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Abstract
For a bounded domain � ⊂ R

n and p > n, Morrey’s inequality implies that there is
c > 0 such that

c ‖u‖p∞ ≤
∫

�

|Du|p dx

for each u belonging to the Sobolev space W 1,p
0 (�). We show that the ratio of any

two extremal functions is constant provided that � is convex. We also show with
concrete examples why this property fails to hold in general and verify that convexity
is not a necessary condition for a domain to have this feature. As a by product, we
obtain the uniqueness of an optimization problem involving the Green’s function for
the p-Laplacian.

Mathematics Subject Classification 35J60 · 35J70 · 35P30 · 39B62

1 Introduction

Suppose � ⊂ R
n is a bounded domain and p > n. Morrey’s inequality for W 1,p

0 (�)

functions u may be expressed as
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c ‖u‖p

C
1− n

p (�)
≤

∫
�

|Du|p dx,

where c > 0 is a constant that is independent of u. In particular,

c ‖u‖p∞ ≤
∫

�

|Du|p dx . (1.1)

Let us define

λp := inf

⎧⎪⎨
⎪⎩

∫
�

|Du|pdx

‖u‖p∞
: u ∈ W 1,p

0 (�) \ {0}

⎫⎪⎬
⎪⎭ .

Observe that

λp ‖u‖p∞ ≤
∫

�

|Du|p dx (1.2)

and that c = λp is the largest constant such that (1.1) is valid. Furthermore, if there is

a function u ∈ W 1,p
0 (�)\{0} such that equality holds in (1.1), then c = λp.

Definition A function u ∈ W 1,p
0 (�)\{0} is an extremal if equality holds in (1.2).

It is plain to see that any multiple of an extremal is also an extremal. Using routine
compactness arguments, it is not difficult to verify that extremal functions exist. We
will argue below that any extremal u satisfies the boundary value problem

{
−�pu = λp |u(x0)|p−2 u(x0)δx0 x ∈ �

u = 0 x ∈ ∂�,
(1.3)

which was derived by Ercole and Pereira in [9]. Here �pψ := div(|Dψ |p−2Dψ) is
the p-Laplacian, and x0 is the unique point for which |u| is maximized in�. Moreover,
using (1.3) we will be able to conclude that any extremal has a definite sign in �. And
as the PDE in (1.3) is homogeneous, the optimal constant λp can be interpreted as
being an eigenvalue.

The primary goal of this work is to address the extent to which extremal functions
can be different. In particular, we would like to know if any two extremal functions
are necessarily multiples of one another. If they are, we consider the set of extremals
to be uniquely determined. For once one extremal is found, all others can be obtained
by scaling. We will argue that annuli never have this uniqueness property. We will
also exhibit star-shaped domains for which this uniqueness property fails. However,
we will see that if a planar domain has certain symmetry, then its extremals are one
dimensional.

Our main result is that convex domains always have the aforementioned uniqueness
property.

Theorem 1.1 Assume that � ⊂ R
n is open, convex and bounded. If u and v are

extremal, then u/v is constant throughout �.
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Extremal functions for Morrey’s inequality in convex domains

We will also explain how Theorem 1.1 implies the following corollary involving the
Green’s function of the p-Laplacian in �.

Corollary 1.2 Assume that � ⊂ R
n is open, convex and bounded. Suppose that G(·, y)

is the Green’s function of the p-Laplacian in�with pole y ∈ �; that is, G(·, y) satisfies

{
−�pw = δy x ∈ �

w = 0 x ∈ ∂�.
(1.4)

Then x0 given in Eq. (1.3) is the unique point in � for which

G (x0, x0) = max {G(y, y) : y ∈ �} .

Part of our motivation was to extend a previous result of Talenti. He considered
extremal functions for the following inequality, which is also due to Morrey. For each
weakly differentiable function u : Rn → R,

‖u‖p
L∞(Rn)

≤ c(n, p) |supp(u)| p
n −1

∫
Rn

|Du|p dx . (1.5)

Here c(n, p) is an explicit constant depending only on p and n, and |supp(u)| is the
Lebesgue measure of the support of u. Employing Schwarz symmetrization, Talenti
showed in [22] that if equality holds in (1.5) there are a ∈ R, r > 0 and x0 ∈ R

n such
that

u(x) =
{

a
(

r
p−n
p−1 − |x − x0|

p−n
p−1

)
, |x − x0| < r

0, |x − x0| ≥ r .

We remark that a quantitative version of this result has been established by Cianchi [5],
and we refer the reader to [4,8,21] for work on sharp constants of related inequalities.

Unfortunately, Rn and balls are the only known domains for which the extremals
have such convenient characterizations. Nevertheless, in this paper, we believe that
we have taken significant steps in understanding precisely which domains have a one
dimensional collection of extremals. In Sect. 2, we will derive basic properties of
solutions of (1.3), and in Sect. 3, we consider the support function of an extremal.
In Sect. 5, we will provide examples of domains for which uniqueness fails; these
include annuli, bow tie and dumbbell shaped planar domains. In Sect. 4, we verify
Theorem 1.1, and in Sect. 6, we use Steiner symmetrization to exhibit some nonconvex
planar domains that have unique extremals.

2 Properties of extremals

We now proceed to deriving some properties of extremal functions. These properties
will be crucial to our uniqueness study. First, we verify that extremal functions satisfy
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the boundary value problem (1.3). Thenwewill study the behavior of solutions of (1.3)
near their global maximum or minimum points. We also refer the reader to the recent
paper [9] by Ercole and Pereira, where they studied properties of extremal functions
in a wide class of inequalities that include (1.1). In particular, they obtained analogous
results to Corollaries 2.2 and 2.4 below.

Lemma 2.1 A function u ∈ W 1,p
0 (�) is extremal if and only if

∫
�

|Du|p−2 Du · Dφdx = λp max
{
|u(x)|p−2 u(x)φ(x) : x ∈ �, |u(x)| = ‖u‖∞

}
(2.1)

for all φ ∈ W 1,p
0 (�).

Proof 1. First let us establish the following identity

lim
ε→0+

‖u + εφ‖p∞ − ‖u‖p∞
ε

= p max
{
|u(x)|p−2 u(x)φ(x) : x ∈ �, |u(x)| = ‖u‖∞

}
, (2.2)

for u, φ ∈ C(�). For any x0 such that |u(x0)| = ‖u‖∞,

1

p
‖u + εφ‖p∞ ≥ 1

p
|u(x0) + εφ(x0)|p

≥ 1

p
|u(x0)|p + ε |u(x0)|p−2 u(x0)φ(x0)

= 1

p
‖u‖p∞ + ε |u(x0)|p−2 u(x0)φ(x0).

Therefore,

lim inf
ε→0+

‖u + εφ‖p∞ − ‖u‖p∞
ε

≥ p |u(x0)|p−2 u(x0)φ(x0),

and so “≥” holds in (2.2).
Now choose a sequence of positive numbers (ε j ) j∈N tending to 0 such that

lim sup
ε→0+

‖u + εφ‖p∞ − ‖u‖p∞
ε

= lim sup
j→∞

∥∥u + ε jφ
∥∥p

∞ − ‖u‖p∞
ε j

,

and select a sequence (x j ) j∈N maximizing |u+ε jφ| that converges to amaximizer
x0 of |u|. Such sequences exist by the continuity of u and φ, the compactness of
�, and the inequalities |u(x) + ε jφ(x)| ≤ ‖u + ε jφ‖∞ = |u(x j ) + ε jφ(x j )|. As
R 	 z 
→ 1

p |z|p is continuously differentiable,

lim sup
j→∞

∥∥u + ε jφ
∥∥p

∞ − ‖u‖p∞
ε j

≤ lim sup
j→∞

∣∣u(x j ) + ε jφ(x j )
∣∣p − ∣∣u(x j )

∣∣p

ε j
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Extremal functions for Morrey’s inequality in convex domains

= p |u(x0)|p−2 u(x0)φ(x0)

≤ p max{|u(x)|p−2 u(x)φ(x) : |u(x)| = ‖u‖∞}.
We conclude “≤” in (2.2).

2. Any extremal u ∈ W 1,p
0 (�)\{0} satisfies

λp =

∫
�

|Du|p dx

‖u‖p∞
≤

∫
�

|Du + εDφ|p dx

‖u + εφ‖p∞
,

for each φ ∈ W 1,p
0 (�) and ε > 0 sufficiently small. Exploiting (2.2)

0 ≤ lim
ε→0+

1

pε

⎛
⎜⎜⎝

∫
�

|Du + εDφ|p dx

‖u + εφ‖p∞
−

∫
�

|Du|p dx

‖u‖p∞

⎞
⎟⎟⎠

=

∫
�

|Du|p−2 Du · Dφdx

‖u‖p∞

−

∫
�

|Du|p dx

‖u‖2p∞
max{|u(x)|p−2u(x)φ(x) : x ∈ �, |u(x)| = ‖u‖∞}

= 1

‖u‖p∞

(∫
�

|Du|p−2 Du · Dφdx

−λp max{|u(x)|p−2u(x)φ(x) : x ∈ �, |u(x)| = ‖u‖∞}
)

.

Canceling the factor 1/ ‖u‖p∞ and replacing φ with −φ gives (2.1).
3. Of course if (2.1) holds, we can choose φ = u to verify that u is extremal. ��
Corollary 2.2 Each extremal function is everywhere positive or everywhere negative
in �.

Proof Assume that u ∈ W 1,p
0 (�)\{0} is extremal. Then w := |u| is extremal, as well.

Moreover, (2.1) implies

∫
�

|Dw|p−2 Dw · Dφdx ≥ 0

for all φ ≥ 0. Therefore, w is p-superharmonic, w ≥ 0 and w|∂� = 0. Since w

doesn’t vanish identically, w = |u| > 0 (Theorem 11.1 in [18]). Hence, u doesn’t
vanish in � and so u has a definite sign in �. ��

Observe that the left hand side of (2.1) is linear inφ,while the right hand side appears
to be nonlinear in φ. We will argue that this forces the set {x ∈ � : |u(x)| = ‖u‖∞}
to be a singleton for any extremal function.

123



R. Hynd, E. Lindgren

Proposition 2.3 Assume u is an extremal function. Then {x ∈ � : |u(x)| = ‖u‖∞} is
a singleton.

Proof Without any loss of generality, we may assume u > 0 and ‖u‖∞ = 1. In view
of (2.1),

max{u=1}
{φ1 + φ2} = max{u=1} φ1 + max{u=1} φ2, (2.3)

for any twoφ1, φ2 ∈ C∞
c (�). Suppose that there are distinct points x1 and x2 forwhich

u(x1) = u(x2) = 1. In this case, there are balls Bδ(x1), Bδ(x2) ⊂ � that are disjoint
for some δ > 0 small enough. We choose functions φ1 ∈ C∞

c (�), φ2 ∈ C∞
c (�) that

are nonnegative, have maximum value 1, and are supported in Bδ(x1) and Bδ(x2),
respectively. It follows that

max{u=1}
{φ1 + φ2} = 1,

while max{u=1} φ1 = 1 and max{u=1} φ2 = 1. This contradicts (2.3). ��
Corollary 2.4 Assume u is an extremal function. Then |u| attains its maximum value
uniquely at some x0 ∈ �. Moreover,

∫
�

|Du|p−2 Du · Dφdx = λp|u(x0)|p−2u(x0)φ(x0)

for each φ ∈ W 1,p
0 (�). In particular, u is a weak solution of (1.3).

Wenote that any solutionu of (1.3) is differentiablewith a locallyHölder continuous
gradient in�\{x0}, see [10,15,23]. However, we showbelow that u is not differentiable
at x0.

Example 2.5 As we noted above, when � = Br (x0), we have an explicit extremal
function

u(x) = a
(

r
p−n
p−1 − |x − x0|

p−n
p−1

)
, x ∈ Br (x0) (2.4)

for each a ∈ R (See Fig. 1). Moreover, any extremal is of the form (2.4) for some
a ∈ R; in particular, any ball has a one dimensional collection of extremal functions.
The corresponding optimal constant in (1.2) is

λp =

∫
Br (x0)

|Du|p dx

‖u‖p∞
=

(
p − n

p − 1

)p−1

rn−pnωn .

We can use the extremals for balls (2.4) to study the behavior of general extremals
near the points which maximize their absolute values. Note in particular, that the
family of extremals (2.4) are Hölder continuous with exponent p−n

p−1 ∈ (0, 1], which
is a slight improvement of the exponent p−n

p one has from the Sobolev embedding

W 1,p
0 (�) ⊂ C1− n

p (�). We will first argue that solutions of (1.3), and in particular
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Fig. 1 Example 2.5 with a = 1, p = 4, n = 2, r = 1 and x0 = 0

extremals, have exactly this type of continuity at their maximizing or minimizing
points.

Proposition 2.6 Assume u is a solution of (1.3) and that Br (x0) ⊂ � ⊂ BR(x0). Then

‖u‖∞
R

p−n
p−1

|x − x0|
p−n
p−1 ≤ |u(x) − u(x0)| ≤ ‖u‖∞

r
p−n
p−1

|x − x0|
p−n
p−1

for each x ∈ �.

Proof Without loss of generality we may assume that u > 0 and u(x0) = 1. Define

v(x) := 1

r
p−n
p−1

(
r

p−n
p−1 − |x − x0|

p−n
p−1

)

= 1 − 1

r
p−n
p−1

|x − x0|
p−n
p−1

for x ∈ Br (x0). Observe that u and v are p-harmonic in Br (x0)\{x0}, u(x0) = v(x0)
and u ≥ v on ∂ Br (x0). By weak comparison, u ≥ v in Br (x0). That is

u (x) ≥ 1 − 1

r
p−n
p−1

|x − x0|
p−n
p−1 , x ∈ Br (x0).

Since v(x) ≤ 0 for x /∈ Br (x0), the above inequality trivially holds for x ∈ �\Br (x0).
Now set

w(x) := 1

R
p−n
p−1

(
R

p−n
p−1 − |x − x0|

p−n
p−1

)

= 1 − 1

R
p−n
p−1

|x − x0|
p−n
p−1 .
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Observe that u and w are p-harmonic in �\{x0}, u(x0) = w(x0) and u ≤ w on ∂�

as � ⊂ BR(x0). By weak comparison, u ≤ w in �. That is

u(x) ≤ 1 − 1

R
p−n
p−1

|x − x0|
p−n
p−1 , x ∈ �.

��
Corollary 2.7 Suppose that u is a non-zero solution of (1.3). Then u is not differentiable
at x0.

Proof First assume p−n
p−1 ∈ (0, 1). By hypothesis, u(x) = u(x0) + Du(x0) · (x −

x0) + o(|x − x0|), as x → x0. Choosing R so large that � ⊂ BR(x0), we have by the
previous proposition that

‖u‖∞
R

p−n
p−1

|x − x0|
p−n
p−1 ≤ |u(x) − u(x0)| ≤ |Du(x0)| |x − x0| + o (|x − x0|) ,

as x → x0. That is,

‖u‖∞
R

p−n
p−1

1

|x − x0|1−
p−n
p−1

≤ |Du(x0)| + o(1).

This inequality can not be true since p−n
p−1 ∈ (0, 1). If p−n

p−1 = 1, then n = 1 and the
claim trivially holds since u is then of the form (2.4). ��

We will now refine the above estimates to deduce the exact behavior of a solution
u of (1.3) near x0. The following proposition relies on the results of Kichenassamy
and Veron in [12].

Proposition 2.8 Assume that u is a solution of (1.3). Then

lim
x→x0

|u(x) − u(x0)|
|x − x0|

p−n
p−1

= ‖u‖∞
(

p − 1

p − n

)(
λp

nωn

) 1
p−1

,

and

lim
x→x0

|Du(x)|
|x − x0|

p−n
p−1−1

= ‖u‖∞
(

λp

nωn

) 1
p−1

.

Here ωn is the Lebesgue measure of B1(0) ⊂ R
n.

Proof Without any loss of generality, we may assume that u is positive in � and that
u(x0) = 1. Recall that u is p-harmonic in �\{x0}; and in view of Proposition 2.6, u
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satisfies 0 ≤ 1 − u(x) ≤ C |x − x0|
p−n
p−1 in � for some constant C . This permits us to

use Theorem 1.1 and Remark 1.6 in [12] to conclude that there is γ > 0 such that

lim
x→x0

1 − u(x)

|x − x0|
p−n
p−1

= γ, (2.5)

lim
x→x0

|Du(x)|
|x − x0|

p−n
p−1−1

=
(

p − n

p − 1

)
γ, (2.6)

and

lim
x→x0

(
Du(x)

|Du(x)| + x − x0
|x − x0|

)
= 0. (2.7)

We may integrate by parts and exploit (2.7) to get

λp =
∫

�

|Du|p dx

= lim
r→0+

∫
�\Br (x0)

|Du|p dx

= lim
r→0+

∫
�\Br (x0)

div(u |Du|p−2 Du)dx

= lim
r→0+

∫
∂ Br (x0)

u |Du|p−2 Du ·
(

− x − x0
|x − x0|

)
dσ

= lim
r→0+

∫
∂ Br (x0)

u |Du|p−1 dσ.

Here σ is n − 1 dimensional Hausdorff measure. In view of (2.5), we actually have

λp = lim
r→0+

∫
∂ Br (x0)

|Du|p−1 dσ. (2.8)

Now we can apply (2.6). This limit gives

|Du(x)|p−1 =
(

p − n

p − 1
γ

)p−1

|x − x0|−(n−1) + o(1),

as x → x0. By (2.8),

λp = lim
r→0+

∫
∂ Br (x0)

[(
p − n

p − 1
γ

)p−1

r−(n−1) + o(1)

]
dσ =

(
p − n

p − 1
γ

)p−1

nωn,

which concludes the proof. ��
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Remark 2.9 A function w ∈ W 1,p
0 (�) that satisfies

⎧⎨
⎩

−�pw = 0, x ∈ �\{x0}
w = 1, x = x0
w = 0, x ∈ ∂�

(2.9)

weakly is called a potential function. Observe that every extremal is a multiple of a
potential function but not vice versa. For instance, if� = B1(0), thenw is an extremal
if and only if x0 = 0.

The strong maximum principle for p-harmonic functions implies that 0 < w < 1
in �\{x0}. In particular, w is uniquely maximized at x0. Using similar arguments as
in the proof of Proposition 2.8, one can easily show that

−�pw = λδx0

in � where

λ :=
∫

�

|Dw|p dx .

Therefore, the conclusion of Proposition 2.8 holds for w with λ replacing λp.

3 Support function of an extremal

Suppose now that � is convex and that u ∈ W 1,p
0 (�) is a positive extremal which

achieves its maximum at x0 ∈ �. By Corollary 2.4, the results of Lewis [14] imply
that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− (x − x0) · Du (x) > 0 for x ∈ �\ {x0} ,

u is locally real analytic in �\ {x0} ,

{u > t} is convex for each t ∈ R, and

{u = t} has positive Gaussian curvature for each t ∈ (0, ‖u‖∞).

(3.1)

By the implicit function theorem, it also follows that the level sets of u are smooth.
We define the support function of u as

h(ξ, t) := sup
{

x · ξ : x ∈ �, u(x) ≥ t
}
. (3.2)

ξ ∈ R
n, t ∈ [0, ‖u‖∞]. For t ∈ [0, ‖u‖∞], h(·, t) is the usual support function of the

convex set {u ≥ t}; if u(0) ≥ t and |ξ | = 1, h(ξ, t) represents the distance from the
origin to the hyperplane that supports {u ≥ t} with outward normal ξ . It follows from
(3.1) and Theorem 4 of [7], h ∈ C∞(Rn\{0} × (0, ‖u‖∞)) and ht < 0.

Suppose u(x0) = ‖u‖∞. Then for

x ∈ �\{x0}, ξ = − Du(x)

|Du(x)| , and t = u(x),
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we have

h(ξ, t) = x · ξ, ht (ξ, t) = − 1

|Du(x)| , and Dξ h(ξ, t) = x .

See [16]. In particular, since ξ is the outward unit normal to the hypersurface {u = t}
at the point x , Dξ h(ξ, t) is the inverse image of the Gauss map at x . Moreover, as
D2

ξ h(ξ, t)ξ = 0, the restriction of the linear transformation D2
ξ h(ξ, t) : Rn → R

n

to ξ⊥ := {z ∈ R
n : z · ξ = 0} is the inverse of the second fundamental form of

{u = t} at the point x (see Section 2.5 of [20] for more on this point). In particular,
D2

ξ h(ξ, t)|ξ⊥ : ξ⊥ → ξ⊥ is positive definite and its eigenvalues are the reciprocals of
the principle curvatures of {u = t} at x .

Recall that−�pu = 0 in�\{x0}. Using this equation, Colesanti and Salani proved
(in Proposition 1 of [7]) that h satisfies

h2
t tr

[(
D2

ξ h|ξ⊥
)−1

]
+ (p − 1)

((
D2

ξ h|ξ⊥
)−1 ∇ξ ht · ∇ξ ht − htt

)
= 0 (3.3)

for each |ξ | = 1 and t ∈ (0, ‖u‖∞). Here ∇ξ ht := (In − ξ ⊗ ξ)Dξ ht is the projection
of the gradient of ht onto ξ⊥. Equation (3.3) will have an important role in our Proof
of Theorem 1.1.

4 Convex domains

Throughout this section, we will assume that � ⊂ R
n is a bounded convex domain.

We will also suppose that u0, u1 ∈ W 1,p
0 (�) are positive extremal functions which

satisfy

{
u0(x0) = ‖u0‖∞ = 1

u1(x1) = ‖u1‖∞ = 1,

for some x0, x1 ∈ �. We aim to show that

u0 ≡ u1. (4.1)

It is easy to see that Theorem 1.1 follows from (4.1).
For each ρ ∈ (0, 1), we define the Minkowski combination of u0 and u1

uρ(z) := sup
{
min {u0(x), u1(y)} : z = (1 − ρ) x + ρy, x, y ∈ �

}

z ∈ �. We recall that u0 and u1 are quasiconcave. Using the definition above, it is
straightforward to verify

{
uρ > t

} = (1 − ρ) {u0 > t} + ρ {u1 > t} , (4.2)
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for each t ∈ R. Here the addition is the usual Minkowski addition of convex sets. In
particular, uρ itself is quasiconcave.

The Minkowski combination was introduced in work of Borell in [1] when he
studied capacitary functions; although his work was motivated by the previous
papers of Lewis [14] and Gabriel [11]. We also were particularly inspired to uti-
lize the Minkowski combination after we became aware of the work of Colesanti and
Salani in [7], who verified a Brunn-Minkowski inequality for p-capacitary functions
(1 < p < n), and the work of Cardaliaguet and Tahraoui in [3] on the strict concavity
of the harmonic radius.

Along the way to proving (4.1), we will need some other useful properties of uρ .

Proposition 4.1 Define

xρ := (1 − ρ)x0 + ρx1.

Then the following hold:

(i) uρ(xρ) = ∥∥uρ

∥∥∞ = 1.
(i i) uρ |∂� = 0.

(i i i) uρ ∈ C∞(�\ {
xρ

}
) ∩ C(�).

(iv) For each z ∈ �\ {
xρ

}
, there are x ∈ �\ {x0} and y ∈ �\ {x1} such that

z = (1 − ρ)x + ρy,

uρ(z) = u0(x) = u1(y),

Duρ(z)∣∣Duρ(z)
∣∣ = Du0(x)

|Du0(x)| = Du1(y)

|Du1(y)| ,
1∣∣Duρ(z)

∣∣ = (1 − ρ)
1

|Du0(x)| + ρ
1

|Du1(y)| ,

D2uρ(z)∣∣Duρ(z)
∣∣3 ≥ (1 − ρ)

D2u0(x)

|Du0(x)|3 + ρ
D2u1(y)

|Du1(y)|3 .

We omit the proof of the above proposition. However, we remark that (i) and (i i)
are elementary; Theorem 4 of [7] and Theorem 1 of [14] together imply (i i i); and
(iv) follows from Sect. 2, [3] or Sect. 7 of [16]. Using these properties we will verify
that uρ itself is an extremal for each ρ ∈ (0, 1).

Lemma 4.2 uρ is extremal.

Proof We first show that uρ is p-subharmonic and integrate by parts to derive an
upper bound on the integral

∫
�

|Duρ |pdz. Then we show that uρ satisfies the limits
in Proposition 2.8 (that are also satisfied by every extremal function). Finally, we
combine the upper bound and limits to arrive at the desired conclusion.

1. Let z ∈ �\{xρ}, and select x ∈ �\{x0} and y ∈ �\{x1} such that

e := Duρ(z)∣∣Duρ(z)
∣∣ = Du0(x)

|Du0(x)| = Du1(y)

|Du1(y)|
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and

D2uρ(z)∣∣Duρ(z)
∣∣3 ≥ (1 − ρ)

D2u0(x)

|Du0(x)|3 + ρ
D2u1(y)

|Du1(y)|3 .

Recall that such x, y exist by Proposition 4.1. We have

∣∣Duρ(z)
∣∣−(p+1)

�puρ(z) = �uρ(z)∣∣Duρ(z)
∣∣3 + (p − 2)

D2uρ(z)e · e∣∣Duρ(z)
∣∣3

= (In + (p − 2)e ⊗ e) · D2uρ(z)

|Duρ(z)|3 .

Note that min{1, p − 1} > 0 is a lower bound on the eigenvalues of the matrix
In + (p − 2)e ⊗ e. Therefore,

∣∣Duρ(z)
∣∣−(p+1)

�puρ(z)

≥ (In + (p − 2)e ⊗ e) ·
(

(1 − ρ)
D2u0(x)

|Du0(x)|3 + ρ
D2u1(y)

|Du1(y)|3
)

= (1 − ρ) |Du0(x)|−(p+1) �pu0(x) + ρ |Du1(y)|−(p+1) �pu1(y)

= (1 − ρ) · 0 + ρ · 0
= 0.

Consequently, −�puρ ≤ 0 in �\{xρ}.
2. The divergence theorem gives

∫
�\Br (xρ)

div(uρ

∣∣Duρ

∣∣p−2
Duρ)dz

=
∫

∂ Br (xρ)

uρ

∣∣Duρ

∣∣p−2
Duρ ·

(
− z − xρ

|z − xρ |
)

dσ.

On the other hand, since uρ is a positive p-subharmonic function in �\{xρ}
∫

�\Br (xρ)

div(uρ

∣∣Duρ

∣∣p−2
Duρ)dz =

∫
�\Br (xρ)

(
uρ�puρ + ∣∣Duρ

∣∣p)
dz

≥
∫

�\Br (xρ)

∣∣Duρ

∣∣p
dz.

As uρ ≤ 1, ∫
�

∣∣Duρ

∣∣p
dz ≤ lim inf

r→0+

∫
∂ Br (xρ)

∣∣Duρ

∣∣p−1
dσ. (4.3)
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3. Letwρ be a solution of thePDE (2.9)with xρ replacing x0.Asuρ is p-subharmonic,
uρ(xρ) = 1 and uρ |∂� = 0, weak comparison implies uρ ≤ wρ . This is a version
of Borell’s inequality; see [1,3]. In particular,

wρ(z) ≥ uρ(z) ≥ min {u0(x), u1(y)} , (4.4)

whenever z = (1 − ρ)x + ρy.
Now let zk → xρ with zk �= xρ for all k ∈ N sufficiently large. Set

{
xk := zk + (

x0 − xρ

)
yk := zk + (

x1 − xρ

)

for each k ∈ N. Observe zk = (1 − ρ)xk + ρyk and

∣∣∣zk − xρ

∣∣∣ =
∣∣∣xk − x0

∣∣∣ =
∣∣∣yk − x1

∣∣∣ .

Setting λ := ∫
�

|Dwρ |pdz, we have from Proposition 2.8, Remark 2.9 and (4.4)
that

(
p − 1

p − n

)(
λ

nωn

) 1
p−1 = lim

k→∞
1 − wρ(zk)

|zk − xρ | p−n
p−1

≤ lim
k→∞max

{
1 − u0(xk)

|xk − x0|
p−n
p−1

,
1 − u1(yk)

|yk − x1|
p−n
p−1

}

=
(

p − 1

p − n

)(
λp

nωn

) 1
p−1

.

It follows that λ = λp. In view of (4.4), and since the sequence zk was arbitrary,

lim
z→xρ

1 − uρ(z)∣∣z − xρ

∣∣ p−n
p−1

=
(

p − 1

p − n

)(
λp

nωn

) 1
p−1

. (4.5)

4. Again let zk → xρ with zk �= xρ for all k ∈ N sufficiently large.ByProposition 4.1,
there are xk ∈ �\{x0} and yk ∈ �\{x1} such that zk = (1 − ρ)xk + ρyk ,

uρ

(
zk

)
= u0

(
xk

)
= u1

(
yk

)
, (4.6)

and

1∣∣Duρ(zk)
∣∣ = (1 − ρ)

1∣∣Du0(xk)
∣∣ + ρ

1∣∣Du1(yk)
∣∣ . (4.7)
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Since uρ(zk) → 1, (4.6) implies that xk → x0 and yk → x1 as u0 and u1
are uniquely maximized as these points, respectively. Combining this fact with
Proposition 2.8, (4.5) and again with (4.6) also gives

lim
k→∞

∣∣yk − x1
∣∣∣∣zk − xρ

∣∣ = lim
k→∞

∣∣xk − x0
∣∣∣∣zk − xρ

∣∣ = 1. (4.8)

By (4.7),

∣∣zk − xρ

∣∣ p−n
p−1−1

∣∣Duρ(zk)
∣∣ = (1 − ρ)

∣∣zk − xρ

∣∣ p−n
p−1−1

∣∣Du0(xk)
∣∣ + ρ

∣∣zk − xρ

∣∣ p−n
p−1−1

∣∣Du1(yk)
∣∣

=
(∣∣zk − xρ

∣∣∣∣xk − x0
∣∣
) p−n

p−1−1

(1 − ρ)

∣∣xk − x0
∣∣ p−n

p−1−1

∣∣Du0(xk)
∣∣

+
(∣∣zk − xρ

∣∣∣∣yk − x1
∣∣
) p−n

p−1−1

ρ

∣∣yk − x1
∣∣ p−n

p−1−1

∣∣Du1(yk)
∣∣ .

We can now employ the second limit in Proposition 2.8 and (4.8) to obtain

lim
k→∞

∣∣Duρ(zk)
∣∣

∣∣zk − xρ

∣∣ p−n
p−1−1

=
(

λp

nωn

) 1
p−1

.

And since zk was arbitrary,

lim
z→xρ

∣∣Duρ(z)
∣∣

∣∣z − xρ

∣∣ p−n
p−1−1

=
(

λp

nωn

) 1
p−1

. (4.9)

5. Using the upper bound (4.3) and the limits (4.5) and (4.9), we can proceed with
the same arguments as in the proof of Proposition 2.8 to conclude

∫
�

∣∣Duρ

∣∣p
dz ≤ lim inf

r→0+

∫
∂ Br (xρ)

∣∣Duρ

∣∣p−1
dσ = λp.

��
In order to verify (4.1), we will employ the respective support functions h0, h1, and

hρ of u0, u1 and uρ ; recall the support function of an extremal was defined in (3.2).
In particular, we note that the identity (4.2) implies

hρ = (1 − ρ)h0 + ρh1.
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Using this identity with the fact that h0, h1 and hρ all satisfy Eq. (3.3), Colesanti and
Salani showed for each t ∈ (0, 1) there is C(t) > 0 such that

D2
ξ h0(ξ, t)

∣∣∣ξ⊥ = C(t)D2
ξ h1(ξ, t)

∣∣∣
ξ⊥ (4.10)

and
∂t h0(ξ, t) = C(t)∂t h1(ξ, t), (4.11)

for all |ξ | = 1 (see the proof of Theorem 1 in [7]).
As D2

ξ h0(ξ, t)ξ = D2
ξ h0(ξ, t)ξ = 0 ∈ R

n , it follows from (4.10) and the homo-
geneity of h0 and h1 that

D2
ξ h0(ξ, t) = C(t)D2

ξ h1(ξ, t),

for (ξ, t) ∈ (Rn\{0}) × (0, 1). Upon integration we find

h0(ξ, t) = C(t)h1(ξ, t) + a(t) · ξ + b(t)

for some a(t) ∈ R
n and b(t) ∈ R. Since h0 and h1 are homogeneous of degree one,

it must be that b(t) = 0 for each t ∈ (0, 1). Thus,

h0(ξ, t) = C(t)h1(ξ, t) + a(t) · ξ.

Taking the time derivative of both sides of this equation gives

∂t h0(ξ, t) = C(t)∂t h1(ξ, t) + C ′(t)h1(ξ, t) + a′(t) · ξ.

Comparing with (4.11) leads us to

C ′(t)h1(ξ, t) + a′(t) · ξ = 0.

Suppose that C ′(t0) �= 0 for some t0 ∈ (0, 1). Then

h1(ξ, t0) =
[−a′(t0)

C ′(t0)

]
· ξ.

This would imply the level set {u1 = t0} is the singleton {−a′(t0)/C ′(t0)}, which is
not possible. Therefore, C ′(t) = 0 for t ∈ (0, 1) and thus a′(t) · ξ = 0 for all ξ .
Consequently, a′(t) = 0 for t ∈ (0, 1). Since h0 and h1 coincide at t = 0, C(t) = 1
and a(t) = 0 for all t ∈ [0, 1]. As a result, h0 ≡ h1 and so {u0 ≥ t} = {u1 ≥ t} for
each t ∈ [0, 1] (Theorem 8.24 in [19]). This verifies (4.1).

Proof of Corollary 1.2 By Eq. (1.4) and inequality (1.2),

G(y, y) =
∫

�

|DG(x, y)|p dx
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≥ λp ‖G(·, y)‖p∞
≥ λpG(y, y)p.

Therefore, G(y, y) ≤ λ
−1/(p−1)
p and equality holds if and only if G(·, y) is extremal.

Theorem 1.1 in turn implies that equality occurs if and only if y = x0. ��

5 Nonuniqueness

We will now explain that uniqueness does not hold for general domains by providing
a few explicit examples. These instances include planar annuli, bow tie and dumbbell
shaped domains. The perceptive reader will also see how to construct other examples
from our remarks below.

Example 5.1 Define

�r1,r2 := {
x ∈ R

n : r1 < |x | < r2
}
,

for r1, r2 > 0 with r1 < r2. As mentioned above, there is a positive extremal u that
achieves is maximum at a single point x0 ∈ �r1,r2 . Notice that for any n×n orthogonal
matrix O , v := u ◦ O is a positive extremal and ‖v‖∞ = ‖u‖∞. Consequently, for
each y0 ∈ �r1,r2 with |y0| = |x0|, there is a distinct positive extremal with supremum
norm equal to ‖u‖∞. Thus, uniqueness of extremals does not hold for annuli as showed
in Fig. 2.

Fig. 2 �4,6 when n = 2

123



R. Hynd, E. Lindgren

Fig. 3 �1/10

Example 5.2 Consider the “bow tie” domain in the plane

�ε :=
{
(x1, x2) ∈ R

2 : |x2| < |x1| + ε, |x1| < 1
}

,

for ε > 0. Note, in particular, that �ε is star-shaped with respect to the origin; see
Fig. 3. Let uε be a positive extremal for �ε with ‖uε‖∞ = 1. If uε is unique, then it
must be that

uε(0, 0) = 1. (5.1)

This is due to the fact that the �ε and the p-Laplacian are invariant with respect to
reflection about the x1 and x2 axes.

Let us assume (5.1) holds for each ε > 0 and extend uε to be 0 outside of �ε .
Notice that the resulting function, which we also denote as uε , belongs to W 1,p(R2).
Also note that since �0 ⊂ �ε

∫
R2

|Duε |p dx =
∫

�ε

|Duε |p dx = λp(�ε) ≤ λp(�0).

Consequently, there is a decreasing sequence of positive numbers (ε j ) j∈N tending to
0 and a continuous function u0 : R2 → [0, 1] for which uε j → u0 locally uniformly
on R2. In view of (5.1),

u0(0, 0) = 1.
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Fig. 4 Dumbbell-shaped domain for δ = 1/5

On the other hand, uε(0, 2ε) = 0 for all ε > 0. Thus

u0(0, 0) = lim
j→∞ uε j (0, 2ε j ) = 0,

which is a contradiction.
As a result, we conclude that there is some ε > 0 such that uε does not achieve

its maximum value at (0, 0). For this value of ε, �ε will have a least two positive
extremals with supremum norm equal to 1.

Example 5.3 The same ideas used in Example 5.2, can be used to show the dumbbell-
shaped domain

B1(−5, 0) ∪ ([−5, 5] × [−δ, δ]) ∪ B1(5, 0) (0 < δ < 1),

does not have unique extremals for some δ > 0 chosen small enough. See Fig. 4.

6 Steiner symmetric domains

Theorem 1.1 implies that if a convex domain has some reflectional symmetry, then
we have additional information on the location of the maximum points of positive
extremals. More precisely, we can make the following observation.

Corollary 6.1 Assume � ⊂ R
n is a convex domain that is invariant with respect

to reflection across the hyperplanes
{

x ∈ R
n : x j = 0

}
for j = 1, . . . , n. Then any

positive (negative) extremal achieves its maximum (minimum) value at 0 ∈ R
n.

Proof Assume u ∈ W 1,p
0 (�) is a positive extremal that achieves it maximum value at

z. As � is invariant with respect to {x ∈ R
n : x1 = 0}, the function

u1(x1, x2, . . . , xn) := u(−x1, x2, . . . , xn), (x1, x2, . . . , xn) ∈ �,

belongs to W 1,p
0 (�) and ‖u‖∞ = ‖u1‖∞. Moreover, it is routine to verify that u1 is

also a positive extremal that achieves it maximum at the reflection of z about the plane
{x ∈ R

n : x1 = 0}. By Theorem 1.1, u1 = u which forces z ∈ {x ∈ R
n : x1 = 0}.

Repeating this argument for j = 2, . . . , n, we find z ∈ {x ∈ R
n : x j = 0} for

j = 1, . . . , n. As a result, z = 0. ��
We now seek to extend this observation.Wewill show below that certain symmetric

two dimensional domains have unique extremals without assuming the domains were
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convex to begin with. To this end, we employ Steiner symmetrization. In particular,
we will make use of the results by Cianchi and Fusco in [6] on the equality condition
in the Pólya-Szegö inequality associated with Steiner symmetrization. We also use
special properties of the critical points of p-harmonic functions in two dimensions
due to Manfredi in [17].

Let us first briefly recall the notion of the Steiner symmetrization of a subset of R2.
For a given A ⊂ R

2 and a ∈ R, we will denote A ∩ {x1 = a} as the intersection of A
with the vertical line x1 = a. We also will write Lm for the outer Lebesgue measure
defined on all subsets of Rm (m = 1, 2).

Definition 6.2 Assume A ⊂ R
2. The Steiner symmetrization of A with respect to the

x1 axis is

A∗
1 =

{
(a, b) ∈ R

2 : |b| <
1

2
L1 (A ∩ {x1 = a})

}
.

A is said to be Steiner symmetric with respect to the x1 axis if A∗
1 = A.

Now suppose u : R2 → [0,∞) is Lebesgue measurable. We can use the above
definition to provide the following rearrangement of u

u∗
1(x) :=

∫ ∞

0
χ{u>t}∗1 (x)dt, x ∈ R

2.

This function is called the Steiner rearrangement of u with respect to the x1 axis.
Observe that

{u∗
1 > t} = {u > t}∗1 (6.1)

for each t ≥ 0. Note also that u∗
1(x1, ·) and u(x1, ·) have the same distribution for L1

almost every x1 ∈ R.
It is known that if p ∈ [1,∞),� ⊂ R

2 is a bounded domain and u ∈ W 1,p
0 (�), then

u∗
1 ∈ W 1,p

0 (�). Moreover, if �∗
1 is Lebesgue measurable, the Pólya-Szegö inequality

∫
�∗
1

|Du∗
1|pdx ≤

∫
�

|Du|pdx (6.2)

holds, see [2,6]. Cianchi and Fusco showed that if�∗
1 = � and equality holds in (6.2),

then u∗
1 = u provided

L2 ({ux2 = 0}) = 0 (6.3)

(Theorem 2.2 in [6]). All of the above definitions and facts regarding Steiner sym-
metrization and rearrangements with respect to the x1 axis have obvious counterparts
with respect to the x2 axis.

Our main assertion regarding the uniqueness of extremals on Steiner symmetric
domains is as follows.

Proposition 6.3 Assume � ⊂ R
2 is a bounded domain that is equal to its Steiner sym-

metrization with respect to the x1 and x2 axes. Then any positive (negative) extremal
achieves its maximum (minimum) value at 0 ∈ R

2.
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Fig. 5 The domain {(x1, x2) ∈ R
2 : |x1| + 2|x2| < 1, 2|x1| + |x2| < 1}

Proof Assume u ∈ W 1,p
0 (�) is a positive extremal with ‖u‖∞ = u(z) = 1. In

view of (6.1), ‖u∗
1‖∞ = 1, as well. By the Pólya-Szegö inequality (6.2), we easily

conclude u∗
1 is extremal and

∫
�

|Du∗
1|pdx = ∫

�
|Du|pdx . We now claim that u

satisfies (6.3). Once we verify this assertion, we would have u = u∗
1 which implies

u(x1, x2) = u(x1,−x2) for all (x1, x2) ∈ �. As a result z belongs to the x1 axis, and
very similarly wewould have that z also belongs to the x2 axis. Therefore, z = 0 ∈ R

2.
Let us now show that any positive extremal u ∈ W 1,p

0 (�) satisfies (6.3). Recall that
u is p-harmonic in �\{z} and therefore, u ∈ C1

loc(�\{z}). By the results of Manfredi
in [17], we know the zeros of Du are isolated in �\{z}. Consequently, u is locally
real analytic in S := �\ ({z} ∪ {|Du| = 0}), which is an open set of full measure. In
particular, ux2 is also locally real analytic in S. Therefore, if

L2 ({x ∈ S : ux2(x) = 0}) > 0,

then it must be that ux2 ≡ 0 in S; see section 3.1 of [13]. Since ux2 is continuous in
�\{z}, it would then follow that ux2 ≡ 0 in �\{z}, as well. However, this is clearly
not possible as the function

[0,∞) 	 t 
→ u(z + te2)

is positive at t = 0 and vanishes for all t > 0 sufficiently large. As a result, (6.3) holds
and the assertion follows. ��

See Figs. 5, 6 and 7 for Steiner symmetric, nonconvex domains� for which Propo-
sition 6.3 applies to. Figure 5 displays

{(x1, x2) ∈ R
2 : |x1| + 2 |x2| < 1, 2 |x1| + |x2| < 1}.
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Fig. 6 The domain ([−3, 3] × [−1, 1]) ∪ ([−1, 1] × [−3, 3])

Fig. 7 The region bounded by the curve r = 10 + 13
20 cos(8θ)

Figure 6 shows

([−3, 3] × [−1, 1]) ∪ ([−1, 1] × [−3, 3])

and Fig. 7 exhibits the region bounded by the curve

r = 10 + 13

20
cos(8θ)

given in polar coordinates.
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