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Abstract

The main theme of my thesis research is to develop computational tools to solve the
Schr6dinger equation for the many-particle system of nuclei and electrons and apply
them to the first principles .study of condensed matter systems. From the beginning,
I introduce the adiabatic (Born-Oppenheimer) approximation to separate the many-
particle system into the problem of classical dynamics of nuclei and the problem of
the inhomogeneous electron fluid in the static ionic potential. The Newton equation
describes the dynamics of nuclei, and the Schr6dinger equation describes the electrons
as an interacting quantum system.

First, I study the computational techniques for solving both the Newton equation
and the Schr6dinger equation. For the Newton equation, I investigate the erogdicity
and the dynamical properties of the constant-temperature molecular dynamics which
was introduced to generate a canonical ensemble instead of a microcanonical ensem-
ble of the conventional molecular dynamics. I also study the constant-temperature
molecular dynamics with the momentum conservation.

For the SchrSdinger equation, I use the density functional theory which reduces
the system of interacting electrons to a system of non-interacting electrons (or Kohn-
Sham orbitals) in an effective potential. I introduce the wavelet basis for an efficient
representation of the Kohn-Sham orbitals which are conventionally represented either
by local atomic orbitals or by the plane wave basis.

Second, I apply the computational techniques to the first principles study of the
semiconductor surfaces. For the Si(100) surface, I investigate tip-surface interactions
in the scanning tunneling microscopy (STM) and the atomic force microscopy (AFM).
The STM study leads to a new understanding of the microscopic STM measurement
process. The AFM study leads to a discovery of the mechanical hysteresis effect at
an atomic scale and the microplastic deformation of the Si(100) surface. I propose to



apply the plastic deformation to make an ultra-high density memory device. I also
examine the intrinsic dynamical properties of the Si(100) surface at finite temperature
and the phase of the vicinal Si(100) surface structure under external strain. For the
Si(113) surface, I calculate the surface energy of the (3 x 1) reconstruction and show
that its stability is intrinsic.

Thesis Supervisor: John D. Joannopoulos
Title: Professor of Physics
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Chapter 1

Introduction

The rapid development of the electronic computers in these days provides a very pow-

erful tool for quantitative investigations of science and engineering problems. The

increasing computation power allows the scientists and engineers to study increas-

ingly more complicated systems which could not be studied quantitatively within the

conventional analytic approach since the fundamental equations for the systems are

generally too difficult to solve analytically.

The fundamental equations for most condensed matter systems are the Newton

equation for classical particles [1], the Schr6dinger equation for nonrelativistic elec-

trons [2], and the Maxwell equations for electromagnetic waves [3]. These three equa-

tions, in principle, provide the microscopic descriptions of a wide range of condensed

matter systems including the chemical systems and the biological systems. In fact,

the conventional division of science into separate fields such as physics, chemistry,

biology, or geology does not represent a fundamental difference from a microscopic

point of view since the above three fundamental equations apply equally to all the

fields of science. However, it should be emphasized that most chemical, biological, or

geological systems are too large and complex for a first principles investigation based

on the current computational power. Nevertheless, first principles investigations can

provide an understanding of the microscopic processes in chemical, biological, or ge-

ological phenomena, complement the current knowledge in each field, and lead to a

unified quantitative and microscopic description of natural phenomena in the future.



The computational study of these fundamental equations and many phenomeno-

logical equations derived from them are based on the finite difference calculus just as

the conventional analytic approach is based on the differential calculus. Since most

equations are differential equations, it is very important to construct finite differ-

ence equations which faithfully represent the original differential equations. Once the

difference equations are constructed, one has a finite number of variables and can

develop computer programs to solve them [4]. Therefore, the efficient representations

of the equations with smaller number of variables and the efficient methods of solving

the difference equations become very important for practical computational problems.

In this thesis, I will focus on the computational techniques for the Newton equation

and the Schradinger equation, and the computational study of the semiconductor

surface problems. In the following sections, I briefly review the basic techniques used

for the study of the Newton equation and the SchrSdinger equation, and introduce

to the surface problems.

1.1 Newton Equation

For a given N-particle system, the Newton equation is a second order differential

equation,

dt2

For a conservative potential system, the force fi is derived from the interaction po-

tential V({ri}) as

f, = -VV( {ri}), (1.2)

and generally it is impossible to generate an exact trajectory of the system as a

function of time starting from a given initial condition. However, this impossibility

is not caused by the limitation of the computational techniques, but by the intrinsic

chaotic nature of the many-particle systems. Therefore, in a computational study one



generates a physically meaningful trajectory instead of an exact trajectory, and this

generation is achieved by keeping the conservative quantities (the total energy, the

total momentum, and the total angular momentum) constant during the simulations.

In order to solve the Newton equation, one transforms the equation into a finite

difference equation with an introduction of a finite timestep 6t and generates a discrete

time trajectory through the finite difference equation. The general procedure is to

calculate the quantities at (n + 1)th timestep {ri(n + 1), vi(n + 1), and fi(n + 1)}

from the quantities at nth timestep {ri(n), vi(n), and fi(n)}. For this procedure, the

Verlet algorithm and the Gear predictor-corrector algorithm are generally used in the

molecular dynamics simulations [1].

From the discrete time trajectory, one obtains a sequence of the states of the

N-particle system, {ri(n), vi(n)}, which is a sequence of points in 6N dimensional

configurational space, and these points are on the microcanonical ensemble surface

in the configurational space. If the N-particle system is ergodic, then the discrete

time trajectory corresponds to a discrete sampling of the microcanonical ensemble

of the N-particle system,-and one can calculate thermodynamic quantities from the

sampling. If the N-particle system is not ergodic, then the discrete time trajectory

represents a physical trajectory of the system within a subset of the microcanonical

ensemble surface.

Because of the difficulties of calculating thermodynamic quantities in a micro-

canonical ensemble, many new techniques have been developed to generalize the dis-

crete time sampling for various ensembles of statistical mechanics. Specifically, many

techniques are available for the canonical ensemble sampling, and the extended system

method is one of the most widely used method [5, 6, 7]. The extended system method

introduces a dynamic variable to represent the physical heat reservoir, and the Nose

theorem guarantees the exact canonical ensemble sampling for an ergodic extended

system.



1.2 SchrSdinger Equation

For most practical purposes, the Schr6dinger equation is the fundamental equation

of condensed matter systems. In principle, the solutions of the Schr6dinger equation

should be able to explain the diverse phenomena in physics, chemistry, and biology:

however, in most cases the system under consideration contains extremely large num-

ber of atoms which are clusters of nuclei and electrons themselves, and consequently

solving the corresponding Schr6dinger equation for the nuclei and the electrons is

extremely difficult. Because of this difficulty, one can simply approach the problem

of many-particle systems from a phenomenological viewpoint. In this approach, the

atoms are regarded as point particles rather than as clusters of nuclei and electrons,

and the interaction between the point particles is a classical potential and determined

from the parameter fitting to experimental data. Hence, all the quantum mechanical

effects are reduced to the experimentally fitted classical potential parameters, and

the many-particle systems are studied with the Newton equation as we discussed in

the previous section.

However, the classical potential description of the many-particle systems has a

limited range of validity corresponding to experimental data used for the parameter

fitting, and under the environment beyond this range the classical potential cannot

provide an accurate description. This situation corresponds to the breakdown of the

assumption that the atoms can be regarded as a point particle with an effective inter-

action between them derived from the interactions between two clusters of particles.

Therefore, in order to study the many-particle systems in most general situation, one

has to treat an atom as a cluster of nucleus and electrons which are described by the

Schr6dinger equation.

Generally, one atom has many electrons so that the quantum mechanical study of

a single atom is already a very complicated many-particle problem. The complexity

of the problem comes from the difficulty of solving the many-electron wave function

of an atom. Consequently, the quantum mechanical study of a many-atom system

becomes extremely complicated, and it is not practical to solve the problem for the



most general situation. One can rather solve the problem with several simplifying

approximations which are accurate within a wide range of applications.

The most important approximation is the adiabatic approximation (or the Born-

Oppenheimer approximation) which assumes that the nuclei are classical point parti-

cles and the electrons are described by the Schr6dinger equation within the external

potential of the nuclei. In this approximation, the electronic degrees of freedom are

decoupled from the ionic degrees of freedom and adiabatically follow the change of

the ionic positions.

Another frequently used approximation is the pseudopotential approximation which

combines the core electrons of an atom with the nuclei to form an ion. The interaction

between an ion and valence electrons are described by the pseudopotential, and the

interaction between ions is a static Coulomb potential. Therefore, a neutral N-atom

system has N ions with charge zae and N, = Fa z~ electrons, and the Hamiltonian

for the system is

2 2  2
H({Ra•}) = + - + a(1.3)

i2m > - Ir - Ra" a - Rpa •

and the SchrSdinger equation is HT = El where T is the electron wave function.

Even though the complexity of the problem is greatly reduced by the Born-

Oppenheimer approximation and the pseudopotential approximation, the remaining

problem is still very difficult to study since the electron wave function I is a complex

function of Ne electron variables. In order to overcome this difficulty, the density

functional theory (DFT) is introduced which proves that there is a one-to-one cor-

respondence between the electron density n(r) and the external ionic potential, and

consequently there is a one-to-one correspondence between the electron density n(r)

and the electron wave function T. Furthermore, in the DFT the electron ground state

can be reached variationally in the general electron density functional space so that

the problem of finding the electron ground state reduces to the minimization problem

in the electron density functional space.

The energy functional E[n(r)] =< IfHl| > can be divided into five terms: the



non-interacting electron kinetic energy term, the static electron-electron interaction

term (Hartree term), the electron-ion interaction term, the ion-ion interaction term

(Ewald term), and the exchange-correlation term. Within this formulation of the

DFT, the ground state energy functional is obtained as the ground state of Ne non-

interacting electron system in the effective potential generated from the Hartree term,

the electron-ion interaction term, and the exchange-correlation term.

The non-interacting electron wave functions (Kohn-Sham orbitals) are described

by a self-consistent equation (Kohn-Sham equation) 1 , and only the total electron

density and the total ground state energy are physically meaningful quantities in a

strict sense. However, these quantities already contain enough information to calcu-

late many physical and chemical properties such as the equilibrium lattice constants,

the bulk moduli, the ground state geometric and electronic structures of the surfaces

and the interfaces, the dynamical evolution of the geometric and electronic structures,

and so forth.

1.3 Surface Problems

The surface of an N-atom condensed matter system has approximately N3 surface

atoms, and for the calculation of the bulk properties the surface effects can be safely

neglected since the surface contribution is N smaller. However, a surface itself is a

many-particle system which generally has a quite different structure from the under-

lying bulk, and the study of surface structure is necessary for a full understanding of

any finite condensed matter system.

In the study of a surface problem, one is generally interested in both the intrinsic

properties and extrinsic properties of the surface. For the intrinsic properties, one

studies the reconstruction and the relaxation of the surface structure from the bulk

structure. One also studies the dynamical properties of the surface such as the surface

phonons and the surface self-diffusion.

1 The efficient representation of Kohn-Sham orbitals is an important step for the implementation

of the many-body problem as a finite dimensional matrix equation [8, 9, 10].



For the extrinsic properties, one studies the structures added to the intrinsic sur-

face such as surface defects (both point defects and line defects) and surface adatoms 2 .

A surface defect can be an isolated defect on a surface or a termination of bulk de-

fects (for example, dislocations or grain boundaries) at the surface. The structure of

surface defects and adatoms and their dynamical behaviors at finite temperature are

very complicated problems, and the study of these is important for understanding

the microscopic processes of material fabrications and the surface chemical processes

such as the catalysis.

The experimental tools for studying the surface phenomena are probes which are

sensitive only to the surface. Most of the tools such as the X-ray diffraction3 or the

low energy energy diffraction probe an average property of a surface rather than a

local property of a surface. The scanning microscopes provide an surface image with

atomic resolution, and the interpretation of this image is crucial for the understanding

of the microscopic processes on the surface [18, 19, 20].

1.4 Organization of Thesis

The main body of the thesis is divided into two parts, the part of the new techniques

and the part of the application to surface problems. The first part includes Chapters

2, 3, and 4, and the second part includes Chapters 5, 6, 7, 8, 9, and 10.

In the first part, I discuss the techniques for the classical molecular dynamics

(Chapters 2 and 3) and the wavelet basis for the electron wave functions (Chapter

4). In Chapter 2, I perform a detailed investigation of the equilibrium and dynamical

properties of the constant-temperature molecular dynamics [5, 6]. In Chapter 3, I

extend and test the constant-temperature molecular dynamics with the momentum

conservation [7]. In Chapter 4, I introduce the wavelet basis in the electronic structure

calculations, and apply to the calculation of hydrogen atom, is core states of hydrogen

2For example, the interaction between an anticite bulk defect and the GaAs(110) surface shows
how the interaction changes the properties of the defect and the surface [11]

3The microscopic many-body processes in the X-ray photoemission experiment complicate the
interpretation of the experimental data [12, 14].



to uranium, and hydrogen molecule ion [8, 9].

In the second part, I discuss the tip-surface interactions in scanning microscopy

(Chapters 5, 6, and 7) [15, 16, 17], the properties of the Si(100) surface (Chapters 8

and 9), and the structure of the Si(113) surface (Chapter 10). In Chapter 5, I discuss

the tip-surface interactions in scanning tunneling microscopy (STM) experiment, and

investigate the microscopic process of an STM measurement [18]. In Chapter 6, I

discuss the tip-induced mechanical hysteresis which is predicted to be present at low

temperature atomic force microscopy (AFM) experiment [19]. In Chapter 7, I discuss

the tip-induced microplastic deformation of the Si(100) surface and its application to

an ultra-high density memory device [20, 21]. In Chapter 8, I perform an ab inito

dynamics simulation of the Si(100) surface, and discuss the dynamical properties of

the surface structure [22]. In Chapter 9, I discuss the macroscopic phases of the vicinal

Si(100) surface under external strain [23]. In Chapter 10, I discuss the stability of

the Si(113) surface, and show that its stability is intrinsic [24].

In the last chapter, I discuss the future development of the research both in the

computational techniques'and in the applications to condensed matter systems.



Chapter 2

Ergodicity and Dynamical

Properties of

Constant-Temperature Molecular

Dynamics

The assumption of ergodicity in Nos6's original formulation of the constant tem-

perature molecular dynamics is tested for a Lennard-Jones potential system. With

the performance of very long simulations, it is shown that the extended system of

a Lennard-Jones potential system is ergodic for all values of thermostat parameters

tested. It is also shown, however, that the rate of convergence to the canonical en-

semble strongly depends on the value of thermostat effective mass, Q. The dynamical

properties of the extended system are also studied using the velocity autocorrelation

function and the power spectral density. From the analysis of the simulations, it is

found that the dynamical properties are not correctly represented for arbitrary values

of thermostat parameters. A prescription and a set of quantitative criteria are in-

troduced to generate physically meaningful dynamics. Thus, the results of this work

show that with a special choice of thermostat parameters it is possible to obtain both

the correct canonical ensemble and physically meaningful dynamical behavior of the

physical system.



2.1 Introduction

Molecular Dynamics(MD) is a very versatile simulation method because it generates

physically meaningful trajectories [1]. Thus, in addition to describing equilibrium

properties, MD can be used to study non-equilibrium processes and dynamical be-

havior in general. However, the fact that conventional MD generates a microcanonical

ensemble instead of a canonical ensemble makes MD inappropriate for simulations of

small physical systems. In a simulation, it is physically reasonable to assume that a

small physical system is embedded in a larger physical system, so it satisfies a canon-

ical ensemble. For this reason, there have been many efforts to devise methods to

perform constant temperature or constant pressure MD simulations in place of con-

stant energy or constant volume MD simulations [1, 25, 84, 27, 28, 29]. One of the

most widely used constant temperature or constant pressure MD simulation methods

is the Extended System Method (ESM) [30, 31, 32, 33, 34].

The ESM introduces an additional dynamical variable to represent a heat reservoir

or a pressure reservoir. it has been proved that the constant temperature ESM

(which is the method we shall focus on in this paper) generates a canonical ensemble

if the extended system including the additional variable is ergodic [32]. However,

it is well known that the ESM exhibits unphysical behavior in many cases. The

sources of this behavior are thought to be the extremely long relaxation time to

get a typical canonical ensemble state from an extremely nontypical initial state,

or the nonergodicity of an extended system for extremely small or large values of

the thermostat effective mass, Q [1]. Even if the extended system is ergodic with a

short relaxation time, it is not clear whether the extended system can describe the

correct dynamical behavior of the original system. Thus it is important to determine

whether this is indeed possible, or to what extent it is possible, and to determine the

thermostat parameters that are responsible for the correct dynamical behavior.

In this paper, we perform very long simulations which demonstrate that an ex-

tended system with a Lennard-Jones potential (or the extended LJ system) is ergodic

for any value of the thermostat effective mass, Q. We also establish the fact that



the ensemble average value of the thermostat variable, < s >, plays a crucial role to

obtain physically meaningful dynamics within the virtual variable formalism of the

ESM.

This paper is organized in the following way: In section II, we review the constant

temperature ESM of Nose. In section III, we study the ergodicity of the ESM. In sec-

tion IV, we study the dynamical properties of the extended LJ system, and introduce

the criteria needed to obtain meaningful results out of an ESM simulation. Finally

in section V, we summarize and present concluding remarks.

2.2 Constant Temperature Extended System Method

In this section, we review the original formulation of Nose's constant temperature MD

[32, 33, 34], and derive the equations of motion which are used in the simulations. We

also review the relationship of the original formulation with two equivalent formula-

tions: the real variable formalism and the Nos6-Hoover friction variable formalism.

We begin with a description of the construction of the extended system (ES)

Hamiltonian, HES, from a Hamiltonian of a physical system, H0 . First, one expresses

Ho in terms of its real canonical variables, the canonical coordinates ri, and the

canonical momenta pý, as follows:

N '2

Ho(r, pi) = - + ({r'}). (2.1)
i=1 2mi

Second, one introduces the thermostat variable s and the conjugate momentum P,.

Now, the thermostat Hamiltonian is the following:

P2
H, = ' + gkBT,,tln(s), (2.2)

2Q

where g = 3N + 1, and Tzt is the externally set temperature. Up to this point,

there is no coupling between Ho and H,. Finally, to couple the thermostat to the

physical system, one introduces a new set of canonical variables ri and pi, which are



the virtual variables, as follows:

p Pi
p =-

r ri. (2.3)

Then, the ES Hamiltonian is expressed in terms of its own canonical variables as

follows:

HES(ri, Pi, s, P.) = Ho(r2, ) + H,(s, P.)
S

N 2 P2

Z= 2s + k({ri}) + " + gkBTetlfn(s).
i=1 2ms 2Q

From this Hamiltonian, one can get the following set of Hamilton's equations:

dri
dt

dpi
dt
ds

dP,

dt

Pi

ms
2

P,
Q

• p  - gksT..t
•= ms S

(2.5)

(2.6)

(2.7)

(2.8)

By combining these equation

and s:

d2ri
dt2

d2s

dt2

is led to the following equations of motion for ri

1 l ds dr
= -V• 2ms2  s dt dt

1 N dri 2 gkBTet 1= - sm( ) dt
it=1 Q

(2.9)

(2.10)

By solving these two equations of motion using the standard MD technique, one can

generate a sequence of states of the physical system at each time step. The collection

of these states constitutes a canonical ensemble if the ES is ergodic. This method of

generating a sequence of physical states is called the virtual variable formalism of the

ESM.

(2.4)

Pi -



On the other hand, one can generate physical states using the real variables by

replacing the virtual variables in the equations of motion by the real variables as

follows [34]:

SPi
pi =

S

ri = ri

PP

S = S.

dt
dt' = - (2.11)

S

The equations of motion are now expressed as follows in terms of the real variables:

d2r' 1 1 ds' dr'
S = (2.12)

dt'2  m s' dt' dt'

d [N M( d)2r' _ gksTet] + ( d)', (2.13)2 i=

where g = 3N.

These equations can also be expressed in the Nos6-Hoover form [35] by introducing

the Nos6-Hoover friction variable C:

1 ds'
= s' dt'

Then the Nos6-Hoover equations of motion are the following:

d2r ' 1 dr'
ddt = Vi - C (2.14)

dt'2  m dt'

dC 1 N dr'
= [ 1m( )dri)2 - gkBTet] (2.15)

dtr' Q i= dt'

The relationships among these three equivalent methods of performing a ESM sim-

ulation are summarized in Figure 2-1. The virtual variable formalism is also known

as the Hamiltonian formalism, whereas the real variable formalism and Nos&-Hoover

form are known as the non-Hamiltonian formalism. In the non-Hamiltonian formal-



Figure 2-1: Schematic diagram which explains the relationship of the virtual variable

formalism, the real variable formalism and the Nos&-Hoover formalism. These three

formalisms are related to each other by the change of variables indicated.

ism, the equation of motion cannot be derived from the conserved energy. However,

the Nose-Hoover equations can be derived as a Liouville equation by applying the

Liouville theorem to the ESM [35]. This Nos&-Hoover form is easily generalized to

include more than one friction variable [36].

Figure 2-1 shows that the ergodicity of the ES Hamiltonian enables both the

Hamiltonian formalism and non-Hamiltonian formalism to generate a canonical en-

semble. Therefore, the proof of the ergodicity of an ES Hamiltonian also guarantees

that the Liouville equation generates a canonical ensemble.



2.3 Ergodicity of the Extended System

In the previous section it was stated that the ergodicity of the ES Hamiltonian is

essential for the generation of a canonical ensemble. This ergodicity, however, is not

automatically guaranteed even for the extended system of an ergodic physical system!

The hard sphere potential system and single harmonic oscillator system [35] are ex-

amples that fall into this category. In this section, therefore, we perform a test of the

ergodicity of the extended Lennard-Jones potential system. Our choice is motivated

by the extensive use of the Lennard-Jones potentials in numerical simulations. We

proceed in two steps. In part A, we review the original proof of obtaining the canon-

ical ensemble for an ergodic extended system, and discuss the quantities that need to

be calculated in order to test the ergodicity. In part B, we present the results of our

simulations.

2.3.1 Theory

For any given physical system, one can construct a corresponding ES Hamiltonian

following the procedure in section II. If the extended system is ergodic, the following

theorem guarantees the generation of the canonical ensemble of H0 starting from the

microcanonical ensemble of HES [32]. The partition function of the extended system

has the microcanonical ensemble form for an ergodic system:

Z = c dridpi dsdP,(HEs - E). (2.16)

Integration over s yields the partition function:

Z = f dr'dpe-et HH dP.e-0e' , (2.17)

where 3 e,,t is the inverse of kcBTe,t. In this form the partition function is the product

of two integrals of Boltzmann factors. Therefore, both the energy of the physical

system and the thermostat kinetic energy satisfy canonical ensembles.

Even though this theorem has a general form that does not depend on the nature



of Ho, the ergodicity of ES does depend on it. For example, in the appendix we prove

analytically that the extended hard sphere (HS) potential system is not ergodic even

though the HS potential system itself is. Another example is the extended single

harmonic oscillator (HO) system, which is known to be nonergodic even though the

HO system itself is a non-mixing ergodic system [35]. Therefore, the ergodicity of an

extended system needs to be tested for each physical system.

As shown in the appendix, the simulations of a HS system show a remarkable

agreement between the average of the instantaneous temperature (or average temper-

ature in short) and the externally set temperature, even though the ES is nonergodic.

This indicates that correctness of the average temperature alone is not enough to

guarantee the ergodicity of an extended system. So in order to test the ergodicity

of an extended system, one needs to examine the higher moments of the distribution

function.

The most obvious quantities are the higher moments of the instantaneous tem-

perature fluctuations where the instantaneous temperature is defined as follows:

2
T = K. (2.18)

3NkB

The theorem also predicts that the kinetic energy of s will follow the canonical ensem-

ble so that we can use the moments of the kinetic energy of s to test the ergodicity

of ES. Both classes of fluctuations can be calculated analytically and compared with

the results of simulations.

In particular, the analytic expressions of the moments of kinetic energy for a

system with f degrees of freedom satisfying the canonical ensemble are the following:

<K > = fkBTet (2.19)
2

K K2 >, = (kBTezt)2 (2.20)
2

<K 3 >C = f(kBText) 3  (2.21)

< K4 > = (3f + 6)(kB Tet)4  (2.22)
22

< K s >, = f(5f + 12)(kBTezt)5 , (2.23)



where K is the kinetic energy; < ... > represents an ensemble average; and

< Km >c=< (K- < K >)m >.

The moments of temperature fluctuations are obtained by using f = 3N and

equation (3.3). The moments of the K, fluctuations are obtained by using f = 1.

2.3.2 MD Simulations

In this section, the ergodicity of the extended Lennard-Jones system is tested using

the virtual variable formalism. In the numerical simulations the reduced units of a LJ

system are used, and the equations of motion are solved using the sixth order Gear

predictor-corrector method' [1]. To eliminate boundary effects a periodic boundary

condition is adapted, and to avoid self-interactions due to the long range interaction,

the LJ potential is cut at r, (rc = 2.5). To compensate the cutoff effect, a long range

correction is made by adding the average of the interaction beyond r,. The precision

of the calculation is monitored by preserving the Hamiltonian to 5 - 6 significant

figures.

The simulations are performed with different numbers of particles, and it is found

that a test of ergodicity requires a very long simulation time, much more than the

typical maximum simulation time of a few hundred thousand time steps. Since the

number of physical states or configurations needed to generate a canonical ensemble

increase exponentially as a function of particle number, it is essential to reduce the

particle number to test the ergodicity of a system with a tractable simulation time. A

choice of a 32 particle LJ system is made, with a simulation cell containing eight face

centered cubic (fcc) lattice unit cells in the solid phase and a maximum simulation

time of 8 x 106 time steps.

Even though the initial conditions of each simulation are slightly different from

each other, they all begin with a fcc lattice structure and initial velocities that are

randomly assigned with a given mean value determined by Te,t. Initially the system

'This algorithm is non-symplectic and can cause irreversible drifts in some instances. To assure
that this was not occurring in certain quantities that are calculated, additional calculations were
performed using the symplectic leap-frog algorithm.



is annealed for 1000 - 3000 time steps using the velocity rescaling technique. Here,

the externally set temperature is used to rescale the velocities.

Other important initial conditions are the initial values of the thermostat s and

the thermostat velocity. Both initial values of thermostat and thermostat velocity

are chosen to be 1. The value of the thermostat effective mass, Q, is chosen to vary

between 0.01 and 50. The size of the time step is adjusted so that the simulation is

stable for given simulation parameters. By choosing a different simulation cell size

and temperature, simulations are done for various phases of the LJ system.

In order to test the ergodicity of the extended LJ system, simulations are first

done with 3 x 10' time steps with Q values equal to 0.01, 0.1, 1.0, 10, 30 and 50

for a liquid phase (Te,,t = 1.5, p = 0.8). The first two moments of the kinetic energy

of the LJ system and the first two moments of the kinetic energy of s are given in

Table 2.1. The most striking result is the behavior of the average kinetic energy of

s: even though its initial values vary from 0.005 to 25 depending on the value of Q,

its average values after 3 x 10s time steps satisfy the equipartition theorem of the

canonical ensemble with less than 20% deviation2 . This result strongly indicates that

the extended LJ system is ergodic. Table 2.1 also shows that as Q becomes either

smaller than 0(1) or bigger than 0(1), the convergence to the canonical ensemble

becomes worse. However, there is no abrupt change in the convergence which may

indicate a transition from an ergodic system to a nonergodic system [34].

It is generally believed that for a very small Q an extended system does not

equilibrate (the kinetic energy fluctuation is too small), and fast oscillations of the

kinetic energy of a LJ system do not disappear [1] [34]. In our simulations for Q =

0.01, however, although rapid oscillations are observed over the entire run, we also find

that the extended system appears to be equilibrating or converging to the canonical

ensemble after 3 x 105 time steps (Table 2.1).

However, since there are still noticeable deviations (about 20%) from the predic-

tion of the canonical ensemble, an extremely long simulation (8 x 106 time steps) is

2For the case of extended hard sphere potential system the kinetic energy of s does not satisfy
the equipartition theorem.



Table 2.1: External temperatures Tea as calculated from the average temperature,
the second moment of temperature fluctuation, the average kinetic energy of s, and
the second moment of the kinetic energy fluctuation of s for the 32 particle extended
LJ system in a fluid phase (T,,t = 1.5, p = 0.8). The number of time steps is 3 x 105,
and the values in the parentheses are the temperatures obtained from an 8 x 106 time
step simulation. The initial values are T = T,,t and K, =- .

Q T of < T > T of < T2 >c T Of < K, > T of < K > c

0.01 1.4977 (1.5002) 1.6010 (1.4890) 1.7158 (1.4793) 1.742 (1.413)
0.1 1.4994 1.4970 1.5290 1.6600
1.0 1.5012 1.4746 1.4078 1.3010
10 1.4998 1.5280 1.5208 1.7317
30 1.4979 1.4740 1.3730 1.1430
50 1.4960 1.5930 1.6838 1.134

performed to test rigorously the ergodicity for Q = 0.01 (Table 2.2). Five moments

of the instantaneous temperature and the kinetic energy of s are calculated. In Fig-

ure 2-2 we show the average temperature and the average kinetic energy of s as a

function of time. We note that both are converging to their equipartition values with

the largest error being in the average kinetic energy of s of less than 1.5% error. The

fluctuations in temperature as a function of time are shown in Figure 2-3. These

fluctuations are also found to be converging to their canonical ensemble values after

about 2 x 106 time steps. However, the fluctuations of the kinetic energy of s, which

are shown in Figure 2-4, do not exhibit the same rapid convergence to the canonical

ensemble values, and in fact may appear to be diverging. We believe this latter inter-

pretation is incorrect and that the convergence to the canonical ensemble values for

the fluctuation of the kinetic energy is much slower. We are led to this conclusion by

the comparison of the averages in Figure 2-2 which indicates clearly that the average

kinetic energy of s converges much slower than the average temperature. Moreover,

this overall slower convergence is very reasonable due to the small number of degrees

of freedom (only one) associated with the kinetic energy of s.

There are two time scales that are important in understanding the relaxation to

equilibrium of an extended system. One time scale is that associated with molecular

collisions, tcou, and the other time scale is a characteristic time associated with the

thermostat variable s, t,. For small Q the thermostat variable s changes very rapidly,
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Figure 2-2: Average temperature and average thermostat kinetic energy for an ex-
tended 32 particle LJ system in the fluid phase (Tet = 1.5, p = 0.8) for the thermostat
effective mass, Q = 0.01. The time step is At = 2 x 10- 5 , and the total number of
time steps is 8 x 106. T is the instantaneous temperature of the LJ system, and K,
is the thermostat kinetic energy. Horizontal dashed lines are the theoretical values of
the canonical ensemble.
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Figure 2-3: The 2nd, 3rd, and 4th moments of the temperature fluctuations of an
extended 32 particle LJ system in the fluid phase (Te,t = 1.5, p = 0.8) with Q = 0.01
and At = 2 x 10- 5 up to 8 x 106 time steps. T is the instantaneous temperature
of the LJ system. Horizontal dashed lines are the theoretical values of the canonical
ensemble.
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Figure 2-4: The 2nd, 3rd, and 4th moments of the thermostat kinetic energy fluc-
tuations of an extended 32 particle extended LJ system in the fluid phase (Text =
1.5,p = 0.8) with Q = 0.01 and At = 2 x 10- s up to 8 x 106 time steps. K, is the
thermostat kinetic energy. Horizontal lines are the theoretical values of the canonical
ensemble.



Table 2.2: Five moments of the instantaneous temperature of the LJ system, and
five moments of the kinetic energy of s are compared with the predicted values of
the canonical ensemble. The results are for simulation in the fluid phase (Tet = 1.5,
p = 0.8) of the LJ system. The number of time steps is 8 x 106 and Q = 0.01.

Simulation Theory Error Corresponding Tec

< T > 1.50022 1.5 0.01% 1.50022
< T 2 >, 0.04619 0.04688 -1.46% 1.48900
< T3 >c 0.00282 0.00293 -3.75% 1.48100
< T4 >c 0.00626 0.00687 -8.88% 1.46570
< T5 >c 0.00117 0.00141 -17.02% 1.4451
< K, > 0.73965 0.75 -1.38% 1.4793
< K,2 > 0.99583 1.125 -11.48% 1.4113
< K,3 > 2.41225 3.375 -28.53% 1.3411
< K,4 > 10.7710 18.984 -43.26% 1.3018
< K, >c 53.2694 129.094 -59.02% 1.2548

much faster than the molecular collision time, so that a very small time step is required

to perform an accurate MD simulation. Thus to generate a reasonable number of

molecular collisions one needs a very large number of time steps (e.g. for Q = 0.01,

8 x 106 time steps corresponds to about a thousand molecular collisions). On the

other hand, for large Q the thermostat variable s changes slowly, and the time step is

limited by the molecular collision time. In this case, however, a longer total simulation

time is needed in order to include enough fluctuations in s. In short, to obtain the

convergence to a canonical ensemble, the following conditions need to be satisfied:

At << min(tc•no,ts)

tsim > max(tcou,,ts),

where At is the time step and tim is the total simulation time. This explains the

results in Table 2.1 consistently, and this also justifies the empirical criterion of making

t, equal to the molecular collision time to obtain fast convergence [34].



2.4 Dynamical Properties of Extended System

In this section we investigate the dynamical behavior of the ES which is commonly

termed "Nos6 Dynamics" (ND). Velocity autocorrelation functions and power spectral

densities are calculated and compared with those of the conventional MD. We find that

ND leads to dynamical behavior that is not correct in general. Of course, one could

side-step this entire problem by performing simulations in the real variable formalism

(the Nos&-Hoover formalism). We will show, however, that a scaling method can be

introduced that significantly reduces the error in ND. In what follows, we present the

simulation results first, and then introduce a theory to explain these results.

2.4.1 MD Simulations

In order to study the dynamical properties of the extended LJ system, the velocity

autocorrelation function and the power spectral density [1, 4, 37] are calculated and

compared within conventional MD and the ESM. The results of the simulations using

the virtual variable formalism for a solid phase (T,,t = 1.0, p = 1.1) of a 32 particle

Lennard-Jones system are shown in Figure 2-5 and Figure 2- 6. The total number of

time steps is 10, 000 and for the ESM simulation Q = 1.

The velocity autocorrelation functions as a function of simulation time for MD

and ND are presented in Figure 2-5. We note that there exists a significant amount

of disagreement between the different simulation techniques. In order to assure that

this disagreement does not arise from an insufficient number of time steps, the values

of both velocity autocorrelation functions at t = 0.888 are tracked as the number of

time steps is increased up to 1 x 106. We find that these values change only by a few

percent in this exercise so that the disagreement does not improve.

This disagreement in velocity autocorrelation functions carries over to the power

spectral densities shown in Figure 2-6. The results in Figure 2-6 are obtained by

applying a fast fourier transform (FFT) [4, 37] to the data in Figure 2-5. Since there

are a large number of data points, the spectrum is smooth so that additional smooth-

ing techniques like the Maximum Entropy Method are not necessary. The results in
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Figure 2-5: Velocity autocorrelation functions using conventional MD (dashed line)
and the ESM (solid line) for an extended 32 particle LJ system in the solid phase
(T,,t = 1.0.p = 1.1). The total number of time steps is 104. For the ESM, Q = 1.
The filled and open circles at t = 0.888 correspond to a run of 106 time steps.
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Figure 2-6: Power spectral -densities of the conventional MD (dashed line) and the
ESM (solid line). The results are obtained from the corresponding velocity auto-
correlation functions shown in Figure 2-5 using the classical Blackman-Tukey FFT
method.

Figure 2-6 clearly indicate that phonon frequencies are not correctly reproduced in

general using ND.

In the top panel of Figure 2-7 we show a plot of the times associated with the

first two minima and maxima of velocity autocorrelation function using ND. as a

function of the corresponding times with MD, for different values of < s >. The

results clearly show that the velocity autocorrelation functions can be stretched or

shortened according to the value of < s >. This suggests that < s > can be used to

scale the time in ND. The results of this exercise are shown at the bottom of Figure

2-7. We note that now maxima and minima of the ESM agree very well with those

of the conventional MD.
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2.4.2 Theory

The simulation results in the previous section show that the dynamical properties

are not correctly reproduced in general in the virtual variable formalism of the ESM.

However, we find that the errors in the dynamical properties can be significantly

reduced by rescaling the ND time by < s >. In particular

t' = (2.24)
<s>

We now show that this rescaling leads to dynamical properties that are calculated

within an error of (s- < s >)/ < s > which is inversely proportional to the square

root of the number of degrees of freedom [34].

The equation of motion in the virtual variable formalism is

d((s ) = fj. (2.25)

Replacement of the velocity by the real velocity, vl = svi, and integration over t gives

the velocity evolution as

s(t)vf(t) = s(0)v(0) + fidt. (2.26)

If we now let s(t) =< s > +6s(t) and change from t to t/ < s >. we obtain

<8>
(1 + s(t) )v(t) = (1 + (0) )v(0) + fildt'. (2.27)

Note that the fluctuation, Ss/ < s >, arises from the s dynamics which does not have

direct physical meaning, and its magnitude is small for a large extended system (for

the 32 particle system it is about 10%). If one neglects this fluctuation, s is equal to

the average value, < s >, and the time evolution of the velocity is given as follows:

() = v(0)fdt, (2.28)v(t) = < S> o



or upon rescaling:

= v(0) + <'fidt'. (2.29)

Thus (4.5) can be interpreted as the equation of motion of the conventional MD with

the time rescaled as t/ < s > and, therefore, the time evolution of the velocity, v!(t)

is equal to viMD(t/ < s >).
The velocity autocorrelation function is given by

CV (t) i= •  < vi(t)vi(0) > (2.30)
Ej < vi(0)vi(0) >

If the fluctuation of s is neglected, C,,(t) of the ESM corresponds to

CMD(t/ < a >). This then explains the results in Figure 2-7. After time rescaling all

the velocity autocorrelation functions agree with that of the conventional MD. The

amount of error in the velocity autocorrelation function is on the order of 8s/ < s >

and from Figure 2-7 we see that this error is not significant.

2.5 Conclusion

We have shown that the extended Lennard-Jones potential system is ergodic for Q

values from 0.01 to 50 which leads us to the speculation that the extended system

is ergodic for any value of Q. The dependence of the rate of convergence to the

canonical ensemble on the value of Q can be explained simply from the existence of

two time scales in the ES. These are the molecular collision time, tcou, and the time

scale of a dynamics, t,. The time step, At, should be much smaller than both time

scales, and the total simulation time should be much longer than both time scales.

Thus a larger number of time steps is needed for large Q or small Q where the two

time scales, tcoll and t,, are very different. This explains the behavior of the ES for

small Q and large Q without the need to assume the non-ergodicity of the ES for

those cases, and agrees with the results of very long simulations.

The dynamical properties of the LJ system calculated from the ESM are not



rigorously correct. However, for all practical purposes, they can be brought into

good agreement with the dynamics of the conventional MD if one perform the proper

rescaling. The rescaling procedure has an error on the order of 6s/ < s > which is

inversely proportional to the square root of the number of degrees of freedom. Within

this amount of error, i.e. to the lowest order in s, the ESM generates meaningful

physical dynamics, and the error can be reduced by increasing the number of degrees

of freedom. Furthermore, in the virtual variable formalism the rescaling of time is

essential in order to obtain results that do not depend on the thermostat parameters,

Q and < s >.



Chapter 3

Constant-Temperature Molecular

Dynamics with Momentum

Conservation

The Nos6 theorem of the extended system method of the constant temperature molec-

ular dynamics is generalized by including the conservation of the total virtual momen-

tum. It is proved that a canonical ensemble of an N - 1 particle system is generated

from an extended system of an N particle system only if the total virtual momentum

is zero. It is also shown that the resulting N - 1 particle system has a slightly differ-

ent mass spectrum than that of the original N particle system. The consequences of

this new mass spectrum is relevant in the calculation of dynamical properties and the

relaxation times of the system, but irrelevant to thermodynamic averages. For prac-

tical considerations, numerical simulations are performed and tested against this new

theorem. The differences in application of the Nose theorem and the generalized-Nos6

theorem are discussed.

3.1 Introduction

Molecular dynamics (MD) is a computational method that numerically solves New-

ton's equations of motion by performing a discrete time integration [1]. According to



the assumption of ergodicity, one can generate an ensemble by collecting the physical

states at each discrete time step. The ensemble generated by the MD method de-

pends on the boundary conditions [38]. For particles in a box the ensemble generated

is the traditional microcanonical ensemble where only the total energy of the system

is conserved. For periodic boundary conditions (which are preferred in simulations)

the ensemble is no longer strictly microcanonical because in this case the total linear

momentum is also conserved'.

In some cases, the neglect of the conservation of the total momentum will intro-

duce only a small amount of error in the interpretation of MD simulation results [1].

However, there are cases where the conservation of the total momentum should play

a crucial role in determining the nature of an ensemble generated by the MD method.

We have discovered that the extended system method of Nose is precisely such a case.

The extended system method (ESM) introduces an extra dynamical variable to

simulate the effect of the heat reservoir or the pressure reservoir [30, 31, 32]. The ESM

of the constant temperature molecular dynamics is known to generate a canonical

ensemble of a physical system if the extended system (ES) is ergodic [32, 33, 34, 5].

This generation of a canonical ensemble from an ergodic ES is guaranteed by the Nos6

theorem within the Hamiltonian formalism [32]. However, in this theorem, only the

conservation of the total ES energy is used, and the conservation of the total virtual

momentum and the total virtual angular momentum are ignored [32].

One can safely ignore the conservation of the total virtual angular momentum

because it is not conserved during the simulation if a periodic boundary condition is

used [38]. However, one cannot ignore the conservation of the total virtual momentum

because this is conserved during numerical simulations. Therefore, the Nos6 theorem

is no longer strictly valid for actual ESM simulations. Consequently, any theoretical

proof which will determine the conditions under which one can obtain the canonical

ensemble of a physical system from the ESM must include the conservation of the

total virtual momentum as well as the conservation of the total ES energy.

1Even though Newton's equations also satisfy the conservation of the total angular momentum,
periodic boundary conditions destroy the conservation of the total angular momentum.



In this paper, we generalize the Nos6 theorem by including the conservation of the

total virtual momentum and prove analytically that a canonical ensemble is generated

from the ES only if the total virtual momentum is zero. This generalized Nose theorem

shows that the physical system satisfying a canonical ensemble is a N - 1 particle

system with a different mass spectrum from that of the original N particle physical

system.

We also perform simulations with zero and nonzero total virtual momentum in

order to demonstrate, in a practical way, the consequences of the generalized Nose

theorem. Finally, we discuss the practical considerations related to the difference of

these two theorems.

This paper is organized as follows. In Sec. 3.2, we prove the generalized Nos6

theorem. In Sec. 3.3, we study the effect of nonzero total virtual momentum using

numerical simulations. In Sec. 3.4, we discuss the practical considerations related to

the generalized Nose theorem. In Sec. 3.5, we summarize and conclude.

3.2 Generalized Nose theorem

In this section, we prove the generalized Nose theorem by calculating the ES partition

function with both the energy conservation and the total virtual momentum conser-

vation which are the valid conditions for practical applications. The following is the

generalized Nos6 theorem: if ES is ergodic and if the total linear virtual momentum of

N particle physical system is zero, then the ESM will generate a canonical ensemble

for an N - 1 particle system with a different mass spectrum.

For the proof, we assume the ergodicity of the ES so that the ES partition function

has a microcanonical ensemble form of energy delta function and momentum delta

function. The partiton function of an ergodic ES is

N N

Z = cJndridpi dsdP,(HEs - E)S(pi - Po), (3.1)
i1=  i=1

where the ES Hamiltonian is expressed in terms of its own canonical variables as



N 2

HEs(ri, Pi, s, P.) = p  + q({r2 })
i=1 2miS2

p2

+ ' + gkBTeztln(s).
2Q

By introducing the center of mass (CM) momenta, Pi = pi - Po/N, the kinetic

energy term becomes a sum of the relative kinetic energy and the CM kinetic energy

as follows:

N 2

i=1 2mis82

N -2

i= 2mis2

P 0
2

2Ms2' (3.3)

where M = _. mi. The partition function can be expressed using the CM momenta

as follows:

N
Z = c n dr dpi f ddP.

i=1

N

6 (HES - E)6(E Pi),
i=1

where HEs is

N

HES =
i=1

-2
2

2mis2
Po

2

2Ms 2 }) + gk l(s).+ ¢({ri}) + •-• + gkBT,,tln(s).2Q (3.5)

Now, one can eliminate the momentum delta function by performing an integration

of PN and obtain

(3.6)
N N-1

Z = cJ i dr i di dSdP,6(HES - E),
i=1 i=1

where the argument of the energy delta function, HES - E, is

N-i 2
= =2i2Pi

i12miS2
(N-1' )2

+ 2 ms 2

p2
+ + gkBTe,tln(s) - E.

2Q

2The virtual variable formalism (Hamiltonian formalism) and other formalisms are reviewed in

follows 2:

(3.2)

(3.4)

HES - E
P 2

2M +  ({ri})2Ms2

(3.7)



The next step is to diagonalize the inverse mass matrix M-', where

1 1
(MI) - + --1 . (3.8)

mN mi

This can be done easily by introducing normal mode momenta 7ri such that

N-
1  

p2 N-1)
2  

N-1 2•r

+ Ei=1 2 _* (3.9)i= 2mis2  2 mns 2  2Ais

If the masses are identical (i.e., mi = m), one then obtains Ai = m for i = 1,..., N - 2

and AN-1 = m/N. After this diagonalization, the partition function becomes

N N-1

Z = cHdr 1  d-rJ dsdP,
i=1 i=1

N-1 2 P 0
2  

P2

xS(+ •2 + ({r}) + + gkBT,,tln(s) - E). (3.10)
i=i 2Ajs 2  2Ms2  2Q

Finally, one introduces the physical momenta, p'1 = ri/s, to eliminate the s

variable in the kinetic energy term and obtains the partition function as follows:

N N-1

Z =cJ1-drj fi dp'JdsdP, s3N -3

i=1 i=1

N- P'2 P02 P3+ 2M2+ ({r}) + + gkBT.,tln(s) - E). (3.11)
i 2A- 2Ms2  2Q

This integral has a similar form to the one in the original formulation of Nose except

for the presence of the CM kinetic energy term in the energy delta function and 3N-3

momentum integration instead of 3N. In the following, we perform the s integration,

and discuss the consequences of the differences between the integral (2.11) and the

original intergal of Nose [32].

In general, if Po $ 0, the argument of the energy delta function has two roots of

s, sl and s2, as illustrated in Figure 3-1, and the delta function becomes as follows:

2 (s ) 
(3.12)

i= - Ko/s 3 + gkBTe.t/s| =, '



where Ko = Po2/2M. The integration over s gives the following expression:

N  N-1 2 6(s - s- )

Z = c i dri dp'i dsdP,s3N-3 •-Kos + gkBT
i=1 i= ii=1 Z - Ko/s

3  
+ gkBTezt/sJ.s=l

N N-1 2 _3N-3

= f fi dri Hi dp'i dPo E I-_s _. (3.13)
i= i=1 i= I - Ko/s 3 + gkBTet/sj,=,

Obviously, the integrand is not the Boltzman factor of a physical Hamiltonian.

In the case of Po = 0, the problem simplifies considerably, and one can perform

the integration over s in (2.1) immediately. For completeness, however, we use (2.13)

and set Ko = 0. Since Po = 0, there is only one root of s, so, as shown in Figure 3-1,

and one obtains

N N-1

Z c= c 1 dr;ildp'iJ dP,s "N gkBTet

i=1 i=1
- II c Ndr i Jdpie-..Ho fdPe-eut2Q, (3.14)

where g = 3N - 2 is used, -and Ho is the physical Hamiltonian,

N-1 ;2

Ho = + O({fr}). (3.15)
i1 2Aj

Therefore, one obtains a canonical ensemble of the N - 1 particle system with the

mass spectrum {A1} from the N particle system with the mass spectrum {mi} only

if total virtual momentum is zero. This completes the proof of the generalized Nose

theorem.

3.3 Numerical Simulations

In this section, we perform numerical simulations of the extended Lennard-Jones (LJ)

system with both zero and nonzero total virtual momentum, and test the simulations

against the generalized Nose theorem. In Sec. 3.3.1, we derive the analytic expression

for the average moments of the instantaneous temperature and the thermostat kinetic

energy from the canonical ensemble. In Sec. 3.3.2, we compare these quantities with
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Figure 3-1: Top panel illustrates two solutions of the equation Ko/s 2 +gkBTertln(s) =
E0 with Ko $ 0. Bottom panel illustrates the solution of the equation with Ko = 0.



the results of numerical simulations.

3.3.1 Analytic Expression of Moments

In this section, we describe the canonical ensemble expression of the moments of the

instantaneous temperature of the LJ system and the thermostat kinetic energy. The

instantaneous temperature T is defined as follows:

2
T = K (3.16)

(3N - 3)kBg

where K is the kinetic energy of N - 1 particles. The analytic expressions of the

moments of the instantaneous temperature fluctuation are obtained from a canonical

ensemble as follows:

< T > = Tet (3.17)
2 2

<T2>' = -T • t (3.18)

8 3ST 3 > = T3 (3.19)

< T >, = ( )3( + 6)Te4x, (3.20)

where f = 3N - 3, <> represents an ensemble average,

and < Tm >c=< (T- < T >)m >.

The moments of thermostat kinetic energy are the following:

< K, > = 1kBText (3.21)
2

< K > = -(kB Tet)2 (3.22)
2

< K3 >. = (kBText)3  (3.23)

< K4 >c = (kBTezt)4, (3.24)

where K, is the thermostat kinetic energy.



Table 3.1: The reduced units of Ne is compared with the conventional units. me is
the electron mass and ao is the Bohr radius.

Quantity LJ Unit Conventional Unit

Q 1 1.05 x 10'mea0
t 1 2.24 x 10-12sec

p 1 0.050 A-3
T 1 36.23K

3.3.2 Molecular Dynamics Simulations

In this section, we define the simulation parameters and conditions, and describe

the results of the simulations. We then discuss the results by comparing with the

generalized Nose theorem.

In the numerical simulations the reduced units of a LJ system are used. For

example, the LJ units of Ne are compared with the conventional units in Table 3.1.

The equations of motion are solved using the sixth order Gear predictor-corrector

method [1]. To eliminate boundary effects a periodic boundary condition is adapted,

and to avoid self-interactions due to the long range interaction, the LJ potential is

cut at r, (rc = 2.5). To compensate the cutoff effect, a long range correction is made

by adding the average of the interaction beyond re. The precision of the calculation

is monitored by preserving the total energy of the extended system within 0.2% drift

during the whole simulations (-0.04% drift for nonzero total momentum, and -0.16%

drift for zero total momentum).

To obtain a fast convergence of the moments, a small (32-particle) LJ system is

chosen for the simulations. The intial configuration of the simulations is a fcc lattice

structure, and the initial velocities are randomly assigned with a given mean value

determined by Tet. For the case of zero total momentum, the initial velocities are

corrected to give a zero sum. On the other hand, for the case of nonzero total momen-

tum, a certain amount of CM velocity is added to the initial velocities. The initial

values of thermostat and thermostat velocity are chosen to be 1 for all simulations.

In the simulations, the thermostat effective mass Q is chosen to be 1 which gives

a fast convergence for the liquid phase (T,,t = 1.5, p = 0.8) of the simulations.
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Figure 3-2: CM kinetic energy Ko/s 2 as a funtion of time for the extended LJ fluid
(Tet = 1.5, p = 0.8) with nonzero total momentum and thermostat effective mass,
Q = 1. The time step is At = 0.001, and the total number of time steps is 106.
Reduced LJ units are used for the energy and the time.

Simulations are done with 106 time steps for a liquid phase (T,,t = 1.5, p = 0.8) for

both zero and nonzero total momentum. The total virtual momentum is found to be

constant with 5 - 6 significant figures.

The results of the simulation for nonzero total momentum are shown in Figures

3-2, 3-3, and 3-4. Figure 3-2 shows the CM kinetic energy Ko/s 2 as a function of

time. Figure 3-3 the shows average temperature and the average thermostat kinetic

energy, and Figure 3-4 shows the second moments of temperature and thermostat

kinetic energy. The final values of the average moments are summarized in Table

3.2. For this simulation, the CM kinetic energy is very large (- 25Tezt), and clearly

both the averages and the second moments do not converge to the canonical ensemble

values shown as dotted lines.

The results of simulations for zero total momentum are shown in Figures 3-5, 3-6,
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Figure 3-3: Average temperature and average thermostat kinetic energy for the ex-
tended LJ fluid (Tet = 1.5, p = 0.8) with nonzero total momentum. The thermostat
effective mass is Q = 1, the time step is At = 0.001, and the total number of time
steps is 106. T is the instantaneous temperature of the LJ system, and K, is the
thermostat kinetic energy. Horizontal dashed lines are the theoretical values of the
canonical ensemble. Reduced LJ units are used for the temperature and the time.
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mostat kinetic energy fluctuation for the extended LJ fluid (Te,t = 1.5, p = 0.8) with
nonzero total momentum. The thermostat effective mass is Q = 1, the time step is
At = 0.001, and the total number of time steps is 106. Horizontal dashed lines are
the theoretical values of the canonical ensemble. Reduced LJ units are used for the
temperature and the time.
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Table 3.2: Four moments of the instantaneous temperature of the LJ system, and
four moments of the kinetic energy of s are compared with the predicted values of
the canonical ensemble. The results are for simulation in the fluid phase (T,,t = 1.5,
p = 0.8) of the LJ system with 1Pol I 0. The number of time steps is 106 and Q = 1.

Simulation Canonical Ensemble Value
< T > 1.50494 1.5

< T 2 >c 0.03364 0.04839
< T3 >c 0.00141 0.00312
< T 4 >0 0.00344 0.00722
< Ks > 0.51999 0.75
< K,2 > 0.54088 1.125
< K,3 > 1.12309 3.375
< K 4 >0 4.35128 18.984

Table 3.3: Four moments of the instantaneous temperature of the LJ system, and
four moments of the kinetic energy of s are compared with the predicted values of
the canonical ensemble. The results are for simulation in the fluid phase (T,,t = 1.5,
p = 0.8) of the LJ system with Po = 0. The number of time steps is 106 and Q = 1.

Simulation Theory Error Corresponding Tcxt
< T > 1.50009 1.5 0.01% 1.50009

< T 2 >c 0.04858 0.04839 0.39% 1.50299
< T3 >c 0.00304 0.00312 -2.56% 1.48680
< T 4 >c 0.00723 0.00722 0.14% 1.49506
< K, > 0.74467 0.75 -0.71% 1.48934
< K,2 >c 1.06167 1.125 -5.63% 1.45717
< K, >c 2.96659 3.375 -12.1% 1.43688
< K 4 >c 15.8016 18.984 -16.8% 1.43274

and 3-7. Each component of the total momentum is smaller than 10- 5 during the

whole simulation. Figure 3-5 shows that the average temperature and the average

thermostat kinetic energy are quite well converged to the canonical ensemble values.

Figure 3-6 shows that the higher moments of temperature are also very well converged

to the canonical ensemble values. The higher moments of K, in Figure 3-7 show a

slower but a reasonable convergence to the canonical ensemble values. The final values

of the average moments are summarized in Table 3.3.

Therefore, the simulation with Po0  0 does not produce a canonical ensemble

whereas the simulation with Po = 0 produces a canonical ensemble. Consequently,
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Figure 3-5: Average temperature and average thermostat kinetic energy for the ex-
tended LJ fluid (Tet = 1.5, p = 0.8) with zero total momentum. The thermostat
effective mass is Q = 1, the time step is At = 0.001, and the total number of time
steps is 106. Horizontal dashed lines are the theoretical values of the canonical en-
semble. Reduced LJ units are used for the temperature and the time.
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Figure 3-6: The 2nd, 3rd, and 4th moments of the temperature fluctuations for the
extended LJ fluid (Te,t = 1.5, p = 0.8) with zero total momentum. The thermostat
effective mass is Q = 1, the time step is At = 0.001, and the total number of time
steps is 106. T is the instantaneous temperature of the LJ system, and K, is the
thermostat kinetic energy. Horizontal dashed lines are the theoretical values of the
canonical ensemble. Reduced LJ units are used for the temperature and the time.
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Figure 3-7: The 2nd, 3rd, and 4th moments of the thermostat kinetic energy fluc-
tuations for the extended LJ fluid (Tet = 1.5, p = 0.8) with zero total momentum.
The thermostat effective mass is Q = 1, the time step is At = 0.001, and the total
number of time steps is 106. Horizontal dashed lines are the theoretical values of the
canonical ensemble. Reduced LJ units are used for the temperature and the time.
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both simulations of the LJ potential system with zero and nonzero total momentum

satisfy the generalized Nose theorem.

Simulations are also performmed with different values of CM kinetic energy. For a

small CM kinetic energy (< Ko/s 2 > T,,t) the results are found to be quite similar

to those of zero total momentum. This fact suggests that quite a good approximate

canonical ensemble can be generated with nonzero total momentum even if the total

momentum is on the order of the external temperature. However, as the CM kinetic

energy increases (< Ko/s 2 >>> Tet), the deviation from the canonical ensemble

values becomes large. These facts guarantee the numerical stability of generating

a canonical ensemble by ESM in practical applications where computational errors

inevitably introduce a small nonzero total momentum. This numerical stability is

further discussed in Sec. 3.4.

3.4 Practical Considerations

In this section, we discuss the differences between the Nose theorem and the general-

ized Nose theorem from a practical viewpoint. We discuss three separate topics. The

first is the new mass spectrum Ai of the resulting Hamiltonian satisfying a canonical

ensemble. The second is the effect of nonzero total momentum on changing the aver-

age moments of temperature and thermostat kinetic energy from canonical ensemble

values. The third is the effect of changing the number of degrees of freedom from 3N

to 3N - 3 on the interpretation of numerical simulations.

First, in the proof of the generalized Nose theorem one begins with a physical

Hamiltonian with mass spectrum {mi}, i = 1, ... , N and obtains the final Hamilto-

nian with mass spectrum {A~}, i = 1, ..., N-1. In general, the new masses are different

from the original masses. For the special case of N identical original masses (mi = m)

one finds a final mass spectrum: Ai = m for i = 1, ..., N - 2 and AN-1 = m/N. This

new mass spectrum will contribute in principle to the difference of the dynamical

properties between the conventional MD and the Nose Dynamics which is discussed

in [5]. Of course, as N becomes large, the contribution of the light mass becomes



unimportant in practical considerations. As far as thermodynamic averages are con-

cerned, the difference of mass spectrums is always irrelevant because of the equipar-

tition theorem. The only significant change relevant to the thermodynamic averages

is the reduction of the number of degrees of freedom from 3N to 3N - 3.

Second, if Po $ 0, then the physical system does not satisfy a canonical ensemble

as we have shown in Sec. 3.2. However, if Po I is small, one can make the following

approximations. For small |Po0 , sl is very small so that s3N - 3 < S N-3 . Hence

one can neglect the first integral containing si in the partition function (3.12). The

remaining integral containing s2 can be approximated as follows:

I- Ko/se + gk Tezt/s2| .. gkBT1e/s 2I, (3.25)

since Ko/s2 <gksTeDt for small |P0o. After these two approximations, the partition

function reduces to the partition function of zero total momentun. The correction is

O(Ko/gkBTt,,), and this explains why one can still get good average moments for a

small nonzero total momentum as discussed in Sec. 3.3.

Third, if one ignores the momentum conservation entirely as is typically done

(i.e., one uses the Nos6 theorem to interpret a numerical simulation), then one sets

g = 3N + 1 instead of g = 3N - 2, and defines the instantaneous temperature as

T = 2K/(3NkB) rather than Eq. (3.1). Since the Nos6 theorem is not strictly valid,

one introduces a systematic error in the interpretation of numerical simulations as

shown in the following.

In a simulation, one compares the average moments of temperature with those of

Text (3.2-5), but the value of T,,t is defined only as a portion of the coefficient of the

thermostat potential

gTezt - kBln(s). (3.26)

Therefore, when one uses g = 3N + 1 and Tet, it is equivalent to using the correct



g' = 3N - 2 with the actual externally set temperature being

Te,, =3N t = Text. (3.27)
9' 3N - 2

For a 32 particle system, T',t is 3.2% larger than T,_t. This difference could introduce

a significant error in many practical applications. For example, one can obtain a

wrong melting temperature by using this interpretation. This error becomes large

for a small system so that one should be careful when applying the ESM to small

clusters.

Finally, we note that this error in actual external temperature, although definitely

present in a simulation where g = 3N + 1, will not be detected if one simply compares

< T = 2K/(3NkB) > with T~,t. To see this recall that the actual instantaneous

temperature T' is given by Eq. (3.1) so that

3N
T' = T. (3.28)

3N - 3

According to the generalized Nose theorem, one must have

< T' > = T'.,. (3.29)

Using (4.3), (4.4), and (4.5) one then obtains

(3N - 3 )(3 N + 1)
3N(3N - 2)

3
= (1- )T  (3.30)

3N(3N - 2)

This relation means that the errors in Tet and T cancel systematically. For the

32 particle LJ system, the difference between < T > and T,,t is only 0.03%. We

emphasize however that both Text and < T > are off by about 3% from the correct

value Te,,.

Therefore, the use of the Nose theorem instead of the generalized Nose theorem

in the interpretation of numerical simulations will lead to a systematic error which



cannot be detected by a simple "self consistency" check of comparing < T > and Tet.

Of course, since the actual error in T,,t scales as 0(1/N), this error will be important

only for systems with small number of particles.

3.5 Conclusions

The Nos6 theorem is correct only when the total energy of the system is conserved.

In practical applications, the total virtual momentum is also conserved, and therefore

the Nos6 theorem is no longer strictly valid. Inclusion of the conservation of the

total virtual momentum in the original argument of Nos6 leads to a generalized Nos6

theorem that is valid in practical applications.

The generalized Nose theorem is proved analytically. As a consequence of the

generalized Nose theorem, if the ES is ergodic and if the total virtual momentum of

N particle system is zero, then the ESM yields a canonical ensemble for an N - 1

particle system with a different mass spectrum. The consequences of a different mass

spectrum are irrelevent to thermodynamic averages, but relevent to the dynamical

properties and relaxation times of the system.

The effect of nonzero total momentum is of order Ko/gkSBT,,t for small Po 1. This

fact provides a numerical stability of generating a canonical ensemble in practical

situations where small nonzero JPo0 is introduced by computation errors.

Numerical simulations are performed and tested against the generalized Nos6 the-

orem. The simulations are found to satisfy the generalized Nos6 theorem and the

numerical stability is obtained as expected from the theory.



Chapter 4

Wavelets in Electronic Structure

Calculations

A three dimensional (3D) wavelet analysis is employed to develop a new formalism

for electronic structure calculations. The wavelet formalism provides a systemati-

cally improvable and tractable description of electronic wavefunctions and overcomes

limitations of conventional basis expansions. The potential power of the wavelet

formalism for ab initio electronic structure calculations is demonstrated by a calcu-

lation of ls states for all the naturally occurring nuclei on the periodic table and the

interaction energies of the hydrogen molecule ion.

4.1 Introduction

Spectral analysis using the Fourier transform (FT) is a powerful method for solving

many problems in science and engineering. This method, however, is not appropriate

for problems that require a localized description in real space and in Fourier space.

Although several techniques, such as the windowed Fourier transform, have been

invented to attempt to overcome this limitation, by far the most promising new

technique is the wavelet transform (WT) [39]. Unlike the plane wave (PW) basis

functions of the FT, the wavelet basis functions are localized both in real space and in

Fourier space [39, 40, 41, 42]. Furthermore, multiresolution analysis (MRA) of the WT



provides a systematic successive approximation scheme for practical applications [39,

40]. Applications of the WT have focused primarily on digital signal processing (1D),

compact image coding (2D), and related fast mathematical algorithms [41]. Most

recently the WT has been applied to the analysis of chaotic behavior and turbulence

in 2D, the coherent states of quantum optics and quantum field theory, and to real

space renormalization group theory [42].

In this letter, we introduce a new method for the application of WT, in 3D, to

electronic structure investigations of material properties. The traditional ab initio

total energy density functional pseudopotential methods for electronic structure cal-

culations use either LCAO-type (e.g. atomic, Gaussian, or Slater) basis sets or PW

basis sets [2]. LCAO-type basis sets typically are capable of describing the electronic

structure with a small number of basis functions, but lack an explicit and well-defined

procedure for systematic improvement', and generally complicate the calculation of

forces because of the presence of large Pulay terms [43] which must be compensated

through explicit calculation. On the other hand, PW basis sets provide a systematic

expansion of electronic wavefunctions, introduce no Pulay terms for supercells of fixed

size (thus considerably simplifying the calculation of forces), but suffer from the same

limitations as the FT method. Specifically, the description of the rapid variations of

the electronic wavefunction close to the atomic nuclei (atomic core) requires a large

number of PW functions even though the volume of the atomic core is only a small

part of the total volume of the system. In addition PW basis sets are, in principle, not

well suited for the description of isolated molecules and surfaces. This is because the

periodic nature of the basis introduces unnecessary periodic images and a redundant

high resolution description of the vacuum regions.

The "best of all worlds" then would be to have a basis set that, unlike a PW

basis, can zoom into the atomic core regions and does not introduce unnecessary

periodic images, and, unlike an LCAO-type basis, does not introduce Pulay terms

which must be calculated explicitly, and provides an explicit prescription for complete

'Improvement of LCAO-type basis sets is an art requiring experience and knowledge of the system
under study. In contrast PW basis sets offer guaranteed systematic convergence merely by increasing
the kinetic energy of the basis set.



expansion of the electronic wavefunctions. The wavelet basis has all these desired

properties: multiscale decomposition of the wavefunction, the localized description

of the rapid variations, and systematically complete expansion similar to the PW

expansion. Therefore, as we demonstrate in this letter, the wavelet basis overcomes

the limitations of both conventional basis sets and retains only their advantages.

We begin our discussion with a brief review of the basic concepts underlying

wavelets. We then extend the wavelet formalism to the solution of the Schr6dinger

equation with the introduction of spherically symmetric basis functions. As a simple

example we apply our technique to the study of a hydrogen atom. We then demon-

strate that a single small basis set is capable of calculating accurately the is states

of all the nuclei from Hydrogen through Uranium! Finally we demonstrate that a

wavelet basis can easily describe covalent bonding and illustrate its use with the hy-

drogen molecule ion (H2+). We conclude with a discussion of the straightforward

extension of the current analysis to periodic systems and all electron calculations.

4.2 Wavelet Transform and Multiresolution Anal-

ysis

Given a square integrable function space L2(R3), wavelets impose a hierarchical struc-

ture of subspaces with different resolutions which forms a multiresolution analysis.

The space of functions at resolution 2-j (or more simply at resolution j) is represented

by Vj(R 3), and spanned by the basis set of scaling functions at resolution j, {fj,n(r)},

where n specifies the center of the basis function. The hierarchical structure is then

... V_2 c V 1 C Vo C V C V2 ---. (4.1)

The approzimation space Vj is decomposed into a sum of the coarser approximation

space Vj_- and the wavelet space Wj-1 which describes the detail at resolution j

(Vj = Vj_j E Wj_,) and is spanned by the basis set of the wavelet functions at

resolution j, {tb,n(r)}. With a repetition of this decomposition, the L2(R3 ) space



can be expressed as either the sum of the wavelet spaces of all resolutions or the sum

of one approximation space and the wavelet spaces of higher resolutions:

Wj = Vjo Wj = L (R"). (4.2)
j j>Jo

Therefore, any square integrable function f(r) can be expanded either as a sum of the

wavelet functions of all resolutions or as a sum of the scaling functions at resolution

j = jo and the wavelet functions of all finer resolutions j _ jo. In this work, we

will use the latter expansion because it introduces approximations only at the high

resolution cutoff in practical applications.

With the introduction of two projection operators, A, (approximation operator)

and bj (detail operator), which project a function into Vj and Wj respectively, one

may express f(r) as

f(r) = Aj f(r) + E1 f (r). (4.3)

The approximation and the detail of a function f(r) at resolution j are expanded in

terms of the basis functions,

Aif(r) = aj,nj,n(r), (4.4)
n

Djf(r) = dj,nbj,n(r). (4.5)
n

Combination of Eqns. (3)-(5) and truncation at the finest resolution j,"a leads to

the wavelet expansion of f(r) as

jmaw

f(r) = E ajo,n 0jo,n(r) + E E dj,nj,n(r). (4.6)
n J=jo n

This expansion still contains an infinite number of basis functions associated with

the lattice {n}. Since the scaling functions and the wavelet functions are spatially

localized, one may retain only the basis functions that have significantly large coeffi-

cients in Eqn (6) for the problem at hand. This leads to an expansion with a finite



number of basis functions and allows one to use different resolutions for different spa-

tially localized regions. In particular, for the description of the rapid oscillations of

the electronic wavefunction in an atomic core region, one need add higher resolution

scales only to the core region and thereby systematically improve the calculation.

4.3 Construction of a Wavelet Basis Set

Although the wavelet and scaling functions are far from unique, we found that the

following forms are particularly convenient in practical applications. The wavelet

functions Clb,n(r) are chosen to be the Mexican-hat functions (the Laplacians of Gaus-

sians) which form a fairly tight frame [39]. The scaling function Oo,n(r)corresponding

to the Mexican-hat function is chosen to be a Gaussian function. Both the Mexican-

hat functions and the Gaussian functions are spherically symmetric. The relationship

between the Gaussian scaling function and the Mexican-hat wavelet function is not

exact, but is quite a good approximation as discussed in Ref. 1. These localized basis

functions are spatially arranged so that their centers form a simple cubic lattice2 .

This is shown schematically in the top panel of Figure 4-1. The lattice spacing do at

resolution j = 0 is chosen small enough to give a fairly tight frame3 [39]. The basis

functions with resolution j are arranged correspondingly on the lattice sites with lat-

tice spacing do/2 j . The centers of basis functions for different resolutions are selected

so as not to overlap, and the centers of all the basis functions form a simple cubic

lattice with spacing do/2 jiz-. In order to construct a finite basis set we collect the

most important basis functions by introducing spheres of finite support radii at each

nuclear center. This is illustrated schematically at the bottom panel of Figure 4-1.

Correspondingly smaller support radii are chosen for correspondingly higher resolu-

tions so that deep core regions have more resolution scales. We designate this finite

basis set as {0O,n(r), ij,n(r);jma, _ j 0} or more compactly as {bi(r)} where i is a

simplified notation for {j, n}.

2We have also tested fcc and bcc lattices and obtain similar results to the sc lattice.
3For the examples treated in this work do is chosen to be lau, and the Gaussian width is 1.35au.
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Figure 4-1: Top panel shows a two dimensional arrangement of the centers of basis
functions on a simple square lattice. Open circles are the centers of the basis functions
at resolution j = 0, and filled circles are the centers of the basis functions at resolution
j = 1. Bottom panel shows the basis functions that lie within each support radius
that is centered on an atomic position (diamond-symbol). The larger (smaller) radius
corresponds to j = 0 (j = 1) resolution.



4.4 Solution of SchrSidinger Equation

The Schr6dinger equation, HI9 >= eJ1 >, for electronic structure calculations be-

comes a generalized eigenvalue problem in a general nonorthogonal wavelet basis.

Expansion of the wavefunction in terms of the basis functions (IQ >= i ci lbi >)

leads to the secular equation,

S< bjl-lb, > ci = eE < bjlb, > ci. (4.7)
i i

With our choice of wavelet and scaling functions, all the matrix elements in Eq. (7)

can be calculated analytically. Solution of Eq. (7) may then proceed by a number

techniques including square root matrix diagonalization4 , Cholesky decomposition

[44], molecular dynamics [2], and conjugate gradients [2] approaches. In this work
we have used both square root matrix diagonalization and conjugate gradients ap-

proaches.

4.5 Hydrogen Atom

In order to gain a sense of the optimal values of the various parameters of the for-

malism, we chose to study the hydrogen atom as a simple test case. After performing

calculations using many different resolution scales and different support radii, we find

that a satisfactory minimal basis set for the Hydrogen atom contains 25 basis func-

tions with four resolution scales: (7 scaling functions for j = 0, plus 6 wavelets for

j = 0, plus 6 wavelets for j = 1, plus 6 wavelets for j = 2) which we designate simply

as (7 + three 6's). These correspond respectively to support radii of lau, 0.5au,

0.25au, and 0.125au. The calculated is eigenenergy is within 2% of the exact value,

and the calculated is radial wavefunction is shown in Figure 4-2. The calculated

wavefunction differs from the exact one primarily near the origin (within the resolu-

tion limit jima). The small difference at r = 2au is due to the finite support radii

4This technique reduces a generalized eigenvalue problem to a standard eigenvalue problem by
use of the square root of the diagonalized overlap matrix.
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Figure 4-2: The is radial wavefunction of a hydrogen atom calculated with 25 basis
functions (7 + three 6's). The continuous line in from the wavelet calculation, and
the broken line is the exact wavefunction.

used for the basis set. By changing the basis set to 85 functions with three resolution

scales (33 + two 26's, with corresponding support radii of 2au, lau and 0.5au), this

difference reduces to 0.3%, and we can obtain the is eigenenergy to within 0.5% of

the exact value.

4.6 Hydrogen to Uranium

By adding more resolution scales, one can calculate the wavefunctions of heavier nuclei

within the same accuracy as follows. As the atomic number increases, the Coulomb

potential becomes stronger, and consequently higher resolution scales are needed in

the core region. However, only one additional resolution scale needs to be added each

time the atomic number doubles. Therefore, for the description of Is wavefunctions

from Hydrogen to Uranium, one needs to use a basis set with eleven resolution scales

(7+ ten 6's). Using this fixed basis set consisting of only 67 basis functions, one can

calculate (to within 3%) the is eigenvalues of all the naturally occurring nuclei on

the periodic table! The results are shown in Figure 4-3 and include, for simplicity,

only the even nuclei. Note that the eigenvalue for each nucleus is larger than the
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Figure 4-3: The filled circles are the is eigenenergies of all the nuclei with even
atomic numbers on the periodic table (Z = 2,4,...,92) calculated with the fixed 67
basis function set.

exact value by very nearly a constant percentage so that the results appear to lie on

a straight line as expected.

4.7 Hydrogen Molecule Ion

We now investigate the efficiency of the wavelet basis for the description of chemical

bonds. As a simple example, we consider the energy of an H+ molecule as a function

of the separation R between the two protons. The total energy (electronic eigenenergy

plus the Coulomb potential energy) is plotted as a function of R in Figure 4-4. The

basis set for the calculation is selected using the same support radii as for the hydrogen

atom calculation with the larger basis set (33 + two 26's), and the total number of

basis functions varies between 141 and 1675 depending on R. We note that the

5Note that this procedure leads naturally to a linear scaling of the basis set size with the number
of atoms in the calculations.
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Figure 4-4: The total energy of a molecular hydrogen ion is shown as a function of

the separation between the nuclei. The filled circles are the calculations with 141

to 167 basis functions depending on the separation R while the open circles are the
exact values. The inset shows fine detail of the calculation in the vicinity of a change
in basis, illustrating that basis-change effects are at less than the meV level.

calculated values in Figure 4-4 are very close to the exact values [45] and are larger

than them by a nearly constant amount of 1%. This implies that the wavelet basis

gives an efficient representation of the chemical bond and also gives an excellent

representation of inter-ionic forces.

4.8 Comment on Pulay forces

It is important to note that the centers of the basis functions do not follow the nu-

clei as they move; the underlying basis set is not correlated to the ionic positions.

__

"' mau



Just as in the plane wave case, this ensures that the finite underlying wavelet basis

introduces no Pulay terms for a fixed calculational cell. Although, in practice, it is

possible to use the full underlying basis, it is much more convenient to introduce the

support spheres as we have done above. This does introduce a position dependence

into the basis by selecting the basis set as illustrated in the bottom panel of Figure

4-1. However, simply increasing the size of the support radii to where the wavefunc-

tion coefficients for the wavelets near the edges of their respective spheres are near

zero controls the magnitude of resulting Pulay corrections and eliminates the need

for their explicit calculation. Designing the basis to give a good representation of

the wavefunctions and their eigenenergies imposes this condition on the coefficients

automatically, making the treatment of Pulay forces very simple in the wavelet for-

malism, as our molecular ion calculation illustrates. Although the cutoff radii for this

calculation were chosen only with the representation of the atomic wavefunctions in

mind, the effect on the calculation from sudden changes in the basis set is extremely

small, as the inset in Figure 4-4 shows. The inset displays a representative example

of the detailed behavior of the wavelet calculation on either side of a change in basis

set. The discontinuity in the energy is extremely small (0.3meV) as is the jump in

force/slope ( lmeV/A).

4.9 Conclusions

We have developed a 3D wavelet formalism that is applicable in general to electronic

structure investigations of materials, and have demonstrated its potential power by

performing calculations of the deepest core states of all the nuclei on the periodic

table and the interaction energy of an H2+ molecule. The wavelet expansion with

a small number of basis functions gives an accurate description of the wavefunction

both in an atomic core region and in a chemical bond.

To extend this approach to many-electron systems within LDA, one can simply

use traditional techniques for the inclusion of Hartree and exchange-correlation inter-

actions, expanding the charge density and other relevant fields in the wavelet basis



as well. In particular, schemes developed for localized basis sets [46] provide one

possible framework for this extension. It is not clear at the moment that the inherent

advantages of the wavelet basis will make it more attractive for practical calculations

strictly within LCAO-type computational frameworks because, at present, the wavelet

expansion of atomic states still requires more functions per atom than do correspond-

ing LCAO-type representations. The same is true of plane wave expansions, which

nonetheless are competitive with traditional local basis schemes because of the effi-

ciency of the fast Fourier transform. There exists an analogous fast wavelet transform,

and work currently is underway to investigate its exploitation and the competitive-

ness of the resulting computational framework with both LCAO-type basis and plane

wave approaches.

In comparison to the plane wave approach, we expect wavelets to prove most

advantageous in situations which require a spatial resolution which varies significantly

throughout space, including systems involving first row elements or transition metals.

Also, the local nature of the wavelet basis ensures that the wavelet transform maps

far more naturally than does the fast Fourier transform onto the latest generation

of massively parallel computer architectures. On the other hand, it is unlikely that

multiple resolutions will benefit systems such as pseudopotential silicon directly in

terms of numbers of basis functions.

Finally, multigrid approaches provide another possible avenue toward spatially

variable resolution. We have not explored this direction in depth, and we do not know

what will be the advantages and disadvantages of this approach over the wavelets. It

is noteworthy, however, that the basic difference between the two is that wavelets are

a set of basis functions whereas multigrid is a method for solving a discretized set of

equations.

In conclusion, the trivial process of introducing a Bloch transformation of the

wavelet functions extends straightforwardly the current analysis to periodic systems 6.

With the extensions to many-electron systems and periodic systems, the wavelet

formalism way open a completely new direction of development for ab initio total

6The theory of periodized wavelets is discussed in [41].



energy calculations.



Chapter 5

Tip-Surface Interactions in

Scanning Tunneling Microscopy

The tip-surface interactions in the Scanning Tunneling Microscopy (STM) of the

Si(100) surface are investigated with ab initio total energy pesudopotential calcula-

tions. The results of the calculations lead to a new understanding of the microscopic

STM measurement process. It is found that under typical conditions the influence

of the tip is large enough to effectively flip a dimer on this surface. This leads to

a reinterpretation of the "symmetric" dimer STM image as an asymmetric dimer

configuration that flips as it follows the motion of the scanning tip.

5.1 Introduction

Scanning Tunneling Microscopy (STM) provides an image of the structure of a surface

at an atomic resolution [47]. This STM image is generated by an electron tunneling

between the STM tip and a surface atom under the tip as a result of the overlap

between the tip and surface wave functions. Consequently the tip and the surface

may in certain cases interact significantly during the process of an STM measurement.

The conventional theories of STM, however, are based on a first order perturbation

approximation [48, 49, 50] which does not include the tip-surface interaction. STM

images are then interpreted simply as a convolution of the tip wavefunction and the



surface wavefunction. Although this interpretation is a very useful approximation for

many applications, there may exist systems for which the tip-surface interaction and

the surface dynamics play a crucial role in the STM measurement process.

In this letter we use ab initio total energy pseudopotential calculations, with a

conjugate gradient scheme, to demonstrate that the Si(100) surface is an example of

a system for which STM does not provide a direct mapping of the surface atomic

structure, and that a conventional interpretation of the STM images is not appro-

priate. Typically, a room temperature STM image of the Si(100) surface [51, 52, 53]

shows the majority' of dimers in, what appear to be, unbuckled, symmetric con-

figurations. Such configurations are in apparent disagreement with the theoretical

predictions of buckled, asymmetric dimer configurations [54]. One might expect that

this discrepancy could be reasonably resolved by arguing that thermal fluctuations

in the asymmetric dimer configurations will create an averaged or "symmetric" im-

age. Such thermal fluctuations have been predicted to be present on the surface in

the absence of a tip' [55, 56]. In the presence of a tip, however, we propose that a

different mechanism is operational. Specifically, we demonstrate that the tip-surface

interactions are significant enough to flip and bind an asymmetric dimer to the tip.

As the tip is then moved along the surface, dimers are flipped tracking the tip and

create what appears to be a symmetric image in the scan.

5.2 Calculational Details

The ab initio total energy pseudopotential density functional calculations are per-

formed using the preconditioned conjugate gradients scheme for the electronic energy

minimization to the Born-Openheimer surface [2]. The minimum energy ion config-

uration on the Born-Openheimer surface is obtained by relaxing ions according to

the Hellman-Feynman forces. Within the local density approximation (LDA), the

total energy functional is calculated with the Perdew-Zunger parameterization of the

'The dimers that are in the vicinity of defects appear to be pinned in asymmetric configurations.2At room temperature for dimers not pinned directly to defects.



Table 5.1: Calculated lattice constants and bulk moduli of tungsten crystal and silicon
crystal are compared with experimental values.

Experiment Calculation Difference
W lattice constant (A) 3.16 3.13 0.9%

W bulk modulus (1012dyn/cm 2) 3.23 3.47 7.4%
Si lattice constant (A) 5.431 5.427 0.7%

Si bulk modulus (101 2dyn/cm2 ) 0.988 1.013 2.5%

exchange-correlation energy [57] and the Kleinman-Bylander separable form of the

nonlocal ionic pseudopotentials [58]. The pseudopotentials for Silicon and Tungsten

are generated by the kinetic energy optimization [59], and contain p and d nonlocal

components and a s local component.

The convergence of the plane wave expansions and the transferability of the pseu-

dopotentials are tested for bulk silicon crystal and bulk tungsten crystal. From the

test calculations, the plane wave cutoff energy is chosen to be Ec = 300eV at which

the total energy of the silicon crystal is converged to within 0.04% and that of the

tungsten crystal is to 0.07%. The transferability of the pseudopotentials are fairly

good as shown in Table I for the calculations of the bulk lattice constants and the

bulk moduli.

The STM tip-surface system is modelled by a supercell (15.35A x 8.58A x 16.00A)

containing 52 atoms (4 tungsten atoms, 32 silicon atoms, and 16 hydrogen atoms).

The corresponding Brillouin zone is sampled with one k point (r). The 32 silicon

atoms form a four layer slab with eight atoms in each layer (15.35A x 8.58A)3. The four

dimers in the top layer form a c(4 x 2) surface reconstruction, and the slab is vertically

separated from the periodic images by 10A vacuum regions. The bottom layer silicon

atoms are fixed at bulk positions, and all the dangling bonds are passivated by 16

hydrogen atoms. To model the STM tip we note that only the atoms at the very

edge of the tip need to be adequately represented in order to address the questions

raised in this work. Since W atoms on the surface form a closed-packed structure,

3The interdimer interaction is stronger along the dimer rows (-0.026eV) than across the dimer
rows (0.010eV), and the separation distances are chosen to avoid the correlated interaction of STM
tips and the surface.



we have opted to represent the apex of the STM tip simply as a tetrahedron of four

W atoms. The tungsten cluster is placed in the vacuum region with an apex atom

pointing down to the surface. In the calculations, the silicon atoms in the top three

layers and the apex atom are allowed to relax according to the Hellman-Feynman

forces.

To gauge the influence and relative importance of the tunneling current or bias

voltage, we performed the following exercise. Typically the bias voltage is 2V, and

the tip-surface separation is about 5A so that the electrostatic force on a surface

atom is approximately 0.6 eV/A. This includes a conservative estimate of 1.5 for the

enhancement factor caused by inhomogeneous field effects around the surface atoms

as discused by Kreuzer, Wang, and Lang [60]. The spring constant of a surface mode

is roughly 5eV/A2, so that the relaxation energy of the atom due to the applied bias

voltage is less than 0.036eV, which is consistent with ab initio calculations of the

tip-induced polarization of the Si(100) surface by Huang et al. [61]. As we shall see

in the results below, this energy is much smaller than our calculation of a tip-surface

binding energy of 0.2eV. We thus neglect the effects of the bias voltage in forthcoming

analysis.

In these calculations, we allowed the tip to vary in the range of 4.5 to 5.2A above

the atoms in the outermost surface layer. As shown in Figure 5-1, even for the shortest

tip-surface distance of 4.5A, the surface is not greatly perturbed by the presence of

the tip, and no new bonds are formed between them. Nevertheless, as we discuss in

the next section, there is enough interaction between tip and surface to significantly

alter the dynamics of the surface dimers.

5.3 Interaction Energies

The tip-surface interaction energy is calculated by combining three separately calcu-

lated energies: E(tip), E(surf ace), and E(tip + surface). E(tip) is calculated by

retaining the tip in the supercell and removing the Si slab. Similarly, E(sur face)
is calculated by retaining the slab and removing the tip. Finally, the energy of the



Figure 5-1: This plot shows a cross section of the total charge density of the tip-
surface system with the tip directly above an upper dimer atom. The buckling angle
of the dimer, the position of the apex tip atom, and the charge density distributions
of the tip and the dimer are not significantly changed by the tip-surface interaction,
but the interaction energy is significant (-0.57eV).
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tip-surface system E(tip + surface) is calculated with both the tip and the slab in

the supercell. The tip-surface interaction energy is then simply

Ei,t = E(tip + surface) - E(tip) - E(sur face). (5.1)

The results of our calculations for a tip restricted to lie directly above a surface

atom are summarized in Figure 5-2. For the configuration shown on the left panel,

the tip lies 5.2A above the lower dimer atom, and the interaction energy is -0.37eV.

The panel at the center of the figure refers to a symmetric dimer configuration that

corresponds to the "saddle-point" or static barrier configuration for flipping the buck-

led dimer. In the absence of the tip, the barrier is calculated to be 0.08eV in good

agreement with 0.09eV as obtained by Dabrowski and Scheffier [56]. In the presence

of the tip, the barrier for an up-flip of the buckled dimer is found to be 0.1eV. The

opposite barrier, corresponding to a down-flip of the buckled dimer, is obtained from

the right panel of Figure 5-2 and is found to be 0.3eV. Note that the interaction en-

ergy in the latter case is correspondingly large at -0.57eV and the distance between

tip and dimer atom is 4.5A.

To determine how this barrier changes with respect to the position of the tip,

we perform the calculations illustrated in Figure 5-3. Now the tip is restricted to

lie directly above a dimer-bond. In this case, we find that the barrier decreases

significantly to a value of about 0.05eV.

5.4 Implications

For a given value of energy barrier, Eb, the average time that a dimer spends in one

asymmetric configuration before flipping to the other is simply

7b = 10 - 13eEb/kBT, (5.2)

where the phonon frequency is estimated to be 1013sec- 1 . During an STM measure-

ment, an STM tip typically stays 3 x l0-3 sec = tSTM above a surface atom and
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Figure 5-2: Total energy (in eV) of a tip-surface system as a function of surface-
dimer buckling angle. The tip (shown schematically as a triangle with filled circles)
is situated directly above a surface-dimer atom (open circles). The results at and
above the horizontal dashed line correspond to a tip-surface system in the absence of
interactions. In this case the horizontal bars correspond to E(tip)+E(surface). Note
that the barrier for flipping from one asymmetric dimer configuration to the other is
about 0.08eV. The panels below the dashed line correspond to the fully interacting
tip-surface system. In this case the horizontal bars correspond to E(tip + surface).
Note that the barriers for up-flip and down-flip are 0.1eV and 0.3eV respectively.
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Figure 5-3: Total energy (in eV) of a tip-surface system as a function of surface-dimer
buckling angle for a tip situated directly above the dimer bond. Same convention as
in Figure 5-2. Note that the barrier for dimer flipping is now reduced to 0.05eV.
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therefore the relative values of ma and tSTM will determine the nature of the STM im-

age. In the absence of interactions between the STM tip and surface, a buckled dimer

is in a symmetric potential-well as shown in the upper curve of Figure 5-2, and the

energy barrier for flipping (0.08 - 0.09eV) is small enough that at room temperature

the dimer can flip up and down very frequently (mb = 2 x 10-12sec). This would lead

to a symmetric STM image that is the average of up-flip and down-flip configurations.

In the presence of interactions between the STM tip and surface, a buckled dimer

is in an asymmetric potential-well as shown in the lower curve of Figure 5-2, and Tb is

different for the down-flip and the up-flip configurations. At room temperature, n,'s

are short enough (To,w = 5 x 10-12sec and rp = 1.3 x 10-8 sec) that, in principle,

the dimer can flip up and down freely, and thermal equilibrium between two local

energy minima of the asymmetric potential is reached during the STM imaging time.

Therefore, the dimer spends different amounts of time in each local energy minimum,

and the ratio of the times is given by the Boltzmann factor of the difference of two

local minimum energies (4 x 10-4). Consequently, the dimer stays in the up-flip

configuration except for intermittent rapid round-trips to the down-flip configuration.

For all practical purposes, therefore, one is always measuring a dimer in the up-flip

position as the tip moves along the surface. The resulting image is then deceptively

that of a "symmetric" dimer.

As one decreases the temperature, domn and ru, increase and eventually both

become larger than tSTM. This occurs at and below a temperature Tfieeze = 48K

for which the surface dynamics is so slow that a dimer cannot flip during the STM

imaging time. Therefore, at this temperature range one can observe frozen buckled

dimers in up-flip and down-flip positions from an STM image of the surface.

One possible experimental verification of our prediction regarding the room tem-

perature "symmetric" dimer image would be to analyze the tunneling current while

the tip remains above a dimer atom. If tip-surface interactions are not important the

current should have the characteristics illustrated in the top panel of Figure 5-4. The

typical frequency at room temperature in this case should be around 1012Hz. On

the other hand, if tip-surface interactions are important, and result in a "binding" of



the up-flip configuration, one should observe a current as shown schematically in the

bottom panel of Figure 5-4. The frequency associated with these "glitches" should

be in the neighborhood of 108Hz.

Finally, a special case can arise if the STM tip is constrained to move precisely

along the dimer axis. Recall that in this case there exists a lower barrier when the tip

is situated directly above a dimer bond (see Figure 5-3). Consequently, as the STM

tip moves along the dimer, the dimer can flip more easily which results in a lower

freeze-in temperature of about 24K.

5.5 Concluding Remarks

In all of this work we have specifically focussed on the defect free regions of the Si(100)

surface. However, defects, such as vacancies and step-edges for example, appear to

occur frequently on such surfaces. STM images at room temperature reveal asymmet-

ric dimer configurations in the vicinity of such defects which would be consistent with

a defect-pinning mechanismi that leads to either a higher energy barrier for an up-flip

and down-flip or a larger asymmetry between the barriers for up-flip and down-flip.

We have recently begun attempts to investigate these differences but such ab initio

calculations are beyond the scope of the present work.



4_jCC
1)

C0
o_

time

r
L.
L.

T-up

4- Tdown

time

Figure 5-4: Top panel shows a schematic tunneling current in
surface interactions. Bottom panel shows a schematic tunneling
ence of tip-surface interactions.

the absence of tip-
current in the pres-

!



Chapter 6

Mechanical Hysteresis on Atomic

Scale

A mechanical hysteresis associated with intimate atomic force microscopy (AFM)

on the Si(100) surface is studied with ab initio total energy pseudopotential density

functional calculations. It is found for a tip-surface separation of about 2A that a

vertical movement of the AFM tip can induce a hysteresis effect on the geometry of

surface dimers accompanied by a discontinuous change of the surface dimer angle. It

is also found that a bond may form between the tip apex atom and a surface dimer

atom, and this bond facilitates the change of dimer geometry between local minimum

energy configurations while the tip moves down and up.

6.1 Introduction

Both atomic force microscopy (AFM) and scanning tunneling microscopy (STM)

provide real space images of a crystal surface with atomic scale resolutions [62, 47].

However, the basic principles of AFM and STM are quite different: i.e., AFM is based

on the interatomic forces between the AFM tip atoms and surface atoms, whereas

STM is based on the tunneling currents between them. Since the interatomic forces

do not depend on the details of the electronic structures of the tip and surface surface

as much as the tunneling currents do, the interpretation of an AFM image is generally



believed to be much simpler than that of an STM image [63].

For the interpretation of an AFM image or an STM image, the conventional the-

ories make several simplifying assumptions which provide approximate descriptions

of the AFM and the STM processes. In the AFM process, the surface atoms are

assumed to deform elastically under the force applied by an AFM tip, and the tip is

generally assumed to be rigid so that the tip-surface interaction is described by a sim-

ple force-distance curve [63]. On the other hand, in the STM process the tip-surface

interactions and the surface dynamics are generally ignored [48]. However, in Chapter

5 we have shown that the tip-surface interactions and the surface dynamics are crucial

for the correct interpretation of the symmetric dimer image on the Si(100) surface

[18]. In particular, we have discussed a situation in which the STM tip effectively

captures a fluctuating surface dimer in an up-flip asymmetric dimer configuration at a

temperature higher than 48K. In this case, the capture mechanism is possible due to

the thermal fluctuations of the dimer configuration, and as the STM tip moves away

from the surface dimer, the dimer resumes its normal thermal fluctuations between

the up-flip and the down-flip configurations.

In this chapter, we use ab initio total energy pseudopotential calculations to study

the microscopic mechanical changes associated with intimate AFM on the Si(100)

surface. The calculations show that for a tip-surface distance of about 2A an AFM

tip can push down a surface dimer from the up-flip configuration to the down-flip

configuration as one brings the tip down and pull it up again as one brings the tip up.

In this procedure the dimer geometry follows two different paths with a discontinuous

change of the dimer angle along the down path, and exhibits a mechanical hysteresis

effect. The energy barrier separating two paths is small (0.05 eV) so that the hysteresis

loop is relevant only at low temperature. At room temperature the hysteresis loop

will reduce to a thermally averaged curve.



6.2 Calculations

In the ab initio total energy pseudopotential calculations, we use the local density

approximation (LDA) of the density functional theory and minimize the electronic

energy using the preconditioned conjugate gradients scheme [2]. The LDA calcula-

tions are performed with the Perdew-Zunger parameterized exchange-correlation en-

ergy [57], and the Kleinman-Bylander separable form of optimized pseudopotentials

[58, 59].
The tip-surface system is modeled by a supercell (15.35A x 8.58A x 16.00A), and

the plane wave cutoff energy is chosen to be E, = 300eV. This system requires a

fast Fourier transform (FFT) box size of 128 x 64 x 128 and 33699 plane wave basis

functions. The Brillouin zone sampling is performed with one k point (r).

The supercell contains 32 silicon atoms that form a four layer slab with eight

atoms in each layer, 16 hydrogen atoms that are used to passivate the dangling bonds

of the bottom layer silicon atoms, and 4 tungsten atoms that are used as a tip. The

top layer silicon atoms form a c(4 x 2) surface reconstruction, and the bottom layer

silicon atoms are fixed at bulk positions. The vacuum region between the silicon slab

and its periodic image is 10A. The apex of the AFM tip is modeled by a tungsten

tetrahedron cluster, and the cluster is placed in the vacuum region with an apex

directed down to the silicon surface.

The tip is placed directly above an upper dimer atom, and the calculations are

performed for a series of tip-surface distances, 4.5A, 3.5M , 3.0M , 2.5A, 2.25A, 2.0O,

1.75A, and 1.5A for the down path and 2.5A, 3.0A, 3.5A, and 4.5A for the up path'.

The calculations are performed in sequence so that the surface geometry of the previ-

ous tip position is used as the initial geometry of the calculation with new tip position.

For each calculation with a fixed tip-surface distance, the tungsten atom at the apex

of the tip and top three layers of silicon atoms are allowed to relax according to the

Hellman-Feynman forces so that the three tip atoms and the bottom layer silicon

'The tip-surface distance is defined to be the distance between the apex tip atom and the upper
dimer atom under the tip before the relaxation of the tip-surface system.



atoms play the role of the macroscopic tip and the bulk silicon crystal. The atoms

are relaxed until the Hellman-Feynman forces are smaller than 0.1eV/A. The force

on the AFM tip is then calculated from the Hellman-Feynman forces on the three

fixed tip atoms.

6.3 Relaxation of the Tip-Surface System.

- When the tip and the surface are initially combined into a single system, there are

large forces on the tip atoms and the dimer atoms. For example, at the tip-surface

distance of dtip-su.rface = 1.5A, the vertical force on the tip apex atom is 49.6 eV/A,

and the vertical force on the upper dimer atom under the tip is -56.3 eV/A, and at

dtip-,rface = 3.5A, -1.38 eV/A and 0.98 eV/A respectively. These forces lead to the

relaxation of the tip apex atom position and the surface dimer structure. Figure 6-1

shows the cross sections of the total charge density of the tip-surface system after the

relaxation. Four panels in Figure 6-1 correspond to the sequence of decreasing the

tip-surface distances, 2.5A; 2.25A, 2.0A, and 1.75A. This sequence shows that as the

AFM tip moves down, it pushes down and flips the surface dimer. The sequence (a),

(b), and (c) shows a gradual decrease of the dimer angle (170, 120, and 20), but the

change of the dimer angle between (c) and (d) appears discontinuous (from 20 to -240).

To test the discontinuity of the dimer angle as a function of dtip-sur face, we performed

the following exercise. We start from the relaxed atomic positions of the calculation

at dtip-su•face = 2.OA, slightly move down the AFM tip to dtip-surface = 1.9A, and let

the tip-surface system relax. This small change of o0.1 is found to be large enough

to push the dimer over the static barrier of symmetric configuration, and the dimer

geometry relaxes toward the flip-down configuration.

However, as the AFM tip moves up, the dimer configuration changes continuously

as shown in Figure 6-2. From the sequence of top to bottom, the tip-surface distance

increases from 1.75A to 2.5A to 3.0A to 3.5A, and the dimer angle increases gradu-

ally. This different behavior of dimer geometry indicate that the dimer configuration

follows two different local minimum energy paths as the tip moves down and up.



h = 2.5

h = 2.25

h =2.0

h =1.75

Figure 6-1: The sequence of charge density cross sections (from top to bottom) as
the tip pushes down and flips the dimer.



h= 1.75

h = 2.5

h = 3.0

h = 3.5

Figure 6-2: The sequence of charge density cross sections (from top to bottom) as
the tip pulls up and flips the dimer.
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6.4 Hysteresis Loops

The change of dimer geometry in response to the tip-surface interaction is quantita-

tively characterized by the dimer angle and the center of mass (CM) of dimer atoms.

These two parameters provide a quantitative measure of the hysteresis effect observed

in Figures 6-1 and 6-2. Figure 6-3 plots the dimer angle as a function of the tip dis-

tance from the surface for both paths of bringing the tip down and up as indicated

by arrows in the plot. As noted before the down path shows a discontinuous change

of the dimer angle, whereas the up path shows a continuous change. To test the tem-

perature effect on the hysteresis effect, the static energy barrier of symmetric dimer

configuration at the tip-surface distance of 2.5A is calculated. The barrier height is

0.05 eV, and this value is small enough that the hysteresis loop will reduce to an

average curve at room temperature.

Figure 6-4 shows the hysteresis loop projected onto the dimer CM height as a

function of the tip-surface distance. This plot shows that the dimer CM height is

about 0.5 A larger for the up path, and indicate that the dimer is bound to the tip.

However, it also indicate that the tip-dimer binding is not strong enough to break the

dimer-substrate binding so that at a larger tip-surface distance the dimer is separated

from the tip and returns the initial ground state geometry.2

6.5 Experimental Implications

The hysteresis loop of the dimer geometry can be detected by measuring the force on

the AFM tip in a low temperature AFM experiment. The theoretical prediction of the

force-distance hysteresis loop is shown in Figure 6-5. As the tip approaches the surface

from the distance of 5.0 A along the down path, the force becomes quite attractive

at dtip-surface = 3.5A, decreases to zero as dtip-urface decreases, and becomes slightly

repulsive at dtip--urface = 2.08. This part of the curve is consistent with the simple

2 Even though this tip-surface binding fails to break the dimer from the surface, it is possible to
break a weakly bound atom from the surface. Bias voltage induced transfer of Si adatom on the
Si(111)-(7 x 7) surface is an example of large enough tip-surface binding.
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Figure 6-5: Hysteresis loop of the force on the AFM tip as the tip moves down (left
arrows) and up (right arrows).

force-distance curve, but as the tip moves down further the simple force-distance

curve is not valid any more. The force becomes quite attractive discontinuously as

the dimer flips for dtip-surface < 2.OA and starts to be repulsive again.

However, as the tip moves up, the force on the tip shows less dramatic behavior.

The attractive force shows a slight decrease and increase as the dimer flips from the

down configuration to up configuration, and then follows the same curve as that of

the down path.

This hysteresis loop of the force illustrates the limitation of the simplifying as-

sumption on the tip-surface interaction which assumes that the tip-surface interaction

is similar to interatomic interactions. Since the surface has multiple local minimum

energy configurations, the tip-surface interaction involves the relaxation of the sur-

face geometry leading to a hysteresis effect. If an AFM experiment is performed at

low temperature, this hysteresis effect will strongly influence the AFM image. If an

AFM experiment is performed at room temperature, the hysteresis loop reduces to

an average curve due to surface dynamics, and an AFM image is influenced by both
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the hysteresis effect and the surface dynamics. Therefore, an image obtained in an

AFM experiment is not a direct mapping of the surface structure, but a result from

the combination of surface structure, surface dynamics, and the hysteresis effect.3

6.6 Concluding Remarks

We have studied the microscopic details of the AFM process on the Si(100) surface

and discovered the complicated nature of the tip-surface interaction which leads to

the tip-surface bond formation and the mechanical hysteresis of the surface dimer.

All these microscopic behaviors of the tip-surface system show that the simplifying

assumptions of the conventional AFM theories are generally not valid. The tip in-

duced modifications of the surface structure are also relevant to the surface defect

structures, the surface adatom clusters, and the surface steps. The study of these

systems will provide an understanding of the microscopic process of the imaging of

complicated surface structures in the AFM.

3 This result is very similar to the interpretation of the STM image of Chapter 5.



Chapter 7

Microplastic Deformations in

Atomic Force Microscopy

The microscopic deformations associated with intimate atomic force microscopy (AFM)

on the Si(100) surface are studied with ab initio total energy pseudopotential density

functional calculations. It is found for a tip-surface separation of about 2A that the

AFM tip can induce a plastic deformation of the surface. It is also found that a

bond may form between the tip apex atom and a surface atom. These results show

that the conventional interpretation of an elastic response of the surface atoms to

the force applied by the AFM tip does not hold under the present conditions. The

ramifications of these results for using Si(100) as an ultra-high density storage device

are briefly discussed.

7.1 Introduction

Both atomic force microscopy (AFM) and scanning tunneling microscopy (STM)

provide real space images of a crystal surface with atomic scale resolutions [62, 47].

However, the basic principles of AFM and STM are quite different: i.e., AFM is based

on the interatomic forces between the AFM tip atoms and surface atoms whereas,

STM is based on the tunneling currents between them. Since the interatomic forces

do not depend on the details of the electronic structures of the tip and the surface as



the tunneling currents do, the interpretation of an AFM image is generally believed

to be much simpler than that of an STM image [63].

For the interpretation of an AFM image or an STM image, the conventional the-

ories make several simplifying assumptions which provide approximate descriptions

of the AFM and the STM processes. In the AFM process, the surface atoms are

assumed to deform elastically under the force applied by an AFM tip, and the tip

is generally assumed to be rigid [63]. On the other hand, in the STM process the

tip-surface interactions and the surface dynamics are generally ignored [48]. However,

in a recent work we have shown that the tip-surface interactions and the surface dy-

namics are crucial for the correct interpretation of the symmetric dimer image on the

Si(100) surface [18]. In particular, we have discussed a situation in which the STM

tip effectively captures a fluctuating surface dimer in an up-flip asymmetric dimer

configuration at a temperature higher than 48K. In this case, the capture mechanism

is possible due to the thermal fluctuations of the dimer configuration, and as the

STM tip moves away from the surface dimer, the dimer resumes its normal thermal

fluctuations between the up-flip and the down-flip configurations.

In this chapter, we use ab initio total energy pseudopotential calculations to study

the microscopic deformations associated with intimate AFM on the Si(100) surface.

The calculations show that for a tip-surface distance of about 2A another capture

mechanism of tip-surface interactions is operational in which an AFM tip can capture

a surface dimer in the down-flip configuration and then pull it up to the up-flip

configuration. This second mechanism leads to a plastic deformation of the surface

dimer when the thermal fluctuations of the dimer are suppressed. This suppression

can occur conservatively for temperatures lower than 48K, or at higher temperatures

if the dimer is in the vicinity of a defect.

7.2 Calculations

In the ab initio total energy pseudopotential calculations, we use the local density

approximation (LDA) of the density functional theory and minimize the electronic



energy using the preconditioned conjugate gradients scheme [2]. The LDA calcula-

tions are performed with the Perdew-Zunger parameterized exchange-correlation en-

ergy [57], and the Kleinman-Bylander separable form of optimized pseudopotentials

[58, 59].

The tip-surface system is modeled by a supercell (15.35A x 8.58A x 16.00o ), and

the plane wave cutoff energy is chosen to be Ec = 300eV. This system requires a

fast Fourier transform (FFT) box size of 128 x 64 x 128 and 33699 plane wave basis

functions. The Brillouin zone sampling is performed with one k point (P).

The supercell contains 32 silicon atoms that form a four layer slab with eight

atoms in each layer, 16 hydrogen atoms that are used to passivate the dangling bonds

of the bottom layer silicon atoms, and 4 tungsten atoms that are used as a tip. The

top layer silicon atoms form a c(4 x 2) surface reconstruction, and the bottom layer

silicon atoms are fixed at bulk positions. The vacuum region between the silicon slab

and its periodic image is 10A. The apex of the AFM tip is modeled by a tungsten

tetrahedron cluster, and the cluster is placed in the vacuum region with an apex

directed down to the silicon surface.

The tip is placed directly above a lower dimer atom, and the calculations are

performed in two sequences of tip-surface distances, the capture sequence (5.2A, 4.3A,

4.2A, 3.95), 3.7A, and 3.2A) and the pull-up sequence (3.2A, 4.35A, 4.45A, 5.2A).

For each calculation with a fixed tip-surface distance, the tungsten atom at the apex

of the tip and top three layers of silicon atoms are allowed to relax according to the

Hellman-Feynman forces so that the three tip atoms and the bottom layer silicon

atoms play the role of the macroscopic tip and the bulk silicon crystal. The atoms

are relaxed until the Hellman-Feynman forces are smaller than 0.1eV/A. The force

on the AFM tip is then calculated from the Hellman-Feynman forces on the three

fixed tip atoms.



7.3 Tip-induced Plastic Deformation of Surface

The results of the calculations are summarized in Figure 7-1. Top two panels show

charge density cross sections of the initial and the final states of the capture sequence.

At the tip-surface distance of 3.2A, the dimer is captured by the tip, and the bonding

charge is visible between the tip atom and the dimer atoms. Bottom two panels

show an intermediate and the final state of the pull-up sequence. By these two

sequences of tip movement the dimer is flipped from the down-configuration to the

up-configuration.

The relaxation of the tip-surface system shows that the intrinsic dimer structure on

the Si(100) surface determines the response of the surface atoms to the force applied

by the AFM tip. The double potential well structure of the dimer configuration

makes it possible for a dimer to stay in either local minimum energy configuration,

and leads to a change of the surface structure under the influence of the AFM tip.

In the absence of the thermal flipping of the dimer at a low temperature, the surface

dimer will stay in the deformed configuration even after the AFM tip moves away from

the dimer. Therefore, this mechanism leads to a microscopic scale plastic deformation

of the Si(100) surface in the AFM.

Generally, this type of plastic deformation of the surface is expected to happen for

any reconstructed surfaces with the reconstruction unit which has multiple minimum

energy configurations. An AFM tip can induce a transition between local minimum

energy configurations by lowering the potential barrier and stabilizing one configura-

tion as shown in this work.

Furthermore, we have seen an indication that a bond is formed between the tip

apex atom and a surface dimer atom, and this bonding is responsible to the change

of dimer geometry between local minimum energy configurations. The tip-surface

bonding length is about 2.35A and changes only 0.05A as the tip moves over the

range of 3A. This stability of the tip-surface bond is combined with the surface dimer

structure to produce a complicated relaxation of the tip-surface system. Therefore,

most generally the microscopic process of a low temperature AFM experiment involves
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h = 5.2

h = 3.2

h = 3.95

h = 5.2

Figure 7-1: This plot shows a sequence of charge density cross sections in which the
tip is lower to capture the dimer, and pull it up. The top panel and the bottom panel
show the same tip-surface distance with different dimer configurations.
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a complicated relaxation of the tip and surface system which depends on the intrinsic

surface structures and the tip-surface interactions.

7.4 Application to Memory Device

This section describes an application of the microplastic deformation to the invention

of a memory device which can store and retrieve data at ultra high density. The

basic units of the device are a metallic scanning tip and the (100) surface of the

diamond structure (silicon, germanium, or carbon).1 The scanning tip operates as an

atomic force microscope (AFM) to store the data on the (100) surface by modifying

the configuration of the asymmetric dimers existing on the surface, and as a scanning

tunneling microscope (STM) to retrieve the data from the (100) surface by reading the

dimer configurations. This device can store one bit of information in a surface dimer so

that the storage density is one bit per two surface atoms. For silicon this corresponds

to 1 bit per 30A2 or 420 Gbytes per mm2 . Therefore, this invention represents several

orders of magnitude increase of the storage density over conventional memory devices

and closely approaches the ultimate limit of possible memory devices.

7.4.1 Introduction

A storage device has two basic units: a writing and reading device and a storage

medium. The storage density of a storage device is determined by the size of the

basic storage unit which can store one bit of data. This size is determined by the

resolution of the writing and reading device which modifies the storage medium and

retrieves the stored data.

One can easily imagine that the ultimate limit of a surface storage density is one

bit of data per surface atom, and this limit provides an enormously higher storage

density than any conventional storage devices. The realization of this limit requires

both a writing and reading device with atomic resolution and a storage medium with

'As we discussed in section 7.3, any surface with multiple minimum energy configuration can be
used as a storage medium.
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a storage unit of atomic scale.

In this section, we describe a storage device which closely approaches this ulti-

mate limit. This device uses the atomically sharp scanning tip of the atomic force

microscope and the scanning tunneling microscope as the writing and reading device,

and the (100) surface of the diamond structure (silicon, germanium, or carbon) as
the storage medium with the surface dimer as the storage unit.

7.4.2 Basic Principle of Memory Storage at an Atomic Scale

The basic principles of the ultra high density storage device is the utilization of the

interactions between the atomically sharp scanning tip and the surface atoms on the

(100) surface. In the strong interaction limit, the tip can modify the configuration of

surface dimers as a writing device. On the other hand, in the weak interaction limit,

the tip is used as a reading device by a standard STM image scanning mode.

The storage of data on the (100) surface is realized by changing the configuration

of a surface dimer between two energetically equivalent asymmetric dimer configura-

tions. One can assign 0 and 1 for each dimer configuration. This is shown schemati-

cally in Figure 7-2. The microscopic process of changing the dimer configuration from

one to the other is shown in Figure 7-1. The results here are for silicon and show four

charge density cross sections of the tip-dimer system as the tip captures the dimer

and pull it up.

7.4.3 Practical Considerations of Device Operation

The operation of the storage device requires a low temperature (e.g. for silicon 24K)

and a high vacuum chamber. The low temperature condition is necessary to avoid

the thermal fluctuations of the dimer configurations. The high vacuum condition is

necessary to keep the (100) surface clean from contamination.

Under the above operation condition, the storage process and the retrieval process

require the scanning rate of one scan per dimer row. In both processes, the scanning

tip needs to be constrained to scan along the direction of dimer rows as illustrated in
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(a)

(b)

Figure 7-2: The top panel (a) shows two different dimer configurations of equivalent
energy. The large open circles represent the upper dimer atoms, and the smaller open
circles represent the lower dimer atoms. The dimers are represented as the connected
unit of large and small circles. When one assigns 0 and 1 for each dimer configuration
in (a), the bottom panel (b) shows a sequence of dimers corresponding to 0010110.
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Figure 7-3: This plot illustrates the operation of the scanning tip above the (100)
surface. The arrow indicates the direction of scanning along the dimer row.

Figure 7-3. The storage process requires a more complicated motion of the tip along

the scanning direction. In order to save a sequence of data bits on a dimer row, the

tip should move in such a way that it changes the configurations of the dimers in

the row. This change of the configuration is achieved by the following sequence of

motions: place the tip above the lower dimer atom, push the tip down and up until

the dimer flips, and proceed to the next dimer. For the given sequence of data bits,

the motion of the tip can be programmed and performed very fast.

On the other hand, the retrieval process is rather simple. The tip can scan over

the dimer row along a straight line, and the measurement of the tunneling current

simply determines the configurations of the dimers.

This device may also be able to operate at a higher temperature (possibly even

room temperature) by preparing the (100) surface with surface defects which pin the

nearby dimer configurations.
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7.5 Concluding Remarks

We have studied the microscopic details of the AFM process on the Si(100) surface

and discovered the complicated nature of the tip-surface interaction which leads to

the tip-surface bond formation and the plastic deformation of the surface dimer. All

these microscopic behaviors of the tip-surface system show that the simplifying as-

sumptions of the conventional AFM theories are generally not valid. The tip induced

modifications of the surface structure are also relevant to the surface defect structures,

the surface adatom clusters, and the surface steps. The study of these systems will

provide an understanding of the microscopic process of the imaging of complicated

surface structures in the AFM. Finally, we note that the plastic deformation of the

surface dimer can be utilized for the construction of an atomic scale data storage

device. The storage density of this device will be much higher than any conventional

devices.
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Chapter 8

Ab initio Dynamics Study of

Si(100) Surface

Ab initio dynamics study of the Si(100) surface at finite temperature shows the dy-

namical changes of the surface structures with microscopic details. The configuration

of surface dimers changes from the ground state geometry as the surface system

evolves dynamically at 900 K. The dimer bond length oscillates at f = 1013sec-1 ,

and the dimer flipping time scale is about 100 fsec. The surface layer expands into

the vacuum by 0.1 A due to the thermal expansion. The dynamical change of the sur-

face electronic structure shows the dynamic changes of the dimer bond strength and

the Kohn-Sham eigenvalues which lead to the dynamical change of surface chemical

reactivity.

8.1 Introduction

Most ab initio studies of surface structures are performed to investigate the ground

state structure of a surface such as the surface reconstruction and the surface elec-

tronic structure. For a surface with a simple structure, the ground state structure is

a good approximation to the surface structure at finite temperature so that one can

directly compare the theoretical calculations with the experimental results obtained

at finite temperature. However, for certain surfaces the surface structure may change
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in a complicated way so that the ground state structure is not a good approximation

to the surface structure at finite temperature.

To investigate this issue, we choose to perform an ab initio dynamics simulation of

the Si(100) surface. The Si(100) surface has a simple unit of surface reconstruction,

i.e., surface dimer, but the inter-dimer interaction leads to a larger reconstruction

unit of c(4 x 2) which contains four surface dimers. A surface dimer can be in two

equivalent asymmetric configurations, and the barrier for flipping a dimer from one

configuration to another is about 0.1 eV.

One can see that the thermal fluctuations will lead to a complicated behavior of

the surface as the dimers flip up and down at the same time interacting with each

another. In addition to the geometrical change of the surface atoms, the electronic

structure of the surface is also changing dynamically. In the following sections, I

discuss the results of the dynamical calculations for the Si(100) surface at 900 K.

8.2 Calculations

The total energy pseudopotential density functional calculations are performed with

the ab initio molecular-dynamics scheme implemented on Thinking Machines CM-2.

Within the local density approximation (LDA), the total energy is calculated using the

Perdew-Zunger parameterized exchange-correlation energy [57] and the Kleinmann-

Bylander separable form for the ionic pseudopotentials with s and p nonlocal compo-

nents and d local component [58, 59].

The supercell for the Si(100) surface calculation is chosen to include 256 silicon

atoms with an inversion-symmetric geometry. This supercell contains a eight layer

slab with four c(4 x 2) reconstruction units on each surface1 and a vacuum region of

10 A. The supercell size is 30.7Ax 15.4Ax 19.5A, and the corresponding Brillouin

zone is sampled with the r point. The calculation uses a 7.5 Ry cutoff for the plane

wave basis expansion corresponding to 22,528 basis functions, and the fast Fourier

transform box size is 128 x 64 x 64.

1We chose this supercell so that each surface contains 16 asymmetric dimers.
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Initially, the geometry of the surface atoms are optimized by moving the atoms

according to the Hellmann-Feynman forces until they become smaller than 0.1 eV

A- 1 with two inner-most layer atoms fixed at bulk positions. This configuration

corresponds to the zero potential energy configuration of ionic dynamics at zero tem-

perature. To heat up the system to higher temperature, initial random velocity distri-

bution of 900 K is assigned, and the dynamical trajectories of the ions are calculated

with Verlet algorithm.

Since the ion system is not in a typical equilibrium configuration, the initial kinetic

energy of ions flows into potential energy, and this flow of energy is compensated by

rescaling the kinetic energy to 900 K until the system reaches a balance between the

kinetic energy and the potential energy. After 20 iterations of dynamic evolution

with a timestep of 3 fsec, the ion system reaches a balance of the kinetic energy and

the potential energy. Subsequently, the system dynamics is performed without the

velocity rescaling. The simulation has been performed for 80 fsec, and in the next

sections I discuss the results from this preliminary calculation.

8.3 Dynamical Change of Surface Geometry

To study the dynamical change of surface geometry, we selected three components of

each dimer's degrees of freedom to be observed during a dynamical evolution of the

surface: the dimer bond length, the dimer angle, and the dimer center of mass (CM)

height. During the simulation time of 80 fsec, sixteen surface dimers already show

quite complicated microscopic processes of the surface dynamics. Each dimer shows

different degree of dynamical change of the dimer configuration from from the other

dimers, but as a whole the three components of a dimer geometry shows oscillating

behaviors.

The bond length typically changes about 10%, and Figure 8-1 shows an oscillation

of the bond length for a surface dimer. The dimer angle also changes from the ground

state value, and Figure 8-2 shows a dimer which is in the process of flipping from one

asymmetric configuration to another asymmetric configuration.
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Figure 8-1: This plot shows the dynamical change of the bond length of a surface
dimer for 25 timesteps (At = 3.3fsec). The period of the oscillation is about 100
fsec.
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Figure 8-2: This plot shows the
face dimer for 25 timesteps (At
corresponds to about 100 fsec.

dynamical change of the buckling angle of a sur-
= 3.3fsec). The time scale of the dimer flipping
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Figure 8-3: This plot shows the dynamical change of the center of mass height of a
surface dimer for 25 timesteps (At = 3.3fsec). The period of the oscillation corre-
sponds about 100 fsec, and the oscillation amplitude is asymmetric with respect to
the ground state value.

The dimer CM height shows an asymmetric oscillation around the the ground

state value as illustrated for a surface dimer in Figure 8-3. The average dimer CM

height over 16 surface dimers increases by 0.1A, and this increase corresponds to a

thermal expansion of the surface layer into the vacuum at finite temperature.

8.4 Dnamical Change of Surface Electronic Struc-

ture

As the surface atoms move as a function of time, the surface electronic structure

changes correspondingly. This change is illustrated with the valence charge density

cross section and the Kohn-sham eigenvalues as shown in Figure 8-4 and Figure 8-5.

Figure 8-4 shows a sequence of frames of the charge density cross section con-

taining two surface dimers. The first frame clearly shows the covalent bonds of two
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Figure 8-4: This plot shows a sequence of frames of the charge density cross section
containing two surface dimers in gray scale. Small black dots within gray clouds are
the core regions of the of the surface dimer atoms, and the white dots represent the
covalent bonding charge density. Both dimers are in the process of flipping.
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Figure 8-5: This plot shows the dynamical change of the Kohn-Sham eigenvalues of
surface electronic states. The continuous lines are the occupied states, and the broken
lines are the empty states.

asymmetric surface dimers, and the bonding charge distribution changes as the sur-

face evolves dynamically. The left dimer shows that the bonding becomes weak as

the dimer bond length increases, and the right dimer shows the weakening and the

subsequent strengthening of the bonding. One can also see that both dimers are in

the process of flipping as noted in Figure 8-2.

Figure 8-5 shows the dynamical change of the Kohn-Sham eigenvalues of surface

electronic states. Three continuous lines are the occupied surface states, and three

broken lines are the empty surface states. The change of eigenvalues shows that there

are several different time scales, and the change can be as large as a few tenth of an eV.

This change indicates that the surface chemical reactivity and the electronic transition

properties (optical transitions and photoemission spectra) changes dynamically.
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8.5 Concluding Remarks

Since the results shown in this chapter is only preliminary, further calculations will

show more details of the microscopic dynamical changes of the surface structure.

From the calculations with enough number of timesteps, we can calculate the surface

phonon spectrum and the dynamical change of the surface electronic band structure,

the surface reactivity, and the STM image.
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Chapter 9

Vicinal Si(100) Surface under

External Strain

The phase diagram of a vicinal Si(100) surface is calculated as a function of misori-

entation angle, temperature, and applied external strain. This work is generalizing

the finite temperature phase diagram of vicinal Si(100) surfaces by introducing an

applied external strain as an additional parameter. It is shown that a change of the

applied external strain can drive the phase transition between the single layer step

surface phase and the double layer step surface phase. The order parameter of the

surface phase transition is also calculated to make it possible to measure the phase

transition experimentally.

9.1 Introduction

When a Si crystal is cut by a plane slightly misoriented toward (011) direction from the

(100) surface, the crystal surface accommodates the misorientation by generating low

energy steps on the Si(100) surface. Consequently, a vicinal Si(100) surface consists

of terraces separated by steps. There are two different single layer steps (SA and

SB) and two different double layer steps (DA and DB) depending on the orientations

of the dimers on the terraces separated by the step (Figure 9-1). The calculation

of the energies of the steps [64] shows that the DB double layer step has the lowest
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(a) SA
/ SB

(b)
DB

Figure 9-1: Schematic representation of the (a) single-layer and (b) double-layer
structures of a vicinal Si(100) surface taken from [65].

energy so that the DB double layer step surface is the ground state structure at zero

temperature.

However, when one includes the effect of the strain relaxation of the alternating

(2 x 1) and (1 x 2) terraces of a single layer step surface, the single layer step surface

becomes the lowest energy surface for a small misorientation angle (0 < Oc = 0.05)

at zero temperature [65, 66] since this strain relaxation does not exist for double

layer step surfaces. Furthermore, at a finite temperature steps are not straight but

fluctuating, and the fluctuations lower the step free energies. The SB step has the

lowest energy of the kink generation, and consequently shows the largest fluctuation.

The large fluctuation of the SB step lowers the surface free energy of the single

layer step surface relative to the DB double layer step surface so that the critical

angle 08 increases as the temperature increases [66]. Therefore, the temperature vs

misorientation angle phase diagram has two phase, DB double layer step surface and

single layer step surface, divided by a first order phase transition line [66].

116



This temperature vs misorientation angle phase diagram of the vicinal Si(100)

surface is studied both theoretically and experimentally [67, 68, 69, 70, 71]. These

studies are focused on the nature of phase transition [68, 69, 70, 71] and the shape of

the phase transition line [67]. A study shows that the phase transition may be much

more complicated than a simple first order phase transition [69, 70].

However, one needs to consider the following facts about the temperature vs mis-

orientation angle phase diagram. The approximation of the continuum elastic theory

is used in the calculation of the strain relaxation. This approximation assumes that

the distance between two steps on both sides of a terrace is much larger than the

lattice constant. At a large misorientation angle where the average terrace width is

small or at a high temperature where a large fluctuation of steps generates regions

with small terrace width, this approximation is not valid. This approximation also

affects the nature of the phase diagram as a whole because the approximation is valid

only for small misorientation angles at low temperatures. Therefore, to determine

the exact nature of the phase transition one needs to calculate the strain relaxation

rigorously.

On the other hand, the experimental determination of the phase diagram presents

the following problems. One is the problem of using different samples for different

misorientation angles which makes it difficult to determine the 0 dependence of the

phase transition. Another is the problem of the kinetic constraint at a low temper-

ature to adjust the surface configuration. As the temperature decreases, the surface

might have the same structure below a certain temperature during the finite time of

the experiment.

Finally, one cannot exclude the possibility of the roughening transition at a high

temperature. The rough profile of the fluctuating steps can lead to the fluctuation of

the terrace width. If this fluctuation of the terrace width diverges, the surface becomes

rough and one cannot use the equations based on the constant average terrace width.

Therefore, when one considers the problems associated with the temperature vs

misorientation angle phase diagram, the most significant and experimentally estab-

lished property of the phase diagram is the existence of two different surface phases:
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DB double layer step surface for a large misorientation angle at a low temperature;

single layer step surface for a small misorientation angle at a high temperature.

In this paper, we calculate a more general phase diagram of the three dimensional

parameter space: the misorientation angle 0, the temperature T, and the applied

external strain E. We calculate the free energies following the calculation of ref. 3,

and we focus on the diverse structure of the phase diagram rather than on the exact

nature of the phase transition. We discuss the possible phases of the surface and

several two dimensional cross sections of the phase diagram.

9.2 Calculations

The Si(100) surface reconstructs by forming a regular array of surface dimers. A

dimer is formed by combining two surface atoms so that it has a periodicity of 2 x 1

or 1 x 2 relative to the periodicity of the bulk Si depending on the plane where the

crystal is cut. Therefore, the array of dimers can have two possible directions, and

different directions are related by a 90 degree rotation. This direction defines two

possible domains of a reconstructed surface.

One can cut the crystal along the plane which is slightly misoriented toward the

[011] direction by an angle 0. For a small misorientation angle (less than a few

degrees) the surface consists of domains of the Si(100) surface connected by single

layer steps or double layer steps (Figure 9-1).

There are two single layer steps, SA and SB, and two double layer steps, DA

and DB depending on the orientations of the two domains relative to the direction

of the step between them. If one thinks only about the formation energies of these

steps [64], then the surface with DB double layer steps is the lowest energy surface.

However, one should consider two more things: the strain relaxation energy and

the effect of temperature. When these effects are combined with the step formation

energies, the single layer step surface can be the lowest energy surface depending on

the misorientation angle and the temperature [66].

The phase diagram of the vicinal Si(100) surface can be generalized by introducing
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an additional parameter such as an applied external strain. Now one can obtain

different phases of the surface as a function of three parameters: the misorientation

angle 0, the temperature T, and the applied external strain E.

The free energy of a surface has three terms: the step energy, the renormalization

of the step energy due to the roughening of the step at a finite temperature, and the

strain energy. First, ASA and ASB are the energies per unit length for SA step and

SB step. As a result, the step energy per unit area for a single step surface is:

ASA + SBEtep(L)= 2L (9.1)

where L is related to 0 by tan(8) = 1.36A1/L (1.36A is the height of a single layer

step). ADA and ADB are the energies per unit length for DA step and DB step, and the

step energy per unit area for a double step surface is ADA/2L for a DA step surface

and ADB/2L for a DB step surface.

Second, the effect of thermal fluctuation of steps renormalizes the step energies.

At a finite temperature a step is not straight but becomes rough by generating a lot of

kinks. The degree of roughness depends on the energy needed to generate a kink for

a given step. The SB step has the smallest kink formation energy, and so the SB step

has the roughest profile. The roughening of the SB step is calculated by using the

Hamiltonian of a one dimensional SOS (Solid On Solid) model [66]. The roughening

of other steps are not included because of their small effect on the step energies. The

free energy per unit length of the rough SB step is:

ASB - (kBT)-'lnZH, (9.2)

where ZH is the partition function of the one dimensional SOS model.

Third, the strain energy consists of two terms: the strain relaxation energy and

the strain energy due to an applied external strain. For a single layer step surface

the surface energy is lowered through the strain relaxation at the single layer steps

(both SA step and SB step). The reconstructed surface has an anisotropic surface

stress tensor: the stress tensor has a positive component oll along the dimer direction
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and a negative component 0r4 perpendicular to the dimer direction. For a single layer

step surface two phases with perpendicular dimer directions alternate at each single

layer step. This leads to the strain relaxation at the single layer steps. The strain

relaxation energy per unit area is [65]:

L irp
Estrain(L) - L -1 'Aln( - c os - ), (9.3)

7ra 2

where A, is determined by surface stress anisotropy, and p is the fraction of increased

domain due to an applied external strain (i.e. the alternating domains have unequal

widths (1 + p)L and (1 - p)L, respectively). On the other hand there is no strain

relaxation for a double layer step surface.

The strain energy per unit area due to an applied external strain E is 1/2Ep(all -oi)

for a single layer step surface, ell for a DA double layer surface, and ca6 for a DB

double layer surface.

Therefore, the free energies per unit area of three phases (single layer step, DA

double layer step, and DB double layer step) of a surface are the following:

ASA + ASB- (kBT)-1lnZH -L rp
FsL(LT,E) = - -1 , ln(--cos--)2L 7ra 2

+1/2Ep(all - o1 ) (9.4)

FDA(L, T, e) ADA +  ll  (9.5)
2L

ADB
FDB(L,T,C) 2L + CT1 . (9.6)

Here the fraction p in the FSL is determined by minimizing the strain energy with

fixed L [65].

9.3 Phase Diagram and Order Parameter

The phase diagram in the three dimensional parameter space (0, T, and c) is deter-

mined in the following way: the surface free energies of three phases are calculated

for a given set of 0, T, and E; and the phase with the lowest free energy is chosen to
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Figure 9-2: Phase diagram on the plane of the external strain and the vicinal angle.
Three phases are indicated as DB, Mixed, and SL: the DB double layer step surface,
the mixed layer surface phases, and the single layer surface.

be the phase of the given parameter set. As a result, the three dimensional paramter

space is divided into three different phase regions: the single layer step surface phase,

the DA double layer step surface phase, and the DB double layer step surface phase.

Figure 9-2 shows the phase diagram in the plane of the vicinal angle and the

external strain. The three phases are separated by two first order phase transition

surfaces. The intersection lines between T = 0 plane and the phase transition surfaces

are the lines of critical angle, 8c(e) and 8c,(E).

The temperature dependence of the surface phase is very small for the temperature

change from 0 K to 500 K, and at about 500 K the phase difference vanishes. This

result agrees with the 9-T phase diagram of Pehlke and Tersoff [66], and consequently

Figure 9-2 describes most of the distinct phases at T < 500K.

The order parameter of the surface phase is defined as the fraction of the increased

domain, p. Figure 9-3 shows the order parameter as a function of the external strain

at four vicinal angles (0.0010, 0.10, 0.30, and 0.50). For a flat surface the external

strain induces a discontinuous change of the order parameter, but as the vicinal angle

increases the order parameter depends less sensitively to the external strain.
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Figure 9-3: Plot of order parameter as a function of the external strain at vicinal
angles (a) 0.0010, (b) 0.10, (c) 0.30, and (d) 0.50.

Figure 9-4 shows the order parameter as a function of the vicinal angle at fixed

external strains. The general trend is that the order parameter increases as the vicinal

angle increases. However, at small vicinal angles the order parameter changes rapidly

with the external strain.

Since the order parameter measures the relative fraction of two types surface

terraces, it can be measured directly in a low energy electron diffraction (LEED)

experiment.
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Chapter 10

Ab initio Study of Si(113) Surface

Ab initio total energy calculations of Si(113) help resolve a long standing problem

related to the unusual stability of this high index surface. It is found that the surface

energy of the (3 x 1) reconstruction is considerably lower than both the surface energy

of the (3 x 2) reconstruction and the minimum stabilization energy. These results are

consistent with very recent high resolution STM and X-ray scattering measurements

and predict that the observed stability of (3 x 1) is intrinsic.

10.1 Introduction

The high index crystal surfaces are generally unstable toward formation of low index

facets. However, several stable high index surfaces are observed in many experiments,

and specifically the Si(113) surface is observed to be particularly stable [72]- [76]. From

the direct observation of the equilibrium shape of the silicon crystal, large facets of

the Si(113) surface are clearly identified [72, 73], and this surprising stability has led

to several experimental and theoretical attempts to understand the nature of this

surface [74]-[82].
Early LEED measurements revealed that both (3 x 1) and (3 x 2) reconstructions

could be observed on Si(113). More recent STM measurements also observe some

domains with (3 x 1) and (3 x 2) symmetry on this surface. However, theoretical cal-

culations using tight-binding methods on the (3 x 1) reconstruction [77] and ab initio
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methods on the (3 x 2) reconstruction [80] indicate that both reconstructions have

surprisingly large surface energies, in direct contradiction to the observed stability.

To explain this problem, Bird et al. argued reasonably that the observed stability

may be extrinsically induced by contaminants [80]. Most recent experiments have

been able to isolate the (3 x 1) reconstruction as stable with the (3 x 2) as metastable

[81].

In this work we have performed ab initio calculations on the (3 x 1) surface which

reveal that in contrast to the early tight-binding calculations, it is considerably lower

in energy than the (3 x 2) reconstruction. Moreover, the surface energy of the (3 x 1)

reconstruction is found to be lower than the minimum stabilization surface energy!

Furthermore, calculated surface energy ratios of Si(113) and Si(100) to Si(111) are

found to be in quantitative agreement with experimental measurements. Thus, these

theoretical results are consistent with the prediction that the (3 x 1) reconstruction

is indeed the more stable geometry and that its stability is in fact intrinsic.

10.2 Calculations

The total energy pseudopotential density functional calculations are performed with

the ab initio molecular-dynamics scheme implemented on Thinking Machines CM-2

and CM-5 [83, 84]. Within the local density approximation (LDA), the total energy is

calculated using the Perdew-Zunger parameterized exchange-correlation energy [57]

and the Kleinmann-Bylander separable form for the ionic pseudopotentials [58].

The supercell for the Si(113) surface calculation is chosen to include 140 silicon

atoms with an inversion-symmetric geometry. This supercell contains a six bilayer

slab with two (3 x 1) reconstruction units on each surface and a vacuum region of 12.5

A. The supercell size is 12.74Ax 11.52A x 30.00k, and the corresponding Brillouin

zone is sampled with the F point. The calculation uses a 10 Ry cutoff for the plane

wave basis expansion corresponding to 15,360 basis functions, and the fast Fourier

transform box size is 64 x 64 x 128.

The ionic positions are initially assigned to maintain the bonding configuration of
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Figure 10-1: Ball and stick model representation of the relaxed geometry of the
Si(113)-(3 x 1) surface. This plot shows only three surface layer atoms listed in Table
10.1. The left panel shows the side view of the surface, and the right panel shows the
top view of he surface.

the (3 x 1) reconstructed Si(113) surface (Figure 10-1), and a geometric optimization

is performed until the Hellmann-Feynman forces on the ions become smaller than 0.1

eV A-1. During this optimization, the innermost two layers are fixed in the bulk

position. Figure 10-1 shows the ball and stick model representation of the optimized

relaxed surface ion locations, and the Table 10.1 lists the ionic positions associated

with the top three layers'.

The surface energy is obtained from the difference between the energy of the

surface system and the bulk system. For this purpose, the bulk silicon calculation is

performed with an equivalent k-point sampling at 10 Ry cutoff energy. The calculated

'During the geometric optimization of the Si(113)-(3 x 1) reconstruction, no signature of a spon-
taneous change of the surface structure to a (3 x 2) reconstruction was found.
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Table 10.1: This table lists the optimized ion locations as (X,Y,Z). X, Y, and Z are
the fractions along the supercell vectors, R 1, R2 , and R3 where 1l = V1(-- X l),
R 2 = 12y, and R 3 = 13. Here, 11 = 12.74A, 12 = 11.52A, and 13 = 30.00A are the
supercell sizes, and ^, y, and Z are unit vectors along the crystal directions (110),
(110), and (001) respectively. Because of the periodic boundary condition, an addition
of integers to

First-layer
atoms

Second-layer
atoms

Third-layer
atoms

I

127

(X,Y,Z)
Atom

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

represent
X

-0.248
-0.243
-0.081
-0.069
-0.178
0.253
0.257
0.322
0.422
0.432
-0.427
-0.423
-0.386
-0.057
-0.095
-0.095
0.113
0.073
0.075
0.404
0.406
0.440
-0.413
-0.417
-0.417
-0.237
-0.254
-0.255
0.082
0.083
0.084
0.245
0.246
0.261

the same ion in different supercell.
Y Z

-0.266 0.320
-0.067 0.319
-0.332 0.323
-0.000 0.329
0.331 0.292
0.234 0.319
0.432 0.319

-0.167 0.292
0.168 0.325
0.498 0.330

-0.329 0.264
-0.002 0.265
0.334 0.267
-0.165 0.286
0.163 0.280
0.499 0.278
-0.166 0.267
0.171 0.264
0.496 0.264
-0.337 0.280
0.000 0.279
0.335 0.285
-0.167 0.219
0.164 0.219
0.503 0.220
-0.165 0.208
0.164 0.202
0.507 0.201
-0.335 0.220
0.002 0.220
0.333 0.218
-0.336 0.202
0.005 0.202
0.335 0.207



Table 10.2: This table compares the calculated surface energies of the Si(111)-(7 x 7),
the Si(100)-c(4 x 2), the Si(113)-(3 x 1), and the Si(113)-(3 x 2) surfaces. The unit
is eV A-2'.

Surface ab initio calculation Keating correction surface energy
Si(11)-(7 x 7) 0.092 -0.003 0.089
Si(100)-c(4 x 2) 0.096 -0.001 0.095
Si(113)-(3 x 1) 0.094 0.000 0.094

Si(113)-(3 x 2) [80] 0.138 0.138

(3 x 1) Si(113) surface energy is found to be 0.094 eV A-2, and this energy is much

lower than the (3 x 2) reconstructed surface energy of 0.138 eV A- 2 obtained using

very similar techniques by Bird et al. [80].

To make contact with experimental measurements of the ratios of the surface

energies of Si(113) and Si(100) to Si(111), we also performed ab initio total energy

calculations for Si(100) using the following parameters. The supercell for the Si(100)

surface contains 256 silicon atoms and its dimensions are 30.7Ax 15.4Ax 19.51. The

silicon atoms form eight layers with inversion-symmetry, and the surface is recon-

structed with c(4 x 2) symmetry. The calculated surface energy is 0.096 eV A-2 for

the Si(100) surface. The Si(111) surface energy is taken to be 0.092 eV A-2. This

result is from the (7 x 7) reconstructed surface calculations of Brommer et al. [85]

which use the same code.

To check the importance of including the relaxations of many layers of atoms below

each surface and thereby improve the accuracy of the calculated surface energies, we

performed a Keating correction for each system. The systems corresponding to the

Si(113), Si(111), and Si(100) surfaces contain respectively 17, 12, and 16 additional

bulk layers below the surface layers determined from the ab initio calculations. The

resulting surface energy corrections were quite small as shown in Table 10.2.
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Table 10.3: This table compares the calculated surface energy ratios with the exper-
imentally determined ratios [73].

7113/7111 710oo0/7I111
Experiment 1.12 1.11
Calculation 1.06 1.07

10.3 Stability of the Si(113) Surface

The criterion for the stability of the Si(113) surface against the Si(100) and the Si(111)

facets is determined by a simple geometric consideration as

7c = 0.522y111 + 0.60371oo. (10.1)

Using the values of the Si(100) and Si(111) surface energies of Table 10.2, we find

that yc = 0.104 eV A- 2 . Consequently, the Si(113) facet is 20 meV A-2 more stable

than the combination of Si(100) and Si(111) facets, and this will lead to a spontaneous

formation of the Si(113) facet at the expense of Si(100) and Si(111) facets, as observed

in many experiments. This result, therefore, finally accounts for the observed stability

of the Si(113) facet and predicts that it is a purely intrinsic effect.

10.4 Equilibrium Shape Experiment

Recently, the ratios of the surface energies among many silicon surfaces have been

determined [73] from equilibrium crystal shape experiment with: 7113 = 1.1237111 and

71oo = 1.117111. These experiments reveal two salient features of the surface energies.

First that 7113 and rloo are nearly equal to each other, and second that they are about

10% larger than 7111-

Our calculated ratios are 7113 = 1.067111 and 710oo = 1.077111 as summarized in

Table 10.3 and in good quantitative agreement with the experimental measurements.
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Chapter 11

Future Developments

The direction of my future research plan is closely related to the future developments

of the computational science both in software and harware. As the more efficient

algorithms and the faster supercomputers are developed, one can study more compli-

cated and larger systems using the first principles calculations. My current research

interests are both in the development of new techniques and the applications to larger

systems. In addition to that, I plan to study the optoelectric properties of condensed

matter systems.

11.1 New Techniques

I am currently testing a new projection technique for the molecular dynamics simula-

tion. This technique is developed to overcome the difficulties of the force convergence

in ab initio calculations1 . I am also searching for a possibility of including the full

two electron correlation in the density functional theory through the two electron

orbitals2 . My long term perspective is to implement the Dirac equation in the form

of spin density functional theory to investigate heavy elements.

'In an ab initio calculation, the error in the total electronic energy is second order in the electronic
wave function error, but the error in the forces on ions is first order. This error in force leads to a
loss or gain of the total energy of the ionic system.

2This idea is similar to the spin density functional theory in which the electronic correlation
leading to the magnetic instability of the electron system is included from the beginning.
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11.2 Applications

The current computational capacity is increasing very fast and already powerful

enough for large scale first principles calculations. To take advantage of this com-

putational power, we started to study the Si(111)-(7 x 7) surface which has a large

surface reconstruction unit with 47 unreconstructed units. This investigation focuses

on the hydrogen adsorption on the surface, the self diffusion of silicon adatoms, the

dynamical change of surface structures at finite temperature, and the adatom trans-

fer between the tip and the surface. On the other hand, we started a preliminary

research for a first principles study of biochemical systems. The ultimate goal of this

research is to study the biochemical processes, and understand them from the first

principles.

Another direction of applications is to understand more details of the microscopic

processes of physical systems without requiring huge computational resources. One

of them is to study the chemical shifts of the photoelectrons due to the relaxation of

the surface electronic structure in the presence of a core hole. Another example is to

calculate the electronic structures of quantum dots and quantum wires, and study the

change of the electronic properties such as the dielectric constant due to the quantum

confinement effects. One more example is to study the quantum chaotic behavior of

the electronic structure using the ab initio dynamics simulations.

I am also planning to continue the investigation of the tip-surface system for the

STM, the AFM, and the friction force microscopy (FFM).
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Appendix A

Extended Hard-Sphere Potential

System

In this appendix, we will give a rigorous proof that the ESM does not generate

a canonical ensemble for a hard sphere (HS) potential system. We will also show

that the temperature fluctuations do not agree with the canonical ensemble values

even though the average temperature of the HS system agrees very well with T,,t

of the ESM. This behavior of the average temperature comes from the fact that the

instantaneous temperature of the HS system is dynamically controlled by the attached

thermostat.

A dynamical system is not ergodic if there exists an additional conserved quantity

to the total energy, the total momentum, and the total angular momentum. So we

will prove the non-ergodicity by finding an additional conserved variable.

The ES Hamiltonian of a HS potential system is the following:

N 2 p

HEs(ri, Pi,s,P,) = P + OHs({ri)) + + gkBTeln(s).
i= 2ms2 2Q

From this Hamiltonian one obtains the following equations of motion:

dri Pi
dt ms 2

dpi
- -ViOHS.dt
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By taking the product of these two equations and summing over i, one is led to

d d
dt = -mi2 S2 Hs = 0.

Therefore, the sum of the square of momenta is conserved (note that this not the

kinetic energy of the HS system) and the extended system is not ergodic.

To investigate the consequences of this we define Ko as:

N 2
Ko= E=

i=1

By using the two conserved quantities, qas and Ko, the ES Hamiltonian can be

transformed to a one dimensional potential well problem for s as follows:

E = K P 2

E + + gkBs T,,tln(s)
s 2Q

The first and third terms of this equation can be combined into an effective potential

so that

P2
E = + Vef (s) -2Q

The effective potential, Veff, is shown in Figure A-1. Therefore, s and the kinetic

energy of the HS system, Ko/sa, will oscillate periodically with time. The fluctuations

of the kinetic energy (or temperature) of the HS system depend on the initial choice

of s for a simulation and consequently will not agree with the canonical ensemble

values in general.

Figure A-2 shows the behavior of the instantaneous temperature of the HS system

as a function of time where Te=t is changed from 1.5 to 1 in the middle of the simula-

tion. This figure shows that the average temperature agrees with T,-t and follows the

change of T,-t immediately even though the system is not ergodic. This behavior of

the temperature arises from the fact that the temperature is dynamically controlled

as shown in equation (2.10) whether the extended system is ergodic or not.
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Figure A-i: The effective potential, V ff(s), for a HS potential system.
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10 20 30 40

time

Figure A-2: The instantaneous temperature of a HS system as a function of simulation
time. Q = 1 and T,,t changes from 1.5 to 1 in the middle of the simulation. The
units are the reduced units of a LJ system.
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