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Abstract Generalizing both mixed-integer linear optimization and convex op-
timization, mixed-integer convex optimization possesses broad modeling power
but has seen relatively few advances in general-purpose solvers in recent years.
In this paper, we intend to provide a broadly accessible introduction to our
recent work in developing algorithms and software for this problem class. Our
approach is based on constructing polyhedral outer approximations of the
convex constraints, resulting in a global solution by solving a finite number of
mixed-integer linear and continuous convex subproblems. The key advance we
present is to strengthen the polyhedral approximations by constructing them
in a higher-dimensional space. In order to automate this extended formulation
we rely on the algebraic modeling technique of disciplined convex programming
(DCP), and for generality and ease of implementation we use conic represen-
tations of the convex constraints. Although our framework requires a manual
translation of existing models into DCP form, after performing this transfor-
mation on the MINLPLIB2 benchmark library we were able to solve a number
of unsolved instances and on many other instances achieve superior perfor-
mance compared with state-of-the-art solvers like Bonmin, SCIP, and Artelys
Knitro.
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1 Introduction

Mixed-integer linear programming (MILP) has established itself as a practical
framework for optimization problems in scheduling, logistics, planning, and
many other areas. Although these problems are in general NP-Hard, more
than 50 years of investment in MILP techniques has resulted in powerful com-
mercial and open-source solvers that can solve MILP problems of practical
interest within reasonable time limits [31]. The aim of this paper is to de-
velop methodologies for solving the more general class of mixed-integer convex
optimization—or mixed-integer convex programming (MICP)—problems by
reducing them to a sequence of MILP problems.

In order to employ MILP, we relax the convex constraints by representing
them as an intersection of a finite number of half-spaces, that is, polyhedral
constraints. Based on this idea, Duran and Grossman [18] and Leyffer [33]
developed the outer approximation (OA) algorithm which solves a sequence
of MILP and continuous, convex subproblems to deliver a globally optimal
solution for MICP problems in a finite number of iterations; we present a
generalized version of this algorithm in Section 2.

Despite the fact that many MICP approaches, including the OA algorithm,
build on MILP approaches, there remains a significant performance gap be-
tween the two problem classes. Bonami, Kilinç, and Linderoth [11] note in a
recent review that continued advances in MILP have translated into “far more
modest” growth in the scale of problems which MICP solvers can solve within
reasonable time limits. Hence, despite numerous potential applications (see
the reviews [11,6]), our perception is that MICP has not entered the main-
stream of optimization techniques, perhaps with the exception of the special
case of mixed-integer second-order cone programming (MISOCP) which we
will discuss at length.

The cases in which the OA algorithm and others based on polyhedral ap-
proximation perform poorly are those in which the convex set of constraints
is poorly approximated by a small number of half-spaces. In Section 3, we re-
view a simple example identified by Hijazi et al. [28] where the OA algorithm
requires 2n iterations to solve an MICP instance with n decision variables. For-
tunately, [28] also propose a solution based on ideas from [41] that can signifi-
cantly improve the quality of a polyhedral approximation by constructing the
approximation in a higher dimensional space. These constructions are known
as extended formulations, which have also been considered by [44,32]. Although
Hijazi et al. demonstrate impressive computational gains by using extended
formulations, implementing these techniques within traditional MICP solvers
requires more structural information than provided by “black-box” oracles
through which these solvers typically interact with nonlinear functions. To
our knowledge, MINOTAUR [34] is the only such solver to automate extended
formulations. In Section 4 we identify the modeling concept of disciplined con-
vex programming (DCP) [23], popularized in the CVX software package [22],
as a practical solution to the problem of automatically generating extended
formulations based on a user’s algebraic representation of an MICP problem.
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Our investigation of DCP leads us in Section 5 to consider conic optimiza-
tion as a representation of convex constraints that compactly encodes all of
the information needed to construct extended formulations. This key obser-
vation links together a number of streams in convex optimization and MICP
research, and in particular explains the increasingly popular role of MISOCP
and how it can be extended to cover “general” MICP. Pulling these pieces to-
gether, in Section 6 we develop the first OA algorithm for mixed-integer conic
optimization problems based on conic duality. In Section 7, we present Pa-
jarito, a new solver for MICP based on the conic OA algorithm and compare
its efficiency with state-of-the-art MICP solvers. We report the solution of a
number of previously unsolved benchmark instances.

This paper is meant to be a self-contained introduction to all of the con-
cepts beyond convex optimization and mixed-integer linear optimization needed
to understand the algorithm implemented in Pajarito. Following broad interest
in our initial work [36], we believe that a primary contribution of this paper is
to compile the state of the art for readers and to tell a more detailed story of
why DCP and conic representations are a natural fit for MICP. For example,
in Section 2 we present the OA algorithm in a straightforward yet generic
fashion not considered by previous authors that encompasses both the tradi-
tional smooth setting and the conic setting. A notable theoretical contribution
beyond [36] is an example in Section 6 of what may happen when the assump-
tions of the OA algorithm fail: an MICP instance for which no polyhedral outer
approximation is sufficient. Our computational results in Section 7 have been
revised with more comparisons to existing state-of-the-art solvers, and as a fi-
nal contribution above [36], our solver Pajarito has now been publicly released
along with the data and scripts required to reproduce our experiments.

2 State of the art: polyhedral outer approximation

We state a generic mixed-integer convex optimization problem as

min
x

cTx

s.t. x ∈ X, (MICONV)
xi ∈ Z, li ≤ xi ≤ ui ∀i ∈ I,

where X is a closed, convex set, and the set I ⊆ {1, 2, . . . , n} indexes the
integer-constrained variables, over which we have explicit finite bounds li and
ui for i ∈ I. We assume that the objective function is linear. This assumption is
without loss of generality because, given a convex, nonlinear objective function
f(x), we may introduce an additional variable t, constrain (t, x) to fall in the
set {(t, x) : f(x) ≤ t}, known as the epigraph of f , and then take t as the linear
objective to minimize [11]. For concreteness, the convex set of constraints X
could be specified as

X = {x ∈ Rn : gj(x) ≤ 0, j ∈ J}, (1)
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for some set J where each gj is a smooth, convex function, although we do
not make this assumption. We refer to the constraints xi ∈ Z ∀ i ∈ I as
integrality constraints. Note that when these integrality constraints are relaxed
(i.e., removed), MICONV becomes a convex optimization problem.

A straightforward approach for finding the global solution of (MICONV)
is branch and bound. Branch and bound is an enumerative algorithm where
lower bounds derived from relaxing the integrality constraints in (MICONV)
are combined with recursively partitioning the space of possible integer so-
lutions. The recursive partition is based on “branches” such as xi ≤ k and
xi ≥ k + 1 for some integer-constrained index i ∈ I and some value k chosen
between the lower bound li and the upper bound ui of xi. In the worst case,
branch and bound requires enumerating all possible assignments of the integer
variables, but in practice it can perform much better by effectively pruning
the search tree. Gupta and Ravindran [25] describe an early implementation
of branch-and-bound for MICP, and Bonami et al. [12] more recently revisit
this approach.

On many problems, however, the branch-and-bound algorithm is not com-
petitive with an alternative family of approaches based on polyhedral outer
approximation. Driven by the availability of effective solvers for linear pro-
gramming (LP) and MILP, it was observed in the early 1990s by Leyffer and
others [33] that it is often more effective to avoid solving convex, nonlinear
relaxations, when possible, in favor of solving polyhedral relaxations using
MILP. This idea has influenced a majority of the solvers recently reviewed
and benchmarked by Bonami et al. [11].

In this section, we will provide a sketch of an outer approximation (OA)
algorithm. We derive the algorithm in a more general way than most authors
that will later be useful in the discussion of mixed-integer conic problems
in Section 6, although for intuition and concreteness of the discussion we il-
lustrate the key points of the algorithm for the case of the smooth, convex
representation (1), which is the traditional setting. We refer readers to [10,18,
2] for a more rigorous treatment of the traditional setting and Section 6 for
more on the conic setting (i.e., when X is an intersection of convex cone and
an affine subspace). We begin by defining polyhedral outer approximations.

Definition 1 A set P is a polyhedral outer approximation of a convex set X
if P is a polyhedron (an intersection of a finite number of closed half-spaces,
i.e., linear inequalities of the form aTi x ≤ bi) and P contains X, i.e., X ⊆ P .

Note that we have not specified the explicit form of the polyhedron. While
the traditional OA algorithm imagines P to be of the form {x ∈ R : Ax ≤ b}
for some A and b, it is useful to not tie ourselves, for now, to a particular
representation of the polyhedra.

Polyhedral outer approximations of convex sets are quite natural in the
sense that every closed convex set can be represented as an intersection of an
infinite number of closed half-spaces [30]. For instance, when X is given in the
functional form (1) and each gj : Rn → R is smooth and finite-valued over Rn
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then the following equivalence holds:

X = {x ∈ Rn : gj(x′) +∇gj(x′)T (x− x′) ≤ 0 ∀x′ ∈ Rn, j ∈ J}, (2)

where ∇gj(x′) is the gradient of gj . When some gj functions are not defined
(or do not take finite values) over all of Rn then these “gradient inequalities”
plus additional linear constraints enforcing the domain of each gj provide
a representation of X as an intersection of halfspaces; see [30] for further
discussion.

Hence, in the most basic case, a polyhedral approximation of X can be
derived by picking a finite number of points S ⊂ Rn and collecting the half-
spaces in (2) for x′ ∈ S instead of for all x′ ∈ Rn. What is perhaps surprising
is that a finite number of half-spaces provides a sufficient representation of X
in order to solve (MICONV) to global optimality, under some assumptions1.
This idea is encompassed by the OA algorithm which we now describe.

Given a polyhedral outer approximation P of the constraint set X, we
define the following mixed-integer linear relaxation of (MICONV)

rP = min
x

cTx

s.t. x ∈ P, (MIOA(P))
xi ∈ Z, li ≤ xi ≤ ui ∀i ∈ I.

Note that MIOA(P) is a relaxation because any x feasible to (MICONV)
must be feasible to MIOA(P). Therefore the optimal value of MIOA(P) pro-
vides a lower bound on the optimal value of (MICONV). This bound may
be NP-Hard to compute, since it requires solving a mixed-integer linear op-
timization problem; nevertheless we may use existing, powerful MILP solvers
for these relaxations.

For notational convenience, we sometimes split the integer-constrained
components and the continuous components of x, respectively, writing x =
(xI , xĪ) where Ī = {1, . . . , n} \ I. Given a solution x∗ = (x∗I , x

∗
Ī
) to MIOA(P),

the OA algorithm proceeds to solve the continuous, convex problem CONV(x∗I)
that results from fixing the integer-constrained variables xI to their values in
x∗I :

vx∗I = min cTx

s.t. x ∈ X, (CONV(x∗I))
xI = x∗I .

If CONV(x∗I) is feasible, let x′ be the optimal solution. Then x′ is a feasible
solution to (MICONV) and provides a corresponding upper bound on the
best possible objective value. If the objective value of this convex subproblem
equals the objective value of MIOA(P) (i.e., cTx′ = cTx∗), then x′ is a globally
optimal solution of (MICONV). If there is a gap, then the OA algorithm must

1 In Lemma 3 we provide an explicit counterexample.
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update the polyhedral outer approximation P and re-solve MIOA(P) with a
tighter approximation, yielding a nondecreasing sequence of lower bounds.

To ensure finite termination of OA it is sufficient to prevent repetition of
unique assignments of the integer-valued components x∗I , because there is only
a finite number of possible values. The following lemma states a condition on
the polyhedral outer approximation P that helps prove finite convergence.

Lemma 1 Fixing xI ∈ Z|I|, if x = (xI , xĪ) ∈ P implies cTx ≥ vxI
for

all xĪ ∈ Rn−|I| where vxI
is the optimal value of (CONV(xI)) then the OA

algorithm must terminate if MIOA(P) returns an optimal solution x∗ with
integer components matching x∗I = xI .

Proof Assume we solve MIOA(P) and obtain a solution x∗. If the integer part
of x∗ matches xI , by our assumptions we have rP = cTx∗ ≥ vxI

, where rP is
the optimal value of MIOA(P). Since MIOA(P) is a relaxation and vxI

is the
objective value of a feasible solution, then we must have rP = vxI

. Thus, we
have proven global optimality of this feasible solution and terminate.

Note that Lemma 1 provides a general condition that does not assume
any particular representation of the convex constraints X. In the traditional
setting of the smooth, convex representation (1), if x′ is an optimal solution
to CONV(x∗I) and strong duality holds, e.g., as in Prop 5.1.5 of Bertsekas [8],
then the set of constraints

gj(x′) +∇gj(x′)T (x− x′) ≤ 0 ∀ j ∈ J (3)

are sufficient to enforce the condition in Lemma 1 for finite convergence. In
other words, within the OA loop after solving CONV(x∗I), updating P by
adding the constraints (3) is sufficient to ensure that the integer solution x∗I
does not repeat, except possibly at termination. Intuitively, strong duality
in CONV(x∗I) implies that there are no descent directions (over the continuous
variables) from x′ which are feasible to a first-order approximation of the
constraints gj(x) ≤ 0 for j ∈ J [8]. Hence a point x = (xI , xĪ) sharing the
integer components xI = x∗I must satisfy cT (x−x′) ≥ 0 or precisely cTx ≥ vx∗I .
See [33,18,2] for further discussion.

If CONV(x∗I) is infeasible, then to ensure finite convergence it is important
to refine the polyhedral approximation P to exclude the corresponding integer
point. That is, we update P so that

{x ∈ Rn : xI = x∗I} ∩ P = ∅. (4)

In the traditional smooth setting, it is possible in the infeasible case to derive
a set of constraints analogous to (3), e.g., by solving an auxiliary feasibility
problem where we also assume strong duality holds [10,2].

To review, the OA algorithm proceeds in a loop between the MILP relax-
ation MIOA(P) and the continuous subproblem with integer values fixed
CONV(x∗I). The MILP relaxation provides lower bounds and feeds integer as-
signments to the continuous subproblem. The continuous subproblem yields
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feasible solutions and sufficient information to update the polyhedral approxi-
mation in order to avoid repeating the same assignment of integer values. The
algorithm is stated more formally in Algorithm 1 and illustrated in Figure 1.

Algorithm 1 The polyhedral outer approximation (OA) algorithm
Initialize: zU ←∞, zL ← −∞, polyhedron P ⊃ X such that MIOA(P) is bounded. Fix
convergence tolerance ε.
while zU − zL ≥ ε do

Solve MIOA(P).
if MIOA(P) is infeasible then

(MICONV) is infeasible, so terminate.
end if
Let x∗ be the optimal solution of MIOA(P) with objective value wT .
Update lower bound zL ← wT .
Solve CONV(x∗I ).
if CONV(x∗I ) is feasible then

Let x′ be an optimal solution of CONV(x∗I ) with objective value vx∗I
.

Derive polyhedron Q satisfying x = (x∗I , xĪ) ∈ Q implies cT x ≥ vx∗I
for

all xĪ ∈ Rn−|I| by using strong duality (e.g., (3)).
if vx∗I

< zU then

Update upper bound zU ← vx∗I
.

Record x′ as the best known solution.
end if

else if CONV(x∗I ) is infeasible then
Derive polyhedron Q satisfying {x ∈ Rn : xI = x∗I} ∩Q = ∅.

end if
Update P ← P ∩Q.

end while

The efficiency of the OA algorithm is derived from the speed of solving
the MIOA(P) problem by using state-of-the-art MILP solvers. Indeed, in 2014
benchmarks by Hans Mittelman, the OA algorithm implemented within Bon-
min using CPLEX as the MILP solver was found to be the fastest among
MICP solvers [38]. In spite of taking advantage of MILP solvers, the tradi-
tional OA algorithm suffers from the fact that the gradient inequalities (3)
may not be sufficiently strong to ensure fast convergence. In the following sec-
tion, we identify when these conditions may occur and how to work around
them within the framework of OA.

3 State of the art: outer approximation enhancements

The outer approximation algorithm is powerful but relies on polyhedral outer
approximations serving as good approximations of convex sets. The assump-
tions of the OA algorithm guarantee that there exists a polyhedron P such
that the optimal objective value of MIOA(P) matches the optimal objective
value of (MICONV), precisely at convergence. In the case that (MICONV)
has no feasible solution, these assumptions furthermore guarantee that there
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c

x′

x∗

x′

Fig. 1 An illustration of the outer approximation algorithm. Here, we minimize a linear
objective c over the ball x2

1 +x2
2 ≤ 2.5 with x1 integer constrained. On the left, the point x′

is the solution of the continuous relaxation, and we initialize the polyhedral outer approx-
imation with the tangent at x′. We then solve the MIOA(P) subproblem, which yields x∗.
Fixing x1 = 2, we optimize over the circle and update the polyhedral approximation with
the tangent at x′ (on the right). In the next iteration of the OA algorithm (not shown), we
will prove global optimality of x′.

exists an outer approximating polyhedron P such that MIOA(P) has no fea-
sible solution. In Section 6, we discuss in more detail what may happen when
the assumptions fail, although even in the typical case when they are satisfied,
these polyhedra may have exponentially many constraints. Indeed, there are
known cases where the OA algorithm requires 2n iterations to converge in Rn.
In this section, we review an illustrative case where the OA algorithm per-
forms poorly and the techniques from the literature that have been proposed
to address this issue.

Figure 2 illustrates an example developed by Hijazi et al. [28], specifically
the problem,

min
x

cTx

s.t.
n∑
i=1

(
xi −

1
2

)2

≤ n− 1
4

, (5)

x ∈ Zn, 0 ≤ x ≤ 1,

which, regardless of the objective vector c, has no feasible solutions. Any poly-
hedral approximation of the single convex constraint, a simple ball, requires
2n half-spaces until the corresponding outer approximation problem MIOA(P)
has no feasible solution. At this point the OA algorithm terminates reporting
infeasibility.

Hijazi et al. propose a simple yet powerful reformulation that addresses this
poor convergence behavior. To motivate their reformulation, we recall a basic
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Fig. 2 The example developed by Hijazi et al. [28] demonstrating the case where the outer
approximation algorithm requires 2n iterations to converge in dimension n. The intersection
of the ball with the integer lattice points (in black) is empty, yet any polyhedral outer
approximation of the ball in Rn requires 2n hyperplanes before it has an empty intersection
with the integer lattice, because the line segments between any two lattice points (one of
which is drawn) intersect the ball. Hence, any hyperplane can separate at most one lattice
point from the ball, and we require 2n of these to prove infeasibility.

example from linear programming. The `1 unit ball, i.e., {x ∈ Rn :
∑n
i=1 |xi| ≤

1}, is representable as an intersection of half spaces in Rn, namely the 2n half
spaces of the form

∑n
i=1 sixi ≤ 1 where si = ±1. This exponentially large

representation of the `1 ball is seldom used in practice, however. Instead, it is
common to introduce extra variables zi with constraints

zi ≥ xi, zi ≥ −xi for i = 1, . . . , n and
n∑
i=1

zi ≤ 1. (6)

It is not difficult to show that ||x||1 ≤ 1 if and only if there exist z satisfying
the constraints (6). Note that these 2n+ 1 constraints define a polyhedron in
R2n, which we call an extended formulation of the `1 ball because the `1 ball
is precisely the projection of this polyhedron defined in (x, z) space onto the
space of x variables. It is well known that polyhedra, such as the `1 ball, which
require a large description as half-spaces in Rn might require many fewer half-
spaces to represent if additional variables are introduced [37]. Note, in this
case, that the extended formulation is derived by introducing a variable zi to
represent the epigraph {(z, x) : |x| ≤ z} of each |xi| term, taking advantage of
the fact that the `1 ball can be represented as a constraint on a sum of these
univariate functions.

The solution proposed by Hijazi et al. and earlier by Tawarmalani and
Sahinidis [41] follows this line of reasoning by introducing an extended formu-
lation for the polyhedral representation of the smooth `2 ball. Analogously to
the case of the `1 ball, Hijazi et al. construct an outer-approximating polyhe-
dron in R2n with 2n+ 1 constraints which contains no integer points. By the
previous discussion, we know that the projection of this small polyhedron in
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R2n must have at least 2n inequalities in Rn. Their solution precisely exploits
the separability structure in the definition of the `2 ball, introducing an extra
variable zi for each term and solving instead

min
x,z

cTx

s.t.
n∑
i=1

zi ≤
n− 1

4
, (7)

zi ≥
(
xi −

1
2

)2

, ∀ i = 1, . . . , n

x ∈ Zn, 0 ≤ x ≤ 1.

The OA algorithm applied to (7) proves infeasibility in 2 iterations because
it constructs polyhedral approximations (based on gradient inequalities (3))
to the constraints in the (x, z) space. More generally, Hijazi et al. and Tawar-
malani and Sahinidis propose to reformulate any convex constraint of the form∑
i fi(xi) ≤ k as

∑
i zi ≤ k and zi ≥ fi(xi) for each i where fi are univariate

convex functions. Just by performing this simple transformation before pro-
viding the problem to the OA algorithm, they are able to achieve impressive
computational gains in reducing the time to solution and number of iterations
of the algorithm.

Building on the ideas of Hijazi et al. and Tawarmalani and Sahinidis,
Vielma et al. [44] propose an extended formulation for the second-order cone
{(t, x) ∈ Rn+1 : ||x||2 ≤ t}, which is not immediately representable as a sum
of univariate convex functions. They recognize that the second-order cone is
indeed representable as a sum of bivariate convex functions, i.e.,

∑
i
x2

i

t ≤ t,
after squaring both sides and dividing by t. They obtain an extended formula-
tion by introducing auxiliary variables zi ≥ x2

i

t and constrain
∑
i zi ≤ t. This

simple transformation was subsequently implemented by commercial solvers
for MISOCP like Gurobi [9], CPLEX [42], and Xpress [5], yielding significant
improvements on their internal and public benchmarks.

In spite of the promising computational results of Hijazi et al. first reported
in 2011 and the more recent extension by Vielma et al., to our knowledge,
MINOTAUR [34] is the only general MICP solver which has implemented these
techniques in an automated way. To understand why others like Bonmin [10]
have not done so, it is important to realize that MICP solvers historically
have had no concept of the mathematical or algebraic structure behind their
constraints, instead viewing them through black-box oracles to query first-
order and possibly second-order derivative values. The summation structure
we exploit, which is algebraic in nature, is simply not available when viewed
through this form, making it quite difficult to retrofit this functionality into the
existing architectures of MICP solvers. In the following section, we will propose
a substantially different representation of mixed-integer convex optimization
problems that is a natural fit for extended formulations.
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4 Disciplined Convex Programming (DCP) as a solution

In order to implement the extended formulation proposal of [28] in an auto-
mated way, one may be led to attempt a direct analysis of a user’s algebraic
representation of the convex constraints in a problem. However, this approach
is far from straightforward. First of all, the problem of convexity detection
is necessary as a subroutine, because it is only correct to exploit summa-
tion structure of a convex function h(x) = f(x) + g(x) when both f and g
are convex. This is not a necessary condition for the convexity of h; consider
f(x) = x2

1 − x2
2 and g(x) = 2x2

2. Convexity detection of algebraic expressions
is NP-Hard [4], which poses challenges for implementing such an approach in
a reliable and scalable way. Ad-hoc approaches [19] are possible but are highly
sensitive to the form in which the user inputs the problem; for example, ap-
proaches based on composition rules fail to recognize convexity of

√
x2

1 + x2
2

and log(exp(x1) + exp(x2)) [41].
Instead of attempting such analyses of arbitrary algebraic representations

of convex functions, we propose to use the modeling concept of disciplined
convex programming (DCP) first proposed by Grant, Boyd, and Ye [23,21]. In
short, DCP solves the problem of convexity detection by asking users to express
convex constraints in such a way that convexity is proven by composition rules,
which are sufficient but not necessary. These composition rules are those from
basic convex analysis, for example, the sum of convex functions is convex,
the point-wise maximum of convex functions is convex, and the composition
f(g(x)) is convex when f is convex and nondecreasing and g is convex. The
full set of DCP rules is reviewed in [23,40].

Even though it is possible to write down convex functions which do not
satisfy these composition rules, the DCP philosophy is to disallow them and
instead introduce new atoms (or basic operations) which users must use when
writing down their model. For example, logsumexp(

[
x1 x2

]
) replaces

log(exp(x1) + exp(x2)) and norm(
[
x1 x2

]
) replaces

√
x2

1 + x2
2. Although ask-

ing users to express their optimization problems in this form breaks away from
the traditional setting of MICP, DCP also formalizes the folklore within the
MICP community that the way in which you write down the convex constraints
can have a significant impact on the solution time; see, e.g., Hijazi et al. [28]
and our example later discussed in Equation 17.

The success over the past decade of the CVX software package [22] which
implements DCP has demonstrated that this modeling concept is practical.
Users are willing to learn the rules of DCP in order to gain access to power-
ful (continuous, convex) solvers, and furthermore the number of basic atoms
needed to cover nearly all convex optimization problems of practical interest
is relatively small.

Although we motivated DCP as a solution to the subproblem of convexity
detection, it in fact provides a complete solution to the problem of automati-
cally generating an extended formulation and encoding it in a computationally
convenient form given a user’s algebraic representation of a problem. All DCP-
valid expressions are compositions of basic operations (atoms); for example
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the expression max{exp(x2),−2x} is DCP-valid because the basic composi-
tion rules prove its convexity. A lesser-known aspect of DCP is that these
rules of composition have a 1-1 correspondence with extended formulations
based on the epigraphs of the atoms. Observe, for example, that

t ≥ max{exp(x2),−2x} (8)

if and only if

t ≥ exp(x2), t ≥ −2x (9)

if and only if there exists s such that

s ≥ x2, t ≥ exp(s), t ≥ −2x, (10)

where the validity of the latter transformation holds precisely because exp(·)
is increasing and therefore s ≥ x2 implies exp(s) ≥ exp(x2). Furthermore, the
constraints s ≥ x2 and t ≥ exp(s) are convex because square and exp are
convex functions; hence (10) is a convex extended formulation of (8). Note
that while we previously discussed extended formulations derived only from
disaggregating sums, disaggregating compositions of functions in this form also
yields stronger polyhedral approximations [41]. The existence of this extended
formulation is no coincidence. Grant and Boyd [21] explain that a tractable
representation of the epigraph of an atom is sufficient to incorporate it into
a DCP modeling framework. That is, if an implementation of DCP knows
how to optimize over a model with the constraint t ≥ f(x) for some convex
function f , then f can be incorporated as an atom within the DCP framework
and used within much more complex expressions so long as they follow the
DCP composition rules.

Our analysis of DCP has led us to the conclusion that DCP provides the
means to automate the generation of extended formulations in a way that
has never been done in the context of MICP. Users need only express their
MICP problem by using a DCP modeling language like CVX or more recent
implementations like CVXPY [15] (in Python), or Convex.jl [43] (in Julia).
Any DCP-compatible model is convex by construction and emits an extended
formulation that can safely disaggregate sums and more complex compositions
of functions.

We do note that in some cases it may not be obvious how to write a
known convex function in DCP form. In our work described in [36] where we
translated MICP benchmark instances into DCP form, we were unable to find
a DCP representation of the univariate concave function x

x+1 which is not in
DCP form because division of affine expressions is neither convex nor concave
in general. Fortunately, a reviewer suggested rewriting x

x+1 = 1 − 1
x+1 where

1
x+1 is a DCP-recognized convex function so long as x+ 1 ≥ 0. With this trick
we were able to translate all of the benchmark instances we considered into
DCP form, as we discuss in more details in the following section.
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5 MIDCP and conic representability

While DCP modeling languages have traditionally supported only convex
problems, CVX recently added support for mixed-integer convex problems un-
der the name of MIDCP, and the subsequently-developed DCP modeling lan-
guages also support integer constraints. We will use the terminology MIDCP
to refer to MICP models expressed in DCP form. In the previous section we
argued that an MIDCP representation of an MICP problem provides sufficient
information to construct an extended formulation, which in turn could be used
to accelerate the convergence of the outer approximation algorithm by provid-
ing strong polyhedral approximations. However, an MIDCP representation is
quite complex, much more so than the “black-box” derivative-based represen-
tation that traditional MICP solvers work with. Handling the MIDCP form
requires understanding each atom within the DCP library and manipulating
the expression graph data structures which are used to represent the user’s
algebraic expressions.

It turns out that there is a representation of MIDCP models which is
much more compact and convenient for use as an input format for an MICP
solver, and this is as mixed-integer conic optimization problems. Before stating
the form of these problems, we first consider the standard continuous conic
optimization problem:

min
x

cTx

s.t. Ax = b (CONE)
x ∈ K,

where K ⊆ Rn is a closed convex cone, that is, a closed convex set K where
any nonnegative scaling αx of a point x in the set remains in the set. A simple
example of a cone is the nonnegative orthant Rn+ = {x ∈ Rn : x ≥ 0}. When
K = Rn+ then (CONE) reduces to a linear programming problem. Typically,
K is a product of cones K1 × K2 × · · · × Kr, where each Ki is one of a small
number of recognized cones.

One of Grant et al.’s original motivations for developing the DCP frame-
work was to provide access to powerful solvers for the second-order cone [35],

SOCn = {(t, x) ∈ Rn : ||x|| ≤ t}, (11)

and the cone of positive semidefinite matrices,

PSDn = {A ∈ Rn×n : A = AT , xTAx ≥ 0 ∀x ∈ Rn}. (12)

CVX, for example, does not use smooth, derivative-based representations of
the epigraphs of atoms but instead uses a conic representation of each of its
atoms. For instance, for x, y ≥ 0 the epigraph of the negated geometric mean
f(x, y) = −√xy is a convex set representable as t ≥ −√xy iff ∃ z ≥ 0 such
that −t ≤ z ≤ √xy iff

−t ≤ z and z2 ≤ xy iff − t ≤ z and (x/
√

2, y/
√

2, z) ∈ RSOC3, (13)
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where

RSOCn := {(x, y, z) ∈ R× R× Rn−2 : 2xy ≥ ||z||22, x ≥ 0, y ≥ 0} (14)

is the n-dimensional rotated second-order cone, a common cone useful for
modeling (e.g., also for functions like x2) which itself is representable as a
transformation of the second-order cone [7]. While this conic representation
of the geometric mean is known in the literature [7], it is arguably unneces-
sarily complex for modelers to understand, and CVX, for example, provides a
geo mean atom which transparently handles this transformation.

Subsequent to the second-order and positive semidefinite cones, researchers
have investigated the exponential cone [39],

EXP = cl{(x, y, z) ∈ R3 : y exp(x/y) ≤ z, y > 0}, (15)

and the power cone [27],

POWα = {(x, y, z) ∈ R3 : |z| ≤ xαy1−α, x ≥ 0, y ≥ 0}, (16)

which can be used to represent functions like entropy (−x log(x)) and fractional
powers, respectively. This small collection of cones is sufficient to represent
any convex optimization problem which you may input within existing DCP
implementations, including CVX.

In the context of MICP, these cones are indeed sufficient from our experi-
ence. We classified all 333 MICP instances from the MINLPLIB2 benchmark
library [1] and found that 217 are representable by using purely second-order
cones (and so fall under the previously mentioned MISOCP problem class),
107 are representable by using purely exponential cones, and the remaining
by some mix of second-order, exponential, and power cones. We refer readers
to [36] for an extended discussion of conic representability. Of particular note
are the trimloss [26] family of instances which have constraints of the form,∑q

k=1
−√xkyk ≤ cT z + b. (17)

Prior to our report in [36], the tls5 and tls6 instances had been unsolved since
2001. By directly rewriting these problems into MIDCP form, we obtained an
MISOCP representation because all constraints are representable by using
second-order cones, precisely by using the transformation of the geometric
mean discussed above. Once in MISOCP form, we provided the problem to
Gurobi 6.0, which was able to solve them to global optimality within a day,
indicating the value of conic formulations.

Given that DCP provides an infrastructure to translate convex problems
into conic form, we may consider mixed-integer conic problems as a compact
representation of MIDCP problems. Below, we state our standard form for
mixed-integer conic problems,

min
x,z

cT z

s.t. Axx+Azz = b (MICONE)
L ≤ x ≤ U, x ∈ Zn, z ∈ K,
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where K ⊆ Rk is a closed convex cone. Without loss of generality, we assume
integer variables are not restricted to cones, since we may introduce corre-
sponding continuous variables by equality constraints. In Section 6 we discuss
solving (MICONE) via polyhedral outer approximation.

6 Outer approximation algorithm for mixed-integer conic problems

The observations of the previous section motivated the development of a
solver for problems of the form (MICONE). In [36] we developed the first
outer-approximation algorithm with finite-time convergence guarantees for
such problems. We note that the traditional convergence theory is generally
insufficient because it assumes differentiability, while conic problems have non-
differentiability that is sometimes intrinsic to the model. Nonsmooth perspec-
tive functions like f(x, y) = x2/y, for example, which are used in disjunctive
convex optimization [14], have been particularly challenging for derivative-
based MICP solvers and have motivated smooth approximations [24]. On the
other hand, conic form can handle these nonsmooth functions in a natural way,
so long as there is a solver capable of solving the continuous conic relaxations.

In this section, we provide an overview of the key points of the algorithm
and refer readers to [36] for the full description. The finite-time convergence
guarantees of the outer approximation algorithm depend on an assumption
that strong duality holds in certain convex subproblems. Extending [36], we
include a discussion on what may happen when this assumption does not hold.

We begin with the definition of dual cones.

Definition 2 Given a cone K, we define K∗ := {β ∈ Rk : βT z ≥ 0 ∀z ∈ K}
as the dual cone of K.

Dual cones provide an equivalent outer description of any closed, convex
cone, as the following lemma states. We refer readers to [7] for the proof.

Lemma 2 Let K be a closed, convex cone. Then z ∈ K iff zTβ ≥ 0 ∀β ∈ K∗.

We note that the second-order cone SOCn, the rotated second order cone
RSOCn (14), and the cone of positive semidefinite matrices are self-dual, which
means that the dual cone and the original cone are the same [7]. While the
exponential and power cones are not self-dual, the discussions that follow are
valid for them and other general cones.

Based on the above lemma, we state the analogue of the MILP relaxation
MIOA(P) for (MICONE) as

min
x,z

cT z

s.t. Axx+Azz = b (MICONEOA(T))
L ≤ x ≤ U, x ∈ Zn,
βT z ≥ 0 ∀β ∈ T.
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Note that if T = K∗, MICONEOA(T) is an equivalent semi-infinite rep-
resentation of (MICONE). If T ⊂ K∗ and |T | < ∞ then MICONEOA(T) is
an MILP outer approximation of (MICONE) whose objective value is a lower
bound on the optimal value of (MICONE). In the context of the discussion
in Section 2, given T , our polyhedral approximation of K is PT = {z : βT z ≥
0 ∀β ∈ T}, and we explicitly treat the linear equality constraints separately.

In the conic setting, we state the continuous subproblem CONV(x∗I) with
integer values fixed as

vx∗ = min
z

cT z

s.t. Azz = b−Axx∗, (CONE(x∗))
z ∈ K.

Using conic duality, we obtain the dual of CONE(x∗) as

max
β,λ

λT (b−Axx∗)

s.t. β = c−ATz λ (18)
β ∈ K∗.

In [36] we prove that under the assumptions of strong duality, the optimal
solutions β to the dual problem (18) correspond precisely to the half-spaces
which ensure the conditions in Lemma 1 when CONE(x∗) is feasible; hence,
we add these solutions to the set T . When CONE(x∗) is infeasible and (18)
is unbounded, the rays of (18) provide solutions that satisfy (4), guaranteeing
finite convergence of the OA algorithm.

We previously deferred a discussion of what may happen when the as-
sumption of strong duality fails. We now present a negative result for this
case. When the assumption of strong duality fails, it may be impossible for
the OA algorithm to converge in a finite number of iterations.

Consider the problem adapted from [29],

min z

s.t. x = 0,
(x, y, z) ∈ RSOC3.

(19)

Note that (0, y, z) ∈ RSOC3 implies z = 0, so the optimal value is trivially
zero.

The conic dual of this problem is

max 0
s.t. (β, 0, 1) ∈ RSOC3,

β free.
(20)

The dual is infeasible because there is no β satisfying 0β ≥ 1. So there is no
strong duality in this case. The following lemma demonstrates that polyhedral
approximations fail entirely. The proof is more technical than the rest of the
paper but uses only basic results from linear programming and conic duality.
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Lemma 3 There is no polyhedral outer approximation PRSOC3 ⊃ RSOC3

such that the following relaxation of (19) is bounded:

min z

s.t. x = 0,
(x, y, z) ∈ PRSOC3 .

(21)

Proof Let us assume that RSOC3 ⊂ PRSOC3 := {(x, y, z) : Axx + Ayy +
Azz ≥ 0} for some vectors Ax, Ay, Az. The right-hand side can be taken to be
zero because RSOC3 is a cone. Specifically, positive right-hand-side values are
invalid because they would cut off the point (0, 0, 0), and negative values can
be strengthened to zero. Since (21) is a linear programming problem invariant
to positive rescaling, it is bounded iff there exists a feasible dual solution (β, α)
satisfying

αTAx = β, (22)

αTAy = 0, (23)

αTAz = 1, (24)
α ≥ 0. (25)

Suppose, for contradiction, that there exist (β, α) satisfying these dual feasi-
bility conditions. Let (Ax,i, Ay,i, Az,i) denote the coefficients of the ith linear
inequality in PRSOC3 . Since PRSOC3 is a valid outer approximation, we have
that

(Ax,i, Ay,i, Az,i) · (x, y, z) ≥ 0, ∀(x, y, z) ∈ RSOC3, (26)

hence (Ax,i, Ay,i, Az,i) ∈ (RSOC3)∗ = RSOC3, recalling that RSOC3 is self-
dual. Therefore we have

(αTAx, αTAy, αTAz) ∈ RSOC3 (27)

for α ≥ 0. This follows from the fact that the vector, (αTAx, αTAy, αTAz),
is a non-negative linear combination of elements of RSOC3 and RSOC3 is a
convex cone. However, the duality conditions imply (β, 0, 1) ∈ RSOC3, i.e.,
0 ≥ 1, which is a contradiction.

Lemma 3 implies that the following MISOCP instance cannot be solved by
the OA algorithm:

min z

s.t. x = 0,
(x, y, z) ∈ RSOC3,

x ∈ {0, 1},

(28)

because the optimal value of any MILP relaxation will be −∞ while the true
optimal objective is 0, hence the convergence conditions cannot be satisfied.
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This example strengthens the observation by [29] that MISOCP solvers
may fail when certain constraint qualifications do not hold. In fact, no ap-
proach based on straightforward polyhedral approximation can succeed. Very
recently, Gally et al. [20] have studied conditions in the context of mixed-
integer semidefinite optimization which ensure that strong duality holds when
integer values are fixed.

7 Computational experiments

In this section we extend the numerical experiments performed in our pre-
vious work [36]. In that work, we introduced Pajarito. Pajarito is an open-
source stand-alone Julia solver, now publicly released2 at https://github.
com/JuliaOpt/Pajarito.jl, that heavily relies on the infrastructure of
JuMP [17].

Since [36] we have improved the performance of Pajarito and report revised
numerical experiments. We translated 194 convex instances of MINLPLIB2 [1]
into Convex.jl [43], a DCP algebraic modeling language in Julia which per-
forms automatic transformation into conic form. Our main points of com-
parison are Bonmin [10] using its OA algorithm, SCIP [3] using its default
LP-based branch-and-cut algorithm, and Artelys Knitro [13] using its default
nonlinear branch-and-bound algorithm; all three can be considered state-of-
the-art academic or commercial solvers. We further compare our results with
CPLEX for MISOCP instances only. All computations were performed on
a high-performance cluster at Los Alamos National Laboratory with Intelr

Xeonr E5-2687W v3 @3.10GHz 25.6MB L3 cache processors and 251GB
DDR3 memory installed on every node. CPLEX v12.6.2 is used as a MILP
and MISOCP solver. Because conic solvers supporting exponential cones were
not sufficiently reliable in our initial experiments, we use Artelys Knitro v9.1.0
to solve all conic subproblems via traditional derivative-based methods.

Bonmin v1.8.3 and SCIP v3.2.0 are both compiled with CPLEX v12.6.2
and Ipopt v3.12.3 using the HSL linear algebra library MA97. All solvers are
set to a relative optimality gap of 10−5, are run on a single thread (both
CPLEX and Artelys Knitro), and are given 10 hours of wall time limit (with
the exception of gams01, a previously unsolved benchmark instance, where
we give 32 threads to CPLEX for the MILP relaxations). The scripts to
run these experiments can be found online at https://github.com/mlubin/
MICPExperiments.

Numerical experiments indicate that the extended formulation drastically
reduces the number of polyhedral OA iterations as expected. In aggregate
across the instances we tested, Bonmin requires 2685 iterations while Pajarito
requires 994. We list the full results in Tables 1 and 2 and summarize them in
Figure 3. In Figure 4 we present results for the subset of SOC-representable

2 The results reported here are based on Pajarito version 0.1. The latest release, version
0.4, has been almost completely rewritten with significant algorithmic advances, which will
be discussed in upcoming work with Chris Coey.
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(a) Solution time (b) Number of OA iterations

Fig. 3 Comparison performance profiles [16] (solver performs within a factor of θ of the best
on proportion p of instances) over all instances we tested from the MINLPLIB2 benchmark
library. Higher is better. Bonmin is faster than Pajarito often within a small factor, yet
Pajarito is able to solve a few more instances overall and with significantly fewer iterations.

Fig. 4 Performance profile [16] (solver is the fastest within a factor of θ of the best on
proportion p of instances) over the instances representable as mixed-integer second-order
cone problems where we can compare with the commercial CPLEX solver. Higher is better.
CPLEX is the best overall, since notably it already implements the extended formulation
proposed by Vielma et al. [44].

instances, where we can compare with commercial MISOCP solvers. In our
performance profiles, all times are shifted by 10 seconds to decrease the influ-
ence of easy instances.

Notably, Pajarito is able solve a previously unsolved instance, gams01,
whose conic representation requires a mix of SOC and EXP cones and hence
was not a pure MISOCP problem. The best known bound was 1735.06 and the
best known solution was 21516.83. Pajarito solved the instance to optimality
with an objective value of 21380.20 in 6 iterations.
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8 Concluding remarks and future work

In this work, we have presented and advanced the state-of-the-art in polyhedral
approximation techniques for mixed-integer convex optimization problems, in
particular exploiting the idea of extended formulations and how to generate
them automatically by using disciplined convex programming (DCP). We ex-
plain why the mixed-integer conic view of mixed-integer convex optimization
is surprisingly powerful, precisely because it encodes the extended formulation
structure in a compact way. We claim that for the vast majority of problems
in practice, conic forms using a small number of recognized cones is a sufficient
and superior representation to the traditional smooth “black box” view.

Our developments for mixed-integer conic optimization seem to have out-
paced the capabilities of existing conic solvers, and we hope that the convex
optimization community will continue to develop techniques and publicly avail-
able, numerically robust solvers in particular for nonsymmetric cones like the
exponential cone. In spite of some numerical troubles when solving the conic
subproblems using existing solvers, our new mixed-integer conic solver, Pa-
jarito, has displayed superior performance in many cases to state-of-the-art
solvers like Bonmin, including the solution of previously unsolved benchmark
problems.

This work has opened up a number of promising directions which we are
currently pursuing. In the near term we plan on composing a rigorous report
on the technical aspects of implementing the outer-approximation algorithm
for mixed-integer conic problems, including aspects we have omitted which
are important for the reliability and stability of Pajarito. These will include
a larger set of benchmark instances and experiments with a branch-and-cut
variant of the algorithm.

We intend to investigate the application of polyhedral approximation in
the context of mixed-integer semidefinite optimization, where we expect that
failures in strong duality could be a common occurrence based on the reports
of [20]. It remains an open question what guidance we can provide to modelers
on how to avoid cases where polyhedral approximation can fail, or even if this
could be resolved automatically at the level of DCP.

Finally, we note that neither the DCP representation of a problem nor the
conic representation of a DCP atom is necessarily unique. Understanding the
effects of different formulation choices is an important avenue for future work.
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32. Kılınç, M.R.: Disjunctive cutting planes and algorithms for convex mixed integer non-
linear programming. Ph.D. thesis, University of Wisconsin-Madison (2011)

33. Leyffer, S.: Deterministic methods for mixed integer nonlinear programming. Ph.D.
thesis, University of Dundee (1993)

34. Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A., Munson, T., Sharma, M.: Minotaur:
Toolkit for mixed integer nonlinear optimization problems. https://wiki.mcs.anl.gov/
minotaur/index.php/Main_Page accessed 2017-04-16

35. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone
programming. Linear Algebra and its Applications 284(13), 193 – 228 (1998). Inter-
national Linear Algebra Society (ILAS) Symposium on Fast Algorithms for Control,
Signals and Image Processing

36. Lubin, M., Yamangil, E., Bent, R., Vielma, J.P.: Extended formulations in mixed-
integer convex programming. In: Q. Louveaux, M. Skutella (eds.) Integer Programming
and Combinatorial Optimization: 18th International Conference, IPCO 2016, Liège,
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Pajarito Bonmin SCIP Knitro CPLEX
Instance Conic rep. Iter Time Iter Time Time Time Time
batch Exp 1 0.26 2 0.60 0.66 0.56 –
batchdes Exp 1 0.11 1 0.07 0.16 0.02 –
batchs101006m Exp 3 3.26 10 1.88 5.10 76.96 –
batchs121208m Exp 3 6.74 4 3.14 13.09 316.14 –
batchs151208m Exp 3 10.72 6 7.97 16.90 516.04 –
batchs201210m Exp 2 25.14 8 14.92 29.12 970.51 –
clay0203h SOC 5 1.42 9 0.90 0.70 1.28 0.35
clay0203m SOC 6 1.61 10 0.40 0.86 0.34 0.37
clay0204h SOC 1 1.85 3 3.60 7.14 5.72 1.61
clay0204m SOC 1 0.55 3 0.33 2.55 3.30 1.02
clay0205h SOC 3 24.40 4 20.89 78.19 168.28 8.93
clay0205m SOC 3 8.11 6 5.50 9.63 61.91 1.77
clay0303h SOC 5 2.41 9 0.97 1.53 1.96 0.54
clay0303m SOC 7 2.60 10 0.58 1.73 0.76 0.68
clay0304h SOC 9 13.87 11 5.27 2.50 26.33 1.42
clay0304m SOC 13 18.97 16 2.84 7.09 7.20 2.13
clay0305h SOC 3 52.97 4 23.81 1.97 139.27 23.32
clay0305m SOC 3 11.83 7 6.16 12.90 52.53 2.51
du-opt SOC 7 3.19 61 0.76 >36000 0.11 1.54
du-opt5 SOC 4 1.55 22 0.22 0.75 0.11 1.97
enpro48pb Exp 1 0.51 2 0.22 1.73 0.85 –
enpro56pb Exp 1 0.60 1 0.22 1.52 4.47 –
ex1223 ExpSOC 1 0.06 3 0.07 0.14 0.03 –
ex1223a SOC 0 0.02 1 0.03 0.11 0.02 0.01
ex1223b ExpSOC 1 0.08 3 0.07 0.15 0.02 –
ex4 SOC 2 1.06 2 0.13 1.15 0.25 0.86
fac3 SOC 2 0.19 6 0.15 0.24 0.16 0.07
netmod dol2 SOC 7 49.97 33 167.49 33.93 293.76 12.58
netmod kar1 SOC 12 8.05 102 56.45 3.32 122.98 7.68
netmod kar2 SOC 12 8.14 102 56.35 3.30 122.28 7.66
no7 ar25 1 SOC 3 67.97 2 25.19 82.09 17601.54 54.34
no7 ar2 1 SOC 1 8.87 1 7.06 31.81 14957.66 21.83
no7 ar3 1 SOC 3 91.36 4 71.04 392.98 16495.95 126.09
no7 ar4 1 SOC 4 107.58 5 85.87 274.72 17865.83 48.97
no7 ar5 1 SOC 5 115.25 7 69.23 68.90 17452.47 32.60
nvs03 SOC 1 0.03 1 0.06 0.13 0.18 0.00
slay04h SOC 2 0.32 5 0.19 0.68 0.53 0.14
slay04m SOC 2 0.17 5 0.11 0.57 0.32 0.18
slay05h SOC 3 0.65 9 0.60 3.29 1.57 0.37
slay05m SOC 3 0.28 7 0.18 0.84 1.02 0.16
slay06h SOC 2 0.76 12 1.94 5.26 4.65 0.69
slay06m SOC 2 0.32 9 0.29 1.57 2.94 0.42
slay07h SOC 3 1.75 15 5.04 18.35 9.96 0.98
slay07m SOC 3 0.56 12 0.66 2.51 5.75 0.67
slay08h SOC 3 2.65 22 27.27 180.20 26.47 1.50
slay08m SOC 2 0.58 21 2.89 3.69 13.17 0.96
slay09h SOC 3 4.36 36 163.31 92.70 79.79 1.93
slay09m SOC 3 1.11 28 17.22 11.01 33.36 1.54
slay10h SOC 4 21.94 80 8155.02 11745.37 442.46 7.55
slay10m SOC 4 4.36 77 1410.08 516.81 167.81 1.80
syn05h Exp 1 0.07 2 0.09 0.31 0.17 –
syn05m Exp 1 0.04 2 0.07 0.28 0.14 –
syn05m02h Exp 1 0.15 1 0.06 0.33 0.11 –
syn05m02m Exp 1 0.08 1 0.07 0.33 0.29 –
syn05m03h Exp 1 0.23 1 0.07 0.33 0.13 –
syn05m03m Exp 1 0.12 1 0.07 0.32 0.30 –
syn05m04h Exp 1 0.29 1 0.07 0.38 0.19 –
syn05m04m Exp 1 0.17 1 0.08 0.32 0.61 –
syn10h Exp 0 0.10 1 0.04 0.20 0.09 –
syn10m Exp 1 0.08 2 0.04 0.25 0.23 –
syn10m02h Exp 1 0.27 1 0.09 0.46 0.21 –
syn10m02m Exp 1 0.16 2 0.09 0.42 3.05 –
syn10m03h Exp 1 0.38 1 0.08 0.59 0.24 –
syn10m03m Exp 1 0.23 1 0.08 0.54 10.47 –
syn10m04h Exp 1 0.53 1 0.11 0.52 0.19 –
syn10m04m Exp 1 0.34 1 0.11 0.72 40.41 –
syn15h Exp 1 0.22 1 0.06 0.29 0.14 –
syn15m Exp 1 0.10 2 0.07 0.30 0.32 –
syn15m02h Exp 1 0.51 1 0.09 0.47 0.18 –
syn15m02m Exp 1 0.24 1 0.09 0.44 5.51 –
syn15m03h Exp 1 44.15 1 0.13 0.99 0.23 –
syn15m03m Exp 1 0.38 2 0.11 0.66 25.67 –
syn15m04h Exp 1 1.47 1 0.14 1.61 0.32 –
syn15m04m Exp 1 0.50 2 0.14 1.43 186.20 –
syn20h Exp 2 0.33 2 0.10 0.34 0.20 –
syn20m Exp 1 0.13 2 0.06 0.39 1.31 –
syn20m02h Exp 2 1.07 2 0.15 0.57 0.41 –
syn20m02m Exp 2 0.44 2 0.10 0.73 381.88 –
syn20m03h Exp 1 1.21 1 0.13 1.52 0.78 –
syn20m03m Exp 2 0.64 2 0.15 2.00 993.73 –
syn20m04h Exp 1 1.81 1 0.19 2.41 1.11 –
syn20m04m Exp 2 0.91 2 0.27 9.77 1806.83 –
syn30h Exp 3 0.73 3 0.12 0.59 0.28 –
syn30m Exp 3 0.28 3 0.09 0.49 90.26 –
syn30m02h Exp 3 1.77 3 0.21 12.98 0.44 –
syn30m02m Exp 3 0.82 4 0.19 1.67 1041.13 –
syn30m03h Exp 3 2.24 3 0.40 11444.39 1.23 –
syn30m03m Exp 3 1.28 3 0.27 7.78 1878.32 –
syn30m04h Exp 3 3.51 3 0.49 >36000 2.74 –
syn30m04m Exp 3 1.81 4 0.42 37.94 3113.33 –
syn40h Exp 3 0.92 4 0.19 0.55 0.33 –
syn40m Exp 2 0.35 4 0.97 0.52 484.94 –
syn40m02h Exp 3 2.15 3 0.31 2073.62 1.03 –
syn40m02m Exp 3 1.18 3 0.24 5.74 1550.39 –
syn40m03h Exp 4 4.20 4 0.59 2.88 5.27 –
syn40m03m Exp 4 2.33 5 0.52 204.94 2921.63 –
syn40m04h Exp 3 8.56 4 1.02 >36000 20.31 –
syn40m04m Exp 5 4.61 5 0.87 974.05 8048.34 –

Table 1 MINLPLIB2 instances. “Conic rep” column indicates which cones are used in
the conic representation of the instance (second-order cone and/or exponential). CPLEX is
capable of solving only second-order cone instances. Times in seconds.
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Pajarito Bonmin SCIP Knitro CPLEX
Instance Conic rep. Iter Time Iter Time Time Time Time
synthes1 Exp 2 0.06 3 0.04 0.24 0.11 –
synthes2 Exp 2 0.07 3 0.05 0.42 0.13 –
synthes3 Exp 2 0.09 6 0.10 0.34 0.13 –
rsyn0805h Exp 1 0.38 1 0.14 0.40 1.10 –
rsyn0805m Exp 2 0.49 2 0.25 0.87 53.62 –
rsyn0805m02h Exp 5 2.38 5 0.71 0.73 3.71 –
rsyn0805m02m Exp 4 2.41 4 2.16 11.21 1617.65 –
rsyn0805m03m Exp 3 3.26 3 4.08 10.71 2930.70 –
rsyn0805m04m Exp 2 2.32 2 2.31 19.17 5202.46 –
rsyn0810m Exp 1 0.37 2 0.24 1.17 211.18 –
rsyn0810m02h Exp 3 1.87 3 0.58 1.61 9.79 –
rsyn0810m02m Exp 3 2.20 4 5.78 49.36 3098.62 –
rsyn0810m03h Exp 3 3.19 3 1.36 1.99 26.42 –
rsyn0810m03m Exp 3 4.29 3 6.04 41.61 3582.39 –
rsyn0810m04h Exp 2 3.54 3 1.31 2.87 8.61 –
rsyn0810m04m Exp 3 3.74 4 3.77 52.17 5943.63 –
rsyn0815h Exp 1 19.15 1 0.27 1.27 1.77 –
rsyn0815m Exp 2 0.49 2 0.23 1.21 171.89 –
rsyn0815m02m Exp 4 2.39 5 1.94 58.70 2565.52 –
rsyn0815m03h Exp 5 11.58 5 5.21 38.80 31.62 –
rsyn0815m03m Exp 5 5.66 4 4.59 217.30 3914.97 –
rsyn0815m04h Exp 3 6.16 3 2.03 4.73 20.55 –
rsyn0815m04m Exp 3 6.40 4 7.78 1609.07 7313.05 –
rsyn0820h Exp 2 1.02 3 0.42 2.04 1.55 –
rsyn0820m Exp 2 0.61 2 0.24 3.74 772.36 –
rsyn0820m02h Exp 2 2.28 3 0.59 2.83 90.89 –
rsyn0820m02m Exp 3 2.27 3 1.90 712.08 3138.98 –
rsyn0820m03h Exp 2 3.55 2 1.37 4.72 135.69 –
rsyn0820m03m Exp 3 4.08 3 5.14 6372.80 5220.60 –
rsyn0820m04h Exp 4 7.75 4 2.66 6.25 50.72 –
rsyn0820m04m Exp 3 7.22 3 8.65 13412.29 8314.96 –
rsyn0830h Exp 3 1.27 3 0.41 2.53 2.84 –
rsyn0830m Exp 4 0.96 4 0.37 3.37 1012.27 –
rsyn0830m02m Exp 5 10.95 5 1.83 131.12 9151.72 –
rsyn0830m03h Exp 2 4.77 2 1.45 6.70 59.98 –
rsyn0830m03m Exp 4 5.79 4 3.45 4044.25 10519.40 –
rsyn0830m04h Exp 3 8.44 3 2.35 14.23 209.80 –
rsyn0830m04m Exp 4 11.62 4 11.47 >36000 12709.29 –
rsyn0840h Exp 2 1.15 2 0.30 3.22 0.94 –
rsyn0840m Exp 3 0.86 2 0.26 2.96 1117.90 –
rsyn0840m02h Exp 2 2.97 3 0.72 5.10 8.43 –
rsyn0840m02m Exp 3 3.05 4 1.53 675.24 4443.70 –
rsyn0840m03h Exp 3 7.24 3 1.85 >36000 41.84 –
rsyn0840m03m Exp 5 7.92 5 2.47 4662.04 10511.67 –
rsyn0840m04h Exp 2 40.03 2 2.40 18.71 453.32 –
rsyn0840m04m Exp 4 18.14 4 7.62 >36000 15336.01 –
gbd SOC 0 0.01 1 0.04 0.19 0.12 0.00
ravempb Exp 1 0.79 4 0.33 0.80 0.42 –
portfol classical050 1 SOC 12 32.66 989 >36000 133.43 452.49 3.31
m3 SOC 0 0.04 1 0.68 0.33 0.38 0.07
m6 SOC 1 0.39 1 0.16 2.07 658.83 0.17
m7 SOC 0 0.42 1 0.59 4.99 10431.03 0.69
m7 ar25 1 SOC 1 0.55 1 0.37 1.90 2763.66 0.16
m7 ar2 1 SOC 1 2.47 1 2.19 5.59 14002.89 1.58
m7 ar3 1 SOC 1 2.33 1 1.88 5.53 25222.75 0.82
m7 ar4 1 SOC 0 0.31 1 0.35 2.08 20537.24 0.84
m7 ar5 1 SOC 0 1.30 1 0.34 11.88 38924.33 0.98
fo7 SOC 4 38.44 3 27.68 89.18 3584.70 23.67
fo7 2 SOC 2 12.52 2 12.52 43.35 6298.85 4.88
fo7 ar25 1 SOC 4 22.95 4 9.87 21.94 16685.13 9.92
fo7 ar2 1 SOC 3 15.19 2 8.68 25.56 16123.12 11.04
fo7 ar3 1 SOC 3 27.00 3 11.61 28.79 16539.34 22.16
fo7 ar4 1 SOC 2 11.31 2 9.61 47.19 14674.12 10.27
fo7 ar5 1 SOC 1 4.44 1 5.66 19.63 16634.28 12.67
fo8 SOC 3 79.22 2 79.50 145.26 6383.13 52.92
fo8 ar25 1 SOC 4 141.68 3 45.80 121.69 23823.27 63.09
fo8 ar2 1 SOC 4 159.12 3 59.24 319.27 19979.89 60.09
fo8 ar3 1 SOC 1 10.34 1 14.65 70.68 20336.26 37.85
fo8 ar4 1 SOC 1 12.03 1 10.53 62.21 21961.80 62.60
fo8 ar5 1 SOC 1 29.66 2 23.26 94.63 24442.99 59.75
fo9 SOC 4 210.11 3 534.56 2079.40 4200.36 227.52
fo9 ar25 1 SOC 6 6390.32 6 1430.17 2819.53 25608.54 1240.89
fo9 ar2 1 SOC 2 490.08 2 205.19 896.42 19595.03 631.46
fo9 ar3 1 SOC 1 18.55 1 16.77 730.51 24190.96 103.84
fo9 ar4 1 SOC 1 56.32 2 40.77 1440.47 32284.58 785.75
fo9 ar5 1 SOC 3 131.24 2 39.47 724.35 30368.10 725.60
flay02h SOC 2 0.10 2 0.09 0.26 1.37 0.02
flay02m SOC 2 0.06 2 0.05 0.15 0.10 0.04
flay03h SOC 8 0.98 8 0.40 0.62 0.30 0.20
flay03m SOC 8 0.44 8 0.17 0.26 0.14 0.24
flay04h SOC 24 23.43 24 19.92 3.75 6.60 1.14
flay04m SOC 22 8.24 22 4.43 1.98 2.54 1.00
flay05h SOC 164 6709.06 181 6583.08 221.67 357.72 96.62
flay05m SOC 171 5030.20 180 3258.45 51.94 118.96 68.91
flay06h SOC 31 >36000 30 >36000 13327.17 883.97 6958.36
flay06m SOC 56 >36000 68 >36000 2803.53 279.87 4752.04
o7 SOC 8 2778.14 9 1623.33 2074.22 3060.64 526.94
o7 2 SOC 5 803.25 5 435.47 899.41 6423.68 128.95
o7 ar25 1 SOC 3 421.01 4 259.10 433.72 16789.95 455.29
o7 ar2 1 SOC 1 72.03 1 41.51 209.30 15504.16 68.66
o7 ar3 1 SOC 3 1041.48 4 338.68 874.36 17193.08 875.63
o7 ar4 1 SOC 7 2665.40 7 1486.87 1080.95 17803.19 535.17
o7 ar5 1 SOC 4 662.44 4 309.86 545.20 21972.83 216.84
o8 ar4 1 SOC 3 7192.54 4 2736.05 6939.85 26448.75 8447.35
o9 ar4 1 SOC 6 14143.93 5 7248.84 34990.47 31569.13 21722.78
gams01 ExpSOC 6 23414.37 >19 >36000 >36000 >36000 –

Table 2 MINLPLIB2 instances, continued.


