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Abstract
Online retail fulfillment is increasingly performed by semi-automated fulfillment systems in
which inventory is stored in mobile pods that are moved by robotic drives. In this thesis, we de-
velop a model that explores the benefits of velocity-based stowage policies for semi-automated
fulfillment systems. The stowage policies decide which pods to replenish with the received in-
ventory. Specifically, we model policies that account for the velocity of the units being stowed.
By stowing higher (lower) velocity units on higher (lower) velocity pods, we expect to increase
the heterogeneity of the pod velocities. Greater heterogeneity in pod velocities can yield a greater
reduction in pod travel distance from velocity-based storage policies for the pod. Reducing pod
travel distance could decrease the number of robotic drives that are needed for the system to
maintain a certain throughput rate (Yuan, 2016). We consider the random stowage policy as our
base case, in which the stowage decision for each unit does not depend on the unit's velocity. In
comparison, we model three types of stowage policies that use the unit velocity in the stowage
decision: two-class with informed stowage, M-class with informed stowage, and two-class with
random stowage. For the two-class and M-class model with informed stowage, we assume that
we can classify the units based on their expected velocity, and then use this information to make
the stowage decisions; we develop an approximate model from which we can characterize the
impact on reducing the pod travel distance compared to that of the base case. Using simulation,
we verify the accuracy of the approximate model. For the two-class with random stowage policy,
we assume that the units can be categorized as being either high velocity or low velocity; howev-
er, we assume that this categorization cannot be used at stowage and that the units are stowed
onto the pods randomly. We assume, though, that we can categorize each pod as being a high or
low velocity pod based on the number of high velocity units stowed on the pod. We use simula-
tion to evaluate this policy. For each of the velocity-based stowage policies, we evaluate the sen-
sitivity on the total system travel distance per hour by varying parameters, compared to that of
the base case. We also evaluate the benefits of the two-class model with random stowage from
the simulation, and compare with that of the two-class model with informed stowage.

Thesis Supervisor: Stephen C. Graves
Title: Abraham J. Siegel Professor of Management Science
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Section 1. Introduction

Online retail has been rapidly growing over the past decade. Online shopping allows customers

to order anytime, provides them with a variety of products and enables convenient comparison

among different choices. According to the US Census Bureau, the total e-commerce sales for

2017 was $453.46 billion, which increased 16.0 % compared to $390.99 billion in 2016, whereas

the total retail sales in 2017 increased only 2.9% from 2016 (Ali, 2018). The percentage of

online retail sales in total retail sales has increased steadily in the US from 2.5% in 2006 to

13.0% in 2017. Facing greater demand and with pressure from rapid growth, online retailers

struggle to maintain the high volumes of orders and the higher service quality expectations.

As one of the most important components of the online retail supply chain, fulfillment

centers are critical for meeting customers' service quality expectation and account for about 15%

of the total supply chain cost in developed countries (Handfield et al., 2013), and are considered

as cost centers (Wurman et al., 2008). There has been ongoing pressure to reduce the costs. Tra-

ditional warehouses operate on a person-to-goods model, where operators stow and pick by

walking to and from the storage location. These activities are usually labor intensive as the oper-

ators spend significant amounts of time traveling in the warehouse. The cost associated with or-

der picking alone is estimated to be as much as 55% of the total warehouse operating expense

(De Koster et al., 2007).

To improve operations efficiency and reduce direct labor cost, warehouses are examining

opportunities in automation with emerging technology. Automated Storage and Retrieval Sys-

tems (AS/RS) have been widely implemented for automating warehouses since their introduction

in 1950s An AS/RS usually consists of racks served by cranes running along the aisles between

the racks. The AS/RSs are fully automated and capable of handling pallets with no operators in-

volved. A significant amount of research has been done since the introduction of AS/RS in its

field. Hausman et al. (1976), and Graves et al. (1977) were pioneers in the field of AS/RS. Their

objectives were to explore optimal storage assignments by comparing different storage assign-

ment rules. An overview of the related work in AS/RS is summarized in Gagliardi et al. (2011),

and Roodbergen et al. (2009).

Our research focuses on a new type of fulfillment center, the semi-automated fulfillment

system, which was pioneered by Kiva and is also known as the robotic mobile fulfillment sys-

tem. The semi-automated fulfillment systems perform on a goods-to-person model, which is en-

9



abled by the availability of robotic technology. Specifically, semi-automated fulfillment systems

have robotic drives that can transport pods, on which inventory is stored. This feature allows op-

erators to be at stations to pick items from the pods or to stow items on the pods. After each pick

or stow operation, a robotic drive stores the pod in the storage field. With reliable robotic drives,

the items are selected and delivered more efficiently according to the customer's order request.

Wurman et al. (2008) introduce and describe semi-automated fulfillment systems in detail. Semi-

automated fulfillment systems provide many advantages compared to AS/RS. For instance, semi-

automated fulfillment systems provide flexibility and expandability, while AS/RS are difficult

and costly to move once installed. Bozer and Aldarondo (2018) present a simulation-based com-

parison between mini-loaded AS/RS and semi-automated fulfillment systems and discuss the ad-

vantages and limitation of each system.

Our research focuses on the operational process regarding the semi-automated storage

system, which involves picking, stowage, and storage. This thesis specifically focuses on the

stowage aspect. The details of each operational process can be found in Yuan (2016). The key

operational decisions are as follows:

* Picking Decision. The picking decision determines from which pod to pick each unit in

each order. The inventory for each stock-keeping unit (sku) is typically stored across

multiple pods. Hence there can be many options for how to pick the units required for an

order, which may contain multiple skus.

* Stowage Decision. The stowage decision determines onto which pods to store (or stow)

the received inventory from vendors in the storage system. A large fulfillment center may

have multiple storage zones or fields; so the first stowage decision is to decide to which

zone to send each unit. At the zone level, the objective for the stowage decision is to as-

sign the units so as to balance the picking workload, thus reducing the costs from over-

assigning orders in over-loaded zones and underutilizing the under-loaded zones. At the

pod level, the stowage policy determines onto which pods to store the received inventory.

This level of decision is mostly dependent on the available storage space on the pods and

the physical size of the received units of inventory.

* Storage Decision. The storage decision determines to what location in the storage field to

return a pod after the pod completes a pick or stow operation. Storage policies are placed

in order to minimize the total travel distance of the robotic drives.

10



Enright and Wurman (2011) present resource allocation challenges in the context of

semi-automated fulfillment systems. A lot of research has been done in exploring queueing and

utilization aspect: Nigam et al. (2014), Lamballais et al. (2017a), Lamballais et al. (2017b), and

Zou et al. (2017). Merschformann et al. (2018) present a discrete event simulation to study order

assignment, pod selection and pod storage assignment problems. Yuan (2016) explores velocity-

based storage decisions and examines zone and pod level stowage decisions. The velocity-based

storage decisions are also explored in Yuan et al. (2018a). Yuan et al. (2018b) present ideal zone

level stowage policy to balance the demand.

In this thesis, we extend the work of Yuan (2016) and develop a model that explores the

benefits of velocity-based stowage policies for semi-automated fulfillment systems. We aim to

approach the stowage aspect with a practical heuristic. Specifically, our goal is to model policies

that account for the velocity of the units. By stowing higher (lower) velocity units on higher

(lower) velocity pods, we expect that we can increase the heterogeneity of the pod velocities.

Yuan (2016) has characterized the benefits from velocity-based storage policies that store high-

velocity pods closer to the pick and stow stations, while placing low velocity pods further away.

Yuan (2016) found that greater heterogeneity in the pod velocities could yield greater reduction

in pod travel distance from velocity-based storage policies for the pod. As a result, reducing pod

travel distance could decrease the number of robotic drives that are needed for the system to

maintain a certain throughput rate (Enright and Wurman, 2011; Yuan, 2016; Lamballais et al.,

2017).

We consider random stowage policy as our base case, in which units are not stowed by

their velocity. In Section 2, we model three types of velocity-based stowage policies: two-class

with informed stowage, M-class with informed stowage, and two-class with random stowage. By

analyzing the two-class and M-class models with informed stowage, we assume that we can cat-

egorize the units to be stowed into two or M classes, respectively. We then can use this categori-

zation to create corresponding classes of pods; we are able to show the impact in reducing the

pod travel distance compared to the base case. In Section 3, we verify the accuracy of the model

with simulation results. We then evaluate the impact on the total travel distance per hour for the

system by varying the percentage of items in each class for M= 2 & 3, and compare the results

to that of the base case. We also evaluate the benefits of the two-class model with random stow-

age from the simulation, and compare with that of the two-class model with informed stowage.
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Section 2. Model

The intent is to develop a model that would explore the benefits of velocity-based stowage poli-

cies for the semi-automated storage system. Specifically, we would like to model policies that

account for the velocity of the units. By stowing higher (lower) velocity units on higher (lower)

velocity pods, we expect that we can increase the heterogeneity of the pod velocities. Greater

heterogeneity in the pod velocities can yield a greater reduction in pod travel distance from ve-

locity-based storage policies for the pod.

We consider a storage system that is effectively in steady state equilibrium and that is

heavily utilized. Each pod travels to a stowage station at regular intervals for replenishment after

a specified number of picks. We model the behavior of a single pod, with the intent of character-

izing the pod's velocity as it depends on the stowage policy. We then use this understanding of

the behavior of a single pod to extrapolate to a storage system that is operating with a given

throughput rate. For this extrapolation, we assume that the pods in the system operate inde-

pendently. We can then develop estimates for the total pod travel distance per hour for the sys-

tem, as it depends on the unit-stowage policy and on the pod-storage policy.

In this section, we first list the model assumptions and model preliminaries. We then de-

velop the model to evaluate the effectiveness of different stowage policies. We finally provide

numerical demonstrations for the analytical results.

2.1 Model Assumptions

We model a single pod that is representative of all of the pods in the storage system. We focus on

stowage events, assuming that each pod will travel to a stowage station for replenishment at reg-

ular intervals and then return to the storage system. In this section, we present and discuss the

model assumptions:

A.1 Same unit size for all items and same pod size. We assume that all items have the

same unit size, and all pods have the same capacity for holding the inventory. The pod

has capacity for C units, where each unit occupies the same amount of space on the pod.

We think this is a reasonable assumption for our model as each pod has the same storage

volume, and will typically hold several hundred units of inventory. There is variability in

the item sizes across different skus. But the average size of an item on each pod is rela-

tively constant.
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A.2 Fixed thresholdfor stowage replenishment. We set a threshold, k, so that when the

number of units on the pod drops to C - k, the pod is replenished with k units. The size of

the replenishment quantity, k, is a control parameter. Effectively, we assume that after k

units are picked from the pod, the pod will go to a stowage station for replenishment.

This is a reasonable proxy for how stowage decisions are made. When a stowage station

has material to stow, it will call pods to the station, with priority given to pods with the

most available space.

A.3 Ample supplyfor stowage. We assume that when a pod goes to a stow station for re-

plenishment that k units are available to be stowed onto the pod; in effect, there will al-

ways be sufficient units waiting to be stowed at each station.

In order to evaluate the total travel distance of robotic drives in the storage system, we make

some additional assumptions:

A.4 High space utilization. We assume that we have the same number of storage loca-

tions and pods in the system. During operation, if the number of pods, J, is less than the

number of storage locations, we would store the pods in the J closest storage locations.

A.5 Linear travel distance. We define d1 to be the distance from storage location j to the

nearest stowage station, where we have ranked the storage locations such that

d, ; d, =1,2...J and J is the total number of storage locations, equal to the total num-

ber of pods. We assume that we can estimate the travel distance by a linear model:

d, =#0x( i),i=1,2...J, where is # is a constant equal to the furthest travel distance.

Justification for this assumption is based on the analysis done by Yuan (2016) for repre-

sentative storage fields.

A.6 Mass balance andfixed system throughput rate. The throughput rate for the system is

the rate at which units are being picked per hour. We assume that the storage system has

a target hourly throughout rate, denoted as .. We assume that the storage system is ef-

fectively in a steady-state equilibrium in that the stowage rate matches the pick rate; as a

result, the number of units in storage is neither increasing nor decreasing over time. We

think this assumption is reasonable for any highly utilized storage system.
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We will introduce additional assumptions as they become necessary for the model development.

2.2 Model Development

In this section, we discuss the modeling of the stowage operation of a storage system where we

can classify units based on their velocity (or dwell time). The dwell time for a unit is how long

the unit stays in the system: the dwell time is the difference between the time that the unit gets

picked and the time it was stowed into the system. We use the term velocity to correspond to a

demand rate for a unit; in this context, the unit velocity is the inverse of the dwell time. Our ob-

jective is to evaluate the expected total travel distance for stowage trips for different stowage

policies.

Base Case

For the base case we assume that we do not classify the units to be stowed by their velocity. The

system has a target throughout rate, XS, which is the number of units picked per hour (Assump-

tion A.6). We assume that the target throughput rate also corresponds to the stowage rate, the

number of units stowed per hour, based on Assumption A.6 of mass balance. We assume that the

dwell time for each unit has an average dwell time denoted by r, measured in hours. That is, we

assume that each unit that is stowed in the system will remain in the system for 'r hours, on av-

erage, until being picked.

By Assumption A. 1, each pod has the capacity to hold C units. By Assumption A.2, the

number of units on each pod will range between C and C - k. The inventory on a pod decreases

as units get picked; once the number of units remaining hits C - k, we assume that a stowage

event will occur and will bring the inventory back to C. By Assumption A.3, each pod is replen-

ished whenever the number of units drops to C - k, where k is a control parameter. Thus, we ap-

proximate the average number of units stored on each pod as

C- Y.(1)

If the pick rate from the pod were constant, then Equation (1) would not be an approximation,

but would be exact. However, we cannot assume that the pick rate from the pod will be constant;

for instance, when the pod is full, the rate at which units are picked is likely greater than when

the pod is not full.

14



To characterize the average pick rate for a single pod, 1,,, we apply Little's Law:

L = AW, where L is the average number of customers waiting or in process in the system, , is

the customer arrival rate, and W is the average time that a customer arrival spends in the system.

Equivalently for an individual pod, L is the average number of units on the pod; W is the average

dwell time for the units in the system, namely r ; and A is the average pick rate for the pod. From

Equation (1), the average number of units on a pod is L = C - k / 2. Therefore, we can determine

the average throughput rate for each pod, A,,, from Little's Law

L=.AW= C-X=2r, (2)

where A, denotes the throughput (or pick) rate for an individual pod (units per hour); by As-

sumption A.6, this is the rate at which units are picked from the pod, as well as the rate at which

units are stowed onto the pod. Hence, we have:

C -k
A, = 2 (3)

In order for the system to meet the target throughput rate, we need to have J x AP = AS where J

is the number of pods in the system; thus:

J .L (4)

The number of pods is inherently an integer; however, for our model development we will not

impose this requirement so as to not complicate the development. In reality, the number of pods

is on the order of 1000's, so we expect there is minimal impact from this simplification.

We now develop a model for the travel distance associated with the stowage trips. The to-

tal travel distance per hour will be the product of the number of trips per hour times the average

distance per trip.

TRAVEL DISTANCE MODEL

We now develop a model for the travel distance associated with the stowage trips.

Number of trips: Each pod makes a replenishment trip to a stow station after it has had k picks.

Thus, an estimate of the average time between visits to the stow station, denoted by TBV, is

TBV = k/A, in hours. The number of trips each pod makes per hour is the inverse:

15



1/TBV = 2,/k. Therefore, the total number of trips per hour for the system, denoted as N, is giv-

en by:

N=Jx . (5)

Average distance per trip: We assume that we have storage space for J pods, and that we can

estimate the travel distance by a linear model (Assumption A.5). That is, we assume

d = x i),i=1,2...J, (6)

where di is the travel distance to the ith closest location, and P is a constant equal to the furthest

travel distance. We assume that after a visit to a stow station, the pods will travel to the closest

open storage location; in a highly utilized storage system this will effectively be a random loca-

tion storage policy (Yuan, 2016). Thus, the average travel distance is approximately: d = #/2,

where # is the furthest travel distance.

Total travel distance per hour: Therefore, for the base model, we estimate the total travel dis-

tance per hour, TB for stowage trips to be:

TB= d x N= s (7)
2k

Two-Class Model with Informed Stowage

In this section, we develop a model of the stowage operation of a storage system for which we

can classify units into two velocity-based classes.

For the two-class model, we assume that at the time of stowage we can categorize the

units to be stowed into two classes, namely a high-velocity class and a low-velocity class; that is,

we have some information on the dwell times for the units to be stowed. We assume that we are

given the average dwell times for high and low velocity items, denoted by 1 jT2,I 1 <r2, respec-

tively. At the time of stowage, the actual dwell time for each unit is a random variable with the

given mean. We are also given p,, which denotes the fraction of arriving units from the high-

velocity class, and p 2, which denotes the fraction of arriving units from the low-velocity class,

where p1 + p 2 = 1. The average dwell time for all arriving units, r , is then:

16



r = p1"I +p 2z 2. (8)

Furthermore, by Assumption A.6, if AS is the given system throughput rate (units processed per

hour), then pA, is the arrival (or throughput) rate to stowage for high-velocity units, and p2.s

is the arrival or throughput rate for low-velocity units.

We designate each pod as being either a high-velocity or a low-velocity pod. For the two-

class stowage policy, we assume that we can stow each high-velocity unit onto a high-velocity

pod, and each low-velocity unit onto a low-velocity pod. In the equilibrium state for the system,

each high-velocity pod will carry only units from the high velocity class; similarly, each low-

velocity pod carries only low-velocity units. In effect, we assume that whenever a high- or low-

velocity pod goes for stowage, we are able to stow k high or low velocity units, respectively, on-

to the pod.

The average time that each unit spends on a high-(low-) velocity pod is r, (z2). Each pod

has capacity to hold C units (Assumption A. 1) and each pod is replenished whenever the number

of units drops to C - k, where k is a control parameter (Assumption A.2). Then similar to the

base case, we can determine the pick rate (units per hour), or throughput rate, for each type of

pod:

C- k C- k
Al,= _ 2 _ 2 , (9)

P I 2P 2

where Al is the pick rate for a high-velocity pod, and A2 p is the pick rate for a low-velocity

pod. In order for the system to meet the target throughput rate, we need to have:

J x A l p ' I' 2 S 9( 1 0 )
J2 X Ao = P2AsI

where J, is the number of high-velocity pods, and J 2 is the number of low-velocity pods; thus

with Equation (9):

)L~k/2(11)
Y~2p C-k/2

W2s _P2e 2 A S
Y/ 2 PC-k1/2'

We see from Equation (11) that:

17



J= J1 +J2

_(PIT + P2T2 _ _ as (12)

C-k/2 C-k/2

which agrees with the base case model (Equation (4) with Equation (3)).

TRAVEL DISTANCE MODEL

We now develop a model for the travel distance associated with the stowage trips.

Number of trips: Similar to the base case, the average time between visits for the high-velocity

pods is TBV, = k/2AL 1 , and for the low-velocity pods is TBV2 = k/1 2p, which are both in hours.

The average number of trips each pod makes per hour is the inverse: the average number of trips

that an individual high-velocity pod makes is l/TBV = X1y/k; the average number of trips that

an individual low-velocity pod makes is 1/TBV2 =Z2 2lk. Thus, the average total number of trips

per hour for each class is:

N, = J xI I 'Ik =P /sk'
(13)

N 2 J 2 X 2 kP2 a

We also see that N, + N2 = N = 2K / k, agreeing with the base model (Equation (5)).

Average travel distance: Yuan (2016) simulates the ranked travel distances from storage loca-

tions to closest station with an example (shown in Figure 2.1), and observes that the ranked trav-

el distances can be modeled by a linear function for approximation. In addition, we assume each

storage location stores a pod. Thus, we assume that the storage space is divided into two zones:

high-velocity pods go to zone 1, and low-velocity pods go to zone 2, where zone I is the J,

closest storage locations, and zone 2 is the remaining J2 storage locations (shown in Figure 2.2).

18



FIGURE 2.1 Travel Distances from Storage Locations to the Closest Stations (Yuan, 2016).
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FIGURE 2.2 A linear model (Assumption A.5) for the two-class model, where # is the furthest
travel distance, and J is the total number of pods in the system.

Storage locations

We assume that the storage within each zone is random; that is we will return a pod to

any open location, with equal probability. For highly utilized systems, the assumption of random
storage is a good proxy for a closest open location storage policy, as might be common in prac-
tice. With this assumption, we are able to approximate the average travel distance for each zone
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by using the linear model shown in Figure 2.2 and Equation (6). As shown in Figure 2.2, the fur-

thest travel distance for zone I can be approximated with J /J. Therefore, the average travel

distance to zone 1 can be approximated as: d= J,1/(2J). Also, the furthest travel distance for

zone 2 can be approximated with P, and the least travel distance for zone 2 is the furthest travel

distance for zone 1, 3J1/J. Therefore the average travel distance to zone 2 can be approximated

-

.(J + JI)

as: d = .)
2 2J

Total travel distance per hour: Therefore, the estimate for the total travel distance per hour for

the two-class model is

T2=dxN, +dxN2

PAsPJ d i + i

2k Q +P2 j

=+ p) (14)
2k 7J

=/ (-p,)+ - 22k J

2k

We note that for the base case, we had T, = s 1(2k); hence we see that T2< T, since

(1- p) + p, r,/r <1. Thus, the ratio of reduction in total stowage travel distance per hour for the

two-class model compared to that of the base case is:

=T - P, + p, -. (15)
TB

We illustrate the ratio of T2/T, in Table I to demonstrate how the average travel distance for the

two-class model decreases relative to the base case. We can use the ratio of T2/T, to demonstrate

the benefit in decreased travel distance from having a two-class model.
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TABLE I

Calculated Reduction in Total Travel Distance per Hour with Two-class Mode

P A T1 P2 * '2 * T2/TB

10.0 0.2 2.0 0.8 12.0 0.84

10.0 0.4 5.0 0.6 13.3 0.80
10.0 0.6 8.0 0.4 13.0 0.88

*With given r,p,r, we are also able to obtain p2 ,Tr 2 with p +P2 = land

Equation (8).

1.

M-Class Model with Informed Stowage

In this section, we extend the two-class model of the stowage operation of a storage system to the

case of Mvelocity-based classes.

For the M-class model, we assume that at the time of stowage we can categorize the units

to be stowed into M classes, where class i has the i'h highest velocity, for i = 1,2...M; that is, we

have some information on the average dwell times for the units to be stowed. We assume that we

are given the average dwell times for items in each class, denoted by r,'r2---Z, where

T, <r2 <... < TM. At the time of stowage, the actual dwell time for each unit is a random varia-

ble with the given mean. We are also given p,,i = 1,2...M, which denotes the fraction of arriving

units that are from each class i, where 1p, = 1. The average dwell time for all arriving units, 'r,
s=1

is then

M4

T= Ypi z
i=I

(16)

Furthermore, by Assumption A.6, if As is the given system throughput rate (units processed per

hour), then p,1S is the throughput rate for class i.

We assume that we are able to identify the velocity class for each incoming unit to be

stowed. We designate each pod to hold units exclusively from a single velocity class. Hence we

have Mtypes of pods, one for each velocity class. We assume that we can stow each incoming

unit of class i onto a corresponding pod for class i. For each class of pods, each pod has the ca-
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pacity to hold C units (Assumption A.1) and each pod is replenished whenever the number of

units drops to C - k, where k is a control parameter (Assumption A.2). Then, similar to the two-

class model, we can determine the pick rate (units per hour), or throughput rate, for each type of

pod:

1 , =j ,= 1,2 ... M, (17)

where A,,, is the pick rate for each class's pod. In order for the system to meet the target through-

put rate, we need to have

i x A,= PAs, (18)

where J, is the number of pods for each class i, where i = 1,2...M. Thus, with Equation (17):

J. = P Asj / p)L (19)
C-k/2

We see from Equation (19) that:

A4

J= J

/i=1 _ S
C-kl2 C-kl2'

(20)

which agrees with the base case model (Equation (4) with Equation (3)).

TRAVEL DISTANCE MODEL

We now develop a model for the travel distance associated with the stowage trips.

Number of trips: Similar to the two-class model, the time between visits for the pods of class i

is TBV = k/A, , which is in hours. The number of trips each pod makes per hour is the inverse:

the average number of trips that a pod from class i makes is 1/TBV = A.,/k. Thus, the number of

trips per hour for each class i is found to be

(21)N, = J. x A / pix
I I k

A4

We see that INJ = N = ~/k, agreeing with the base model (Equation(5)).
i=1
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Average travel distance: Now we assume the storage space is divided into M zones, where the
i'h highest velocity pods go to zone i. We assume that the zones are determined such that the lo-

cations in zone i are all more distant than the locations is zone i-1, where the distance associated
with each storage location is the travel distance to the nearest stow station. We assume each stor-
age location stores a pod. Similar to that in the two-class model, we are able to approximate the
average travel distance for each zone by using the linear model shown in Figure 2.3 and Equa-
tion (6).

FIGURE 2.3 A linear model (Assumption A.5) for the M-class model, where P is the furthest
travel distance, and J is the total number of pods in the system.

0

0

Q
0

4O

a b I
Storage locations

Therefore, the average travel distance to zone i can be approximated as: di, = (a b)/(2J),

where a = J, ... + J,, and b= J,+..+ J,. Thus,

#(2XJ +J,)
d= = (22)2J

Total travel distance per hour: We now use Equation (21) and Equation (22) to estimate the
total travel distance per hour for the M-class model:
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TM xN.

Yp J 1 J(23)2k J

As we had T, = fAs/(2k), the ratio of the total stowage travel distance per hour for the M-class

model compared to that of base case is:

TM Al 2Yp i j+p IT
-- !-= Xp i-.p (24)
TB i=1

We illustrate the benefit given by Equation (24) in Table 2 for a set of numerical examples to

demonstrate how the total travel distance for stowage for the M-class model decreases compared

to that of the base case.

TABLE 2

Calculated Reduction in Total Travel Distance per Hour with M-class Model.

M T T,, where i=1,2,...M p,, where i=1,2,...M TM!/TB
3 10 [7, 10, 12] [0.2, 0.5, 0.3] 0.910
5 10 [5, 7, 9, 13, 17] [0.15, 0.2, 0.25,0.3,0.1] 0.797
8 10 [3, 5, 7, 9, 11, 13, 15, 17] [0.05, 0.1, 0.15, 0.2, 0.2, 0.15, 0.1, 0.05] 0.796
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Two-Class Model with Random Stowage

In this section, we consider another case. We assume that we can categorize the units that are

stowed into two classes, namely a high-velocity class and a low-velocity class. Again, we as-

sume that we have some information on the average dwell times for the units to be stowed. How-

ever, we now assume that we do not or cannot use this information at the time of stowage. As a

consequence, the stowage is random, and each pod will contain a mix of high velocity and low

velocity units. Nevertheless, we can classify a pod based on its mix of high velocity and low ve-

locity units: we will classify a pod with a high proportion of high-velocity units as a high-

velocity pod, and otherwise it is a low velocity pod. As the mix of units carried by a pod changes

over time, the pod classification can also change. In this section, we develop a model for analyz-

ing this case.

At a system level, we assume there are two classes of items: high-velocity and low-

velocity items. Suppose we are given the average dwell times z ,,r2, where T, < 2* The high-

velocity units have an average dwell time in storage of r,, measured in hours; the low-velocity

units have an average dwell time in storage of r2 , measured in hours. The actual dwell time for

each unit is a random variable with the given mean. We assume that there are target throughout

rates, denoted as A,, 2
2 for the class of high-velocity units and for the class of low-velocity

units, respectively. Each target throughput rate is the number of units picked per hour. We as-

sume that this throughput rate also corresponds to the stowage rate, namely the number of units

stowed per hour, based on assumption of mass balance (Assumption A.6).

The system target throughput rate, A , is the sum of each class's target throughput rate,

so that As =A +/12. As we assume items are stowed randomly on the pod, the probability that an

item being stowed is low velocity is then A2 /(A11 +/12); the probability that an item being stowed

is high velocity is 1 /( 1 +2A2)-

We assume that each pod has capacity to hold C units; each pod is replenished whenever

the number of units drops to C - k, where k is a control parameter. We assume that we can identi-

fy each unit on a pod as being either from the high-velocity or low-velocity class; but we also

assume that we have no other information about the remaining dwell time for each unit. Thus, at

any point of time, we know the number of high-velocity items and the number of low-velocity
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items on each pod, which we can use to classify the pod as either a high or low velocity pod. Af-

ter each replenishment visit to a stow station, we classify a pod as a high-velocity pod if the

number of high-velocity units is greater than a threshold m; otherwise we classify the pod as a

low-velocity pod. The threshold m is a control parameter. We then send the pod to different zone

depending on its velocity: if it were a high-velocity pod, it would be sent to zone I, the closest

locations; otherwise it would go to zone II, the furthest locations.

To analyze this policy, we use simulation of a single pod to extrapolate the system. For

this extrapolation, we assume that the pods in the system operate independently. We simulate a

single pod for a given specification of the inputs r1, r 2 , X1 3 2 , and the control parameters k,m.

We need to specify a distribution for the unit dwell times; we assume that high (low) velocity

units are exponentially distributed with average dwell time r, (r2 ), respectively. For the simula-

tion we assume that there are always units waiting to be stowed. We also assume that a high

(low) velocity pod can find an open space and be stored in Zone I (II). From the simulation, we

can obtain estimates of the average stay time for a high-velocity pod in Zone I, and for a low-

velocity pod in zone II. We denote these as TBV, TBV,, for the 'time between visits' for zone I,

and zone II. From the simulation we can also obtain estimates for the percent of time that a pod

is a high-velocity pod and stored in zone I, and the percent of time the pod is a low velocity pod

stored in zone II. We denote these estimates as p,,p,, for zone I and II, respectively, where

p, + p, = I.

We can now use the estimates obtained from the simulation to characterize the

performance of the policy. To do so, we assume that all pods in the system will behave as

modeled by the simulated pod. We can determine both the size of each zone, which corresponds

to the average number of pods in each class, and the pod arrival rate, corresponding to each stor-

age zone. From these two parameters, we can estimate the travel distance for the system. We ex-

plain the details below.

Let J,,J,,,J denote the size (in pods) of zone I, of zone II, and of the entire storage sys-

tem where J = J+ J,,. Let NI,N,N denote the number of trips from stowage (in pods per

hour) to zone I, to zone II, and to the entire storage system where N = N, + N,. Given the sys-
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tem throughput target As and the control parameter k, we can determine the average number of

trips per hour to stowage:

N . (25)

As an explanation for Equation (25), we note that each stowage trip results in k units being

stowed. Given the estimates p,, p, from the simulation we have the following relationships:

J1 =pJ,

J11 = p,,.J.

(26)

As an explanation, the fraction of the total space for each type of pod should correspond to the

fraction of time each pod spends in each class. Given the estimates TBV, TBV,, from the simula-

tion, we can use Little's law to relate the number of stowage trips to each zone to the size of each

zone:

N 1 =
TBVJ'

N = " .
TB V,

(27)

We can now substitute Equation (26) and Equation (27) into Equation (25) to obtain an estimate

ofJ:

N=(N, +NII)= r
TB VJ1 TB V, TB V = 'k

(28)
-> J=" ,B J

TB V, TB V,

where we will use a simulation to obtain estimates of p,,p, and of TBV,TBV,. The system

throughput As is an exogenous input and the parameter k is also an input, reflecting the frequen-

cy of stowage events.

TRAVEL DISTANCE MODEL

We now develop a model for the travel distance associated with the stowage trips.
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Arrival rates from stowage to each zone: Once we have the estimates of p,p 1 and of

TBV,, TBV,, we can determine J from Equation (28); we can then use Equation (26) to find,

J, J1, and Equation (27) to obtain the number of trips to each class, N,, NJ:

J, pIA,/TBVA, s px TBVN -
'TB V k ( ' + P" k p, x TBVH + PH x TBV,'

TBV, TBVJ(2

N -H" - " /TBV,, _s pH xTBV,
" TBV" k __ + p1  k p, x TBV 1 + pH x TBV

TBV, TBVIJ

With Equation (29), we are able to obtain that N + N 1 = (As/k) '= x TBV)I + P1 x TBV .k

pxTBV+ p,xTBV, k

We also see that N, + N = As /k = N, agreeing with the base model that N = AS/k (Equation

(5)).

Average travel distance: We set zone I to be the J, closest storage locations, and zone II to be

the remaining J storage locations. With Equation (6), the average travel distance to zone I can be

approximated as d,= J,/(2J) = #p 1/2; the average travel distance to zone II can be approxi-

mated as d1 = (J+ J,)/(2J)=D(1+ p,)/2.

Total travel distance per hour: We can now estimate the total stowage travel distance per hour

for the two-class model with random stowage as:

2R = dx N, + d x NH

_( p 2 x TB V1  + (1+ P)P x TBV' (30)
2k p xTBV, +p, xTBV, p, xTBV,,+pp, xTBV)

p1 2 x TBV+(1- p 2)x TBV,

2k pxTBV,,+ p,,xTBV, )
As we had TB= P3s2/(2k), the ratio of the total stowage travel distance per hour for the Two-

class model with random stowage compared to that of base case is:

T2R -P2 x TBV,+(I - p xTBV (31)

TB p, x TBVI+ pH x TBV,
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Section 3. Simulation

The intent is to simulate a single pod to explore the benefits of velocity-based stowage policies

for the semi-automated storage system.

In this section, we first verify the model of a single pod with simulation results. We then

discuss and apply methods in classifying inventory for the M-class model with informed stow-

age. We use this simulation of a single pod to extrapolate to a storage system that is operating

with a given throughput rate. For this extrapolation, we assume that the pods in the system oper-

ate independently; we assume that the dwell time for each unit in the system is exponentially dis-

tributed with an average mean, denoted by r, measured in hours. We can then evaluate the im-

provement of the total stowage trip travel distance per hour for the system by varying parameters

under different models, compared to the base case. We also evaluate the simulation results of the

two-class model with random stowage, compared to the two-class model with informed stowage.

3.1 Verification of Model with Simulation Results

We verify the accuracy of the base case, and accuracy of the two-class model with informed

stowage by simulating them in MATLAB. All models discussed in this section have input pa-

rameters including pod capacity, C, and stowage threshold, k, and average system dwell time, r.

For each model, ten samples are collected to determine the mean and 95% confidence interval

(C1) for the outputs; each sample is simulated for 1000 hours of stowage events with a time in-

crement of one minute. For the simulation, we do not need to specify the system throughput

(pick) rate, 2 , as we are verifying the model with a single pod and not evaluating the system.

Base Case

The analysis of the base case relied on an approximation given in Equation (1): the average

number of units stored on each pod is approximated by C - k /2. We will use simulation to as-

sess the accuracy of the model in light of this approximation. In this model, we have input pa-

rameters: C = 100,k = 30,'r = 10. Ten samples are collected to determine the mean and 95% con-

fidence interval (CI) for the outputs; each sample is simulated for 1000 hours of stowage events

with a time increment of one minute.
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The simulation is set up to model a single pod. The pod is initially loaded with C units of

inventory. We assign a remaining dwell time to each unit of inventory on the pod; we generate

each dwell time by a random draw from an exponential distribution with mean of r hours.

The simulation operates with a fixed-time increment, with a time period of one minute.

At each time increment, we deduct one minute (the time increment) from the remaining dwell

time for each unit that is stored on the pod. When the remaining dwell time for a unit reaches ze-

ro, we assume that the unit gets picked and is removed from the pod. Thus, the number of units

remaining on the pod is reduced by one.

Whenever the number of units on the pod reaches or drops below C - k units, we have a

stow action or event. We assume that the pod will travel to a stow station and that units will be

stowed onto the pod to raise the number of units on the pod to C. The number of units stowed

will usually be exactly k units; but occasionally, when multiple units get picked within a single

time increment (one minute), then the number of units on the pod may be less than C - k units; in

these cases, we will stow more than k units onto the pod, so as to bring it back to C units. For

each unit that gets stowed onto the pod, we generate its dwell time, again by making a random

draw from an exponential distribution with mean of r hours. After the stow action, the process

repeats.

During the simulation, we record when each stow action occurs and how many items are

stowed during each stow action. With these records, we can measure the average time between

visits, denoted by TBV and measured in minutes, and the average pod throughput, denoted by A,

and measured as units per hour. Using these outputs, we calculate the total number of trips per

hour, N, using Equation (4) and Equation (5), with the A, result; we calculated the average dis-

tance per trip, d, using Equation (6) with the constant =1. Thus, we obtain the total stowage

travel distance for the base case, TB, using TB= d x N (Equation (7)).

We compare the simulation outputs with expected outputs determined by the analytical

model. The details of these outputs are plotted by varying average system dwell time, T, from 7

hours to 13 hours (Figures 3.1 - 3.3). From the results shown in Figures 3.1 - 3.3, we are able to

observe that the difference between the outputs of the simulation results and those of the analyti-

cal model is small with a 95% confidence interval on the order of I% of each measure. In addi-
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tion, the difference is consistent over various average system dwell times, r. In conclusion, the
simulation results verify the accuracy of the analytical model for the base case.

FIGURE 3.1 Time Between Visits (95% CI) vs. Average System Dwell Time.
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FIGURE 3.2 Pod Throughput (95% CI) vs. Average System Dwell Time.
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FIGURE 3.3 Number of Trips per Hour (95% CI) vs. Average System Dwell Time.
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Two-Class Model with Informed Stowage

For the two-class model we need the same approximation as for the base model; we assess the

accuracy of this approximation in this section with a simulation. In this model, we have input

parameters: C = 100,k = 30,'r = 10. In addition, we set the fraction of the arriving units that are

high-velocity items, p,, the fraction of the arriving units that are low-velocity items, p2, the av-

erage dwell time for the high-velocity units, r,, and the average dwell time for the low-velocity

units,7 2 ,. For the base case example we assume that the input parameters are p, = 0.2, p 2 = 0.8,

I I/T2 = 5. The relationship among p,P2 , 1T 2 satisfies Equation (8). We conduct ten simulation

samples where we simulate 1000 hours of storage events in each sample. We then can use the

outputs to determine the mean and 95% confidence interval (CI) for the measures of interest.

The simulation setup is similar with that of the base case. For the base case, we conduct

one simulation of a single pod, as all pods should behave the same under random stowage. For

the two-class model, we need two simulations: one for simulating a single pod that holds only
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high-velocity units, and the other to simulate a single pod that holds only low velocity units.

Otherwise, the logic of each simulation is the same as for the base case.

For the M-class model the setup of the simulation is the same, but now we need to con-

duct M simulations, one for each class of units and pods.

We compare the simulation outputs with expected outputs determined by the analytical

model. The details of these outputs are plotted by varying average system dwell time, r, from 7

hours to 13 hours (Figures 3.4 - 3.9). From the results shown in Figures 3.4 - 3.9, we are able to

see that the difference between the outputs of the simulation result and those of the analytical

model is significantly small. In addition, the difference is consistent over various average system

dwell times, r. In conclusion, the analytical model is verified with simulation results.

FIGURE 3.4 High-Velocity Pod: Time Between Visits (95% CI) vs. Avg. System Dwell Time.
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FIGURE 3.5 Low-Velocity Pod: Time Between Visits (95% CI) vs. Avg. System Dwell Time.
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FIGURE 3.6 High-Velocity Pod: Pod Throughput (95% CI) vs. Avg. System Dwell Time.
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FIGURE 3.7 Low-Velocity Pod: Pod Throughput (95% CI) vs. Avg. System Dwell Time.
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FIGURE 3.9 Low-Velocity Pod: Number of Trips (95% CI) vs. Average System Dwell Time.
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3.2 Classification of inventory for M-class model with Informed Stowage

We wish to explore the benefits of the two-class and M-class model, as they depend on the na-

ture of the item demand seen by the storage system. We expect that the more skewed the demand

distribution is, the greater will be the benefits from a velocity-based stowage policy. We will use

a continuous model for the demand distribution across the assortment of items in the storage sys-

tem, and partition the inventory assortment into multiple segments, or classes.

We assume that we have a very large number of items or skus that are stowed into the

system. We assume that each item has a demand (or pick) rate and an average system inventory

level; the demand rate is the rate at which units are picked from the system, as well as the rate at

which units are stowed into the system by Assumption A.6. We define 4, as the demand rate for

item i, in units picked or stowed per hour (Assumption A.6), and Q, as the average inventory

level in the storage system for item i, in units. We assume the demand rate for each item is

known, and we are able to index the items in decreasing order of the demand rate, in which
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2> A6.The average dwell time for each unit of item i in the storage system, r,, can be deter-

mined by Little's Law: r, = Q,/,, in hours.

We will use a continuous model of the assortment of items stored in the system. For the
continuous model, we assume a very large number of items, and we assume that we can index

these items on a continuum from 0 to 1, where i E (0,1). We assume the items are ordered by

their demand rates such that A (i) 2A(j),Vi< j where A (i)denotes the demand rate at the 1 'h

percentile of the assortment of items. We define a cumulative demand function, denoted by

G(i), to equal the cumulative demand rate for all items je (0,j). We model this cumulative

demand function in the following form, similar to the "ABC' curve:

G(i)= 2sis for 0 <s <1, (32)

where G(i) is the amount of demand accounted for the ih percentile highest demanded items,

As is the demand or throughput rate for the system, and parameter s controls the shape of the

cumulative demand function (as shown in Figure 3.10). In Figure 3.10, for instance, the 20/60
rule indicates that 20% of the items in the system accounts for 60% of the total demand; The pa-

rameter s can be obtained by solving G(i = 0.2)/As = 0.6 = 0.2'. This form has been previously

used in Haurman et al. (1976). Here, G(i) is an increasing concave function.

FIGURE 3.10 G(i) is the amount of demand accounted for vs. tih percentile highest demanded
items, where As is normalized as 1.
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By differentiating G (i), we obtain the demand rate at the i'h percentile as

A (i) = Ass-, (33)

where s,i e (0,1). We now assume that the average inventory for item i in the storage system,

Q,, is proportional to the p' root of the demand rate for p > 1. That is, we assume that:

Q(i) = 4X0)= Assi' (34)

where q is the proportionality constant. Therefore, with Equation (34), we can express the aver-

age dwell time for item i as:

'9- ( . (35)

For instance, assuming p = 2, with Equation (33), the average dwell time for item i is

=sss- . (36)

In the following we will assume that p = 2. In this way, with Equation(36), assuming p = 2,the

average dwell time for all the items in the storage system, z, can be expressed as

= f ASj 1=0di=J A di. (37)

With Equation (33), Equation (37) becomes

17 = 1 d i
S

S S+ 21 i=2 (38)

2q

S+
s+1

We wish to use this model to generate numerical examples for which we can evaluate the

benefits from the velocity-based stowage policies. In order to specify the numerical examples for
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the M-class Model, we will assume that we are able to segment the items into classes based on

their demand rates. Let us use (j,k) ={il j< i k} to denote a set of items; that is, (j,k)denotes

the items indexed from the j"h to k'h percentile highest demand. Let p(j,k) denote the fraction

of demand attributable to this set,

p(j,k)= di= k' - j. (39)

Let r (j,k) denote the demand-weighted dwell time for this set of items. We can express this as

follows:

,r(j,k)=fk r(i)--di= s k 2_j 2. (40)
AS s+

From Equation (38), we observe that 7j = 'r(s+ 1)7(2 s/). We can then re-write Equation (40)

as:

+(j, k) (j, k) - k 2 _ 2 = k 2 _ 2 . (41)

Assume Class Z contains the items indexed from the j1 h to k'h percentile highest demand. In or-

der to obtain the average dwell time for a class Z, Tz, we need to normalize Equation (41) by

dividing by the fraction of demand attributable to Class Z, pz, and Equation (39)

T (j, k) k'2-
Tz= =-- .s _ . (42)

Zp (j, k) k S-ji

With Equation (42), we are able to solve for the average dwell time for each class by varying the

partitioning points and given average system dwell times. Therefore we are able to use Equation

(24), presented in the M-class model, to obtain the ratio of T/TB , which represents the reduc-

tion in total stowage travel distance for the M-class model, compared to the base case.

We give an example of classifying the inventory for the three-class model (M=3) in Table

3. We assume that we can index the items on a continuum of (0,1). We set Class I to be the

first five percent of the t item, namely the items in the interval (0,0.05]. We set Class 2 to be the

39



next 15% of the items, namely items from the interval (0.05,0.20], and Class 3 is the remaining

items from (0.20,1). We set the average system dwell time, r, as 10 hours. We present the ex-

ample with values of parameter s from the 20/60, 20/70, 20/80, and 20/90 rules. We use the ex-

ample results p,,p 3 ,z1 2 , 3 to approximate TM/TB using Equation (24).

TABLE 3

Three-class Model with Informed Stowage Example: Classification of inventory and T/TB Result.

ABC Curve* Parameter s Pi P2  P3  I 'r2 3 T/TB

20/60 Rule 0.3 18 0.39 0.21 0.40 3.60 9.70 16.32 0.87

20/70 Rule 0.222 0.51 0.19 0.30 3.12 11.53 20.83 0.76

20/80 Rule 0.139 0.66 0.14 0.20 2.75 15.58 29.94 0.59
20/90 Rule 0.065 0.82 0.08 0.10 2.47 28.56 57.95 0.35

* The 20/60 rule indicates that 20% of the items in the system accounts for 60% of the total de-

mand; et cetera. The parameter s can be obtained by solving G(i = 0.2)/As =0.6= 0.2s.

3.3 Simulation Results for M-class Model with Informed Stowage (M=2 & 3)

In this section, the ratio of T/TB is obtained from evaluating the M-class model with informed

stowage for M= 2 & 3, using the approach to classify inventory that is demonstrated in the pre-

vious section. We simulate the base case and M-class model with informed stowage (M=2 & 3)

to obtain we the simulated T,/TB. We will use the simulation to assess the accuracy of the ana-

lytical approximation by using Equation (24). All models discussed in this section have input

parameters including pod capacity, C, and stowage threshold, k, and average system dwell time,

,r, and system throughput (pick) rate, AS. For each model, ten samples are collected to deter-

mine the mean and 95% confidence interval (CI) for the outputs; each sample is simulated with

1000 hours. We simulate the models under the 20/60, 20/70, 20/80, and 20/90 rules.

Simulation Setup

The simulation setup is similar to the one shown in Section 3.1. We simulate the base

case for comparison, and M-class model with informed stowage (M=2 & 3). The models in this

section have input parameters: C = 100,k = 30,r = 10,As = 1000. We use the classification ap-

proach demonstrated in Section 3.2 to obtain the fraction of incoming items as Class i, p,, and
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the Class i average dwell time, r,, for i = 1,2...M, by inputting the percentage of Class i items

with the given r. The percentage of items for each class is varied to demonstrate its impact on

the ratio of T,/T, , which represents the reduction in the total stowage travel distance for the M-

class model, compared to the base case.

Two-class Model (M=2)

The simulation results for the two-class model are shown in Figure 3.11. The percentage of items

as Class I varies from 1% to 50% to show its impact on T2/T from both the simulation and the

analytical model using Equation (15). The difference between the simulation results and ex-

pected output from the analytical model is significantly small, which further verifies the model

with simulation results.

From Figure 3.11, we observe that by increasing the percentage of items as Class 1,

T2/T, decreases to a minimum, and then starts to increase. In addition, the result shows that the

model underestimates the simulation result more when the demand is more skewed, where 20%

of items account for more of the total demand. This result could be because a higher percentage

of Class I items increases the high-velocity pod travel frequency in the system, resulting in less

heterogeneity for the system. Thus, the system benefits less from the two-class model with in-

formed stowage in reduction in total travel by having a high percentage of Class 1 items.

We can use the analytical model to solve for the percentage of Class I items to minimize

T2, where the system could benefit the most in reducing total stowage travel distance from the

two-class model with informed stowage. Let us use (0,a] = {i 0 < i a} to denote the set of

items in Class I, where iG (0,1). By differentiating Equation (15) with a partitioning point of

Class I items, x, and using Equation (39) and Equation (42), we are able obtain
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d(T2/TB) - + p )

dx dx

d 1-(ks-j)+(ks-j) k
k - j

dx,k= x,= 0 (43)

d( - xs+x3+)

dx
i s+1 y

=-sxS- S -- 2.
2

Then, let Equation (43) equal zero to solve for the partitioning point, x = ar, for the analytical

minimum of T2/TB , which could be input into (15) to obtain the analytical minimum of T2/TB,

denoted as T2/TB (am). The calculated am, and T2/TB (am) for each rule are shown in Table 4.

Even though the two-class model with informed stowage is able to provide maximum benefit in

reducing total stowage travel distance around ami the model performs well with a relatively

wide range around the optimal partitioning point for the model under the 20/60, 20/70, and 20/80

rules, where the 20/60 rule is likely the real life scenario.

FIGURE 3.11 T21/TB by simulation (95% CI) and model vs. Percentage of items as Class 1.
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TABLE 4

Two-class Model with Informed Stowage: Analytical Result for Maxi-
mum Reduction in Total Travel Distance per Hour.

ABC Curve* Parameter s amin T2/TB(a min

20/60 Rule 0.318 0.118 0.73
20/70 Rule 0.222 0.074 0.64
20/80 Rule 0.139 0.038 0.52
20/90 Rule 0.065 0.011 0.34

* The 20/60 rule indicates that 20% of the items in the system ac-
counts for 60% of the total demand; et cetera. The parameter s can be

obtained by solving G(i= 0.2)/X, = 0.6 = 0.2v.

Three-class Model (M=3)

The evaluation for the three-class model is shown in Figures 3.12 - 3.17. The percentage of

items as Class I is varied from 10% to 30%, and the percentage of items as Class 2 is varied

from 20% to 40% to show their impact on TI/T from both the simulation and the analytical

model using Equation (24).

Figures 3.12 - 3.14 show the result of TI/T, by holding the percentage of Class I items

the same, and varying the percentage of Class 2 items. We observe that varying the percentage of

Class 2 items with the same percentage of Class I items does not have a significant impact on the

result of T/T,. However, we can still observe a trend similar to that shown in the two-class

model: the model underestimates the simulation results when the demand is more skewed, where

20% of items account for more of the total demand. Figures 3.15 - 3.17 show the result of T/T,

by holding the percentage of Class 2 items the same, and varying the percentage of Class I

items. We observe an increasing trend of T/T when the percentage of Class 1 items increases.

When the demand is more skewed, we also observe that the trend becomes steeper, and the mod-

el underestimates the simulation result more.

As we observe that the analytical model is a reliable approximation to the simulation, we

are able to find the recommended partitioning for each class using a two-stage optimization. We

first vary the percentage of Class I items within a boundary, and with each percentage of Class

1, we vary the percentage of Class 2 within another boundary. We set the boundary of each class

as: Class I ranges from 0.01 to 40%, Class 2 ranges from 1 to 50%, and Class 3 is the rest. We
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evaluate the analytical result by incrementing Class 1 and Class 2 with a size of 0.01%. From the

enumeration of the range of combinations, we are able to find the partitioning of the assortment

that minimizes T/T. These results are summarized in Table 5.

The three-class model with informed stowage performs well with a relatively wide range

around the optimal partitioning point for the model: under the 20/60 rule, by varying percentage

of items as Class 1 within I - 9%, and Class 2 within 12 - 46%, we can obtain most T1/T re-

sults less than 0.70; under the 20/70 rule, by varying percentage of items as Class I within I -

4%, and Class 2 within 10 - 38%, we can obtain most T/T, results less than 0.59; under the

20/80 rule, by varying percentage of items as Class 1 within 1 - 2%, and Class 2 within 6 - 35%,

we can obtain most T1/T results less than 0.46; under the 20/90 rule, by varying percentage of

items as Class 1 within 1%, and Class 2 within 2 - 26%, we can obtain most T/TB results less

than 0.28.

In conclusion, the three-class model with informed stowage provides greater but dimin-

ishing reduction in the total stowage travel distance, compared to the two-class model with in-

formed stowage. The reduction in total stowage travel distance is primarily determined by the

percentage of items as Class 1, and is less sensitive to the percentage of items as Class 2.
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FIGURE 3.12 Class 1 = 10%: T/TB by simulation (95% CI) & model vs. Pct. of Class 2 items
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FIGURE 3.13 Class 1 = 20%: T3TB by simulation (95% CI) & model vs. Pct. of Class 2 items
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FIGURE 3.14 Class 1 = 30%: T/TB by simulation (95% CI) & model vs. Pct. of Class 2 items
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FIGURE 3.15 Class 2 = 20%: T/TB by simulation (95% CI) & model vs. Pct. of Class 1 items
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FIGURE 3.16 Class 2 = 30%: T/TB by simulation (95% CI) & model vs. Pct. of Class 1 items

15 20 25
Percentage of Class 1 items [%]

FIGURE 3.17 Class 2 = 40%: T/TB by simulation and model vs. Pct. of Class 1 items
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TABLE 5

Three-class Model with Informed Stowage: Analytical and Simulated Result (95% CI) for Maximum
Reduction in Total Travel Distance per Hour by Two-stage Optimization.

Simulated

ABC Parameter Class 1 Class 2 Class 3 Analytical Simulated T/TB

Curve* s items % items % items % T/TB T3/TB 95% CI

20/60 Rule 0.318 3.4 25.3 71.3 0.69 0.69 0.688 -0.692

20/70 Rule 0.222 1.7 19.7 78.6 0.58 0.58 0.581 - 0.585

20/80 Rule 0.139 0.6 15.3 84.0 0.45 0.45 0.447 - 0.451

20/90 Rule 0.065 0.1 9.2 90.7 0.27 0.27 0.268 - 0.270

* The 20/60 rule indicates that 20% of the items in the system accounts for 60% of the total de-

mand; et cetera. The parameter s can be obtained by solving G(i = 0.2)/2, =0.6 = 0.2s.

3.4 Simulation Results for Two-class Model with Random Stowage

In this section, the ratio of T,/T, is obtained from simulating the two-class model with random

stowage (using Equation (30)) and compared with the ratio of T21/TB obtained from simulating

two-class model with informed stowage. We simulate the base case for comparison. In this mod-

el, we have input parameters including pod capacity, C, and stowage threshold, k, and average

system dwell time, T, and system throughput (pick) rate, As. For each model, ten samples are

collected to determine the mean and 95% confidence interval (CI) for the outputs; each sample is

simulated with 1000 hours. We simulate the models under the 20/60, 20/70, 20/80, and 20/90

rules.

Simulation Setup

For the two-class model with random stowage, the simulation setup is the same as that of

the base case. However, in addition to recording when each stow action occurs and how many

items are stowed for each stow action, we also record the status of the pod after the stow action.

After each stow action, we classify a pod as a high-velocity pod if the number of high-velocity

units is greater than a threshold m; otherwise we classify the pod as a low-velocity pod. With

these records, we use the simulation to obtain performance estimates for the high-velocity (low-

velocity) pod: the fraction of time that a pod is a high-velocity pod (low-velocity pod) and stored

in zone 1 (11), denote by p,(p1 ); the time between visits, denoted by TVB,(TVB,1 ) and measured
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in minutes; the number of trips each pod makes per hour, denoted by 1/TBV, (1/TBV,,). We use

these high-velocity (low-velocity) pod outputs to calculate: the total number of trips per hour,

N,(N 2 ), using Equation (26), (27) and (28), with the 1/TBV (1/TBV),), p,(p,,) results and input

parameter XS; the average distance per trip, d,(d2), using Equation (6) with the constant =1.

Thus, we obtain the total stowage travel distance for the two-class model with random stowage,

T2R, using R =dI x N,+d x N, (Equation (30)).

In this model, we have input parameters: C = 100,k = 30,r = 10,As = 1000. The threshold,

m, is varied from I% to 50% (normalized with pod capacity C) to demonstrate the improvement

of the total stowage trip travel distance per hour for two-class model with random stowage, com-

pared to the base case. The simulation results are shown in Figure 3.18 and 3.19. In Figure 3.18,

we observe that the two-class model with random stowage is able to decrease the total stowage

travel distance but not as much as informed stowage does (shown in Figure 3.11). By varying the

threshold, m, we can observe a minimum under each rule by using the two-class model with ran-

dom stowage. As shown in the Section 3.3, the fulfillment systems are able to gain more benefits

from the two-class model with informed stowage when the demand is more skewed. However,

for the two-class model with random stowage, the fulfillment systems are able to gain more ben-

efits when the demand is less skewed. Figure 3.19 shows how the heterogeneity across the pods

is affected by the threshold, m. We observe that the fraction of time as high-velocity pod, p,,

decreases to 0 or increases to 1 when m, is too low or too high. The fraction of time as high-

velocity pod, p,, is most sensitive to the change in the threshold, m, when ranging around 20% -

35%.

In Table 6, we record the threshold, mmin , that maximizes the reduction in total travel dis-

tance by random stowage, TR/T, (min). The portion of time as high-velocity pod with threshold

mmin, denoted as p, (msmi), is around 0.4 - 0.5, which validates that greater reduction in total trav-

el distance can be achieved under a greater heterogeneity across the pods. In Table 6, we also

compared the reduction in total travel distance by random stowage to that by informed stowage.

For the two-class model with informed stowage we set for comparison, the simulation setup is

the same as the one in Section 3.3; the input parameters are C = 100,k = 30,r =10, k = 10 00 ; and
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as we previously assumed that we can index the items on a continuum of (0,1), we set Class I to

be (0,0.05], Class 2 to be (0.05,1). We use the classification approach demonstrated in Section

3.2 to obtain the fraction of incoming items as high-velocity (low-velocity) items, p1 (p2 ) and

high-velocity (low-velocity) items average dwell time, rl(r2) by inputting the percentage of

Class i items and the given r. We obtain results of T2 under the 20/60, 20/70, 20/80, and 20/90

rules. The corresponding fraction of incoming items as high-velocity (low-velocity) items, pl,p 2,

are:

p, = 0.39,p2 = 0.61 under the 20/60 rule;

p = 0.5 1, p2 = 0.49 under the 20/70 rule;

p = 0.66,p2 = 0.34 under the 20/80 rule;

p =0.82,p2 = 0.18 under the 20/69 rule.

We calculate the fraction of the maximum possible improvement with (1- T2 R/TB)/(1 - I2/TB).

We observe that random stowage is able to achieve a higher fraction of the maximum possible

improvement when the demand is less skewed.

FIGURE 3.18 Simulation Results: T2R/TB vs. Threshold, m, for High-velocity Pod
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FIGURE 3.19 Simulation Results: Fraction of Time as High-velocity Pod, p vs. Threshold, m,
for High-velocity Pod
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TABLE 6

Two-class Model with Random Stowage: Simulation Results for Max-
imum Reduction in Total Travel Distance per Hour

ABC Fraction of Max. Possible Im-
Curve* Parameter s Irn p1I(min) T2RTB (m=' provement by Informed Stowage

20/60 Rule 0.318 29% 0.48 0.93 28.7%
20/70 Rule 0.222 26% 0.37 0.93 19.0%
20/80 Rule 0.139 24% 0.48 0.94 12.9%
20/90 Rule 0.065 22% 0.44 0.94 9.5%

* The 20/60 rule indicates that 20% of the items in the system accounts for 60% of the total de-
mand; et cetera. The parameter s can be obtained by solving G(i = 0.2)/As = 0.6 = 0.2'.
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Section 4. Conclusion
In this thesis, we model three types of stowage policies: two-class with informed stowage, M-

class with informed stowage, and two-class with random stowage. We consider random stowage

policy as our base case, in which units are not stowed based on their velocity. We use both simu-

lation and analytical results to show the impact on reducing the total travel distance compared to

that of the base case.

We assume that we can categorize the units to be stowed into classes for the two-class

and M-class model with informed stowage, and we derive the equations for the reduction in total

travel distance under each model compared to that of the base case. We also analyze the case of

two-class model with random stowage, and develop an equation for calculating the total travel

distance; we use simulation to estimate the parameters needed in this evaluation equation.

Using simulation, we verify the accuracy of the model. We simulate the behavior of a

single pod, and then argue that we can extrapolate the results from the single pod to a storage

system that is operating with a given throughput rate. From the two-class and three-class model

with informed stowage, we observe that the fulfillment system is able to benefit more when the

demand is more skewed. We are able to see a greater but diminishing reduction in total system

travel distance under the three-class model compared to that of the two-class model with in-

formed stowage. We also evaluate the benefits of the two-class model with random stowage

from the simulation, compared with the two-class model with informed stowage. From the two-

class with random stowage, we observe that the fulfillment system is able to benefit more when

the demand is less skewed and when the system is more heterogeneous.
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