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Abstract

F-theory is a powerful geometric framework to describe strongly coupled type JIB
supcrstring theory. After we compactify F-theory on elliptically fibercd Calabi-Yau
manifolds of various dimensions, we produce a large number of minimal supergravity
models in six or four spacetime dimensions. In this thesis, I will describe a current
classification program of these elliptic Calabi-Yau manifolds. Specifically, I will be
focusing on the part of classifying complex base manifolds of these elliptic fibrations.
Besides the usual algebraic geometric description of these base manifolds, F-theory
provides a physical language to characterize them as well. One of the most important
physical feature of the bases is called the "non-Higgsable gauge groups", which is the
minimal gauge group in the low energy supergravity model for any elliptic fibration
on a specific base. I will present the general classification program of complex base
surfaces and threefolds using algebraic geometry machinery and the language of non-
Higgsable gauge groups. While the complex base surfaces can be completely classified
in principle, the zoo of generic complex threefolds is not well understood. However, I
will present an exploration of the subset of toric threefold bases. I will also describe
examples of base manifolds with non-Higgsable U(1)s, which lead to supergravity
models in four and six dimensions with a U(1) gauge group but no massless charged
matter.
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Chapter 1

Introduction and summary

The development of modern high energy physics was dominated by the quantum field

theory paradigm[113, 134]. In this picture, spacetime is filled by fluctuating "quantum

fields" which vary over space and time. Certain fluctuations or "asymptotic states" of

these quantum fields can be interpreted as particles. Quantum field theory provides

powerful tools to calculate the outcome of colliding particles via the summation of

loop diagrams, see Figure 1-1. The predictions of such calculations can be verified

at collider experiments, such as the LHC (Large Hadron Collider). One significant

victory of quantum field theory is the establishment of the standard model of particle

physics, which includes the electroweak interaction and strong interaction. The Higgs

particle, responsible for electroweak SU(2)xU(1) gauge symmetry breaking and the

generation of fermion particle masses, was predicted in the standard model and then

discovered in 2012. The toolkits and ideas of quantum field theory have been broadly

applied to condensed matter physics as well.

Despite the power of quantum field theory, it has a number of fundamental prob-

lems. First, the theory itself is only mathematically well defined for a few special

+ 1-1 + grpi r

Figure 1-1: A graphic representation of the summation of loop diagrams in quantum field theory
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Figure 1-2: A graphic representation of the summation of loop diagrams in string theory

cases, such as topological field theories or conformal field theories which are scale

invariant. One reason is that many quantum field theories suffer from "UV (Ultra

Violet) divergence," which means that the computed scaling amplitudes for the loop

diagrams in Figure 1-1 will diverge to infinity. To overcome this problem, one needs

to add a counter term with divergent coefficient into the Lagrangian of the quantum

field theory to cancel the divergence. The whole process is iterative, and it is called

"renormalization" of quantum field theory.

Another more fundamental problem appears when one includes gravity into the

theory. Even if we use the linearized version of the Einstein Hilbert term:

J -gRd 4 , (1.0.1)

where R is the Ricci scalar, the Lagrangian will appear "non-renormalizable" in the

sense that there will be infinitely many types of counter terms in the renormalization

process.

These observations indicate that our current quantum field theories of the standard

model and gravity are "effective theories" that only approximately hold at a low

energy scale A < Ap, that is much lower than the Planck scale Ap, ~ 10 19GeV. To

obtain the whole picture of fundamental physics, we need to construct a theory that

is UV complete at the Planck scale and higher.

Up to now, the most well established framework to unify quantum field theory

and gravity is string theory[114, 64, 17]. It is analogous to the quantum field theory

paradigm, with the particles replaced by higher dimensional objects such as strings.

Now the summation of scattering amplitudes in Figure 1-1 is replaced by Figure 1-2.

With the "worldline" of point particles replaced by the "worldsheet" of strings, the

14



loop amplitude becomes UV finite', which fundamentally solves the UV divergence

problem in quantum field theory. The worldsheet theory of strings in a D-dimensional

background is described by 1+1 dimensional conformal field theory (CFT), where the

quantum fields X4(p = 0, ... , D - 1) correspond to the spacetime coordinates. Cer-

tain excited states on the strings correspond to a rank-2 traceless tensor in spacetime,

which is the graviton. The scattering amplitudes of gravitons can be computed for an

arbitrarily high energy scale. In this sense, string theory is really a theory of quantum

gravity.

A self-consistency condition is that the worldsheet CFT should be free of Weyl

anomalies (of conformal symmetry) when the D-dimensional background is flat Minkowski

space. This constraint fixes the spacetime dimension D = 26 for the bosonic string

theory, where the worldsheet quantum fields are all bosonic (XP). The bosonic string

theory suffers from the existence of a tachyon with mass m 2 < 0, which indicates the

instability of the theory. To overcome this problem, people introduced supersymmetry

into string theory.

Supersymmetry originally was constructed as an extension of the Poincard algebra

in 4D. It is a counter example to the original Coleman-Mandula theorem [32] which

says that the symmetry of quantum field theory can only be a direct product of the

Poincar6 group and an internal symmetry group, by including a set of Fermionic gen-

erators into the Poincar6 algebra to form the Super-Poincar6 algebra[70]. In particle

physics, supersymmetry was introduced to solve the "hierarchy problem" of the Higgs

boson, which comes from the fact that the 1-loop diagram of Higgs scalar will lead

to a A2 divergence. To get the real world Higgs mass mh r 126GeV, the bare mass

mo mh + A 2 will be extremely fine tuned. In the supersymmetric extensions

of the standard model such as MSSM (minimal supersymmetric standard model),

every particle has a new superpartner particle. After they are included in the loop

diagrams, the A 2 divergence will be cancelled and the divergence will be proportional

to log A (see for example Vol. 3 of [134]). Up to now, no low energy supersymmetric

1Although the summation of all the loop diagrams is still divergent, which means that the series
of loop diagrams is an asymptotic series in the string coupling constant g,. This is a generic feature
of perturbative quantum field/string theory.
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partner has yet been found at the LHC. Nonetheless, supersymmetry is still a very

useful theoretical physics tool to regulate divergence and make the theory simpler.

After including fermionic quantum fields into the string worldsheet theory, they

become "superstring theories" and generally have D = 10 spacetime dimensions to

cancel the Weyl anomaly. In the 1980s, five different versions of superstring theories

were discovered, which are the type I, type IIA, type IIB, heterotic E8 x E8 and

heterotic SO(32) theory. Type I, heterotic E8 x E8 and SO(32) theories all have

K = 1 supersymmetry in lOD with 16 supercharges, while IIA and JIB theories

have K = (1, 1) and K = (0, 2) respectively with 32 supercharges (for the notion of

supersymmetry see Appendix A).

One crucial ingredient of string theory is the existence of non-perturbative ex-

tended objects along with the fundamental strings we were talking about. An impor-

tant class of these objects is called D-branes, which are originally created as the Dirich-

let boundary condition of strings. From the worldsheet perspective, open strings can

attach to these D-branes and the vector modes of the open string A, emerge as gauge

bosons. From the spacetime supergravity point of view, the D-branes have actions

and dynamics by themselves as well. In type IIA and JIB superstring theory, the set

of stable D-branes is different. IIA superstring theory has D-branes with even space

dimensions, such as the DO, D2, D4, D6 branes. In contrast, IIB theory has odd space

dimensional D-branes: DI, D3, D5, D7 branes. A Dp-brane couples to a (p + 1)-form

"RR" field in a natural way:

L = JCpr+dP+1 (1.0.2)

where the integration is over the D-brane world volume. It also couples to a (7 - p)-

form gauge field magnetically, since the field strength of (7 - p)-form is Hodge dual

to the field strength of (p + 1)-form field in 10D.

In 1990s, it was speculated that different versions of superstring theory can be

identified with each other in certain limits. This idea, called "duality", has a central

status in the contemporary string theory framework as well. For example, if one puts

the IIA string theory on a circle with radius R, then it is dual to the JIB string theory
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on a circle with radius 1/R (in string units). This is called "T-duality," which only

exists in the string theory paradigm but not in quantum field theory. D-branes in

the IIA picture will be mapped to branes in the IIB theory with different dimensions.

Similarly, heterotic E8 x E8 and SO(32) theories can be related with T-duality as

well.

Another type of string duality is called "S-duality", which relates the weakly

coupled version of one theory to the strongly coupled version of another one. For

example, type I superstring theory is S-dual to heterotic SO(32) theory, and as will

be discussed more thoroughly in the next section, type JIB superstring theory has a

self S-duality.

The last piece of this string duality web comes from 11D N = 1 supergravity

with 32 supercharges, which is the highest dimension a supergravity theory can live

in. In 1995, Edward Witten proposed the existence of a more unified "M-theory" in

11D as well that can unify all the different pieces of superstring theory. In M-theory,

the fundamental objects are M2 and M5 membranes rather than the one-dimensional

fundamental string. The 11D supergravity hence can be thought of a classical limit

of M-theory in the same spacetime background. IIA superstring theory comes from

M-theory compactified on a torus, where the string coupling constant is proportional

to the radius of the torus in the string unit. Type I superstring theory and type

E x E8 heterotic string theory follow from M-theory on an "orbifold" S1 /2 2 [81]. We

draw the picture of string duality web in Figure 1-3.

What we have discussed before is mostly about string theories in high dimensions.

Since the birth of superstring theory, people have been trying to construct the known

4D physics in the string theory framework. To reduce the spacetime dimension from

10/11D to four, a simple practice is to set the spacetime background M10 = R3 ,1 x M6

or M11 = R x M7 where M6 and M7 are some real six or seven dimensional compact

manifold with a certain topology.

For certain classes of these compact manifolds, the 4D physics has different amount

of supersymmetry. If they are simply flat tori, then the number of supercharges is

not reduced and the 4D theory is .A = 8 or A = 4 supergravity. To reproduce real
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M-theory

cl. limit S1/Z2

S 1 ~SI/Z 2S,

Q!!U GType I

S-dual

IIB IIA Het E Het O
T-dualT-dual

S-dual

Figure 1-3: String duality web known in mid-1990s, with M-theory, type I, IIA, IIB, heterotic
E8 x E8 (Het E) and SO(32) (Het 0) and 11D supergravity.

world physics, the 4D supersymmetry can only be maximally AF = 1, otherwise there

is no chiral matter in the theory, which contradicts the basic feature of the standard

model. From the lOD superstring theories, a common class of compact manifolds is

the "Calabi-Yau" manifolds which are complex manifolds with vanishing Ricci tensor:

R,1 = 0. (1.0.3)

Real 2n-dimensional Calabi-Yau manifolds are usually called "Calabi-Yau n-folds" in

terms of the number of complex dimensions. The holonomy group is SU(n) and only

a 1/ 2 1 proportion of supersymmetry is preserved after the compactification. There

are two ways to get 4D K = 1 supergravity from lOD superstring theory:

(1) Compactify heterotic string theory on a Calabi-Yau threefold.

(2) Compactify type IIA/IIB superstring theory on a Calabi-Yau orientifold, which

breaks down half of the supersymmetry further.

Many models have been constructed using these two methods, for example[3, 25,

29, 35].

Another way to get 4D K = 1 models is to compactify i1D M-theory on a real

seven dimensional "G2 manifold" with G 2 holonomy group. However, it is not clear

how to realize standard model in it up to now.

One may ask if there is a way to directly reproduce non-supersymmetric models
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from compactification. Since the solution of the vacuum Einstein equation in the

compact dimensions will lead to the Ricci-flat condition: R, = 0, the compact

manifold is generally Calabi-Yau or a manifold with special holomony, such as G 2. If

one starts from superstring theory with spacetime supersymmetry, then usually a part

of the supersymmetry will be preserved at least at the compactification scale. There

exists string theory in 10D without spacetime supersymmetry, such as the SO(16)x

SO(16) heterotic string theory[21, 45, 60] (although it is not clear if they are actually

self-consistent). We will not consider the possibility of such non-supersymmetric

model in this thesis. There is always assumed to be supersymmetry at the high

compactification energy scale, with a possibly spontaneous supersymmetry breaking

at a lower energy scale.

The specific value of these energy scales are related with the geometric sizes of the

compact space, which are dynamical variables in string theory that are not predeter-

mined when we choose their topology in the beginning. The set of such dynamical

variables are usually called "moduli". If there is a moduli potential in the Lagrangian,

then vacuum expectation value of moduli can be in principle determined by the "mod-

uli stablization" process.

One simple way to introduce this moduli potential is using quantized RR form

fields in superstring theory. The outcome is a vast set of vacuum solutions from a

single geometry, which are called the "flux vacua". A famous number in the literature

is 10500, which is the number of flux vacua on a single geometry in a IIB orientifold

construction [40].

The existence of such huge number of vacuum solutions in string theory leads to

philosophical questions. On one hand, with such an almost infinite number of models,

it is easier to find a model with the specific parameters in our standard model. On

the other hand, one can argue that string theory has no predictability if there are so

many possible universes that are not our universe. Here I will present the physical

reasons that the grand set of string solutions including all the possible geometries,

which is called the "landscape", has the value of being studied.

(1) There has been a misconception that any (anomaly free) physical model can
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be realized in string theory. However, this is not true as we know that there cannot be

infinitely many gauge fields in any string compactification model. If we can classify

the string theory vacuum solutions, then we can make a list of the constraints on

low energy physics from string theory. Furthermore, there is a "string universality

conjecture" [1, 93, 120], which says that any UV complete (supersymmetric) gravity

theories in D > 4 can be constructed with a superstring setup. This comes from

the belief that superstring theory is the only way to unify gravity and quantum field

theory using the paradigm of QFT. If this conjecture is true, then we can classify all

the possible D > 4 supergravity theories at the level of low energy effective action

and see what is allowed. The theories that satisfy the known low energy constraints

such as anomaly cancellations but do not have a superstring construction are put into

the "swampland" [27, 128]. They may either have some secret inconsistency or can be

realized in string theory in a more exotic setup. The results are very interesting in

either of these possibilities. If we can make a complete survey of the swampland, we

may be able to discover new constraints on quantum gravity along with the existing

quantum gravity conjectures such as the weak gravity conjecture[7].

(2) By more carefully studying the physical mechanics of moduli stabilization and

the transition between geometries, we can have a feeling of what is the most common

or prefered supergravity model from string theory constructions. This will provide

hints of the most natural way to realize the standard model and even beyond standard

model physics, such as the nature of dark matter.

Following this logic, it is natural to ask what is the largest or most dominant class

of string vacuum solutions. Up to now, this biggest set is the "F-theory" construc-

tions, which is a geometric description of strongly coupled type IIB superstring theory

with 7-branes[127, 109, 108]. In the early days of F-theory, it was speculated that

the theory lives in a 12-dimensional spacetime with two additional real dimensions

than superstring theory. After we compactify the 12D theory on a special class of

Calabi-Yau manifolds: elliptic fibered Calabi-Yau manifold, we will get supergravity

in even dimensions. For example, if we compactify F-theory on an elliptic Calabi-

Yau threefold (CY3), then we get 6D M = (1, 0) supergravity. If we use an elliptic
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Calabi-Yau fourfold (CY4), then we will get a 4D A = 1 supergravity. For the case of

Calabi-Yau twofold, they are generally called "K3 surfaces" and we will get 8D A = 1

supergravity if we compactify F-theory on it. However, from today's perspective, the

two additional dimensions are completely auxillary and they are not needed to be

considered as actual spacetime dimensions2

The "F" in F-theory hence means fibration, which is a generalization of fiber bun-

dle in the sense that the fiber can be singular (or degenerate). The singular fiber

will encode the essential physical information of the low dimensional supergravity.

For example, singular fibers over a real codimension-2 submanifold of the base cor-

respond to 7-branes, and open string modes attached to them will give rise to gauge

fields. Unlike the weakly coupled IIB theory, in F-theory there exist strongly coupled

7-brane configurations giving rise to exceptional gauge groups: G2 , F4, E6 , E7 and

E8 . As will be seen in detail later, these exceptional gauge groups will frequently

appear in the F-theory landscape. Singular fibers over a real codimension-4 subman-

ifold of the base correspond to the intersection of 7-branes. The open string modes

stretched between intersecting 7-branes will then give rise to charged matter under

the gauge groups. Furthermore, a singular fiber over a real codimension-6 submani-

fold encodes the information of the interaction of three quantum fields, which is the

Yukawa coupling in 4D or lower dimensions.

The topological classification of F-theory geometric models hence consists of two

parts: the classification of topologically distinct bases and the classification of different

fibrations on a single base, which give rise to different elliptic Calabi-Yau manifolds.

The bases are general complex manifolds that are not necessarily Calabi-Yau. For

each base, there exists a "generic fibration" where the gauge group is minimal. Due

to this feature, this is physically called the "non-Higgsable phase" and the minimal

gauge groups are called non-Higgsable gauge groups. As will be briefly explained in

Chapter 2, the generic fibration contains more flux vacua than the non-generic ones

and they are the central object of this thesis.

2In a reformulation of maximally supersymmetric supergravity called "exceptional field theory"
in 9D, the 12 dimensions are considered as physical dimensions[129, 18].
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Figure 1-4: String duality web including F-theory.

In fact, if the bases are Calabi-Yau then the fibration can only be a trivial direct

product of the base manifold and the 2-torus, and it will be reduced to a weakly

coupled type IIB model. In this sense, F-theory provides a way to describe super-

symmetric superstring compactification on manifolds with non-vanishing curvature.

It is much more general than the weakly couple type JIB constructions.

From the perspective of the string duality web, F-theory touches many corners

in Figure 1-3. As will be described in detail in Chapter 2, the definition of F-theory

relies on the "F/M-theory duality". Another elegant story is the "heterotic/F-theory"

duality, where F-theory on a K3 surface is dual to heterotic E8 x Es string theory on a

two torus T2 . This duality will not be covered in this thesis. Finally, with the trivial

weak limit reduction to type JIB, we can complete our duality web in Figure 1-4.

From the phenomonology model building perspective, there has been a vast liter-

ature of realizing the supersymmetric standard model with the SU(5) GUT (Grand

Unified Theory) type construction, for example [15, 16, 46]. GUT is an old idea

from 1970s, which comes from the observation that the standard model gauge group

SU(3) x SU(2) x U(1) (before electroweak gauge symmetry breaking) and matter rep-

resentations can be simply embedded in the group SU(5) and its smallest represen-

tations. The gauge coupling of the three fundamental interactions: the strong, weak

and electric interaction could be unified at the "GUT scale" 1016 GeV where the
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gauge group appears to be SU(5). However, the types of fibration used in these kind

of constructions is always non-generic and they are not a central object of this thesis.

In the recent a few years, there has been a lot of activity on constructing su-

perconformal field theories (SCFTs) with a top-down approach from F-theory, for

example [39, 76, 77]. The M = (2, 0) and (1, 0) SCFTs in 6D are generally strongly

coupled without a Lagrangian description, and their constructions are only possible

under the string theory framework. It was claimed that all the 6D K = (1, 0) SCFTs

can be constructed with F-theory, following the string universality philosophy. In

contrast to the supergravity case, they are using non-compact Calabi-Yau threefolds

with non-compact bases to decouple gravity from the theory. They will be mentioned

in the later parts of the thesis but they are not our central focus.

As a brief summary, F-theory has the following nice features:

(1) F-theory provides a vast playground allowing a larger number of geometries

and flux vacua than perturbative superstring theory.

(2) F-theory describes compactification on a manifold with non-vanishing Ricci

curvature and still preserves a part of supersymmetry.

(3) F-theory allows the construction of exceptional gauge groups that cannot be

described in a simple D-brane stack description.

(4) Geometric engineering from F-theory helps us to classify and understand

strongly coupled superconformal field theories.

Apart from the physical interests, F-theory is related to many fields of modern

mathematics. The most crucial mathematical tool is complex algebraic geometry[66,

74], which studies algebraic equations in complex number field. The underlying reason

for this is the "GAGA principle", which roughly states that the algebraic objects also

have analytic structures that can be studied with complex differential geometry. We

will be only focusing on the geometries with algebraic descriptions in this thesis.

Since the compact manifolds in F-theory are elliptically fibered Calabi-Yau man-

ifold, the beautiful mathematical theory of elliptic curves is closely involved. A well

known achievement of the elliptic curve theory is the proof of Fermat's last theorem

by Andrew Wiles. In F-theory, the U(1) gauge groups are deeply connected with
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a mathematical structure of elliptic curves called "Mordell-Weil group", as will be

explained in Chapter 2.

As we have mentioned before, an important piece of F-theory (mainly for 4D F-

theory) is the flux that give rise to flux vacua. In 4D F-theory, the relevant flux is the

G4 4-form field. To study the property of flux and its interaction with the geometry,

one need to use Hodge theory and mirror symmetry techniques. They will not be

covered in this thesis, but one should keep in mind that they are crucial to compute

the actual energy scales, mass spectrum and the cosmological constant in an F-theory

model.

In this thesis, I will provide a broad review of our current knowledge about the

set of compact base manifolds used in F-theory, which is the foundation stone of the

geometric classification program of F-theory. This thesis has the following structure:

in Chapter 2, I will provide essential physical and mathematical background to es-

tablish the setups we are going to use. In section 2.1, I will briefly review type IIB

superstring theory and define F-theory, in more detail than the broad introduction

in this Chapter. In section 2.2, I will provide the basic tools of complex algebraic

geometry that will be used through out the thesis. In section 2.3, I will talk about

elliptic curves and elliptic fibrations. In section 2.4, I will cover a special subset of

complex algebraic geometry: toric geometry.

Chapter 3 will focus on 6D F-theory and the classification of base surfaces. I will

briefly review the general structures and the classification of toric surface bases at

first. Then I will present the machinery for classifying general non-toric base surfaces

in our paper[125].

Chapter 4 is about 4D F-theory and the exploration of the vast zoo of base three-

folds. First, I will define the set of bases we are studying. Then I will present two

different Monte Carlo methods to probe this big set in our papers[124, 126] and dis-

cuss the results. Apart from this, I will also present a geometry with the largest

number of flux vacua up to now[123]. Finally, a grand picture of the set of base

threefolds will be established and the physical implications will be discussed.

Chapter 5 is about bases with non-Higgsable Abelian gauge groups, which are
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qualitatively different from the non-Abelian gauge groups. Generic fibration over

these bases will lead to models with U(1) gauge group but no massless charged matter

under it. The discussion follows my paper[130].

Finally, I will briefly summarize the important things we have learned and the

open questions in Chapter 6.
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Chapter 2

Physics and Mathematics

background

2.1 Type IB superstring theory and F-theory

In this section, we provide a brief overview of the physical origin of F-theory, partly

following [133].

2.1.1 IIB superstring theory and 7-branes

In the worldsheet construction of superstring theory, a closed string has two types

of oscillation modes: left-moving modes and right-moving modes. For the fermionic

quantum field on the string, they could be either periodic or anti-periodic. The

periodic and anti-periodic boundary conditions are called Ramond (R) or Neveu-

Schwarz (NS) boundary conditions respectively.

In type IIB superstring theory, the massless fields from a closed string are given

by a product of representations of the SO(8) little group of the lOD spacetime. The

massless bosonic fields include the NS-NS fields and R-R fields, where both the left-

moving and right-moving modes obey NS or R type boundary condition.
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For the NS-NS fields, they are a product of vector representations 8, of SO(8):

8v x 8v = 1 + 28 + 35. (2.1.1)

The singlet 1 is the "dilaton" #, which is a scalar that indicates the string coupling

strength g, = eO. The representation 28 is a rank-2 antisymmetric tensor field B 2

that couples to the fundamental string, and the representation 35 is a traceless rank-2

symmetric tensor field, which is the metric g,,.

For the R-R fields, they are a product of spinor representations 8, of SO(8):

8s x 8s = 1 + 28 + 35+. (2.1.2)

The singlet 1 is the R-R 0-form field CO, which is different from the dilaton #, while

the rank-2 antisymmetric tensor 28 gives the R-R 2-form field C2 . 35+ is a self-dual

rank-4 antisymmetric tensor that gives the R-R 4-form field C4.

The classical effective action of lOD IIB supergravity is given as follows[114]:

S = SNS + SR + SCS (2.1.3)

SNS 2G d1--- g6 2 0(R + 410 --- q5 - IIH3 |2) (2.1.4)

31 ~ 1 ~,12SR= -%2 d1 Jd x -g(F12 + F|2 2 (2.1.5)
4GI0 2

Scs = - C4A H3 A 3 , (2.1.6)

where F= dCo, H3 = dB2 , F3 = F-COAH3 , 5 = F5 - lC2AH3F+B2A dC2 . G10

is the Newton's constant in lOD. As one can see, the NS-NS part action SNS contains

the Einstein-Hilbert term and the kinetic term for NS-NS fields B2 and #. The R-R

part SR contains the kinetic term for R-R fields CO, C2 and C4. The final part SCS is

a 10D Chern-Simons term and there is no metric in the integration.
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Apart from the action, a self-duality constraint

*A =F (2.1.7)

has to be imposed by hand. In this sense the IIB supergravity action is actually a

"pseudo action".

An interesting feature of this action is the presence of an SL(2, R) symmetry. If

we define the Einstein frame metric

gE,pv = C-29(218)

and the axiodilaton

T = CO + ie-. (2.1.9)

Then the action (2.1.3) is invariant under the following SL(2, R) group action:

aT-+ b B2  d c
T CTrd KC2) ( b aJ 9E,tv - 9E,vw 5 4 5 (ad - bc = 1)- (2.1.10)

We can see that under this SL(2, R) group action, the Co and e-0 field are actually

mixed up, and the same for the B2 and C2 fields. As we have mentioned in Chapter

1, R-R fields can couple to D-branes with various dimensions. A p-form field with

(p-+ 1)-form field strength can couple electrically to a D(p - 1)-brane and magnetically

to a D(7 - p)-brane. Hence the C4 can couple to a D3-brane both electrically and

magnetically, C2 can couple to a Di-brane electrically and D5-brane magnetically.

Co can cou.ple to a D7-brane magnetically and the "D(-1)-brane" electrically. The

D(-1)-brane in string theory is an instanton object.

Hence logically we will expect mixed objects in JIB string theory that are trans-

formed by the group action as well. Since C2 and B2 couple to the Dl string and

fundamental F1 string respectively, there should exist a bound state with p copies of

Fl strings and q copies of Dl string, which is called a "(p, q)"-string. Since p, q E Z,

the symmetry group SL(2, R) is actually broken to the SL(2, Z) subgroup. Similarly,
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the axiodilaton r should magnetically couple to "(p, q) 7-branes", which are SL(2, Z)

transformations of the D7-brane.

Notice that the 7-brane in lOD has similar properties to a cosmological string

in 4D. A loop around it cannot be continuously deformed to a trivial one. The

axiodilaton field T around that loop will be transformed under a monodromy action.

A heuristic argument is that the Dp-brane acts as a source term in the normal (9 - p)

spatial dimensions, and the field 1 it sources will obey the Laplace's equation:

A 6 ~ 0(r), (2.1.11)

which leads to 4 ~ 1/r7 p for p < 7 and 4 1 In r for p = 7. In a more careful

analysis[24], if we put the D7-brane in the 0, 1,..., 7 spacetime dimensions and use

the complex variable z = x +ixg to describe the two normal dimensions, the equation

of motion from the D7-brane action will give:

a9T(z, 2) = 0 (2.1.12)

which means that T(z) is a holomorphic function in z. Furthermore, if the D7-brane

is located at z = 0: we have

j(T) cX 1/z (2.1.13)

where j(r) is the modular j-function with the expansion

-27riTe2ri

j(T) = e- + 744 + 196884e 2 iT +.... (2.1.14)

The form of T(z) close to the D7-brane (z = 0) is then

1
T(Z) r-- ln z. (2.1.15)

27i

From this equation, we can see that the axiodilaton T indeeds transform as r -> T +1

if we go around the D7-brane. Similarly, T can undergo a more general SL(2, Z)

transformation around a (p, q)-brane. Notice that since the string coupling g, = e0,
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Figure 2-1: A 2-torus defined as a quotient of the complex plane, which stays the same if we
replace T by T + 1.

actually

T = CO + -. (2.1.16)
9s

Hence if we set CO = 0 for simplicity, then an SL(2, Z) transformation 'r - -1/T

will transform g, to 1/g. This means that in the presence of general (p, q) 7-branes,

weakly coupled JIB string theory can actually be transformed to a strongly coupled

theory if one go around these 7-branes. In the presence of mutiple separated (p, q)

7-brane configurations, there does not exist a single SL(2, Z) frame where all of them

can be transformed to D7-branes, and it is not clear which kinds of separate (p, q)-

brane configurations are self-consistent.

This problem gives birth to F-theory, which provides an elegant geometric solution.

2.1.2 F-theory and M/F-duality

The hint of a geometric structure behind SL(2, Z) monodromy comes from the fact

that SL(2, Z) is the modular group of a 2-torus. A 2-torus can be described as a

quotient of the complex plane if we identify z with z + 1 and z + T for any z E C;

see Figure 2-1. Now if we replace T by r + 1, the 2-torus is actually unchanged. If

we replace T by -1/T, then the 2-torus can be mapped to the original one after a

rotation and rescaling.

This suggests that we can put a 2-torus over each point on the compact manifold
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Figure 2-2: A elliptic fibered manifold X over the base B. A generic fiber will have the topology
of T 2 but the fiber may be singular over some subsets of B.

B in the IIB compactification, which gives a T 2 fibration over B, see Figure 2-2. The

value of the axiodilaton T is identified with the parameter r (known as the complex

structure) of T2. For a fiber bundle, the fiber over any point p c B should be

homeomorphic. This is not required for a fibration, as the fiber could be singular

over some subsets of B. These singular fibers exactly correspond to the point where

T cannot be defined uniquely, i. e. the location of 7-branes.

In order for the low dimensional theory to preserve a part of supersymmetry, the

total space X is required to be Calabi-Yau. To understand this statement, we present

a common definition of F-theory starting from M-theory.

First, we consider M-theory on a complex d-dimensional manifold X, which give

rise to a supergravity theory in (11-2d)-dimensions. We take X to be a direct product

X = B x T 2, and denote the two S' cycles of the T 2 by SIA and SiB, and their radius

RA and RB. Then we take the radii RA -+ 0. Since the string coupling g, oc RA,

this leads to weakly coupling IIA superstring theory compactified on B x SiB. Now

we perform a T-duality in the SiB direction, which maps the IIA theory to a weakly

coupled JIB superstring theory on B x S'o, where S'o has radius R' = 1/RB. Hence

if we shrink the radius RB - 0, then the size of S'B will grow to infinity and we will

get a supergravity in (10 - 2d) dimensions. Effectively, this is equivalent to a JIB

theory on compactified on B.
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Now, if we take X to be a T 2 fibration, this T-duality story still holds fiber by

fiber despite the fact that - varies over the base B. We have the following M/F-theory

duality that generally holds:

If the elliptic fibers of X are shrunk to be zero size, which leads to a usually

singular Calabi- Yau space Xsing, then M-theory on Xsing is dual to F-theory on Xsing.

Because of the existence of singular fibers in X that correspond to multiple (p, q)

7-brane configurations, there usually does not exist a single SL(2, Z) transformation

that transform all the (p, q) 7-branes to D7 or 07-branes (Orientifold branes). Hence

we will often find that the resulting theory is not weakly coupled IIB even in the limit

vol(T2 ) - 0.

Now with the direct correspondence between M-theory and F-theory, we see that

the Calabi-Yau condition of X should be satisfied since the supersymmetry property

is directly transfered between theories that are dual to each other.

2.1.3 Gauge group and matter in F-theory

In the F-theory construction, the compact space is the singular one Xsing. To write

down the physical fields in the low energy effective theory, we should first analyze the

M-theory dual description on X where the fibers are not shrunk.

In M-theory, the fundamental object is the M2-brane that couples to a 3-form field

C3 electrically. As we have mentioned before, the complex codimension-one locus of

7-branes on B has singular fiber in X. These singular fiber is a union of multiple IP1

(topologically 2-sphere) that are connected as an affine Dynkin diagram, as we will

explain in the next section. If we call these 2-sphere components F1, ... , Fn (excluding

the affine node), then the 1-form field

Ai = f C3 (i = 1, . .. ,n) (2.1.17)

will correspond to U(1) gauge fields on the individual 7-branes.

Besides that, M2-brane wrapping different connected combinations of F1,..., Fn

will give rise to massive states in the M-theory description, with their mass pro-
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Figure 2-3: A singular fiber with the topology of A 5 affine Dynkin diagram.

portional to the area of the wrapped 2-cycle. In the F-theory limit where Fis are

shrunk to zero size, these states become massless as well. The claim is that Ais and

the M2-brane wrapping states exactly correspond to the Cartan subalgebra and W-

bosons of a non-Abelian gauge group'. For example, if the affine dynkin diagram

is A, (see Figure 2-3), there are n Cartan generators and n(n + 1)/2 connected 2-

cycles Fj U Fjj ... Fy. Taking account of two orientations, these will produce n(n+ 1)

W-bosons. Then we have exactly n 2 + 2n gauge bosons for SU(n + 1).

As we will see in the next section, all the simple Lie groups can be realized in this

way, including the exceptional ones.

Matter fields charged under these non-Abelian gauge groups are physically given

by open string modes between two stacks of 7-branes. Geometrically, this happens

at the complex codimension-two locus where additional 2-cycles appear in the fiber.

Unlike the non-Abelian gauge groups, the Abelian gauge groups have a completely

different origin in F-theory. In the perturbative string theory, you will usually expect

that the gauge group from a stack of N D-branes is U(N). However, in the case of

D7-branes, this U(1) is broken by a world volume coupling term of the D7-brane[48].

In fact, the Abelian groups in F-theory come from global data of the elliptic

fibration: additional "rational sections" of the fibration. A section of a fibration

is constructed by picking a point in the fiber for each point on the base, and it is

topologically homeomorphic to the base. A rational section is a collection of "rational

points" of elliptic curves, as we will discuss in the next section. Since these sections

S, are a real codimension-two subset of X, the Poincar6 dual of them are 2-forms wI.

'The affine node does not contribute to the gauge group. The reason is M2-brane wrapping the

affine node is identical to wrapping a generic smooth fiber T 2. The state from wrapping generic

fiber corresponds to a KK (Kaluza-Klein) mode in the compactified theory.
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Now the U(1) gauge fields are given by the decomposition of the M-theory 3-form

field:

C= A A wI + ... (2.1.18)

The matter charged under Abelian gauge groups comes from M2-brane wrapping

additional 2-cycles over complex codimension-two locus on B as well, similar to the

non-Abelian case.

2.2 Basics of complex algebraic geometry

2.2.1 Divisor and line bundles

In this section, we will define the terminology from complex algebraic geometry that

will be used later, mostly using differential geometry language following [66].

The classical goal of algebraic geometry is to study the properties of algebraic

equations in different number fields, using geometric intuition and terminology.

An algebraic variety is the set of points that solve a number of algebraic equations

fi(i, .-. . , Xn) = 0 in an ambient space parametrized by the variables X1 , .. . , X1 . In

this thesis, we always assume that the ambient space is complex projective space.

The reason for using the complex field is the properties of algebraic completeness and

the validity of fundamental theorem of algebra. For example, the algebraic equation

x2 + I = 0 does not have a solution if x E R, but it has two solutions if x E C.

The projective space P' is a quotient of Cn+1 by the identification (Xi, X 2 ... , Xn+1)

(AxI, Ax 2 , ... , AXn+1) for A # 0. The point (Xi, x2 , ... , Xn+1) - (0,0, ... , 0) is not in-

cluded in Pn. Similarly, a weighted projective space pki,k 2 ,...,k, is a quotient of Cn+1

by the identification (Xi, x 2, ... , Xn+1) ~ (Aki xi, Ak2x2 , ... , Akn+1x n+) for A z 0.

Pn can be considered as the "compactification" of Cn where the points at infinity

are included. The advantage is that for example considering two linear equations

ax + by = c and ax + by = d(c $ d) in C2 . These two complex lines do not intersect

each other since there is no common solution to them. However in P2, the well-

defined algebraic equations invariant under the rescaling (x, y, z) ~ (Ax, Ay, Az) are
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the homogeneous linear equations ax + by = cz and ax + by = dz. Then they intersect

at a point (x, y, z) = (-b, a, 0).

These homogeneous algebraic equations in IP" are called the projective varieties.

In general, a degree d hypersurface of 1P' is the solution to the following algebraic

equation:
n+1

Caa2 ,..., J X = 0 (2.2.19)
al+---+a,+1=di=

In projective space p", the Bezdut's theorem says that n hypersurfaces of degree

dl, d2 , ... , dn always intersect at N = ] i di points, counting multiplicity. This fact

shows that it makes sense to put all the hypersurfaces in p" with the same degree

into one class, since they have similar properties. In general, they are called a divisor

class, which we will define as follows.

A Weyl divisor is a formal sum of hypersurfaces Di in M:

D = Z aiDi, (2.2.20)

where ai C Z. If ai > 0 for all i, then it is called an effective divisor.

For a meromorphic function f on the complex manifold M, we can define a divisor

with f as the defining function as follows.

Suppose F is the local defining equation of hypersurface Di, then we define

ordDi(G) of a holomorphic function G to be the maximal value of a such that we

can write G = FaH in locally near a point p E Di. For a holomorphic function, this

definition is independent of the point p. Now suppose that f can be written locally

as f = g/h where g and h are holomorphic functions that are relatively prime, then

we define

ordDi(f) = ordDi(g) - ordDi(h), (2.2.21)

and the associated divisor

D = Z ordDi (f)Di. (2.2.22)

We can see that the negative coefficient of Di actually means that the defining function
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f has poles on Di.

A very important fact about divisors is that they have a correspondence with

holomorphic line bundles on M, which are vector bundles of rank 1 where the fibers

are the vector space of holomorphic functions.

More precisely, for a holomorphic line bundle 7 : L -+ M on M, we can find a

trivialization

pa : Lu U, x C (2.2.23)

on each coordinate patch U, which together covers M. Luy, = 7-'U, which is a

subset of L. Now the line bundle is parametrized by the transition function g :

Un u- C* between different coordinate patches:

gao(z) = (Oa 0 ,o )Z. (2.2.24)

Since the line bundle is holomorphic, g,, is non-vanishing and statisfies

ga,39g3a = 1 , gaQ93,9Y 1. (2.2.25)

The set of line bundles on M has a group structure called the Picard group Pic(M).

Suppose that the line bundles L and L' have transition functions {g,3} and {g'}

respectively, then the group multiplication is given by the tensor product, L 0 L'

with transition function {gagg' 3}. The inverse is given by the dual bundle: L* with

transition function {g,}.

Now the map from divisors to line bundles is easy to define. Suppose that the

divisor D has non-zero meromorphic local defining equations {f} in the local coordi-

nate patches {U.}. Then g0 , = f/ff gives the transition function of the associated

line bundle [D] that satisfies (2.2.25). Note that for two divisors D and D' with

local defining functions {f4} and {ff,}, the divisor D + D' defined by {ffa, } exactly

equals to the line bundle [D] ® [D']. Hence the map from the set of divisors to Pic(M)

is a homomorphism.

Moreover, if D = (f) is defined by a global meromorphic function f on M, then
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f, can be taken to be in the same form for any coordinate patch UQ, and fa/f = 1,

which means that the associated line bundle [D] = [(f)] is trivial. We can thus define

an equivalence relation D ~ D' if D = D'+ (f), which is called linear equivalence.

After taking the quotient of the set of divisors by linear equivalence, we get the set of

divisor classes, which is completely isomorphic to the Picard group of line bundles.

In the later part of the discussion, we often do not distinguish between line bundle

and divisor class. For example, we also use the notation L + L' and -L to denote the

Picard group operation instead of L 0 L' and L*. In this decription of Picard group

as a linear space, its rank rk(Pic(M)) is called Picard rank.

The divisor classes are also isomorphic to the set of real homology class H2n-2 (M, Z)

for M with complex dimension n, and we can define intersection numbers of n divisors

D, - D2 - - - - - Dn E Z.

The condition that a divisor is effective is equivalent to the existence of a global

holomorphic section of its associated line bundle. The set of holomorphic sections of

a line bundle L is denoted as O(L), which is a linear space usually refered to as the

linear system ILI. Its dimension is H0 (M, O(L)), or simply written as HO(L) in the

later parts of the thesis.

Since the sum of two effective divisors is another effective divisor, the set of ef-

fective divisor classes form an integral cone in Zrk(Pic(M)), which is called the effective

cone. Similarly, the set of complex curves in H2(M, Z) forms the Mori cone of curves.

For complex surfaces,the effective cone is equivalent to the Mori cone.

Now we are going to introduce two of the most important line bundles that we

will always encounter later.

The first one is the canonical bundle Km, which is defined by

dim(M)

Km= A T;, (2.2.26)

where TA! is the holomorphic tangent bundle of M in usual (complex) differential

geometry and T, is its dual (cotangent bundle). Its dual bundle -KM is called

anticanonical bundle. The canonical bundle encodes the curvature information of the
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manifold. If the manifold is Calabi-Yau, then its canonical bundle is trivial KM ~ 0.

The second one is the normal bundle ND of a hypersurface D in M, defined by

ND - MID

TD
(2.2.27)

It is usually computed by the adjunction formula

ND= DID- (2.2.28)

Another adjunction formula helps to compute the canonical bundle of the hyper-

surface D embedded in the manifold M:

KD= Km|D+ND =(Km + D)|D- (2.2.29)

As an example, for the complex projective space P', the canonical bundle is

K(IPn) = -(n + 1)H, (2.2.30)

where H is corresponds to the hyperplane divisor class (hypersurface of degree 1).

The intersection number of n copies of H is

(2.2.31)

and the intersection numbers among n divisors a1H, a2H,. . . , a1 H is then

n2 n

II aiH = flai
i=1 i=1

(2.2.32)

which gives an example of the Bez6ut's theorem that we introduced earlier.

We can use the adjunction formula to compute the normal bundle of divisors in

P n. For example, for the degree-(n+ 1) hypersurface D = (n+ 1)H, we have KD - 0,

which means that D is Calabi-Yau. We have thus found a way to construct a series

of Calabi-Yau manifolds.
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Another example is the computation of the genus of curves on P2 . Since K(P 2)

-3H, the canonical class of the curve C = aH is given by

Kc = a(a - 3)H - H = a2 - 3a. (2.2.33)

Since for a curve C, KC = 2g - 2, we can compute its genus

a2 - 3a
= + 1. (2.2.34)2

For example, the degree 1 line and degree 2 conic on P 2 has genus g = 0, which are

called rational curves. The degree 3 cubic has genus g = 1, which is an elliptic curve.

2.2.2 Birational geometry

A fundamental problem in algebraic geometry is the classification of topologically

distinct manifolds. Since there are infinitely many of them, a more tractable approach

is to classify these manifolds up to a weaker equivalence called birational equivalence.

A rational map f : X - Y is a locally polynomial map from an open subset

U C X to Y. X and Y are birationally equivalent if there exist rational maps

f : X -+ Y and f 1  Y -+ X. For example,

2t 1 --t2
X = = I+P (2.2.35)

1 + t2 ' 1 + t2

maps the line to the a circle 2 + y2 = 1, despite that they have different topology.

A complex manifold of dimension n is called rational if it is birational equivalent

to pn.

A very important class of birational maps is the blow up map. Suppose that we

want to blow up a complex codimension-k subset U in a n-dimensional manifold X,

which is defined by local equations

X1 = X2 Xk = 0 (2.2.36)
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in the local coordinate patch A D U, then we define the submanifold A E A X pk-1

as

A XjYj - XjYiJV2,J}J. (2.2.37)

Here (yi, ... , Yk) are homogeneous projective coordinates of P.-1. We can define the

projection map 7r : i a A by restricting to the xi components of (xi, yi). Then we

define the exceptional divisor E to be the locus 7r-1(U). Note that E always have the

topology of a pF- bundle over U from this definition. It is also easy to check that

the projection map

7 : 3 - E - A - U (2.2.38)

is an isomorphism. Hence we can define the blow up of X to be

Y = (X - U)U A.

Since E is a new generator in the Picard group of Y, we have

rk(Pic(Y)) = rk(Pic(X)) + 1.

The canonical line bundle of Y is related to Kx by

Ky = 7,Kx + kE

where 7r, is the pullback map from Pic(X) to Pic(Y). In the later discussions, we

often omit this 7r,.

If U is contained in a divisor D c X with multiplicity m = multD(X), then after

the blow up, D will be transformed to

D' = D -mE, (2.2.42)

via a proper transformation.

The reversal operation of blow up is called blow down or contract the exceptional
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divisor E. For a complex surface, the exceptional divisor is always a P and has

self-intersection (-1). Hence the only curves that can be contracted on a surface are

rational (-1)-curves.

The proper transformation of a divisor () has self-intersection number

D'2 = (D - mE)2 = D 2 + m2 E 2 = D2 - in 2 . (2.2.43)

As an application, the birational classification of complex surfaces can be achieved

by blowing down the complex surface recursively until it cannot be blown down

anymore. This is called "minimal model program" of surfaces that is well established.

On the other hand, the similar program: "Mori program" of complex threefold is

highly complicated involving singularities[98]. We will use necessary results from

them in Chapter 3 and 4.

2.3 Mathematics of elliptic fibration

An elliptic curve is a complex one-dimensional manifold with the topology of T2.

There are two ways to describe it: the quotient of complex plane in Figure 2-1 and

the following hypersurface equation in an ambient space Y known as the Weierstrass

equation:

y 2 =X3 + fXz 4 + gz 6 . (2.3.44)

Here (x, y, z) are coordinates of the complex weighted projective space p2,.

For a single elliptic curve, f and g are complex numbers. While for an elliptic

fibration 7r : X -+ B, f and g are polynomials in terms of local coordinates on B,

and they are called Weierstrass polynomials.

Apparently, the point (X, y, z) = (1, 1, 0) is always a solution to (2.3.44), which

is called the zero point of the elliptic curve. In the case of an elliptic fibration, we

can pick this zero point for every p E B, which forms the "zero section" Z. In this

sense, if there is a Weierstrass equation then the elliptic fibration always has a global

section.
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Outside of the zero section, we can set z = 1 by rescaling, and simplify (2.3.44) to

y2 =3 +fx+g, (2.3.45)

which is more commonly used in the later discussions.

Equation (2.3.45) is singular whenever A = 4f3 + 27g2 = 0 on B. We define this

quantity A as the Discriminant of the elliptic fibration and the subset F C B where

A = 0 the discriminant locus. For a general elliptic fibration, it is known that the

canonical class of X is given by

Kx ~ KB $Fi, (2.3.46)

where Fis are the irreducible components of the discriminant locus and 6i = ordr, (A) [87].

Hence in order to have Kx ~ 0, we have

6i[Fi] = -12KB (2.3.47)

or

A E O(-12KB). (2.3.48)

Since A = 4f3 + 27g2, it is required that f and g are holomorphic sections of line

bundles:

f E O(-4KB) , g E O(-6KB). (2.3.49)

The Weierstrass model defined in this way is usually singular. For example, if

f ~ g u 2 , then the equation

y2 3 + f 2u
2 X + g 2u2 (2.3.50)

is clearly singular at x = y = u = 0. To get a valid M-theory description, we need

to resolve this singularity by blowing up the codimension-two locus x = y = u = 0.

The resolution process of such singular Weierstrass models have been extensively
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ord(f) ord(g) ord(A) Kodaira's fiber type Topology
> 0 > 0 0 1o a smooth elliptic curve
0 0 1 1, a nodal curve with a double point
0 0 n >2 In affineA,_ 1

> 1 1 2 II a cusp curve
1 > 2 3 III affine A, two P's intersect at a double point

> 2 2 4 IV affine A 2 , three P's intersect at a triple point
2 3 6 + n I* affine Dn+4

> 3 4 8 IV* affine 6

3 >5 9 111* affine E7

> 4 5 10 II* affine Es

Table 2.1: Kodaira's classification of elliptic fiber for the case of elliptic surfaces.

studied[53, 94, 51, 52]. A common description of the blow up process is by the

replacement

X = Xi , y = y1 , U = Ui, (2.3.51)

where (x1 , y1, ui) are projective coordinates of a P2 and ( 0 is the exceptional

divisor. The equation (2.3.50) is transformed to

y X30j + f2 u 2 X 3 + g2
2 . (2.3.52)

After the factor 2 is removed from this hypersurface equation, the equation

2 = X3 + f 2U2X, + 2 (2.3.53)
Yi X1 + +9 1~u

is smooth because the locus xi = y, = u1 = 0 was removed. This resolution is called a

crepant resolution since the canonical divisor of the hypersurface is unchanged. This

is because although we have blown up a codimension-two locus on X and modified

Kx by 2E following (2.2.41), this 2E term is removed from (2.3.52) to (2.3.53).

After this resolution, the elliptic fiber over u = 0 becomes a union of ]Ps in the form

of affine Dynkin diagram, as we have mentioned before. All the possible topological

types of these singular fibers for elliptic surfaces have been classified by Kodaira[87].

They can be computed systematically by "Tate's algorithm" [119] according the order

of vanishing of f, g and A. We list them in Table 2.1.
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From the topology of the singular fibers, we can see that the gauge groups in

8D F-theory from elliptic K3 are ADE ones, i. e. SU(N), SO(2N), E6, E7 and E8 .

For elliptic threefolds and fourfolds, the Kodaira's classification still roughly holds

for singular fibers over codimension-one locus on the base. However, for some of the

Kodaira fiber types, the actual topology and gauge group in F-theory is determined

by additional information called "monodromy" [63].

For example, in the case of type IV singular fiber, as we described in (2.3.50).

After the resolution, if we look at the exceptional divisor ( = 0, the equation (2.3.53)

becomes

yi -2U =0, (2.3.54)

now if 92 is a complete square, then this exceptional divisor is reducible and the topol-

ogy of the singular fiber is A 2 , giving SU(3) gauge group. Otherwise, the topology is

A1 and the gauge group is SU(2).

Similar thing happens for type I* fiber, suppose that f and g have the following

series expansion near a divisor u = 0:

m n

f = Zfii , g = gii, (2.3.55)
i=2 i=3

then the criterion is about the cubic polynomial

M(V) = 03 + f 24' + g3. (2.3.56)

If M(0) is completely irreducible, has two components or three components, then the

gauge group is G 2 , SO(7) or SO(8) respectively.

For the case of type IV*, it is similar to type IV. If g4 is a complete square, then

the gauge group is E6 , otherwise it is F4 . We write a complete list of the criteria for

gauge groups in Table 4.1.

In this thesis, we never allow the cases where ord(f) > 4 and ord(g) > 6. This

is called "codimension-one (4,6) singularity" and the singular Weierstrass model

cannot be resolved while preserving the Calabi-Yau property. Hence the F-theory
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ord(f) ord(g) ord(A) M() Gauge group
0 0 2 12 SU(2)
0 0 n > 3 In 2 + (9g/2f)lu=o Sp[ j or SU(n)
1 > 2 3 SU(2)

> 2 2 4 IV V2 -92 SU(2) or SU(3)
>2 > 3 6 I* 3 + f2C+ 3 G 2 or SO(7) or SO(8)

2 3 2n + 1(n > 3) I2n_, 02 + -IA2n+i(2uf /9g) 3 1=0 SO(4n - 3) or SO(4n - 2)
2 3 2n + 2(n > 3) I2n _4 2 + A 2n+ 2 (2uf/9g) 2 1u=o SO(4n - 1) or SO(4n)

> 3 4 8 IV* 02 -92 F 4 or E6

3 > 5 9 111* - E7
> 4 5 10 I* E8

Table 2.2: The list of the criteria for all the gauge groups in F-theory on a divisor
U = 0. M(O) is the "monodromy cover polynomial". When M(@) is completely
irreducible, the gauge group is given by the leftmost one. When M(b) is completely
reducible, the gauge group is given by the rightmost one.

low energy description does not have supersymmetry even at the compactification

scale. Although it is not proven, it is also possible that none of the geometries with

codimension-one (4,6) singularity can give a valid supergravity solution to the Ein-

stein equations.

Apart from the non-Abelian gauge groups, Abelian gauge group may appear if

the Weierstrass equation (2.3.44) has additional rational sections other than the zero

section (x, y, z) = (1, 1, 0). That is, if there exists global holomorphic functions A, a

and b that satisfies

a2  3 + fAb + gb (2.3.57)

These rational sections form the Mordell- Weil group MW(X) of the elliptic fibration,

which is highly non-trivial to compute. It is an additive group following the addition

of points on an elliptic curves. For two points (Xi, Yi) and (X 2 , Y2) on an elliptic curve

y2 = X3 + fx + g, their addition (X 3, y3) is computed as

A = Y2 - Y1 , X3 =A 2 - X1 - x 2 , y 3 = A(x 1 - X3) -y. (2.3.58)
X2 - X1

The doubling of (xi, yi) is given by the same formula with A = (3x2 + a)/(2y), and

the inverse of a point is simply (XI, -yi). It is then obvious that the addition of two

rational sections is another rational section of the elliptic fibration.
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The rank of this additive group is called Mordell- Weil rank rk(MW(X)), which

quantify the number of U(1) gauge groups in the low energy effective theory.

For a "generic elliptic fibration", we mean that f and g are generic holomorphic

sections of line bundles -4KB and -6KB, such that A vanishes to the lowest order

on any divisor on B. In this case, the gauge groups are minimal for any possible

fibration over B, and they are called "non-Higgsable gauge groups" that characterize

the base geometry[101].

For example, any gauge group from I, fiber in Table 4.1 is not non-Higgsable.

Since if ord(f, g) = 0 and ord(A) > 1, f and g have to be non-generic polynomials for

A = 4f3 +27g 2 vanishes to higher order at u = 0. The only possible Kodaira singular

fibers on a generic fibration are Io, 1, II, III, IV, I*, IV*, III* and II*, and the

only possible non-Higgsable gauge groups are SU(2), SU(3), G 2 , SO(7), SO(8), F4 ,

E6, E7 and E8.

2.4 Toric geometry

We have seen that the computation of holomorphic section of line bundles is crucial in

the F-theory applications. However, they are usually hard to write out for a general

complex manifold. Nonetheless, there exists a class of algebraic varieties called toric

variety, which is relatively simple[59, 36, 34]. They have been applied to a lot of

string geometry constructions, for example[95, 2, 56, 57], and we are also going to use

them in the later chapters.

The formal definition of toric variety is a complex algebraic variety X with a

complex torus T = (C*)' dense in X, such that there exists an action of T on X

whose restriction to T C X is the complex multiplication.

For example, pr is toric since we can take

T = {x : xi # 0 (i = 1... , r + 1)} c pr (2.4.59)

and the action of T on X is just the complex multiplication by x.
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For more general toric varieties, they are constructed according to discrete combi-

natoric data called toric fan. A toric fan E is a collection of strongly convex polyhedral

cones a E N = Z. A k-dimensional strongly convex polyhedral cone generated by

vectors viv2, ... , Vk is the set

k

o {- { aivilai > 0}, (2.4.60)
i=1

which satisfies ofl(--) = 0.

A toric fan E always satisfies the following two conditions:

(1) each face of a cone o E E is also a cone in E

(2) V- 1, U2 E E r,-1 l2 CE .

We denote the set of k-dimensional cones in E by E(k). The set of 1-dimensional

rays E(1) are v1i,. ... , vn, where n = (1)1. We use vizj to denote the j-th component

of the vector viU,(j = 1, ... , r).

Now we can explicitly define the geometry of the toric variety XE associated to E

as a quotient space of Cn.

For each vi E E(1), we assign a local coordinate xi. Then for any subset S C E(1)

that does not span a cone of E, we define a linear space V(S) C C' to be the subspace

with xi = 0 for all vi E S. Now we define Z(E) to be the union of all the V(S) and

the toric variety XE will be defined as

XE = (C" - Z(E))/G (2.4.61)

The group G is defined by the kernel of q5: (C*)f 3 (C*)':

n n

#:(X , ... ") Xvi ( of" ... o ). (2.4.62)

Since the group G reduces a n-dimensional vector space to a r-dimensional one, we

see that XE is indeed a r-dimensional toric variety.

Another way to think about toric variety is that each r-dimensional cone o E E(r)
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generated by vi, . .. , v, corresponds to a coordinate patch where x1 = X2 = - = X, =

0 can happen, but the other xi f 0. Then the whole XE is glued together by these

coordinate patches.

A toric variety is smooth if and only if all the r-dimensional cones o- E E(r) have

unit volume, or equivalently the matrix vij has determinant 1. Hence for a smooth

toric variety, the 1D ray vi always satisfy

gcd(vi 1 , vi,2 , ... , Vi,,) = 1. (2.4.63)

Another nice property of the toric fan of a smooth toric variety is that for any a C

E(r), we can find a SL(r, Z) transformation to transform the generator of a to v=

(1, 0, 0,. .. , 0), V2 = (0, 1, 0, ... , 0),.. . , Vr = (0, 0,. .. ,1).

A toric variety is compact if and only if U - = Z', or equivalently the 1D rays

vi, .. ., v, span Z .

The subset of a toric varieties 1 =2 = -= = 0 corresponds to the cone

0- c E(k) generated by rays v1,... , Vk. A toric divisor Di E XE corresponds to the

ID ray vi whose local equation is xi 0. A codimension-two locus Di ) Dj E XE

corresponds to the 2D cone viv with local equation xi = xj = 0, etc. All these

subsets are G-invariant.

In fact, the Picard group and the effective cone of divisors of XE is generated by

these toric divisors (classes) Di. The Picard rank rk(Pic(XE)) = n - r, because of

the following r linear equivalence relations between Dis:

vjDj = 0, (j = 1, ... ,r). (2.4.64)
i=1

Similarly, the Mori cone of curves is generated by the toric curves given by cones

a E E(k - 1).

The canonical divisor of a toric variety is given by

n

KxF = - Di. (2.4.65)
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For a compact toric variety, we can never have Kx, = 0 or X, is Calabi-Yau.

The intersection numbers between r toric divisors are computed as follows. For

smooth toric varieties, the intersection number between r distinct D 1, .. . , Dr is 1 if

vi, .. ., vr are generators of the same r-dimensional cone, but 0 if otherwise. Actually,

if vi and vj are not contained in any cone o- E E(2) simultaneously, then any intersec-

tion number involving Di and D vanishes, since from the definition xi and xi cannot

vanish simultaneously. The other intersection numbers involving self-intersections can

all be computed recursively using (2.4.64).

The blow up of toric variety along a (r --k)-dimensional toric subvariety D1D2 ... Dk

can be easily discribed by adding a new ray VE =1 vi to the toric fan. The origi-

nal k-dimensional cone vIv 2 ... Vk is subdivided into vIv 2 ... Vk_1VE, v 1 v2 ... Vk-2VkVE,

.. , v2v3 ... VkVE. Any higher dimensional cone including vv2 ... vk as a subcone is

also subdivided in this way.

One of the most important feature of toric varieties is that the holomorphic section

of line bundles on XE is generated by monomials that correspond to points in the

dual lattice M = N* = Z'. For a line bundle

n

L = aiDi (2.4.66)
i=1

in terms of the toric divisors, we define the polytope

L= {u C M = ZrIVo, , (u, vi) > -ai}, (2.4.67)

where (u, v) is the Euclidean inner product on Z. Now a general holomorphic section

of L is written as
n

SL U Z1J (uvi)+ai (2.4.68)
UEL i=1

where cu are complex coefficients. From the definition of L, one can easily see that

SL indeed has no pole anywhere.

For the most important line bundles -4KB and -6KB in F-theory, they are
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(0,0,1)

/ - - - (1,0,0)

(-1,-1,-1)

Figure 2-4: The toric fan of P 3.

generated by monomials that correspond to points in the following two polytopes:

T = {u C M = Z'V , (u, vi) - 4}, (2.4.69)

g = {u E M = Z'vi , (u, vi) - 6}. (2.4.70)

The order of vanishing of f E (-4KB) and g C O(-6KB) on a divisor Di is

then given by

ordDi (f) = min (u, vi) + 4 , ordDi (g) = min(u, vi) + 6, (2.4.71)

for the case of a generic fibration over B = XE. They are crucial for the identification

of non-Higgsable gauge groups on Di.

To determine the actual gauge group, we also need the monodromy cover infor-

mation, see Table 4.1. For the case of type IV fiber, the gauge group is SU(3) if and

only if the g2 coefficient only has one monomial that is a complete square. For the

case of type IV* fiber, the gauge group is E6 if and only if the g4 coefficient only has

one monomial that is a complete square.

As an simple example of toric variety, P" is given by a fan E C Z" with ID rays

Vi = (1, 0, ... 10), v 2 = (0, 1, ... , 0), vn = (0, 0, ... , 1) and v,+1 = (-1, -1,... -1),

see Figure 2-4 for the case of P'. The set of n-dimensional cones are {v1v2 ... Vn

V1o .3 ... Vn+1 ,V2V3 ... Vn+11-

51

A



Because of the linear equivalence (2.4.64), all the divisors D1, D2 ... , Dn+1 are

linearly equivalent to the degree 1 hypersurface H. The canonical divisor is then

K(P") = -(n + 1)H. (2.4.72)

The Picard group of pJ is one dimensional and generated by the toric divisor H. Using

(2.4.67) and (2.4.68), we can see that the holomorphic section of the line bundle dH

is given by the points in the polytope

n

p(dH) = {u = (u,.... ,un) Vi u >0 , ui < d}, (2.4.73)

where each of the point u gives the monomial

n

m1 X . (2.4.74)

They are exactly the components of a homogeneous polynomial of degree d.

The line bundle -4Kpn and -6Kpn are 4(n+ 1)H and 6(n+ 1)H respectively. For

generic sections of these line bundles, f and g does not vanish on any codimension-1

locus and there is no non-Higgsable gauge group.
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Chapter 3

Classification of complex base

surfaces

3.1 6D F-theory and non-Higgsable clusters

F-theory compactified on an elliptic Calabi-Yau threefold has a low energy description

of 6D (1, 0) supergravity. The massless particle spectrum includes supergravity mul-

tiplet, tensor multiplet, vector multiplet and hypermultiplet. The particle spectrum

of these supermultiplets can be found in Appendix A.

We usually denote the number of tensor multiplets, vector multiplets and hyper-

multiplets by T, V and H respectively.

In six-dimensions, there exists pure gravitational anomaly since d -= 2(mod 4)[4].

The anomaly comes from I-loop rectangle diagram, and it can be cancelled by "gen-

eralized Green-Schwarz mechanism" [65, 117, 50, 54] including the tree level diagram

with a 2-form tensor field, see Figure 3-1.

Suppose that the gauge group of the 6D supergravity is a product of non-Abelian

groups G = 1H, G, and the field strength of G, is F,. For a gauge group G, there

are charged hypermultiplets under representations R, labeled by I.
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Figure 3-1: A picture of Green-Schwarz mechanism in 6D. The wavy lines are graviton,
solid lines are fermions and the dased line is the 2-form tensor field.

The anomaly cancellation criterion is that the 8-form anomaly polynomial

- I1(H - V + 29T - 273)
5760

- 96 TrF

24

[trR4 +

5 1
- (trR2) 21
4 1

1
- (9 - T)(tr R 2) 2

128

- xItrRIFj

TrFZ - X~trRIFK - 6 E xKA(trRI

(3.1.1)

can be factorized into

18= x1I - = /3X4X4. (3.1.2)

In I8, x' and xjA are the multiplicity of representations under R6 and (R', R\). tr

and Tr denotes the trace under fundamental and adjoint representation respectively.

The matrix QGa is the symmetric metric of group SO(1, T), and X4 is a four form

field in the vector represent ationof SO(1, T), which has the component

X4 = IactrR2 + (2j9,)trF, (3.1.3)

The coefficients in X4 is chosen as a normalization convention, the factors A, are

given in Table 3.1.

From (3.1.1), (3.1.2) and (3.1.3), we can write down the following six anomaly
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group SU(N)/SO(N)/Sp(N) G 2 F4/E6  E7 E8
A 1 2 6 12 60

Table 3.1: The group theory numbers A for each simple Lie group.

cancellation equations:

273 = H-V+29T

a-a = 9-T

a - b, = A(AK t-ExKAK)

(3.1.4)

(3.1.5)

(3.1.6)

(3.1.7)

(3.1.8)

(3.1.9)

iA (Card - xCy)
I:X

i) =A~ zK AKA A(i # J)

0 = B -dj IXB .
I

where A, B, and Cr are group theory coefficients for a representation R, defined as

follows:

trR1F2 = AjtrF2 , trRF 4 = BR(tr F2) 2 + CRtrF 4 . (3.1.10)

These coefficients can be found in the Appendix B of [83].

One can also include a number of Abelian group factors U(1)i(i = 1,... , n) into

the game. Then 1s is modified and X4' has an additional term Zj 2baFiF[112].

The anomaly cancellation equations (3.1.4-3.1.9) will still hold, but there are four

additional anomaly cancellation equations:

a - bij = - x q,igqIj

0 = X'Eyqi

jk xIqI,iq,jqj,lqI,,

(3.1.11)

(3.1.12)

(3-1-13)

(3.1.14)
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where qj,i is U(1) charge under the group U(1)j, x1 is the multiplicity of such U(1)

presentation and E, is the group theory coefficient defined as

trR1F = EjtrF3 . (3.1.15)

In the geometric description of F-theory, the vectors a and b, are directly mapped

to divisor classes on the base surface S, and the dot product is exactly the intersection

number between divisors[92, 91].

For a given surface S generated by blowing up P2 consecutively r times, a conve-

nient basis of Pic(S) consists of the divisor class of the hyperplane H on the original

P2 and the exceptional divisors E1 , E2, ... , Er. The intersection matrix on this basis

is given by the SO(1, T) metric

H - H = 1 , H -Ej = 0 , E.Ej = -6 . (3.1.16)

Hence the Picard rank is rk(Pic(S)) = r + 1.

More generally, the Hodge index theorem states that for any surface with rk(Pic(S))

= r + 1, the signature of the intersection matrix is (1, r). When r > 1, there is always

a basis in which the intersection product takes the form (3.1.16); for r = 1, there are

surfaces where the intersection form has the structure of the matrix

0 1
U =(3.1.17)

=(1 0)

The canonical divisor class of p2 is Kp2 = -3H, and after r blow-ups it is in the

form of
r

Ks = -3H + Ei. (3.1.18)
i= 1

Hence if we identify r = T and a = -Ks the anticanonical divisor of S, then we

directly verify the anomaly cancellation equation (3.1.5) from the expression of Ks

and (3.1.16), since Ks - Ks = 9 - r.

We then identify b, with the curve C, where the gauge group G, lives on. Then
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the equations (3.1.5-3.1.9) are rewritten into equations of the intersection numbers of

divisors on S.

The order of vanishing of (f, g) on a curve C and the gauge group can be com-

puted using Zariski decomposition techniques[136]. The Zariski decomposition theo-

rem states that any effective divisor D on a rational surface S can be decomposed

into D = N + P. N = E niNi is the "negative part", which is a non-negative linear

combination of negative rational curves (genus-0 curve with negative self-intersection)

N , and the intersection matrix (Ni - Nj) is negative definite. P is a "nef' divisor which

means that for any curve C C S, P - C > 0.

The order of vanishing of f is then computed by the minimal integral value of a

in the Zariski decomposition

-4K = aC + X (3.1.19)

such that X - C > 0.

Similarly, the order of vanishing of g is given by the minimal integral value of b in

-6K = bC + X (3.1.20)

such that X - C > 0.

The lowest order term in f or g on C is a single monomial if and only if C -X = 0

in (3.1.19) or (3.1.20) respectively, which helps to identify the monodromy cover

polynomials in Table 4.1.

For example, if C is a rational curve with self-intersection (-3) (refered to as

3)-curve) that does not intersect with any curve with self-intersection (-2) or lower,

then from the adjunction formula of curve on a surface

K - C + C - C = 2g - 2, (3.1.21)

we see that -K-C = -1. Then take the dot product of equation (3.1.19,3.1.20) with

C, we see that the minimal values of a and b are 2 in both of the cases. Moreover,

since C - X = 0 in (3.1.20), we see that the g2 coefficient in g is indeed a complete
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square of complex number. Hence the gauge group is SU(3) according to Table 4.1.

For other cases and configurations of intersecting curves, the analysis can be done

similarly. In general, we require that (f, g) does not vanish to order (4, 6) or higher on

curves and points on S. As we have said before, codimension-1 (4,6) locus indicates

the break down of a supersymmetric solution. The appearance of codimension-2 (4,6)

signify the existence of a (1,0) superconformal field theory at that point[39]. If we

blow up this point, mathematically we add an exceptional divisor into the Picard

group. Physically, this exceptional divisor gives a new tensor multiplet where the

vacuum expectation value of the scalar field in it is proportional to the volume of the

exceptional divisor. This corresponds to moving into the tensor branch of this (1,0)

SCFT and it no longer has conformal symmetry. In our purpose of classification of

supergravity theory, we exclude the existence of such (1,0) SCFT and always blow

up these codimension-2 (4,6) points.

With these constraints, the only possible local configurations of curves with (-2)

or lower curves are listed in Table 3.2, which are called non-Higgsable clusters[101].

The matter representations are computed by the anomaly cancellation equations

(3.1.6,3.1.7,3.1.8). The representation -56 means that the matter fields in the funda-

mental representations 56 of E7 are half-hypermultiplets, which is pseudo-real[118].

Other configurations, such as two (-3)-curves intersecting each other, suffer from

the issue of codimension-two (4,6) singularity at the intersection point. If we blow

up this intersection point, each of the (-3)-curve C is properly transformed to a (-
4)-curve, see (2.2.43), and the configuration is now (-4,-1,-4) with two non-Higgsable

SO(8) gauge groups, which is completely fine. On the other hand, the configuration (-

4,-1,-5) is not allowed and still needs to be blown up to get rid of codimension-two (4,6)

singularity. A complete list of allowed non-Higgsable clusters connected by (-1)-curves

can be found in [101]. Another simple analytic rule is the E8 ruleheckman2015atomic,

which states that the curve configuration (-m, -1, -n) has no codimension-two (4,6)

singularity if and only if the non-Higgsable gauge group GL and GR on the (-m) and

(-n)-curve satisfies

GL x GR c E8 . (3.1.22)
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(-12) E8 8 - 248 0

(-8) E7 7 156 133 0
(-7) E7 7 - 133 28
(-6) E6 6 - 78 0
(-5) F4  4 - 52 0
(-4) SO(8) 4 - 28 0

(-3, -2, -2) G2 x SU(2) 3 (7 + 1, -2) 17 8
(-3, -2) G2 x SU(2) 3 (7 + 1, . 2) 17 8

(-3) SU(3) 2 - 8 0
(-2,-3,-2) SU(2)xSO(7)xSU(2) 5 (1,8,1 - 2) + (1 .2,8,1) 27 16

(-2, -2, ... , -2) no gauge group 0 - 0 0

Table 3.2: List of "non-Higgsable clusters" of irreducible effective divisors with self-intersection
(-2) or below, and corresponding contributions to the gauge algebra and matter content of the 6D
theory associated with F-theory compactifications on a generic elliptic fibration (with section) over
a base containing each cluster. The quantities V and Hcharged denote the number of vector and
charged hypermultiplets. Non-Higgsable gauge group cannot appear on (-1) or higher curves.

If there exists a curve of (-13) or lower on S, then (f, g) will vanish to order (4, 6) or

higher on that curve, which is strictly forbidden.

The total number of vector multiplets equals to the sum of the contributions from

local non-Higgsable clusters in Table3.2 and the number of non-Higgsable U(1)s,

which will be discussed in detail in Chapter 5. Actually, we can compute the Hodge

numbers of the elliptic Calabi-Yau manifold X over S after the resolution using the

physical spectrum of the 6D (1,0) supergravity. h1 "(X) is calculated by the Shioda-

Tate-Wazir formula[132]

h' 1(X) = h "(S) + rk(G) + 1, (3.1.23)

where G includes both the non-Abelian and Abelian factors. The Hodge number

h'(S) counts the dimension of the space of harmonic (1,1) form on S. From the

Poincar6 duality, this space of harmonic (1,1) form is isomorphic to the Picard group

of divisor classes, hence h"(S) =rk(Pic(S)).

h2 ,1 (X) characterizes the number of complex structure moduli of X, and it is
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related to the number of neutral hypermultiplets[54]

h2 ,1 (X) = Hneutral - 1 (3.1.24)

Since H = Hneutrai + Hcharged, we can compute from (3.1.4):

Hneutrai = 273 - 29T + V - Hcharged, (3.1.25)

hence

h2,1(X) = 272 - 29T + V - Hcharged, (3.1.26)

where Hcharged is the number of hypermultiplets charged under non-Abelian or Abelian

groups.

3.2 Classification of toric and semi-toric base sur-

faces

A general classification theorem of base surfaces of elliptic Calabi-Yau threefold was

proven by Grassi[61], which states that S is either a rational surface or an Enriques

surface. An Enriques surface is a complex algebraic surface with h' 1 (S) = 10. There

is no curve with self-intersection (-3) or lower on an Enriques surface[13], so there is

no non-Higgsable gauge group. Along with the reason that Enriques surfaces are not

connected to the set of rational surfaces by birational equivalence, we do not consider

this class of bases in this thesis.

Then the only class is the rational surfaces, and it is known from the minimal

model program that all the smooth rational surfaces can be constructed by a series of

blow ups from P2 or Hirzebruch surfaces IFn(n > 0). The Hirzebruch surface is a P'-

bundle over P' with a rational (-n)-curve. We show the curves on F" in Figure 3-2.

F and F' are the Pl fibers, which are in the same divisor class. So and S,, are two

different sections of the P-bundle, with different self-intersection.

In the toric geometry language, the curves in Figure 3-2 are all toric divisors of
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F n F'

0 0

-n

S

Figure 3-2: Loop of irreducible effective curves on the Hirzebruch surface F., corre-
sponding to irreducible toric divisors associated with rays in the toric fan. F = F'
correspond to the same divisor class, and S = S + nF. The self-intersections of each
curve are labeled beside it.

(0,1) s'

F

(1,0)

"(0,-i)
S

(-1,-n)
F'

Figure 3-3: The toric fan of Hirzebruch surface F,

F,. The toric fan E of F, is shown in Figure 3-3. The self-intersections of the divisors

in Figure 3-3 can be simply read off by the following formula: if the toric divisor Di

has two neighbors Di_ 1 and Dj+1, with toric ray vi_ 1 and vi+1, then Di is computed

by

vi_ 1 + vj+1 = -D vi. (3.2.27)

This can be simply proven by the linear equivalence of divisors on a toric variety

(2.4.64). Since all the 2D cone in the toric fan of a smooth toric variety has unit

volume, we can always find a SL(2, Z) transformation that maps vi_ 1, vi and vj+1 to

(-1, -n), (0, 1) and (1, 0) respectively. Then we have linear equivalence relation

-nDi- 1 + Di + X = 0, (3.2.28)
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where X is a linear combination of divisors that do not intersect Di. Then we take

the dot product of Di with the above equations, and get D? = n.

From (2.4.65), we can compute

-Kn = 2S + (n + 2)F. (3.2.29)

To describe the Picard group of IF, we can choose the following set of generators

for n = 2k + 1:

H - H =l I, H - E = 0 , E - E = -1, (3.2.30)

and we have

S=-kH+(k+1)E, 5=(k+-)H-kE, F=F'=H-E, (3.2.31)

which gives the correct intersection numbers.

For n = 2k, we can use the following generators (3.1.17):

P2 =Q2 = 0 , P. Q = 1, (3.2.32)

and

S=Q-kP, S= Q+kP , F=F'=P. (3.2.33)

Since a curve with self-intersection (-13) or lower is not allowed, the only good

starting points to blow up are Fn(0 < n < 12), as the bases from blowing up F,(n >

13) will always contain a (-13) or lower curve.

Hence we can explicitly classify all the compact toric bases in 6D F-theory by

blowing up Fn(0 < n < 12) recursively, which is done by Morrison and Taylor in

[105]. In the process, only blow up of toric points (intersection of two toric curves)

is allowed. This can be efficiently described by a "cyclic representation", which is a

series of numbers ((Mi, m 2 , .. . , mn)) denoting the self-intersection of the toric curves
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D1, . . . , D, that are connected to each other in a cyclic way:

Di -Dj ( J) = ( = r -)(3.2.34)
0 otherwise

For example, the cyclic representation of IF, is ((n, 0, -n, 0)), as one can see in Fig-

ure 3-2 or Figure 3-3.

The cyclic representations ((M 2 , m 3 , ... , m., min)) and ((Tn, , . . , min)) de-

note the same toric variety as ((min, M 2 , ... , mn)). The blow up of toric point Dk f Dk+1

on a toric variety ((Mi, ... , mk, ink+1, . .. , mn)) results in ((Mi, M 2, ... , Mk -1, -1, nk+1-

1, ... , Mn)), as the self-intersection numbers of the proper transformation of Dk and

Dk+1 are decreased by one (2.2.43), and there is an exceptional (-1)-curve between

them after the blow up.

For example, we start from P2 with the cyclic representation ((1, 1, 1)). If we blow

up any toric point on it, we always get ((1, 0, -1, 0)) up to cyclic permutation, which is

the cyclic representation of F1 . If we blow up F1 , we can either get ((1, -, -1, -2,0))

or ((0, -1, -1, -1, 0)). If we continue this procedure, we will encounter codimension-

two (4,6) point such as two (-3)-curves intersect each other. Whenever this happen, we

allow the blow up procedure to continue despite that these bases with codimension-

two (4,6) point are not counted in the final set of 6D F-theory bases, since this

codimension-two (4,6) point may be resolved by blowing it up. Finally, if we hit

a base with (-13)-curve, the recursion will not continue from here. The order of

vanishing of f and g on curves and points can be simply computed using the toric

polytope techniques: with the T and g polytopes (2.4.69, 2.4.70),

ordDi (f) = min (u vi) + 4 , ordDi (g) = min (u,vi) + 6, (3.2.35)

ordDi fD.f) = min(u1 vi - v) +8 , ordDi fDjg) = min(u,vi v Uj) + 12. (3.2.36)

In [105], they also includes the bases with -9/-10/-11 curves on it. Near such a curve

U = 0 with self-intersection p - 12(p = 1, 2, 3), f vanishes to order 4 and g has the
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following local expansion

9 = gs(v)u5 + 0(g6 ), (3.2.37)

where g5 (v) is a degree-p polynomial in v. Hence for a -9/-10/-11 curve, there exists

3/2/1 points on it where (f, g) vanishes to order (4, 6). This problem can be simply

resolved by blowing up these points, which lead to p (-1)-curves intersecting a (-

12)-curve. Hence strictly speaking, the good bases without these (4, 6) points are

non-toric, but they are still counted in [105].

We can make a program that blows up from p2 and F,(0 < n < 12) recursively

and visit all the possible blow up branches. A branch is thrown away if it reaches

a base with codimension-1 (4,6) singularity or a good base that has been recorded

before. In total, there are 61,539 distinct toric bases including the ones with -9/-10/-

11 curves. The maximal number of tensor multiplets is T = 193 corresponding to

h1'1 (S) = 194.

An interesting common feature for bases with large h'(S) is the appearance

of curve chain (-12, -1, -2, -2, -3, -1, -5, -1, -3, -2, -2, -1, -12), which is com-

monly denoted as (-12

- 12). In fact, this curve chain exactly comes from the resolution of two E8 surface

singularities intersecting each other at u = v = 0:

y2 =x3 + u v uv + U , (3.2.38)

which is an important type of "conformal matter" in [39].

To compute the Hodge numbers of the generic elliptic Calabi-Yau threefold X

over these bases, we use the Shioda-Tate-Wazir formula (3.1.23) to compute h1 "(X)

assuming there is no non-Higgsable U(1) gauge groups. We will generally prove that

there is no non-Higgsable U(1)s on any toric bases in Chapter 5. To compute h2 ,1 (X),

there are two different methods. First, we can use the anomaly cancellation formula

(h2lanomaly) with the non-Higgsable clusters on S, assuming there is no U(1) gauge

group. Secondly, we can directly count the number of complex structures in the
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following way[105]:

h2,1 (X) = W - Waut + N- 2 - 1. (3.2.39)

W is the total number of Weierstrass moduli computed by the number of lattice

points in the polytopes (2.4.69,2.4.70):

W = F1 + 1g1. (3.2.40)

It is substracted by the dimension waut of the automorphism group of S[33]. Denote

the polytope with vertices vi(i 1,... , n) by A* and its dual polytope by A:

A = {u E 7ZT Vi , (u, vj) > -1}, (3.2.41)

then

Waut = 2 + l*(e). (3.2.42)
ID edge EEA

The sum is over ID edges in A, and l*(E) counts the number of interior lattice points

on E (not including the two end points).

N- 2 in (3.2.39) counts the additional complex structure moduli from (-2)-curves

that are not in any non-Higgsable cluster.

After checking all the 61,539 cases, the formula (3.2.39) and (3.1.26) exactly

matches each other, hence we have verified the assumption that there is no non-

Higgsable U(1).

The Hodge number pairs (h", h2') constructed in this way can all be found in

the Kreuzer-Skarke database[90]. The Kreuzer-Skarke database is a systematic clas-

sification of general Calabi-Yau threefolds as hypersurface in toric fourfold ambient

spaces. The toric ambient spaces are constructed by "reflexive polytopes" (A, A*),

which means that

( = A (3.2.43)

using the definition of dual polytope (3.2.41). The two Calabi-Yau threefolds embed-

ded in A and A* form a mirror symmetry pair where their h" and h2,1 interchanges[14].
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Figure 3-4: The Hodge numbers from Kreuzer-Skarke database (black) and generic
elliptic threefolds over toric bases (red).

In total, there are 473,800,776 disctinct reflexive polytopes giving rise to 30,108 dis-

tinct Hodge pairs (h", h2"). We plot the Hodge numbers of the generic elliptic

threefolds over toric bases versus the Kreuzer-Skarke database in Figure 3-4.

As we can see, the datapoints with large h2 "(X) or h"'(X) typically matches,

which means that most of the Calabi-Yau threefolds with large h2 "(X) or h'1(X)

are elliptically fibered. Especially, the Calabi-Yau threefold with the largest known

h11(X): (h1'1 , h2 ,1 ) = (491,11) is elliptically fibered with the largest T = 193.

The mirror of this Calabi-Yau threefold is the one with the largest known h2 ,1 (X):

(h", h2 ,1 ) = (11, 491), which is just the generic elliptic Calabi-Yau threefold over

Hirzebruch surface F12 .

Apart from the toric bases, another class of 2D "semi-toric" bases have also been

classified [97]. Unlike the toric surfaces with an (C*) 2 action, a semi-toric surface only

has a single C* action on it. The typical geometric structure of a semi-toric surface

has two curves Do and D. and a number of chains of rational curves between them,

see Figure 3-5. If there are less or equal than two chains between them, then the
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Do

Figure 3-5: A picture of semi-toric surface.

geometry is reduced to a toric surface with a circle of curves.

The allowed blow up operations on this set of semi-toric surfaces are:

(1) blow up of points between two rational curves;

(2) blow up of a generic point on Do or D,, which adds a new chain of two (-1)-curves

between Do or D,.

There are in total 162,404 distinct semi-toric surfaces including the toric surfaces

and the ones with -9/-10/-11 curves. We can also compare the Hodge number h2"(X)

from the anomaly formula (3.1.26) and a Weierstrass model calculation[97], which we

will not present the detail. Mismatch was found in some cases, indicating the existence

of non-Higgsable U(1)s. We will discuss this issue in more detail in Chapter 5.

3.3 Classification of general non-toric bases

3.3.1 General strategy

Since the complete sets of toric and semi-toric base surfaces in 6D F-theory have been

completely classified, a natural idea is to classify the most general non-toric surfaces

from blowing up P2 and F,. In the mathematical literature, the set of generalized

del Pezzo surfaces has been classified by Derenthal[43, 42]. A generalized del Pezzo

surface S is a generated by blowing up P2 at r points. It is required to be weak Fano,

which means that -K - C > 0 for any curve C C S. Equivalently, this means that

there is no (-3) or lower curve on S. The only negative rational curves are then (-2)

and (-1) curves, with no non-Abelian non-Higgsable gauge group. In constrast, the
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usual del Pezzo surface dP is constructed by blow up P2 at r generic points. As a

result, del Pezzo surface only contains (-1)-curves and it is Fano which means that

-K - C > 0 for any curve C C S.

On generalized del Pezzo surfaces, the configuration of (-2)-curves form a disjoint

sum of ADE type Dynkin diagrams with certain constraints[43]. The (-1)-curves are

all the rational curves that one can write down, which do not intersect any (-2)-curves

negatively. On del Pezzo surfaces, there is no (-2)-curve, and the set of (-1)-curves is

everything that one can write down.

From this observation, we should identify the rational curves with self-intersection

(-2) or lower after a blow up, and then compute the effective cone Eff(S) from it.

The set of bases we are studying is the set of rational surfaces with rk(Pic(S))

h1'1 (S) > 3 and an effective anticanonical divisor -Ks. The first condition allows

the following lemma to be held [10]:

Lemma 1. For surfaces generated by blowing up IF,, (n < 12), which have Picard rank

greater than 2, when the effective cone is polyhedral (i.e. generated by a finite set of

vectors), then the effective cone is generated by rational divisor classes with negative

self-intersection.

For P2, the effective cone is generated by the hyperplane divisor H with self-

intersection 1. For the Hirzebruch surfaces F,, with Picard rank 2, the effective cone

is simply generated by S and F with

S - S = -n , F -S = 1 , F - F = 0. (3.3.44)

Note that curves of negative self-intersection on a base surface that supports an

elliptic Calabi-Yau must always be rational. From (2.2.29), an irreducible curve of

negative self-intersection with g > 1 satisfies -K -C < C -C < 0. From this it follows

that -nK contains C at least n times. This means that (f, g) must vanish to at least

orders (4,6) over C which is not allowed.

The effectiveness condition of -Ks ensures that -4Ks and -6Ks has holomorphic

section, otherwise f and g will vanish identically on S. This class of surfaces is called
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anticanonical rational surfaces[96, 73].

With Lemma 1 to be held, we define Neg(S) as the set of irreducible negative

rational curves that generate Eff(S). Clearly for C, D E Neg(S), if C 7 D, then

C -D > 0. The subset of Neg(S) with (-2) or lower curve is called Sing(S), which cor-

responds to the non-Higgsable clusters in Table 3.2 as well as ADE type configurations

of (-2)-curves.

The dual cone of the effective cone is the nef cone Nef(S), defined as:

Nef(S) = {D c Pic(S) VC E Eff(S) , D -C > 0}. (3.3.45)

The nef cone is a subcone of the effective cone, see Corollary 11.3 in [73] for example.

We always use the Picard group generators H, E. .. , E, (3.1.16), and a divisor

class D =a H -+ Zr arE, is denoted as a vector (ao, a 1, . . . , ar).

We define the set of genus g, self-intersection k > 0 divisors C that intersect

non-negatively with every curve D C Neg(S) by Qg,k>o(S) C Nef(S). They are all

effective curves, as we mentioned before.

We also define Lk(S) = Ug Cg,k(S), and we always call the one-time blow up of S

to be S'.

With this set of notations, when we blow up a point that lies with multiplicity m

on a representative of an effective divisor class C and self-intersection k, there is a

new effective divisor class C' = (C, -im). Using the adjunction formula (2.2.29), the

following lemma holds:

Lemma 2. If one blows up a curve C E g,k(S) at an m-point on S, the resulting

new effective curve on S' is: C' = (C, -mn) E eg-(m2-m)/2,k-m2 (S').

This implies that blowing up a single point on a curve will not change its genus, but

blowing up an m-point on a curve will decrease the genus of the curve by (M 2 - m)/2.

Hence we cannot blow up a rational curve at a double point, otherwise the genus will

become negative.

On a given base S, the different ways of blowing it up can be classified as follows:
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(1) One can blow up a generic point p on S. Then all the elements C c Neg(S) are

transformed to C' = (C, 0), because they are fixed and they will not pass through

a generic point p. The exceptional curve E' = (0,..., 0,1) is an element in Neg(S')

that is a generator of the new effective cone. The full Neg(S') that generates Eff(S')

contains other (-1)-curves as well, which will be computed later.

(2) One can choose to blow up a non-generic point, so that a set of curves Co,i E

EO,k<O are blown up at a single point. The index i here just labels different curves

with the same genus. In the simplest cases, the point blown up lies only on a single

rational curve C of negative self-intersection, in which case the transformed curve is

C' = (C, -1). The point blown up may also lie at an intersection point between a pair

of negative curves C, D, in which case both curves are transformed and C' -D' = 0.

(3) There are also situations where a set of curves C1,i E (1,k<3 are blown up

at a double point, C2,i C Q3,k<8 are blown at a triple point, and so on. This will

produce new negative rational curves of self-intersection < -1 that must be included

in Sing(S') We define the blow-up process to be a "special blow-up" when one or

more (-2) or lower curves are generated by blowing up positive curves at points with

multiplicity higher than 1.

(4) In some cases it may be possible to choose a non-generic point as in (2) that

lies at the intersection of more than two negative curves.

Cases (1) and (2) can be handled in a systematic fashion using the combinatorial

data of the effective cone. Case (3) and (4) are subtle and they may or may not give

us new bases. In the specific regimes that we completely in Section3.3.3, they never

occur.

For the (-1)-curves in Neg(S'), we have the following proposition:

Proposition 1. The set 2o,_1(S') of rational (-1)-curves C = (a, b1, b2 ,..,b,) E

Neg(S') generated by the blow up method is the solution set to the following Diophan-
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tine equations:

asZb~ = -- 1
a i b1

(3.3.46)
3a+ bi =1

i1

with the additional requirement that the curve intersects non-negatively with all the

elements in Sing(S').

The two equations fix the self-intersection and the genus of C by adjunction for-

mula (2.2.29)

To introduce the proof, we think about a divisor class D as a linear system IDI

with dimension:

dim(IDI) hO(S, O(D)) - 1 (3.3.47)

For general (arbitrary genus) curves, we have[66]

ho(S, 0(D)) > (D2 - Ks- D)/2 + 1, (3.3.48)

hence we have the following lemma:

Lemma 3. A negative divisor class on S is always rigid. For a non-negative effective

divisor class D on S, there exists a representative D E |DI that passes through any

(D 2 - Ks -D)/2 points in S.

A point with multiplicity m is counted as m2 points in this lemma.

For rational curves D, we have a stronger result [88]

dim(IDI) = max(D2 + 1, 0). (3.3.49)

Hence if the rational curve has negative self-intersection, then dim(IDI) = 0 and the

curve is cannot be deformed. If D is irreducible, then it is really a single "fixed"

curve.
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For example, consider the curves of self-intersection (-1) on a surface formed by

blowing up 2 r times at pi, ... , pr. The divisor classes of degree 1 rational curves

with self-intersection (-1) can be written as H - Ej - Ej, corresponding to the set

of lines that pass through the pairs of points pi and pj on the original P2. There is

a unique line that passes through two fixed points in the plane, hence the resulting

(-1)-curve is fixed. Similarly, the divisor class of degree 2 rational curves with self-

intersection (-1) can be written as 2H - Ej - Ej - Ek - E - Em, corresponding to the

set of conics that pass through five fixed points. We know this divisor is also rigid,

since there is a unique conic passing through five fixed points. However, the divisor

class of degree 1 rational curves with self-intersection 0, H - Ej, corresponds to the

set of lines that pass through a particular point pi, and are free to rotate around pi.

In fact, such lines can pass through every point on P2.

Now we present the formal proof of Proposition 1:

Proof. We prove this by induction. First one can check the correctness of this state-

ment for P2 and IF,. Then suppose this is true for a base S; we want to show this is

also true for any surface S' that is generated by blowing up S once.

(i) All the curves C' E Toi,(S') satisfy the requirements in the proposition.

Obviously they satisfy the Diophantine equations. If C' negatively intersects with

D' E Sing(S'), this means C' = D'+ F' where F' is some other effective divisor, hence

C' is reducible and is not in Neg(S').

(ii) All the irreducible rational (-1)-curves C' that satisfy the non-negative intersection

requirement in the proposition are elements of To,_1(S'), and can be generated by the

blow-up process. We analyze the different types of solution to (3.3.46) separately.

(a) This is obviously true for the solution (0, ... , 0, 1) since it is the exceptional

curve E' E To,- (S') associated with the blowup S -+ S', and none of the other curves

has a positive last entry.

(b) For all the solutions of the form C' = (C, 0), where we know that C intersects

non-negatively with all the elements in Sing(S), it follows by induction that C E

To,_1(S). From the general characterization of the blow-up process described earlier,
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C' = (C, 0) is still in Eff(S), but it may be represented as a positive linear combination

of a lower self-intersection effective curve and the exceptional curve: C' = (C, -n) +

m(0, 1). When this happens, however, it means that C' intersects negatively with

(C, -m) e Sing(S'), which contradicts the requirement in the proposition. Hence

C' = (C, 0) is irreducible when it satisfies the requirement in proposition, and it is in

60-(S').-

(c) For all the solutions of the form C' = (C, -m), m > 0, C is a genus (m2

m)/2, self intersection M 2 - 1 divisor. In fact the solution to the equations (3.3.46)

automatically intersects non-negatively with any other solutions (see Theorem 2a in

[110]). Together with the assumption that C' intersects non-negatively with all the

elements in Sing(S'), we can conclude that C' intersects non-negatively with any

other curve in Neg(S'). From this we can also know that C is nef hence is effective

on S. Then according to Lemma 3, C E Q(m2-m)/2,m21(S) can be blown up at a

generic point with multiplicity m. These statements together guarantee that C' is an

irreducible curve on S'. Hence any solution of the form C' = (C, -m), m > 0 that

satisfies the requirement in the proposition is in Neg(S'). El

Now we need to generate the solutions to the Diophantine equations (3.3.46)

using a finite algorithm. In fact, all the solutions can be generated by a series of

"q-operations" acting on curves, which are defined as follows [110]:

For a curve in the form (a, bi, b2, ... , b,), one picks three numbers il, i2, i3 out of

{1,... , r}, then performs the following transformation:

a -a+d , bil -> bi -d , bi2 -+ b i2-d, bi 3 -- bi3 -d , d = a+bil+bi2+bi3 . (3.3.50)

It can be explicitly checked that the two quantities a 2 - 1> b2 and 3a + T> bi do

not change under this transformation.

In practice, one starts from some low-degree curves, such as all the degree 0 and

degree 1 rational (-1)-curves. Then one tries to perform all the q-operations on one

curve so that the degree is increased (d > 0 in (3.3.50) ). If the curve intersects

negatively with some element in Sing(S), then we cut this branch. This recursive
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algorithm is finite if Eff(S) is finitely generated. We discuss more about the finiteness

of curves in section 6.

However, the set of (-1)-curves generated in this way may not be complete. For

a consistency check, we compute the dual cone of Neg(S) generated by the method

above, and check whether the generators (extremal rays) of this dual cone are non-

negative. If a generator is negative, we know it is a (-1)-curve in Neg(S) that was not

generated by the q-process. After adding all the (-1)-curves of this kind, we can get a

complete set of curves in Neg(S), with a dual cone that contains no negative curves.

3.3.2 The algorithm

Now we are ready to construct a finite recursive algorithm for generating general

bases, with specific prescriptions for dealing with the various potential complications

discussed in preceding sections.

(1) We start from a base S, with Picard rank r + 1 and a vector representation of

negative curves Neg(S), Sing(S) E Neg(S). This data should always be finite.

(2) We construct all blowups of S in three possible ways: blow up the intersection

point of two curves Cj, Ci E Neg(S), blow up a generic point on a curve Ci E Neg(S),

or blow up a generic point on the plane. We do not consider blowups at points at

which three or more negative curves intersect. The special blow-ups are also excluded

in the current algorithm.

After this step we have the new Sing(S').

(3) With this new Sing(S'), we use the q-process to generate the (-1)-curves on S'.

In practice, we just start from all the curves of degree 0 and degree 1. If the number

of curves in this step reaches a certain large value, then the number of generators is

considered to be infinite and the base is discarded.

(4) Then we need to check if the degrees of vanishing of f E O(-4K), g E

O(-6K), A C O(-12K) are greater or equal than (4, 6,12) on any of the divisors.

Practically, we use the method of Zariski decomposition, as in [101]. We decom-
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pose -nK as
k

-nK = a C + Y (3.3.51)
i=1

for n = 4, 6,12.

The integral coefficients ai indicate the orders of vanishing of -nK on the divisors

C. And C,(1 < i < k) are all the elements in Neg(S'). The residual part Y should

be an effective Q-divisor, which intersects non-negatively with all curves Ci. We start

from a, = a 2 = - = ak = 0, and examine Y - Ci for every C. If this quantity

is negative for Ci, then we add a minimal value to a that will make this quantity

non-negative and do the check again, until Y - Ci > 0 for every C. If in the process

any a reaches a certain value (11 for n = 12), then the singularity is too bad to be

resolved. When this happens the process stops and the base is discarded.

If there is set of coefficients ai that pass the check, then we examine all the

intersection points of pairs of negative curves ai and aj. If the sum of coefficients

ai + ai > 10 for n = 12, then this intersection point needs to be blown up.

Furthermore, bases containing (-9),(-10),(-11)-curves are not good, since there are

always (4,6) points on these curves. Such points need to be blown up until the

curve of large negative self-intersection becomes a (-12)-curve. (Note that the points

blown up in this process could be generic points on these curves or points where they

intersect with other negative curves).

(5) If no additional points need to be blown up, then we compute the generators

of the dual cone of Neg(S'). This is known to be a hard problem, the exact algorithm

is described in p.11 of [59]. If the vectors in Neg(S') are d = r + 1 dimensional, then

one computes the normal vector u to each of the (d - 1)-dimensional facets. Then if

u or -u intersects non-negatively with all C E Neg(S'), then u or -u is a generator

of Nef(S'). Hence if n = INeg(S')I, then the computational complexity is at least

(n 1) = (). This turns out to be the major computational difficulty in this program.

After all the generators of the dual cone of Neg(S') are found, we check if all

the generators are non-negative. If not, we add the negative ones into Neg(S'). We

repeat the step (4)(5), and finally the dual cone of Neg(S') will be free of negative
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generators, which means that the set Neg(S') contains the complete set of (-1)-curves.

We then further check if -K = (3, -1, -1,... , -1) intersects non-negatively with

all the generators. If not, then -K is not in the effective cone hence the base is not

allowed.

(6) If the previous test is passed, then this base S' is good. The next step is check-

ing if the intersection structure is isomorphic to one of the bases generated before.

The graph isomorphism problem is also known to be hard; it is not clear if there

exists a polynomial algorithm. In practice we used the "VFlib" library developed by

Pasquale Foggia[55].

(7) If all the tests are passed, add this base to solution set and restart step (1)

using S'.

The overall starting points are the bases with r = 2 that come from blowing up

Fn, and which have no (-9),(-10),(-11) curves. We list their Neg(S) below (the l.h.s.

is the cyclic toric diagram for these bases S):

(3.3.52)

So P2 and F, are not counted in the solution set and they have to added in by

hand.

Using this algorithm, we can produce a finite list of possible bases in a specific

desired range. There are three possible sources of incompleteness or inaccuracy in
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((0, 0, -1,7 -1, -1))

((7 -1, -1, -2, 0))

((2, -1, -1, -3, 0))

((3, -1, -1, -4,10))

((4, -1, -1, -5, 0))

((5, -L, -1, -6, 0))

((6, -1, -1, -7,10))

((7, -1, -1, -8, 0))

((11, -- 1, -1, -12,10))

:{(0, 1,0), (0,0,1), (1, -I, -1)}

:{(0, 1, -1), (0, 0, 1), (1, -1, -1)}

:{(-1, 2,10),1(0,10,11),1(1, -1, -1)}

:{ (--, 2, -1), (0, 0, 1), (1, -1, -M)

:{(-2, 3,0), (0,0,1), (1, --1, -M)}

:{(-2, 3, -1),1(0,10,11), (1, -1, -M)

:(-3,14, 0), (0, 0, 1), (1, -1, -1)1}

:(-3, 4, -1), (0, 0, 1), (1, -1, - 1)}

:{(-5,16, -1), (0, 0, 1), (1, -1, -- M



such a list:

(i) Bases where the effective cone has an infinite number of generators, or a very

large number that exceeds the arbitrary cutoff in the code, will be missed.

For example, we consider a an r = 9 base S with

Sing(S) = {(i,-i,-i,-oooo,o, ),(i,0,0,, -1,-1-1o,o,,),

(1, 0, 0 0, 0 0, 0,-1, -1, -1)} . (3.3.53)

This is a generalized del Pezzo surface with three (-2) curves. This surface clearly

satisfies the condition that -K is in the effective cone, since -K is the sum of the three

(-2) curves. We can prove that there are infinitely many (-1)-curves in the effective

cone: suppose that we pick an exceptional curve Co = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0). Then

at step 1 we perform the q-operation with entries bi, b4 , b7. At step 2 we perform

the q-operation with entries b2, b5 , b8 . At step 3 we perform q-operation with entries

b3 , b6, b9 , and we infinitely repeat these three steps. The intersection product with

the three curves in Sing(S) is invariant during this process. The degree of the curve

at step 2n - 1 equals to n2 . This means that the process will give arbitrarily high

degree curves, hence the number of (-1)-curves is infinite.

(ii) Bases that are produced by "special blowups" giving curves of self-intersection

-2 or below, or by blowing up points at the intersection of more than two negative

curves, will be missed by this algorithm.

(iii) On some bases, there are certain combinations of more than two negative

self-intersection curves that are forced to intersect at a common point. This is a part

of geometric information about S that is not encoded in the effective cone data. For

example, the two cases in Figure 3-6 will lead to different blow up results.

One particular situation of this type involves the 1,700 years old Pappus's theorem.

For example, consider the configuration of Sing(S) with r = 9 in Table 3.3; the

corresponding geometrical picture is drawn in Figure 3-7. Note that in the last blow-

up at point i, lines gh, cf and bd are guaranteed to intersect at a single point, by

Pappus's theorem.
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-I -1
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Figure 3-6: Two geometric configurations with the
vector representations of curves, but which can be
distinct intersection structure

same intersection
blown up to give

structure and
surfaces with

Table 3.3: A configuration
intersect each other

of Sing(S), with 9 (-2)-curves that forms 3 groups of 3 curves that

a C E e

A D hB
G

b f

F i H d

Figure 3-7: The geometry of the blow-up points a,b,c,d,e,f,g,h,i, of the configuration
in Table 3.3. This is an example of Pappus's theorem.
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curve point a b c d e f g h i
A 1 -1 -1 -1 0 0 0 0 0 0
B 1 0 0 0 -1 -1 -1 0 0 0
C 1 0 0 0 0 0 0 -1 -1 -1
D 1 -1 0 0 -1 0 0 -1 0 0
E 1 0 -1 0 0 -1 0 0 -1 0
F 1 0 0 -1 0 0 -1 0 0 -1
G 1 -1 0 0 0 0 -1 0 -1 0
H 1 0 -1 0 -1 0 0 0 0 -1
I 1 0 0 -1 0 -1 0 -1 0 0

-1 -1



There does not exist a complete framework to resolve this issue in every case, and

we want to avoid this problem as we can.

3.3.3 Results

Now we are going to present the results in two different regimes where the three

subtleties above does not bother us.

Classification of all bases with h' 1 (S) < 8

If h1"(S) < 8 or r < 6, we can explicitly determine the set of all combinatorially

distinct effective cones. The smallest value of r where the issue arises that three neg-

ative curves may intersect each other is 6, where we can have A = (1, -1, -1, 0, 0, 0, 0),

B = (1,0,0, -1, -1,0,0), C = (1,0, 00,0, -1, -1). Hence this subtlety will not af-

fect the classification of bases with r < 7 if we do not distinguish betweent the two

cases in Figure 3-6.

The problem of special blow-ups will neither appear, since the shortest vector

representation of a curve that comes from a special blow-up is (3,-1,-1,-1,-1,-1,-1,-1,-

2). Moreover, the number of generators of the effective cone is finite for all surfaces

in this range. Hence the list of all bases with h'(S) < 8 generated by our algorithm

is indeed complete.

In total there are 468 bases with 8 > h1'1(S) > 0. This includes the surfaces p 2 and

F, with n = 0 ~ 8 or 12. Among these, 245 are non-toric and 177 are not included in

the semi-toric list in [97]. All previously identified toric and semi-toric bases appear

in the set generated by our algorithm, which gives a check on the correctness and

completeness of the result. It also generates all the generalized del Pezzo surfaces in

[43] within this range.

In the counting, we do not include the ones with -9/-10/-11 curves and they are

explicitly blown up to get (-12) curves.

We can compute h' 1 (X) and h2 ,1 (X) of generic elliptic Calabi-Yau threefolds over

these bases using (3.1.23) and (3.1.26), assuming that there is no non-Higgsable U(1).
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Figure 3-8: The Hodge numbers of the generic EFS (elliptically fibered with section) Calabi-Yau
threefolds over all smooth complex surface bases with h' 1 (S) < 8 are represented by black dots.
The 6D theories that result from compactification on these CY3s have T < 7 tensor supermultiplets.
The Hodge numbers in the Kreuzer-Skarke database are represented by gray dots.

We plot these Hodge numbers in Figure 3-8.

Classification of all bases for elliptic Calabi-Yau threefolds with h2' 1 > 150

Another set of bases that we can completely classify is the set of bases that support

elliptic Calabi-Yau threefolds X with h2" (X) > 150. This subset is relatively easy

to study, because it turns out that the difference between INeg(S)l and rk(Pic(S)) is

small, hence the dual cone problem is easier to solve. Also, the situations in which

three negative curves intersect each other or the dual of Neg(S) contains a negative

curve never happen, nor does an infinite number of negative curves ever arise. The

only issue that could in principle make our list incomplete is the presence of special

blow-ups, which is related to the existence of higher degree curves. However, for

example, if we consider the bases from blowing up F12, the existence of the (-12)-

curve strictly constrains the possible form of curves on S. The curve (3,-1,-1,-1,-1,-1,-

1,-1,-2) will never appear since it intersects the (-12)-curve (-5,6,-i,... ,0) negatively.
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Figure 3-9: The Hodge numbers of all the EFS Calabi-Yau threefolds with h2 " > 150 generated by
generic elliptic fibrations over smooth surfaces are represented by black dots. The Hodge numbers
in the Kreuzer-Skarke database are represented by gray dots.

The rational curve with degree d > 0 that intersects (-12)-curve non-negatively is the

one with form (6, -5,0,...). And the base giving maximal h2' 1 (X) that contains a

negative curve in this form is the one constructed from blowing up F 12 at 13 generic

points, with h2'1(X) = 491 - 13 x 29 = 114 < 150. Similar analysis can be done for

the other cases, see Section 10.3 in [125] explicitly.

In total, our algorithm produces 6511 bases over which the generic elliptic Calabi-

Yau threefold has h2,1 (X) > 150. This set of bases includes p2 and F, with n = 0 - 8

or 12. All the 3871 toric and toric + semi-toric bases identified in [105, 97] giving

threefolds with h2,1 > 150 can be found in our list (including ones generated from

blowing up -9/-10/-11 curves at generic points). Hence the number of new bases that

is not in the list of [97] is 2640.

We plot the Hodge numbers of the generic elliptic Calabi-Yau threefolds over this

set of bases in Figure 3-9. Generic elliptic fibrations over the 6511 distinct bases give

CY threefolds with 1278 distinct Hodge number pairs.

Among them, we have identified 15 bases that give rise to elliptic Calabi-Yau
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threefolds with Hodge numbers that are not in the Kreuzer-Skarke database. Their

Hodge numbers are:

(h1'1, h2,1 ) = (29, 299), (48, 270), (30, 270), (59, 269), (41, 269), (70, 268),

(31, 241), (31, 241), (66, 240), (42, 240), (89, 239), (20, 214), (3.3.54)

(84, 210), (149, 179), (104, 152).

For example, the base giving (hl'1 , h2,1) = (29,299) can be constructed by blowing up

a generic point on the (-4)-curve of the toric base

((-12, -1, -2, -2, -3, -1, -4, -1, -3, -1,6, 0)). (3.3.55)

Since they typically have large h2,1(X), the number of Weierstrass moduli W >> 12

and non-Higgsable U(1)s will not appear, see Chapter 5. Hence we have computed

the correct Hodge numbers.
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Chapter 4

Classification of complex base

threefolds

4.1 Calabi-Yau fourfolds and 4D F-theory

A Calabi-Yau fourfold X is a Ricci flat Khler manifold with holonomy group SU(4).

The major topological invariants we are interested in are the Hodge numbers hP'q(O <

p, q < 4), which are the dimension of the linear space of harmonic (p, q)-form on X.

There is a unique holomorphic (4,0)-form Q on X, hence h4 '0 = 1. Similarly, since

the (0, 0) form is just a complex number, we have ho'0 = 1. The Calabi-Yau condition

implies that h"'O = h2 ,0 = h3'0 = 0, and the K'ahler condition ensures hP'' = h .

Along with the Hodge duality relation hP'q = h4-p' 4- on a complex fourfold, the

Hodge diamond hP'q of X always takes the following form (hP'q is on the p-th row and

q-th column):

1 0 0 0 1

0 h"' h2,1 h3 ,1 0

0 h2,1 h2,2 h2 , 0 (41.1)

0 h3 ,1 h2,1 h"' 0

1 0 0 0 1
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A corollary from Hirzebruch-Riemann-Roch index theorem gives us a relation between

these Hodge numbers[84:

h22 = 2(22 + 2h' + 2h3,1 - h2,). (4.1.2)

Hence there are only three indepedent Hodge numbers for a Calabi-Yau fourfold: h',

h2,1 , h'. h', counts the number of Kdhler moduli TA or the parameters that controls

the size of different cycles on X. h3 ,1 counts the number of complex structure moduli

Za, which is closely related to the number of Weierstrass monomials in the case of an

elliptic fourfold.

We have the Euler number

4 i

X(X) = (--1)' hj'-j
i=O j=0

= 4 + 2h', + 2h3 " + h2 ,2 - 4h2 ,1  (4.1.3)

= 6(8 + h'"- + h3" - h2,

Another useful topological number is the fourth betti number b4 = dim(H4 (X)):

b4= 2 + 2h 3 ,1 + h 2,2
(4.1.4)

= 46 + 4hl + 6h3,1 - 2h 2,1

To get a feeling of the Hodge numbers of Calabi-Yau fourfolds systematically

generated in the literature, we plot the distribution of Hodge numbers for Calabi-

Yau hypersurfaces in 5D weighted projective spaces in Figure 4-1. Although a large

number of Calabi-Yau fourfolds lies in the region h1'1 , 3,1 < 10,000, the maximal

value of h1,1 and h3,1 can be very high, up to 303,148.

These topological numbers are crucial for 4D F-theory on X because of the central

importance of the G4 flux. In the M-theory dual picture, the G4 flux is the field

strength of the C3 form field that couples to M2-branes. The G 4 flux is integrally
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quantized[135]:
c2(X)cH(~G4 - E H4(X, Z).

2
(4.1.5)

c2 is the second Chern class of X. Hence if c2(X)/2 H4(X, Z), then we cannot take

G4 = 0.

We can write down the low energy effective action of M-theory containing a higher

derivative term:

SM O( d"(X) vr-g R -

+ 3,

I G4 A *G4 - 1 I C3 A G4 A G4 + I C3 A X8 (R)

(4.1.6)

where X8 (R) is the 8-form[49]

X8 (R) = (2)4 [ 1 (trR2)2 +)
-768

1
I trR 4 P). (4.1.7)

Thepi and P2 are the first and second Pontryagin class of X (c2 (X) = 1(X))

crucial property of X8 is that

I X8 (R)
=(X)

24
(4.1.8)

The final term in (4.1.6) is the coupling term of C3 with NM2 copies of M2 branes

M2j.

The equation of motion for C3 from (4.1.6) is

d*G4 = G 4 A G4 - X8 (R)
2 + E 6 M2i.

Integrating this equation over X, we arrive at the "tadpole cancellation equation":

I f
21x

G4 A G4 + NM 2 =
X(X)

24
(4.1.10)

Again, we see that if X(X)/24 is not integral, then there has to be a non-vanishing
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G4 flux in the background to make the theory self-consistent.

The set of possible quantized G4 flux is called the "flux vacua", which represents

a large number of F-theory/string theory solutions on a single geometry[47, 41, 111.

There are a number of physical constraints on G4 . The condition that the 4D low

energy theory has SO(3,1) Lorentz symmetry put the following constraints on G4 [37]:

/ G4C= G4 = 0, (4.1.11)
Z n Bi " Bi n Bj

where Z is the zero section of the elliptic fibration X, which is isomorphic to the

base threefold B. Bi are "vertical divisors" in X constructed from the fibration of

the base divisors. Z and Bi are all complex threefolds, and their intersection locus is

a complex surface in the elliptic fourfold X over which we can integrate G4.

If we require that the low energy theory preserves f = 1 supersymmetry, there

are D-term and F-term conditions involving Kdhler moduli and complex structure

moduli on X.

The D-term condition can be written as

G4 A J = 0 E H6 (X, R), (4.1.12)

where J is the Kdhler (1,1)-form of X.

The F-term condition is related to the superpotential in the 4D F = 1 theory,

which is the Gukov-Vafa-Witten superpotential[69]

W = G4 A Q, (4.1.13)

where Q is the unique holomorphic (4,0) form on X. The F-term conditions are[40]

W = 0 (4.1.14)

and

Da W = 0, (4.1.15)
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where Da is a covariant derivative in the space of complex structure moduli

Da = aa -aaln JQ A (. (4.1.16)

These equations are crucial for the moduli stabilization, which is a procedure to

determine the actual value of these Kdhler moduli and complex structure moduli. For

example, we need these information to actually compute the mass of massive particles

in an F-theory model. It is not entirely clear if a general G4 in the flux vacua will

lead supersymmetric solution satisfying the D-term and F-term conditions. We will

not consider these problems in detail in this thesis.

The space of G 4 flux can be decomposed into a vertical part Hf, a horizontal

part H and a remaining part HR[23, 131]:

H4 (X) = HH(X) e HV (X) + Hkb(X). (4.1.17)

The vertical flux has the form of

G4 = F Aw2  (4.1.18)

where wi is the (1,1)-form that is Poincar6 dual to the exceptional divisor Ei(the

exceptional V' fibered over a base divisor with gauge group) in X. F is a (1,1)-

form corresponding to the gauge flux on the 7-branes. The presence of vertical flux

will break the gauge group on the divisor to the commutant of the Cartan generator

corresponding to E. For example, this provides a mechanism to break the GUT SU(5)

gauge group on a divisor to the standard model gauge group SU(3) x SU(2) x U(1)[46].

For this reason, the "non-Higgsable gauge groups" we compute in the 4D F-theory

are only geometrically non-Higgsable. They can be broken by the vertical G 4 flux.

In constrast, the horizontal flux in HH is the space of G4 flux that does not break

any of the gauge groups. The remaining part is the non-vertical G4 flux which breaks

the gauge group, which is argued to be non-significant for a general elliptic Calabi-Yau

fourfold[23].
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The massless spectrum of particles in the 4D g = 1 supergravity is not as con-

strained as the 6D case, since there is no pure gravitational anomaly in 4D. The

supermultiplets are a unique supergravity multiplet with graviton g,,, and gravitino

a number of vector multiplets with a vector field A, and a gaugino x' and a

number of chiral multiplets with a scalar # and a spinor Oc. Similar to the 6D case,

there are charged chiral multiplets under gauge groups and neutral chiral multiplets.

The number of vector multiplets n, and chiral multiplets n, are related to the

topological number of X and B in the following way[67].

The total rank of the gauge group equals to

rk(G) = (h"1 (X) - h1 '1(B) - 1) + h 2 1(B). (4.1.19)

The first part (h"'(X) - h1 1 (B) - 1) is given by the Shioda-Tate-Wazir formula

(3.1.23). The second contribution h2,1 (B) corresponds to a number of U(1)s from the

decomposition of the R-R 4-form field C4 in the IIB description:

C4 = A, A w'(I = 1, ... , h2 ,1 (B)), (4.1.20)

where w1 are the harmonic (2,1)-forms on B. The complete set of geometric gauge

groups in 4D F-theory then has three components: the non-Abelian gauge groups

on divisors, the U(1) gauge groups from additional rational sections of the elliptic

fibration and the additional U(1)s from h2 ,1 (B).

The total number of chiral multiplets equals to

nc = h3,1(X) + h"1 (B) + (h2,1(X) - h2,1(B)). (4.1.21)

h3 ,1 (X) counts the number of complex structure moduli of X, h1' 1(B) counts the

number of Kdhler moduli on B, which can be thought as the Hodge dual of the

tensor multiplets in the 4D theory. The last term (h2 ,1 (X) - h2 ,1 (B)) comes from the

"Wilson line scalars" used in M/F-theory duality[67].

The spectrum of charged chiral multiplets depends crucially on the G4 flux. Let
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us consider the localized matter on a curve C, which is the intersection of two divisors

D1 and D 2 that carry gauge groups G1 and G2 . Suppose that on the curve C, the ex-

ceptional divisor forms an affine Dynkin diagram of a larger group G -D G1 x G 2, then

the matter representations on C is given by (R1 , R2) in the following decomposition:

adjG ~ (adjG 1 , 1) e (1, adjG 2 ) e (R1, R2 ). (4.1.22)

Suppose that the G4 flux only contains the vertical parts (4.1.18), then the multiplicity

of chiral multiplets on C is given by

1
Nc = h0(C, [F] + -KC) (4.1.23)

and the multiplicity of anti-chiral multiplets is

1 1
Rc = h'(C, [F] + -Kc) = hO(C, -KC - [F]). (4.1.24)2 2

[F] is a divisor class on the curve C that is Poincar6 dual to the gauge flux (1,1)-form

in (4.1.18). The identity H1 (C, [F] + !Kc) = H0 (C, }Kc - [F]) is a result of Serri

duality[66] on a curve. The net chirality is then

X=hO(C, [F] + -Kc) - hl(C, [F] + Kc)= F. (4.1.25)
2 2 Jfc

Hence if we set all the G 4 flux to be zero, there is no net chirality on any matter

curve. Since Kc = -2 for rational curves with genus g = 0, there is no matter on

rational curves if G 4 = 0. For more generic G 4 fluxes, the computation of matter

spectrum is extremely involved, see [19, 20].

Besides the local matter fields, there are also charged matter on a divisor D car-

rying gauge group G. The chiral spectrum can be computed using an 8D topological

twisted Yang-Mills theory on the 7-brane world volume[15].

Another new feature in 4D F-theory is the Yukawa coupling term from the inter-

section of three divisors on B[15]. It does not exist in the 6D case. As a summary,
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we see that the 4D F-theory model contains all the different components of the real

world physics. The problem is then how to realize the standard model in a natural

way, and find out whether the standard model can be realized on a general geometry.

4.2 Classification of base geometry in 4D F-theory

In the regime of 4D F-theory, the traditional terminology of "string landscape" often

corresponds to the set of flux vacua on a given elliptic Calabi-Yau fourfold X. How-

ever, we want to increase the territory of this string landscape to a broader "string

geometric landscape" that includes all the possible geometries used in compactifica-

tion. The classification program of 4D F-theory solutions then has the following three

different layers:

e Classification of topologically distinct base threefolds B. Unlike the classifica-

tion of base surfaces, there does not exist a mathematical theorem about what

are the possible classes of base threefolds. Nonetheless, it was recently proved

that the family of base threefolds and elliptic Calabi-Yau fourfolds are finite up

to flops [44]. Flop is a birational map that is a combination of a blow up and

a blow down, see Figure 4-3. In practice, we can also try to generate a large

number of base threefolds connected to each other via blow up and blow down

and study the properties of these bases, such as the topological numbers and

the non-Higgsable gauge groups.

Physically, these blow up/down process corresponds to tensionless string tran-

sitions that changes the base geometry in the very early universe. These phys-

ical transitions can be thought of quantum tunneling between states in a huge

web[31], although we do not know anything concrete about the quantum me-

chanical process or what is the energy of each eigenstate.

e Classification of different fibrations on a given base B. A non-generic fibration

will bring separated 7-branes together and give a larger gauge group than the

non-Higgsable phase. Since f and g are tuned, the number of complex structure

91



moduli h3'1 (X) will decrease. This will decrease the total number of flux vacua

on the resulted geometry by a large exponential factor. For example, it was

shown in [22, 131] that tuning an additional SU(5) GUT group on P3 will

suppress the total number of flux vacua by a factor of ~ 10-3,000. Following this

logic, we may argue that the GUT construction is unnatural in constrast to the

non-Higgsable phase. In this thesis, we only consider the generic fibration over

a given base.

o Analyze each flux vacuum corresponding to a specific G4 , computing the particle

spectrum and stablize the K'ahler and complex structure moduli.

In this thesis, we only focus on the classification of base threefolds. Analogous to

the case of base surfaces, the set of rational threefolds that are birationally equivalent

to P3 is a good family to be explored. For simplicity, we will only consider the toric

threefolds due to the following three reasons:

" The crucial discrete data such as the effective cone and Mori cone are straight

forward to read out on a toric threefold. They are simply generated by the toric

divisors and toric curves. For a non-toric threefold, they are not so obvious.

" On a toric variety, the section of line bundles can be easily written out with the

points in the dual polytope (2.4.67). On a non-toric variety, we do not know how

to write down the section of -4KB and -6KB explicitly. So we do not know how

to compute the order of vanishing of (f, g) on divisors and curves. For non-toric

surfaces, we can compute them with Zariski decomposition. However, for non-

toric threefolds, the Zariski decomposition method will not provide sufficient

data to determine ord(f, g).

There exists formula to compute the coefficients fk and gk in the expansion near

a divisor Di given by the local equation s = 0[107]:

f =Zfksk , g - g sk, (4.2.26)
k k
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using the normal bundle and canonical bundle of Di[107]:

fk,i C ((-4KD, + (4 - k)NDi - 1 0Cij), (4.2.27)
DinDj$0

C,i E O(-6KDi + (6 - k)ND, - 13 (4.2.28)
DinODj:7L

5j, -yj denotes the order of vanishing of f and g on Dj that intersects Di. If

fk,i E O(Ck) and Ck is ineffective for all k < ko, then f vanishes to at least

order ko on Di. Similar statement holds for g.

However, it is not clear how to construct a definite algorithm to determine

ord(f, g) on all the divisors since the formula (4.2.27, 4.2.28) involves ord(f, g)

of the adjacent divisors as well. On the other hand, the non-adjacent divisors

may enhance the order of vanishing of (f, g) and they cannot be read off by

(4.2.27, 4.2.28).

9 The only possible ways to blow up a toric threefold is to blow up a toric curve

or a toric point, see Figure 4-2. More generally, one can blow up a curve on a

threefold to produce a non-toric threefold. However, the classification of non-

isomorphic irreducible curves on a threefold B is unknown, even if B = P3. So

we do not really know how many non-toric threefolds are connected to a given

threefold via a blow up/down.

The defining data for a smooth compact toric threefold is the set of rays E(1)

{vi = (VixViYViz) C N = Z3} and the set of 3D cones E(3) = {O = viVjVk}.

Denote n = E(1)|, then we always have E(3)1 = 2n - 4. The set of toric curves

E(2) = {viv. 7lu C E(3) , vivj C o} is completely determined by the data E(3).

There are two kinds of blow up operations on toric bases B: one can either blow

up a point that corresponds to a three-dimensional cone o = ViVVk or blow up a toric

curve vivj. In the first case, a new ray v- = vi + v, + Vk is introduced. The old three-

dimensional cone a is removed, and three new three-dimensional cones 91 = vivji,

&2 = VjVkV, c 3 = vkviv are included. For the second case, a new ray 6 = vi + v, is
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Figure 4-2: Illustration of two different kinds of blow ups, viewed from above. The
left case corresponds to blowing up a point ViVjVk. The right case corresponds to
blowing up a curve viv3 .

introduced. Suppose that there are two old 3d cones -1 = ViV3 Vk and o 2 = vitvV 1

that contain the toric curve vivj. They are removed after the blow up. Four new 3d

cones &i = ViVkV, &2 = Vj'VkV, &3 = vivi3, &4 = vjvl are included. Note that vivj is

no longer a toric curve after the blow up. Similarly a blow down is described as the

contraction and removal of a ray. Given a ray v, it may or may not be contracted

depending on the neighboring rays. If there are only 3 neighboring rays vi, vj, Vk and

they satisfy v = vi + v3 + Vk, then v can be contracted into a point. If there are

4 neighboring rays vi, Vk, 'Vj, v1 (in cyclic order around the curve), if v = vi + v3 or

V = Vk + v1, then v can be contracted into toric curve vivj or VkV, respectively. For all

the other cases, the ray v cannot be contracted to get another smooth toric threefold.

When there are rays vi, vj, Vk, v1 that satisfy the relation vi + vj = Vk + vj, and

there is a 2d cone vivj, then there exists a "flop" operation, which is a combination

of a blow up and a blow down; see Figure 4-3.

The Weierstrass polynomial f ang g for a generic elliptic fibration over B is defined
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Figure 4-3: Illustration of the flop process, which can happen when vi + v3 = Vk + V1 .

by the polytopes F and g as usual:

F = {u E Z3JVvi, (U, vi) > -4},

9 = {u E Z3I Vi, (U, Vi) ;> -6},

(4.2.29)

(4.2.30)

The order of vanishing of f and g on a toric divisor Di is

ordDi(f)= min((u, vi) + 4) uET,

ordDig) = min((u, vi) + 6 ) uEg.
(4.2.31)

The order of vanishing of f and g on a toric curve DjDj is:

ordDiDj (f) = min((u, vi + vj) + 8) 1uF,

ordDiDj(g) =min((uvi -vj) + 12) uEg-

(4.2.32)

Note that ordDiDj (f, g) can be greater or equal to ordDi (f, g) + ordDj (f, g). This is

different from the case of 2d bases, where the order of vanishing on the intersection

point of two divisors is always the sum of the orders of vanishing on those two divisors.
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Similarly we can write down the order of vanishing of f, g and A on the point

DiDjDk:

ordDiDJDk (f) = min((U Vi + Vj + k) + 12)UE, (4.2.33)

ordDiD. Dk (-) min((uvi +Vj + k) + 18)1 uEg

We can compute the non-Higgsable gauge groups following the general procedure

in Chapter 2.

To exactly define the set of toric threefold bases we are going to classify, it is

important to clarify the following issues:

e Codimension-two (4,6) locus.

When (f, g, A) vanish to order (4, 6, 12) or higher over a codimension-two locus

on B, we can try to blow up these loci and lower the degree of vanishing of (f, g)

to be less than (4,6). If this blow-up process can be done without introducing a

codimension-one (4,6) locus in the process, then we call this base B a "resolvable

base". In fact, the polynomials F and 9 are unchanged after this resolution process.

Since the points u that are removed in F/9 polytopes after blowing a curve DiDj

are the ones satisfying (u, vi + v) < -4/ - 6.

As we have discussed in Chapter 3, the appearance of such a codimension-two

(4,6) locus in 6D F-theory signify a (1,0) SCFT sector decoupled with gravity. In

4D F-theory, the correspondence between such codimension-two (4,6) loci and the

4D ) = 1 SCFT is not clear. After the usual resolution process of the singular

Weierstrass model without blowing up the (4,6) curve on the base, there will be an

exceptional 4-cycle such that the fibration is no longer flat. Wrapping a D5 brane on

this 4-cycle will give us a ID object in the JIB picture. Hence in the limit where this

exceptional 4-cycle is shrunk to zero volume, we will have a tensionless string when we

attempt to directly compactify F-theory over the base with a codimension-two (4,6)

locus. It is not clear whether these tensionless string object will cause any problem

in the 4D low energy effective theory, especially in the presence of non-zero G4 flux.

* Terminal singularities on the Calabi-Yau fourfold.
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Sometimes there are non-resolvable singularities on the CY 4-fold that cannot be

resolved to a smooth Calabi-Yau geometry, which has nothing to do with the (4,6)

singularity. For example, we can write the Weierstrass equation in the following form

using local coordinates (s, t, u):

y2 = x 3 + (aos + ait)x + (bos 2 + bist + b2t
2 ), (4.2.34)

where the coefficients ao, a,, bo, bi, b2 are generic functions of u. Then there will be

singularity over the locus x = y = s = t = 0. We cannot resolve this singularity

without changing the canonical class of the CY 4-fold. This type of terminal singu-

larity appears generically in the complex structure moduli space, but we treat these

singularities as acceptable ones. In a recent paper on elliptic CY 3-fold[9], these ter-

minal singularities are shown to be correspond to a finite number of neutral chiral

matter fields. The impact of these terminal singularities in CY 4-fold is still not

well-understood yet, but we expect that they will only alter the counting of the chiral

multiplets.

* Codimension-three (4,6) locus

It is also a common feature that f and g vanishes to order (4,6) or higher over

codimension-three locus in the base. They may lead to non-flat fibration in the

resolution process if there is only one gauge group involved [94, 26]. For example, if

there is an E7 gauge group on s = 0:

y2 = X3 + (aos3 + as + )+ (bos 5 + bis + ), (4.2.35)

then there is a codimension-three (4,6) locus at ao = bo = s = 0, which leads to

non-flat fiber at this point[94].

A clearer classification of codimension-three (4,6) locus and their physical conse-

quences should be done in further research, and we generally allow their appearance

if (f, g) does not vanish to order (8,12) or higher on this point.

Hence the allowed bases in this classification program are separated into two

different classes:
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(1) The resolvable bases with toric (4,6) curves, but they can be removed after

a finite number of blow ups along these toric curves. A practical criterion for the

resolvability is to check whether the origin (0, 0, 0) lies on the boundary of g. If the

origin (0, 0, 0) lies in the interior of g, then after the resolution process where all the

(4,6) curves are blown up, there will not be a codimension-one (4,6) locus on any

divisor. This follows because if there exists such a divisor corresponding to the ray v,

then all the points u E g satisfying (u, v) < 0 will vanish and the origin (0, 0, 0) lies

on the boundary plane (u, v) = 0 of g.

(2) The good bases without any toric (4,6) curves. We allow the non-toric (4,6)

curves on divisors with E8 gauge group in parallel to the 6D F-theory case where

we allow the -9/-10/-11 curves in the counting of "toric" base surfaces. These non-

toric (4,6) curves can be easily blown up to get rid of these codimension-two (4,6)

singularity. We also have strictly good bases which are toric threefold bases without

any (4,6) curves at all.

The appearances of terminal singularities and codimension-three (4,6) points are

generally allowed in all of these classes.

For the generic elliptic fourfold X over a good base B, we can compute the Hodge

number hl'1(X) using the Tate-Shioda-Wazir formula:

h1'1(X) = h' (B) + rk(G) + 1 + N(blp), (4.2.36)

where G is the non-Abelian gauge groups on B. N(blp) is the number of additional

blow ups to resolve the codimension-two (4,6) singularity on divisors with E8 gauge

groups. If this codimension-two (4,6) locus is irreducible, then it contributes 1 to

N(blp). If it is reducible, then its contribution to N(blp) is the number of irreducible

components.

We can also estimate the Hodge number h3 ,1 (X) using an approximate Batyrev
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type formula [124]:

h 3,1 (x) h3,I(x )

IJ1 .jI-gI- 1'(E)) -4+
OEA,dime=2 EjEAO EA*,dim(6j)=dim(6*)=1

(4.2.37)

Here A* is the convex hull of {vi} and A is the dual polytope of A*, defined to be

A {u E R3 Vv E A* , (u,v) > -1}. (4.2.38)

The symbol e denotes 2d faces of A. E8 and E) denote the Id edges of the polytopes

A and A*. l'(.) counts the number of integral interior points on a face. This formula

is analogous to the formula (3.2.39) in the elliptic Calabi-Yau threefold case. Here

ITI + gI; counts the number of Weierstrass moduli, ZE8E,dim8=2 l'(E) + 3 is the

dimension of the automorphism group waut of the base B, and the final term in

(4.2.37) is analogous to N- 2 . This formula was not proven, but we have checked that

it produces consistent results for many examples in [100].

Now we are going to present two different exploration results of the toric threefold

bases.

4.3 Random walk on the set of toric threefold bases

4.3.1 Methodology

In [124], we restricted ourselves to the set of strictly good toric bases, which means

that there is absolutely no (4,6) curves on the base. Under this constraint, we can

probe a connected set C of strictly good toric bases that include P3. We start with

starting point P3, and in each step of the random walk, the base may be blown up

or blown down to get another base. In the performance, each valid blow-up or blow-

down from a given base B C C is given an equal probability. Following a basic result

in graph theory, if we perform a random walk on a graph where each node Vi has ni
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neighbors, and the neighbors are chosen uniformly on each step of the walk, we will

get a distribution of bases on nodes proportional to ni.

In practice, we randomly choose from the set of all the (6n - 10) possible 3D cones,

2D cones, and rays at each step. Then we test the chosen move to see if it results in

an allowed base. For the cases of 3D cones, 2D cones and rays, they correspond to

blowing up a toric point, blowing up a toric curve and blowing down the toric divisor

respectively. If the tested step does not lead to an allowed base, we try again. After a

large number of steps, we expect a "thermal" distribution in which the probability of

each base B in the set C is proportional to ni, the number of valid neighbors to which

B is connected by a single blow up/down. Hence in order to compute the statistical

information using a uniform distribution on C, we need to weight each base by the

factor 1/ni. To reduce the computational complexity, we do not explicitly compute

ni for each base. We record the number t of attempts needed to identify an allowed

neighbor instead. Naively the number of allowed neighbors of a given base B should

be (6n - 10)/ (t), where (t) is the average number of tries needed to identify an allowed

neighbor over many trials on the base B. The weighting factor 1/ni can therefore be

estimated as (t)/(6n - 10), so we can get uniform statistics on C by weighting each

base with the factor t/(6n - 10).

This factor is not correct if different neighbors of one base are equivalent. For ex-

ample, consider a graph with only three nodes: P', blpconeP3 and blpcurveP. blpconeIP3

and blpcurvep 3 denote the bases that result from blowing up a 3D cone or a curve on

P3 respectively, which are explicitly defined below:

p3 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0,0,1), V4 = (-1, -1, (4.3.39)

E(3) = {v1v2v3, v1v2v4 , v1v3v 4, v2v3v4}
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blpconep3 :v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1), v4 = (-1, -1, -1), V5  (1, 1, 1),

E(3) = {v1v2v4,v v3v4,v2v3v 4, v1v2v5 , v1v3v5 , v2v3v5}

(4.3.40)

blpcurve p3 :VI (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1), v4 = (-1,-1,-1),V5  (1, 1, 0),

E(3) = {v1v3v4, v2v3v4, v1v3v5 , v1v4v5 , v2v3v5 , v2v4v5}

(4.3.41)

There are four ways to get blpconeIp3 and six ways to get blpcurve p 3 from blowing

up a cone or curve on P3, since there are 4 3d-cones and 6 2d-cones in the toric fan of

P3. This means that naively P3 has 10 neighbors, and the base is weighted by 1/10.

Now, if we perform a random walk on this graph, the expected probability ratio is

p(P3 ) : p(blpone p3 ) : p(blpcurve p 3) = 10 : 4 : 6. Then after we weight p(P3 ) by a

factor 1/10, the expected probability ratio becomes 1 : 4 : 6, which is still far from

uniform. To fix this problem, we compute the symmetry factor F of each base, which

is defined to be the order of the subgroup of the permutation group acting on the

toric divisors of the base that preserves the cone structure. For example, for the base

P3, since all the four rays v 1 , v 2, v3 , v4 can be permuted arbitrarily without changing

the cone structure, F(P3 ) = 24. For the base blpcone p3, the divisors corresponding to

v 1 , v2 and v 3 can be permuted, hence F(bPconep 3 ) = 6. For the base blpcurve p3 , there

are two symmetric divisor pairs: (vI, v 2 ) and (v 3 , v 4 ), hence F(blpcurvep3 ) = 4. After

we multiply those symmetry factors by the ratio 1 : 4 : 6, then we achieve a uniform

distribution. In general, if we use the proper weighting factor

t.-F(B)
w(B) = t - 1) (4.3.42)

(6n - 10)'

then this problem will not bother us.

For a general base with a large number of rays, the probability of having a non-
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Figure 4-4: The distribution of h" l(B) including weighting factors (4.3.42). Bold
black curve is the average distribution among the 100 runs, while the colored curves
are some example distributions from individual runs. The total number of samples
in each run is normalized to 100,000.

trivial symmetry is negligible. Practically, the inclusion of symmetry factors only

affects the statistics of bases with a number of rays n < 10.

4.3.2 Unbounded random walk

We have recorded 100 independent random walk sequences (runs), each of which

starts from P and has 100,000 bases in it. They are refered as "unbounded" runs to

distinguish them from the other runs with bounded h'1'(B) described in Section4.3.3.

To compute the statistics of the each subregion of C probed by these runs, we remove

the first 1000 bases since they have atypically small h1'1 (B) and do not represent a

typical base in the middle of C.

The total distribution of h1'1 (B) is plotted in Figure 4-4 and compared to the

distributions for several individual runs.
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Figure 4-5: Average values of the (approximate) Hodge numbers for generic elliptic
Calabi-Yau fourfolds over the threefold bases encountered in each of the independent
random walk sequences.

We also plot the average Hodge numbers (h'1 (X), h3,1(X)) of the generic elliptic

Calabi-Yau fourfolds X over the sets of bases B explored by the different random

walk sequences in Figure 4-5. h3 , (X) is the approximate Hodge number computed

by (4.2.37). These Hodge numbers locate at the corner close to the origin in the

Figure 4-1.

For the geometric non-Higgsable gauge groups, it turns out that essentially all

the bases found in the Monte Carlo runs had some divisors supporting non-Higgsable

gauge factors. The only exceptions were in the first few bases encountered in each

run. This is generally verified in [72, 71] as well.

For bases with h1 '1 (B) between 40 and 100, the fraction of divisors on any base

that support a non-Higgsable gauge factor is roughly 35-40%.

We list the average numbers of times that each individual non-Higgsable gauge

group factor arises on a typical base in Table 4.1. SU(2)r1 1 and SU(2)iv denotes

the SU(2) non-Higgsable gauge group from type III and type IV Kodaira fiber type
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SU(2)iv SU(2)
7.5 1.5 13.6 1.6

SO(8) F 4

SU(3)
2.0 0.6

E 6
4 x 10-6 2 x 10-5 j1.0 0.62.8 1.1 0.3 0.4 0.2 0.5

Table 4.1: Average number of times each non-Higgsable gauge group factor appears
on a base, with standard deviation computed among the 100 runs.

SU(2) SU(3) G2 SO(7) SO(8) F4  E6  E 7
99.999 0.001 83 11 99.93 0.07 0.0004 0.002 59 21 94 21 26 31 18 37

Table 4.2: Average percentage of bases with a specific gauge group factor, with
standard deviation computed among the 100 runs.

respectively. We also list the percentage of bases with a specific gauge group factor

in Table 4.2.

It turns out that the gauge factors SU(2) and G2 are mostly dominant. The

gauge factors F4 and SU(3) also generally arise on a typical base, with an average

number of appearances higher than 1 in each case. For the other gauge group factors,

their appearance seems to characterize some "local feature" of the part of landscape

covered by a particular run. For example, in a particular run, a large percentage of

bases possess E6 gauge group but they are not common for the other runs.

Along with the observation in Figure 4-4 and Figure 4-5, we see that each runs

actually probe a local subregion of their own. Hence each of these random walk

sequence is not a good global approximation of the whole set C, and it really makes

sense to perform a number of different runs rather than record a single sequence with

a billion bases.

From these statistics, the SO(7) gauge group is the rarest and one should not

expect the appearance of SO(7) on a typical base.

Since we do not allow the bases with divisors having E8 and (4,6) curves on them,

we never encounter a base with E8 as they are effectively disconnected with C. This

phenomenon is not present in the other classes of bases.

For the pair of non-Higgsable gauge groups on adjacent divisors, the only possible
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SU(2)xSU(2) SU(3)xSU(2) SU(3)xSU(3) G2 xSU(2) SO(7)xSU(2)
7.6 1.9 2.4 0.9 0.4 0.4 14 3 0 0

Table 4.3: Average number of appearances of each gauge pair on a base, with standard
deviation computed among the 100 runs.

SU(2)xSU(2) SU(3)xSU(2) SU(3)xSU(3) G 2 xSU(2) SO(7)xSU(2)
98 6 76 14 28 16 99.9 0.7 0

Table 4.4: Average percentage of bases with a specific gauge pair, with standard
deviation computed among the 100 runs.

configurations are [107]:

SU(2) x SU(2) , SU(3) x SU(2) , SU(3) x SU(3) , G 2 x SU(2) , SO(7) x SU(2)

(4.3.43)

This follows from the requirement that there is not a (4,6) singularity on the in-

tersection of the two divisors, along with monodromy conditions. Such gauge pairs

are naturally associated with codimension two singularities supporting (geometric)

matter that transforms as a field charged under both gauge factors in presence of a

non-vanishing G4 flux.

We have listed the average number of times each gauge pair arises on a typical

base in Table 4.3. We also list the percentage of bases with a specific gauge pair in

Table 4.4.

An interesting feature in the statistics is that for a typical base, the gauge pair

SU(3) xSU(2) appears more than once, and more than half of bases (- 76%) support

at least one SU(3) x SU(2) gauge pair. Such a non-Higgsable gauge pair could act as

the non-Abelian part of the standard model gauge group in a non-GUT scenario [62].

It is not clear how to reproduce the standard model spectrum if a U(1) is tuned on

that base.
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4.3.3 Estimate the total number of bases in C

To estimate the total number of bases, we have carried out a sequence of runs in

which we have placed an artificial upper bound on the Picard number of the base. If

a base in the sequence hits this upper bound, then it can only be blown down in the

next step.

We have done 10 Monte Carlo runs of 30,000 steps each with upper bounds

h1' 1(B) < 5k + 2 for each k = 1, ... ,13. We again ignore the first 1000 bases in

all the statistical analyses. Using the appropriate weighting factors (4.3.42), this

gives an estimate of the distribution of bases in each bounded range of h"1 (B).

To estimate the total number of bases in C we can combine the distributions from

the bounded runs. We define

N(h) = J{B E C : h",'(B) = h}I. (4.3.44)

We know that N(1) = 1 (from B = P3 ), and it is not hard to determine that

N(2) = 27 (from P1 X p2, 12 distinct nontrivial P bundles over 1P2 and 14 distinct

nontrivial P2 bundles over P.

The l bundles over 2 are typically called "generalized Hirzebruch threefold" IR,

with the following toric data:

E(1) = {vI = (1, 0, 0), v2 = (0, 1, 0), V3 = (0, 0, 1), v4 = (-1, -1, -n), v5 = (0, 0, -1)}

E(3) = {{viv 2v3 , v1v5v3,v2v5v3 ,v1v2v4,v1v5v 4,v2v5v4}.

(4.3.45)

The good generalized Hirzebruch threefold F 18 with an E8 gauge group and

no (4,6) curves is not connected to C. As a check on our methodology, the ratio

N(2)/N(1) = 27 is correctly reproduced to good accuracy by Monte Carlo runs with

a low bound on h.

We denote the number of bases with h1 '1(B) = h encountered in the experiment

h1 "(B) < m by .Am(h). The numbers are geometrically averaged among multiple
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runs. Then the run at k = 1 gives an estimate of N(7), using the experimental ratio

.NV(7)/F7 (2) and the fact that N(2) = 27:

N(7) ~ 27 - .(7) (4.3.46)
JV7(2).

From the run at k = 2, we can use the experimental value .1 2 (12)/Af 12 (7) to estimate

N(12). Repeating this process we can give a rough estimate for

N (h) 2 7 x g 7 (7) .A 1 2 (12) ... Jh(h') > (h)
.A7(2) XA 1 2(7) XAf (h' - 5) J'h' 5(h') '

where h' = 2 (mod 5) and h - 5 < h' < h. Finally when h > 67, the proportion

of bases at each h is significant enough that we can employ the data from the 100

unbounded runs, and N(h) can be estimated by

N(h) ~ N(67) - Kunbounded(h) (4.3.48)
Arunbounded(67)

The resulting estimations of N(h) are graphed in Figure 4-6. We also plot

logio(N(h)) in Figure 4-7, with the standard deviation. It turns out that in the

region h < 35, the number of bases grows exponentially. In the region 35 < h < 60,

the exponential growth slows down. Finally the number of bases reaches a peak at

h 82, as a base with larger h'1"(B) typically has (4,6) curves.

Summing these approximate values, we have a very rough estimation

00

IC = EA(h) ~ 1048 2. (4.3.49)
h=1

One possible explanation for the exponential growth of the number of bases with

h' 1(B) is the existence of many flops (see Figure 4-3) on typical bases with large

hl'1(B). Since a flop does not change the rays or the set of monomials, the geometric

non-Higgsable gauge groups of the associated F-theory compactification does not

change under a flop. Because vi + vj = Vk + v 1, f and g also vanish to the same order

on the toric curves vivj and VkVl. Hence if B1 c C, and B2 can be related to B1 by a
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Figure 4-6: Rough estimation of the number of bases B E C with h' 1 (B) = h.
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Figure 4-7: Rough estimation of log 10(N(h)) with error bars, where N(h) is the
number of bases B E C with hl'(B) = h.
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Figure 4-8: Average number of possible flops on B as a function of h'l(B). For
h1 '1(B) > 67, the numbers are computed from the 100 unbounded runs. For the
lower values of h1'"(B), they are computed from the bounded runs.

flop, then B2 E C always holds. However, since the set of curves changes after a flop,

the local matter spectrum on the curves will be different.

If there are n possible flops on a base B E C, and each flop is isolated, then there

are approximately 2' bases in C that can be related to B by a sequence of flops.

The average numbers of possible flops on bases with different h1'"(B) are plotted

in Figure 4-8. The number of flops grows almost linearly from h' 1 (B) = 50 to

hl'(B) = 100. Comparing to Figure 4-7, we can see that even if we divide the total

number of bases for a given h'l(B) by 2', where n is the average number of possible

flops, the number of distinct triangulation types of bases still grows exponentially.

Hence there are still approximately 1048/220 ~ 1042 distinct bases that cannot be

related by flops.
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4.4 Random blow up on the set of toric threefold

bases

4.4.1 Methodology

In the last section, we have studied the statistical information in a subset of strictly

good bases C with fairly small h1 "(B) < 120 and give rise to elliptic Calabi-Yau

fourfolds with h1 '1 (X) < 200. This subset of bases could be very incomplete and do

not represent a a typical base in the whole set of good bases. For example, none

of them contains any E8 gauge group, but the appearance of E8 was argued to be

common in [71].

In the case of classifying toric base surfaces, we allow the appearance of (4,6)

points in the blow up process before they are blown up to a good base. If they are

not allowed, then a large number of good bases will be leaved out, including the

one giving rise to the elliptic Calabi-Yau threefold with the largest h' = 491. This

suggests that we should include resolvable bases with (4,6) curves in the classification

of threefold bases as well.

If we only focus on the resolvable bases, then we can apply the random walk

approach in a similar way. However, we want to generate good bases and estimate

their total number as well. Because the number of good bases is negligible comparing

to the vast number of resolvable bases, the possibility of finding a good base in a

random walk is almost zero.

Instead of a random walk, we start from a base, say a, = P3, and then randomly

generate a blow up sequence from it. Resolvable codimension-two singularities are

allowed throughout the process, including the (4,6) singularities on toric curves and

curves on E8 divisors. The numbers of possible ways of blowing up and down from a

base ai are explicitly computed, which are called Nut(ai) and Nin(aj) respectively. At

each step in the blow-up process, we pick one of the Nout possible blow ups, choosing

each with equal probability 1/Nout.

Nut(ai) can be evaluated by checking each possible blow up of toric curves and
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Figure 4-9: The blow up sequence as a probe of the set of resolvable bases. Different
blow up sequences are different branches starting from the same starting point and
end up with different end points.

points, and Ni,(ai) is straight forward to read out because from the definition of

resolvable bases, any blow down of a resolvable base gives another resolvable base. In

the counting of N,1ut(ai) and Nin(aj), we only count the number of toric bases up to

an SL(3, Z) transformation on the toric fan. Instead of using the symmetry factor t,

here we explicitly construct the bases after each possible blow up/downs and compare

them'.

Finally, this blow up sequence will end at an "end point" where there is no possible

blow up to another resolvable base. This end point has to be good from definition,

because there cannot be any toric (4,6) curve to be blown up, otherwise we can always

blow up this toric (4,6) curve to get a base with exactly the same sets of F and g.

The whole picture of the blow up sequence as a probe of the whole set of resolvable

bases is plotted in Figure 4-9.

To correctly take into account the unequal possibilities of entering each branch, we

'In the actual program, we only check the isomorphism among the bases after blow up/downs
for the base with h1' 1 < 10, since the isomorphism between the resulting bases is nearly impossible
to happen for a general base with h' 1 > 10.
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introduce a dynamic weight for each node a, from the path p = a, -* a2 - - - -- + an:

n-i Nt(ai)
D(p = a1 -÷ an) = II.(

Ni(ai+1)
(4.4.50)

We call the subscript i of node ai the "layer number" of aj. We claim that (4.4.50)

gives the correct weight of each node such that the weighted possibility of getting each

node an sums up to 1, under the assumption that the whole graph can be scanned by

moving up from one initial node a1 .

We prove this by induction. Assume that this holds for all the nodes with layer

number less than or equal to k - 1, so that

(4.4.51)S D(p -a ak1)P(p-- ak-1)
p-+ak-1

for all the nodes ak_1 with layer number k - 1. Here the sum is over all the paths

leading to the node ak_1, and P(p -+ ak-1) is the probability of this path.

Now suppose that a node ak with layer number k has mk nodes ak-l,1, ak-1,2, ... ,ak-1,mk

linked to it. Then the sum

5 D(p -+ ak)P(p - ak)
p-*ak

Mk Aot (ai,q)
5 E D(p - ak-1,q),) P(p -+ ak)
q=1 p-4 ak_1,q

D 

k Nout (akl_,q) 1 (4.4.52)

E55 D(p -1,q) - - p -+ ak-1,q) -
q1 p-+ak-1,q mP Nout(ak_,q)

= 5 D(p -+ ak-l,q)P(p - ak_1,q)
p-ak -1,q

=1.

Here we used the fact that D(p -+ ak) = D(p -+ ak1,q)- Nou (ak,q) and (p -+ ak)

P(P d aei,q) - (_1,)s

The identity (4.4.51) simply holds for k - I = 1, which completes the proof.
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From the dynamical weight factor, we can estimate the average of quantities across

the nodes on the same layer. For a given property f(ak) of a node in the graph, such

as the number of outgoing edges, we can determine the sum of f across all nodes on

the layer k as

S f(ak) = (f(ak)D(k)) = f(ak)D(p -+ ak)P(p - ak). (4.4.53)
ak paths p=a1--+an

In particular, we can directly estimate the number of nodes at level k in the graph

as

1 N(p)

Nnodes(k) = (1 -D(k)) N(p) D(p -a k), (4.4.54)

where N(p) is the total number of sampling branches and D(p - k) is the weight

factor when a branch p reaches the layer k. If a branch never reaches layer k then we

take D(p - k) = 0.

We can estimate the average of a quantity f(k) across all nodes ak at level k by

dividing the total by the number of nodes

(f(ak)D(k))
(f(k))D (D(k)) (4.4.55)

(D (k))

This gives an alternative expression relating the total number of nodes in layer k

to the total number of nodes in layer k - 1,

(Nout (k - 1))DNnodes(k) = (N-(k))D Nnodes(k - 1). (4.4.56)
(Ni11 (k))D

Following through the definitions shows that this estimate is precisely equivalent to

(4.4.54), even for a finite number of samples N(p).

Finally, we can compute the number of good bases Ngood(k) out of the resolvable

bases, simply by multiplying the relative weight factor on Nnoaes(k):

Ngood(k) = Nnodes(k) x ak is good D(p (4.457)
X ak D(p -4 ak)

113



0 0
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Figure 4-10: A typical graph where there are side branches entering the tree from the
starting point. The Nia of the right node in the second layer should be 1 instead of
2, if we are interested in computing averages across the tree of nodes accessible from
only the left starting point.

To estimate this quantity with a finite set of runs, we can simply use (4.4.54), where

trajectories that do not reach a good base at level k contribute 0. This is equivalent

to simply averaging the sampled value of D(k) over the good bases at that level and

multiplying by the fraction of trajectories that reach a good base at level k.

There are several reasons that the methodology described so far leads to a sys-

tematic underestimate of the number of bases. One key issue is that we have assumed

in the analysis above that for each base ak that is reached from a sequence of blow

ups from the starting point a,, every acceptable blow-down of ak can also be reached

by a sequence of blow ups from a1 . A problem arises, however, when the graph

looks like the one shown in Figure 4-10. If there are side branches entering the tree

from another starting point, the estimated number of nodes will be lower than the

correct one, since the measured (Ni,,(k)) will be higher than its correct value when

considering only blow-ups of a1 .

Because we are counting the number of bases one can get from blowing up the

starting point, one should only count the Nin(ak) of a node for the blown down bases

bk_1 of ak that can be contracted to the starting point by a sequence of blow downs.

This new Nj (ak) is always smaller or equal than Nin(ak).

We can try to make a simple estimate of Nja(ak) by checking for each possible

blow down whether the contracted ray is one of the rays on the starting point base

or not. If it is not one of them, then we can add it into an estimated value N{'(ak),
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but otherwise we do not. The motivation for dropping these contractable rays is that

if we contract one of the rays on the starting point, then in general the base may

no longer contain a set of rays that are linearly equivalent to the set of rays on the

starting point by an SL(3, Z) transformation. It is possible, however, that after we

contract a ray that corresponds to a ray on the starting point, there may still exist

another configuration of the starting base somewhere else to which the base may

be contracted. Hence this estimated /n,(ak) may be smaller than the actual value

NIV(ak). On the other hand, there can also be bases that still include the rays of the

starting point base a, but cannot be contracted to a, for other reasons; these will

cause jn, to overestimate Na. As we see in the next section, the distinction between

Nin and jn, amounts to a fairly minor difference in numerical results in the one-way

Monte Carlo computations, so this crude estimation does not detect any significant

under or overcounting due to a misestimation of Nia. On the other hand, as we

discuss in more detail in Section 4.4.4, it seems that there are many other starting

point bases possible at large h1'1 (B) that are "dead ends" reached when we blow

down along random incoming edges of the Nin possibilities for ak, so that both Nin

and N{, are likely substantially over estimating the correct value N, that would need

to be used to correctly determine the number of nodes in the graph.

Finally, there is another systematic error in this one-way Monte Carlo approach

that results in a smaller estimation of the total number of bases, even if there are

no additional starting points possible or additional edges entering the tree. While

in principle the estimate (4.4.54) gives an accurate estimate of the number of nodes

when carried out over many runs of the one-way Monte Carlo, this estimate may only

be accurate when enough runs are done to completely explore the set of possibilities,

which is practically impossible as the number of trajectories through the graph grows

exponentially in k. In practice, the most probable branches of the blow-up tree that we

enter are the ones with small weight factors, which lead to a small estimated number

of Nnodes and Ngood. As an example, consider the red branch shown in Figure 4-11.

If we only do one random blow up sequence through this graph, then we have a 60%

possibility to enter this branch or the other two branches besides it. Applying (4.4.56)
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Figure 4-11: An example of a common branch in a random graph. Only from the
information of N,t and Nin along this branch, we get a substantially underestimated
total number of nodes in the top layer: 5

repeatedly along this path, we get that the estimation of the number of nodes in the

top layer is given by the weight factor D = 5/27 rather than 1. Thus, most of the

time a random blow-up algorithm on this graph would give an expected number of

nodes of < 0.2 at the top level. This is compensated by low-probability paths with

large weight; for example, the path along the left side of the graph has probability 0.1

but gives a weight factor D = 10/3. While indeed one can check that the expectation

value over all paths in this graph is indeed (D) = 1, in a larger graph, such as one

composed of many iterated copies of this graph, the distribution of D values becomes

highly asymmetric, and typical paths will give much lower values of D than the

idealized average. For a graph with regular fractal structure, D follows a lognormal

distribution and we can compensate this systematic error by hand. However, this is

not a proper approach to the actual experimental data.

4.4.2 Results about the end points

We have done 2,000 random blow up sequences starting from P3 . We plot h3 ,1 (X)

of a generic elliptic fourfold over the base B (see (4.2.37)) for some example blow

up sequences as a function of hl'1(B) in Figure 4-12. As we can see, the number of

Weierstrass moduli quickly drops to a very small number after about 50 blow ups.
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Figure 4-12: The change in h' 1(X) as a function of h' 1'(B) for two random blow up

sequences. The number of Weierstrass moduli drops quickly.

Usually the first 20 bases encountered in a blow up sequence are "good" bases with-

out codimension-two (4, 6) loci. After this, all the sequences developed codimension-

two (4, 6) toric curves, which continue to dominate the base geometry until the

sequences terminate at an end point base that cannot be blown up further.

We list the unweighted number of good bases ngood encountered among the 2,000

runs at each layer k, with h1 "(B) = k, in Table 4.5. For those values with h"1 (B) <

20, the good bases are encountered near the beginning of the blow-up sequence, and

these are never terminal end point bases. The number of good bases decreases when

h1 "(B) increases, since codimension-two (4,6) loci appear during the blow up process.

The remaining good bases arise as end points. These have very large h' 1 (B) and are

concentrated at sporadic values of h1' 1 (B).

We observe that about a half of the end point bases ends up at h1 "(B) = 1943,

2249, 2303 or 2591, which shoule not be a coincidence. It turns out that for all

the end point bases we found with each pecific value of h1' 1 (B), the non-Higgsable

gauge group contents are the same. For h"1 (B) = 1943, 2249, 2303 and 2591, the

gauge groups are G = E89 x F48 x G2 x SU(2)3 24 , E x F G x SU(2)375,

34 X F 6 x Gl56 x SU(2) 3 84 and E 8 xF08 x G288 x SU(2)4 3 2 respectively. This

general structure is a common feature of the end point bases, since f almost always

vanishes to degree 4 on every divisor (i.e. F = {(0, 0, 0)}), so that the most common
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hl'(B) ngood h1'1(B) ngood hl'1(B) ngood hl"'(B) ngood
1 2000 2 2000 3 2000 4 1900
5 1645 6 1259 7 846 8 545
9 283 10 129 11 48 12 26
13 13 14 8 15 4 16 1

1317 1 1727 17 1799 4 1882 1
1943 198 2015 41 2047 23 2057 139
2186 44 2199 10 2249 315 2303 306
2395 10 2399 31 2491 6 2591 205
2599 17 2623 64 2636 6 2661 29
2821 4 2824 16 2891 1 2915 2
2943 1 2961 21 2999 40 3037 9
3071 3 3086 112 3157 1 3247 2
3276 4 3295 2 3374 4 3401 4
3422 34 3498 3 3539 2 3599 2
3658 12 3686 55 3739 1 3741 2
3789 1 3811 3 3817 1 3887 27
3992 1 4049 4 4211 1 4274 1
4373 25 4375 3 4394 21 4468 4
4520 1 4741 1 4748 1 4913 5
4939 10 4946 1 5143 21 5356 1
5383 5 5503 2 5522 1 5623 1
5878 1 5989 6 6143 2 6440 2
6784 1 6802 5 6911 8 6945 1
7373 1 7498 2 7526 1 7909 7
8111 3 8230 1 8435 1 8938 1
8980 5 8999 1 10124 3 11341 2
12631 1 - - - - - -

Table 4.5: The number of good bases encountered for each hl'1(B) among the 2,000
runs, without counting the weight factor. Bases at small hl'1 (B) < 20 are not end
points, all bases with large hl'1(B) > 1000 are end points of the algorithm.
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non-Higgsable gauge group factors will be SU(2), G2 , F4 and E8, corresponding to

the cases where g vanishes to order 2,3,4 and 5 respectively. The gauge groups SU(3)

and SO(8) also appear infrequently, when the monodromy conditions are satisfied: if

g vanishes to order 2 and 92 is a complete square, then the gauge group is SU(3);

if g vanishes to order 3 and g3 is a complete cube, then the gauge group is SO(8).

Similarly, if g vanishes to order 4 and g4 is a complete square, then the gauge group

should be E6 rather than F4. It turns out that we never found an E6 in the scanning,

although it could appear in principle.

The family with an SU(3) gauge group contains the bases with h" = 2999 and

gauge groups G = E34 x F 2  x G2 x SU(3) x SU(2)500.

An empirical formula for the number of gauge group factors SU(2), G 2, F4 and

E8 in terms of h1' 1(B) goes roughly as

Fh1 '1(B) + I hl1 (B) + I h '(B) + 1 h"' (B)
Nsu( 2) =~,NG F4e, E6 NG2  9 N 4  24 J NE8 68

(4.4.58)

While the non-Higgsable gauge groups appear to be quite uniform across end

points with common h"'(B), the non-Higgsable cluster structures on the bases with

the same h1 '1 (B) are very different; this can be easily checked by looking at the

different total number of non-Higgsable clusters and their different sizes. These bases

also can have different convex hulls of the fan, hence they are not always related by

a series of flops.

A potentially very interesting discovery is that the Hodge numbers of the elliptic

Calabi-Yau fourfolds associated with end point bases at large h1 "(X) seem to give the

mirror Hodge numbers to some simple Calabi-Yau fourfolds, which are constructed

as generic elliptically fibered Calabi-Yau fourfolds over bases with small h1 '1 (B). For

example, some of the bases with h1 "(B) = 2303 give h1 '1(X) = 3878 and h3 ,1 (X) = 2.

Since a generic elliptic fibration over 1P3 gives an X with h1' 1 (X) = 2 and h3 ,1 (X) =

3878, these look exactly like mirror Calabi-Yau fourfold pairs 2 . There are also other

bases with h1 "(B) = 2303 that give h"1 (X) = 3877 and h3,1 (X) = 4. They are

2 The Hodge numbers of generic elliptic Calabi-Yau fourfolds are also computed in [100].
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h 'l(B) (toric) gauge group h1 "(X) h3 ,1 (X) Mirror base

1943 E29 x F x G216 x SU(2) 324  3277 3 FO
2015 E x F x G224 x SU(2) 336  3397 3 F 1

2303 E x F x G256 x SU(2)384  3878 2 P3

2591 E x F 8 x G2 x SU(2)4 32  4358 3 F 3

3086 E45 x F129 x G343 x SU(2) 513  5187 4 F 4

3686 E8x F 53 x G2 x SU(2)615  6191 5 F 5

4373 E x F 80 x SO(8) x G2 x SU(2)72 9  7341 7 F6

5143 E8 x FLs x G271 x SU(2)8 5 8 8629 7 F7

5989 E8x F 4 9 x G26 4 x SU(2) 999  10045 7 F 8

10124 E145 x F4 23 x G1 125 x SU(2) 16 83  16959 10 F 12

11341 E 62  x xG x SU(2)185 7  18994 12 F 13

12631 E' x x G x SU(2)2 103  21151 12 F 14

Table 4.6: A list of end point bases with the feature that the generic elliptic fibration
over the base gives a Calabi-Yau fourfold with interesting Hodge numbers. In these

cases the fourfolds seem to form mirror pairs with generic elliptic Calabi-Yau fourfolds

over simple "mirror bases" with small h1 '1 (B). The h"1 (B) listed in the first column

means the h' 1 (B) of the toric base before the codimension-two (4,6) loci on divisors

with E8 are blown up.

also included in the dataset of Calabi-Yau fourfolds constructed as hypersurfaces in

weighted projective space using reflexive polytopes [89]. For the bases with h1 '1 (B) -

1943, the generic elliptic Calabi-Yau fourfold has h1 "(X) = 3277 and h3 ,1 (X) = 3,

which exactly looks like the dual of a generic elliptic fibration over the generalized

Hirzebruch threefold F0 , which is P x P2. We list many of these interesting cases in

Table 4.6. In this table, the generalized Hirzebruch threefold Fn is a P, bundle over

P2 given by toric data (4.3.45).

It is hard to directly prove that these Calabi-Yau fourfolds with large h' are

actually the mirrors of the Calabi-Yau fourfolds with small h1'1 and large h 3 , because

the Calabi-Yau fourfolds over specific threefold bases with large h1'1 are generally

hard to realize explicitly as hypersurfaces in reflexive polytopes. It is natural that

the Calabi-Yau fourfolds with the same Hodge numbers could be isomorphic to each

other. But it is still an open question how to check this isomorphism.
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Figure 4-13: Logarithm of the estimated number of resolvable bases Nnodes as function
of h' 1(B), from blowing up P'.

4.4.3 Estimating the total number of resolvable and good

bases

Given the results of the 2,000 one-way Monte Carlo runs starting from P3', we can

try to estimate the total number of resolvable and good bases that can be reached as

blow-ups of P3 using (4.4.50), (4.4.54) and (4.4.57).

We plot the logarithm of the estimated number of resolvable bases and good bases

in Figure 4-13 and Figure 4-14 respectively. As one may expect, the number of re-

solvable bases varies smoothly. As we have discussed above, however, the distribution

of good bases consists of spikes. Because the weight factors typically has a large ex-

ponent and they vary in the exponent across different runs, the distribution of bases

is effectively dominated by a single (or a few) run for a given k.

We can see from the figure that when h' 1(B) > 5,000, the estimated number of

good bases with that h1 " (B) is significantly smaller than 1, even though we found

some good end point bases with much larger values of h1 '1(B). Moreover, the esti-

mated number of resolvable bases is smaller than 1 at h' 1(B) > 11, 000. For example,
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Figure 4-14: Logarithm of the estimated number of good bases Ngood as function of
h' 1'(B), from blowing up P'.

for the base with biggest h' 1'(B) = 12, 631, the total number of bases is estimated as

2.2 x 10-2474. This fact verifies that we have indeed underestimated the total number

of bases by a large exponential factor. Typically there are ~ 103 incoming edges for

the bases near the end points but only a few outgoing edges, hence the situation is

more extreme than Figure 4-11 shows.

Using the uncorrected Nif(ak) in (4.4.50), the estimated total number of resolvable

bases is equal to 3.5 x 101964 and the estimated number of good bases equals to

3.0 x 10253. If we use the corrected estimation na(ak), then the total number of

resolvable bases is again estimated at to 3.5 x 101964 and the number of good bases

is estimated at 9.1 x 10253. Hence from the experimental results, it seems that the

different definition between N'n(ak) and Nin(ak) does not much affect the estimation,

so this mechanism does not capture the source of the underestimation.

As a cross-check, we also used other starting point bases with small h' 1 (B), which

are the generalized Hirzebruch threefold IF2 with h1 '1 (B) = 2 and a simple product

space P' x P' x P1 with h1' 1(B) = 3. Similar to P3, these bases do not have non-

122



loglo N F2

4000 -
P x P, x P,

3000-

2000-

1000-

0
0 5000 10000 15000 20000

h1'1(B)

Figure 4-15: Logarithm of the estimated number of resolvable bases as function of
h"'1 (B) from blowing up P3, F 2 and P' x P1 x P 1.

Higgsable gauge groups. After 1,000 random blow up sequences starting from F 2, we

found a larger fraction of end point bases with large hl'1 (B) than when starting from

P'. For fF2 , 1% of end points have h'(B) > 10, 000, while this percentage is 0.3% from

the starting point P'. The largest h1 '1 (B) we got is 20,341, and the non-Higgsable

gauge group on the resulting good endpoint base is E290 x F850 x G21 x SU(2) 3383.

We estimate the total number of resolvable bases from IF2 at 1.24 x 103046 while the

total number of good bases is estimated at 1.10 x 10254, using weight factors with

Ni,(ak). On the other hand, after 1,000 random blow up sequences from P1 x P1 x P1,
the total number of resolvable bases is estimated to be 1.43 x 101811 and the total

number of good bases is estimated to be 1.80 x 10271.

We plot the distribution of resolvable bases and good bases from the three starting

points in Figures 4-15 and 4-16 respectively.

As another starting point with somewhat different structure, we have also tried

blowing up the generalized Hirzebruch threefold F 12 , which has hl'1(B) = 2 and

a non-Higgsable gauge group E7. After 100 random blow up sequences, the total
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of good bases as function of hl"'(B)

number of resolvable bases is estimated as 1.77 x 102130 while the total number of

good bases is estimated as 2.02 x 107. On the end points, the E7 gauge group has

always disappeared since it is enhanced to E8 after a sequence of blow ups.

Despite the difference of the starting point bases, the discrete peaks of good bases

listed in Table 4.5 are universal, which shows that the set of resolvable bases is highly

connected. Even if we start with an exotic base Bmax which gives rise to the elliptic

Calabi-Yau fourfold with the largest h3 ,1 = 303, 148(see the next section), we still get

peaks such as hl'1 (B) = 7909 and 8980, which are present in Table 4.5.

4.4.4 Global structure of the set of bases

As mentioned before, there are bases other than P3 that cannot be contracted to

another smooth base. We know that Fa(n > 1) provides another class of these starting

points, but the abundance of these starting points for larger h1'"(B) is unknown. To

investigate this problem, we try to randomly blow down a typical good end point

base until it hit a base that cannot be contracted to another smooth base. It turns
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vO (0,0,1) v 16  (0,-5,-1) v 3 2  (2,-1,3) v48  (2,-1,4)
v 1  (0,1,0) v 1 7  (-3,-5,-2) v 3 3  (1,-1,2) v4 9  (1,-1,4)
v 2  (1,0,0) v 18  (2,3,1) v 3 4  (-7,-9,-5) v50  (-13,-26,-9)
v 3  (-1,-1,-1) vig (2,-1,1) v 35  (1,-1,3) v51  (1,-1,5)

v 4  (1,1,1) v2 0  (3,3,1) v 36  (-1,-2,-1) v5 2  (-2,-7,-2)

v 5  (-1,-1,0) v2 1  (3,4,1) v 37  (-10,-13,-7) v5 3  (-10,-20,-7)

V 6  (-2,-2,-1) v 22  (0,1,-1) v 38  (-4,-10,-3) v 54  (-8,-19,-6)
v 7  (0,-1,0) v 23  (0,2,-1) v 39  (-3,-4,-2) V55  (-13,-25,-9)
v 8  (-1,-3,-1) v 24  (-6,-7,-4) v 40  (-9,-11,-6) v5 6  (-17,-35,-12)
v9  (-1,0,-1) v 25  (1,1,0) v 4 1  (-7,-15,-5) v5 7  (-4,-9,-3)
vio (-2,-5,-2) v 2 6  V,-2,1 v 4 2  (-3,-6,-2) v5 8  (-5,-13,-4)

v 11  (2,2,1) v 2 7  (-1,-4,-1) v 4 3  (-11,-25,-8) v5 9  (-11,-24,-8)

v 1 2  (0,4,-1) v 28  (2,1,0) v 4 4  (-5,-6,-3) v6 0  (-14,-29,-10)

v 13  (1,-1,1) v2 9  (-1,-5,-2) v 4 5  (-12,-29,-9) v6 1  (-15,-33,-11)
V 14  (-3,-3,-2) v 30  (2,-1,2) v 4 6  (-12,-15,-8)
v1 5  (-4,-5,-3) v 3 1  (4,4,1) v 4 7  (-7,-16,-5)

Table 4.7: The list of toric rays of the exotic starting point Bex.

out that we will hit a base with fairly large hl''(B) = 50-200, even if we require

that the original rays on the starting point are never removed. These "exotic starting

points" have a complicated fan structure. Most of the rays in the fan have more than

four neighbors, hence this base is clearly neither a P1 bundle over B2 or a B2 bundle

over P1. An exotic starting point base typically has a lot of toric curves where f
and g vanish to order (4,6) or higher. We explicitly present an example Bex with

h1' 1 (Bex) = 59, toric rays in Table 4.7 and the 3D cones in Table 4.8.

If we try to contract a P 2 divisor on Bex, for example the divisor corresponding to

the ray 1, then the volume of the new 3D cone v 58 v5 9 v6 0 is 2. Hence the resulting

base after the contraction is singular.

This observation suggests that there is a large number of such exotic starting

points, however at this point we neither have a good estimation of their total num-

bers or their general structures. If we want to extensively survey the set of resolvable

bases, then these starting points should be taken into account. Knowing the dis-

tribution of these exotic starting points would also potentially help in resolving the

underestimation issue. One possible approach would be to allow for singular bases, as

suggested by Mori theory. These exotic starting points could be blown down further
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(22,23,9) (13,26,19) (19,30,2) (19,30,13) (30,32, 13)
(19,30,13)
(32,48,2)

(55,60,59)
(33,32,13)
(20,2,28)

(41,45,43)
(38,45,43)
(27,59,54)
(41,54,56)
(2,11,20)

(58,60,61)
(7,47,43)
(3,14,9)
(2,3,14)

(39,37,44)
(36,2,34)
(0,26,51)
(42,47,7)
(8,10,17)

(1,6,5)

(13,26,19)
(34,40,37)
(53,55,50)
(54,53,56)
(49,48,35)
(28,21,25)
(1,23,25)
(2,34,24)
(7,19,2)

(24,14,15)
(42,41,56)

(2,9,22)
(17,55,50)

(0,2,51)
(39,29,36)
(6,14,24)
(8,16,52)

(17,52,57)
(4,18,11)
(7,42,6)

(7,5,0) (7,42,6) (42,17,6) (1,6,5) (1,0,4)

(30,32,2)
(32,48,35)
(60,61,59)
(33,13,26)
(20,28,31)
(59,53,55)
(58,27,52)
(27,54,45)
(6,40,24)
(11,19,20)
(58,61,59)
(17,42,50)
(39,36,37)
(7,27,16)

(30,44,29)
(2,4,11)
(7,0,26)

(42,47,43)
(10,6,17)

(1,5,0)

Table 4.8: The list of 3D fans of the exotic starting point Bex.
denote the triple element set (vi, vi, Vk).
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We use (i, j, k) to

(22,23,9)
(34,40,24)
(49,51,49)
(28,2,23)

(35,33,26)
(2,16,12)
(1,9,23)

(21,20,18)
(1,21,25)
(2,24,15)

(58,55,60)
(7,38,43)

(17,57,55)
(2,9,3)

(18,21,1)
(10,29,6)
(8,29,2)

(8,17,52)
(4,1,18)
(7,5,0)

(19,30,2)
(37,46,40)
(53,56,50)
(51,48,2)

(49,35,26)
(28,25,23)
(21,31,20)
(36,34,37)
(41, 45,54)
(58,55,57)
(42,56,50)
(14,15,2)
(7,26,19)
(6,29,44)
(8,2,12)

(36,29,2)
(6,14,9)

(52,58,57)
(4,2,0)

(42,1,6)

(30,32,13)
(49,51,26)
(52,27,16)
(35,32,33)
(28,21,31)
(59,53,54)
(27,38,45)
(2,22,23)
(46,44,37)
(46,44,40)
(58,59,27)
(8,12,16)
(6,44,40)
(7,16,2)

(7,27,38)
(8,10,29)

(1,6,9)
(42,43,41)

(7,6,5)
(1,0,4)



by allowing the contraction of rays associated with divisors other than P2, giving

singular starting points.

For the set of good bases, it seems that they are isolated at disconnected "islands"

among the big "ocean" of connected set of resolvable bases. Apart from connected

component C and the end point bases we have discribed before, we can also construct a

good base by only blowing up a resolvable base at the (4,6) curves before they are fully

resolved. In this process, we can construct many good bases with h1 '1 (B) different

from the list in Table 4.5. They are called intermediate good bases (which we denote

by Bint), and their non-Higgsable gauge group structure is similar to the end points.

The number of each gauge group factor SU(2), G2 , F4 and E8 can be approximated

by the formula (4.4.58). One qualitative difference between these intermediate good

bases and the end point bases is that the generic elliptic fourfold X over a base Bint

typically has a larger h' 1 (X), since we prefer blowing up codimension-two (4,6) loci,

which does not reduce the number of Weierstrass monomials in f and g. For example,

we can get an X with h"1 (X) = 7097 and h3 ,1 (X) = 1452. We plot a rough picture

of the set of resolvable bases and good bases in Figure 4-17

The intermediate bases are more sensitive to a small perturbation than the end

point bases. If we randomly blow down a base Bint two times and then randomly

blow it back up two times, then in general we will get a base with codimension-

two (4,6) loci. On the other hand, if we blow down an end point base Bend with

h' 1 (Bend) = 2623 two times and then randomly blow it up two times, we almost

always return to the exact same base that we started at. The reason is that we only

include the resolvable bases, which constrains the possible ways to blow up especially

near the end point. Even if we randomly blow it down 2400 times and then randomly

blow up 2400 times, we still always get another end point base with the same set of

rays as B but different cone structure! Hence one may expect that a family of end

point bases is much bigger than a family of intermediate bases, although it is not

clear how to compare these two classes in the overall graph.
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End points

Figure 4-17:

A

A rough picture of the set of toric threefold bases with red region as
the non-resolvable bases with codimension-1 (4,6) locus, grey region as the resolvable
bases and the blue region as the good bases. The black arrow on the right indicates the
direction of blow up. The good bases consist of the end point bases, the intermediate
bases and the bases in C that are connected to P'.
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4.5 The geometry with most flux vacua

We have got a rough idea of how does the set of resolvable and good bases look

like. In this section, we will present the geometry of the almost toric base threefold

Bmax. The generic elliptic fibration over Bmax leads to a particular elliptic Calabi-

Yau fourfold Mmax with h1 '1 = 252, h2,1 = 0 and the largest known h3',1 = 303, 148,

which lies exactly at the upperleft corner of Figure 4-1. This Calabi-Yau fourfold was

originally identified in [84], but the base and fibration structure has not been written

down before.

The base Bmax is itself formed as a B2 bundle over P1 , where B 2 is a toric surface

characterized by a closed cycle of toric divisors (curves, corresponding to rays in the

toric fan) with self-intersections 0, +6, -12//-11//-12//-12//-12//-12//-12//-12//-12,

where // denotes the sequence of self-intersections (-1, -2, -2, -3, -1, -5, -1, -3, -2, -2,

-1), as we have mentioned before. B2 itself supports a generic elliptic Calabi-Yau

threefold that has Hodge numbers (251, 251) [105, 121]. The toric fan of B2 has the

rays:

vi (-1,-12) (4.5.59)

V2 = (0, 1) (4.5.60)

V3 = (1,6) (4.5.61)

(4.5.62)

V (0,-). (4.5.63)

The rays v4, ... , v9 8 are determined by the equation (3.2.27).

From the rays vi we can construct the toric fan for Bmax, with rays

WO = (0, 0, 1) (4.5.64)

wi = (vi, 0), 1 < i < 99 (4.5.65)

W100 = (84, 492, -1) = (12v15 , -1), (4.5.66)
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where v15 corresponds to the curve in B2 with self-intersection -11. The 3D cones

for Bmax are (wo, wi, wi+1) and (wioo, wi, wi+1), including the cyclic case (wo, w99 , w)

and (w 100, w9g, wi). This manifestly gives Bmax the structure of a B2 bundle over P',

where the toric projection onto the third axis corresponds to the fibration structure.

The "twist" in this bundle is characterized by the offset 12v15 of the ray w1oo. The

3D polytope containing the vertices wi is defined by the tetrahedron spanned by

wo, W1, W 2 , W 100 -

The divisors carrying non-Higgsable gauge groups on Bmax are precisely the ones

associated with curves in B2 that carry non-Higgsable gauge factors in the correspond-

ing 6d theory, where the -12 (and -11) curves carry E8 factors, the -5 curves carry

F4 factors, and the -3, -2, -2 sequences each carry G2 x SU(2) products with bi-

fundamental matter. Thus, the geometrically non-Higgsable gauge group of a generic

elliptic fibration over Bmax is

Gmax= E9 x F 8 X (G 2 x SU(2)) 16 . (4.5.67)

This group was originally associated with the elliptic Calabi-Yau fourfold Mmax in

[30] using the method of "tops," which describe both Higgsable and non-Higgsable

gauge group factors.

To count the total number of flux vacua on Mmax, we use a simple estimation

formula in [22, 23, 131] based on the tadpole cancellation (4.1.10)

1 _Y X(X)
- G4 A G 4 < .4 (4.5.68)

Consider a fourfold X with Q = X(X)/24 and fourth Betti number b4 = dim(H4(X)).

Since a generic G4 flux is an element of H 4 (X, Z) + ,2(X) see (4.1.5), the problem of

counting vacua can be simplified to problem of counting the number of lattice points

in a b4 dimensional sphere of radius V2Q. The assumption is that the metric of

fx G4 A G 4 is positive definite and can be normalized to an identity matrix. In the

case where h3 1 >> h 1 , h2 ", we have b4 ~ = 24Q, see (4.1.4). In particular, for

Mmax, the Euler character = 1, 820, 448 and b4 = 1, 819, 942.
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In this regime, the volume of this high dimensional sphere is not a good approx-

imation. Instead, we are going to estimate the number of lattice points using the

method of [99, 40].

It was proved that the exact number of lattice points in this sphere equals to

1
N(b4, Q) = .

27iz I e-C QZ(t),
t

where the contour is along the imaginary axis and passes the pole t = 0 on the left.

(Note that with these conventions the integral runs from ioc to -ioo.)

Z(t) = eti/2

qieZb

etn2/2 b (4.5.70)

where '93 is the Jacobi theta function.

When b is large, this integration can be evaluated by saddle point approximation:

N(b 4 , Q) ~e-) (4.5.71)

where t,, is the point where S(t) = - ln(-t) - Qt + bln193 (0, Ct/2) takes an extremal

value.

For our case Q ~ b/24, t,, = -6.18 and

N(b4, Q) ~ 1 03.59xQ (4.5.72)

In the regime of h' < h3,1, h2,1 = 0, the number of flux vacua is approximately

N(h3, 1 ) ~ 1 0 0.9xh 3' 1
(4.5.73)

Applying this analysis to Mmax, the total number of flux vacua is estimated to be

of order 10272,000.

Note that we have not imposed the Lorentz invariance conditions (4.1.11) yet,

but they should not affect the order of magnitude by a large factor since h' 1 (B) <
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= 793(0, Cet/2)b,



h3' 1(X), and there are only - 200 independent equations in (4.1.11). Another sub-

tlety is that the metric on G 4 flux in the quadratic fx 4 A G4 may not be positive

definite[40]. The positive definiteness is guaranteed if the flux is self-dual: G4 = *G4.

We can consider the subset of self-dual G4 flux as well, where the dimension of the

sphere becomes b4/2, so that we need to evaluate N(b 4/2, Q).

In this case the saddle point approximation gives t, = -4.61 and

N(b 4/2, Q) ~ 1 0 2.95xQ, (4.5.74)

hence approximately

N'(h ~ 1 0 0.74xh3 "'. (4.5.75)

Applying this formula to Mmax, the total number of flux vacua~ 10224,000.

To get a feeling of the dominance of this set of flux vacua comparing to other

geometry, we can compute the h3'1 (X) on other B 2 bundles over P'. The second

largest h3,1 (X) we can get is 299, 707. Plug this into (4.5.73), we see that the number

of flux vacua on this geometry is only a 10-3,000 fraction of the flux vacua on Mmax.

The other corners of the Figure 4-1 also contain much less flux vacua. For example, if

we take another limit where h', > h3 ,1 , then from (4.1.4), we see that the dimension

of the ball b4 ~ 4h1',, which is much smaller than the maximal number for the case

of large h3'.

Since this number 10272,000 is much larger than the estimated total number of toric

bases in the last section, it is possible that the flux ensemble on Mmax dominates the

entire F-theory landscape if we assign each flux vacuum with equal weight. This

weighting assumption may not be physically correct since the detailed dynamics of

the early universe geometric transition are unknown.

If we assume that each flux vacuum solution across all the F-theory geometric

solutions carries equal weight, then it is natural to conclude that we live in a flux vac-

uum on this geometry Mmax. Now the problem is to construct the standard model

on it. Since the non-Higgsable gauge groups are E8 , F4 and G 2 x SU(2), it seems

that the most probable way to realize the standard model gauge group is to embed
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SU(3)xSU(2)xU(1) into a non-Higgsable E8 . Although we have F4 DSU(3)xSU(2) x U(1),

the matter representations from the branching rule are incorrect. It is also very hard

to tune a larger gauge group on Bmax, since codimension-one or codimension-two (4,6)

singularity will usually arise.

Hence a possible scenario to realize the standard model gauge group is to introduce

four units of vertical flux in the form of (4.1.18) and breaks an E8 down to SU(5).

Then we need another Cartan flux to break down SU(5) into SU(3)xSU(2)xU(1).

The problem is that since there is no local matter curve on the E8 divisor D, we have

to use the bulk matter on the divisor D. However, it was argued in Appendix E of

[15] that the classical Yukawa coupling coefficient will vanish if D is a rational surface

with effective anticanonical divisor. This could suggest that we do not really live on

Mmax, and the early universe thermodynamics disfavor Mmax despite of the largest

flux ensemble on it.
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Chapter 5

Bases with non-Higgsable U(1)s

5.1 Weierstrass models with additional rational sec-

tions

As we have briefly introduced in Section 2.3, the U(1) gauge groups in an F-theory

setup correspond to additional rational sections, which are global holomorphic func-

tions (A,oz,b) that satisfy

a2 = 3 + fAb4 + gb6 . (5.1.1)

It is non-trivial to write out a Weierstrass model with such solutions x = A, y = a,

z = b.

A useful special form of such Weierstrass models is the Morrison-Park form[102]:

S12 2 3 1 2 + (5.1.2)
y2 =x3 +(cic 3 -c- b

2 co)xz4+ (coc+ C2  3 c 3b2 cc2 + b2c)z.(.3 7 33 4

In this chapter, we always denote the anticanonical divisor of B by -K. The coeffi-

cients b, cO, ci1 , c 2 and c3 in (5.1.2) are defined as holomorphic sections of line bundles
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L, -4K - 2L, -3K - L, -2K and -K + L on B respectively:

b E O(L)

co E 0(-4K - 2L)

Ce E 0(-3K - L) (5.1.3)

C2 E 0(-2K)

C3 E 0(-K + L)

The rational section over B is then given by:

(x, y, z) = (C2 22 C + b2C2C3 -b 4ci, b) (5.1.4)
33 3 2

Apparently

A E 0(-2K + 2L)

a E 0(-3K +3L).

L is an effective bundle on B with holomorphic section b, which characterizes the

particular way of tuning the U(1). For some bases with non-Higgsable clusters of

high rank gauge groups, taking L = 0 may lead to non-minimal singularities in the

total space X that cannot be resolved [106]. We will discuss this issue explicitly for

B= F12 in Section (5.2.2).

For co and ci, it is not clear whether their holomorphic sections exist. If the

line bundle -2K - L is effective, which is denoted by -2K - L > 0 or equivalently

L < -2K, then co and ci both have holomorphic sections. If -2K - L is not effective,

we can just take co = 0. In this special case, the discriminant of the Weierstrass form

(5.1.2) is
27 44 223-9 23 CCC 43C 516A = -b + b2c - b2cc2c3 -- + 4c c , (5.1.6)

which means that an SU(2) gauge group exists on the curve c= 0.
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For the borderline case L = -2K, we have

cO C O(-4K - 2L) = 0(0). (5.1.7)

Hence co is a complex number in the Morrison-Park form (5.1.2). In this case, we

have another rational section apart from (5.1.4):

12
(x, y, z) = (-c1

2 1

3 -c8c2 ' c1
+ 2ccic2 - cOc3 , c

1 2),

and the gauge group is U(1) x U(1).

In this paper, we generally use the weaker constraint -3K - L > 0, or L < -3K.

Note that this condition L < -3K cannot be further relaxed, otherwise co = ci =

0, and the Weierstrass form (5.1.2) becomes

2 3 I 12-zz4 + 2C3Z6
3 27 (5.1.9)

which is globally singular over the base B.

To compute the charged matter under the U(1), a convenient way is to unHiggs

the U(1) to SU(2) by setting b = 0 in (5.1.2). Then the Morrison-Park form becomes

y2 3 + (cic3 - I c2)Xzz + (coc2 + 2 3 I 2c3 )z
6

3 23 2 I2 (5.1.10)

with discriminant

A 4f3 + 27g 2 = c(-c2c2 + 4coc + 4c3c3 - 18cocic 2c 3 + 27c2c3). (5.1.11)

We can see that A vanishes to order 2 on the divisor c 3 = 0. From Table 4.1, there is

an SU(2) on c3 = 0. If we can compute the matter spectrum charged under the SU(2)

in this phase, we will derive the U(1) charged matter in the original Morrison-Park

form by a simple branching rule.

For example, if B is a complex surface, then the curve c3 = 0 belongs in the divisor
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class -K + L, which has self-intersection n and genus g:

n = K2 -2K-L+L 2 , g=1+ -K.L L2  (5.1.12)
2

From the 6D anomaly cancellation equations (3.1.6,3.1.7,3.1.8), we can derive the

matter spectrum for SU(2) on such a curve[83]:

matter = (6n + 16 - 16g)2 + (g)3. (5.1.13)

After the SU(2) is broken to U(1), we have the branching rules 2 -+ (1) + (-1),

2 -+ (2) + (0) + (-2). Hence we have in total ni charge-( 1) hypermultiplets and n2

charge-( 2) hypermultiplets:

n1 = 12K2 - 8K - L - 4L2 , n2 = L2 - K - L. (5.1.14)

The total number of charged hypermultiplet equals to

Hcharged n +2 = 12K 2 -9K.L-3L 2 . (5.1.15)

These formula can be cross-checked by the U (1) anomaly cancellation formula (3.1.11,

3.1.14) as well: for the case with a single U(1) and no non-Abelian gauge groups, we

can assign

a = K, bl = -2K + 2L. (5.1.16)

Then the anomaly cancellation conditions involving ni U(1) charged hypermulti-

plets with charge qi are:

a -bn = - q2

1 (5.1.17)
bn- bnl = E nq 4.

If there are only U(1) charged hypermultiplets with qi = 1 and q2 = 2, these
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equations become:

1 2
2K 2 - 2K - L = -n 1 + -n 2

6 6 (5.1.18)
4K2 - 8K. L +4L 2 = _ n2,

3 3

which exactly give the same result in (5.1.14).

The Calabi-Yau Morrison-Park form with sections (5.1.3) is by no mean the most

general form. It only gives the cases where the U(1) charge (of massless hypermul-

tiplet) jqij < 2. Various generalized forms have been written out[86, 103, 85, 115]

with higher U(1) charges. In fact, the Morrison-Park form does not even produce all

the U(1) models with charge jqij < 2. As an example, if we take the base to be the

Hirzebruch surface FO or equivalently P1 x Pl with the effective divisor classes S and

F:

S 2 = F2 = 0 , SF=1, (5.1.19)

then the choice L = 2S + 7F is not allowed in (5.1.2), as L > -3K now. However,

we can use a non-UFD (unique factorization domain) construction in [115]:

1 2a2 2 1 2 322 1f = aia3 - 2 a2- b ao , g = aoa 3 aia2a3 + a 3 b aoa2 + 4b2 a, (5.1.20)

where

a3  - (t b(2) a+ b(1) b b (5.1.21)
12 hb )

a2 = h(2)r2 + 2 h()1Tarb + h o- b 2b(22 (5.1.22)
4 \J( 36k

+ t(3)?r2 + 2 t(2)Tla'7b + t(l) 7 b(2 2 b, (5.1.23)
4 ga 96I(1

(5.1.24)
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a, = (A(1)Ia+ A()Tlb + h(2)r7a+ h(1)r7b
24 77b

2 t( 3 )l7a + t(2)rj b(2)q 3 b( 2)la + b(1)qb
+ 2 + 3 ),48 71b 1728 7ib

(N A(1)
ao = -f2 +

12 77b

g2 h(2 )

576 2 +
3 t(3)

1728 rib

04 b 2
+ 84 )

82944 77 '

b = b( 2)772 + 2 b(1)riarib + b(0)7 2

t = t(3)?a) + 3t(2)ri72qb + 3t(1) 7ar77 + t(o)rb.

(5.1.29)

(5.1.30)

The parameters are holomorphic sections of different line bundles listed in Table 5.1.

Generally it is required that , ria, rib # 0. Now the unHiggsing from U(1) to SU(2) is

given by the tuning

b(2) = 2 0(2)r7b , b(i) = -(0(2)77a + 0(O)7ib) , b(o) = 2 #(0)7a. (5.1.31)

After this tuning, b = 0 and we have an SU(2) on the divisor t = 0. The crucial

difference here is that the divisor t = 0 has triple point singularities at the locus

ra rib = 0, which gives the rank-3 symmetric tensor representation 4 of SU(2).

After SU(2) is broken to U(1) again, we will get a number of charge-3 matter fields.

The matter multiplicity of U(1) charged hypermultiplets in this model is given by

n 3 = La -Lb , n2 =(-K+ L) -L - 6n3 , ni = 12(-K + L)2 - 81n3 -16n 2 (5.1.32)

For our specific case -K(Fo) = 2S + 2F, L = 2S + 7F, we can take La= 2S

and Lb = 3S. Then there is no matter with U(1) charge 3, but we still get a valid

Weierstrass model that cannot be realized in the Morrison-Park form with sections

(5.1.3).

Note that the form of f and g in (5.1.20) is similar to (5.1.2), but the coefficients ai
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Parameter Line bundle Parameter Line bundle
b L t(i) -K+L-La- 2L
t -K+L t(2) -K+L-2La - Lb

?7a La t( 3 ) -K+L-3La
Tib Lb h(o) -2K - 2Lb

b(o) L - 2Lb h() -2K - La - Lb
b(i) L - La - Lb h(2 ) -2K 2 La
b(2) L - 2La A(o) -3K-L-Lb
# -K-L+La + Lb A(1) -3K-L-La

t(O) -K+L-3L f2 -4K - 2L

Table 5.1: The parameters in the non-UFD model (5.1.20), which are holomorphic
sections of various line bundles on B.

are taken as rational functions rather than holomorphic functions. The most general

non-UFD formulation of Weierstrass form with U(1)s remains unknown.

In this thesis, we are still going to use the original Morrison-Park form with the

sections (5.1.3). Despite that the Morrison-Park form does not reproduce all the

F-theory U(1) models with matter fields Jqj < 2, the following lemma should hold:

Lemma 4. Any F-theory U(1) model without any massless charged matter field can

be written in the Calabi-Yau Morrison-Park form (5.1.2) with sections (5.1.3).

Such a U(1) gauge field without massless charged matter field is called "non-

Higgsable U(1)", and the Weierstrass model should be completely smooth if the base

is free of non-Higgsable gauge groups as well. As the discrepancy from the Morrison-

Park form comes from the singularity structure of the divisor c3 = 0 and b = 0 (see

(5.1.29,5.1.30)), there will not be any issue for a smooth geometry.

The appearance of non-Higgsable U(1)s is a property of the base geometry B, just

as the non-Higgsable non-Abelian gauge groups. If the generic Weierstrass model

over B can be written in the Morrison-Park form (5.1.2), then we do not need any

additional tuning to realize it.

The main focus of this chapter is to characterize the base geometry when non-

Higgsable U(1)s appear. We provide a non-complete proof that non-Higgsable U(1)

never appears on toric bases with any dimension. We are also going to construct some

examples of (non-toric) threefold bases with non-Higgsable U(1)s.
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5.2 Counting the Weierstrass moduli

Here we take our base manifold B to have d complex dimensions, and the generic

elliptic Calabi-Yau manifold X over it has d + 1 complex dimensions. Analogous to

(3.2.39), we expect that hdl(X) can be written as

hd (X) = W - Waut + Nnw - 1. (5.2.33)

Here

W = ho(-4K) + ho(-6K) (5.2.34)

is the number of Weierstrass moduli, or the total number of monomials in f and g.

Waut is the dimension of the automorphism group of the base. Nnw is other non-

Weierstrass contributions. For example, in the d = 2 case, N"w = N- 2, the number

of (-2)-curves on the base that are not in any non-Higgsable clusters, see (3.2.39).

Waut is determined by the properties of the base B, so it does not change when

we tune a gauge group on B. Nnw does change in some rare cases. Taking a d = 2

example, if the degree of vanishing of the discriminant A goes from 0 to some positive

number on a (-2)-curve, then this (-2)-curve is no longer counted in the term N-2

[82]. Hence after we have tuned a U(1) on B, the decrease in hdl(X) is generally

-Ah(X) = -AW - ANnw. (5.2.35)

As the Nnw term is usually small, we neglect them in the discussion here and only

consider the change in Weierstrass moduli. In the case of d = 2, we will never have a

non-zero ANnw from the rare case we presented before.

Now we want to count the number of independent Weierstrass moduli in the

Morrison-Park form (5.1.2). The problem is that the functions b, co, c1 , c2 and c3 are

not entirely independent. There may exist an infinitesimal transformation: b -* b+6b,

co - cO + 6cO, ci1 -+ c 1 + 6cI, c 2 -+ c2 + 5c2, c3 -> c3 + 6c 3 such that the rational points
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A and
, 10 and f, g are invariant'. In fact, because of the relation (5.1.1):

e2 A 3  fA
= V + + g,

if A, and f are fixed, then g is also fixed. So we only need to guarantee the

invariance of A, - and f.

The number of such infinitesimal transformations then gives number of redundant

variables in the Morrison-Park form, Nr.

If we can compute this number N., then the number of Weierstrass moduli in the

Morrison-Park form equals to

W' = h0 (L) +ho(-4K - 2L) +h(-3K -L) +h 0(-2K) +h 0 (-K+L) - Nr. (5.2.37)

Comparing with (5.2.34), we see that the number of tuned Weierstrass moduli equals

to

W - W' =ho(-4K) + ho(-6K) - ho(L) - ho(-4K - 2L) - ho(-3K - L) - ho(-2K)

- hO(-K + L) + Nr.

(5.2.38)

We know that N, > 1, since there is a trivial rescaling automorphism: b -+ tb,

c3 -+ tc3, c2 -+ c2, c1 -+ t-IcI, co - t-2cO that keeps y, -, f and g invariant.

However, other transformations may exist as well.

Now we study the simplest case L = 0 first. Since we have already taken the

rescaling automorphism into account, we can set b = 1 for simplicity. The Morrison-

Park form is reduced to

212 23 1
y2 = X3 + (cic - - co)xz 4 + (coc2 + 2 C 3 cc2c3

2
-- 3cc2

+ 1 C2)6.
41

(5.2.39)

'Similar redundancy issue also appears in the tuning of SU(7) gauge group[5].
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The rational section is

22 1
(x, y, z) = (A, ce, b) = (c2 - 2 -c 3 + c2 c3 - ci, 1). (5.2.40)

If 6A = 0 under an infinitesimal transformation, then it is required that

6C2= 3c3 6c 3. (5.2.41)

Plugging this equation into the requirement 6a = 0, we derive

6c, = 2c 26c 3. (5.2.42)

Then the explicit form of 6f = 0 tells us

6cO = c1 6c3 . (5.2.43)

Now one can easily check that under

6c 2 = 3c3 6c3 ,

6c, = 2c26c3 , (5.2.44)

6CO = ciOc3 ,

g is indeed invariant.

This infinitesimal transformation is parametrized by an arbitrary section 6c 3 E

0(-K), which implies that the coefficient c 3 is actually a dummy variable. Hence

the total number of redundant variables equals to

N, = 1 + ho(-K). (5.2.45)

We have thus derived the formula for (-AW) in the case of L = 0:

-AWL=o = h0(-6K) - ho(-3K) - ho(-2K). (5.2.46)
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Now we study the more general case L > 0. Similarly, the infinitesimal transfor-

mations parametrized by 6c3 and b which leave A, _, f and g invariant are in the

following form:

3c36c3  3c 2 b
6C2 = 9 3 '

6 - 2c 26c 3

c1 b2

c1 6b 2c 2 c3 6b

b b

c1 6c3  c1 c3 6b 2co6b
co= b2 bV b

However, they are rational functions rather than holomorphic functions. Hence these

infinitesimal transformations are not always legitimate. Nevertheless, we are guaran-

teed to have a subset of infinitesimal transformations:

b = 0 , b2 16 C3 , (5.2.48)

which indeed give holomorphic 6c 2, 6c, and 6co. The condition b2 6c3 tells us that

6c' = 6c3/b 2 is a holomorphic section of the line bundle O(-K - L). Hence we obtain

a lower bound on N,:

Nr > 1 + ho(-K - L). (5.2.49)

We have thus derived a lower bound for (-AW) for general L:

-AW >h(-4K) + ho(-6K) - ho(L) - ho(-4K - 2L) - ho(-3K - L) - h0(-2K)

- ho(-K+ L)+h0(-K - L)+1.

(5.2.50)

For base point free line bundles L (there is no base point xo on which every section

s E O(L) satisfies s(xo) = 0), we claim that the above inequality is saturated, so we
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get the exact formula:

-zW =h0(-4K) + ho(-6K) - ho(L) - ho(-4K - 2L) - h0(-3K - L) - ho(-2K)

-h 0 (-K+L)+h (-K-L)+1.

(5.2.51)

Because L has no base point, for generic sections c 3 E 0(-K + L) and b E

O(L), they do not share any common factors after these polynomials are factorized

to irreducible components (if they have). For 6c 2 in (5.2.47) to be holomorphic:

3c 3b6c3 - 3c 2b
6C2 = b3 (5.2.52)

it is required that b = tb where t is a complex number. But this form of b is exactly

the trivial rescaling isomorphism, so we want to substract this component and set

b = 0. Now

6C2 = 3C3 6C3  (5.2.53)

Because c 3 does not share any common factor with b, the only possibility for 6c 2 to

be holomorphic is b2 |c3 . Thus the only possible infinitesimal transformations keeping

-, T, f and g invariant are given by (5.2.48), and

Nr = 1 + ho(-K - L). (5.2.54)

5.2.1 The minimal tuning of U(1)

Now we have the following key conjecture:

Conjecture 1. The minimal value of -AhdI(X) and -AW on a given base B when

a U(1) is tuned is given by the choice L = 0.

In the above statement, we have not taken into account the possible bad singular-

ities in the elliptic CY manifold X. If the choice L = 0 leads to (4,6) singularities of

f and g over some codimension 1 or 2 base locus, then this choice is not acceptable.
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Nonetheless, the acceptable values of -Ahd'(X) and -zAW are still lower bounded

by (5.2.46).

We can construct a sufficient condition that implies the Conjecture 1 using formula

(5.2.51). We only need to check that the following inequality holds

ho(-4K) + ho(-6K) - ho(L) - h0 (-4K - 2L) - hO(-3K - L) - ho(-2K)

- ho -K+ L) + h(-K - L) +1 h(-6K) - hO(-3K) - hO(-2K),

(5.2.55)

However, this type of inequalities are not studied in the mathematical literature,

hence we cannot formulate a rigorous proof to Conjecture (1).

For the class of generalized del Pezzo surfaces B without non-Higgsable non-

Abelian gauge groups, the Conjecture (1) can be explicitly checked by an anomaly

argument. Because of the gravitational anomaly cancellation

Hcharged + Hneutral - V = 273 - 29T, (5.2.56)

after a U(1) is tuned, we get

-Ah 2 ,1(X) = -AHnutrai = AHcharged - 1- (5.2.57)

Here ' Hcharged = Hcharged in (5.1.15) since there is no charged matter before the

tuning. In order to prove Conjecture (1) in this case, we only need to prove

He arged(L ) Hcharged(O) (5.2.58)

for any L that satisfies -3K - L > 0, or equivalently

-3K-L-L 2 > 0. (5.2.59)
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We apply the Zariski decomposition of an effective divisor L in Section 3.1:

L = N+ P, (5.2.60)

where P is a nef divisor and N is a linear combination of negative self-intersection

curves Nj:

N = niNi. (5.2.61)

The intersection matrix (Ni -Nj) is negative definite, such that N2 < 0.

Now

-3K-L-L 2 = -3KN- N2 - 3K - P - P 2 . (5.2.62)

Because -K is a nef divisor for generalized del Pezzo surfaces, -3K -N > 0. We also

have - N 2 > 0 from the negative definiteness of (Ni -Nj). The remaining two terms

can be written as

-3K - p -P 2 = (-3K - L + N) - P. (5.2.63)

-3K - L + N is effective because -3K - L is effective, and we can conclude -3K-

p- p 2 > 0 because P is nef.

We thus proved that

-3K - L - L 2 > 0. (5.2.64)

If there are charged hypermultiplets with charge 3 or higher, we denote the

numbers of hypermultiplets with charge k by nk. Then (5.1.18) is rewritten as:

2K2 -2K.L

4K2 - 8K - L +4L 2

1
= --n16

1
3

2 1 k 2
+ 6n2 + - k2k

3 3
k>3

161
+ T2 + -- k nk.
33

k;>3
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Now

ni = 12K2 - 8K- L - 4L2 - S k 2 nk +
k>3 k

n2 = L 2 - K - L + k2nk - kank.
k>3 k>3

and the total number of charged hypermultiplets is

Hcharged = n1 + n2 +5 nk =12K2 - 9K- L - 3L2 - 1: k2nk +
k>3 k>3

Since

1 E k 4Ttk +nk.
k>3

- k2k+IEk4nk k= I k2(k2 - 5)nk > 0,
k>3 k>3 k>3

k>3

(5.2.67)

(5.2.68)

the value of Hcharged is strictly larger than (5.1.15) when there are some hypermulti-

plets with charge 3 or higher.

We hence finished the proof of Conjecture 1 for 2D bases without non-Higgsable

clusters.

5.2.2 6D F-theory examples

Now we check the formula (5.2.51) with some examples.

For the base P2, the tuning of a single was studied in Morrison and Park's original

paper [102]. On P2, any effective line bundle can be written as L = nH, where H is

the hyperplane class.

The linear system InHI is the vector space of degree-n homogeneous polynomials

in 3 variables (for n > 0), hence

(5.2.69)ho(nH) = (n + 1)(n + 2)
2

They are all base point free, hence we expect the exact formula (5.2.51) to hold.
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Now our formula (5.2.51) gives

-AW =h0 (12H) + h0(18H) - ho(nH) - h0((12 - 2n)H) - ho((9 - n)H) - ho(6H)

- ho((3 + n)H) + ho((3 - n)H) + 1.

(5.2.70)

When n < 5, this expression can be reduced to

-IAW = -Ah 2,1 = 107 + 27n - 3n2 (5.2.71)

Because of the appearance of a single U(1), AV = 1, and we know that the number

of charged hypermuliplets is

Hcharged AV- h 2,1 (X)

= 108 + 27n - 3n2
(5.2.72)

From the anomaly computation (5.1.14), we get the numbers ni, n2 of charged

hypermultiplets with U(1) charge 1 and 2:

(ni, n2) = (4(n + 3)(9 - n), n(n + 3)). (5.2.73)

The total number of charged hypermultiplets

Hcharged = 108 + 27n - 3n2 (5.2.74)

exactly coincides with our formula (5.2.70) when n < 5.

When n = 6 or L = 6H, from (5.2.70) we can compute -AW = -Ah2-(X)

160. From the anomaly cancellation, the total number of charged hypermultiplets is

Hcharged = 162. Since L = -2K in this case, as we have mentioned, two U(1)s emerge

from this tuning: AV = 2. Hence we still get consistent result.

When n = 7 or 8, cO = 0. In these cases, an additional SU(2) gauge group

appears on the (irreducible) curve ci = 0. The total gauge groups in these cases are
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SU(2)xU(1), AV = 4.

The formula (5.2.70) for n = 7 and 8 gives -AW = -Ah2,i(X) = 146 and

128 respectively. On the other hand, the number of charged hypermultiplets from

anomaly cancellation gives Hharged = 150 and 132 respectively. Hence our formula

(5.2.70) exactly gives the correct number of tuned moduli.

We can also check B = F12, where the Picard group is generated by S and F:

S2 = -12 , F2 = 0 , S- F = 1. (5.2.75)

The anticanonical divisor is

-K(F 12)= 2S + 14F, (5.2.76)

and the section of various line bundles can be read out with the toric geometry

methods in Section 2.4.

we denote the divisor S by s = 0, and F by t = 0. In the local coordinate patch

SF, where s, t can vanish and the other local coordinates xi are set to be 1, f and g

can be written as:

8 12i-40

f = E E fitjsi
i=4 j=O

12 12i-60

g = E E gi,jtj Si.

i=5 j=O

(5.2.77)

(5.2.78)

f and g vanish to order (4,5) on the curve S, which gives an E8 gauge group. We can

explicitly count

ho(-4K) = 165 , h (-6K) = 344. (5.2.79)

The Hodge numbers of the generically fibered elliptic Calabi-Yau threefold X over

F12 are hl'= 11, h2,1 -491.

Now we want to tune a U(1) on it. If we take L = 0, since h0(-2K) = 51,
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h0(-3K) = 100, then

-A WL=o = h0 (-6K) - ho(-3K) - h0(-2K) = 193. (5.2.80)

However, this choice of L is not allowed. The rational section (x, y, z) = (A, a, 1)

has to obey

a 2 A3 +fA+g. (5.2.81)

Now since A E 0(-2K), a E O(-3K), they can be written as

4 6

A = Aiss , a= aiss.
i=2 i=3

(5.2.82)

Plugging these into (5.2.81), we can see that the only term of order s5 is the term

g5,0s 5. Hence this tuning of U(1) requires that g5,0 = 0, which leads to (4,6) singularity

on s = 0.

One way of tuning U(1) on IF 12 is to take c3 E 0(2S). Since 2S = 2S + 24F =

-K + 10F, this corresponds to L = 10F. Now the equation (5.2.81) becomes

a A3 + fAb + gb. (5.2.83)

The functions A c 0(-2K + 2L), a E 0(-3K + 3L) can be written as

4 6

(5.2.84)A = E Ais , a = ais.
i=O i=O

The issue of (4,6) singularity no longer exists.

Now we can compute -AW using our formula (5.2.51). With h0 (L) = 11,

ho(-4K-2L) = ho(8S+36F) = 76, h0(-3K-L) = h0 (6S+32F) = 63, h0 (-K+L) -

h0 (2S + 24F) = 39 and h(-K - L) = ho(4F) = 5, the result is

-Ah 2 ,1 (X)L=1oF = 275. (5.2.85)
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On the other hand, -AHeutrai matches the anomaly cancellation computation

(5.1.14) as well.

5.3 Conditions on a base with a non-Higgsable

U(1)

Now we are going to investigate the conditions for a base to have a non-Higgsable

U(1). This means that we do not need to tune any complex structure moduli to

get the Morrison-Park form. Assuming Conjecturel holds, the equivalent conditon is

that the minimal value of -AW in the formula (5.2.46) is non-positive:

-AWL=o = ho(-6K) - ho(-3K) - ho(-2K) < 0 (5.3.86)

This inequality imposes stringent constraint on the Newton polytopes A, of Q(-nK).

For toric bases, they are the polytopes defined by the set of lattice points:

An= {p E Zj l(p, vi) > -n , Vi}. (5.3.87)

Note that A4 and A 6 corresponds to F and g defined in (2.4.69) and (2.4.70) respec-

tively.

The notion of Newton polytopes can be generalized to arbitrary bases. For a

point p = (X 1i, x2 ,... , Xd) in the Newton polytope An, it corresponds to a monomial

,= cia 13x , where ac and /3 are some non-zero functions. Hence the product

of two monomials is mapped to the vector sum of two points in Zd. For example, the

expression of f and g for a semi-toric base with non-Higgsable U(1)s in Section 5.4.2

can be written as (5.4.112). In that case, we can assign a = i, 01 = rTh-, and the

Newton polytopes for f and g are one-dimensional. Note that the origin in the Zd

can be shifted.

We use the notation nP to denote the set of lattice points in the resized polytope
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enlarged by a factor n:

n

nP = {pp= Pi , Vp E P}. (5.3.88)
i=1

The lattice points in nP correspond to the monomials m = H> mi, where mi E P.

JA| denotes the number of lattice points in the Newton polytope A.

We denote the dimension of the Newton polytope An of O(-nK) by dAn. Clearly

the dimension of any other A,(n < 6) is equal to or smaller than dA6. We want to

prove the following proposition:

Proposition 2. For a base with a non-Higgsable U(1), the Newton polytopes An(n <

6) are all one-dimensional. The number of lattice points in An satisfies

IA 41 < 5, A6 1 < 7. (5.3.89)

Note that regardless of dA2, dA3 and dA6, we always have

12A 3| > 2A 3 | - 1, 13A 21 > 3|A 21 - 2 (5.3.90)

Then since 2A 3 C A6 and 3A2 C A6 ,

-AWL= A61 - A 31 - 2

> 2A 3 1 - IA 31 - A21 (5.3.91)

> A 3 1 - IA 21 - 1

and

-AWL~o = A 61 - A 3 1 -

> 13A21 - IA31 - A 21 (5.3.92)

> 2|A21 - A 31 - 2.

If -AWL=o < 0 so that non-Higgsable U(1)s appear, we have constraints on IA31
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A 2 1 1 1 2 2 3
A 31 1 2 2 3 4
A 4 1 1,2 1,2,3 3 3,4 5
A6 1 2 3 4 5 7

Table 5.2: The possible values of the number of lattice points in the Newton polytope
A, of (-nK), when non-Higgsable U(1)s exist.

and JA 2 1:

IA 3 1 - JA2 I - 1 0 , 21A 2 1 - IA3 1 - 2 < 0. (5.3.93)

The only possible values for (JA 2 1, JA 3 1) satisfying these inequalities are (1, 1), (1, 2),

(2, 2), (2, 3) and (3, 4). We list the possible values of A 6 1 for each of these cases in

Table 5.2.

Now we argue that the dimension of Newton polytopes A 2, A3 and A6 cannot

be higher than 1. The statement is trivial for IA6 1 = 2 because these polytopes

have at most 2 points. If IA6 1 = 3, since IA6 1 = 21A 31 - 1, 12A 3 1 > 2 A 3 I - 1 and

12A 3 1 A 6 1 (see (5.3.90)), we know that 12A3 1 = 21A 3 1 - 1 and A6 coincides with the

polytope 2A 3. Because A 3 is one-dimensional, we conclude that dA6 d A3 1. If

A = 4, since IA6 1 = 13A 21 = 3A 2 1 -2, A6 coincides with 3A2 and dA6 = dA2 1. If

IA61 =5, similarly because IA6 1 = 12A 3 1 = 21A 3 1 - 1, A6 coincides with the polytope

2A 3. We have argued that if dA3 > 1, then 12A 31 > 2JA3 I. This does not happen

here, hence the polytopes A 3 and A 6 are one-dimensional. When IA6 1 = 7, similarly

IA61 = 12A31 = 21A 3 1 - 1, then A6 coincides with the polytope 2A 3 and they are both

one-dimensional.

For the values of IA4 1 in Table 5.2, they are enumerated by the following method:

we linearly transform the Newton polytopes A, integral points on line segments

[na, nb], a, b E Q, a < b. This SL(d, Q) linear transformation is always possible

because the Newton polytopes A, are one-dimensional. Then for each 1A6 , we can

try to find the pairs (a, b) that give all the possible value of IA4 1 with the correct

values of IA2I and IA31. For | A 6 1 = 2, we can take (a, b) = (0, -) to get A 4 1 = 2

and (a, b) = (0, ) to get IA 4 1 = 1. For IA6 1 = 3, we can take (a, b) = (-, ) to

get IA4 1 = 3, (a, b) = (0, j) to get IA4 1 = 2 and (a, b) = (,j) to get IA4 = 1. For
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|A61 = 4, we can only take (a, b) = (0, 1) to get |A4 | = 3. For IA6 1 = 5, we can take

(a, b) = (0, 1) to get IA4 1 = 4 and (a, b) = (0, 1) to get IA4 1 = 3. For IA6 1 = 7, we can

only take (a, b) = (0, 1) to get IA4 1 = 5.

Hence we have the proved the proposition.

This shows that the number of monomials in A 4 and A6 are very small when

non-Higgsable U(1)s exist. Recall the formula for hd', (5.2.33), we expect the number

of complex structure moduli of the elliptic Calabi-Yau manifold over this base to be

small. In the 4D F-theory context, it means that the number of flux vacua is small.

Furthermore, the constraints on the Newton polytopes lead to the exclusion of

non-Higgsable U(1)s on any toric bases:

Proposition 3. For a resolvable (smooth compact) toric base in any dimension, the

Newton polytopes A, cannot satisfy Proposition 2.

A simple argument is that if the origin of the Newton polytope g = A6 lies on

the boundary of G, then there will be a (4,6) divisor with a toric ray perpendicular

to the boundary. If there is not such a (4,6) divisor, it will always emerge after we

resolved all the codimension-two (4,6) locus.

More precisely, for the case of 2D toric bases, we perform an SL(2, Z) transforma-

tion on the 2D toric fan, such that the monomials in g align along the y-axis. Now, we

observe that there always exists a ray (1,0) in the fan. Otherwise, the only possible

2D cone for a smooth 2D toric base near the positive x-axis consists of a ray (1, a)

and a ray (-b, -ab - 1), where a > 1, b > 0, see Figure 5-1.

If this is the case, suppose that (0,1) is in the Newton polytope A6 for g, which

means that there is no ray (x, y) in the fan with y < -6. Then from the structure

of the fan, we can see that (-1, 1) is also in the polytope A 6 . This is because the

other rays (X, y) with x > 0 all satisfy y > ax, hence they cannot satisfy (x, y) -

(-1, 1) = -x+y < -6. Then we conclude that A6 is not a one-dimensional polytope,

which contradicts our assumption. Hence (0, 1) V A6 . Similarly, we can exclude the

existence of all points (0, y > 0) in A6 . However, this implies that g vanishes to order

6 on the divisor corresponding to the ray (-b, -ab - 1). Because A 4 C A6 for toric
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(1,a)

(0,-i)

Figure 5-1: A fictional configuration of 2D toric base with monomials in g aligned along the y-axis.
Suppose that there is no ray (1,0), then this is the only possibility up to a linear transformation.

bases, this excludes all the points (0, y > 0) in A 4 as well. Hence (f, g) vanishes

to order (4,6) on the divisor corresponding to the ray (-b, -ab - 1), which is not

allowed.

Hence we conclude that a ray (1,0) has to exist in the fan. However, because A 4

and A6 aligns along the y-axis, it means that (f, g) vanishes to order (4, 6) on the

divisor corresponding to the ray (1,0). So this is not allowed, either.

Similar arguments can be applied to higher dimensional cases. For any smooth

compact toric bases, there has to be a ray perpendicular to the line on which f and

g aligns, but this will lead to (4,6) singularity on such a ray. If this ray does not

exist, then there will be (4,6) singularities over codimension-two locus on the base

that cannot be resolved by blowing up this locus.

We elaborate this statement for the case of toric threefold bases. We assume that

the Newton polytopes A 4 and A 6 lie on the z-axis, and the fan of the toric base has

no ray on the plane z = 0. Because the base is compact, there exists a 2D cone

v 1v 2 in the fan such that v1z > 0 and V2z < 0 (viz and V2z are the z-components

of vi and v 2 respectively). Now we can analyze the degree of vanishing of (f, g) on

this codimension-two locus v1 v 2 for each of the cases in Table 5.2. For example, if

IA41 = 5, |A6 1 = 7, such that the points in A 4 are (0, 0, -2) ~ (0, 0, 2) and the points

in A6 are (0, 0, -3) ~ (0, 0, 3), then we have constraints on viz and v2z: 2 > viz > 1,
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-1 V2z > -2. Now if vl2 = -V2, = 1 or viz = -V2z = 2, then it is easy to see

that the degree of vanishing of (f, g) on this curve viv 2 is (8,12). We cannot resolve

this by blowing up the curve v1 v 2 , because the ray of the exceptional divisor will

lie on the plane z = 0, which contradicts our assumptions. If viz = 2, V2z = -1

or viz = 1, V2Z = -2, then the degree of vanishing of (f, g) on this curve v 1v 2 is

(6, 9). If we try to resolve this by blowing up the curve vIv 2 , then the exceptional

divisor corresponds to a ray v3 = v 1 + v 2 with V3z = 1. Then the (4,6) singularity

issues remains on the curve v 2v 3 or vIv 3 . Hence we cannot construct a good toric

threefold base with such Newton polytopes A 4 and A6 . Similarly we can explicitly

apply this argument to all the other possible configurations of A 4 and A6 , showing

that it is impossible to construct a toric threefold base with non-Higgsable U(1)s and

without any codimension-one or codimension-two (4,6) singularities. This argument

is independent of the dimension of the toric base, either.

This ID feature of Weierstrass polynomials suggests that the bases with non-

Higgsable U(1) always have the structure of a fibration over P'.

We have the following conjecture:

Conjecture 2. Any n-dimensional base with non-Higgsable U(1) can be written as a

resolution of a Calabi- Yau (d - 1)-fold fibration over P'. The generic fiber is a smooth

Calabi-Yau (d - 1)-fold.

The alignment of f E ((-4KB) and g E O(-6KB) on a line suggests that the

base B is either a fibration of F = -KB or a blow up of such a -KB fibration. One

can understand this from an analogous toric setup. If we take B to be a Hirzebruch

surface Fn, which is a P1 bundle over P' with toric fan in Figure 3-3. From (2.4.67), we

can see that any line bundle O(nF) on Fn has an one-dimensional Newton polytope.

More generally, if we blow up F and the 0-curve F on Fn remains, the line bundle

((nF) still has an one-dimensional Newton polytope.

Now return to our case F = -KB. From the adjunction formula, we can see that

the canonical class of the fiber F = -KB vanishes:

KF = (KB + F)IF = 0, (5.3.94)
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hence the fiber F is Calabi-Yau.

Additionally, the fiber F should not self-intersect, hence we have

F - F = 0. (5.3.95)

The elliptic Calabi-Yau (d+ 1)-fold X over this base B can be thought as resolution

of the fiber product space, constructed below.

Take a rational elliptic surface A with section

7rA : A - P' (5.3.96)

and a Calabi-Yau (d - 1)-fold fibration B with section

7B : B -+ 1P1 (5.3.97)

Then the elliptic Calabi-Yau (d + 1)-fold X is the resolution of the fiber product

X = A xyp B = {(u,v) E A x B17rA(U) = 7rB(V)}. (5.3.98)

In the case of d = 2, this is the generalized Schoen construction of fiber products of

rational elliptic surfaces [104].

In the case of d = 3, the base B is a resolution of a K3 or T4 fibration over P'.

Now we have an alternative interpretation of the relation between the fibration

structure of B and the ID feature of Weierstrass polynomials from the pullback of f
and g over the elliptic surface A [104]:

fx'= 7F(fA) (5.3.99)

Hx = 7 tbA

Here X' is the Weierstrass model over the base B, which is possibly singular. A is
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the possibly singular Weierstrass model over P1 . X' and A are related by

x'= A xpi B = {(ii,v) E A x B7rAi) = 7rB(V) (5.3.100)

Hence the ID property of Weierstrass polynomials fx, and gx, over B is inherited

from the 1D property of fA and gA.

5.4 Examples of non-Higgsable U(1)s

5.4.1 A universal class

From Proposition 2, we need construct a base B where the Newton polytopes of

-4KB and -6KB are one-dimensional. In fact, there exists a simple universal class

of B satisfying this property. We start with a base BO whose -KBO has no base point.

Then we construct the base B by blowing up the intersection locus Di f D2 , where

D1 and D2 are two different representative of the divisor class -KBO. We claim that

such a base satisfies the requirements of Proposition 2.

The reason is fairly simple. Denotes the equation of D1 and D2 by F = 0

and F2 = 0 respectively. After the blow up, only the terms in f with the form

FfFj(p+q > 4) remain. Similarly only the terms in g with the form FfFj(p+q > 6)

remain. Since F = 0 and F2 = 0 are already holomorphic section of the line bundle

-KB 0 , the only possible form of f and g after the blow up is

4 6

f = ZfiF|Fj- , g = ZgiF|FS-i, (5.4.101)
i=0 i=0

where fi and gi are complex numbers. Indeed, f and g form one-dimensional Newton

polytopes F and g, and JjI = 5, 1!9 = 7.

As a more concrete example, if BO = P2, -KBO is the divisor class of cubics on

P2. Then the locus Di f D2 is the collection of nine intersection points between two

different cubics on P2 . If we blow up these nine points, we get a good base B for 6D F-

theory and non-Higgsable U(1)s. Since after the blow up we have (-KB)- (-KB) 0,
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Figure 5-2: The geometric configuration of generalized del'Pezzo surface gdP8 t with the negative
curves on it. Note that there are two copies of (-2)-curve clusters that correspond to degenerate
Kodaira fibers of type 10*.

we can think about B as a -KB fibration. This implies that B is an elliptic rational

surface, which satisfies (5.3.94) and (5.3.95).

If Bo = P3, -KBO = 4H which is a K3 hypersurface inside P3. The locus

Dil D2  (4H) n(4H) is then the intersection locus of two different smooth K3

hypersurfaces in P3. After blowing up (4H) n(4H), we get a good base B for 4D

F-theory and non-Higgsable U(1)s that is a K3 fibration. Again (5.3.94) and (5.3.95)

are satisfied and we find an example for Conjecture 2.

More generally, from the adjunction formula

5.4.2 Semi-toric generalized Schoen constructions

More generally, we can explicitly compute the form of Weierstrass polynomials for

the semi-toric bases with non-Higgsable U(1)s constructed in [97], which are called

generalized Schoen constructions[104].

As the first example, we choose the base to be the semi-toric generalized del Pezzo

surface gdP8 t with h1 '1 (gdPst) = 10, T = 9 and the set of negative rational curves

in Figure 5-2.

Consider the general elliptic CY3 X over gdP8 t. In [97], it is computed that

h1'1(X) = h2 ,1(X) = 19. There is a U(1) 8 abelian gauge group in the 6D low-

energy effective theory, which explains the rank of the gauge group (h' 1 (X)

hl'(gdP9st)+rk(G) + 1 = 19, rk(G) = 8). Using the anomaly cancellation in 6D:

273 - 29T = H - V = h2,(X) + - _V. (5.4.102)
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w=0 0

(0,1)

-' 0 (-1,0 (i,0) z 0

(-2,-i) (-1,-i) (0,-i) (1,-i) (2,-i)

-2 -2

-1 -1

-2 -2
-2

Figure 5-3: A toric generalized dP, with toric cyclic diagram (0, -2, -1, -2, -2, -2, -1, -2), and
the 2D toric rays shown on the left.

When T = 9, h2,1 (X) = 19, we get the correct number of vector multiplets V = 8.

To write down the set of monomials in f and g for a general elliptic fibration over

gdP8 t, we start with the 2D toric base with toric diagram in Figure 5-3.

We can compute the f and g with toric methods (2.4.69,2.4.70), and write down

the general expression of f and g in the patch (z', w) and (z, w):

8 7

f = E fOiZ Z/8-i + W
i=0 i=1

6

+ W4 Sf4,iZ Z6-i

i=2

7

fizz18-i + W 2
i=5

5

6

f2 ,iZ Z8-i + W 3 E f 3 ,iZ Z 6-i

i=2

5
S5 ,i z/8-i + 6 f 6 i z8--i + 7 4z

4z 4 + 8 , 4
4 4 -

i=3 i=3

(5.4.103)

12 11

g = goioz/z'12 - + w E3 gz Z' i2-i + w2

i=O i=1

11 10

5 92 ,iZiz'-1 2 - + w 3 5 93,izZ112 %
i=1 i=2

10 9 9 8

" W4 g4,iZ Z12-i _ 5 95,i Z/12-i 6 596,izi Zil 2 -i + 7 Z12-i

i=2 i=3 i=3 i=4

8 7 7

+ w 8 E 98,iZ izf/12-i + 9 i / 
1 2 -i + 10 E g1 0 zizi/12-i + W 1 191 1 ,6Z 6 

/i6

i=4 i=5 i=5

+ W 12912,6Z6 Z6

(5.4.104)

In the above expressions, we have set all the local coordinates apart from z', z and

w to be 1. From now on, we generally work in the patch (z, w), so we set z' = 1.

To recover the dependence on z', one just needs to multiply the factor z'- to each
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z' term in f, and multiply z' 12-i to each z' term in g. By the way, we will change

the definition of coefficients fij and gij very often, they only mean general random

complex numbers, for a generic fibration.

Now we blow up a point z = 1, w = 0, which is a generic point on the divisor

w = 0. After the blow up, we assign new coordinates zi, w, and 1:

z - 1 = (z, - 1) 1 , w = wigi (5.4.105)

The divisor w = 0 becomes a (-1)-curve w, = 0. 1 = 0 is the exceptional divisor of

this blow-up, and zi = 1 is a new (-1)-curve. We plug (5.4.105) into the expression

of f and g. Note that all the terms with ' in f vanish for m < 4, similarly all the

terms with ' in g vanish for m < 6. This impose constraints on the coefficients

fij and gij. Finally, we divide f by (4, and g by 6 after the process is done. The

resulting f can be written as:

4 4 5 5

f =(z -i1)4 > f 0,zi + (zI - 1) 3W, 1 : fi, zi + (zI - 1) 2W 3 f2 ,z (z1 - 1)w3 3 f3 ,2 z
i=0 i=1 i=2 i=2

6 5 5

+ we > f 4 ,izi + w5 1 > f5,izi + w >fz + wf f, 4z
4 + w8fs, 4z

4

i=2 i=3 i=3

(5.4.106)

g has similar structure, and we will not expand the details. Note that the divisor

z 0 and the local patch (z, wi) still exist. In the patch (z, wi), we can choose

1= 1, so that z = zi. Then it is easy to rewrite f as a function only of z and w1 .

Then in the patch (z, wi), we blow up a point z = 2, wi = 0, which is a generic

point on divisor w, = 0. After the blow up, we assign new coordinates z2 , W2 and 2:

z - 2 = (z2 - 2) 2 , w = W2 2 (5.4.107)

We draw the geometry of the base after this blow up in Figure 5-4.
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Figure 5-4:
divisor w = 0

A serni-toric generalized dP7, which is constructed by blowing up two points on the
on the toric base given in Figure 5-3.

With a similar argument, after this blow up, f now takes the form of

2
f=(Z1 _ 1) 4 (Z 2 - 2 )4 + fi(z1 _ 1) 3 (Z 2 - 2 )3w~ + j ( _ 1)2(z -)

2W2Z ~fz

i=O
2 4 2

+ (z3 - 1)(z2 - 2)w z2 13 f3,izi + w4z2 E f4,izi + w5 1 2z3 f5,izi
i=O i=O i=O

2

+ S1 f6,,zi + w233f,4z 4 + w2"f2,4z4

i=O

(5.4.108)

g has the similar structure. Note that the shape of the Newton polytopes for f

and g has become a rhombus from a triangle.

Finally, to get the gdPst, we need to blow up the points z= 1, '1 = 0 and z2 = 2,

2 = 0. After the blow-ups, we introduce new coordinates z', (1 and z', ', (2:

(5.4.109)

We draw the corresponding equations for the divisors on gdP8 t in Figure 5-5.

The requirement that (1 and (2 vanish to at least degree 4 in f puts additional

constraints on the coefficients in f. For example, the term fi(zi - 1)3 (z2 - 2) 3w 2z

in (5.4.108) has to vanish, since there is no way to have (4(2 in that term. Similar

things happen for g. After this analysis, we divide f by (4(2 and g by ('('. The final
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Figure 5-5: The local equations of divisors on gdPgst.

expressions for f and g on gdPgt are:

f = fo(z' _ 1)4(z' - 2)4 + fi(zI - 1)'(z' - 2)3W z('' + f2(zI - 1)2(z'

+ f3(z' - 1)(z' - 2)w z 3VV + f4W8z 4 ' 4V

(5.4.110)

g =90(z - 1)6(zI - 2)6 + gi(zj - 1i)(zI - 2) W2z/ + g2(zf - i)4(zI - 2)4'wz2 22

+ g3 (z'1 - 1)3(z' - 2) 3W6z 3% 3( 3 + g4(z' - 1)2(z/ - 2)2w8 z %4'4

+ g5 (z'i - 1)(z' - 2)w 10z 5('f + g650 2 z 6 '6 6

(5.4.111)

We can restore the dependence on z' by multiplying z' 8-r-n-p factors to each term

'imz/nzP for f, and multiplying z'12-m-n-p factors to each term Z'{nZGnZp for g. The

final expressions of f and g are:

4 6

f = f finij 4 -i , g = _gi7if6-i , 1 - 2zz'( i , i 5(z - 1)(z - 2)%Z/'.
i=O i=0

(5.4.112)

Indeed, the monomials in f and g lie on a line. Moreover, the number of monomials

in f and g are respectively 5 and 7, which exactly saturates the bound (5.3.89).

Similarly, we can explicitly compute the form of f and g for the other semi-toric
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bases in [97] with non-Higgsable U(1)s. Generally semi-toric bases are generated

by blowing up Hirzebruch surfaces F,, in a way that the curves on it form chains

between two specific curves Do and D,, which correspond to the (-n)-curve S and

the (+n)-curve S in the original Fn. They are listed below, where no and n, denotes

the self-intersection number of Do and D,. The chains are connected to Do at the

front, and to Do, at the end. Here r7, and x denote products of monomials, which

are different from the notations in (5.4.112) and will not be specified.

We also list the rational sections in form of (x, y, z) = (A, a, 1).

Mordell-Weil rank r = 8: no = -2, n, = -2, T = 9, h', = 19, h2,1 19.

chain 1: (-2, -1, -2)

chain 2: (-2, -1, -2)

chain 3: (-2, -1, -2)

chain 4: (-2, -1, -2)

f = fog4 + fij 3i7 + f27 2 Q 2 + f3ri3 + f 4 ,74  (5.4.113)

9 = 90 6 + g 5 -+ 92 4n2 + g3n3 + g2n4  + 95 r5 -96- 6  (5.4.114)

A = Ao(2 + A1jM + A2 ?] 2  (5.4.115)

a = ae0 3 + a1( 2,q + O2 &] + aar37 (5.4.116)

Mordell-Weil rank r = 6: no = -2, n, = -6, T = 13, h1', = 35, h2,1 = 11.

chain 1: (-2, -1, -3, -1)

chain 2: (-2, -1, -3, -1)

chain 3: (-2, -1, -3, -1)

chain 4: (-2, -1, -3, -1)

f = fo2/ 2 + fiq3 + f2r/4  (5.4.117)

9 = g0g
4 7 2 + g 3773 + 92 2774 + g715 +4 476 (5.4.118)
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A = Aodn + Ain2

a = ao 27 + a1(n2 + Z2r'

(5.4.119)

(5.4.120)

Mordell-Weil rank r = 6: no -1, nm = -2, T = 10, hi' = 24, h2 1 = 12.

chain 1: (-3, -1, -2, -2)

chain 2: (-3, -1, -2, -2)

chain 3: (-3, -1, -2, -2)

f

g

fog27 2 + fijT5 + f2r 8

g0g
4 + gj 3?73 9 2T,6 + 93 3,9 + g4/127

(5.4.121)

(5.4.122)

(5.4.123)

(5.4.124)

A = Aogr + Air 4

a = uo 2 + a1(rT3 + OZ

Mordell-Weil rank r = 5:

chain 1: (-3, -1, -2, -3,

chain 2: (-3, -1, -2, -3,

chain 3: (-3, -1, -2, -3,

no = -1, n, = -8, T = 16, hi' = 51, 2 ,1 = 3.

-2, -1)

-2, -1)

-2, -1)

fO2,22 + fi 5 TrIx 3

Y&r/4X2 + g63 T,3X 3 + Y224X

A = Ao rIX

a = ao ? 2X + a1a3 TX 2

(5.4.125)

(5.4.126)

(5.4.127)

(5.4.128)

Mordell-Weil rank r = 4:

chain 1: (-2, -2, -1, -4,

chain 2: (-2, -2, -1, -4,

no = -2, n,,, = -4, T = 13, l'" = 35, h2 ,1  11.

-1)

-1)
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chain 3: (-2, -2, -1, -4, -1)

f = fo4 + fi(- + f2712

g = go(6 + gj 477 + g2,22 +93 q 3

(5.4.129)

(5.4.130)

(5.4.131)

(5.4.132)

A = Ao 2 + A17

a = ao 3 + CelrT

Mordell-Weil rank r = 4: no = -6, n, = -6, T = 17, hl'1 = 51, h2,1 = 3.

chain 1: (-1, -3, -1, -3, -1)

chain 2: (-1, -3, -1, -3, -1)

chain 3: (-1, -3, -1, -3, -1)

chain 4: (-1, -3, -1, -3, -1)

f = fo 2 (5.4.133)

(5.4.134)9 = 9o r4 2 + g137,3 +9 17,4

A = Ajri7

a = ao(17 + ai/72

(5.4.135)

(5.4.136)

Mordell-Weil rank r = 4: no = -1, n, = -5, T = 14, h1'1 = 40, h2,1 -4.

chain 1: (-2, -1, -3, -- 1)

chain 2: (-4, -1, -2, -2, -3, -1)

chain 3: (-4, -1, -2, -2, -3, -1)

f = fog4 + fi 27 2

9 = godi + g1( 4172

(5.4.137)

(5.4.138)
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A = A g 2  (5.4.139)

a= agO3 or (2T (5.4.140)

Mordell-Weil rank r = 4: no -1, n,,= -2, T = 11, h',1 = 25, h2,1 = 13.

chain 1: (-2, -1, -2)

chain 2: (-4, -1, -2, -2, -2)

chain 3: (-4, -1, -2, -2, -2)

f

9

A

a

fog4 + fi(2 7 2

g0g6 + g1j 4 r 2

Ao 2 + A 1r 7
2

Ca 0
3 + C1j2

Mordell-Weil rank r = 3: no = -4, n =-

chain 1: (-1, -4, -1, -2, -3, -2, -1)

chain 2: (-1, -4, -1, -2, -3, -2, -1)

chain 3: (-1, -4, -1, -2, -3, -2, -1)

f

9

+ f2T,4(

+g 2 
2 7 4 + 93r6  (

(
or aog 2l + aicn (

-8, T = 19, hl'l = 62, h2,1 = 2.

5.4.141)

5.4.142)

5.4.143)

5.4.144)

(5.4.145)

(5.4.146)

fog2 + fg1 92

goga + g1(2,2

A = Ao

a = Oo rl

(5.4.147)

(5.4.148)

Mordell-Weil rank r = 2: no = -2, n, = -6, T = 18, h' = 46, h2,1 = 10.

chain 1: (-2, -1, -3, -1)

chain 2: (-2, -2, -2, -1, -6, -1, -3, -1)
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chain 3: (-2, -2, -2, -1, -6, -1, -3, -1)

f = fog4 + fi 2  (5.4.149)

g = go 6 + gir'n + g 2 
2 n2  (5.4.150)

A = Ao 2  (5.4.151)

a = ag3 + a 1 (5.4.152)

Mordell-Weil rank r = 2: no = -5, n, = -6, T = 21, h = 61, h2,1 1.

chain 1: (-1, -3, -1, -3, -1)

chain 2: (-1, -3, -2, -2, -1, -6, -1, -3, -1)

chain 3: (-1, -3, -2, -2, -1, -6, -1,-3, -1)

f =f2,2 (5.4.153)

9 = g2 + g14q6 (5.4.154)

A = Aoqp (5.4.155)

a = a(+ arq2 3  (5.4.156)

Mordell-Weil rank r = 2: no = -1, n, = -2, T = 12, hl' - 24, h2,1 = 12.

chain 1: (-2, -1, -2)

chain 2: (-3, -1, -2, -2)

chain 3: (-6, -1, -2, -2, -2, -2, -2)

f = fo7 + fq4 (5.4.157)

9 = go 2 + g173 +927 6 (5.4.158)
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A = A0?] 2  (5.4.159)

Ce = aOZ + ,3 (5.4.160)

Mordell-Weil rank r = 1: no = -2, n,, = -3, T = 15, h1', 34, h2,1 = 10.

chain 1: (-2, -1, -2)

chain 2: (-2, -2, -1, -4, -1)

chain 3: (-2, -2, -2, -2, -2, -1, -8, -1, -2)

f fo ii + fin4 (5.4.161)

g = goC3 + gi) 6  (5.4.162)

A = Ao? 2  (5.4.163)

a = aro3 (5.4.164)
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Chapter 6

Conclusions and outlook

Through this thesis, we have constructed a grand picture of the base classification

program of 6D and 4D F-theory. For the base surfaces used in 6D F-theory, one can

systematically blow up P2 and F, in all the possible ways. For the base threefolds,

the set of starting points is not known. Nonetheless, we have still managed to probe

a subset of toric threefolds and generated a large number of sample bases. We will

summarize the findings and discuss their physical implications and future directions.

Classification of base surfaces While the classification of toric and semi-toric

base surfaces in 6D F-theory has been finished, the classification of general non-toric

surfaces is still incomplete. We have constructed a finite algorithm in Section 3.3.1 to

systematically construct all the base surfaces from blowing up P2 and IF, but it may

not cover all the examples. A crucial geometric subtlety is the distinction between

three lines intersecting at a single point and three lines intersecting at three points,

see Figure 3-6. In an example of Pappus's theorem, see Figure 3-7, the three lines are

forced to intersect at a single point. There is not a criterion to tell when does this

happen for a general geometric configuration. If we see three lines intersect each other

in the computation of intersection numbers, then this ambiguity will always arise and

we get two different base surfaces with the same intersection and cone structure. The

physics of 6D F-theory on these two base surfaces are different. Although the particle

spectra are identical in the non-Higgsable phase of the 6D low energy supergravity

theory, if we tune three SU(2) gauge groups on these three lines, the matter spectrum
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will be different. In the case of three lines intersecting at a single point, there will be

a rank-3 symmetric tensor representation 4 of SU(2) localized at this point. While in

the other case, there will only be fundamental representations 2 at the intersection

points. The tensionless string transition, which is the blow up of the base, also leads

to different bases and low energy physics for the two cases in Figure 3-6. Other

unresolved issues include the problem of infinite generators of the effective cone and

the "special blow ups" of cubic curve at a double point to get a (-2)-curve.

Apart from these subtleties, we have still managed to completely classify all the

bases with h'1 (S) < 7 and the bases giving rise to elliptic Calabi-Yau threefolds with

h2,1 > 150. In these regimes, it seems that the total number of non-toric bases are

on the same magnitude of the total number of toric bases. For the entire set of base

surfaces, we cannot give an estimation on the total number of bases, although it is

known that this number is finite[68].

The set of base threefolds

Because of our ignorance about the general properties of base threefolds that

support an elliptic Calabi-Yau fourfold, we restrict ourselves to the class of rational

threefolds. Just as in the classification program of the base surfaces, we start from

the subset of toric threefolds as a first step. It turns out that this subset is already

extremely huge and it has rich structure. To obtain a clearer picture, we have sepa-

rated the allowed bases in 4D F-theory into two classes: the resolvable bases and the

"good" bases. The resolvable bases have codimension-two (4,6) singularities, which

could give rise to 4D AV = 1 SCFTs with 4D conformal matter in parallel to the

6D conformal matter in [39]. The good bases do not have codimension-two (4,6)

singularities, and should generally describe a 4D M = 1 supergravity model. For

the good bases, we still allow the appearance of codimension-three (4,6) singularities,

or points where (f, g) vanish to at least order (4, 6) but not as high as (8, 12). In

this case, we cannot blow up this point while not changing the number of complex

structure moduli or h3'1 of the elliptic Calabi-Yau fourfold. The physical implications

of these codimension-three points are not entirely clear. Although there could be

non-flat fibers after the resolution[94], they may not cause any problem in the 4D
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effective theory because of the G4 flux or other quantum effects[6]. Similarly, for the

cases of resolvable bases with codimension-two (4,6) singularities, it is also not clear

if the superconformal symmetry is actually unbroken. We will leave these important

physical questions to future research.

From our random walk and random blow up approaches, we can see the global set

of resolvable bases form a huge connected "ocean" while the good bases are isolated

"islands" in this ocean. A big island of good bases is the set of good bases connected

to IP via a sequence of blow up/downs that only pass through good bases. If we take

the restriction where the good bases mean the strictly good toric bases without any

(4,6) curves, then we have estimated the total number of topologically distinct bases

in this subset C to be 10482. The bases in C generally have no or a small number of

gauge groups with high rank, such as E6 and E7. However, a local pair SU(3) x SU(2)

is common on a typical base in C. It is not clear how to construct an actual standard

model particle spectrum on these bases using a non-GUT construction. The problem

comes from the tuning of U(1) on it, since a general tuning in Morrison-Park form

[102] may bring in codimension-two (4,6) singularity. This should be investigated in

a future project.

If we allow the appearance of non-toric (4,6) curves on a divisor that supports an

E8 gauge group, then we can have many more examples for toric good bases. Among

these good bases, there are the end point bases where any additional (toric) blow up

will lead to codimension-one (4,6) singularity. It seems that the h' 1 (B) of the end

point bases are concentrated at specific values, and the generic elliptic Calabi-Yau

fourfold over them have Hodge numbers that are mirrors of some simple Calabi-Yau

fourfolds. This may imply that the set of Hodge numbers for Calabi-Yau fourfolds

are highly constrained. The physical implication of this finding is not clear, since

the mirror symmetry of Calabi-Yau manifolds in the F-theory paradigm does not

correspond to any physical duality. Apart from the end point bases, there are also

intermediate bases which can still be blown up. However, they are more isolated since

we will generally get a resolvable base with toric (4,6) curves if they are randomly

blow up or down once.
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Unlike the classification of complex surfaces, we still have not obtained a com-

plete list of smooth starting point threefold bases, even for the toric case. From the

discovery of exotic starting points, it seems that there are a large number of resolv-

able bases with random structure that cannot be contracted to another smooth base.

If we really want to get a precise estimation of the total number of resolvable toric

bases, we need to count the number of these exotic starting points and correct the

underestimation in Section 4.4.3. The current estimation Nresolvable ~ 103,000 seems

to be an imprecise lower bound. Similarly, we expect the calculated total number of

good bases Ngood ~ 1020 has a large error which cannot even be estimated.

Of course, we should finally investigate the set of non-toric rational bases as well.

Since the total number of toric bases is not under control, it is even harder to say

anything about the non-toric bases. Nonetheless, it will be good if we can develop

some geometric tools and algorithms in parallel to the non-toric surface project.

Even more generally, we have not tried to relax the smoothness and compact-

ness conditions. As suggested by the minimal model program of complex threefolds,

adding singular threefolds can improve the connectivity of this graph. Physically, sin-

gular bases can describe an SCFT coupled to gravity in the 6D F-theory setups[38].

However, this has not been discussed for general singular 2D bases or any 3D bases.

For non-compact 2D bases, they could describe an SCFT decoupled to gravity if the

base is contractable[77]. It would be interesting if a similar classfication program of

non-compact threefold bases can be carried over to classify 4D = 1 SCFTs.

Flux vacua and model building

Now we want to ask how many of these 4D F-theory models contain a subsector

of our standard model, if any of them does. To get a quantative result, we need to

enumerate the flux vacua associated to a single geometry and compute the particle

spectrum using (4.1.25) and other formula in [15, 19]. We also need to stablize

the Kahler and complex structure moduli to fix the volume of different cycles of

the compact manifold, which correspond to energy scales in the 4D effective theory.

Since the F-term conditions (4.1.14) and (4.1.15) contain one more equation than

the number of complex structure moduli, we may expect that the supersymmetry is
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broken in the moduli stablization process. This could actually be good for the model

building because of the absence of low energy supersymnietry at LHC, but there have

not been many detailed constructions following this possibility. It is also interesting

to construct cosmology models under this setup.

The geometric structure is universal on many good bases we found, for example,

the end point bases, many intermediate bases and the base Bmax which supports

the elliptic Calabi-Yau fourfold Mm, with the largest ensemble of flux vacua. The

non-Higgsable gauge groups are mostly SU(2), G2, F4 and E8 , and it is almost impos-

sible to tune the Weierstrass model to get a bigger gauge group without introducing

codimension-one or two (4,6) singularities. However, it is universally hard to con-

struct the standard model subsector on all these geometries. Since the tuning of

SU(5) is impossible, the only way to get an SU(5) GUT gauge group is by breaking

the non-Higgsable E8 with vertical G4 flux. However, the conventional local SU(5)

constructions[15, 16] do not work as there is no local matter curve on a divisor with Es

gauge group. We do not know yet how to produce the desired chirality and Yukawa

coupling in the absence of matter curve. Another route is to use a non-GUT type

construction with a local SU(2)x SU(3) or breaking the SU(2)xG 2. It is hard to get

a U(1) gauge group and the correct U(1) charges.

In the worst case scenario, it may be possible that the vast geometric landscape

we have discovered is unfavored and that nature chose an alternative or simpler

construction. Even if this is the case, we can still get some hints about the early

universe geometric transition process. Another type of questions to ask is:

Despite that we get a lot of solutions that do not describe our world, how many

of these solutions describe a physical universe with stars, large scale structure or

intellegent life.

For example, the QCD gauge group may be replaced by a G 2, but the confinement

behavior still exists and we can still get a similar chemistry if the masses of quarks

have large enough gaps.

Swampland and string universality

As an potential application of the F-theory geometric classification program, we
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can find supergravity models which seem to be self-consistent but do not have any

F-theory/string theory realization. These low energy models are currently put into

the "swampland" where we need to either:

(1) find a UV completion;

(2) find a hidden inconsistency in the low energy theory;

(3) decides that the constraint is actually a UV constraint from string theory that

cannot be seen in the low energy theory.

The swampland problems involving U(1) gauge groups are particularly interesting.

Recently, it was discovered that there exists an anomaly free 6D (1,0) supergravity

spectrum with infinitely high U(1) charges[122]. If we take T = 0, a={3}, b11 =

p 2+pq + q2, and the matter spectrum of the single U(1) to be 54. ( p) + 54. ( q) +
54 .( p + q) for any p, q E Z, then the anomaly cancellation equations (3.1.11, 3.1.12)

are satisfied. From the finiteness of elliptic Calabi-Yau threefolds, apparently not all

of these U(1) charged spectrum can be realized in 6D F-theory.

Another type of swampland problem or quantum gravity constraint problem, the

weak gravity conjecture, has attracted a lot of attention recently[8]. It states that

gravity is always weaker than the electric magnetic force. More precisely, in the

weakest version of weak gravity conjecture, there always exists a U(1) charged particle

with mass m < qmpl. The initial argument is based on the thought experiment that

a non-BPS extremal black hole must be able to decay into a smaller black hole. If

the weak gravity conjecture is not satisfied, then this decay is impossible. Various

versions of weak gravity have been tested on a number of string models[80, 79] and

applied to axion inflation cosmology[116, 78, 28, 12, 75. It was also argued that if

a stronger weak gravity conjecture holds: the equality m = qmp, is satisfied if and

only if the theory is supersymmetric and such a particle is BPS, then the AdS/CFT

correspondence cannot be applied to a non-supersymmetric theory without higher

spin particles[111].

Our example of non-Higgsable U(1) models in Chapter 5 provide a test set for var-

ious different versions of weak gravity conjecture. It is uncommon for a string theory

model to have a U(1) gauge group but no massless charged matter. To compute the
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mass spectrum of massive charged matter, we need to explicitly compute the moduli

stabilization problem for different G4 flux. We expect that some of the weak gravity

conjectures may be ruled out, although the detailed calculation can be technically

hard.

Apart from the swampland problem for supergravity, we can also ask the similar

question for non-gravitational quantum field theory:

can every superconformal/supersymmetric field theory in a certain dimension be

realized in a string/F-theory setup?

There is not a good a priori reason for this to hold, since superconformal field

theories do not need any UV completion. However, we have seen that all the known

6D (2,0) SCFTs can be realized by compactifying type IIB superstring theory on a

K3 surface with ADE type singularity. One may ask this question for other classes

of theories, such as 6D (1,0), 4D M = 2 and 4D N = 1 SCFTs as well [39, 76, 77].

In general, it is extremely hard to prove any string universality result, since we

do not know what is the global set of "theories" of a particular type. However, we

will learn the structure of quantum field theory/quantum gravity during the pursuit

of this principle.

179



180



Appendix A

Notation for supersymmetry

In this appendix, we briefly explain the supersymmetry related terminologies used in

the thesis. For more details, one can read [58] and the appendix of [114], Volume 2.

The Clifford algebra in D real space-time dimensions are generated by d-dimensional

complex matrices y"(p = 0, . . . , D - 1) that satisfies

7 "Y' + -YV"y = 2pvI, (A.0.1)

where ri" is the Minkowski metric in D dimensions and I is the identity matrix.

The minimal dimension of the -y matrices is d = 2 LD/2J, hence the untruncated

Dirac spinors in D dimensions have d = 2 [D/2J complex components.

algebra acts on a Dirac spinor, and the commutator

E -" = -[Y, Yi"]
4

The Clifford

(A.0.2)

generates the Lorentz rotation.

For some D, the spinor representation can be truncated to shorter representations.

For even D = 2m, the matrix

(A.0.3)'YD+1 = +1-2) - - D-1
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can take the following block diagonal form:

Hence we can introduce projection operators

1- 7D+1 l ~~YD+1
PL 2 1 R = 2

2 2
(A.0.5)

on the Dirac spinors to project them into left-handed and right-handed Weyl spinors

with real dimension 2".

For dimensions D = 0, 1, 2, 3, 4(mod 8), we can take the Dirac spinor to be real,

which leads to a Majorana spinor with real dimension 2 [D/2] that satisfies

(A.0.6)

where 0f is the charge conjugation acting on a spinor.

In dimensions D = 2(mod 8), the Weyl and Majorana conditions are compatible

with each other, and we can define a Majorana- Weyl spinor that is both chiral and

real, with real dimension 2 D/21

In dimensions D _5 6, 7(mod 8), we cannot reduce the dimension of spinor rep-

resentation by the Majorana condition, but we can introduce a symplectic Majorana

condition that applies on an even number of spinors 0'(i = 1,.. , 2k):

)- i(NY )C (A.0.7)

C' is the antisymmetric symplectic matrix with block diagonal form

-I
0)

(A.O.8)

In dimensions D = 6(mod 8), this symplectic Majorana condition is compatible with
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D min. rep. min. real components

2 MW 1
3 M 2
4 MorW 4
5 D(S) 8
6 W(SW) 8
7 D(S) 16
8 MorW 16
9 M 16

10 MW 16
11 M 32

Table A.1: The minimal spinor representations in dimensions D 2 ~ 11. M, W,
MW, D, S, SW denotes Majorana, Weyl, Majorana-Weyl, Dirac, symplectic Majorana
and symplectic Majorana-Weyl representations respectively. For the cases D = 5, 6, 7,
we can choose to impose symplectic Majorana condition. Although it will not reduce
the number of spinor components, it is useful for understanding the supermultiplet
structure.

the Weyl condition.

We summarize the minimal number of real components and the spinor represen-

tations for D = 2 - 11 in Table A.1

The supersymmetry algebra is an extension of Poincar6 algebra including of a

number of fermionic generators Q' (i = 1,..., K). These Q's are K copies of su-

percharges, which transforms in the minimal spinor representation in Table A.1 with

spinor indices a. In D = 0, 1, 3(mod 4), we always use Majorana or Dirac spinors,

and use a single integer K to label the amount of supersymmetry in the theory. In

D = 2(mod 4), we use Weyl or Majorana-Weyl spinors, and use two integers (VL,VR)

to count the copies of left-handed and right-handed supercharges.

For example, theories with 32 supercharges include IID M = 1, 10D (1, 1), (2, 0),

9D K = 2 and 4D K = 8. 16 supercharges theories include 10D (1, 0), 8D K = 1,

6D (2, 0), 5D K = 2 and 4D K = 4. 8 supercharges theories include 6D (1,0), 5D

K = 1, 4D K = 2 and 3D K = 4. 4 supercharges theories include 4D K = 1 and 3D

M = 2.

The representations of supersymmetry algebra are usually called supermultiplets,

which are combinations of bosonic and fermionic fields that transform into each other
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with the action of supercharges. For massless particles with energy-momentum vector

p" = (E, 0, ... , 0, E), (A.0.9)

the states are labeled by the representation of the little group SO(D - 2), which is

the subgroup of the Lorentz group leaving pt' invariant:

R(SO(D - 2)) : (h, ... , h LD/2-1). (A.0.10)

The usual terminology of "spin" often corresponds to the sum of these his.

The supermultiplets are constructed by starting with a state with representation

(h,... , hLD/2]-1), and then acting supercharges Qt on this state to reduce the helicity

h, by j (in a proper spinor representation). Since {Qt, Qt} = 0, this procedure will

finally ends.

For example, in D = 4, there is only a single quantum number for the representa-

tions of the little group SO(2), which we called spin or helicity in the massless case. If

K = 1, then this process will always terminate after one step. We have the following

supermultiplets:

" Supergravity multiplet with a spin-2 graviton g,, and a spin-3/2 gravitino '/

* Rarita-Schwinger multiplet with a spin-3/2 rarita-schwinger field 441 and a spin-

1 vector field AA

" Vector multiplet with a spin-i gauge boson A, and a spin-1/2 gaugino X,

" Chiral multiplet with a spin-1/2 spinor b, and a spin-0 complex scalar q

For K = 2, we have

" Supergravity multiplet with a spin-2 graviton, two gravitinos and a spin-i vector

field

" Vector multiplet with a spin-i gauge boson, two spin-1/2 gauginos and a spin-0

scalar
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* Hypermultiplet with a spin-1/2 spinor and two spin-0 complex scalars

For 5D A 2 theory, we still only need one quantum number to label the repre-

sentation under the little group SO(3). The supermultiplets are the same as the 4D

K = 2 theory.

For 6D (1, 0) theory, one should think that there exists two copies of left-handed

supercharges because of the existence of symplectic Majorana-Weyl spinor represen-

tation. Hence the action of supercharges Qt will only end after two steps despite

the minimal supersymmetry. We need to quantum numbers (hl, h2) to label the

states under the little group SO(4), and the action of Qt reduces hi by 1/2. The

supermultiplets are

o Supergravity multiplet with a (1,1) graviton, a gravitino in (1/2, 1) and a tensor

field in representation (0, 1)

9 Tensor multiplet with a rank-2 antisymmetric tensor in representation (1, 0), a

spinor field in (), 0) and a complex scalar field in (0,0)

* Vector multiplet with a gauge boson in (j, j) and a gaugino in (0, j).

o Hypermultiplet with a left-handed spinor in (j, 0) and two complex scalars in

(0,0)

In D = 11, the only supermultiplet is the self-CPT-conjugate supergravity mul-

tiplet. In D > 11, every supermultiplet will contain a higher spin state, hence we

cannot have a supergravity theory in 12 or more space-time dimensions respecting

the super Poincard algebra.

The supersymmetry algebra can also be extended to the superconformal algebra

including the bosonic dilation D, special conformal transformation K11 and another set

of fermionic generators S4. A quantum field theory with superconformal symmetry

and no supergravity multiplets is called superconformal field theory (SCFT). The

scaling invariance can be broken by giving scalar fields a non-zero vacuum expectation

value (vev).
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For 6D (1,0) SCFT, if the scalar in the tensor multiplet has a non-zero vev, then

the superconformal symmetry is broken and the theory is deformed into the "tensor

branch" gauge theory. As we have mentioned in Section3.1, this corresponds to

blowing up a (4,6)-point on the base in the F-theory picture. On the other hand, if

the scalar in the hypermultiplet has a non-zero vev, then the theory is deformed into

the "Higgs branch".

In 4D or 5D M = 2 SCFT, there is no tensor branch since the absence of tensor

multiplet. However, one can give the scalar in the vector multiplet a non-zero vev,

and deform the theory into the "Coulomb branch". This deformation will break the

non-Abelian gauge group into the Abelian subgroup. Such a Coulomb branch does

not exist for 6D (1,0) SCFT. The Higgs branches are present for all these cases.

Finally, for 4D K = 1 SCFT, only the Higgs branch exists. This fact makes 4D

K = 1 the hardest to study among all the SCFTs in dimension D > 4.
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