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Abstract

Many behaviors spread through social contact. However, different behaviors seem to

require different degrees of social reinforcement to spread within a network. Some

behaviors spread via simple contagion, where a single contact with an "activated node" is

sufficient for transmission, while others require complex contagion, with reinforcement

from multiple nodes to adopt the behavior. But why do some behaviors require more

social reinforcement to spread than others? Here we hypothesize that learning more

difficult behaviors requires more social reinforcement. We test this hypothesis by

analyzing the programming language adoption of hundreds of thousands of programmers

on the social coding platform Github. We show that adopting more difficult programming

languages requires more reinforcement from the collaboration network. This research

sheds light on the role of collaboration networks in programming language acquisition.
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2 Introduction

The spread of behaviors through networks is an important and widely studied

phenomenon. The study of contagion in networks began with epidemic models for

infectious diseases. As network science began to blossom as a field, the study of contagion

grew to a diverse array of behaviors. Many ubiquitous phenomena are now known to

spread through networks in specific ways - infectious diseases [1], memes [2], smoking

habits [3], obesity [4], job information [5], innovations [6] and even the evolution of

economic activities [7].

Studies of diffusion dynamics have explored the role of network structure and influential

nodes [7][8][9][10] in these contagion processes. Initial research extended traditional

epidemic models to understand the spread of phenomena like rumors [11], and more

recently, computer viruses [8]. When these phenomena were studied further, it became

apparent that two distinct types of contagion exist. Diseases [1] and information about

jobs [4] spread via simple contagion, where transmission occurs through contact with a

single individual. In a complex contagion, concepts require social reinforcement from

multiple nodes to spread [12]. Social behaviors often spread as a complex contagion [13].

When Centola proposed the idea of complex contagion, he conjectured that the adoption

of expensive, controversial or risky behaviors would be more likely to require social

reinforcement from multiple actors [12]. Aral and Nicolaides decided to investigate if

exercise habits spread as a complex contagion. They studied a social network of one

million runners, and showed that exercise habits spread as a simple contagion [14]. This

was surprising as they considered exercising to be a relatively expensive task when

compared to other studied examples like the sharing of internet memes [2] or the

adoption of a social media app [26].

Christakis and Fowler studied the influence of social connections on smoking, and

concluded that smoking cessation was strongly infectious in people with strong ties
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(spouses, siblings and coworkers in small firms) [3]. On the other hand, in networks at the

scale of nations and regions, Hidalgo et al. find that the knowledge of making new

products spreads via complex contagion [15] [6]. The same is found to be true in the

spread of research areas [16] as well.

This leads us to a key question. Why do some behaviors require more social reinforcement

to spread than others?

Intuitively, Centola's conjecture makes sense. Difficult or controversial behaviors are much

more likely to require complex contagions. For a country to develop a new industry, a

variety of underlying capabilities need to be ready. The presence of workers with the

required knowledge, the availability of the required infrastructure and technology and the

presence of institutions and laws that enable such an industry are all important factors [6].

Thus, the presence of related industries plays an outsized role in determining the

probability that the new industry will evolve. And the presence of multiple related

industries substantially increases the probability of success. In contrast, a single

recommendation can lead to someone being hired for a job. With extensive

standardization for many job roles, hiring reduces to the spread of information and trust.

Thus, job information spreads through a network as a simple contagion [4].

The examples highlighted above are vastly different, making it hard to make the claim that

the difference in difficulty between the tasks is the only reason one spreads as a complex

contagion, while the other as a simple contagion. Since we would like to study how

patterns of contagion change with difficulty, we choose to study a phenomenon where we

can find a single concept with multiple levels of difficulty - programming languages.

Different programming languages have different levels of difficulty, and programmers

frequently learn and forget languages [17]. Some programming languages are designed for

a very specific task and can be learnt in a matter of hours. Other languages require one to
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invest in multiple new tools and frameworks, and take weeks to set up and use

successfully.

We hypothesize that the more difficult a programming language, the more social

reinforcement a programmer needs to learn it.

Millions of programmers use the social coding platform Github to create and collaborate

on software projects [18] [19]. Thus, studying programming language adoption on Github

gives us a method to quantify the relationship between the difficulty of languages and the

need for social reinforcement.

The topic of technology diffusion has been studied for close to fifty years, with a variety of

theoretical models that have evolved over time to incorporate different scales and

phenomena. In his famous book, The Diffusion of Innovations, Everett Rogers defines

diffusion as the "process by which innovation is communicated through certain channels

over time among the members of a social system". In this definition, he emphasizes what

he believes to be the five most important factors influencing technology diffusion [5]. All

five factors are at play in the adoption of programming languages on Github.

Understanding network effects on various aspects of the development lifecycle has been a

topic of interest. Casalnuovo et al have shown that 90% of the "prolific" programmers on

Github preferentially join projects with past social connections. They also show that

programmers prefer to join projects in programming languages they have used before

[20]. Meyerovich and Rabkin analyze programming languages through a combination of

data from the platform SourceForge and surveys of programmers. They conclude that

programming language adoption follows a power law, but the market supports many

languages with niche user bases [17], hinting at network effects in programming language

communities. However, little research has been done in understanding the spread of

programming languages through collaboration networks. In this work we show that
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adopting more difficult programming languages requires more reinforcement from one's

collaboration network.

We study this hypothesis by analyzing the programming language adoption of hundreds

of thousands of programmers on the social coding platform Github. We show that

adopting more difficult programming languages requires more reinforcement from the

collaboration network. Our research sheds light on the role of collaboration networks in

programming language acquisition.
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3 Data

The social coding platform Github has risen to prominence as the most popular platform

for collaborative coding among developers. As of 2017, the platform has over 25 million

active public repositories (projects) and continues to grow. Github is built around the

version control software git. Git is the dominant choice for version control for

programmers, with almost 90% of programmers using git according to the StackOverflow

2018 survey of 74,298 developers [21]. Of these developers, 60% check-in code everyday.

Programmers collaborate on repositories by pushing "commits" (units of code containing

changes to multiple files) to the repository. Each commit is authored by a single

programmer, but can contain files written in multiple different programming languages.

The dataset was constructed by snowball sampling from a list of 256 highly active github

users through the Github APIs to get data on over 600,000 developers. For the rest of this

study, we use a subset of this dataset, constructed from a random sample of 1,000

programmers and all their collaborators (105,000+ programmers). Two programmers are

considered collaborators if they have both pushed code to the same repository. In our

dataset, the average developer has committed code in at least 5 different languages. The

average repository has commits in at least 2 languages.

Number of Repos (log) Number of programmers (log)

iM 100K

1OOK 10K

10K 
1K

11K
100

100

10 10

0 5 10 15 20 26 0 5 10 15 20 25 30 35 45

Number of Languages Used Number of Languages Used*

*a language is counted if the author/repo has at least 10 commits in the language
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Github only assigns programming languages at a repository level. However, to correctly

detect that a programmer has adopted a language, we require programming languages at

the individual "commit" level. This is especially important since many projects have a

division of labor, for example, in a web development project, some contributors write

documentation in Markdown, some write front-end code code in JavaScript, and others

write back-end code in Go.

To ensure we have accurate information on each programmer's contributions, we

retrieved the list of files changed for every commit by all 105,000+ programmers in our

dataset. This amounted to fetching the list of files changed for about 46.5 million commits

from Github. The filenames and file extensions were used to determine the programming

languages present in a commit (details of dataset construction in appendix).

3.2 Limitations

The dataset is restricted to open source personal projects on Github. This is a limitation as

it excludes two other types of projects - personal projects in private repositories, as well

as projects in organizational repositories. These are limitations on the completeness of the

dataset. However, the 1000 randomly sampled programmers meet a minimum activity

criterion of 500 open source commits, which means they all have significant open source

output.
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4 Results

Programmers become collaborators by contributing code commits to the same repository.

Since the average repository uses 1-2 languages, collaborations normally begin in a

specific language. However, the average programmer has made commits in at least six

different languages and there are over 343 actively developed programming languages on

Github. Thus, programmers often collaborate with someone who knows a language that

they have never used. Given that a programmer has multiple collaborators, how does the

collaboration network influence their adoption of programming languages? Figure 1,

highlights the spread of the programming language "Go" through a collaboration

network. The network consists of programmers who first collaborated in a language other

than Go. We see that Go proliferates through this network over a six year period.

However, if we look at the dataset as a whole, less than 13% of the 105,000+ programmers

use Go.
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Figure 1. Difusion of the programming language "Go" through a collaboration network on Github from 2009

(top left) to 2014 (bottom right). Nodes represent programmers. Nodes turn yellow after the first commit in

Go.
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Is the spread of Go within this collaboration network just an exception, or is this the

norm?

To understand the contagion of languages through collaboration networks, we study the

adoption patterns of ten popular programming languages (see Table 1). We also include

Plain Text and Markdown for comparison as these formats can serve as a control. They are

widely used for documentation and licenses on Github and require minimal effort for

adoption. HTML is a "markup" language and is also quite easy to use. At a feature level,

Plain Text, Markdown and HTML do not require programming concepts like "variables"

and "functions" In contrast, the remaining languages are full-featured and each have their

own libraries, frameworks and ecosystems. Python and JavaScript are popular languages

for beginners today.

Specifically, we are interested in understanding how the probability that a programmer

uses a language changes with the fraction of collaborators who use the same language. We

plot these "language adoption curves" for all twelve languages in figure 2. If there is no

contagion, we expect no significant correlation between the probability of use and the

fraction of activated collaborators. In the case of a simple contagion, we expect a sub-

linear increase in probability of use, with additional activated collaborators contributing

only marginally to increasing the probability that the language is adopted. However, in the

case of a complex contagion, we expect to see linear or exponential growth in the

probability of adoption as the number of activated collaborators increases [24].

We model these curves using a two parameter logistic function.

1

y = 1 + Ae-ax (eq. 1)
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Figure 2a. Language adoption curves for languages
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First, we observe two distinct behaviors. Plain Text, HTML and Markdown have flat

adoption curves, indicating no correlation between the probability of adoption and the

fraction of collaborators who use these languages. For all other languages, the curve

increases exponentially before saturating. This means that the probability that an

individual adopts one of these nine languages increases exponentially with the fraction of

activated collaborators. We quantify this, using the parameter "a" in the language

adoption curves.

Language Users (%) a

Plain Text 93.2 0

Markdown 99.0 0.01

HTML 92.4 0.01

Python 69.3 0.06

JavaScript 90.3 0.06

Ruby 61.4 0.07

C 47.1 0.08

CoffeeScript 36.0 0.08

C++ 37.5 0.09

PHP 36.3 0.09

Java 42.4 0.10

Go 24.8 0.14

Table 1. Programming languages with number of programmers ranked by "a" values

The parameter a captures the "growth" characteristic of the logistic function we use to

model the language adoption curve. Higher values of a imply steeper adoption curves. In

table 1, we plot the value of alpha for each of the programming languages. The fact that

Plain Text, HTML and Markdown have a = 0 can be attributed to the fact that they are not

full-featured programming languages and are therefore easy to adopt. The remaining

languages have values of a ranging from 0.06 to 0.14. But what explains the difference

between Python (a = 0.06) and Go (a = 0.14)?
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We use a survey of 909 programmers [22] who were asked to rank languages on how easy

they are to learn. Specifically, we look at the programming language rankings for the

question "What do programmers think is the easiest language to learn?" In the survey, the

languages are ranked based on the number of people who say a specific language is the

easiest to learn. Seven of the ten languages in their rankings overlap with our dataset. In

figure 3, we compare the rankings from the survey with the languages in table 1.

7
Go

cu 6 0
Java

0

PHP

40

Ruby
CD

Cr- 3
JavaScrpt

2 ----- ---- 0

Python

0. 1 - - -

HTML

0 1 2 3 4 5 6 7

Programming Language Difficulty* (Rank, 1 =lowest)

*Source: WP Engine Survey

We see that ranking programming languages using "alpha" correlates well with the

difficulty rankings provided by developers in the survey. The more difficult a

programming language, the steeper its adoption curve. This confirms our hypothesis -

the more difficult a programming language, the more social reinforcement a programmer

needs to learn it.
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5 Conclusion

We study the influence of collaborators on programming language adoption and show

that programming language adoption spreads via complex contagion for full-featured

languages. We also show that more difficult languages possess steeper language adoption

curves, indicating that adopting a difficult programming language requires more social

reinforcement.

Programming languages constitute an important example of a problem of great interest -

technology diffusion. In Everett Roger's seminal work on technology diffusion, he studied

a variety of technologies and practices. For example, he showed the influence of an early

adopter in the spread of a new weed spray among a group of 13 farmers [6]. Technology

diffusion has been important at every scale, from small teams to entire countries. With the

introduction of the internet and platforms like Github, networks of influence now span

continents, with many people collaborating without ever meeting each other. Millions of

developers are constantly learning and adopting new software technologies today. We are

only beginning to understand the power and influence of these networks on the diffusion

of knowledge.

Organizations that facilitate and encourage technology diffusion within their workforce

will possess a strong advantage in this world of rapidly evolving technologies. Most

software organizations today use collaborative platforms like Github internally, making

granular technology adoption data available to all members of the organization.

Understanding the mechanics of technology diffusion through networks of programmers

will lead us to a paradigm where we can consciously exploit these networks to enhance

technology adoption within organizations and teams.
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6 Discussion and Future Work

There has been a long history of studying contagion processes in social behaviors. In this

study, we have attempted to capture the relationship between the difficulty of a concept

and the need for social reinforcement in its spread. In choosing programming language

adoption, we study a phenomenon with varying levels of "difficulty" and have shown that

the difficulty of a language is strongly correlated with the need for social reinforcement in

adopting it.

In cases of contagion, it is often difficult to disentangle homophily and influence [27].

While we have demonstrated that social reinforcement plays a role in programming

language adoption, it is unclear whether this is direct influence, or whether homophily is

more common in communities who know difficult languages. Extending this work to

measure the role of direct influence is an important next step. Since we have constructed a

granular and timestamped dataset, we can attempt to disentangle homophily and

contagion using matched sample estimation techniques [27]. However, these matching

techniques will require us to expand our sample to a much larger pool of programmers

with complete commit information for each of their collaborators to provide meaningful

results.

A second interesting idea that emerges from this work, is to enable individuals and

organizations to explore and understand their collaboration networks. Whether through

homophily or through contagion, activated collaboration networks certainly enable the

adoption of programming languages. It would be useful to use this data to enable

programmers to visualize their own collaboration networks, so that they can understand

their influencers and learn better from them. This idea is explored in more detail in the

appendix, and provides the basis for the platform "CodeSpace"

The number of programmers on Github has now crossed 25 million, making it more

populous than three-fourths of the countries in the world. Studying the mechanics of
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contagion on these platforms will play a key role in advancing our understanding of

knowledge diffusion. Progress on characterizing these diffusion patterns will also aid in

attempting to enhance the diffusion of technologies [24]. Engineering contagion is not a

new idea, and is frequently used in social media advertising [23]. Employing similar

strategies may help open source libraries to increase adoption and target communities to

enhance contagion.

As we move toward a world where larger teams collaborate on ever advancing

technologies, our ability to effectively learn new technologies will be paramount. This

research contributes insights towards the larger goal of understanding knowledge

diffusion in collaboration networks.
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7 Appendix: CodeSpace

The CodeSpace platform (http://codespace.media.mit.edu) visualizes the learning paths of

over 500,000 developers from Github. The platform consists of a PostgreSQL database, a

NodeJS based API layer and a ReactJS based front-end.

7.1 Dataset construction

The dataset was constructed using Github APIs, through snowball sampling from a list of

256 high activity github users. Since the Github APIs are rate limited, the dataset was

constructed over several weeks, traversing over 500,000 users and fetching all commits

from their open source personal repositories.

Each time a repository's commits were retrieved, every new collaborator was added to the

queue and the process was repeated for the collaborators. The API presented numerous

challenges, requiring a complex set of scripts that asynchronously fetched the data while

maintaining a balanced load on the Github API as a good API citizen.

The dataset contains over 600,000 developers, close to 3 million repositories and over 108

million commits and continues to grow. It is stored in a highly optimized PostgreSQL

database and contains a large set of materialized views that pre-compute various slices of

the data to be rapidly served to the CodeSpace front-end.

7.2 CodeSpace Architecture

The web-based platform, "CodeSpace" is built with multiple complementary goals. Since

software development is one of the most rapidly evolving innovation ecosystems,

programmers need to frequently switch to newer technologies to remain competitive in

the market. Thus, enabling programmers to visualize and understand their historical

learning paths and key collaborators will help them understand the techniques that

seemed to work for them in the past. This is one of the key goals of CodeSpace.
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Figure 2: Codespace architecture diagram

The technical architecture of the platform is fairly complex, as it involves multiple server

side processes, an extremely large data layer, and a front end with complex, data heavy

visualizations. The server side is built as a collection of dockerized containers, with API

scrapers written in Python using asyncio and asyncpg for extremely fast and highly

concurrent data collection, as well as a NodeJS web server, a large PostgreSQL database

and Redis for caching.

7.3 Replot - Open Source Visualization Library

The front-end of CodeSpace is powered by a visualization library called "Replot" (http://

replot.io) developed by a team of collaborators I led at the Collective Learning Group.

While there are a number of libraries that port popular visualization libraries like d3 to

ReactJS, Replot uses a different approach, rendering SVG components directly using

React. This required us to build every component from the ground up. Using this React

first approach will lead to numerous benefits in the future as browsers begin to optimize

for React's virtual DOM based rendering.
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I led a team of contributors in creating Replot, collaborating with Alisa Ono, Almaha

Almalki, Matthew Farejowicz, Ariel Levy and Nancy Luong. The Replot framework has

been deployed to npm and open-sourced as part of this thesis. It powers multiple

visualizations in both the CodeSpace and Opus platforms.

Replot consists of seven types of visualizations - TreeMaps, Bar Charts, Box Plots, Line

Charts, Scatter Plots, Network Charts and Maps. Each of these visualizations can be

customized and extended in numerous ways using props. All components have built in

animations and automatically animate changes in the data. This enables a paradigm where

Replot visualizations can be used to easily build a "data timelapse" - an extremely useful

feature when visualizing time series data. A common example is visualizing the evolution

of a network over time.
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