the search space of underlying

generative models using Markov Chain Monte Carlo (MCMC) model that simulates any

real world action. Each data point in the dataset corresponds to a specific instance of the

target measured by a system which is defined by a set of random model parameters. Vary-

ing model parameters in the training data allows the CNN to be invariant to changes in

those parameters, while generating more diverse data. The simulated data points are used

to train topology designed specifically for 3D space time tensor to learn target, calibration

and noise related invariants and help learn in absence of real world data.

22

Chapter 3: Generating neural network topologies 4

In this thesis, we will demonstrate an algorithmic learning agent that selects optimal neural

network topologies on small and medium sized datasets. We model the layer selection

process as a Markov Decision Process with the assumption that a well-performing layer in

one network should also perform well in another network, based on the hierarchical nature

of the feature representations learned by neural networks with many hidden layers[19]. We

define the search space for optimal hypothesis using compressed notations for neural network

topologies and use a context free grammar to generate possible topological instances. Each

sample of topology selected at random is trained for a fixed duration and its validation

accuracy is used to make informed guess about which topology should be chosen next.

Since the topology space thus defined is potentially infinite, we discretize and prune

the search space using our learning from layer engineering from earlier chapters. We then

use the context free grammar to define a directed acyclic graph or a tree. We pose the

problem of selecting each layer as a probabilistic process and use standard reinforcement

learning based methods to further optimize the selection of optimal topologies. We use the

space thus defined to traverse a wide array of topologies and present a dataset of trained

.5
topologies to allow for further inference and meta learning

Chapter 4: Distributed learning approaches

To address the issue of data scarcity in training and deployment of neural network-based

systems, we will develop a new technique to train deep neural networks from multiple

data sources. Specifically we address the problem of training a deep neural network over

several data entities (Alice(s)) and one supercomputing resource (Bob). While each data

source (Alice) has only a tiny amount of data, we want to efficiently train neural networks

using several such sources. As a research plan I will test out the method for which part of

layers can go with Alice and which part can go with Bob and attempt to train a U shaped

architecture when Bob has middle part and Alice has outer parts. I will also demonstrate

4 An abridged version of this work appeared as "Designing Neural Network Architectures using Reinforce-

ment Learning", Baker, Bowen and Gupta, Otkrist and Naik, Nikhil and Raskar, Ramesh. International

Conference on Learning Representations (2017).
5 An abridged version of this work is being reviewed as "Accelerating Neural Architecture Search using

Performance Prediction", Gupta, Otkrist* and Baker, Bowen* and Naik, Nikhil and Raskar, Ramesh. Under

Review International Conference on Learning Representations (2018).

23

Invariants Architecture Distributed
Selection Learning

Training with finite labeled data / x

Manual engineering of topology / / x

Computational and data sharing constraints x I/

Table 1.1: Summary of methods and applications we will address through this thesis.

that the method works on datasets such as CIFAR, MNIST and ImageNet6 .

Chapter 5: Conclusions

We conclude this thesis with a discussion on making machine learning more accessible and

human centric while reducing the resources required. We will also discus how generative

approaches can help improve machine learning pipelines in real world. We summarize the

key insights on how to introduce invariants in machine learning, reduce labeled data re-

quirements and automate machine learning pipelines. We discuss the potential implications

of this work in the advancement of the field of artificial intelligence and machine learning.

1.4 Summary of thesis contributions

While multi-layered perceptrons have become the new state-of-the-art in most visual under-

standing tasks, training a neural network can be challenging because of multiple resource

constraints. These include engineering constraints that involve need for massive amounts of

labeled data, and engineering effort required to build and tweak neural network configura-

tions. These also involve operational constraints which include need to build neural networks

that are invariant to real world conditions, and resource considerations when sharing data

from several data repositories.

In this thesis I will focus on learning optimizing deep neural architectures to work under

data and resource constraints. Broadly speaking my work has 3 different aspects described

as follows - specialized neural network layers for training from few examples and learning

invariants[20, 21], using generative methods for architectures [22, 23] and data[24] to

increase accuracy and distributed learning methods to allow training from multiple entities

[25].

6 An abridged version of this work has been filed as a patent in "Secure Training of Deep Neural Networks",
Gupta, Otkrist and Raskar, Ramesh. Patent Filed 18864T MIT (2017).

24

Key contributions of this thesis include

1. Learning invariants with small amounts of labeled data

2. Meta-modeling algorithms to automate neural network design

3. Distributed learning approaches to allow training from multiple entities

In my work I demonstrate how to use velocity and intensity invariants to improve ac-

curacy when training with small datasets of video clips [20, 26]. I develop neural networks

which are trained on simulated data alone and can be used to perform real world inference.

I will describe custom techniques for generating neural network architectures when training

over small datasets. I also develop methods which enable distributed training of neural

networks, allowing us to pool datasets from multiple sources.

Finally, I will make the following new datasets publicly available to researchers through

interactive online resources: (i) a dataset for facial video clips containing millions of face

images annotated for facial landmark locations, mined using public sources, and (ii) a

dataset of neural network topologies used for predicting accuracy of a topology before

training.

25

Chapter 2

Learning with fewer examples

using deep invariant learning

With advances in convolutional neural networks, we have seen neural networks being applied

to video classification [17, 27] and even facial expression recognition [28, 29]. In this chapter

we apply convolutional neural networks for recognizing and classifying human gestures,

using a diverse array of several different neural network architectures. We obtain high

level information in both space and time by implementing 4D convolutional layers and

training an autoencoder on videos. We tackle the problem of a small size labeled dataset

using generative means such as autoencoders, and present several new layers with invariance

properties in temporal and illumination domains. We compare our methods to multiple

techniques and datasets, as well as on our own collected data, and we report competitive

results in almost every category. We also hope to empower researchers in this area by

providing them with a huge dataset which can help them build even bigger and better deep

neural networks, while eliminating the need to spend several months required to acquire a

dataset of such proportions.

Over the past decade, algorithms for training deep neural networks have dramatically

evolved, allowing us to train multi layered perceptron architectures more efficiently [10,

30]. Recently, deep neural networks have been shown to perform well on classification

tasks on images and videos, outperforming most traditional learning systems [9]. Such

'An abridged version of this work appeared as "Multi-velocity neural networks for facial expression

recognition in videos", Gupta, Otkrist and Raviv, Dan and Raskar, Ramesh. IEEE Transactions in Affective

Computing (2017).

26

models have become a strong driving force in modern computer vision and excel at object

classification [9], segmentation and facial recognition [11]. However these applications in

gesture recognition were not deep enough or relied upon complex preprocessing involving

other feature extraction techniques like PCA or Fisherface. In this work we hope to remove

some of these preprocessing steps by building end to end pipelines driven entirely by the

neural networks.

2.1 Related work

Deep neural networks have proven to be an effective tool to classify and segment high di-

mensional data such as images[9], audio and videos[17, 27]. With advances in convolutional

neural nets, we have seen neural nets applied to a wide variety of specialized computer vi-

sion tasks such as object instance retrieval, scene image retrieval, classification of buildings,

bird categorization[13]. Deep neural nets have triumphed over traditional vision algorithms,

thereby dominating fields which involve high dimensional data classification, to the point

that given enough data its almost always possible to train a deep neural network which will

perform better than model driven techniques.

Richness of data is probably one of the main reasons why neural nets report such impres-

sive predictive results in almost every field, but it is also extremely hard to collect and label

such datasets. While human beings learning new concepts can often generalize successfully

from just a single example, machine learning algorithms typically require tens or hundreds

of examples to perform with similar accuracy[2]. Human beings can also use learned con-

cepts in richer ways than conventional algorithms for action, imagination, and explanation

unlike machines[31]. In the following sections we discuss some of these methods useful in

learning from a few labeled data points bridging the gap between man and machine.

Learning from a few examples

While most neural network applications rely on separate data and labels for learning, it

is possible to learn from the data itself by using unsupervised learning methodologies [32].

Unsupervised learning in neural networks can be achieved using an autoencoder, a neural

network capable of learning by setting its output values equal to its inputs. A trivial autoen-

coder could just contain one hidden layer and learn the identity function. However more

27

interesting arrangement of neurons can be used for compressing data in lower dimensional

manifolds[33], and learning hidden sparse parametric representations to generate highly

non-linear embeddings. An autoencoder can have several layers, with each layer projecting

data in a different dimension until we reach the output layer which has the same dimension

as the input layer[1O].

There are several types of autoencoders, for example convolutional autoencoders con-

tain convolutional and de-convolutional neural network layers to learn sparse hierarchical

representations [34]. Stacked denoising autoencoders (SDEs) which attempt to reconstruct

data from partial or noisy data, are capable of learning complex gabor filters[35]. Stacked

autoencoders can be trained layer by layer for better results, faster convergence and ease

of training[1O]. In this thesis we will use convolutional neural networks with layer-by-layer

training for initializing weights, please refer to Hinton et. al. [32] for a detailed mathemat-

ical explanation on how autoencoders work.

Learning invariants

Even though deep neural nets are notorious for high quality results, training a deep neural

network can be challenging because of well known data requirements. A way around this

is to use learn invariants for feature extraction or weights initialization[33], followed by fine

tuning over a smaller labeled dataset. This issue can also be solved using embeddings in

lower dimensional manifold[36, 37] or pre-training using pseudo labels[38] thereby requir-

ing fewer number of labeled samples. Approaches based on semi-supervised learning have

shown to work for smaller labeled datasets[39] and techniques using deep neural nets to

combine labels and unlabeled data in the same architecture[40, 41] have emerged victori-

ous. Simulated and hand drawn data has also been shown to perform well when training

deep neural nets for pose estimation [42]. Similar approaches have been shown to work

well for learning invariants while performing video classification [43].

Recognition of gesture and physiology

Human beings, as social animals, rely on a vast array of methods to communicate with

each other in the society. Non-verbal communication, that includes body language and

expressions, is an essential aspect of interpersonal communication. In fact, studies have

shown that non-verbal communication accounts for more than half of all societal interactions

28

[44]. Studying facial expressions is therefore of vital importance in fields like sociology,

psychology and automated recognition of expressions can be applied towards creating more

user affable software and user agents in these fields.

Automatic expression recognition has wide implications in the field of human computer

interaction. As technology progresses, we spend large amounts of our time looking at

screens, interacting with computers and mobile phones. In spite of their wide usage, ma-

jority of software interfaces are still non-verbal, impersonal, primitive and terse. Adding

emotion recognition and tailoring responses towards users emotional state can help improve

human computer interaction drastically [45, 46] and help keep users engaged. Last two

decades have seen some innovation in this area [47, 48, 49] such as humanoid robots for

example Pepper which can both understand and mimic human emotions.

Modeling and parameterizing human faces is one of the most fundamental problems in

computer graphics [50]. Understanding and classification of expressions from videos can

have applications towards better modeling of human faces in computer graphics and human

computer interaction. Accurate characterization of face geometry and muscle motion can

be used for both expression identification and synthesis [51, 52] with applications towards

computer animation [53]. Such approaches combine very high dimensional facial features

from facial topology and compress them to lower dimensions using a series of parameters

or transformations [54, 55]. This chapter demonstrates how to use deep neural networks to

reduce dimensionality of high information facial videos and recover the embedded temporal

and spatial information by utilizing a series of stacked autoencoders.

Machine learning techniques such as Support Vector Machines have been used for facial

expression recognition given the movement of facial fiducial points [56, 57] achieving real

time performance [58]. Many of these techniques involve a pipeline with multiple phases

- face detection and alignment, feature extraction/landmark localization and classification

as the final step. Other interesting approaches [59, 60] we should mention are based on

temporal features [61, 52], and multiple kernels [62], action units [63, 64], as well as emo-

tion recognition from speech [65, 66]. We will compare our method against some of those

approaches in section 2.4.

29

INPUT VIDEO

(a) muinm
1u m4 mm M

OUTPUT VIDEO

Figure 2-1: Schematic represen
pervised learning. We use pink
rectified linear unit layers and
combines unsupervised learning
pressions using massive amountE

2.2 Neural networks

(b) sob m
- III -III IIIIII-

-o -MM
mmaer X
MM

(C) m m m m
m m m m

- m
mm

m

PREDICTED LABELS
OUTPUT VIDEO LABEL S

tation of deep neural networks for supervised and unsu-

boxes to denote convolutional layers, yellow boxes denote
green boxes indicate normalization layers. Our technique

approaches (a) with labeled prediction (b) to predict ex-

sof unlabeled data and few labeled samples.

on video data

Our facial expression recognition pipeline comprises of Viola-Jones algorithn for face de-

tection followed by a deep convolutional neural network for predicting expressions. The

deep convolutional network includes an autoencoder combined with a predictor which relies

on the semi-supervised learning paradigm. The autoencoder neural network takes videos

containing 9 frames of size 145 x 145 as input and produces 145 x 145 x 9 tensor as output.

Predictor neural net sources innermost hidden layer of autoencoder and uses a cascade of

fully connected layers accompanied by the softmax layer to classify expressions. Since videos

can have different sizes and durations they need to be resized in temporal and spatial do-

main using standard interpolation techniques. The network topologies and implementation

are describe henceforth.

2.2.1 Action autoencoder

Stacked autoencoders can be used to convert high dimensional data into lower dimensional

space which can be useful for classification, visualization or retrieval [67]. Since video data is

extremely high dimensional we rely on a deep convolutional autoencoder to extract meaning-

ful features from this data by embedding it into R40 96 . The autoencoder topology is inspired

by ImageNet [9] and comprises of convolutional layers gradually reducing data dimension-

ality until we reach a fully connected layer. Central fully connected layers are followed by

30

INPUT VIDEO INPUT VIDEO

a cascade of deconvolutional layers which essentially invert the convolutional layers thereby

reconstructing the input tensor (R145x145x9). The complete autoencoder architecture can

be described in following shorthand C(96,11,3) - N - C(256,5,2) - N - C(384,3,2) -

N - FC(4096) - FC(4096) - DC(96, 11,3) - N - DC(256, 5,2) - N - DC(384, 3,2). Here

C(96,11,3) is a convolutional layer containing 96 filters of size 11 x 11 in spatial domain

and spanning 3 frames in temporal domain. N stands for local response normalization lay-

ers, DC stands for deconvolutional layers and FC(4096) stands for fully connected layers

containing 4096 neurons. This is only a subset of a more comprehensive vocabulary which

is capable of generating most modern state-of-the-art architectures, as covered in detail in

section 3.2.

In the same way that spatial convolutions consolidate nearby spatial characteristics of

an image, we use the slow fusion model described in [17] to gradually combine temporal

features across multiple frames. We implement slow fusion by extending spatial convolution

to the temporal domain and adding representation of filter stride for both space and time

domains. This allows us to control filter size and stride in both temporal and spatial domains

leading to a generalized 3D convolution over spatio-temporal input tensor followed by 4D

convolutions on intermediate layers. The first convolutional layer sets temporal size and

stride as 3 and 2 respectively whereas the subsequent layer has both size and stride of 2 in

temporal domain. Finally the third convolutional layer merges temporal information from

all frames together, culminating in a lower dimensional vector of size 4096 at the innermost

layer.

Since weight initialization is critical for convergence in a deep autoencoder, we use pre-

training for each convolutional layer as we add the layers on. Instead of initializing all

weights at once and training from there, we train the first and last layer first, followed by

the next convolutional layer and so on. We stack new layers on top of previous layers and

fix the weights of earlier layers for faster convergence. We discuss this in detail in section

2.4.1.

2.2.2 Semi-supervised learner

We propose a semi-supervised approach using a deep neural network, by combining an

autoencoder with a classification loss function, and training both of them in parallel. The

input for the first layer is a short sequence of facial gestures composed of 9 frames cropped

31

_ 33

44096I3sP4t 4 1
Auxiliary Neural Network Cowv-Retu-Nomi

Figure 2-2: We learn 7 different facial emotions from short (about 1 sec, 25 frames) video
clips. The Illumination invariant aspect is achieved by adding an illumination invariant
neural network to induce illumination invariance on original input. Our prediction system
is based on slow temporal fusion neural network, trained by hybridization of autoencoding
a huge collected dataset and a loss prediction on a small set of labeled expressions.

to 145 x 145 pixels window. The loss function is evaluated by combining a predictive loss

from 7 different pre-labeled gestures (for the labeled part of the dataset), and autoencoder

Euclidean loss for the entire (labeled and un-labeled) collection. The weights of each layer

are dynamically altered such that the importance of the autoencoder loss decreases with

relation to the predictive loss as the training progresses. While generating the data, we use

Viola-Jones face detection [68] for cropping the faces. We use slow fusion based convolutional

neural network with convolutions in both space and time (see figure 2-3 for a detailed

overview).

Our predictor neural net consists of a combination of several convolutional layers followed

by multiple fully connected layers ending in a softmax logistic regression layer for prediction.

Architecture can be described as C(96,11,3) - N - C(256,5,2) - N - C(384,3,2) - N -

FC(4096) -FC(8192) -FC(4096) -FC(1000)-FC(500) -FC(8) using shorthand notation

described in section 2.2.1. Notice that our autoencoder architecture is overlaid on top of

the predictor architecture by adding deconvolutional layers after the first fully connected

layer to create a semi-supervised topology which is capable of training both autoencoder

and predictor together (see Figure 2-2). We use autoencoder to initialize weights for all

convolutional layers, all deconvolutional layers and central fully connected layers and we

initialize any remaining layers randomly. We use stochastic gradient descent to train weights

by combining losses from both predictor and autoencoder while training, this combined loss

function for the semi-supervised learner is described in the equation 2.1.

32

L = (Z y eo)+ (2.1)

The protocol we suggest for training the net is as important as the topology itself.

We begin by training the autoencoder as a sole learner from the outer layer to the inner

ones. Meaning, we adaptively add layers to the autoencoder, train the neural net, and

use the produced weights as initialization for the next step. This is one of the traditional

approaches used to train autoencoders [10, 16]. Next, we use the weights for initialization

of the semi-supervised net, allowing the entire net to fine tune. A key factor in training is

the learning rate of the two matched learners. We begin the training using a higher learning

rate for the autoencoder (with predictor layers staying fixed using zero learning rate) and

end the process with increased importance to the labeled loss function. While training on

the labeled data, ratio between the two varies from a factor of 103 to a factor of 105 favoring

the loss layer.

2.2.3 Multi-velocity semi-supervised learner

One of the main challenges in action recognition is related to assigning similar classification

to objects at different velocities. In this work we propose to learn the velocity of the se-

quence in parallel to its classification by adaptive temporal interpolation. Our multi-velocity

autoencoder consists of 3 action autoencoders combined together to access temporal fea-

tures for different velocities. We achieve this by adding a convolution layer as the first layer

which uses cubic b-spline interpolation to slow down the video and generate intermediate

frames. Piece-wise cubic b-spline interpolation is preferred over polynomial techniques as

it can minimize interpolation error for fewer points and lower degree polynomials [69]. For

initialization a sampling factor of 1, 2/3 and 1/3 is chosen, which is later refined as a part

of the learning.

Next we show how to generate the required weights for interpolation and encode them

as a neural network layer. Cubic b-splines are continuous piecewise-polynomial functions

containing polynomials of degree 3 or less. A cubic b-spline spanning N +1 points comprises

of N cubic polynomials (Sk (X)N 1) which can be uniquely defined using 4N coefficients.

These coefficients can be recovered by applying linear constraints arising from continuity and

differentiability of the function on the break points (or knots). We represent input video

33

2323{ i
192 - 1921~~VU ~ 096 659~~

384 [J4 -349

256 256

045 23 23

38 384 40 7

2t1 - ;56 256

1451 231

384 4

/, - -256

J I256 - 81921 -&~

Figure 2-3: Complete architecture of multi-video semi supervised learner comprises of tem-
poral filters for generating video frames at multiple velocities serving as input to 3 separate

autoencoders. The predictor merges deep features from all 3 autoencoders and learns clas-

sification labels using deep neural net on top of these.

at each pixel as a function of time and use cubic b-splines to approximate intermediate

values. We represent intermediate polynomials between N + 1 frames as a coefficient vector

p containing coefficients for all N polynomials. We use algorithm 1 to create 3 different

weight matrices which interpolate sampling factors of 1, 2/3 and 1/3. Here nSplines refers

to number of spline curves which is one less than the number of frames. If sequence was

represented by 9 frames 0, 3.. .24, the fastest velocity interpolant would have frames 0, 1, 2...8

and the second fastest would have frames indexed 0, 2, 4... 16.

Finally we attach the new proposed Multi-Velocity layers as the first structure of the

semi-supervised neural net. Each sub-structure (See Figure 2-3 and 2-5), has its own au-

toencoder, all of which are concatenated after the inner most convolution layer into a feature

vector (size 12288), later used by the labeled loss function. The learner loss function can

be expressed as a weighted sum of autoencoder and predictor loss given in equation 2.1.

34

Algorithm 1 Generate convolution layer spline weights.
Input: Frame numbers 7, new temporal locations u
Output: Caffe Weight Matrix W

1: function SPLINEWEIGHTS(c)

2: nSplines <- length(,t) - 1
3: for (i <- 0; i < nSplines; i + +) do
4: p & 4i
5: Tpj <- 1
6: Tp+ii+1 1
7: for (h-0;h<= ;h++) do
8: s <- p - 4h
9: Ap+h,p:p+3 - [h3 , h2 , h, 1]

10: Ai+2,s+4:s+8 _- -+ 1[3h 2 , 2h, 1, 0]
11: Ai+3,s+4:s+8 1h+1 [6h, 2, 0, 0]

12: Ai+3 ,i- 4 :i+ 3 <- [6,0 0, 0, -6, 0, 0, 0]
13: Ai+4 ,0 : 7 <- [6,0,0,0, -6,0,0,0]
14: for (i <- 0; i < length(ii); i + +) do
15: p +- firnd(,t, [u(i)])
16: for (h<-0;h <4;h++) do
17: Ri,4p+h (j(0) - gp))h

18: W <- RA-'T
19: return W

2.2.4 Illumination invariant learner

We introduce scale invariance2 to pixel intensities by adding additional layers as an illumina-

tion invariant neural network in the beginning of semi-supervised learner. The illumination

invariant layers include a convolutional layer, an absolute value layer, a reciprocal layer fol-

lowed by a Hadamard product layer. Scale invariance is achieved by applying element wise

multiplication between the output layers of proposed architecture and the original input

layer. This normalization can be written as C(9,1,9) - Abs - Log(a, 13) - Exp(-y, 6) -

Prod(x1, x2) (please refer to shorthand notation in section 2.2.1). Here C(9, 1, 9) refers to

the first convolutional layer containing 9 filters with size 1 x 1 in spatial domain and a size of

9 in time domain. Abs is a fixed layer to compute absolute value, Log(a, 3) layer computes

the function ln(a * x + 3) and Exp(y, 6) layer gives us e'Y*+ 6 . In the end Prod(xi, X2)

layer takes two inputs (x1, X2) and multiplies the output of exponential layer (x2) with the

original input tensor (x1). If F(t) denotes function emulated by first convolution layer, we

can write the transfer function of this sub-net as follows (equation 2.2).
2 An abridged version of this work appeared as "Illumination invariants in deep video expression recogni-

tion", Otkrist Gupta, Dan Raviv, Ramesh Raskar, The Journal of Pattern Recognition Society (2017)

35

Algorithm 2 Generate scale invariant convolution layers
Input: Frame numbers x, new temporal locations u
Output: Caffe Weight Matrix W

1: function AUTOENCODERWEIGHTS(nFrames, wSize)
2: r <- (wSize - 1)/2
3: A +- zeros(nFrames, nFrames)
4: for (i 0; i < nFrames; i ++) do
5: n <- min(i, r)
6: n +- min(n, nFrames - i)

7: Ai,i-n:i+n < 1/(2n + 1)

8: W <- A
9: return W

HGx) -x -cx ~j(_-j0+ (2.2)
(a|f(2)j +,3)-l

Log and Exp layers are used to generate a reciprocal layer by setting meta-parameters -y

to 1 and 6 to zero. We can also "switch off" this sub-net by setting both of these parameters

to zero. Transfer function meta parameters a (scale) and 0 (shift) can be tuned as well

for optimal performance. We perform a grid search to find optimal values for these after

re-characterizing the transfer function parameters as a global multiplicative factor T and a

proportion factor 7j (see equation 2.3). Table 2.1 shows results for various choices of a and

13. We can reformulate equation 2.2 as given below:

0- 1 -

He() = - = - (2.3)
(aF(x)| + 0)1 1 + IF(7)l 1 + TjF()

The output from scale invariant neural net is a 145 x 145 x 9 tensor which is used as

input in the autoencoder and predictor neural networks. The convolution layer can be

parametrized using a 9 x 1 x 1 x 9 tensor and changes during fine tuning while a and

/ are fixed constants greater than zero. In our experiments we initialized convolutional

filter of scale invariant sub-net using several approaches, such as partial derivatives, Mellin

transform, moving average and laplacian kernel and found that it performed best when

using neighborhood averaging. Algorithm 2 demonstrates initialization of convolutional

layer at the beginning of illumination invariant neural net.

36

T 0.1 1 10

scale (?/T) 0.5 scale (T/T) 5 scale (,q/7) 50
0.2 shift (1/r) 5 0.486 shift (1/T) 5 0.472 shift (1/,r) 5 0.243*

scale (/r) 0.2 scale (77/T) 2 scale ('/T) 20
0.5 shift (1/r) 2 0.50 shift (1/T) 2 0.5135 shift (1/r) 2 0.45*

scale (7/T) 0.1 scale (iq/r) 1 scale (q/r) 10
1 shift (1/r) 1 0.499 shift (1/T) 1 0.51 shift (1/r) 1 0.47

scale (9/T) 0.02 scale (/r) 0.2 scale (r/) 2
5 shift (1/-) 0.2 -* shift (1r) 0.2 0-44 shift (1/T) 0.2 0.50

Table 2.1: Accuracies for various values of scale(a) and shift(3) for illumination invariant
neural net. We do a grid search for r varying from 0.5 to 5 and 7 varying from 0.1 to
10. Yello columns show corresponding values scale and shift and blue columns show test
accuracies. Cells marked with asterisk(*) indicate configurations that did not converge
during training.

2.3 Datasets

In order to evaluate the proposed architecture we use two known datasets from literature

as well as present two additional datasets collected by us; The first dataset contains more

than 160 million images combined into 6.5 million short (25 frames) clips, used by us to

train our autoencoders. The second dataset is comprised of 2777 short clips labeled for

seven emotions. In the following section we elaborate on the four datasets.

2.3.1 Autoencoder dataset

In order to train very deep neural nets we must obtain a huge collection of data. Here

we collected 6.5 million video clips containing 25 frames each, adding up to more than 162

million face images. We use public sources such as local broadcast television networks (FOX,

CSPAN, NBC etc.) and YouTube for data collection. We used Viola-Jones face detector

to find and segment out the faces. Only clips which contained more than 25 overlapping

facial frames were selected. Next, we localized landmarks for each frame using a deformable

model for the face [70] and detected the facial pose by fitting a 3D model to the landmarks.

This process allowed us to restrict the dataset to videos which contain faces tilted less than

30 degrees and remove any faces looking sideways.

In order to extract only meaningful video clips we removed clips with static gestures

or those where the faces were rapidly altering, either due to some high speed movement or

simply due to appearance of a different face. We achieved this by blurring the clips and

37

calculating the difference between consecutive frames. To our knowledge this is the biggest

facial dataset reported in literature, and we plan to make it public.

2.3.2 Asevo dataset

The database contains facial clips from 160 subjects both male and female, where gestures

were artificially generated according to a specific request, or genuinely given due to a shown

stimulus. We collected a total of 2777 clips out of which 1745 were captured after providing

the stimulus while 1032 were generated artificially. To create natural facial expressions we

selected a bank of YouTube videos for each facial expression and showed them to subjects,

capturing their reaction to the visual stimulus. Clips had a uniform distribution accross all

seven facial expressions, and contained both posed and non-posed expressions.

2.3.3 Cohn Kanade Dataset

The Cohn Kanade dataset [71] is one of the oldest and well known dataset containing facial

expression video clips. It contains a total of 593 video clip sequences from which 327 clips

are labeled for seven basic emotions (most of these are posed). Clips contain the frontal view

of face performing facial expression varying from neutral expression to maximum intensity

of emotion. While the dataset contains a lot of natural smile expressions it lacks diversity

of induced samples for other facial expressions. Along with posed facial expressions, the

dataset also contains non-posed smile expressions. However the dataset lacks depth in

having other non-posed expressions and is not extensive as Asevo dataset in capturing

naturally expressed emotions. Each video clip contains facial expression going from baseline

neutral to peak of expressed emotion.

2.3.4 Man Machine Interaction Dataset

Man Machine Interaction (MMI) facial expression dataset [72] involves an ongoing effort

for representing both enacted and induced facial expressions. The dataset comprises of

2894 video samples out of which around 200 video clips are labeled for six basic emotions.

The clips contain faces going from blank expression to the peak emotion and then back

to neutral facial expression. MMI which originally contained only posed facial expressions,

was recently extended to include natural versions of happiness, disgust and surprise [73].

38

Figure 2-4: Results from reconstruction using temporal convolutional autoencoder on a face
video. (a) Input video sequence. (b) Reconstruction after using 4 convolutional layers. (c)
Reconstruction after using 8 layers. (d) Reconstruction after using 12 layers.

2.4 Experiments and Results

2.4.1 Deep autoencoder

Since deep autoencoders can show slow convergence when trained from randomly initialized

weights [67], we used contrastive divergence minimization to train stacked autoencoder

layers iteratively [16]. Initially, we pre-trained the beginning and end convolutional layers by

creating an intermediate neural network (C(96, 11,3) -N-C(256, 5, 2)-N-DC(256, 5,2)-

N-DC(384, 3, 2)) and training it on facial video clips. Inner layers were trained successively

by adding them to the intermediate neural network and keeping pre-trained layers fixed until

the convergence of weights. To yield best results, we also fine tuned the entire network at

the end of each iteration. This process was repeated until the required number of layers

had been added and final architecture was achieved. Training of the entire autoencoder

typically required 3 days and a million data inputs.

Our neural network was implemented using the Caffe framework [74] and trained using

NVIDIA Tesla K40 GPUs. The trained weights used to initialize next phase were stored

as Caffe model files and each intermediate neural network was implemented as a separate

prototxt file. Weights were shared using shared parameter feature and transferred across

neural networks using the resume functionality provided in Caffe. Our deep autoencoder

took 145 x 145 x 9 clips as input, the spatial resolution was achieved by down-sampling

all clips to a fixed size using bi-cubic interpolation. 9 frames were obtained by extracting

39

Figure 2-5: Results from reconstruction using multi velocity encoders, bottom 3 images
are output from autoencoder ensemble. (a) Input video sequence from MMI dataset ([72]).
(b) Reconstruction using encoder with sampling factor of 1/3. (c) Reconstruction using
sampling factor of 2/3. (d) Reconstruction at original velocity.

every third frame from video clips. All videos were converted into 1305 x 145 image clips

containing consecutive input frames placed horizontally and we used the Caffe "imagedata",

"split" and "concat" layers to isolate individual frames for autoencoder input and output.

We trained with a batch size of 22 images using a base learning rate of 10-6. The learning

rate was reduced by a factor of 10 every 10000 iterations. We used a momentum of 0.9

and used stochastic gradient descent based optimization when training the network. The

network requires 4-5 hours to train on a single NVIDIA Tesla K40 GPU.

Please see Figure 2-4 to visualize results obtained from intermediate autoencoders using

different number of layers.

2.4.2 Multi-velocity video autoencoder

Multi velocity semi-supervised learner comprises of an array of three independent autoen-

coders and a predictor net. We initialize the autoencoders using the weights from the video

autoencoder and add a convolution layer as described in section 2.2.3. We fine tune the

multi-velocity layers by creating 3 datasets containing video clips at different velocities. We

achieve that by selecting every third frame to create set 1 (speed = 3x), selecting every

second frame to generate set 2 (speed = 2x) and taking first 9 frames for set 3 (speed = 1x).

The weights from this step are used for initialization of our multi-velocity predictor which

described next.

40

2.4.3 Multi-velocity predictor

For training, testing and validation we divide each dataset into 3 parts randomly. We select

50% inputs for training, 30% of dataset for testing and use 20% of dataset for validation.

After the dataset was split, we further increased the size of the training dataset by shifting

each video along both axes, rotating images and taking their mirror.

We train our proposed semi-supervised learner and the multi-velocity semi-supervised

learner on the three datasets (MMI, CK and Asevo), and compare our results against

multiple kernel methods [62] and expression-lets base approaches [61]. We used sources

downloaded from Visual Information Processing and Learning Resources [75] as a reference

to compare to our methods. Note that we made the same data partitioning scheme (train,

validation, test) for all methods to show a fair comparison.

We outperform all the methods compared on all the datasets used, by a substantial

gap, in almost all cases. We summarize our findings in Table 2.4, and show confusion

matrices per facial expression in Table 2.5. For baseline comparison against other deep

neural architectures, we compare our methods against [9] and GoogleNet [76]. We further

verified our results against prior state of the art methods discussed in [50] by performing 10

fold cross validation. On MMI we get 66.15 (vs 63.4) % and on CK+ we get 94.18 (vs

92.4) %. Because of extreme parallelism in neural networks, we are able to run our system

in real time at 20.7 fps.

2.4.4 Illumination-invariant semi-supervised predictor

Another approach to induce scale invariance can involve using standardized Local Response

Normalization (LRN) based layers in the neural network right after the first input layer.

This approach is similar to pre-normalizing the data before testing. We compare our method

to this approach as well and found that adaptive normalization performed better than plain

LRN based learner. Our results are summarized in Table 2.2.

Our scale-invariant neural network prefixes semi-supervised learner with an axillary

neural net to induce scale invariance (see 2.2.4). We test our method on three datasets

(MMI, CK and Asevo) by randomly dividing each of them into non-intersecting train,

test and validation subsets. Our training dataset contains 50% inputs while testing and

validation datasets contain 30% and 20% of inputs. After the split we increase the size of

41

MMI C A Asevo
Semi-Supervised Learner 55.7 68.42 38.66
LRN 0(0.5) 54.09 69.47 35
LRN U(0.75) 55.73 69.47 35.84
Scale Invariant Learner

Table 2.2: Comparison of illumination invariant learner to plain semi supervised learner
with Local Response Normalization layers in the beginning. We try changing coeffecients
of Local Response Normalization and got good results when setting 3 at 0.75. Our method
continued to win for both small and large datasets (winning method is shown in blue and
the leading method is showed using yellow).

L 0L

x1
I

I
vl

Figure 2-6: Results from autoencoder reconstruction while using scale invariant autoen-
coder. (a), (b) Input video sequence. (c), (d) Output video sequence from illumination
invariant neural network.

training dataset by adding rotation, translation or flipping the image.

For quantitative analysis we compare our results against expression-lets base approaches

[611 and multiple kernel methods [62]. We utilize sources downloaded from Visual data

transforming and taking in Resources [75] as a reference to contrast with our strategies. For

reasonable comparison we use same partitioning techniques while comparing our techniques

with external methods. While we cannot compare against methods such as [50] because of

absence of publicly available code our method still wins on MMI dataset.

We test our method with and without varying illumination on external datasets, re-

sults of our findings can be summarized in Table 2.3. Please see tables 2.5 for confusion

matrices demonstrating results for each expression. We outperform all external methods

on datasets in almost all cases. Our method also shows large margin of improvement over

42

MMI CKPlus Asevo
Main Gaussian Riemann [62] 40.9 67 46.92
Main Grassman [62] 9.09 17.9 44.99
Main Covariance Reimann [62] 40.9 79 51.05
Expressionlets [61] 52.91 82.7 48.6
Interval Temporal Bayesian Network [52] 59.7 86.3 -
Hidden Markov Models [52] 51.5 83.5 -
Our topology without pre-training 20.96 26.31 24.43
Our method without semi-supervised learning 51.61 83.17 43.36
Vanilla Semi-Supervised Learner 59.01 87.36 51.11
Scale Invariant Learner

Table 2.3: Comparison of results using Illumination Invariant Techniques for datasets under
standard conditions. Results from both scale invariant and simple(vanilla) architecture are
compared.

MMI CKPlus Asevo
Main Gaussian Riemann [62] 39.39 65 43.9
Main Grassman [62] 9.09 11 43.91
Main Covariance Reimann [62] 36.36 65 46.44
Expressionlets [62] 55.38 70 46.02
Vanilla Semi-Supervised Learner 55.7 68.42 38.66
Scale Invariant Learner 59.03 73.68 48

Table 2.4: Comparison of results from various techniques on CKPlus, MMI and Asevo
datasets. The dataset was divided into 3 parts test, train and val randomly. Training set
was 50%, test and validation were 30% and 20% respectively. We compare the performance
with and without scale invariant architecture. The table on the top shows results on original
data while the one on the bottom shows results after we added illumination changes. Our
method consistently won for both small and large datasets (winning method is shown in
blue and the leading method is showed using yellow).

plain semi-supervised approaches. Both autoencoder and predictor network topologies are

implemented as Caffe prototxt files [74] and they will be made available for public usage. As

we demonstrate in Table 2.4, pretraining with large amount of unlabeled data helps greatly

by providing very good initialization of weights. Without pretraining the network overfits

by a huge extent converging to values around 20-26% which are only slightly above random

accuracy. We demonstrate an accuracy gain of more than 30% on MMI and more than 60%

on CKPlus when using large unlabeled dataset to pretrain the network.

43

Confusion matrix using our methods on Asevo Dataset

Anger Contempt Happy Disgust Fear Sadness Surprise

Anger 0.54 0.13 0.01 0.12 0.03 0.12 0.04
Contempt 0.07 0.14 0.06 0.04 0.14 0.07
Happy 0.01 0.15 0.78 0.04 0.00 0.00 0.00
Disgust 0.13 0.21 0.15 0.07 0.05 0.08
Fear 0.04 0.14 0.08 0.08 0.04 0.32
Sadness 0.18 0.22 0.07 0.10 0.02 0.13
Surprise 0.04 0.07 0.07 0.05 0.21 0.05 0.51

Confusion matrix using multiple kernel methods [62] on Asevo dataset

Anger Contempt Happy Disgust Fear Sadness Surprise

Anger 0.08 0.06 0.07 0.04 0.06 0.08
Contempt 0.09 0.44 0.27 0.06 0.02 0.06 0.05
Happy 0.01 0.07 0.01 0 0.01 0.06
Disgust 0.19 0.14 0.25 0.22 0.01 0.02 0.16
Fear 0.21 0.09 0.06 0.07 0.12 0.06
Sadness 0.26 0.20 0.19 0.02 0.05 0.13 0.16
Surprise 0.15 0.03 0.09 0.01 0.06 0.05 W

Confusion matrix using our methods on Cohn-Kanade

Anger Contempt Happy Disgust Fear Sadness Surprise

Anger 0.08 0 0 0 0 0
Contempt 0 0.80 0 0 0 0 0.20
Happy 0 0 M 0 0 0
Disgust 0.06 0 0 0 0 0
Fear 0 0 0.14 0 0.71 0 0.14
Sadness 0.38 0 0 0 0 0.12
Surprise 0 0 0 0 0 0

Confusion matrix using expressionlets [61] on Cohn-Kanade

Anger Contempt Happy Disgust Fear Sadness Surprise

Anger 0.73 0 0.07 0 0 0.20 0
Contempt 0 0 0 0 0.14 0
Happy 0 0 0.95 0 0.05 0 0
Disgust 0.25 0.12 0 0.38 0 0.12 0.12
Fear 0 0 0 0 0 0
Sadness 0.33 0 0 0.11 0 0.44 0.11
Surprise 0 0 0 0.05 0 0 0.95

Table 2.5: Confusion matrices over test results for Cohn Kanade and Asevo datasets using
our methods and best performing external method which uses Expressionlets for CKPlus
[61] and covariance Riemann kernel for Asevo [62]. On the left we show results for the
proposed illumination invariant semi-supervised approach across various facial expressions,
while on the right we present confusion matrix from external methods. Highest accuracy in
each category is marked using blue color. For CKPlus we outperform competing method in
5 verticals by getting 100% accuracy on happiness, 100% on surprise, 94% on disgust, 92%
in anger and 50% in sadness. For both methods misclassification occur when emotions like
sadness get recognized as anger and vice-versa.

44

2.4.5 Learning calibration invariant sensing

The video convolutional layers discussed above can be used to learn other invariants in

CNNs as well. In this section we describe how we can use a data driven approach and lever-

age convolutional neural networks (CNN) to learn a model that is invariant to calibration

parameters. The CNN is trained with a large synthetic dataset generated with a Markov

Chain Monte Carlo (MCMC) model that contains random realizations of major calibration

parameters. The synthetic random dataset generated with the MCMC forward model is

used to train a CNN for classification of hidden objects behind a diffuser. The topology

is modified by extension of convolution filters into time domain (3D space-time filters) us-

ing spacial convolutional filters we described previously. Filters were resized to 3 x 3 x 10

where the last index denotes the time dimension (see further details in the Discussion). The

training time on 60,000 data points is approximately two hours on an NVIDIA Titan XP

GPU.

To evaluate our approach, we used the well-known MNIST dataset of handwritten digits.

The targets are placed behind a regular paper sheet (diffuser) and measured with the SPAD

camera. The goal is to evaluate the CNN ability to classify hidden objects while being

invariant to changes in calibration parameters. To that end, 60,000 training samples and

10,000 test samples are synthesized with the MCMC forward model. Each data point

is a realization of a different set of target and calibration parameters. The result is an

overall classification accuracy of 74% (compared to 10% random guess accuracy). These

simulations demonstrate the ability to classify objects hidden behind a scattering layer

without calibration. As a proof of concept experiment, we cut the zero and one digits from

cardboard and placed them behind a paper sheet. The network described above correctly

classified the digits.

Additional test sets were generated to evaluate the extent of the network invariance to

changes in calibration parameters in a controlled experiment. In each test set, all calibration

parameters are held fixed (on the mean), except for one parameter that is randomly sampled

from distributions with different variances. Thus, the CNN's sensitivity to variations in

different parameters is probed independently. Specifically, for each calibration parameter

to be investigated, multiple test sets are generated, each one with a different distribution

variance. Fig. 2-7 demonstrates results for three parameters (other parameters demonstrate

45

a) Scattering Profile

0.9.

S0.8 _

z Training
0.7 Range

0.6

0.50 0.05 0.1 0.15 0.2 0.25

a5

b)

0.9

Cd 0.8

0.7

0.6

Field of View

Training

Range

0 002 0.04 0.06 0.08 0.1

(.V

II

c) Incident Position

0.9

0.8 I
. Training

0.7 Range

0.6

0.5
0 2 4 6

III

Figure 2-7: CNN learns to be invariant to model parameters. The CNN is trained with the
complete random training set (based on the MNIST dataset), and evaluated with test sets
in which all model parameters are fixed except for one that is randomly sampled from distri-
butions with growing variance. Three parameters are demonstrated (other parameters show
similar behavior). a) Diffuser scattering profile variance DD - N(O, o-) , o- U(1 - a, 1 + a)
radians, b) Camera field of view CFV ~ U(0.15 - a, 0.15 + a) radians, and c) Illumination
source position Lp ~ U(-a, a) cm. The top plots shows the classification accuracy as a
function of the parameter distribution variance in the test set. Red lines show the ranges
used for training. The 'X' marks point to specific locations sampled for PCA projections
in the bottom part of the figure. PCA projections show a color map where each digit has
different color. Performance is maintained beyond the training range and starts to slowly
degrade further from it, as can be observed in PCA projection III where more mixing is
apparent.

similar behavior). As can be seen from the test accuracies, performance is maintained within

the variance range used for training and extended beyond that range. This demonstrates

the network ability to learn an invariant model to changes in the calibration parameters.

For example, in Fig. 2-7c the network was trained with data that had the illumination

position distributed uniformly within 5cm from the mean. Yet, the test performance starts

to slightly drop only after the illumination position may be found within 10cm of the mean.

Qualitative evaluation of these results are also presented in Fig. 2-7 with PCA projections

of the activations from the penultimate layer of the CNN, these demonstrate sustained

performance beyond the training range.

46

00
0 1
@ 2
0 3
0 4
. 5

6
0 7
0 8

0 9

I

2.5 Concluding Remarks

This chapter uses semi-supervised paradigms in convolutional neural nets for classification

of facial expressions in video sequences. Our topologies are trained on millions of facial

video clips and use spatio-temporal convolutions to extract transient features in videos.

We developed a new scale-invariant sub-net which showed superior results for expression

recognition under variable lighting conditions. We demonstrate effectiveness of our approach

on both publicly available datasets and samples collected by us.

In this chapter we introduce a framework for facial expression recognition which com-

bines semi-supervised learning approaches with carefully designed neural network topolo-

gies. We demonstrate how to induce illumination invariance by including specialized layers

and use spatio-temporal convolutions to extract features from multiple image frames. Cur-

rently, our system relies on utilization of Viola-Jones to distinguish and segment out the

faces and is limited to analyzing only the front facing views. Emotion recognition in the

wild still remains an elusive problem with low reported accuracies which we hope will be

addresses in future work.

In this work we only considered video frames but other, richer, modalities could be

taken into account. Sound, for example, has a direct influence on the emotional status and

can improve our current system. Higher refresh rates, multi-resolution in space and time,

or interactions between our subjects are just few of many possibilities which can to enrich

our data and can lead to better classification or inference. Methods such as RNNs could

be used to work with variable number of temporal frames. Future methods could benefit

from addition of more frames at higher FPS, leading to better classification accuracy due

to higher resolution temporal information.

Deep neural networks have proven to be extremely effective in solving computer vision

problems even though training them at large scale continues to be both CPU and memory

intensive. Our system tries to make best use of resources available and further improvements

in hardware and software can help us build even larger and deeper neural networks while

enabling us to train and test them on portable devices. Computational complexity of neural

networks continues to be a major hurdle towards their ubiquitous application in such areas.

Further research using methods such as binarized and compressed neural networks [77, 78]

can help alleviate such issues in future. Over here, we introduce layers which learn invariance

47

adaptively and can be fine tuned to get best results. In this work, we emphasize on scale

invariance for illumination, velocity and camera parameters, in future we hope to explore

induction of other invariants, which continues to be an area of rapid research in neural

networks.

48

Chapter 3

Optimizing neural network

topologies

As the previous chapter demonstrates, convolutional neural networks are a very powerful

tool for real world imaging and inference. Deep convolutional architectures comprise of hi-

erarchical organization of several convolutional, normalization, pooling and fully connected

layers, while combining simple linear operations with non-linearities like sigmoid and recti-

fied linear units. Engineering such layers continues to be a challenging task driven primarily

by expert experience and intuition while requiring large amount of resources. This difficulty

in developing new topologies has led to creation and popularization of successful topolo-

gies, namely VGG[79], AlexNet[9], GoogleNet[8] and ResNet[80]. Deep learning topologies

such as AlexNet and VGG have been commoditized to a large extent, with most research

focusing on direct application of such topologies to a new real world problem domain.

In this chapter we explore the space of convolutional neural network architectures using

context free grammars and develop methods to automatically select architectures that per-

form well on a given dataset. We begin by describing the topology space using a context free

grammar and a succinct vocabulary. We use our learnings from layer engineering to restrict

the generation space to a finite number of possibilities. We demonstrate how our context

free grammar formulation leads to a conception of a finite state automata describable us-

ing a directed acyclic graph. Each traversal of this graph generates a possible topology

thereby sampling the space of topologies. We can reformulate the problem of selecting good

49

Agent Samples Conv i Train Network Agent Learns
Network Topology gFrom Memory

Cone ___ (64,5,1)Conv(128,31)

Jm~ ~g P2,)
Performance:933Store in 93.3 n Sample Update

Replay Memory Memory Q-Values

Figure 3-1: Our system involves exploration of neural network topology space by sampling

and training of topologies. The validation accuracies obtained from training is used to

derive statistics behind layer selection and neural network accuracies. This information

about expected reward is used to influence the layer distribution when selecting next batch

of topologies. The agent learns by exploring the state of topologies and then exploits the

information it acquired to sample well performing architectures.

topologies as finding the most rewarding path when traversing the graph. There can be

several ways to optimize such graphs, in our formulation we optimize it using reinforcement

learning. In this formulation we will pose layers as states, layer connections as actions and

validation accuracy as reward function. We can then use model free techniques such as Q

learning to learn reward distribution while selecting best performing architectures.

We traverse the space of model architectures using standard convolutional, pooling

and fully connected layers and demonstrate competitive results on the datasets including

MNIST, CIFAR-10 and SVHN. We discover that for the same depth, learning agent is able to

beat the existing human generated topologies. We are successful in generating architectures

that generalize well, and demonstrate that the topologies learned on one dataset can be

transferred robustly to other datasets. We also find that less deep shallower architectures

can sometimes even outperform much more deeper architectures. Our methods also perform

better than previously automated hyperparameter selection algorithms (e.g., [81, 82]),

producing topologies which are significantly better than the previous automated topology

selection techniques [83, 84]. Surprisingly, we discover that the topology space is in fact

richly filled with topologies that perform well.

3.1 Related work

The impressive performance of CNN architectures has been driven by manual tuning of

network designs and hyper-parameters, along with new design ideas or training procedures

50

introduced on top of successful architectures. Research on automating neural network design

goes back to the 1980s when genetic algorithm-based approaches were proposed to find

both architectures and weights[85]. Interesting methods include evolutionary algorithms[83]

(NEAT), using networks of networks for searching optimal configurations[86], Bayesian

optimization [87] or utilizing tree of parzen estimators to design feed-forward networks [84].

Other biologically inspired ideas have also been explored; motivated by screening methods in

genetics, [88] proposed a high-throughput network selection approach where they randomly

sample thousands of architectures and choose promising ones for further training.

In the context of neural networks, hyperparameter optimization refers to an algorithmic

approach for finding optimal values of design-independent constants such as learning rate,

weight decay, step size and batch size, along with a limited search through the network

design space, usually through the space of filter types and sizes. While random or grid

search is still the most commonly used method[89], a variety of Bayesian optimization

methods have been proposed for hyperparameter optimization, including methods based

on sequential model-based optimization (SMAC)[90], Gaussian processes (GP)[91], and

tree of parzen estimators (TPE)[84]. To improve on the scalability of Bayesian methods,

[92] utilize neural networks to efficiently model distributions over functions. Recently, [93]

introduced Hyperband, a multi-armed bandit-based efficient random search technique that

outperforms state-of-the-art Bayesian optimization methods.

3.2 Generating architectures using context free grammars

In this section we will describe the context free grammar based sampling of the space of

neural network architectures. Our aim is to find a suitable parametrization for neural

network topologies [88]. The space of neural network topologies consists of both acyclic

and cyclic directed graphs, which can be infinitely large, making the problem of sampling

it quite challenging. We simplify this problem by making some fundamental assumptions

about the networks being sampled. We assume that the networks comprise of hierarchically

organized neural network layers arranged as a directed acyclic graph. We also assume

that these neural network layers layers can be sampled from a small set of finitely many

possibilities. We remove any topologies that may have skip connections and restrict to

only one outgoing edge per vertex. While our method can work with higher number of

51

layers, in this chapter we assume that sampled networks have a finite maximum depth less

than or equal to 20 layers. Our assumptions are based on the topological configurations of

modern state-of-the-art architectures such as AlexNet [9], VGG [79] and the neural network

topologies described in section 2.2.3.

We will describe topologies using a shorthand notation consisting of characters and

numbers to define the layer specific hyperparameters. For example we use C(n, f, s) to

denote a convolutional layer containing n filters of size f x f in spatial domain with a

stride of s pixels. N denotes local response normalization layers, P(f, s) is used to describe

pooling layers with filters size f x f and stride s. Similarly FC(n) is used to describe

fully connected layers containing n neurons. Finally L(n) denotes the loss layer composed

of n neurons (which can be a softmax logistic regression layer for classification problems).

Note that this shorthand representation is very similar to one used to describe the layers

in section 2.2.1. The entire topology can be written as a succinct string by representing

each layer using its shorthand notation laid out in a sequence. For example, the topology

AlexNet[9] can be written as the sequence of following layers - C(96, 11, 3)-N-P(2,2)-C(256,

5, 1)-N-P(2,2)-C(384, 3, 1)-C(384, 3, 1)- C(256, 3, 1) -P(2,2)- FC(4096)- FC(4096) - L(1000).

We can now define the context free grammar for topology generation (G = (V, E, R, s)).

The definition of a context free grammar G will include the set of non terminals V, set of

terminals E, production rules R and starting symbol s. Set of terminals (E) comprises of

the layer symbols {C, FC, P, L, N}, the natural number alphabet {0, 1...9} and some syn-

tactic sugar to simplify parsing {(, -,)}. Set of non terminals V will include the symbol

to generate layers (s) and a non terminal for generating natural numbers (z). The produc-

tion rules R can be divided into layer generation rules and rules to generate layer specific

hyperparameters.

s -> C(z,z,z)-s FC(z)-s I N-s P(z,z)-s I L(z)

z -> 0 1 2 3 4 5 6 7 8 9 ...

Oz lz I 2z 3z 4z 5z I 6z I 7z I 8z I 9z

While the context free grammar formulation greatly simplifies topology generation, it is

still capable of generating infinitely many topologies. We can further restrict the filter sizes

and strides to fixed values and focus on topologies lesser than a maximum depth of 20. We

52

can achieve this by including layer depth specific rules when generating topologies. Section

3.5.2 describes how to restrict the search space and make it finite.

3.3 Application of Reinforcement Learning

We can pose the problem of selecting neural network layers as individual actions taken by

an artificially intelligent agent. We use reinforcement learning based methods to optimize

the directed acyclic graph generated from our context free grammar. The final objective of

this reinforcement learning can be calculated using the validation accuracy of the generated

topology (obtained after training). We impose restrictions on the layers by fixing number

of filters, stride, size and depth, restricting our state space to a finite set of actions.

Over here we give an overview of the theoretical foundations behind reinforcement learn-

ing. Reinforcement learning is an area of machine learning which focuses on optimizing the

actions of an artificially intelligent agent while maximizing a reward function. The actions

of such intelligent agents are usually modeled using Markov Decision Processes. Our rein-

forcement learning methods will include application of approximate dynamic programming

techniques when characterizing and optimizing the actions taken by intelligent agents.

A basic Markov Decision Process characterization comprises of a set of agent states (S)

and a set of actions (A). It also includes probabilistic rules governing transitions from one

state to another (Pa(s, s')) and expected reward obtained from transitioning between states

(Ra (s, s')). Combination of agents action selections is defined as the policy function 7r.

7r : S x A -+ [0, 1] (3.1)

7ro(als) <- P(at = alst = s) (3.2)

Notice that this is analogous to context free grammar characterization when we map

states to layers (or terminals) and production rules to state transition probabilities (with

each transition probability set to 0 or 1). Every sequence of actions that an agent takes

leads to generation of a new neural network topology. The total reward (R) can then be

determined by training and evaluating a topology on a given dataset. In Markov Decision

Formulation the reward is obtained by discounted summation of individual rewards (taken

53

MUMiUMMUMMlFE WET WEEEE I'EM~EIK mEEn

~EEE2DDED EfmEEEE. *1P WO E3vm4EE

LaNEMORO (~*EEMENU* iiMt ifL_;EEL)

Figure 3-2: We demonstrate results on three separate datasets: (a) MNIST dataset com-
posed of 28x28 handwritten digits, (b) CIFAR-10 contains 32x32 RGB images of real world
objects and (c) SVHN contains 32x32 images of digits taken from Google Street View im-
ages.

from each state transition):

00
R = E ytrt (3.3)

t=o

Various methods in literature demonstrate how to solve the problem of finding optimal

policy [94]. We further simplify the notion of policy to represent finite number of actions

before generating the terminal loss layer and solve the problem to find more optimal ar-

chitectures using reinforcement learning. Next, we will describe the datasets used in our

experiments.

3.4 Datasets

In this section we describe various image classification datasets used in the experimental

evaluation. The datasets have varying levels of difficulty and include tasks ranging from

hand written digit recognition to object classification. The dataset sizes vary from 50000

to 700000 images. The color channels and image sizes are varied as well, demonstrating the

empirical strengths in our method.

54

3.4.1 Mixed NIST

Mixed NIST (MNIST) database [95] contains handwritten digits sampled from postal codes

and is a subset of a much larger dataset available from the National Institute Science and

Technology. MNIST comprises of a total of 70,000 samples divided into 60,000 training

samples and 10,000 testing samples. Original binary images were reformatted and spatially

normalized to fit in a 20 x 20 bounding box. Anti-aliasing techniques were used to convert

black and white (bilevel) images to grey scale images. Finally the digits were placed in a

28 x 28 grid, by computing the center of mass of the pixels and shifting and superimposing

images in the center of a 28 x 28 image.

3.4.2 Canadian Institute For Advanced Research

The Canadian Institute For Advanced Research (CIFAR-10) dataset is a labeled subset of

tiny images dataset (containing 80 million images). It is composed of 60,000, 32 x 32 color

images distributed over 10 different class labels. The dataset consists of 50,000 training

samples and 10,000 testing images. Images are uniformly distributed over 10 classes with

training batches containing exactly 6000 images for each class. The classes are mutually

exclusive and there are no semantic overlaps between the images coming from different la-

bels. We normalized the images using GCA whitening and applied global mean subtraction

before training.

3.4.3 Street View House Numbers

The Street View House Numbers (SVHN) is a real world dataset for developing digit recog-

nition algorithms in the wild. The dataset is comprised of over 600,000 images of digits

taken from Google Street View images. The dataset is divided into three parts, a smaller

more difficult training set comprising of 73,257 samples, a testing set which contains a total

of 26,032 samples and finally a bigger set of 531,131 images containing less difficult samples.

The data comes in a CIFAR-10 format of 32 x 32 RGB images centered around a single

digit, and contains several images with noisy distractors around the edges. The dataset

was preprocessed by mean subtraction and GCA whitening techniques described in [82].

We obtained best results by first training on the original more difficult subset and then

finetuning on the extended training set.

55

0 State Layer 1 Layer 2 Layer N-1 Layer N Layer 1 Layer 2
Action Input

(64,3,1 (64,3,1 (64,3,1 (64,3,1 (64,3,1) (64,3,1)

G Convolution
Input - Input F p 64 Filters

1x Strides

P(2,2) P(2,2) P(2,2) P(2,2) P(2,2) Max Pooling

G®G Softmax

(a) (b)

Figure 3-3: Here we show state and action space associated with the context free grammar
based reinforcement learning agent. States are denoted in circles and actions are depicted
using arrows. The agents starts from initial state and samples layers until it reaches the
termination state. C(n, f, 1) represents a convolutional layer with n outputs, filter size f,
and stride 1. P(f, 1) denotes a pooling layer with filter size of f and stride 1. L denotes a
termination state which can be softmax or global average pooling. An example topology
is sampled (denoted by yellow arrows) leading to topological configuration shown on the
right.

3.5 Experimental Details

In this section we describe how to train reinforcement learning agents to sequentially select

neural network layers while optimizing neural network topologies. As described earlier, we

will model the layer selection process using a Markov Chain formulation with the assumption

that convolutional layers learn hierarchically, with varying feature complexities based on

their depths[19]. The learning agent sequentially selects layers that maximize the reward

for the topology generation graph until it reaches a termination state. Figure 3-3 gives a

description of state and action spaces and demonstrates example trajectory observed when

sampling topologies. We will represent the expected reward from selecting individual layers

by using the Q function (see equation 3.4).

While we can observe the cumulative reward after sampling an entire topology, re-

wards from sampling individual layers remain unknown. For this reason, we will apply the

Q Learning based formulation when sampling and training layers using the reinforcement

learning agent. Q Learning is a model free reinforcement learning technique that can learn

the optimal action selection for any given Markov Decision Process, without explicit specifi-

cation of action reward function. We can achieve this by learning the expected utility when

selecting any given layer. The Q values represent the expected quality of a state-action

combination (as described in equation 3.4).

56

Q: S x A --+R

Q value based reinforcement learning involves iteratively sampling the state action space,

and updating expected utilities from state-action pairs using the observed rewards. Equa-

tion 3.5 describes the iterative approach when computing the Q values. The algorithm

begins by initializing dictionary Q with arbitrary random values. With each iteration we

sample a new trajectory, observe a reward rt (validation accuracy) and a new state st+1-

The algorithm computes the Q values for a state st recursively, by combining the current

reward with maximum obtainable reward from all possible state-action pairs producing

St+1.

Q(st, at) <(1-a) Q(st, at) + a (rt + -y max Q (st+ 1, a)) (3.5)
a

We assume a learning rate of a and a discounting factor of -y. The algorithm is imple-

mented using a simple dynamic programming based formulation while iteratively updating

the reward function. Each action involves generation step in context free grammar, adding

a new convolutional, softmax, fully connected or pooling layer. We will describe the state

and action spaces in the updatingcoming sections.

3.5.1 The state space

As described in section 3.2 we represent each state using an alphanumeric identifier and a tu-

ple. The alphanumeric identifier represents the type of layers, for our experiments these are

set to convolution (C), fully connected (FC), pooling (P), softmax (SM) and global average

pooling (GAP). The corresponding tuple is used to represent numerical hyperparameters

associated with each layer and contain information about the layer specific properties. For

example convolutional layer can have hyperparameters that include layer depth, filter size,

stride and number of filters, while a fully connected layer may be described using only

its depth and number of output neurons. We can also add an additional hyperparameter

to pooling and convolutional layers used for representing their input representation tensor

dimensions. This allows us to restrict action space to transitions which make sense, for

57

(3.4)

Layer type Layer specific parameters Parameter values

i ~ Layer depth < 12

f Filter size Square. E {1,3,5}
Convolution (C) f ~ Filter stride Square. Always equal to 1

d ~ Number of filters E {64, 128, 256, 512}
n ~ Input tensor dimension E {(oc, 8], (8, 4], (4, 1]}

i ~ Layer depth < 12
Pooling (P) (f,) ~ (Filter size, Filter strides) Square. E {(5, 3), (3, 2), (2, 2)}

n ~ Input tensor dimension E {(oo, 8], (8, 4] and (4, 1]}
i Layer depth < 12

Fully Connected (FC) n ~ Number of consecutive FC layers < 3
d ~ Number of neurons C {512, 256, 128}

Termination state (L) s ~ Previous state
t ~ Type Global Avg. Pooling/Softmax

Table 3.1: We describe the various types of layers and corresponding hyperparameters used

when describing them.

example a pooling of size 3 x 3 cannot be applied to representation stacks of size 2 x 2.

3.5.2 The action space

Context free grammar formulation can be used to create a generalized set of actions taken

by reinforcement learning agent. However such set is potentially infinite and needs to

be limited in the state-action space for computational feasibility. We make reinforcement

learning agent formulation much more tractable by defining state space to a finite set of

values (see 3.1) and restricting actions to produce a finite directed acyclic graph. We limit

actions to include transitions from layers with depth i to a state with layer depth i + 1,

removing the possibility of cycles. We further restrict the maximum layer depths to 20 and

allow any layer to terminate by addition of softmax or global average pooling layers (loss

layers).

Transitions to convolutional layers are allowed only when the previous layer is either

the input layer, a convolutional layer or a pooling layer. Similarly, pooling layers are

allowed only when the preceding layer is a convolutional layer. We reduce the memory

and computational footprint by restricting transitions to fully connected layers when input

tensor dimensions exceed 8 x 8 x N. Convolutional layers are allowed to transition to

another convolutional, pooling, fully connected or loss layer, whereas a fully connected

layer may only transition to another fully connected layer or loss layer. Pooling layers may

only transition to a fully connected or a convolutional layer. Additions of these constraints

58

C 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Models Trained 1500 100 100 100 150 150 150 150 150 150

Table 3.2: We summarize the training schedule when learning topologies using e greedy
descent. The learning agent trains the specified number of unique models at each e.

ensures reasonable computation times while keeping the search space rich of well performing

topologies.

3.5.3 Training procedure

We implemented Q Learning using epsilon greedy gradient descent when sampling the

state-action space. Under the epsilon greedy policy, the agent selects greedy outcomes

with e probability while selecting a uniformly random action with probability 1 - e. We

begin by setting e to 1, leading to purely random topologies and slowly reduce e in steps

of 0.1. Higher values of e correspond to higher randomness in selected topologies leading

to more exploration, whereas smaller epsilon values select better performing topologies by

exploitation of knowledge learned during the exploration phase. We sample a large number

of topologies in the beginning when e is set to 1. We slowly populate Q values with better

approximations of expected rewards when selecting each layer.

We also maintain a replay dictionary, a key value hash map containing previously trained

topologies and their corresponding validation accuracies. Every time a topology is sampled,

it gets compared against the replay dictionary keys. In case of repetitions, instead of

retraining the topology, we use the validation accuracy stored in our replay dictionary.

New topologies are sampled and trained in batches of 32. After sampling and training is

done, we randomly select 100 topologies from replay dictionary and used them to update the

Q values dictionary (see equation 3.5). We obtain faster convergence by applying iterative

updates in their reversed temporal order [96].

3.6 Results

Topologies generated by reinforcement learning agent were trained on the three datasets

described in section 3.4. The training data was split into training and validation sets with

validation set consisting of 5000 samples selected uniformly from each class. Dropout layers

were added after every two layers to prevent overfitting, the dropout ratio was varied uni-

59

SVHN Q-Learning Performance

90 Average Accuracy Per Epsilon 1
90 - Rolling Mean Model Accuracy
80
70

60 1 A
50 VV'
40

30

20
10
0 Epsilon - 1.0 .9. .7 .6 .5 .4 .3 .2 .1

1.00

0.90

0.80
0.70

>U%0.6 0

S0.50

. 0.40

0.30

0.20

0.10
n nn

CIFAR10 Q-Learning Performance

Average Accuracy Per Epsilon
-Rolling Mean Model Accuracy

Epsilon -= 1.0 .691.E. t.6 .5 .4 .3.2 .1
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 3500

Iterations Iterations

Figure 3-4: In the plots, the blue line shows a rolling mean of model accuracy versus
iteration, where in each iteration of the algorithm the agent is sampling a model. Each
bar (in light blue) marks the average accuracy over all models that were sampled during
the exploration phase with the labeled c. As E decreases, the average accuracy goes up,
demonstrating that the agent learns to select better-performing CNN architectures.

formly between 0 and 0.5. Each topology was trained for 20 epochs, using Adam optimizer

[97]with momentum of 0.9, weight decay of 5e- 4 and gamma of 0.5. Initial learning rate

was set to 0.1, the learning rate reduction was set to 0.2, the batch size was set to 128

and the step size was set to 5 epochs. If the model failed to learn over its first epoch, we

reduced the learning rate by a factor of 0.1 and restarted the training with a new random

initialization of weights. We used Xavier weight initialization [98] combined with Adam

optimizer for faster learning and convergence. We used an array of 10 Nvidia GPUs to

reduce computation time and sample topologies much more quickly. Experiments involved

sampling of 2500 topologies and took a period of 15 days over each dataset.

Top 10 models obtained after topology selection were finetuned using a longer training

schedule. After longer training, top five topologies were used to produce an ensemble. We

used simple voting scheme to ensemble our models, see table 3.2 for description of epsilon

schedule and table 3.4 for a summary of our results.

Topology selection

We find that our algorithm steadily improves the average validation accuracy of its selected

models. The mean validation accuracy shows an increase with every step of f as it is varied

from 1 to 0.1, indicating the balance between exploration and exploitation. We show a

rolling mean of validation accuracy over 100 models in figure 4-5 for CIFAR-10 and SVHN

experiments. The average validation accuracy remains constant when E is fixed, for example

60

1.

0.

0.

0.

0.
50.
U
U 0.

0.

0.

0.

Method CIFAR-10 SVHN MNIST CIFAR-100
Maxout [99] 9.38 2.47 0.45 38.57
HighWay [100] 7.72 - - -
NIN [101] 8.81 2.35 0.47 35.68
VGGnet [79] 7.25 - - -
FitNet [102] 8.39 2.42 0.51 35.04
All-CNN [103] 7.25 - - 33.71
AutoML (top model) 6.92 2.28 0.44 27.14*
AutoML (ensemble) 7.32 2.06 0.32 -

Table 3.3: We compare our performance with CNNs that only use convolution, pooling,
and fully connected layers. We report results for CIFAR-10 and CIFAR-100 with moderate

data augmentation and results for MNIST and SVHN without any data augmentation.

CIFAR-10 validation accuracy stays at 0.58 % during the exploration phase with C = 1 and

it steadily increases to 0.78 as c is reduced to 0.1.

We find interesting motifs in topological hyperparameters discovered by the reinforce-

ment learning agent. The agent routinely selects convolutional layers with 1 x 1 filters,

capable of learning linear transformation on the color space, very similar to the color space

transformations such as mean subtraction, whitening and RGB to YUV (see [104, 105]).

Consecutive 1 x 1 filters can also be used to emulate network in network topologies which

have be shown produce high quality results[101]. Even though more parameters are impor-

tant for learning more complex representations, model sizes can vary by huge amounts. For

example top five topologies in CIFAR-10 experiments have sizes ranging from 11.26 million

to 1.10 million parameters and demonstrate only 2.32% variation in test error.

Analysis of test accuracy

We compare the results from automated architecture selection with current state-of-the-art

topologies, that were engineered by humans. For performance evaluation, we report the test

errors over a single topology combined with an ensemble comprising of five different topolo-

gies. We will split comparisons among two different tables (see tables 3.3 and 3.4). Table

3.3 shows the comparisons when human generated topologies are restricted to the layers

available to the reinforcement learning agent. We find that when comparing with topologies

containing only convolution, pooling, dropout, fully connected, normalization, softmax and

global average pooling, our method beats all existing state-of-the-art topologies. Table 3.4

performs a more general comparison, including topologies containing skipped connections,

highway networks, residual connection, densely connected networks and specialized pooling

61

Method CIFAR-10 SVHN MNIST CIFAR-100
DropConnect [108] 9.32 1.94 0.57 -
DSN [109] 8.22 1.92 0.39 34.57
R-CNN [110] 7.72 1.77 0.31 31.75
AutoML (ensemble) 7.32 2.06 0.32 -
AutoML (top model) 6.92 2.28 0.44 27.14*
Resnet(110) [80] 6.61 - - -

Resnet(1001) [111] 4.62 - - 22.71
ELU [81] 6.55 - - 24.28
Tree+Max-Avg [82] 6.05 1.69 0.31 32.37

Table 3.4: We compare our error rate with state-of-the-art methods with complex layer

types. We report results for CIFAR-10 and CIFAR-100 with moderate data augmentation

and results for MNIST and SVHN without any data augmentation.

layers. We demonstrate competitive results when comparing to all existing modern human

engineered topologies.

We further compare our topology selection technique with existing automated hyper-

parameter optimization methods and demonstrate massive improvements over the test ac-

curacy reported in prior-art. On CIFAR-10 dataset, we see a reduction in test error from

21.2% reported by [106] to 6.92%. We demonstrate similar improvement from 7.9% reported

by [107] to 0.32% on the MNIST dataset. Finally an ensemble of top 10 models on MNIST

dataset accomplished an error rate of 0.28% beating the current state-of-the-art results,

demonstrating the power of automated architecture selection techniques.

Reinforcement Learning Stability

Since AutoML algorithm involves randomized iterative methods for topology optimization,

multiple executions are needed to establish its robustness and efficacy. In this section we

analyze the variance in topology accuracies obtained from automated architecture selection.

We rerun the c greedy descent 10 different times using 10% of SVHN dataset. A smaller

subset of SVHN is used to reduce computational overhead from 100 GPU days to merely

10 GPU days. We induct an array of 10 NVIDIA GPUs to further speed up the process,

reducing the execution time to one single day. Figure 3-5 shows accuracy over individual

runs and their average accuracies combined with corresponding variances. We observe that

for each individual iteration, reinforcement learning agent consistently improves the average

accuracies over its selected models. Variance in average accuracy is very small at beginning

1 = due to similar random distribution and large selection of models. Other stages show

62

-n.a r

0.70 0.75

U 0.70 U 0.70

U 0.65 U 0.65

0.60 C 0.60

055 W 4
. 0.55

0.50 0.0

0.45
04

1.0 0.9 0.6 0.7 0.6 0. A 0.4 0.3 0.2 0.1 0.41 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Epsilon Epsilon

(a) (b)

Figure 3-5: Figure 3-5a shows the mean model accuracy at each f for each independent
experiment. Figure 3-5b shows the mean model accuracy and standard deviation at each f
over 10 independent runs of the Q-learning procedure on 10% of the SVHN dataset. Despite
some variance due to a randomized exploration strategy, each independent run successfully
improves architecture performance.

Dataset CIFAR-100 SVHN MNIST
riaining from scratch 27.14 2.48 0.80

Finetuning 34.93 4.00 0.81
State-of-the-art 24.28 [81] 1.69 [82] 0.31 [82]

Table 3.5: We summarize our prediction errors for the top AutoML (CIFAR-10) model
trained for other tasks. Finetuning refers to initializing training with the weights found for
the optimal CIFAR-10 model.

higher variance possibly due to fewer models and different parent distributions at each step.

We observe a mean accuracy of 88.25% and standard deviation of 0.58% at E = 0.1. Even

though the parent distributions can diverge with each iteration of E, we demonstrate that

the average variance remains bounded demonstrating the robustness of our method.

Transfer Learning Ability: Topologies including VGG [79] and AlexNet [9] have

been demonstrated to perform well at a large selection of computer vision tasks. We test

if this is true for automated topology generation, by training the topology selected for

one dataset on other datasets. Table 3.5 summarizes the results when training the best

topology selected for CIFAR-10 dataset on CIFAR-100, SVHN and MNIST datasets. We

find that topologies designed over one dataset perform remarkably well on other datasets,

demonstrating transfer learning ability in AutoML algorithm.

'Results in this column obtained with the top AutoML architecture for CIFAR-10, trained from random
initialization with CIFAR-100 data.

63

Q-Learninci Individual Runs O-Learnina Stabilitv (Across 10 Runs)

3.7 Concluding Remarks

In this chapter we demonstrate how to automate layer selection process when engineering

neural network topologies. Earlier work in this domain primarily focused on selecting only

a few hyperparameters or engineering of much smaller topologies. We are one of the first

to demonstrate end-to-end optimization of deep neural network layers at performance close

to human engineered topologies. However further research is needed in making this process

more computationally feasible and robust. We explore a reasonable subset of layers which

was further discretized to reduce the computational burden. Further exploration into more

diverse set of layers could lead to more interesting insights.

64

Chapter 4

Distributed learning approaches

While deep neural networks have become the new state of art in classification and prediction

on high dimensional data, training of deep neural nets can be extremely data intensive

requiring preparation of large scale datasets collected from multiple entities. A deep neural

network typically contains millions of parameters and requires tremendous computing power

for training, making it difficult for individual data repositories to train them. Emerging

technologies in domains such as biomedicine and health, stand to benefit from methods

which can allow training of neural networks without requiring data or resource aggregation

at one single place.

In domains such as health care and finance, lack of data is a critical issue while de-

veloping machine learning algorithms. To address the issue of data scarcity in training

and deployment of neural network-based systems, we develop a methods and api to train

deep neural networks using distributed means. Our method allows for deep neural net-

works to be trained using data from multiple entities. Sufficiently deep neural architectures

needing large supercomputing resources and engineering oversight may be required for op-

timal accuracy in real world applications. Furthermore, application of deep learning to

such domains can sometimes be challenging because of scarcity of data and lack of absence

of platforms that allow data sharing. This chapter attempts to solve these problems by

proposing methods that enable training of neural network using multiple data sources and

a single supercomputing resource.

In this chapter we propose new techniques that can be used to train multi layer percep-

trons over a computer network in a distributed fashion. Specifically we address the problem

65

Alice Bob

Figure 4-1: We are interested in distributed learning approaches bridging the gap between
data sources (Alice) and supercomputing resources (Bob).

of training a deep neural network over several data entities (Alice(s)) and one supercom-

puting resource (Bob). In upcoming sections we will show how to train neural networks

between multiple data entities (Alice(s)) and supercomputing resource (Bob). These tech-

niques will include methods which allow several data repositories to train a neural network

with one supercomputing resource training a large section of the neural network topology.

4.1 Related work

Distributed and secure inference continues to be a challenging problem in computer vision.

One category of solutions to this problem involve adopting oblivious transfer protocols to

perform secure dot product over multiple entities in polynomial time [112]. While this

method is secure, its somewhat impractical when considering large scale datasets. A more

practical approach proposed in [112] involves sharing only SIFT and HOG features instead

of the actual raw data. However as shown in [113], such feature vectors can be inverted

very accurately using prior knowledge of methods used to create them. Neural networks

have been shown to be extremely robust to addition of noise and their denoising and recon-

struction properties make it difficult to compute them securely [35]. Neural networks have

also been shown to be able to recover entire image from only a partial input [114] rendering

simple obfuscation methods inert.

Multi layer neural networks have been applied to generate secure one-way hashes [115]

with high key sensitivity. They have also been used to encrypt JPEG images [116] and gen-

erate public and private keys more efficiently [117]. Secure one way hashing schemes can be

used for non-linear dimensionality reduction, thereby enabling transmission of information

over networks [118]. Combined with homomorphic encryption, such schemes can enable

66

cloud based feature learning in big data applications [119, 120].

Widespread application of neural networks in sensitive areas such as finance and health,

has created a need to develop methods for both secure training [121] and classification in

neural networks [122]. Under secure processing paradigms, owner of neural network doesn't

have access to actual raw data used to train the neural network [123]. The secure paradigms

may also extend to the neural activations and (hyper)parameters. Such algorithms form a

subset inside the broader realm of multi-party protocol problems involving secure compu-

tation over several parties [124, 125]. Some interesting solutions include using Ada-boost to

jointly train classifier ensembles [126], using random rotation perturbations for homomor-

phic pseudo-encryption [127] and applying homomorphic cryptosystem to perform secure

computation [128, 129].

We will compare our method against modern distributed learning methodologies used

in data center settings. We compare our method against federated learning and large batch

synchronous SGD methods, shown to be state of the art in data center settings [130, 131].

Our baseline involves comparison with large-batch synchronous SGD which is a state-of-the-

art method in the data center, shown to outperform asynchronous approaches (proposed

in [131, 132]). We will also compare against modern federated SGD methods [130] which

modifies the global batch size and relies on asynchronous weight updates followed by model

averaging to produce more optimal results. These methods rely on localized optimization

by the clients followed by global averaging of the optimized models [133, 132, 134].

4.2 Theoretical underpinnings

In this section we consider the task of training a deep neural network using data from Alice

and using computing resources of Bob. Our algorithm can be run using one or multiple

data entities, and can be run in peer to peer or centralized mode. Please see Figure 5-2 for

schematic depiction of algorithm modalities.

4.2.1 Algorithm for training over a single entity

We will start by describing the algorithm in its simplest form which considers training a

neural network using data from a single entity and supercomputing resource. Let us define

a deep neural network as a function F, topologically describable using sequence of layers

67

Wireframe Diagram Wireframe Diagram (Peer To

(a) entrlize disribuenural ntoktan-()Pe-o-ertanngfrdsrbue)erig

Fige Forward Pass Tesof s rn
Recover ------_-------
snapsh t - -- ----

B bAlice,.....

(BbBob

------ - --- ~Alice2 - ---------

A lc A
---- -- ---- -- -

whic Cetis e dcsmrputed euntal aptplrkatrin- of lay -- ers dtaininf- distributeLod lar)).

iet 4-2: Totptdabl)eote the cugsrtmize losstracizeod (4-2r comuting genra-

disee for fal laypeadets cn ebakrgtdoer th er(-baaetteec (lyer) stor geerate

gadienod preiu lar and udate currty layer. Wred wil user~omp)uton deoeh

proces Lo,...Lckproragion ovrne (layerand Th oss)to denot fbckropasgin on endtre

workh is compised of sequential backwiad pase FTer (lss) - LN(LN-1--.(L(Loss)d ally,)

dSet(sY frepralaer.rdents eso sen datakprsecgrtld oetity Ya Inye te bginning,

Alice and Bob initialize their parameters randomly. Alice then iterates over its dataset

and transmits representations to Bob. Bob computes losses and gradients and sends the

gradients back to Alice. Algorithm 3 describes how to securely train a deep neural classifier

using a single data source.

Correctness

Here we analyze if training using our algorithm produces same results as a normal train-

ing procedure. Under normal training procedure we would first compute forward pass

68

Algorithm 3 Secure Neural Network training using single data source.

1: Initialize:
<- Random Initializer (Xavier/Gaussian)
F < {Lo, L,...Ln}
Fb <-- {Ln+,Ln+

2,...LN}
2: Alice randomly initializes the weights of F, using #
3: Bob randomly initializes the weights of Fb using 4
4: while Alice has new data to train on do
5: Alice uses standard forward propagation on data

> X <- Fa(data)
6: Alice sends nft layer output X and label to Bob

> Send((X, label), Bob).
7: Bob propagates incoming features on its network

> output <- Fb(X)
8: Bob generates gradients for its final layer

> loss <- G(output, label)
9: Bob backpropagates the error in Fb until L,+1

> Fb, loss' - FbT (loss)
10: Bob sends gradient of Ln to Alice

> Send(loss', Alice)
11: Alice backpropagates gradients received

> F', -+- Flj(loss')

output <- F(data) followed by computation of loss gradients G(output, label). This loss will

be backpropagated to refresh weights F' <- FT(loss). Since forward propagation is noth-

ing more but sequential application of individual layers F(data) is same as Fb(Fa(data)).

Similarly backpropagation FT (loss) is functionally identical to sequential application of

FT (FT (data)). Therefore, we can conclude that our algorithm will produce identical re-

sults to a normal training procedure.

4.2.2 Generalization for training over multiple entities

Now we demonstrate how to extend algorithm describe in 4.2.1 to train using multiple data

entities. We will use the same mathematical notations as used in 4.2.1 when defining neural

network forward and backward propagation. Additionally, there are N data entities, each

of them is denoted by Alice2 .

As an initialization step, Bob sends Alice1 topological description of first N layers. Alice

and Bob use standard libraries for random initialization of their parameters. Bob sets Alice1

as the last Alice it trained with. We modify 3 and add a step which uses data from multiple

entities in a round robin fashion, however Alice, may be required to update weights before

beginning training. Alice(s) can update weights in a peer to peer or centralized fashion,

69

Algorithm 4 Secure Neural Network over N+1 agents.
1: Initialize:

0 *- Random Initializer (Xavier/Gaussian)
Fa,i <- {Lo,L1,...L0 }
Fb <-- { Ln+1, L,+2 , ... L N}

2: Alice1 randomly initializes the weights of Fa, using #
3: Bob randomly initializes the weights of Fb using #
4: Bob sets Alice1 as last trained
5: while Bob waits for next Alicej to send data do
6: Alice requests Bob for last Alice, that trained
7: Alice3 updates its weights

> Fa,j <- Fa,o
8: Alice uses standard forward propagation on data

> X <- Faj (data)
9: Alicej sends nth layer output and label to Bob

> Send((X, label), Bob).
10: Bob propagates incoming features on its network

> output <- Fb(X)
11: Bob generates gradients for its final layer

> loss - G(output, label)
12: Bob backpropagates the error in Fb until L,+1

> Fb, loss' <- Fr(loss)
13: Bob sends gradient of L, to Alicej

> Send(loss', Alicej)
14: Alice3 backpropagates the gradients it received

>F' ,- F' (loss')
15: Bob sets Alicej as last trained

please refer to section 4.3.3 for detailed description of both. Once the weights are updated,

Alicej continues its training, please refer to algorithm 4 for detailed pseudo-code describing

algorithm.

Correctness

We analyze if training using our algorithm produces identical results as a normal training

procedure would (under assumption that the data arriving at multiple entities is used in

same sequence and random weights use same initialization). The algorithm correctness

stems from the fact that Bob and at least on of Alice, have identical neural network pa-

rameters at iterationk. We use inductive techniques to prove that this is indeed the case.

Lemma 1 The neural network currently being trained is identical to neural network if it

was trained by just one entity.

Base Case: Alice,...N have same weights at beginning of first iteration.

70

Proof: Alice1 randomly initialized weights and transmitted them to Alice2...N in begin-

ning making them identical to training from just one entity.

Recursive Case: Assertion: If Alicej has correct weights at beginning of iterationi it

will have correct weights at beginning of iteration i + 1.

Proof: Alicej performs backpropagation as the final step in iteration i. Since this back-

propagation is functionally equivalent to backpropagation applied over entire neural network

at once, Alice continues to have correct parameters at the end of iteration. (FT(loss) is

functionally identical to sequential application of F (FI(data))).

4.2.3 Online learning

An additional advantage of using our algorithm is that the training can be performed in

an online fashion, by providing Bob output of forward propagation whenever there is new

annotated data. Further in the beginning instead of transmitting the entire neural net,

Alice can initialize the weights randomly using a seed and just send the seed to Alice,...N

preventing further network overhead. When Alice is requested for weights in peer to peer

mode, it can simply share the weight updates, which it adds to its parameters during the

course of training. The combined value of weight updates can be computed by subtracting

weights at beginning of training from current weights. Weights can be refreshed by Alice by

combining its initial weights with subsequent weight updates it downloads from centralized

weight server (or Alice(s) depending on mode). To facilitate centralized modality, we can

modify step 6 of 4 and 5, replacing it with a request to download encrypted weights from

weight server. Once training is over Alice can upload the new encrypted weights to weight

server (step 15 in 4 and step 16 in 5).

4.2.4 Semi-supervised application over multiple entities

In situations with fewer labeled data-samples, a reasonably approach includes learning hi-

erarchical representations using unsupervised learning [135]. Compressed representations

generated by autoencoders can be used directly for classification [15]. Additionally, we

can combine the losses of generative and predictive segments to perform semi supervised

learning, adding a regularization component while training on fewer samples [36].

In this section we describe how to modify split neural network algorithm to incorpo-

rate semi-supervised learning and generative losses. We assume that out of n layers for

71

Algorithm 5 Training Split Neural Network with an Autoencoder over N+1 agents.

1: Initialize:
<- Random Initializer (Xavier/Gaussian)
F +- {Lo,L1,...Lm}
Fd,1 <- {Lm, Lm+i, ... Ln}
Fb -- {Ln+1, Ln+2, -- }

2: Alice1 randomly initializes the weights of Fa, using #
3: Bob randomly initializes the weights of F using #
4: Alice 1 transmits weights of Fa,i to Alice 2... N
5: while Bob waits for next feature vector from Alicej do
6: Alice requests Bob for last Alice, that trained
7: Alice updates its weights

> F,j +- F,,o
8: Alicej uses standard forward propagation on data

> X,, <- Fe,3(data)
> X <- Fd,j (X X)

9: Alicej sends mth layer output and label to Bob
> Send((Xm, label), Bob).

10: Bob propagates incoming features on its network F

> output <- Fb(Xm).

11: Bob generates loss for its final layer
> loss <- G(output, label)

12: Bob backpropagates the error in F until Ln+1
> F', loss' <- Fr(loss)

13: Bob sends gradient for Ln to Alice

> Send(loss', Alicej)
14: Alice3 generates autoencoder loss for its decoder

Fdj loss'n = F'j (X)
15: Alicej backpropagates combined gradients

> Fa, _ <- Fj(r(loss', loss',j)
16: Bob sets Alicej as last trained

Alice, first m layers are encoder and the remaining n - m layers belong to its decoder.

Fe,i denotes the forward propagation over encoder (computed by sequential application

Lm(Lm-1 ... (Lo(data)))). F,i denotes application of decoder layers. During forward propa-

gation Alice propagates data through all n layers and sends output from mwh layer to Bob.

Bob propagates the output tensor from alice through L,...N and computes the classifier loss

(logistic regression).

Let loss define the logistic regression loss in predictive segment of neural network (last

N - n layers owned by Bob), and let loss,,, define the contrastive loss in autoencoder

(completely owned by Alice(s)). Bob can compute loss using its softmax layer and can back-

propagate this loss to layer L,+1 giving gradients from classifier network [loss' <- Ff (loss)].

Alicei can compute the autoencoder loss and can backpropagate it through it's decoder

network [FT (losSenc)]. We can facilitate semi-supervised learning by combining weighted

72

With Label Sharing Without Label Sharing

F rwrPass Ten or Alce Labels Forward Ten or
aesrw La el G adients 4 2 - --LabelsLa

Gradients Forward Tensor
Bob -- de- TLS

Alice

(a) Training with label propagation (b) Training without label sharing

Figure 4-3: Figure (4-3a) shows the normal training procedure while figure (4-3b) demon-

strates how to train without transmitting labels, by wrapping the network around at its

last layers.

sum of two losses. The weight a is an added hyperparameter which can be tuned during

training.

r/ <- F(loss) + a * FT(lossenc) (4.1)

After the initialization steps, Alice propagates its data through her network and sends

output from the encoder part to Bob. Bob does a complete forward and backward to send

gradients to Alice. Alice then combines losses from its decoder network with gradients

received from Bob and uses them to perform backpropagation (please see 5 for detailed

description).

4.2.5 TIraining without label propagation

While the algorithm we just described doesn't require sharing of raw data, it still does

involve sharing of labels. We can mitigate this problem by presenting a simple adjustment

to the training framework. In this topographical modification, we wrap the network around

at its end layers and send those back to Alice. While Bob still retains majority of its layers,

it lets Alice generate the gradients from the end layers and uses them for backpropagation

over its own network. We can use a similar argument as one used in 1 to prove that this

method will still work after the layers have been wrapped around. Please see figure 4-4 for

schematic description of our training methodology without label sharing.

73

4.3 Network implementation for distributed learning

We ensure safety against man-in-middle attacks, by using RSA cryptography and SSL

encrypted sockets for network communication. Each of Alice is given a unique user id and

password which is used to establish identity of Alice while connecting. When communicating

over SSL, client and server initiate a hand shake using the asymmetric public key provided

by the server. After a successful handshake, client and server agree upon a temporary

key used during session to perform symmetric cryptography. We add additional safeguards

by adding timeouts when either side is idle and we use trusted sources to generate SSL

certificates.

We use standard json communication libraries for asynchronous RPC for implementa-

tion. On top of those, we implement a custom protocol for training once a secure connection

is established using SSL. Our protocol defines several network primitives (implemented as

remote functions) which we broadly divide in 3 parts (1) Training request, (2) Tensor

transmission and (3) Weight update. Please refer to table 5.3 for a complete list of network

primitives. We describe these three network primitives categories below.

4.3.1 Training request

Training request is the first message sent by Alice to Bob in the beginning of a session.

Training request message carries information to establish identity, SHA-2 256 bit checksum

(a cryptographically secure hash function) of latest weights available along with the number

of training batches. Bob uses this to verify identity of Alice and ensure that the weights

available to Alice are the most recent weights. Once bob has established identity it responds

if Alice needs to refresh its weights. In case the checksum is older and Alice needs to

refresh, she is provided with the identity of Alice which trained latest with Bob. Bob

simply disconnects after transmission in cases when message is malformed or identity was

mismatched.

4.3.2 Tensor transmission

Tensor transmission is the message used by both Alice and Bob to transmit forward prop-

agated activations and backpropagated losses. Message carries the actual shape of tensors,

raw data of tensors in a serialized form along with a checksum for transmitted tensor to

74

(a) Lili

(e) 0

II LII
-

1,LIZZIZI
LIIII,
LII]

(b)

- -~zzzz rmzzz- -
LZIZZJ

LIIYZII
LIIII

(c)

(g) L L

(d) L

Vaatm

(h)ZZ

Figure 4-4: We explore several interesting extensions of distributed learning platform. The
figure above shows the eight different configurations we implemented and tested. These
include (a) Simple vanilla configuration (b) Wrap around configuration with labels (c) Multi-
agent learner (d) Semi-supervised learner (e) Ensemble learner (f) Splitting data in space or
time over different agents (g) Multi-task learner (h) Tor like configuration involving several
nodes.

ensure data integrity. We combine together tensors from a single batch and transmit them

as a single blob. For testing purposes tensor transmission from Alice can carry a mode

string to specify if data used was training or validation.

4.3.3 Weight update

Network primitives for weight update differ based on if we are operating in peer-to-peer

or centralized mode. In peer-to-peer mode, Bob sends last trained Alice's information to

current training party and Alice use this to connect and download encrypted weights. This

method has a limitation that the data nodes cannot go offline after the training has finished.

In the centralized mode, Alice uploads encrypted weights file to a weight server using an

"Encrypted weight upload" primitive. When a new party wants to train, it downloads and

decrypts these weights. Encryption and decryption is performed using existing methods for

PSK. While this removes the need for Alice to stay online, it makes it harder to add new

nodes since they need to establish identity and obtain the PSK before attempting to train.

75

Dataset Topology Accuracy (Single Agent) Accuracy using our method
MNIST LeNet 99.18 % 99.20 %
CIFAR 10 VGG 92.45 % 92.43 %
CIFAR 100 VGG 66.47% 66.59 %
ILSVRC 12 AlexNet 57.1 % 57.1 %

Table 4.1: We observe same accuracies when training using multi-agent algorithm vs when
training on a single machine. MNIST dataset is verified using LeNet topology. We use
modified VGG to verify accuracy on CIFAR 10 and CIFAR 100. Finally we verify our
method on very large dataset (ILSVRC 12) using AlexNet topology.

Another limitation arises from shared keys being susceptible to attacks and therefore need

recycling and updating.

4.4 Experimental evaluation and comparison

We implement our algorithm and protocol using python bindings for caffe. We test our

implementation on datasets of various sizes (50K - 1M) and classes (10, 100 or 1000 classes).

We demonstrate that our method works across different topologies and experimentally verify

identical results when training securely over multiple agents.

We compare our method against the large-batch global SGD [131] and federated av-

eraging approaches [130]. Federated averaging techniques require definition of 4 different

hyperparameters - B refers to the local mini batch, hyperparameter C refers to the fraction

of clients used in each iteration, E refers to number of training passes made by a client in

each round and K refers to total number of clients. Large-batch global SGD (also referred

as federated SGD) involves gradient and loss computation over all the data held by clients

(setting C equal to 1 and B equal to oc). Selecting best hyperparameters can be critical to

obtain competitive performance, as described in [130].

We perform several different comparisons using the best hyperparameter selections for

federated averaging and federated SGD. For our first comparison we analyze data the trans-

mission cost of state-of-the-art deep networks including ResNet and VGG on CIFAR-10

and CIFAR-100 (please refer to 4-7). We demonstrate higher validation accuracy and faster

convergence when considering large number of clients. We also compare client side compu-

tational costs when using deep models and demonstrate significantly lower computational

burden on clients when training using our algorithm (see figure 4-6). We summarize our

findings in table 4.3 and 4.4. Overall analyses can be found in the schematic depicted in

76

- Simple Training
-- Distributed Training

100

90

0 70
70 -

60

o 50.H

40

30

20
-Simple Training

10 Distributed Training
0

0 10 20 30 40 50 0 50 100 150 200

Epochs Epochs

(a) Accuracy when training on MNIST (b) Accuracy when training on CIFAR-10

Figure 4-5: Convergence characteristics with iteration count for MNIST (4-5a) and CIFAR-

10 (4-5b). We observe same convergence rate using multi agent algorithm v/s when training

using a single machine.

Figure 4-8.

4.4.1 Empirical verification of algorithm

In 4.2.2 we show why our algorithm should give results identical to a normal training

procedure. We verify our methods correctness by implementing it and training it on a wide

array of datasets and topologies including MNIST, ILSVRC 12 and CIFAR 10. Table 4.1

lists datasets and topologies combined with their test accuracies.

4.4.2 Accuracy validation

We verify that our algorithm takes similar number of iteration to converge, proving that the

method doesn't add inefficiencies at an algorithmic level. We plot the validation accuracies

with every iteration on different datasets. Figure 4-5 shows plots from 2 different datasets.

The convergence characteristics from split neural network algorithm coincide well with

the training trajectory when training over a single agent. While the overall convergence

characteristics match, there are small variations observed because of different parameter

initializations at the beginning of training.

77

100

90

' 80
(0

70

60

o 50

40

30

20

10

Dataset Accuracy using 1 agent Accuracy using 5 agents Accuracy using all
(10 %) (50 % of data) agents

MNIST 97.54 98.93 99.20
CIFAR 10 72.53 89.05 92.45
CIFAR 100 36.03 59.51 66.59

Table 4.2: We show significant improvements in accuracy as more data-sources are added.

4.4.3 Performance analysis

An important benefit of our method lies in its ability to combine multiple data-sources.

When using deep neural networks, larger datasets have been shown to perform significantly

better than smaller datasets. We experimentally demonstrate the benefits of pooling several

agents by uniformly dividing dataset over 10 agents and training topologies using 1, 5 or

10 agents. As shown in table 4.2, we observe that adding more agents causes accuracy to

improve significantly. We also compare our method against federated learning and large

batch stochastic gradient descent for communication and computational overhead. In figure

4-7, we plot validation accuracy with bytes transferred using our method and observe that

we obtain higher validation accuracies using lesser communication bandwidth. Similarly

figure 4-6 shows that we require significantly lower computations on each client to achieve

state-of-the-art validation accuracy.

4.5 Concluding Remarks

In this chapter we present new methods to train deep neural networks over several data

repositories. We also present algorithms on how to train neural networks without revealing

actual raw data, while reducing computational requirements on individual data sources. We

describe how to modify this algorithm to work in semi-supervised modalities, greatly reduc-

ing number of labeled samples required for training. We provide mathematical guarantees

for correctness of our algorithm.

We devise a new protocol for easy implementation of our distributed training algorithm.

We use popular computer vision datasets such as CIFAR-10 and ILSVRC12 for performance

validation and show that our algorithm produces identical results to standard training

procedures. We also show how this algorithm can be beneficial in low data scenarios by

combining data from several resources. Such method can be beneficial in training using

78

100 100

90 -Federated Avg 90 - Federated Avg
O 80 - Split NN >1 - Split NN

-Large Scale SGD 80 -Large Scale SGD
D 70 0 70

60 60

o 50 0 50

40 40-

30 30

20 20

10 10

0 , . , , , . , i . , , , 0
0 2 4 6 8 10 12 0 5 10 15

Computes (TFLOPS) X107 Computes (TFLOPS) x107

(a) Validation accuracy with client side flops when (b) Validation accuracy with client side flops when
training 100 clients (VGG). training 500 clients (Resnet-50).

Figure 4-6: We compare client side computational cost of our method against existing

state of the art methods when training with multiple clients. Red line denotes distributed

learning using our method, blue lines indicate federated averaging and green line indicates

large batch stochastic gradient descent. As shown above, we reduce the computational

burden on clients dramatically while maintaining higher accuracies when training over large

number of clients.

proprietary data sources when data sharing is not possible. It can also be of value in

areas such as biomedical imaging, when training of deep neural network without revealing

personal details of patients and minimizing computation resources required on devices.

In this chapter we describe a method to train a single network topology over several

data repositories and a computational resource. A reasonable extension to this approach

can be to train an ensemble of classifiers by transmitting forward and backward tensors

for all classifiers every iteration. A deep neural network classifier ensemble can comprise of

several individual deep neural network topologies which perform classification. The network

topologies are trained individually by computing forward and backward functions for each

neural network, and during the testing phase the results are combined using majority vote

to produce classification. We can train such an ensemble by generating separate forward

and backward propagation tensors for each neural network and transmitting them during

each training iteration. This is equivalent to training individual networks one by one, but it

saves time by combining iterations of various networks together. Ensemble classifiers have

also been shown to be more secure against network copy attacks and have also been shown

to perform better in real world applications [136].

79

100 100

90 90 - Federated Avg

U80
- Split NN

080 - Large Scale SGD
0 70 4 70

0 80

60 60

40
40

4
-40

- 30 30

20 - Federated Avg 20

10 ~ - Split NN 1
- Large Scale SGD

0 ,. .. I , , I I , , , ,,.0
0 1 2 3 4 5 6 7 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Data Transmitted (Bytes) X1012 Data Transmitted (Bytes) x1012

(a) Validation accuracy with transmitted data (b) Validation accuracy with transmitted data
when training 500 clients using VGG over CIFAR- when training 500 clients using Resnet-50 over
10. CIFAR-100.

Figure 4-7: We compare data transmission costs of our method against existing state of

the art methods when training with multiple clients. Red line denotes distributed learning

using our method, blue lines indicate federated averaging and green line indicates large

batch stochastic gradient descent. As shown above, the validation accuracy for our method

remains higher with same number of bytes transferred, making our method overall a better

choice when training over large number of clients.

We demonstrate significant reduction in computation and communication bandwidth

when comparing against federated SGD and federated averaging [130]. Reduced compu-

tational requirements can be explained by the fact that while federated averaging requires

forward pass and gradient computation for entire neural network on the client, our method

requires these computations for only the first few layers, significantly reducing the compu-

tational requirements (as shown in table 4-6). Even though federated averaging requires a

lot fewer iterations than large-scale SGD, it is still outperformed by our method requiring

only a fraction of computations on the client.

Reduction in communication bandwidth can be attributed to the fact that federated av-

eraging involves transmitting the gradient updates for entire neural network from all clients

to a central server, accompanied by transmission of updated weights to every single client.

While federated averaging algorithm is able to converge in fewer transmission cycles, each

transmission cycle requires huge amounts of data download and upload to client and server.

Split neural network algorithm reduces data transmitted by restricting size of client neural

network to only first few layers, thereby greatly reducing the total amount of data trans-

mitted during training. Additionally federated averaging fails to achieve optimal accuracy

80

Method 100 Clients 500 Clients
Large Scale SGD 29.4 TFlops 5.89 TFlops
Federated Learning 29.4 TFlops 5.89 TFlops
Our Method 0.1548 TFlops 0.03 TFlops

Table 4.3: Computation resources consumed per client when training CIFAR 10 over VGG
(in teraflops).

Method 100 Clients 500 Clients
Large Scale SGD 13 GB 14 GB
Federated Learning 3 GB 2.4 GB
Our Method 6 GB 1.2 GB

Table 4.4: Computation bandwidth required per client when training CIFAR 100 over
ResNet (in gigabytes).

for higher number of clients since for general non-convex optimization averaging models in

parameter space could produce an arbitrarily bad model (phenomenon described in [137]).

Learned neural network could be shared using student-teacher methods for transferring

information learned by neural network [138]. After the training phases are over, Alice

and Bob can use any publicly available dataset to train secondary (student) neural network

using outputs from primary (teacher) neural network. Alice can propagate the same training

sample from public dataset through the layers from previously trained network and Bob

can propagate them through its network. Bob can use the output of its layers to train

student network by doing forward-backward for same data sample. This way, knowledge

of distributed trained network can be transferred to another network which can be shared

for public use. Such algorithms can help in introducing deep learning in several areas such

as health, products and finance where user data is an expensive commodity and needs to

remain anonymized.

Tor like layer-by-layer computation could allow for training this network over multiple

nodes with each node carrying only a few layers. Such method could help protect not just

the data but identity of person sharing the data and performing classification. In Tor like

setup, additional entities Eve0 .. .M are added which do not have access to data or complete

network topology. Each Eve is provided with a few of network layers Feve <- Lq, Lq+i ...L.

During forward propagation Alice computes Fa and passes it to Eve0 , which then passes

it to Eve1 and so on until it reaches EveM. Evem is analogous to the exit node in Tor

network and it passes the tensor to Bob. Similarly, when backpropagating, Bob computes

81

3 10

2.5

2-

1.5

0.5

n- n

8-

7-

6-

Cl)
5-

4~J

4-
0

3

2

- rrF'r'' '' r -' - i' - I0 5 10 15 20 25 30 35 40 45

Iterations

(a) Data resources required with iterations

104

0 2 4 6 8

Iterations

(b) Computational resources with iterations

Figure 4-8: We summarize the computational and data bandwidth requirements using
schematic diagrams in Figure (4-8a, 4-8b).

loss and sends it to EveM, which sends it to EveMl, and so on until it reaches Eveo and

then Alice. The onion like organization of network layers can be used to keep the identity

of Alice confidential.

We can also apply our algorithm on not just classification tasks but also on regression

and segmentation tasks. We can also use this over LSTMs and Recurrent Neural Networks.

Such neural networks can be easily tackled by using a different loss function (euclidean) on

Bob's side when generating gradients.

82

0

U

0

U)

Federated Avg
- Split NN

[i ffi l f t Vi5 hl iVi n f fl r

Federated Avg
-Split NN

10

Chapter 5

Conclusions

Traditionally, problem solving on imaging and sensor data tended to be model driven and

involved developing physical and mathematical models when describing system characteris-

tics. Over the last decade, emphasis has shifted from model driven to data driven method-

ologies. Deep multi-layered perceptrons have become the new gold standard when solving

real world problems using machine learning. Deep neural networks have demonstrated

amazing capability at solving problems in segmentation, detection and classification while

surpassing human level capabilities. However, training deep neural networks continues to

be a challenging task because of lack of labeled data, data sensitivity issues and shortage

of human expertise. Deep neural networks typically require large amounts of human inter-

vention involving user input in labeling of data and manual optimization of neural network

layers.

In this thesis we explore methods which reduce requirement of labeled data when training

using deep neural networks. We explore how generated data combined with new layers can

be used to learn effective classification models. We make our neural networks more robust by

introducing invariance to changes in illumination, velocity and other calibration parameters.

We introduce methods for automated layer and hyperparameter selection, thereby reducing

the expert intervention involved in neural network deployment. We also introduce a new

layer for distributed learning over the network, which aids in learning neural networks

in data sensitive applications. Our method aids in developing data driven techniques by

reducing the friction associated with accessing data when training neural networks over

multiple parties.

83

0 i096~ 5

Figure 5-1: We introduce semi-supervised learning to video clips when learning facial ex-

pressions. We train an autoencoder of facial videos and learn the facial expressions using
a semi-supervised predictor. Additionally we introduce topological modifications to aid in
learning invariants.

5.1 Key Results

In this section, we will summarize the key results and findings of this thesis. These will in-

clude the results in learning invariants using neural network layers, using generative methods

such as autoencoders and Markov Decision Processes to improve machine learning pipelines,

optimizing neural network layers over imaging, video and other data for real world applica-

tions and specialized layers that aid in distributed learning.

5.1.1 Neural network layers to learn invariants

We began by introducing a framework for gesture and pose recognition which combines

semi-supervised learning approaches with carefully designed neural network topologies. We

introduced a new layer which can learn on video data adaptively and demonstrate how to

learn invariants using these layers. We demonstrated how to induce illmination invariance

by including specialized layers and use spatio-temporal convolutions to extract features

from multiple image frames. In this work, we emphasize on learning invariants on velocity,

illumination and other camera parameters, in future we hope to explore induction of even

more invariants, which continues to be an area of rapid research in neural networks.

5.1.2 Optimization of neural network layers

Topology engineering continues to be a challenging task involving days of expert interven-

tion and human intuition when selecting best layers. We explored how layer engineering

can be automated by defining the search space using context free grammars and applying

84

Model Architecture Test Error (%) # Params (106)
[C(512,5,1), C(256,3,1), C(256,5,1), C(256,3,1), P(5,3), 6.92 11.18
C(512,3,1), C(512,5,1), P(2,2), SM(10)]
[C(128,1,1), C(512,3,1), C(64,1,1), C(128,3,1), P(2,2), 8.78 2.17
C(256,3,1), P(2,2), C(512,3,1), P(3,2), SM(10)]
[C(128,3,1), C(128,1,1), C(512,5,1), P(2,2), C(128,3,1), 8.88 2.42
P(2,2), C(64,3,1), C(64,5,1), SM(10)]
[C(256,3,1), C(256,3,1), P(5,3), C(256,1,1), C(128,3,1), 9.24 1.10
P(2,2), C(128,3,1), SM(10)]
[C(128,5,1), C(512,3,1), P(2,2), C(128,1,1), C(128,5,1), 11.63 1.66
P(3,2), C(512,3,1), SM(10)]

Table 5.1: We summarize the top 5 model architectures when training over CIFAR-10
using CFG based topology generation pipeline. We observe that number of parameters in
top performing deep neural architectures may vary widely.

reinforcement learning driven approaches to select the best topologies. We show how to ap-

ply this practically by intelligently pruning the search space thereby restricting the action

space taken by reinforcement learning agent. We demonstrated that automated engineering

of layers can be used to produce architectures that are competitive to human engineered

topologies. We explored the trends followed by layers and analyze which layers perform

best when selecting the architectures with higher validation accuracy. In table 5.1, we show

the top 5 topologies selected using our method.

5.1.3 Distributing layers over the network

We also presented new methods to train deep neural networks in a distributed fashion

over several data repositories. We presented algorithms on how to train neural networks

without sharing actual raw data or labels, while reducing computational requirements on

individual data sources. We described how to modify this algorithm to work in semi-

supervised modalities, greatly reducing number of labeled samples required for training.

We analyzed mathematical guarantees for correctness of our algorithm. We demonstrated

how this method can be extended to incorporate techniques such as multi-task learning,

distributed learning over several concurrent nodes (like tor) and ensemble learning.

5.1.4 Datasets and collection methodologies

Training the unsupervised component of our neural net required a large amount of data to

ensure that the deep features were general enough to represent any face expression. We

trained the deep convolutional autoencoder using a massive collection of unlabeled data

85

Emotion Posed Non-Posed Cumulative

Anger 132 318 450

Sadness 118 148 266

Contempt 153 301 454

Fear 137 96 233

Surprise 188 232 420

Joy 172 503 675

Disgust 132 147 279

TotalM

Table 5.2: Data distribution for Asevodataset for various emotions. Posed clips refer to
the artificially generated clips, while non-posed refer to those captured using the stimulus
activation procedure.

points comprising of 6.5 million video clips with 25 image frames per clip. The clips were

generated by running Viola-Jones face algorithm to detect and isolate face bounding boxes

on public domain videos. We further enhanced the data quality by removing any clips

which showed high variation in-between consecutive frames. This eliminated video clips

containing accidental appearance of occlusions, rapid facial motions or sudden appearance

of another face. As an additional step we obtained the facial pose information by using active

appearance models and generating facial landmarks [70]. We fitted the facial landmarks to

a 3D deformable model and restricted our dataset to clips containing less than 30 degrees

of yaw, pitch or roll, thereby eliminating faces looking sideways. Collection of this dataset

required development of an automated system to mine video clips, segment faces and filter

meaningful data and it took us more than 6 months to collect the entire dataset. To our

knowledge this is the largest dataset containing facial video clips and we plan to share it

with scientific community by making it public.

We developed specialized video recording and annotation tools to collect and label all of

video data (first presented in [20]). The application was developed in Python programming

language and we used well known libraries such as OpenCV for video capture and anno-

tation. We further extended the tools to create a secure web-based annotation platform

(named pubmed) which can be used to create and annotate expertly labeled data. The

database contains facial clips from 160 subjects (both male and female), where expressions

were artificially generated according to a specific request, or genuinely given due to a shown

stimulus. We captured 1032 clips for posed expressions and 1745 clips for induced facial ex-

86

pressions amounting to a total of 2777 video clips. Genuine facial expressions were induced

in subjects using visual stimuli, i.e. videos selected randomly from a bank of YouTube

videos to generate a specific emotion. Please refer to Table 5.2 to see the distribution of

database, where posed clips refers to the artificially generated expressions and non-posed

refers to the stimulus activation procedure.

We also generated massive number of neural networks trained on datasets including

CIFAR-10, CIFAR-100 and MNIST. We plan to share the trained models and autoencoder

dataset with rest of scientific community.

5.2 Limitations and Future Work

In this section we explore limitations of our system and discuss where our system may fail

or be of less value. While we used scale-invariant methods for gesture recognition, it will

be interesting to examine how much improvement these could provide over general video

classification techniques. Physiological signals such as heart rate and respiratory rate can

be extracted from color [139] and motion variation in the video data [140, 141] and can be

used to improve emotion recognition in non-posed expressions [142]. In the future, neural

nets could be pre-trained to extract these signals and we could use the deep features from

these nets to improve the classification accuracy. Currently, our system relies on utilization

of Viola-Jones to distinguish and segment out the faces and is limited to analyzing only the

front facing views. Emotion recognition in the wild still remains an elusive problem with

low reported accuracies which we hope will be addresses in future work.

Learning for deep neural networks can be extremely computationally intensive and can

impose massive constraints on systemic space-time complexity. Our neural network invari-

ant layers are no different and require specialized hardware (NVIDIA TeslaTMor K40TM Grid

GPUs) with a minimum of 12 GB of VRAM on the graphics card for lowest of batch sizes.

Deep autoencoders can be data intensive and require millions of unlabeled samples to train.

Further the stacked autoencoder we train takes over 3 days to train requiring an additional

day to fine tune predictor weights for larger labeled datasets. Even though the system

supports 7 emotions and 1 neutral face state, it was not trained to detect neutral emotions

- a constraint which can be fixed by adding more labeled data for neutral facial expressions.

The pipeline only recognizes 7 facial emotions but recent research shows that there is a

87

much wider range of emotions.

Limitations of automated architecture selection

Our system on automated architecture generation is also resource intensive and requires

multiple GPUs to search over the space of hyperparameters. Even after application of

methods such as early stopping and search space pruning, we required tens of GPUs and

several days to select best architectures. More research in both faster hardware and better

machine learning techniques will be required to make architecture selection an attractive

alternative to downloading standardized topologies. We demonstrate our system on small

and medium sized datasets, however far greater amount of resources are required to adapt

such systems on datasets such as ImageNet. We were able to demonstrate the method

efficacy on classification pipelines, and further research is needed to demonstrate the full

potential on other applications in fields like natural language processing.

Limitations of the distributed learning approach

The distributed learning framework requires high network bandwidth to send and receive

data. While our method is able to produce comparable and better results to state-of-the-

art techniques, it may require larger computational bandwidth when training over smaller

number of clients. Advanced compression methods can be used to reduce the network foot-

print and make the method less data intensive. The comparative performance overhead

gets reduced as we add more clients, producing a much more scalable distributed learn-

ing methodology. The current implementation also requires constant network connection,

which can be fixed by adding asynchronous communication with automatic reconnection

techniques. We rely on TCP socket communication which has several added overheads,

some of these can be eliminated by introducing protocols such as UDP allowing for errors

in network transmission.

5.3 Concluding Remarks

Deep neural networks have revolutionized modern computer vision, excelling at tasks such

as segmentation, object classification [9] and facial recognition [11]. Such models have been

shown to perform at levels higher than human accuracy, enabling automation in human

88

100 100

-90 90 Federated Avg
- Split NN

80 80 - Large Scale SGD

: 70 70

U U

60 U60

0 50 0 50
4JH

40 4J 40

-H
30 30

20 - Federated Avg 20

- Split NN
-- Large Scale SGD

0 , . . . I I ...1 0ii1
0 0.5 1 1.5 2 0 0.5 1 1.5 2 2.5 3 3.5 4

Data Transmitted (Bytes) X1012 Data Transmitted (Bytes) x100

(a) Validation accuracy when training 10 clients (b) Validation accuracy when training 10 clients

using VGG topology on CIFAR 10 dataset. using ResNet-50 on CIFAR 100.

Figure 5-2: Limitations of out method when using fewer clients. In this figure we demon-

strate how split neural networks can have higher communication overhead when fewer clients

are being used to train. Red line denotes distributed learning using our method, blue lines

indicate federated averaging and green line indicates large batch stochastic gradient descent.

centric areas such as manufacturing, health care and finance. Application of machine learn-

ing in such areas reduces the cost and increases the quality of life by reducing the level of

human input required in such tasks. While inference of machine learning models reduces

human intervention, building machine learning models still continues to be challenging and

human input intensive. Building neural network topologies requires research communities

spending days on tweaking machine learning pipelines. Building large datasets requires ex-

pert input at large scale, and solving of ethical and bureaucracy problems in data sensitive

domains.

In this thesis we present new methods which aid in reducing resource requirement and re-

moving human intervention while building new machine learning pipelines. We present new

topologies for inference on video data and learn invariants using semi-supervised learning.

We used generative means such as autoencoders and Markov decision processes as viable

alternatives in absence of data while training with very small datasets. Our topologies used

spatio-temporal convolutions and learned invariants, making neural networks more robust

under real world variations.

We further aid in reducing expert intervention by developing new methods for archi-

tecture selection. This thesis is one of the first to apply data driven techniques to neural

89

1600 - P= 0.03, w=65.54
p= 0.20, w=32.77

1400 p= 0.40, w=1 6.38
p= 0.60, w=4.10

1200 - p= 0.90, w=2.05

U 1000
0)

600
C)800

(El

1:1 600

400

200

0-
0 20 40 60 80 100

Clients

Figure 5-3: Iso curves for data transmission when using different values of p and w. We

compare data transmission requirements between our method and federated learning and

plot iso curves for when both are equal. Hyperparameter p represents fraction of network

on client side, and w represents feature vector size in kilobytes. Our method beats federated

learning for all points above the graph, demonstrating the scalability of our method.

network architecture selection. We use context free grammar driven Markov decision process

to select and optimize topology selection while achieving competitive accuracies for image

classification tasks. Our methods for state space pruning, and early stopping reduce the

computational burden making architecture selection a more feasible alternative to expert

level optimization of neural network layers.

Finally we build new layers which aid in data sharing in data sensitive applications.

Our distributed learning system helps in training neural networks without sharing of actual

raw data or labels. We demonstrate how this system can be used to learn from several

agents in distributed fashion while achieving accuracies similar to copying the data at one

centralized location. Our system aims at reducing the friction when sharing data between

90

different organizations which may not want to share their raw data because of intellectual

property, ethical or bureaucratic issues.

91

Appendix

Table of network primitives

92

Mode Alice (Request) Bob (Response) Meaning
mode: "training request"

Training re- checksum: "<weight checksum>" response: "allowed" Bob is ready to train
nlter: <number iterations> token: "<token>"
client id: "<client identifier>" an alihas motcecent weights. Alice

must initiate training
using token within next
20 seconds or token will
expire!

mode: "training request"
.checksum: ''<weight checksum>

Training re- nherk<umbeitei s> response: "denied" Bob is currently train-

quest ing with another alice or
client id: "<client identifier>" waiting for another alice

to start training.
mode: "training request"
checksum: "<weight checksum>" repne.rfeh

Training re- che <umbeitei s> client id: ["Alicek", Checksum is old, alice

quest "xxx.xxx.xxx.xxx"] needs to refresh weights
client id: "<client identifier>" (most recent alice ip

is provided for peer to

peer case).
mode: "training"
checksum: "<tensor checksum>"

Teansor- shape: <tensor dimensions> ,,re "transmis- failure"
sion raw-data: <serialized tensor>

Encrypted mode: "weight upload"
weight checksum: ''<weight checksum>'' response: success- Bob has registered
Upload weights: <encrypted weight file> ful" checksum and stored
(Centralized) client id: "<client identifier>" "Aliceweights. It has

also snapshotted its

weights.

Mode Alice (Request) Bob (Response) Meaning
Encrypted mode: "weight upload"
weight checksum: "<weight chcsu>
Upload weihsm: <weptd weighte> response: "failed" Bob was not training
Upload weights: <encrypted weight file> .it .hsai urnl
(Centralized) client id: "<client identifier>" wt tli r

______________or lastly.

Encrypted
weight mode: "weight request" weight: <encrypted Bob allows for down-
request client id: "<client identifier>" weights file> load of encrypted file.
(Centralized) I

Encrypted
weight mode: "weight request" response: "denied" Bob was not started
request client id: "<client identifier>" reason: "<string>" in centralized mode, or
(Centralized) never trained with an

alice.
Snapshot mode: "snapshot"
request checksum: "<weight checksum>" response: "success- Bob has registered
(Peer to peer) client id: "<client identifier>" ful" checksum. It has also

snapshotted its weights
to match Alicej.

Snapshot mode: "snapshot"
request checksum: "<weight checksum>" response: "failed" Bob was not training
(Peer to peer) client id: "<client identifier>" with Alicej currently or

lastly.
[To Alicek]
mode: "weight request" weight: <encrypted Alice provides most re-

Encrypted client id: "<client identifier>" weights file> cent encrypted weights
weight used in training with
request Bob.
(Peer to peer)
Encrypted [To Alice]
weight mode: "weight request" response: "denied" This Alice never trained
request

eeto client id: "<client identifier>" with bob.
(Peer to peer)

Table 5.3: Message specification for communication
network algorithm.

between multiple parties in split neural

93

Top topologies selected by algorithm

In Tables 5.1 through 5.5, we present the top five model architectures selected with Q-

learning for each dataset, along with their prediction error reported on the test set, and

their total number of parameters.

Model Architecture Test Error (%) # Params (10')
[C(128,3,1), P(2,2), C(64,5,1), C(512,5,1), C(256,3,1), 2.24 9.81
C(512,3,1), P(2,2), C(512,3,1), C(256,5,1), C(256,3,1),
C(128,5,1), C(64,3,1), SM(10)]
[C(128,1,1), C(256,5,1), C(128,5,1), P(2,2), C(256,5,1), 2.28 10.38
C(256,1,1), C(256,3,1), C(256,3,1), C(256,5,1), C(512,5,1),
C(256,3,1), C(128,3,1), SM(10)]
[C(128,5,1), C(128,3,1), C(64,5,1), P(5,3), C(128,3,1), 2.32 6.83
C(512,5,1), C(256,5,1), C(128,5,1), C(128,5,1), C(128,3,1),
SM(10)]
[C(128,1,1), C(256,5,1), C(128,5,1), C(256,3,1), C(256,5,1), 2.35 6.99
P(2,2), C(128,1,1), C(512,3,1), C(256,5,1), P(2,2),
C(64,5,1), C(64,1,1), SM(10)]
[C(128,1,1), C(256,5,1), C(128,5,1), C(256,5,1), C(256,5,1), 2.36 10.05
C(256,1,1), P(3,2), C(128,1,1), C(256,5,1), C(512,5,1),
C(256,3,1), C(128,3,1), SM(10)]

Table 5.4: Top 5 model architectures: SVHN. Note that we do not report the best accuracy
on test set from the above models in Tables 3.3 and 3.4 from the main text. This is because
the model that achieved 2.28% on the test set performed the best on the validation set.

94

Model Architecture Test Error (%) # Params (106)
[C(64,1,1), C(256,3,1), P(2,2), C(512,3,1), C(256,1,1), 0.35 5.59
P(5,3), C(256,3,1), C(512,3,1), FC(512), SM(10)]
[C(128,3,1), C(64,1,1), C(64,3,1), C(64,5,1), P(2,2), 0.38 7.43
C(128,3,1), P(3,2), C(512,3,1), FC(512), FC(128), SM(10)]
[C(512,1,1), C(128,3,1), C(128,5,1), C(64,1,1), C(256,5,1), 0.40 8.28
C(64,1,1), P(5,3), C(512,1,1), C(512,3,1), C(256,3,1),
C(256,5,1), C(256,5,1), SM(10)]
[C(64,3,1), C(128,3,1), C(512,1,1), C(256,1,1), C(256,5,1), 0.41 6.27
C(128,3,1), P(5,3), C(512,1,1), C(512,3,1), C(128,5,1),
SM(10)]
[C(64,3,1), C(128,1,1), P(2,2), C(256,3,1), C(128,5,1), 0.43 8.10
C(64,1,1), C(512,5,1), C(128,5,1), C(64,1,1), C(512,5,1),
C(256,5,1), C(64,5,1), SM(10)]
[C(64,1,1), C(256,5,1), C(256,5,1), C(512,1,1), C(64,3,1), 0.44 9.67
P(5,3), C(256,5,1), C(256,5,1), C(512,5,1), C(64,1,1),
C(128,5,1), C(512,5,1), SM(10)]
[C(128,3,1), C(512,3,1), P(2,2), C(256,3,1), C(128,5,1), 0.44 3.52
C(64,1,1), C(64,5,1), C(512,5,1), GAP(10), SM(10)]
[C(256,3,1), C(256,5,1), C(512,3,1), C(256,5,1), C(512,1,1), 0.46 12.42
P(5,3), C(256,3,1), C(64,3,1), C(256,5,1), C(512,3,1),
C(128,5,1), C(512,5,1), SM(10)]
[C(512,5,1), C(128,5,1), C(128,5,1), C(128,3,1), C(256,3,1), 0.55 7.25
C(512,5,1), C(256,3,1), C(128,3,1), SM(10)]
[C(64,5,1), C(512,5,1), P(3,2), C(256,5,1), C(256,3,1), 0.56 7.55
C(256,3,1), C(128,1,1), C(256,3,1), C(256,5,1), C(64,1,1),
C(256,3,1), C(64,3,1), SM(10)]

Table 5.5: Top 10 model architectures: MNIST. We report the top 10 models for MNIST

because we included all 10 in our final ensemble. Note that we do not report the best

accuracy on test set from the above models in Tables 3.3 and 3.4 from the main text.

This is because the model that achieved 0.44% on the test set performed the best on the

validation set.

95

Bibliography

[1] Alan Turing, Richard Braithwaite, Geoffrey Jefferson, and Max Newman. Can au-
tomatic calculating machines be said to think?(1952). B. Jack Copeland, page 487,
1952.

[2] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level
concept learning through probabilistic program induction. Science, 350(6266):1332-
1338, 2015.

[3] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric frame-
work for nonlinear dimensionality reduction. science, 290(5500):2319--2323, 2000.

[4] Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

[5] Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton Project
Para. Cornell Aeronautical Laboratory, 1957.

[6] V Vapnik. The nature of statistical learning theory, 1995.

[7] ML Minsky, SA Papert, and First Perceptrons. The mit press: Cambridge. Mass. (Rev.
Edition, 1988), 1969.

[8] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. arXiv preprint arXiv:1409.4842, 2014.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Processing
Systems, pages 1097-1105, 2012.

[10] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm
for deep belief nets. Neural Computation, 18(7):1527-1554, 2006.

[11] Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, and Lars Wolf. Deepface: Closing
the gap to human-level performance in face verification. In Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1701--1708. IEEE, 2014.

[12] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. Geometric deep learning: going beyond euclidean data. arXiv preprint
arXiv:1611.08097, 2016.

[13] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. CNN
features off-the-shelf: an astounding baseline for recognition. CVPR, 2014.

96

[14] Daniel Holden, Jun Saito, Taku Komura, and Thomas Joyce. Learning motion man-
ifolds with convolutional autoencoders. In SIGGRAPH Asia 2015 Technical Briefs,
page 18. ACM, 2015.

[15] Adam Coates, Andrej Karpathy, and Andrew Y Ng. Emergence of object-selective fea-
tures in unsupervised feature learning. In Advances in Neural Information Processing
Systems, pages 2681-2689, 2012.

[16] Miguel A Carreira-Perpinan and Geoffrey E Hinton. On contrastive divergence learn-
ing. In Proceedings of International Workshop on Artificial Intelligence and Statistics,
pages 33-40, 2005.

[17] Andrej Karpathy, George Toderici, Sachin Shetty, Tommy Leung, Rahul Sukthankar,
and Li Fei-Fei. Large-scale video classification with convolutional neural networks. In
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1725-1732.
IEEE, 2014.

[18] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object categories.
Computer vision and Image understanding, 106(1):59-70, 2007.

[19] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436-444, 2015.

[20] Otkrist Gupta, Dan Raviv, and Ramesh Raskar. Multi-velocity neural networks for
facial expression recognition in videos. IEEE Transactions of Affective Computing,
2017.

[21] Abhimanyu Dubey, Otkrist Gupta, Pei Guo, Ramesh Raskar, Ryan Farell, and Nikhil
Naik. Training with confusion for fine-grained visual classification. Under Review
Advances in Neural Information Processing Systems, 2017.

[22] Otkrist Gupta, Bowen Baker, Nikhil Naik, and Ramesh Raskar. Practical neural
network performance prediction for early stopping. Under Review Advances in Neural
Information Processing Systems, 2017.

[23] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural net-
work architectures using reinforcement learning. International Conference on Learn-
ing Representations, 2017.

[24] Guy Satat, Mat Tancick, Otkrist Gupta, Barmak Heshmat, and Ramesh Raskar.
Calibration free imaging through scattering media. Optics Express, 2017.

[25] Otkrist Gupta and Ramesh Raskar. Secure training of deep neural networks. Patent
Filed 18864T, 2017.

[26] Otkrist Gupta, Dan Raviv, and Ramesh Raskar. Illumination invariants in deep video
expression recognition. The Journal of Pattern Recognition, 2017.

[27] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
Learning spatiotemporal features with 3d convolutional networks. arXiv preprint
arXiv:1412.0767, 2014.

97

[28] Zaenal Abidin and Agus Harjoko. A neural network based facial expression recognition
using fisherface. International Journal of Computer Applications, 59(3):30-34, 2012.

[29] M Gargesha and P Kuchi. Facial expression recognition using artificial neural net-
works. Artificial Neural Computer Systems, pages 1-6, 2002.

[30] Heechul Jung, Sihaeng Lee, Junho Yim, Sunjeong Park, and Junmo Kim. Joint fine-
tuning in deep neural networks for facial expression recognition. In Proceedings of the
IEEE International Conference on Computer Vision, pages 2983-2991, 2015.

[31] Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories.
IEEE transactions on pattern analysis and machine intelligence, 28(4):594-611, 2006.

[32] Geoffrey E Hinton and Richard S Zemel. Autoencoders, minimum description length,
and helmholtz free energy. Advances in neural information processing systems, pages
3-3, 1994.

[33] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-
tracting and composing robust features with denoising autoencoders. ICML, 2008.

[34] Jonathan Masci, Ueli Meier, Dan Ciregan, and Jiirgen Schmidhuber. Stacked convo-
lutional auto-encoders for hierarchical feature extraction. In International Conference
on Artificial Neural Networks, pages 52-59. Springer, 2011.

[35] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine
Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep
network with a local denoising criterion. Journal of Machine Learning Research,
11(Dec):3371-3408, 2010.

[36] Jason Weston, Frederic Ratle, Hossein Mobahi, and Ronan Collobert. Deep learning
via semi-supervised embedding. In Neural Networks: Tricks of the Trade, pages 639-
655. Springer, 2012.

[37] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling.
Semi-supervised learning with deep generative models. In Advances in Neural Infor-
mation Processing Systems, pages 3581-3589, 2014.

[38] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks. In Workshop on Challenges in Representation
Learning, ICML, volume 3, 2013.

[39] George Papandreou, Liang-Chieh Chen, Kevin Murphy, and Alan L Yuille.
Weakly-and semi-supervised learning of a dcnn for semantic image segmentation.
arXiv:1502.02734, 2015.

[40] Ping Liu, Shizhong Han, Zibo Meng, and Yan Tong. Facial expression recognition
via a boosted deep belief network. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1805-1812. IEEE, 2014.

[41] Samira Ebrahimi Kahou, Christopher Pal, Xavier Bouthillier, Pierre Froumenty,
Qaglar Giiklehre, Roland Memisevic, Pascal Vincent, Aaron Courville, Yoshua Ben-
gio, and Raul Chandias Ferrari. Combining modality specific deep neural networks

98

for emotion recognition in video. In Proceedings of the 15th ACM on International
conference on multimodal interaction, pages 543-550. ACM, 2013.

[42] Markus Oberweger, Gernot Riegler, Paul Wohlhart, and Vincent Lepetit. Efficiently
creating 3d training data for fine hand pose estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4957-4965, 2016.

[43] Will Y Zou, Andrew Y Ng, Shenghuo Zhu, and Kai Yu. Deep learning of invariant
features via simulated fixations in video. In NIPS, volume 3, page 6, 2012.

[44] Chris Frith. Role of facial expressions in social interactions. Philosophical Transactions
of the Royal Society B: Biological Sciences, 364(1535):3453--3458, 2009.

[45] Roddy Cowie, Ellen Douglas-Cowie, Nicolas Tsapatsoulis, George Votsis, Stefanos
Kollias, Winfried Fellenz, and John G Taylor. Emotion recognition in human-
computer interaction. Signal Processing Magazine, IEEE, 18(1):32-80, 2001.

[46] Zhanpeng Zhang, Ping Luo, Chen-Change Loy, and Xiaoou Tang. Learning social
relation traits from face images. In Proceedings of the IEEE International Conference
on Computer Vision, pages 3631-3639, 2015.

[47] T Klein and W Picard. Computer response to user frustration. MIT Media Laboratory
Vision and Modelling Group Technical Reports, TR 480, 1999.

[48] Eva Cerezo, Sandra Baldassarri, and Francisco Seron. Interactive agents for mul-
timodal emotional user interaction. Multi Conferences on Computer Science and
Information Systems, pages 35-42, 2007.

[49] Elisabeth Andr6, Martin Klesen, Patrick Gebhard, Steve Allen, and Thomas Rist.
Exploiting models of personality and emotions to control the behavior of animated
interactive agents. In Workshop on Achieving Human-Like Behavior in Interactive
Animated Agents, pages 3-7, 2000.

[50] Mengyi Liu, Shaoxin Li, Shiguang Shan, Ruiping Wang, and Xilin Chen. Deeply
learning deformable facial action parts model for dynamic expression analysis. In
Computer Vision-A CCV 2014, pages 143-157. Springer, 2014.

[51] Frederic Pighin, Jamie Hecker, Dani Lischinski, Richard Szeliski, and David H Salesin.
Synthesizing realistic facial expressions from photographs. In A CM SIGGRAPH 2006
Courses, page 19. ACM, 2006.

[52] Ziheng Wang, Shangfei Wang, and Qiang Ji. Capturing complex spatio-temporal
relations among facial muscles for facial expression recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 3422-3429,
2013.

[53] Justine Cassell, Catherine Pelachaud, Norman Badler, Mark Steedman, Brett Achorn,
Tripp Becket, Brett Douville, Scott Prevost, and Matthew Stone. Animated conver-
sation: rule-based generation of facial expression, gesture & spoken intonation for
multiple conversational agents. In Proceedings of the 21st annual conference on Com-
puter graphics and interactive techniques, pages 413-420. ACM, 1994.

99

[54] Keith Waters. A muscle model for animation three-dimensional facial expression. In
Proceedings of the annual conference on Computer graphics and interactive techniques,
volume 21, pages 17-24. ACM, 1987.

[55] Hyewon Pyun, Yejin Kim, Wonseok Chae, Hyung Woo Kang, and Sung Yong Shin.
An example-based approach for facial expression cloning. In Proceedings of the 2003
ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 167-176.
Eurographics Association, 2003.

[56] Irene Kotsia and Ioannis Pitas. Facial expression recognition in image sequences using
geometric deformation features and support vector machines. Transactions on Image
Processing, 16(1):172-187, 2007.

[57] Abhinav Dhall, Akshay Asthana, Roland Goecke, and Tom Gedeon. Emotion recog-
nition using PHOG and LPQ features. In International Conference on Automatic
Face & Gesture Recognition, pages 878-883. IEEE, 2011.

[58] Shaoqing Ren, Xudong Cao, Yichen Wei, and Jian Sun. Face alignment at 3000 fps
via regressing local binary features. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1685-1692. IEEE, 2014.

[59] Hui Chen, Jiangdong Li, Fengjun Zhang, Yang Li, and Hongan Wang. 3d model-based
continuous emotion recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1836-1845, 2015.

[60] Robert Walecki, Ognjen Rudovic, Vladimir Pavlovic, and Maja Pantic. Variable-
state latent conditional random fields for facial expression recognition and action
unit detection. In Automatic Face and Gesture Recognition (FG), 2015 11th IEEE
International Conference and Workshops on, volume 1, pages 1-8. IEEE, 2015.

[61] Mengyi Liu, Shiguang Shan, Ruiping Wang, and Xilin Chen. Learning expressionlets
on spatio-temporal manifold for dynamic facial expression recognition. In Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1749-1756. IEEE, 2014.

[62] Mengyi Liu, Ruiping Wang, Shaoxin Li, Shiguang Shan, Zhiwu Huang, and Xilin
Chen. Combining multiple kernel methods on riemannian manifold for emotion recog-
nition in the wild. In Proceedings of the 16th International Conference on Multimodal
Interaction, pages 494-501. ACM, 2014.

[63] Kaili Zhao, Wen-Sheng Chu, Fernando De la Torre, Jeffrey F Cohn, and Honggang
Zhang. Joint patch and multi-label learning for facial action unit detection. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
2207-2216, 2015.

[64] Thibaud Senechal, Daniel McDuff, and Rana Kaliouby. Facial action unit detection
using active learning and an efficient non-linear kernel approximation. In Proceedings
of the IEEE International Conference on Computer Vision Workshops, pages 10--18,
2015.

[65] Tin Lay Nwe, Say Wei Foo, and Liyanage C De Silva. Speech emotion recognition
using Hidden Markov Models. Speech communication, 41(4):603-623, 2003.

100

[66] Bj6rn Schuller, Gerhard Rigoll, and Manfred Lang. Speech emotion recognition com-
bining acoustic features and linguistic information in a hybrid support vector machine-
belief network architecture. In International Conference on Acoustics, Speech, and
Signal Processing, volume 1, pages 1-577. IEEE, 2004.

[67] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504-507, 2006.

[68] Paul Viola and Michael J Jones. Robust real-time face detection. International
Journal of Computer Vision, 57(2):137-154, 2004.

[69] Hsieh S Hou and H Andrews. Cubic splines for image interpolation and digital filter-
ing. Transactions on Acoustics, Speech and Signal Processing, 26(6):508-517, 1978.

[70] Akshay Asthana, Stefanos Zafeiriou, Shiyang Cheng, and Maja Pantic. Incremental
face alignment in the wild. In Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1859-1866. IEEE, 2014.

[71] Patrick Lucey, Jeffrey F Cohn, Takeo Kanade, Jason Saragih, Zara Ambadar, and Iain
Matthews. The extended cohn-kanade dataset (ck+): A complete dataset for action
unit and emotion-specified expression. In Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 94-101. IEEE, 2010.

[72] Maja Pantic, Michel Valstar, Ron Rademaker, and Ludo Maat. Web-based database
for facial expression analysis. In International Conference on Multimedia and Expo,
pages 5-pp. IEEE, 2005.

[73] Michel Valstar and Maja Pantic. Induced disgust, happiness and surprise: an addition
to the mmi facial expression database. In Workshop on EMOTION: Corpora for
Research on Emotion and Affect, page 65, 2010.

[74] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[75] Sources. Visual information processing and learning. [Online; accessed 10-July-2015].

[76] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1-9, 2015.

[77] Yunhe Wang, Chang Xu, Shan You, Dacheng Tao, and Chao Xu. CNNpack: pack-
ing convolutional neural networks in the frequency domain. In Advances in Neural
Information Processing Systems, pages 253-261, 2016.

[78] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Ben-
gio. Binarized neural networks. In Advances in neural information processing systems,
pages 4107-4115, 2016.

[79] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

101

[80] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. arXiv preprint arXiv:1512.03385, 2015.

[81] Djork-Arn6 Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accu-
rate deep network learning by exponential linear units (ELUs). arXiv preprint
arXiv:1511.07289, 2015.

[82] Chen-Yu Lee, Patrick W Gallagher, and Zhuowen Tu. Generalizing pooling functions
in convolutional neural networks: Mixed, gated, and tree. International Conference
on Artificial Intelligence and Statistics, 2016.

[83] Kenneth 0 Stanley and Risto Miikkulainen. Evolving neural networks through aug-
menting topologies. Evolutionary Computation, 10(2):99-127, 2002.

[84] James Bergstra, Daniel Yamins, and David D Cox. Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vision architec-
tures. ICML (1), 28:115-123, 2013.

[85] J David Schaffer, Darrell Whitley, and Larry J Eshelman. Combinations of genetic
algorithms and neural networks: A survey of the state of the art. International
Workshop on Combinations of Genetic Algorithms and Neural Networks, pages 1-37,
1992.

[86] Shreyas Saxena and Jakob Verbeek. Convolutional neural fabrics. In Advances in
Neural Information Processing Systems 29, pages 4053-4061. 2016.

[87] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando de Freitas.
Taking the human out of the loop: A review of bayesian optimization. Proceedings of

the IEEE, 104(1):148-175, 2016.

[88] Nicolas Pinto, David Doukhan, James J DiCarlo, and David D Cox. A high-
throughput screening approach to discovering good forms of biologically inspired vi-
sual representation. PLoS Computational Biology, 5(11):e1000579, 2009.

[89] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimiza-
tion. JMLR, 13(Feb):281-305, 2012.

[90] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based opti-
mization for general algorithm configuration. In International Conference on Learning
and Intelligent Optimization, pages 507-523. Springer, 2011.

[91] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization
of machine learning algorithms. NIPS, pages 2951-2959, 2012.

[92] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan
Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian opti-
mization using deep neural networks. In International Conference on Machine Learn-

ing, pages 2171-2180, 2015.

[93] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-
walkar. Hyperband: A novel bandit-based approach to hyperparameter optimization.
International Conference on Learning Representations, 2017.

102

[94] Dimitri P Bertsekas. Convex optimization algorithms. Athena Scientific Belmont,
2015.

[95] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten
zip code recognition. Neural computation, 1(4):541-551, 1989.

[96] Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical
report, DTIC Document, 1993.

[97] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[98] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. AISTATS, 9:249-256, 2010.

[99] Jan J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron C Courville, and Yoshua
Bengio. Maxout networks. ICML (3), 28:1319-1327, 2013.

[100] Rupesh Kumar Srivastava, Klaus Greff, and Jiirgen Schmidhuber. Highway networks.
arXiv preprint arXiv:1505.00387, 2015.

[101] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

[102] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo
Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint
arXiv:1412.6550, 2014.

[103] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller.
Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806,
2014.

[104] Pierre Sermanet, Soumith Chintala, and Yann LeCun. Convolutional neural networks
applied to house numbers digit classification. ICPR, pages 3288-3291, 2012.

[105] Pierre Sermanet, Koray Kavukcuoglu, Soumith Chintala, and Yann LeCun. Pedes-
trian detection with unsupervised multi-stage feature learning. CVPR, pages 3626-
3633, 2013.

[106] James S Bergstra, Remi Bardenet, Yoshua Bengio, and Balizs Kegl. Algorithms for
hyper-parameter optimization. NIPS, pages 2546-2554, 2011.

[107] Phillip Verbancsics and Josh Harguess. Generative neuroevolution for deep learning.
arXiv preprint arXiv:1312.5355, 2013.

[108] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regularization
of neural networks using dropconnect. ICML, pages 1058-1066, 2013.

[109] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu.
Deeply-supervised nets. AISTA TS, 2(3):6, 2015.

[110] Ming Liang and Xiaolin Hu. Recurrent convolutional neural network for object recog-
nition. CVPR, pages 3367-3375, 2015.

103

[111] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in
deep residual networks. In European Conference on Computer Vision, pages 630-645.
Springer, 2016.

[112] Shai Avidan and Moshe Butman. Blind vision. European Conference on Computer
Vision, pages 1-13, 2006.

[113] Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolu-
tional networks. arXiv preprint arXiv:1506.02753, 2015.

[114] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A
Efros. Context encoders: Feature learning by inpainting. arXiv preprint
arXiv:1604. 07379, 2016.

[115] Shiguo Lian, Jinsheng Sun, and Zhiquan Wang. Secure hash function based on neural
network. Neurocomputing, 69(16):2346-2350, 2006.

[116] Shiguo Lian, Guanrong Chen, Albert Cheung, and Zhiquan Wang. A chaotic-neural-
network-based encryption algorithm for jpeg2000 encoded images. International Sym-
posium on Neural Networks, pages 627-632, 2004.

[117] Khalil Shihab. A backpropagation neural network for computer network security.
Journal of Computer Science, 2(9):710--715, 2006.

[118] Lokesh Jain. Preserving security in routing in mobile ad-hoc environment through
non-linear dimension reduction technique. International Journal of Advanced Research
in Computer Science, 2(6), 2011.

[119] Qingchen Zhang, Laurence T Yang, and Zhikui Chen. Privacy preserving deep compu-
tation model on cloud for big data feature learning. IEEE Transactions on Computers,
65(5):1351-1362, 2016.

[120] Ankur Bansal, Tingting Chen, and Sheng Zhong. Privacy preserving back-propagation
neural network learning over arbitrarily partitioned data. Neural Computing and
Applications, 20(1):143-150, 2011.

[121] Jimmy Secretan, Michael Georgiopoulos, and Jose Castro. A privacy preserving prob-
abilistic neural network for horizontally partitioned databases. 2007 International
Joint Conference on Neural Networks, pages 1554-1559, 2007.

[122] Weiru Wang, Chi-Man Vong, Yilong Yang, and Pak-Kin Wong. Encrypted image clas-
sification based on multilayer extreme learning machine. Multidimensional Systems
and Signal Processing, pages 1-15, 2016.

[123] Mauro Barni, Claudio Orlandi, and Alessandro Piva. A privacy-preserving protocol
for neural-network-based computation. Proceedings of the 8th workshop on Multimedia
and security, pages 146-151, 2006.

[124] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game.
Proceedings of the nineteenth annual A CM symposium on Theory of computing, pages
218-229, 1987.

104

[125] Andrew Chi-Chih Yao. How to generate and exchange secrets. Foundations of Com-
puter Science, 1986., 27th Annual Symposium on, pages 162-167, 1986.

[126] Yuan Zhang and Sheng Zhong. A privacy-preserving algorithm for distributed training
of neural network ensembles. Neural Computing and Applications, 22(1):269-282,
2013.

[127] Keke Chen and Ling Liu. A random rotation perturbation approach to privacy pre-
serving data classification. 2005.

[128] Claudio Orlandi, Alessandro Piva, and Mauro Barni. Oblivious neural network com-
puting via homomorphic encryption. EURASIP Journal on Information Security,
2007:18, 2007.

[129] Yan-Cheng Chang and Chi-Jen Lu. Oblivious polynomial evaluation and oblivious
neural learning. International Conference on the Theory and Application of Cryptology
and Information Security, pages 369-384, 2001.

[130] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al.
Communication-efficient learning of deep networks from decentralized data. arXiv
preprint arXiv:1602.05629, 2016.

[131] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting dis-
tributed synchronous sgd. arXiv preprint arXiv:1604.00981, 2016.

[132] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized stochas-
tic gradient descent. In Advances in neural information processing systems, pages
2595-2603, 2010.

[133] Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex
learning and optimization. In Advances in neural information processing systems,
pages 1756-1764, 2015.

[134] Yuchen Zhang, Martin J Wainwright, and John C Duchi. Communication-efficient
algorithms for statistical optimization. In Advances in Neural Information Processing
Systems, pages 1502-1510, 2012.

[135] Hoo-Chang Shin, Matthew R Orton, David J Collins, Simon J Doran, and Martin 0
Leach. Stacked autoencoders for unsupervised feature learning and multiple organ
detection in a pilot study using 4d patient data. IEEE transactions on pattern analysis
and machine intelligence, 35(8):1930-1943, 2013.

[136] Pablo M Granitto, Pablo F Verdes, and H Alejandro Ceccatto. Neural network en-
sembles: evaluation of aggregation algorithms. Artificial Intelligence, 163(2):139-162,
2005.

[137] Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing
neural network optimization problems. arXiv preprint arXiv:1412.6544, 2014.

[138] Nicolas Papernot, Martin Abadi, Ulfar Erlingsson, Ian Goodfellow, and Kunal Talwar.
Semi-supervised knowledge transfer for deep learning from private training data. arXiv
preprint arXiv:1610.05755, 2016.

105

[139] Ming-Zher Poh, Daniel J McDuff, and Rosalind W Picard. Non-contact, automated
cardiac pulse measurements using video imaging and blind source separation. Optics
Express, 18(10):10762-10774, 2010.

[140] Giovanni Cennini, Jeremie Arguel, Kaan Akgit, and Arno van Leest. Heart rate
monitoring via remote photoplethysmography with motion artifacts reduction. Optics
Express, 18(5):4867-4875, 2010.

[141] Ganesh Balakrishnan, Frederic Durand, and John Guttag. Detecting pulse from
head motions in video. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3430-3437. IEEE, 2013.

[142] Richard D Lane, Kateri McRae, Eric M Reiman, Kewei Chen, Geoffrey L Ahern,
and Julian F Thayer. Neural correlates of heart rate variability during emotion.
Neuroimage, 44(1):213-222, 2009.

106

