
A Non-parametric Discontinuous Galerkin
Formulation of the Integral Boundary Layer

Equations with Strong Viscous-Inviscid Coupling

by

Shun Zhang

B.S.E., Aerospace Engineering, University of Michigan (2015)
B.S.E., Mechanical Engineering, Shanghai Jiao Tong University (2015)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aerospace Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2018

c○ 2018 Massachusetts Institute of Technology. All rights reserved

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Aeronautics and Astronautics

February 1, 2018

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Steven R. Allmaras

Research Engineer of Aeronautics and Astronautics
Thesis Supervisor

Accepted by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hamsa Balakrishnan

Associate Professor of Aeronautics and Astronautics
Chair of Graduate Program Committee



2



A Non-parametric Discontinuous Galerkin Formulation of the

Integral Boundary Layer Equations with Strong

Viscous-Inviscid Coupling

by

Shun Zhang

Submitted to the Department of Aeronautics and Astronautics
on February 1, 2018, in partial fulfillment of the

requirements for the degree of
Master of Science in Aerospace Engineering

Abstract

A non-parametric discontinuous Galerkin (DG) finite-element formulation is devel-
oped for the integral boundary layer (IBL) equations with strong viscous-inviscid
coupling. This DG formulation eliminates the need of explicit curvilinear coordi-
nates in traditional boundary layer solvers, and thus enables application to complex
geometries even involving non-smooth features. The usual curvilinear coordinates
are replaced by a local Cartesian basis, which is conveniently constructed in the
DG finite-element formulation. This formulation is also applicable to the general
convection-source type of partial differential equations defined on curved manifolds.
Other benefits of DG methods are maintained, including support for high-order so-
lutions and applicability to general unstructured meshes. For robust solution of the
coupled IBL equations, a strong viscous-inviscid coupling scheme is also proposed,
utilizing a global Newton method. This method provides for flexible and convenient
coupling of viscous and inviscid solutions, and is readily extensible to coupling with
more disciplines, such as structural analysis. As a precursor to the three-dimensional
strongly-coupled IBL method, a two-dimensional IBL solver coupled with a panel
method is implemented. Numerical examples are presented to demonstrate the via-
bility and utility of the proposed methodology.
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Chapter 1

Introduction

Computational fluid dynamics (CFD) has become an indispensable and powerful tool

for the aerodynamic design and optimization of many engineering systems, such as

aircraft, automobiles, marine vehicles and wind turbines. A broad spectrum of CFD

methods of various complexity and capability have been developed to date. This

thesis focuses specifically on the integral boundary layer (IBL) formulation with

strong viscous-inviscid coupling. This is a zonal approach and its benefits include

being fast, robust and readily compatible with multi-disciplinary coupling.

1.1 Motivation for Integral Boundary Layer Method

The strongly-coupled IBL method is pursued primarily because of its exceptional

computational speed. Established examples for two-dimensional (2D) aerodynamic

flows include MSES [3] and XFOIL [2]. The latter is able to characterize an airfoil

drag polar within a few seconds. Such speed enables a thorough aerodynamic design

and optimization that is otherwise infeasible with much slower CFD methods like,
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for example, those based on solving the Reynolds-averaged Navier-Stokes (RANS)

equations.

Figure 1-1 illustrates a ballpark comparison of computational cost between a IBL

method coupled with a full potential (inviscid) solver and a RANS-based method.

In order to attain solution accuracy similar to the RANS method, the coupled IBL

method requires a far coarser mesh with fewer variables at each grid point, resulting

in far fewer degrees of freedom (DOFs) and thus a much more rapid computational

turnaround. Higher-fidelity (than RANS) CFD algorithms, such as large eddy simu-

lation (LES) and direct numerical simulation (DNS), are computationally yet more

expensive and thus beyond the reach of day-to-day design and optimization practice

in the next decade or more [4]. On the other hand, it is worth noting that those

Motivation

2D Inviscid+Integral-BL (IBL) methods have proven very effective

• Enormously faster than alternative Navier-Stokes for similar accuracy

• Can exploit any inviscid flow solver

• Compatible with inverse design methods

• Compatible with virtual displacements for linearized aeroelasticity

Navier Stokes

∼ 500 000 variables
∼ 1 hr. runtime

Potential+BL (MSIS, TRANAIR-2D)

∼ 5 000 variables
∼ 1 sec. runtime

⇒ Present goal is to extend inviscid+integral-BL methods to 3D
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RANS

DOF ∼ 5,000 DOF ∼ 500,000
runtime ∼ seconds runtime ∼ hours

Figure 1-1: Computational cost comparison between a coupled IBL/full potential
method and a RANS method (figure courtesy of Drela [1], reproduced with

permission)

higher-fidelity methods are necessary in scenarios of more complex physics such as

flows with significant unsteady effects, strong separation and thick boundary layers,
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where the IBL method typically falls short. Hence, the fast computational speed of

the IBL method makes it a favorable and appropriate tool for early design stages in

which numerous iterations are made whereas only medium-fidelity physical details

are required.

The economy of IBL methods still stands out in comparison to traditional bound-

ary layer solvers [5, 6] that are based on solving the differential form of the boundary

layer equations (throughout the area of 2D flows or the volume of three-dimensional

(3D) flows). Due to the need of resolving a boundary layer across its thickness, the

profile representation at each boundary point requires hundreds of DOFs, whereas

the alternative IBL formulation defines a boundary layer profile using a much more

economical number of parameters (mostly less than 10).

Another desirable feature of the IBL formulation is the convenient representation

of viscous effects and geometry changes using a displacement body model [7]. It

allows for exploiting various inviscid solvers (for example, the panel method, full

potential and Euler solvers). Also, applications for inverse design, optimization,

and aero-structural coupling are greatly simplified since small geometry changes,

both steady and unsteady, are readily accounted for without any re-meshing. Such

a feature is especially favorable in multi-disciplinary design and optimization. In

contrast, current strategies for aero-structural coupling using RANS-based or higher-

fidelity methods mostly entail regenerating meshes in the presence of any geometric

perturbation [8], which drives the computational cost even higher and subjects the

overall implementation to potential meshing difficulty.

These benefits of the strongly-coupled IBL method motivate research on extend-

ing this method to general 3D applications.

23



1.2 Previous Work

Foray into the development of the 3D viscous-inviscid method has already been made.

For example, as an intermediate approach, Boeing’s proprietary code TRANAIR

[9, 10] adopts a quasi-2D IBL formulation coupled with a 3D full potential solver.

However, it fails to capture the fully 3D flow features in configurations such as

wing/tail-fuselage joints and wing/blade tips.

In order to handle those cases, a genuinely 3D boundary layer formulation is

necessary. IBL formulations as such exist [11, 12] but are mostly restricted by the

use of curvilinear coordinates to cover solid surfaces [13]. That is, they require

an explicit parametrization of a general curved manifold geometry, for example,

as shown in Figure 1-2. In light of such a requirement, the formulation cannot

z
y

x

Figure 1-2: Sample parametrization of an aircraft wing section surface, defined in
global Cartesian coordinates (𝑥, 𝑦, 𝑧), by curvilinear coordinates (𝜉, 𝜂)

tolerate any surface slope discontinuity which frequently appears where multiple

surfaces intersect. Furthermore, the parametrization either loses full coverage of a

general curved manifold geometry when using orthogonal curvilinear coordinates,

or requires significantly complex transformation of the original partial differential

equation (PDE) if non-orthogonal coordinates are employed.
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Nishida [14] and Mughal [15] formulated the 3D IBL equations in a finite-element

form which sidesteps the need of curvilinear parametrization and applies to relatively

complex geometries on general meshes. This 3D IBL formulation was then improved

by Drela [13] to recover in-surface rotational invariance and to incorporate a more

suitable 3D transition prediction treatment.

Another important aspect in developing the viscous-inviscid zonal method is so-

lution robustness which is contingent on the viscous-inviscid coupling treatment.

Lock and Williams [16] provided a review of existing coupling schemes for viscous-

inviscid interaction (VII). The classical direct method is a one-way coupling scheme

in which the boundary layer equations are solved assuming that the inviscid outer

flow is known a priori. This method, however, is restricted to attached flows and

breaks down in the presence of flow separation due to the Goldstein singularity [17].

Attempts to avoid this issue lead to development of methods that are fully-inverse,

semi-inverse [18] and quasi-simultaneous [19, 20]. While achieving various degrees

of success, all of these methods require iterating between the viscous and inviscid

solvers. In consequence, they are not as reliable and efficient as the simultaneous

solution of viscous and inviscid flows [16]. The strong simultaneous coupling scheme

was also observed to be a key ingredient to the robust solution of 2D IBL methods

such as MSES [3] and XFOIL [2], and is thus naturally expected to be desirable, if

not indispensable, for 3D applications as well [13].

1.3 Current Work

The current work presented in this thesis builds upon the earlier work of Drela [13],

which adopts a continuous Galerkin (CG) finite-element discretization and assumes

linear finite elements. Some of the current work has been presented by the author
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et at. in an earlier paper [21] and more details are covered in this thesis.

A primary contribution of this thesis is to develop a discontinuous Galerkin (DG)

finite-element discretization for the IBL equations. The DG method is well suited

for the convection-source type of PDEs, including the IBL equations, since they are

free of viscous terms. The discretization of viscous terms is thus avoided, which

sidesteps the additional complexity incurred by the use of lifting operators and the

numerical stabilization of the viscous operator [22]. The DG formulation developed

in this thesis is also suitable for general PDEs of the convection-source type that are

defined on curved manifolds. In the current method, the IBL equations are resolved

in a local Cartesian basis, free of any explicit construction of curvilinear coordinates,

and readily applicable to complex or non-smooth geometries. The DG formulation

allows for discontinuous local basis vectors across finite element interfaces and thus

simplifies its construction compared to the CG formulation. In addition, the DG

finite-element method supports high-order solution approximation (extending the

previous linear finite-element IBL formulations [14, 15, 13] that assume linear finite

elements), and applies to general unstructured meshes and complex geometries. It

should be noted that Bernard et al. [23] also utilized a local basis in developing and

applying a DG method to shallow water equations on spherical surfaces. However

that formulation assumes that the unknown vector quantities are constructed from

the local basis, which does not apply to IBL equations and more general PDEs.

Necessary generalization is proposed in this thesis.

This thesis also reiterates the importance of strong coupling between viscous and

inviscid solvers. To that end, the IBL equations are strongly coupled with the inviscid

solver by solving for both the viscous and inviscid solutions simultaneously using a

global Newton method. In order to ease concerns of some researchers over coding

complexity and (flow) modeling rigidity [20], the current coupling implementation
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allows for a flexible choice of the inviscid solver, ranging from panel methods to full

potential and Euler solvers. The jacobian of the coupled equation system used in

the Newton method is conveniently evaluated via automatic differentiation.

Note that the development of the DG formulation and the viscous-inviscid cou-

pling framework here does not bear any assumption about a specific spatial dimension

(2D or 3D). However, this thesis only demonstrates results of applying the current

IBL formulation to 2D examples of steady-state incompressible viscous flows. Hence,

the presentation throughout this thesis will focus on the 2D setting. This constitutes

a stepping stone towards the 3D IBL formulation and application that are to be

completed and presented in the future study.

The organization of this thesis is to first present a 2D IBL formulation in Chap-

ter 2. Then, the DG finite-element discretization is formulated and applied to the

IBL equations in Chapter 3. Chapter 4 describes the strong viscous-inviscid coupling

scheme. Numerical results are provided in Chapter 5 to verify the manifold DG

method and to demonstrate the applicability of the strong viscous-inviscid coupling

scheme in aerodynamic analysis. Finally, concluding remarks are given in Chapter 6.
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Chapter 2

Integral Boundary Layer Formulation

This chapter introduces the basic concepts underpinning the viscous-inviscid zonal

method, derives the governing IBL equations, and completes the formulation with

viscous closure models. Note that this thesis focuses on a 2D IBL formulation of

steady-state incompressible boundary layer flows, while extension to 3D unsteady

compressible flows is left for future study.

2.1 Viscous-Inviscid Zonal Decomposition

The viscous-inviscid zonal approach for aerodynamic analysis starts from a subdivi-

sion of an overall flow domain as shown in Figure 2-1, which is identified by some

defect control area (DCA) and the outer flow region. Also, an equivalent inviscid

flow (EIF) [7] is defined as a hypothetical irrotational (i.e. potential) flow filling up

the entire flow domain. The DCA is chosen to coincide with the viscous layer, and

the EIF is assumed to match the viscous flow in the outer region. As in the standard

boundary layer theory, this modeling assumption is justified when the outer flow has
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negligible viscous effects and is thus effectively irrotational.

= −

Control Area

Defect Control Area

Figure 2-1: Real flow decomposed into defect control area and equivalent inviscid
flow

Then, let 𝑓 be some generic quantity associated with the real flow (e.g. density

and pressure). It can be decomposed as 𝑓 = 𝑓i − (𝑓i − 𝑓) where 𝑓i corresponds to

the EIF (the subscript “i” is used to denote EIF quantities) and (𝑓i − 𝑓) is called

a defect quantity. This decomposition provides considerable flexibility in treating

the EIF and defect quantities separately. Numerous fast methods exist to solve the

potential flow 𝑓i, such as panel methods and full potential or Euler solvers. On the

other hand, the defect quantity 𝑓i−𝑓 vanishes in the outer flow region and thus only

needs to be solved in the DCA. This enables the development of various boundary

layer methods.

2.2 Defect Control Area Integral Relations

Before presenting an integral approach of the boundary layer method, some integral

relations related to the DCA need to be formulated. First, the DCA is partitioned

into a set of differential elements, each of which spans the thickness of the viscous

layer as illustrated in Figure 2-2. The 𝑛 = 0 reference curve is assumed to be

placed on the wall (i.e. 𝑛w = 0) and the wake centerline for convenience, although
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for generality it can be located elsewhere inside the viscous layer as in Figure 2-2.

The goal here is to formulate the IBL equations on the 𝑛 = 0 curve which is a

one-dimensional (1D) manifold subset of the 2D DCA.
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Figure 2-2: Partition of the DCA into a set of differential elements (figure adapted
from [1] with permission)

Next, the integral of the divergence of a vector defect quantity (fi − f) over a

differential defect control area (DDCA) element is considered, as the divergence

term will appear in the governing conservation laws and the derivation of the IBL

equations. By the divergence theorem,

ˆˆ
DDCA

∇ · (fi − f) d𝐴 =

˛
𝜕DDCA

(fi − f) · n̂ d𝑠 (2.1)

where 𝜕DDCA denotes the boundary of the DDCA element with an outward-pointing

unit normal vector n̂. The differential area and length are denoted with d𝐴 and d𝑠
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respectively.

When forming the length differentials, the curvature of the DDCA element is

accounted for via an appropriate metric factor that is linear in 𝑛. For example, some

differential lengths shown in Figure 2-2 are given by

dℓe = (1 − 𝜅𝑛e) dℓ, dℓw = (1 − 𝜅𝑛w) dℓ (2.2)

where the subscripts “e” and “w” denote quantities at the viscous layer edge and

the wall respectively. The 𝑛 = 0 curve segment associated with the DDCA element

is denoted as ̃︂DDCA (whose boundary is 𝜕 ̃︂DDCA), which has a differential length

metric dℓ and a curvature of 𝜅 (of which a positive value corresponds to a curve

that is concave towards the positive 𝑛-direction). Instead of using the higher-order

treatment (2.2), a first-order approximation is adopted here. This is appropriate for

the small-curvature case where 𝜅 (𝑛e − 𝑛w) ≪ 1 and yields the following relations,

n̂ d𝑠 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n̂e dℓe ≈ n̂e dℓ (viscous layer edge)

−n̂w dℓw ≈ −n̂w dℓ (wall)

t̂ d𝑛 (perimeter boundaries)

(2.3)

d𝐴 ≈ d𝑛 dℓ (2.4)
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Then, the integrals in (2.1) further transform as follows,

ˆˆ
DDCA

∇ · (fi − f) d𝐴 =

˛
𝜕DDCA

(fi − f) · n̂ d𝑠

=
∑︁

𝜕 ̃︂DDCA

ˆ 𝑛e

𝑛w

(fi − f) · t̂ d𝑛

+

ˆ
̃︂DDCA

[(fi − f)e · n̂e − (fi − f)w · n̂w] dℓ

=
∑︁

𝜕 ̃︂DDCA

(Fi − F) · t̂−
ˆ

̃︂DDCA
(fi − f)w · n̂w dℓ (2.5)

=

ˆ
̃︂DDCA

[︁̃︀∇ · (Fi − F) − (fi − f)w · n̂w

]︁
dℓ (2.6)

(Fi − F) ≡
ˆ 𝑛e

𝑛w

(fi − f) d𝑛 (2.7)

where (fi − f)e vanishes by the definition of the EIF. In (2.5), the summation is

carried out over the (left and right) perimeter boundaries of DDCA (sharing the same

outward-pointing unit normal vector t̂ with 𝜕 ̃︂DDCA), and the integral is performed

along the 𝑛 = 0 reference curve. The operator ̃︀∇· ( ) gives the divergence of a vector

defined on the manifold ̃︂DDCA, and the divergence theorem is applied to obtain

(2.6) from (2.5),

ˆ
̃︂DDCA

̃︀∇ · (Fi − F) dℓ =
∑︁

𝜕 ̃︂DDCA

(Fi − F) · t̂ (2.8)

The expression (2.7) defines an integral defect quantity (Fi − F) for a wall boundary

layer, where the integral over the thickness along 𝑛 is performed from the wall (𝑛w)

to the layer edge (𝑛e). In the case of a wake layer, the integration limits in (2.7)

become the lower and upper edges of the layer (i.e. from (𝑛e)lower to (𝑛e)upper). This

convention of the integral
´

[ ] d𝑛 is assumed throughout the discussion in this thesis.
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The integration limits are occasionally dropped for simplicity and generality.

In the numerical implementation, the line integral in is evaluated in the form of

ˆ
̃︂DDCA

[ ] dℓ =

ˆ
̃︂DDCA

[ ] 𝐽 d𝜉, 𝐽 = |dr/d𝜉| (2.9)

where 𝜉 is the canonical finite-element reference coordinate of ̃︂DDCA; r(𝜉) is a posi-

tion vector that defines the shape of ̃︂DDCA; 𝐽 is the norm of length metric transfor-

mation. Note that all the physical vectors are defined in the global Cartesian basis

{x̂, ŷ} with associated coordinates {𝑥, 𝑦}. Also, a set of local Cartesian basis vec-

tors {ê, n̂} (tangent and normal to ̃︂DDCA respectively) are constructed and will be

used later (e.g. in the finite-element discretization). Note that the Cartesian normal

basis vector n̂ here is not to be confused with the outward-pointing normal vector

of 𝜕DDCA as in (2.1). This distinction is assumed to be clear based on the context

under which those notations appear.

For a defect quantity that is a second-order tensor (f i − f), a relation similar to
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(2.6) is derived as follows,

ˆˆ
DDCA

∇ ·
(︁
f i − f

)︁
d𝐴 =

˛
𝜕DDCA

(︁
f i − f

)︁
· n̂ d𝑠

=
∑︁

𝜕 ̃︂DDCA

ˆ 𝑛e

𝑛w

(︁
f i − f

)︁
· t̂ d𝑛

+

ˆ
̃︂DDCA

[︁(︁
f i − f

)︁
e
· n̂e −

(︁
f i − f

)︁
w
· n̂w

]︁
dℓ

=
∑︁

𝜕 ̃︂DDCA

(︁
Fi − F

)︁
· t̂−

ˆ
̃︂DDCA

(︁
f i − f

)︁
w
· n̂w dℓ

=

ˆ
̃︂DDCA

[︁̃︀∇ ·
(︁
Fi − F

)︁
−
(︁
f i − f

)︁
w
· n̂w

]︁
dℓ (2.10)(︁

Fi − F
)︁
≡
ˆ 𝑛e

𝑛w

(︁
f i − f

)︁
d𝑛 (2.11)

Each of the operators ∇ · ( ) and ̃︀∇ · ( ) defines the divergence of a tensor field. The

notes by Kelly [24] provide more details on the notation and theory of vector/tensor

calculus.

The relations (2.6) and (2.10) reduce an area integral to a line integral involv-

ing integral defect quantities and boundary terms, and are used to derive the IBL

equations.

2.3 Thin Shear Layer Approximations

Thin shear layer approximations are also utilized in deriving the IBL equations. Only

key implications are stated here, while more a detailed order-of-magnitude analysis

can be found in standard texts of fluid dynamics such as those by Kundu et al. [25]

and Drela [26].

The fundamental assumption is that the thickness (𝑛e − 𝑛w) of the shear layer
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is much smaller than other length scales such as the size of an aerodynamic body

(e.g. the chord of an aircraft wing) and the radius of curvature of the solid wall (i.e.

𝜅 (𝑛e − 𝑛w) ≪ 1 where 𝜅 denotes the curvature as defined in Section 2.2). Hence,

the defect integral relations derived in Section 2.2 can be used.

A local streamwise-normal Cartesian basis {ŝ1, n̂s} is defined with associated

canonical coordinates {𝑠1, 𝑛s}. The detailed construction of the basis vectors {ŝ1, n̂s}
is discussed in Section 2.6. As in the compressible Navier-Stokes equations, the total

stress tensor of the viscous flow is formally defined and resolved in the {ŝ1, n̂s} basis,

−𝑝 I + 𝜏

≡ (−𝑝 + 𝜏𝑠1𝑠1) ŝ1 ⊗ ŝ1 + 𝜏𝑛s𝑠1 ŝ1 ⊗ n̂s + 𝜏𝑠1𝑛s n̂s ⊗ ŝ1 + (−𝑝 + 𝜏𝑛s𝑛s) n̂s ⊗ n̂s (2.12)

=

⎡⎢⎣−𝑝 + 𝜏𝑠1𝑠1 𝜏𝑛s𝑠1

𝜏𝑠1𝑛s −𝑝 + 𝜏𝑛s𝑛s

⎤⎥⎦ (2.13)

where 𝑝 is the thermodynamic pressure, 𝜏 is the viscous stress tensor (also called

the deviatoric stress tensor [25]), I denotes the identity tensor, and ⊗ gives the outer

(or, equivalently, tensor/dyadic) product of two vectors. The notation, for example,

𝜏𝑠1𝑛s is understood to be the stress component acting on the edge identified with a

normal vector ŝ1 and in the direction of n̂s. Also, note that this interpretation differs

from and should not be confused with the meaning of “the 𝑠1-row and 𝑛s-column” of

the matrix in (2.13) or the tensor component corresponding to the dyadic product

ŝ1 ⊗ n̂s.

The following development assumes that the fluid is isotropic and Newtonian,

satisfies the Stokes assumption, and has a symmetric stress tensor 𝜏 . It then follows
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[25, 7] that

𝜏 = 𝜇

{︂[︁
∇q + (∇q)𝑇

]︁
− 2

3
(∇ · q) I

}︂
(2.14)

where ∇q gives the gradient (or, equivalently, the jacobian) of the vector field q as

defined the same way as in [24, 26]. Let 𝜏1 be defined by 𝜏1 ≡ 𝜏𝑛s𝑠1 = 𝜏𝑠1𝑛s . Then,

as a result of the thin shear layer approximation,

𝜏 ≈ 𝜏1 ŝ1 ⊗ n̂s + 𝜏1 n̂s ⊗ ŝ1 =

⎡⎢⎣ 0 𝜏1

𝜏1 0

⎤⎥⎦ (2.15)

where the normal stress components 𝜏𝑠1𝑠1 , 𝜏𝑛s𝑛s are negligible compared to 𝜏1.

For convenience, the “in-plane” shear stress vector is defined as

𝜏 ≡ 𝜏 · n̂ (2.16)

which gives the traction induced by the viscous stress tensor 𝜏 on the “plane” iden-

tified with the normal vector n̂. By the thin shear layer assumption, the normal-to-

stream basis vector n̂s is approximately the same as the local Cartesian basis vector

n̂ defined in Section 2.2. Hence,

𝜏 ≈ 𝜏1 ŝ1 and
𝜕𝜏1
𝜕𝑠1

≪ 𝜕𝜏1
𝜕𝑛s

≈ 𝜕𝜏1
𝜕𝑛

(2.17)

Then, it follows that

∇ · 𝜏 =

(︂
𝜕𝜏𝑠1𝑠1
𝜕𝑠1

+
𝜕𝜏𝑛𝑠𝑠1

𝜕𝑛𝑠

)︂
ŝ1 +

(︂
𝜕𝜏𝑛𝑠𝑠1

𝜕𝑠1
+

𝜕𝜏𝑛𝑠𝑛𝑠

𝜕𝑛𝑠

)︂
n̂s ≈

𝜕𝜏

𝜕𝑛
=

𝜕𝜏1
𝜕𝑛

ŝ1 (2.18)

Furthermore, the thin shear layer assumption implies that the static pressure 𝑝

inside the viscous layer is approximately constant across the thickness along 𝑛.
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Figure 2-3: Real viscous flow and EIF velocity profiles across a shear layer on a flat
(left) and curved (right) boundary (figure courtesy of Drela [1], reproduced with

permission)

The thinness of the viscous layer also has implications on the EIF formulation. By

assumption, the EIF matches the real flow outside the viscous layer, i.e. qi = q for

𝑛 > 𝑛e. Hence, in general, the EIF is not tangent to the bounding wall, i.e. qiw ·n̂w ̸=
0, as shown in Figure 2-3. For the shear layer on a curved boundary, |qie − qiw| =

𝒪(𝜅(𝑛e−𝑛w)). Since 𝜅 (𝑛e − 𝑛w) ≪ 1 by the thin shear layer approximation, it then

follows that

qi(𝑛) ≈ qiw , 𝑝i(𝑛) ≈ 𝑝iw (2.19)

inside the viscous layer. Additionally, it is true that ∇𝑝 ≈ ∇𝑝i ≈ ̃︀∇𝑝i. In the fol-

lowing discussion, the subscript “w” is occasionally dropped with the understanding

that the EIF quantities qi, 𝑞i, 𝑝𝑖 are constant across the thickness of the viscous layer

and equal to the values at the wall (𝑛 = 𝑛w).

2.4 Integral Defect Definitions

As an integral approach, the IBL formulation characterizes the viscous layer by a

few integral defect quantities, generically denoted by (Fi − F) as defined in Sec-
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tion 2.2. Various integral defects are defined as follows and will be used throughout

the subsequent discussion,

Π ≡
ˆ

(𝑝i − 𝑝) d𝑛 pressure defect

Q ≡
ˆ

(qi − q) d𝑛 velocity defect

𝑚 ≡
ˆ

(𝜌i − 𝜌) d𝑛 mass defect

M ≡
ˆ

(𝜌i qi − 𝜌q) d𝑛 mass defect flux

p ≡
ˆ

𝜌 (qi − q) d𝑛 momentum defect

P ≡
ˆ

𝜌 (qi − q) ⊗ q d𝑛 momentum defect flux (tensor)

𝑘 ≡
ˆ

𝜌 (𝑞2i − 𝑞2) d𝑛 kinetic energy defect

K ≡
ˆ

𝜌 (𝑞2i − 𝑞2)q d𝑛 kinetic energy defect flux

D ≡
ˆ

(𝜌i − 𝜌)q d𝑛 density defect flux

(2.20)

The integration limits are dropped for simplicity and generality, and are understood

implicitly to follow the definition (2.7) described in Section 2.2. Note that M char-

acterizes the mass flux deficit of the viscous layer compared to the EIF, while P and

K quantify the momentum and kinetic energy losses respectively due to the viscous

flow [25]. The definition of K differs from that in a text of Drela [7] by a factor of 2,

but is only a matter of notation convention.

Using the result of thin shear layer approximation (2.19) that qi(𝑛) ≈ qiw = qi,
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the following relations are obtained,

M =

ˆ
[𝜌 (qi − q) + (𝜌i − 𝜌)qi] d𝑛 ≈ p + 𝑚qi (2.21)

M =

ˆ
[(𝜌i − 𝜌)q + 𝜌i (qi − q)] d𝑛 ≈ D + 𝜌i Q (2.22)

Note that the approximation in (2.22) becomes an exact equality for incompressible

flows since 𝜌i(𝑛) = 𝜌i is constant.

Also, the dissipation integral 𝒟 is defined and approximated as follows,

𝒟 ≡
ˆ (︀

𝜏 · ∇
)︀
· q d𝑛 ≈

ˆ
𝜏 · dq

d𝑛
d𝑛 (2.23)

where the following notation definition is adopted,

(︀
𝜏 · ∇

)︀
· q ≡ 𝜏 : (∇q) ≡ tr

(︀
𝜏 · (∇q)

)︀
(2.24)

The operator “ :” (colon) defines the double contraction of two tensors. The operator

tr( ) gives the trace of a tensor. The trace term has been rewritten and approximated

as follows,

tr
(︀
𝜏 · (∇q)

)︀
= tr

⎛⎜⎜⎝
⎡⎣ 0 𝜏1

𝜏1 0

⎤⎦ ·

⎡⎢⎢⎣
𝜕 (q · ŝ1)

𝜕𝑠1

𝜕 (q · ŝ1)
𝜕𝑛s

𝜕 (q · n̂s)

𝜕𝑠1

𝜕 (q · n̂s)

𝜕𝑛s

⎤⎥⎥⎦
⎞⎟⎟⎠

= 𝜏1 n̂𝑠 ·
𝜕q

𝜕𝑠1
+ 𝜏1 ŝ1 ·

𝜕q

𝜕𝑛s

≈ 𝜏 · 𝜕q
𝜕𝑛

(2.25)

where the thin shear layer results (2.15) and (2.17) are used.
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2.5 Integral Defect Equations

The 2D IBL equations derive from the conservation laws for mass and momentum,

of which the governing differential equations are

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌q) = 0 (mass) (2.26)

𝜕 (𝜌q)

𝜕𝑡
+ ∇ · (𝜌q⊗ q) + ∇ ·

(︁
𝑝 I− 𝜏

)︁
= 0 (momentum) (2.27)

Forming {2q · [equation (2.27)] − 𝑞2 [equation (2.26)]} gives

0 = 2q ·
{︂
𝜕 (𝜌q)

𝜕𝑡
+ ∇ · [q⊗ (𝜌q)] + ∇ ·

(︁
𝑝 I− 𝜏

)︁}︂
− 𝑞2

[︂
𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌q)

]︂
= 2q ·

{︂
q
𝜕𝜌

𝜕𝑡
+ 𝜌

𝜕q

𝜕𝑡
+ (∇q) · (𝜌q) + [∇ · (𝜌q)]q + ∇ ·

(︁
𝑝 I− 𝜏

)︁}︂
− 𝑞2

[︂
𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌q)

]︂
= 𝑞2

𝜕𝜌

𝜕𝑡
+ 𝜌

𝜕𝑞2

𝜕𝑡
+ 𝜌q · ∇

(︀
𝑞2
)︀

+ 𝑞2∇ · (𝜌q) + 2q ·
[︁
∇ ·
(︁
𝑝 I− 𝜏

)︁]︁
=

𝜕 (𝜌 𝑞2)

𝜕𝑡
+ ∇ ·

(︀
𝜌 𝑞2 q

)︀
+ 2q ·

[︁
∇ ·
(︁
𝑝 I− 𝜏

)︁]︁
(2.28)

where the relations

𝑞2 = q · q ,
𝜕 (𝜌q)

𝜕𝑡
= q

𝜕𝜌

𝜕𝑡
+ 𝜌

𝜕q

𝜕𝑡
(2.29)
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and the following vector/tensor identities are used,

∇ · (𝑎⊗ 𝑏) ≡ (∇𝑎) · 𝑏 + (∇ · 𝑏)𝑎 (2.30)

∇ (𝑎 · 𝑏) ≡ (∇𝑎)𝑇 · 𝑏 + (∇𝑏)𝑇 · 𝑎 ≡ 𝑏 · (∇𝑎) + 𝑎 · (∇𝑏) (2.31)

or ∇ (𝑎 · 𝑏) ≡ (𝑏 · ∇)𝑎 + 𝑏× (∇× 𝑎) + (𝑎 · ∇) 𝑏 + 𝑎× (∇× 𝑏) (2.32)

(𝑎 · ∇) 𝑏 ≡ (∇𝑏) · 𝑎 (2.33)

The notation × is the cross product of vectors and ∇ × ( ) is the curl of a vector.

Note that (2.31) and (2.32) are equivalent.

The equation (2.28) governs the kinetic energy and is restated as follows.

𝜕 (𝜌 𝑞2)

𝜕𝑡
+ ∇ ·

(︀
𝜌 𝑞2 q

)︀
+ 2q ·

[︁
∇ ·
(︁
𝑝 I− 𝜏

)︁]︁
= 0 (kinetic energy) (2.34)

Note that the differential equations (2.26), (2.27) and (2.34) also apply to the

EIF except that the deviatoric stress tensor 𝜏 i vanishes. Subtracting the viscous

equation from the EIF equation and integrating over a DDCA element result in the

following form, ˆˆ
DDCA

[(Residual)EIF − (Residual)] d𝐴 = 0 (2.35)

This general form is the point of departure for deriving the IBL formulation and

is applied separately to the mass, momentum and kinetic energy equations in the

following sections.

2.5.1 Mass

The goal is to derive a governing equation in terms of integral defect quantities.

First, the form (2.35) is applied to the mass equation (2.26). Then, the integral
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defect relations and definitions presented in Section 2.2 and 2.4 are used, as well as

the thin layer approximations in Section 2.3. This procedure is carried out as follows,

0 =

ˆˆ
DDCA

𝜕 (𝜌i − 𝜌)

𝜕𝑡
+ ∇ · (𝜌i qi − 𝜌q) d𝐴

=

ˆ
̃︂DDCA

{︂
𝜕

𝜕𝑡

[︂ˆ 𝑛e

𝑛w

(𝜌i − 𝜌) d𝑛
]︂}︂

dℓ

+

ˆ
̃︂DDCA

{︂̃︀∇ ·
[︂ˆ 𝑛e

𝑛w

(𝜌i qi − 𝜌q) d𝑛
]︂
− (𝜌i qi − 𝜌q)w · n̂w

}︂
dℓ

=

ˆ
̃︂DDCA

{︂
𝜕𝑚

𝜕𝑡
+ ̃︀∇ ·M− (𝜌i qi − 𝜌q)w · n̂w

}︂
dℓ (2.36)

where the definitions (2.20) of integral defects (𝑚,M) are used. Note that the partial

differentiation with respect to time (i.e. 𝜕(·)/𝜕𝑡) is interchanged with the integral

along 𝑛 using the Leibniz rule of integration assuming that 𝜕(𝑛e − 𝑛w)/𝜕𝑡 = 0. The

fact that (2.36) holds for any arbitrary ̃︂DDCA implies that

𝜕𝑚

𝜕𝑡
+ ̃︀∇ ·M− (𝜌i qi − 𝜌q)w · n̂w = 0 (2.37)

In general, a nonzero flux (𝜌q)w can be used to model blowing and suction of the

viscous flow through the wall. However, in the scope of this thesis, a no-slip wall

boundary condition qw = 0 is assumed for the viscous flow. Then, the equation

(2.37) simplifies to
𝜕𝑚

𝜕𝑡
+ ̃︀∇ ·M− (𝜌i qi)w · n̂w = 0 (2.38)

In VII problems, the equation (2.38) is called a wall transpiration condition and

sets the mass flux at the wall or wake cut for the inviscid flow (i.e. EIF) equations,

typically as a modification to the flow-tangency boundary condition. Note that 𝑚 and

𝜕𝑚/𝜕𝑡 may be omitted even for compressible unsteady flows since their magnitudes
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are likely to be negligible [1].

2.5.2 Momentum

As with the mass equation, a similar derivation is performed for momentum. Apply-

ing the form (2.35) to the momentum equation (2.27) gives

0 =

ˆˆ
DDCA

[︂
𝜕 (𝜌i qi − 𝜌q)

𝜕𝑡
+ ∇ · (𝜌i qi ⊗ qi − 𝜌q⊗ q) + ∇ ·

(︁
(𝑝i − 𝑝) I + 𝜏

)︁]︂
d𝐴

(2.39)

The three terms on the right-hand side of (2.39) are transformed separately as follows.

The first term becomes

ˆˆ
DDCA

𝜕 (𝜌i qi − 𝜌q)

𝜕𝑡
d𝐴 =

ˆ
̃︂DDCA

𝜕

𝜕𝑡

[︂ˆ 𝑛e

𝑛w

(𝜌i qi − 𝜌q) d𝑛
]︂

dℓ

=

ˆ
̃︂DDCA

𝜕M

𝜕𝑡
dℓ

=

ˆ
̃︂DDCA

𝜕 (p + 𝑚qi)

𝜕𝑡
dℓ

=

ˆ
̃︂DDCA

(︂
𝜕p

𝜕𝑡
+

𝜕𝑚

𝜕𝑡
qi + 𝑚

𝜕qi

𝜕𝑡

)︂
dℓ (2.40)

where the approximation (2.21) is used.

44



The second term on the right-hand side of (2.39) becomes

ˆˆ
DDCA

∇ · (𝜌i qi ⊗ qi − 𝜌q⊗ q) d𝐴 (2.41)

=

ˆˆ
DDCA

∇ · [𝜌 (qi − q) ⊗ q + qi ⊗ (𝜌i qi − 𝜌q)] d𝐴

=

ˆ
̃︂DDCA

̃︀∇ ·
{︂[︂ˆ 𝑛e

𝑛w

𝜌 (qi − q) ⊗ q d𝑛
]︂
− [𝜌 (qi − q) ⊗ q]w · n̂w

}︂
dℓ

+

ˆ
̃︂DDCA

̃︀∇ ·
{︂[︂ˆ 𝑛e

𝑛w

qi ⊗ (𝜌i qi − 𝜌q) d𝑛
]︂
− [qi ⊗ (𝜌i qi − 𝜌q)]w · n̂w

}︂
dℓ

=

ˆ
̃︂DDCA

[︂̃︀∇ ·P + ̃︀∇ · (qi ⊗M) − qi

(︂
𝜕𝑚

𝜕𝑡
+ ̃︀∇ ·M

)︂]︂
dℓ

=

ˆ
̃︂DDCA

[︂̃︀∇ ·P +
(︁̃︀∇qi

)︁
·M +

(︁̃︀∇ ·M
)︁
qi − qi

(︂
𝜕𝑚

𝜕𝑡
+ ̃︀∇ ·M

)︂]︂
dℓ

=

ˆ
̃︂DDCA

[︂̃︀∇ ·P +
(︁̃︀∇qi

)︁
·M− 𝜕𝑚

𝜕𝑡
qi

]︂
dℓ (2.42)

where the definitions (2.20) of integral defects (𝑚,M,P) are used, and the thin shear

layer result (2.19) is applied (i.e. qi(𝑛) ≈ qiw = qi). The identity (2.30) and the

following relation are used,

(𝑎⊗ 𝑏) · 𝑐 ≡ 𝑎 (𝑏 · 𝑐) (2.43)

The no-slip wall condition (qw = 0) nullifies the following flux,

[𝜌 (qi − q) ⊗ q]w · n̂w = [𝜌 (qi − q)]w (qw · n̂w) = 0 (2.44)

Also, the mass defect equation (2.37) gives the following substitution,

[qi ⊗ (𝜌i qi − 𝜌q)]w · n̂w = qi [(𝜌i qi − 𝜌q)w · n̂w] = qi

(︂
𝜕𝑚

𝜕𝑡
+ ̃︀∇ ·M

)︂
(2.45)
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The third right-hand-side term of (2.39) becomes

ˆˆ
DDCA

{︁
∇ ·
[︁
(𝑝i − 𝑝) I + 𝜏

]︁}︁
d𝐴

=

ˆ
̃︂DDCA

{︂̃︀∇ ·
{︂[︂ˆ 𝑛e

𝑛w

(𝑝i − 𝑝) I d𝑛
]︂
−
[︁
(𝑝i − 𝑝) I

]︁
w
· n̂w

}︂
+

ˆ 𝑛e

𝑛w

𝜕𝜏

𝜕𝑛
d𝑛
}︂

dℓ

=

ˆ
̃︂DDCA

[︁̃︀∇ · (Π I) − (𝑝i − 𝑝)w n̂w +
(︀
𝜏 e − 𝜏w

)︀
· n̂
]︁

dℓ

=

ˆ
̃︂DDCA

(︁̃︀∇Π − (𝑝i − 𝑝)w n̂w − 𝜏w

)︁
dℓ (2.46)

where the definition (2.20) of Π and the approximation (2.18) are used. The viscous

stress tensor vanishes at the edge of the viscous layer (i.e. 𝜏 e = 0). The viscous

traction on the wall is defined and approximated as

𝜏w ≡ 𝜏w · n̂w ≈ 𝜏w · n̂ (2.47)

where the approximation n̂w ≈ n̂ stems from the thin shear layer assumption.

Substituting (2.40), (2.42) and (2.46) into (2.39) gives

0 =

ˆˆ
DDCA

[︂
𝜕 (𝜌i qi − 𝜌q)

𝜕𝑡
+ ∇ · (𝜌i qi ⊗ qi − 𝜌q⊗ q) + ∇ ·

(︁
(𝑝i − 𝑝) I + 𝜏

)︁]︂
d𝐴

=

ˆ
̃︂DDCA

[︂
𝜕p

𝜕𝑡
+ 𝑚

𝜕qi

𝜕𝑡
+ ̃︀∇ ·P +

(︁̃︀∇qi

)︁
·M + ̃︀∇Π − (𝑝i − 𝑝)w n̂w − 𝜏w

]︂
dℓ

(2.48)

Since (2.48) holds for any ̃︂DDCA, it follows that

𝜕p

𝜕𝑡
+ 𝑚

𝜕qi

𝜕𝑡
+ ̃︀∇ ·P +

(︁̃︀∇qi

)︁
·M + ̃︀∇Π − (𝑝i − 𝑝)w n̂w − 𝜏w = 0 (2.49)
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Using the first-order thin shear layer approximations that 𝑝i − 𝑝 ≈ 0 and Π ≈
0, the equation (2.49) then simplifies to the following integral defect equation for

momentum,
𝜕p

𝜕𝑡
+ 𝑚

𝜕qi

𝜕𝑡
+ ̃︀∇ ·P +

(︁̃︀∇qi

)︁
·M− 𝜏w = 0 (2.50)

Note that (2.50) is a vector equation, but formally has only a component tangent

to the ̃︂DDCA as a result of the thin shear layer approximation [13, 1].

2.5.3 Kinetic Energy

Similarly, for the kinetic energy equation (2.34), the form (2.35) is applied again,

0 =

ˆˆ
DDCA

[︂
𝜕 (𝜌i 𝑞

2
i − 𝜌 𝑞2)

𝜕𝑡
+ ∇ ·

(︀
𝜌i 𝑞

2
i qi − 𝜌 𝑞2 q

)︀]︂
d𝐴

+

ˆˆ
DDCA

[︀
2 (qi · ∇𝑝i − q · ∇𝑝) + 2q ·

(︀
∇ · 𝜏

)︀]︀
d𝐴

(2.51)

The terms on the right-hand side of (2.51) are transformed separately as follows.

The first term becomes

ˆˆ
DDCA

𝜕 (𝜌i 𝑞
2
i − 𝜌 𝑞2)

𝜕𝑡
d𝐴 =

ˆ
̃︂DDCA

𝜕

𝜕𝑡

[︂ˆ 𝑛e

𝑛w

(︀
𝜌i 𝑞

2
i − 𝜌 𝑞2

)︀
d𝑛
]︂

dℓ

=

ˆ
̃︂DDCA

𝜕

𝜕𝑡

{︂ˆ 𝑛e

𝑛w

[︀
𝜌
(︀
𝑞2i − 𝑞2

)︀
+ (𝜌i − 𝜌) 𝑞2i

]︀
d𝑛
}︂

dℓ

=

ˆ
̃︂DDCA

𝜕 (𝑘 + 𝑚𝑞2i )

𝜕𝑡
dℓ (2.52)

where the definitions (2.20) of integral defects (𝑘,𝑚) are used.
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The second term on the right-hand side of (2.51) becomes

ˆˆ
DDCA

[︀
∇ ·
(︀
𝜌i 𝑞

2
i qi − 𝜌 𝑞2 q

)︀]︀
d𝐴

=

ˆˆ
DDCA

∇ ·
[︀
𝜌 (𝑞2i − 𝑞2)q + 𝑞2i (𝜌i qi − 𝜌q)

]︀
d𝐴

=

ˆ
̃︂DDCA

{︂̃︀∇ ·
[︂ˆ 𝑛e

𝑛w

𝜌 (𝑞2i − 𝑞2)q d𝑛
]︂
−
[︀
𝜌 (𝑞2i − 𝑞2)q

]︀
w · n̂w

}︂
dℓ

+

ˆ
̃︂DDCA

{︂̃︀∇ ·
[︂ˆ 𝑛e

𝑛w

𝑞2i (𝜌i qi − 𝜌q) d𝑛
]︂
−
[︀
𝑞2i (𝜌i qi − 𝜌q)

]︀
w · n̂w

}︂
dℓ

=

ˆ
̃︂DDCA

[︂̃︀∇ ·K + ̃︀∇ ·
(︀
𝑞2i M

)︀
− 𝑞2i

(︂
𝜕𝑚

𝜕𝑡
+ ̃︀∇ ·M

)︂]︂
dℓ

=

ˆ
̃︂DDCA

[︂̃︀∇ ·K + M · ̃︀∇ (︀𝑞2i )︀− 𝑞2i
𝜕𝑚

𝜕𝑡

]︂
dℓ (2.53)

where the definitions (2.20) of integral defects (K,M) are used. The no-slip wall

condition (qw = 0) results in the following relation,

[︀
𝜌 (𝑞2i − 𝑞2)q

]︀
w · n̂w =

[︀
𝜌(𝑞2i − 𝑞2)

]︀
w (qw · n̂w) = 0 (2.54)

and the mass defect equation (2.37) gives the following substitution,

[︀
𝑞2i (𝜌i qi − 𝜌q)

]︀
w · n̂w = 𝑞2i [(𝜌i qi − 𝜌q)w · n̂w] = 𝑞2i

(︂
𝜕𝑚

𝜕𝑡
+ ̃︀∇ ·M

)︂
(2.55)

The following identity is also applied,

̃︀∇ ·
(︀
𝑞2i M

)︀
≡ 𝑞2i

̃︀∇ ·M + M · ̃︀∇ (︀𝑞2i )︀ (2.56)

48



The rest of terms in (2.51) becomes

ˆˆ
DDCA

[︀
2 (qi · ∇𝑝i − q · ∇𝑝) + 2q ·

(︀
∇ · 𝜏

)︀]︀
d𝐴

=

ˆ
̃︂DDCA

{︂
2

ˆ 𝑛e

𝑛w

[(qi − q) · ∇𝑝i + q · ∇(𝑝i − 𝑝)] d𝑛
}︂

dℓ

+

ˆˆ
DDCA

2
[︀
∇ ·
(︀
𝜏 · q

)︀
− tr

(︀
𝜏 · (∇q)

)︀]︀
d𝐴

=

ˆ
̃︂DDCA

2

[︂
Q · ̃︀∇𝑝i −

(︀
𝜏 · q

)︀
w · n̂w −

ˆ 𝑛e

𝑛w

(︂
𝜏 · 𝜕q

𝜕𝑛

)︂
d𝑛
]︂

dℓ

=

ˆ
̃︂DDCA

2
[︁
Q · ̃︀∇𝑝i −𝒟

]︁
dℓ (2.57)

where definition (2.20) of Q and the expression (2.23) of 𝒟 are applied. The thin

shear layer approximation implies that ∇(𝑝i − 𝑝) ≈ 0 and ∇𝑝i ≈ ̃︀∇𝑝i is constant

across the thickness of the viscous layer. The following identity

𝑎 ·
[︂
∇ ·
(︂
𝑏
𝑇
)︂]︂

≡ ∇ ·
(︁
𝑏 · 𝑎

)︁
− tr

(︁
𝑏 · (∇𝑎)

)︁
(2.58)

and the symmetry of the viscous stress tensor 𝜏 (i.e. 𝜏 = 𝜏
𝑇 ) are used. The trace

term tr
(︀
𝜏 · (∇q)

)︀
is substituted using (2.25). The divergence theorem is applied to

transform the following term,

ˆˆ
DDCA

[︀
∇ ·
(︀
𝜏 · q

)︀]︀
d𝐴 =

∑︁
𝜕 ̃︂DDCA

ˆ 𝑛e

𝑛w

(︀
𝜏 · q

)︀
· t̂ d𝑛

+

ˆ
̃︂DDCA

[︀(︀
𝜏 · q

)︀
e · n̂e −

(︀
𝜏 · q

)︀
w · n̂w

]︀
dℓ

= 0 (2.59)

where
(︀
𝜏 · q

)︀
· t̂ ≈ 0 according to the thin shear layer assumption (𝜏 · q only has
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a component along n̂s (≈ n̂) and is thus approximately orthogonal to t̂). The edge

quantity
(︀
𝜏 · q

)︀
e · n̂e is dropped since 𝜏 e = 0. The wall term

(︀
𝜏 · q

)︀
w · n̂w vanishes

given the no-slip wall boundary condition (qw = 0).

Substituting (2.52), (2.53) and (2.57) into (2.51) gives

0 =

ˆˆ
DDCA

[︂
𝜕 (𝜌i 𝑞

2
i − 𝜌 𝑞2)

𝜕𝑡
+ ∇ ·

(︀
𝜌i 𝑞

2
i qi − 𝜌 𝑞2 q

)︀]︂
d𝐴

+

ˆˆ
DDCA

[︀
2 (qi · ∇𝑝i − q · ∇𝑝) + 2q ·

(︀
∇ · 𝜏

)︀]︀
d𝐴

=

ˆ
̃︂DDCA

[︂
𝜕 (𝑘 + 𝑚𝑞2i )

𝜕𝑡
+ ̃︀∇ ·K + M · ̃︀∇ (︀𝑞2i )︀− 𝑞2i

𝜕𝑚

𝜕𝑡
+ 2Q · ̃︀∇𝑝i − 2𝒟

]︂
dℓ

=

ˆ
̃︂DDCA

[︂
𝜕𝑘

𝜕𝑡
+ 𝑚

𝜕 (𝑞2i )

𝜕𝑡
+ ̃︀∇ ·K + D · ̃︀∇ (︀𝑞2i )︀− 2𝒟

]︂
dℓ (2.60)

where the terms involving M and Q are combined into D using (2.22). The following

relation is derived from the momentum equation of the EIF,

∇𝑝i = −1

2
𝜌i∇

(︀
𝑞2i
)︀

(2.61)

The gradient term is further expanded as

1

2
∇
(︀
𝑞2i
)︀

=
1

2
∇ (qi · qi) = qi · (∇qi) = (∇qi) · qi = (qi · ∇)qi (2.62)

using the identities (2.31) and (2.32), as well as the irrotationality of the EIF (i.e.

∇× q = 0).

Since (2.60) holds for any ̃︂DDCA, it follows that

𝜕𝑘

𝜕𝑡
+ 𝑚

𝜕 (𝑞2i )

𝜕𝑡
+ ̃︀∇ ·K + D · ̃︀∇ (︀𝑞2i )︀− 2𝒟 = 0 (2.63)
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which is the integral defect equation for kinetic energy.

Formulated in terms of integral defects, the momentum and kinetic energy equa-

tions (2.50) and (2.63) constitute the unsteady 2D IBL equations in the differential

form. They also apply to compressible flows under the thin shear layer assumptions.

To compose a well-defined problem, two variables {𝛿,𝒜} are chosen as the primary

unknowns, which are boundary parameters to be defined in Section 2.6. The IBL

equations will also be closed with profile definitions and dissipation relations pre-

sented therein.

2.6 Profile Construction and Equation Closure

This section introduces the viscous closure models, including profile construction and

dissipation relations that are necessary to complete the IBL formulation.

q

q

1s

s2

1U

W 2

n

i

∆ψ

q

q

Figure 2-4: 3D streamwise and crossflow velocity profiles (figure courtesy of Drela
[1], reproduced with permission)

Figure 2-4 illustrates the velocity profiles inside the viscous layer in a 3D con-

figuration, where ŝ1, ŝ2 are the local streamwise and crossflow (orthonormal) basis
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vectors and form a local Cartesian basis together with the normal-to-stream basis

vector n̂s ≡ ŝ1 × ŝ2. As mentioned in Section 2.3, the approximation n̂s ≈ n̂ holds

for thin shear layers. The crossflow profile (involving ŝ2,∆Ψ,𝑊q2) is dropped in the

2D formulation.

By the thin shear layer approximation, the viscous flow velocity q inside the

viscous layer is primarily comprised of the component ̃︀q. By definition the “in-plane”

velocity ̃︀q is tangent to the 𝑛 = 0 reference curve, which has been selected to coincide

with the wall and the wake centerline. Hence,

q(𝑛) ≈ ̃︀q(𝑛), ̃︀q(𝑛) ≡ 𝑈(𝑛)q1, q1 ≡ 𝑞e ŝ1 = 𝑞i ŝ1 (2.64)

where 𝑈(𝑛) is the non-dimensional normalized streamwise velocity profile that will

be constructed later. The q1 factor gives the appropriate magnitude and vector

direction.

Note that the normal velocity component q · n̂ has been excluded in the approxi-

mation of (2.64). This is justified by the fact that the normal component (i.e. along

n̂) of the momentum equation (2.50) is dropped in the first-order boundary layer

theory which is employed here. In consequence, the component q · n̂ is implicitly

determined by q · ŝ1 together with the mass equation (2.26). Nevertheless, in the

interest of minimizing the errors associated with the boundary layer approximation,

it is desirable to orient the q1 vector such that typical magnitudes of q · n̂ within the

shear layer are minimized. This is accomplished by aligning q1 with the EIF velocity

qi as sketched in the left part of Figure 2-5.

q1 ≡ qiw (2.65)
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A possible difficulty with the particular q1 definition (2.65) is that it may fail in

the vicinity of a stagnation point, where qi can be nearly parallel to n̂ so that the

assumed profile velocities are nearly normal to the wall. A more robust definition is

to define q1 via a projection

q1 ≡ qiw − (n̂ · qiw) n̂ (2.66)

which ensures that the profile velocities are tangent to the 𝑛 = 0 curve and thus the

wall, as indicated in the right part of Figure 2-5. This definition is currently adopted

in the numerical implementation of this thesis.

qi

n

n

q nw

n= 0
q

1
n= 0

qi

n

n

q

q
1

Profile basis aligned with EIF  Profile basis specified 

nw

Figure 2-5: Profile basis vector orientation options (very large wall-normal velocity
shown for emphasis) (figure courtesy of Drela [1], reproduced with permission)

The non-dimensional normalized density and viscosity profiles, 𝑅(𝑛) and 𝑉 (𝑛),

are also defined,

𝑅(𝑛) ≡ 𝜌(𝑛)

𝜌e
, 𝑉 (𝑛) ≡ 𝜇(𝑛)

𝜇e
(2.67)

The assumption of incompressible viscous flow implies that 𝑅(𝑛) = 1 and 𝑉 (𝑛) = 1

inside the viscous layer.

Substituting the velocity profile q(𝑛) in (2.64), and the density and viscosity

profiles, i.e. 𝑅(𝑛) and 𝑉 (𝑛) respectively, into the integral defect definitions (2.20)
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gives the following expressions for the integral defects,

𝑚 = 𝜌i 𝛿𝜌

Q = 𝛿′1 q1

M = 𝜌i 𝛿
*
1 q1

p = M−𝑚q1

P = 𝜌i 𝜃11 q1 ⊗ q1

𝑘 = 𝜌i 𝑞
2
i 𝜃

*
0

K = 𝜌i 𝑞
2
i 𝜃

*
1 q1

(2.68)

in terms of the following definitions of various thickness integrals,

𝛿*1 ≡ 𝛿

ˆ 1

0

(︂
1 −𝑅𝑈

)︂
d𝜂

𝜃11 ≡ 𝛿

ˆ 1

0

(︂
1 − 𝑈

)︂
𝑅𝑈 d𝜂

𝜃*1 ≡ 𝛿

ˆ 1

0

(︂
1 − 𝑈2

)︂
𝑅𝑈 d𝜂

𝛿′1 ≡ 𝛿

ˆ 1

0

(︂
1 − 𝑈

)︂
d𝜂

𝛿𝜌 ≡ 𝛿

ˆ 1

0

(︂
1 −𝑅

)︂
d𝜂

𝜃*0 ≡ 𝛿

ˆ 1

0

(︂
1 − 𝑈2

)︂
𝑅 d𝜂

(2.69)

Here, 𝛿 is defined as the viscous layer thickness and chosen to be one of the two

primary unknowns of the IBL equations, and 𝜂 denotes the normalized thickness

coordinate defined as

𝜂 ≡

⎧⎨⎩(𝑛− 𝑛w)/𝐿, 𝐿 ≡ 𝛿 (wall boundary layer)

𝑛/𝐿 𝐿 ≡ 𝛿/2 (wake layer)
(2.70)

where 𝐿 is a reference profile thickness scale. In the subsequent discussion of profile
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closures, 𝜂 is assumed to be in [0, 1]. The wake profile is assumed to be symmetric

about its centerline, so that the half corresponding to 𝜂 ∈ [−1, 0] is considered a

duplicate of the half of 𝜂 ∈ [0, 1]. Note that 𝛿*1, 𝜃11 and 𝜃*1 are the conventional mass,

momentum and kinetic energy defect thicknesses respectively [7].

The skin friction and dissipation coefficients, i.e. 𝐶𝑓1 and 𝐶𝒟, are defined via the

following expressions,

𝜏w =
1

2
𝜌i 𝑞i 𝐶𝑓1 q1, 𝒟 = 𝜌i 𝑞

3
i 𝐶𝒟 (2.71)

and non-dimensionalize the wall shear stress vector 𝜏w and the dissipation integral 𝒟.

Closures of 𝐶𝑓1 and 𝐶𝒟 are developed later for laminar and turbulent flows separately.

Note that 𝐶𝑓1 is generally nonzero for wall boundary layers but vanishes in the wake.

The numerical quadrature rule for evaluating integrals such as the defect thick-

nesses is described in greater detail in Appendix A.

2.6.1 Laminar Closure

The closure for laminar flows is described in this section. The assumed laminar

velocity profile 𝑈 is defined as follows,

𝑈(𝜂;𝒜) ≡

⎧⎨⎩𝑈𝑘(𝒜𝑚 − 2)2 𝑓1𝑚(𝜂) + 𝒜𝑚𝑓1(𝜂) + 𝑓0(𝜂) (wall)

0.125𝒜(1 − 𝑓0(𝜂)) + 𝑓0(𝜂) (wake)
(2.72)

𝑈𝑘 = 0.2, 𝒜𝑚 = 𝒜𝑐 tanh(
𝒜
𝒜𝑐

) = 7 tanh(
𝒜
7

), 𝒜 =

⎧⎪⎨⎪⎩𝒜, 𝒜 ≥ 0

𝒜
1−𝒜 , 𝒜 < 0

(2.73)
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based on the polynomials {𝑓0, 𝑓1, 𝑓1𝑚} (plotted in Figure 2-6),

𝑓0(𝜂) = 6𝜂2 − 8𝜂3 + 3𝜂4

𝑓1(𝜂) = 𝜂 − 3𝜂2 + 3𝜂3 − 𝜂4

𝑓1𝑚(𝜂) = −2𝜂2 + 7𝜂3 − 9𝜂4 + 5𝜂5 − 𝜂6

(2.74)

The laminar wake is rare in practical aerodynamic flows and thus its inclusion here

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.1 0 0.1 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2-6: Assumed polynomials for laminar profile

is only for completeness. The parameter 𝒜 determines the shape of the velocity

profile, and is chosen as one of the two primary unknowns of the IBL equations. 𝒜𝑚

and 𝒜 are regularized versions of the profile shape parameter. The velocity profile

𝑈(𝜂) is used in computing the thicknesses defined in (2.69).
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The shear stress vector (2.17) profile inside the viscous layer is written as

𝜏 (𝑛) = 𝜌i 𝑞i 𝑆(𝑛)q1 (2.75)

where 𝑆(𝑛) is the non-dimensional normalized streamwise shear stress profile that is

obtained from the velocity and viscosity profiles (𝑈 and 𝑉 ),

𝑆(𝜂;𝒜) ≡ 𝜏1
𝜌i 𝑞2i

≈ 1

𝜌i 𝑞2i
𝜇

d(q1 · ŝ1)
d𝑛

=
1

𝑅𝑒𝐿
𝑉

d𝑈
d𝜂

, 𝑅𝑒𝐿 ≡ 𝜌i 𝑞i 𝐿

𝜇e
(2.76)

Note that 𝑆 approaches infinity near the stagnation point (𝑞i = 0), but 𝑞i 𝑆 re-

mains finite throughout the viscous layer. Hence, to sidestep that singularity, the

actual computation treats 𝑞i 𝑆 as a single entity. Only the following non-dimensional

quantity is computed in the numerical implementation,

𝑅𝑒𝛿 𝑆(𝜂) =

⎧⎪⎪⎨⎪⎪⎩
𝑉

d𝑈
d𝜂

(wall)

2𝑉
d𝑈
d𝜂

(wake)
, 𝑅𝑒𝛿 ≡

𝜌i 𝑞i 𝛿

𝜇i
(2.77)

Then, following from the definitions in (2.71) and the expression (2.23), the skin

friction and dissipation coefficients are

𝐶𝑓1 =
𝜏w · ŝ1

1

2
𝜌i 𝑞i q1 · ŝ1

=
𝜌i 𝑞i 𝑆(0)q1 · ŝ1

1

2
𝜌i 𝑞i q1 · ŝ1

= 2𝑆(0) =
2

𝑅𝑒𝐿
𝑉 (0)

d𝑈
d𝜂

⃒⃒⃒⃒
𝜂=0

𝐶𝒟 =
𝒟

𝜌i 𝑞3i
=

ˆ
𝜏 · dq

d𝑛
d𝑛

𝜌i 𝑞3i
=

ˆ
(𝜌i 𝑞i 𝑆 q1) ·

d(𝑈 q1)

d𝜂
d𝜂

𝜌i 𝑞3i
=

ˆ
𝑆

d𝑈
d𝜂

d𝜂

(2.78)

which depend on the non-dimensional profiles (𝑈, 𝑉, 𝑆). To avoid the aforementioned
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singularity at the stagnation point (𝑞i = 0), the following quantities are computed

in the numerical implementation instead,

𝑅𝑒𝛿 𝐶𝑓1 =

⎧⎪⎪⎨⎪⎪⎩
2𝑅𝑒𝛿 𝑆(0), (wall)

0, (wake)

, 𝑅𝑒𝛿 𝐶𝒟 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ˆ 1

0

𝑅𝑒𝛿 𝑆
d𝑈
d𝜂

d𝜂, (wall)

2

ˆ 1

0

𝑅𝑒𝛿 𝑆
d𝑈
d𝜂

d𝜂, (wake)

(2.79)

Note that the factor of 2 in the wake expression of 𝑅𝑒𝛿 𝐶𝒟 corresponds to doubling

the value of a half wake layer.

2.6.2 Turbulent Closure

The closure for turbulent flows is formulated separately in this section.

Turbulent Velocity Profile

The turbulent velocity profile in this thesis grows out of Bradshaw’s 3D extension

[5] of the composite 2D turbulent profile of Coles [27], and is reduced to 2D here. It

is first assumed that the boundary layer velocity profile 𝑈(𝜂) to be defined satisfies

that (︂
𝜕𝑈

𝜕𝜂

)︂
w

= 𝒜 (2.80)

The overall velocity profile 𝑈 is constructed as a sum of the inner-layer (closer to the

wall) and outer-layer parts, 𝑈i and 𝑈o respectively,

𝑈(𝜂; 𝛿,𝒜, 𝑞i) = 𝑈i + 𝑈o (2.81)
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where the inner-layer and the outer-layer profiles are defined as follows

𝑈i(𝜂) ≡

⎧⎪⎨⎪⎩
𝒜
𝛿+

𝑢+(𝜂; 𝑦+) (wall)

𝑎i 𝒜 (wake)
, 𝑈o(𝜂) ≡ 𝑄o 𝑔o(𝜂) (2.82)

𝑎i = 0.125, 𝑄o = 1 − 𝑈ie , 𝑈ie = 𝑈i|𝜂=𝜂e=1 (2.83)

The regularized shape parameter 𝒜 is defined in (2.73). The outer-layer profile is

assumed to take a polynomial form,

𝑔o(𝜂; 𝑏) =
(︀
𝑏1𝜂 + 𝑏2𝜂

2 + 𝑏3𝜂
3
)︀
𝜂𝑏 (2.84)

𝑏1 = 3
(𝑏 + 2)(𝑏 + 3)

(𝑏 + 7)
, 𝑏2 = −5

(𝑏 + 1)(𝑏 + 3)

(𝑏 + 7)
, 𝑏3 = 2

(𝑏 + 1)(𝑏 + 2)

(𝑏 + 7)
(2.85)

While a profile shape parameter 𝑏 ≫ 1 produces “lift-off” separation profiles in both

wall boundary layers and wakes, a value of 𝑏 ≈ 1 is appropriate for attached boundary

flows and is adopted in the current numerical implementation. Figure 2-7 illustrates

the assumed polynomial 𝑔o(𝜂).

To complete the definition in (2.82), standard wall variables (denoted with the

superscript “+”) are defined as follows, applied in the direction of the wall shear

vector 𝜏w,

𝑦+ ≡ 𝜌w 𝑞𝜏 𝑛

𝜇w
= 𝜂 𝛿+ (2.86)

𝛿+ ≡ 𝜌w 𝑞𝜏 𝛿

𝜇w
=

(︂
𝜈i

𝜈w
𝑅𝑒𝛿 |𝒜|

)︂1/2

(2.87)
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Figure 2-7: Assumed polynomial for turbulent outer-layer profile

with a suitable shear flow velocity scale,

𝑞𝜏 ≡
(︂ |𝜏w|

𝜌w

)︂1/2
=

(︂
𝜇w 𝑞i

𝜌w 𝛿
|𝒜|
)︂1/2

= 𝑞i

(︂
𝜈w |𝒜|
𝜈i 𝑅𝑒𝛿

)︂1/2
(2.88)

The wall profile 𝑢+(𝜂; 𝑦+) is governed by the following equation modified from Spald-

ing’s law of the wall [28],

0 = 𝑦+𝑚 − 𝑢+ − 𝑒−𝜅𝐵

[︂
𝑒𝜅𝑢

+ − 1 − 𝜅𝑢+ − 1

2
(𝜅𝑢+)2 − 1

6
(𝜅𝑢+)3

]︂
(2.89)

𝑦+𝑚 ≡
(︂

1 − 𝜂𝑛

𝑛 + 1

)︂
𝑦+ (2.90)

where 𝐵 ≈ 5 and 𝜅 ≈ 0.41. A suitable value for the exponent is 𝑛=3 or 𝑛=4 (𝑛 = 4

is used in the current implementation). The wall profile 𝑢+ satisfies the following
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conditions,

𝑢+
⃒⃒
w = 0,

d𝑢+

d𝑦+

⃒⃒⃒⃒
w

= 1,
d𝑢+

d𝑦+

⃒⃒⃒⃒
e

= 0 (2.91)

where the first two equalities agree with the original wall profile of Spalding and

the last one results from the modification, i.e. the leading factor multiplying 𝑦+ in

(2.90).

The nonlinear equation (2.89) is solved using the Newton’s method up to machine

zero mostly with no more than four iterations when the following initial guess is used

𝑢+initial ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑦+, 0 ≤ 𝑦+ < 7

1.6

𝜅
ln 𝑦+ + 𝐵 − 5.9, 7 ≤ 𝑦+ < 40

1

𝜅
ln 𝑦+ + 𝐵 − 0.4, 40 ≤ 𝑦+

(2.92)

Figure 2-8 compares the modified wall profile to the original Spalding profile, for the

moderate Reynolds number case of 𝛿+ = 5000.
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Figure 2-8: Original and modified Spalding profiles for turbulent inner layer (figure
courtesy of Drela [1], reproduced with permission)

Note that the condition (2.80) is satisfied by construction of the velocity profile
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𝑈(𝜂). Also, the 2D turbulent boundary layer velocity profile takes the same form as

the streamwise formulation of Bradshaw [5],

𝑈 = 𝑈𝜏 𝑢
+(𝑦+) + (1 − 𝑈𝜏 𝑢

+(𝛿+)) 𝑔o(𝜂), 𝑈𝜏 ≡ 𝑞𝜏
𝑞i

(2.93)

Figure 2-9 compares the assumed profile for the streamwise component 𝑈 with

five 2D experimental profiles from Simpson et al. [29]. The 𝜏w parameters were set

to their measured values, and 𝛿 were determined for a best visual fit to the outer

part of the profile.
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Figure 2-9: Assumed turbulent velocity profile validated against experimental
measurement (figure courtesy of Drela [1], reproduced with permission)

Next, the parametrization of the skin coefficient 𝐶𝑓1 is developed here. Following

from the definition (2.71), the skin friction coefficient is written as

𝑅𝑒𝐿 𝐶𝑓1 ≡ 𝑅𝑒𝐿
𝜏w · ŝ1
1

2
𝜌i 𝑞

2
i

≈ 𝑅𝑒𝐿

𝜇w
d(q1 · ŝ1)

d𝑛

⃒⃒⃒⃒
𝑛=𝑛w

1

2
𝜌i 𝑞

2
i

= 2
𝜇w

𝜇i

(︂
𝜕𝑈

𝜕𝜂

)︂
w

= 2
𝜇w

𝜇i
𝒜 (2.94)
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Note that negative 𝐶𝑓1 corresponds to a reverse flow at the wall, which is physically

rare for turbulent flows but numerically admissible in the current model.

As for the wake, the equality 𝐶𝑓1 = 0 holds invariantly since the wake profile is

assumed to be symmetric about its centerline.

Turbulent Dissipation Coefficient

The total shear profile 𝜏 (𝑛) for turbulent flows cannot be directly related to the

velocity profile as in the laminar case. Thus, the dissipation integral definition (2.23)

is not readily usable. Instead, we will obtain the streamwise contribution to 𝒟 from

an IBL equation for the special case of Clauser’s 2D self-preserving (or “equilibrium”)

boundary layer flows [30], which is also a key element in the 2D IBL formulation

of Drela [3]. The formulation of this turbulent equilibrium flow model is briefly

summarized here while more details can be found in a text of Drela [7] and the

references therein.

Clauser’s shape parameter and pressure-gradient parameter are defined as

𝐺 ≡

ˆ 𝑛e

𝑛w

[(qe − q) · ŝ1/𝑞𝜏 ]2 d𝑛
ˆ 𝑛e

𝑛w

(qe − q) · ŝ1/𝑞𝜏 d𝑛
, 𝛽 ≡ 𝛿*1

𝜏w

d𝑝
d𝑠1

(2.95)

An empirical relation between them is known as the 𝐺-𝛽 locus, expressed as follows,

𝐺 = 𝐴
√︀

1 + 𝐵𝛽, 𝐴 ≈ 6.7, 𝐵 ≈ 0.75 (2.96)

where the {𝐴,𝐵} constants are calibrated by matching experimental measurements

for a variety of self-preserving boundary layers with (slightly) favorable and adverse

pressure gradients.
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Expressing the 𝐺 and 𝛽 definitions (2.95) in terms of conventional boundary layer

parameters gives

𝐺 ≈ 1√︀
𝐶𝑓1/2

𝐻 − 1

𝐻
, 𝛽 ≈ − 2

𝐶𝑓1

𝐻𝜃11
qe · ŝ1

d(qe · ŝ1)
d𝑠1

, 𝐻 ≡ 𝛿*1
𝜃11

(2.97)

where the two approximations assume an incompressible flow. Substituting (2.97)

into (2.96) gives the non-dimensional velocity gradient parameter for the case of an

equilibrium flow,

(︂
𝜃11

qe · ŝ1
d(qe · ŝ1)

d𝑠1

)︂
eq

=

(︂
𝐶𝑓1
2

−𝐺2
𝐴

)︂
1

𝐵𝐻
, 𝐺𝐴 ≡ 𝐻 − 1

𝐴𝐻
(2.98)

Next, to obtain a closure formulation for 𝐶𝒟, the following 2D IBL equation for the

kinetic energy shape parameter [3] is used,

𝜃11
𝐻*

d𝐻*

d𝑠1
=

2𝐶𝒟

𝐻* − 𝐶𝑓1
2

+

(︂
𝐻 − 2𝐻**

𝐻* − 1

)︂
𝜃11

qe · ŝ1
d(qe · ŝ1)

d𝑠1
, 𝐻* ≡ 𝜃*1

𝜃11
(2.99)

which is valid for the turbulent mean flow. The density shape parameter 𝐻** = 0

vanishes for incompressible flows. For an equilibrium flow which has constant 𝐺(𝑠1),

the parameters 𝐻(𝑠1), and hence 𝐻*(𝑠1), will be nearly constant as well, since the

turbulent 𝐶𝑓 (𝑠1) variation in (2.97) is effectively negligible. There, it is assumed that

d𝐻*/d𝑠1 ≈ 0 for an equilibrium flow (i.e. with constant 𝛽).

Replacing the d(qe · ŝ1)/d𝑠1 term using equation (2.98), it then follows that the

equation (2.99) becomes an explicit expression for the dissipation coefficient of equi-

librium flows in terms of the local boundary layer parameters,

(𝐶𝒟)eq =
𝐻*

2

[︂
𝐶𝑓1
2

(1 −𝐺𝐵) + 𝐺𝐵 𝐺2
𝐴

]︂
, 𝐺𝐵 ≡ 𝐻 − 1

𝐵𝐻
(2.100)
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The previous development of the dissipation formulation for boundary layer flows

is adopted for the wake as well. Note that, in the case of a viscous wake layer,

the dissipation coefficient (2.100) corresponds to a half layer and thus needs to be

doubled.

The current numerical implementation assumes an equilibrium turbulent flow and

adopts the dissipation coefficient formulation in (2.100), whereas the development of

a more sophisticated turbulent dissipation model is left for future study.

2.7 Viscous-Inviscid Interaction Formulation

Note that the IBL equations (2.50) and (2.63) also involve EIF quantities, denoted

with the subscript “i”, including the velocity qi, the stagnation pressure 𝑝0i and

temperature 𝑇0i , which are governed by the EIF equations. In a viscous-inviscid

coupling scheme, the viscous solver needs to access the inviscid solver in order to

compute {qi, 𝑝0i , 𝑇0i}, and the corresponding interface has to be modified if the

inviscid solver is altered.

To avoid such direct dependence of the IBL equations on the inviscid flow solver,

auxiliary viscous variables {qe, 𝑝0e , 𝑇0e}, that is, velocity and stagnation states at the

edge of the viscous layer (denoted by the subscript “e”), are defined and set by the

following auxiliary viscous equations,

qe − qi = 0 (2.101)

𝑝0e − 𝑝0i = 0 (2.102)

𝑇0e − 𝑇0i = 0 (2.103)

where {qi, 𝑝0i , 𝑇0i} are provided by the inviscid solver.
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Similarly, an auxiliary inviscid variable Λ is defined by the following auxiliary

inviscid equation,

Λ − ̃︀∇ ·M = 0 (2.104)

where M = 𝜌e 𝛿
*qe is computed from the IBL solution and the auxiliary viscous

variables. In turn, the EIF boundary condition (2.38) becomes

Λ − n̂w · (𝜌i qi)w = 0 (2.105)

which only involves the inviscid and auxiliary inviscid variable so that the inviscid

solver does not require direct access to the IBL solver. Note that the omission

of 𝜕𝑚/𝜕𝑡 is generally a valid approximation even for unsteady compressible flows.

Thus, the equation (2.105) can also be used to prescribe the instantaneous mass flux

through the wall for the EIF.

Hence, the viscous and inviscid solvers remain independent of each other and

their coupling is realized through the interface of auxiliary equations and variables,

which provides significant flexibility from an implementation perspective.

2.8 Governing Equations

In summary, the viscous flow inside the DCA is governed by the IBL equations,

𝜕p

𝜕𝑡
+ 𝑚

𝜕qe

𝜕𝑡
+ ̃︀∇ ·P +

(︁̃︀∇qe

)︁
·M− 𝜏w = 0 (momentum) (2.106)

𝜕𝑘

𝜕𝑡
+ 𝑚

𝜕 (𝑞2e )

𝜕𝑡
+ ̃︀∇ ·K + D · ̃︀∇ (︀𝑞2e)︀− 2𝒟 = 0 (kinetic energy) (2.107)
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where the integral quantities are parametrized by the two unknown variables {𝛿,𝒜}
based on the viscous closure models in Section 2.6.

The EIF is governed by the inviscid flow equation of choice, such as full potential

and Euler equations. As an example, this thesis focuses on the EIF modeled as a

steady-state incompressible potential flow which governed by the following equation,

∇2Φ = 0 subject to (𝜌i qi)w · n̂w = Λ (2.108)

for the unknown velocity potential Φ where ∇Φ = qi.

In a viscous-inviscid coupling scheme, the IBL and EIF equations are solved

together with the following auxiliary equations,

qe − qi = 0

𝑝0e − 𝑝0i = 0 (auxiliary viscous equations)

𝑇0e − 𝑇0i = 0

Λ − ̃︀∇ ·M = 0 (auxiliary inviscid equation)

(2.109)

(2.110)

which completes the formulation of the IBL equations in a VII setting.

The subsequent discussion focuses on the steady-state IBL solution and thus

drops all the unsteady terms (i.e. 𝜕 ( ) /𝜕𝑡 = 0)
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Chapter 3

Discontinuous Galerkin

Discretization

This chapter develops a DG finite-element discretization scheme that applies to the

general convection-source type of PDEs defined on curved manifolds. The DG finite-

element method was originally proposed by Reed and Hill in 1973 [31]. A more recent

survey of DG methods is given by Shu [32]. The DG method developed in this thesis

is presented using the example of its application to the IBL equations.

3.1 Solution Approximation and Local Basis

The finite-element method starts with the discretization of a computational domain

Ω into a triangulation 𝒯ℎ comprised of disjoint open finite elements 𝐾 such that

Ω =
⋃︁

𝐾∈𝒯ℎ

𝐾 (3.1)
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In the context of the IBL formulation, Ω refers to the 𝑛 = 0 curve associated with

the DCA and 𝐾 is a discrete instance of a ̃︂DDCA element as defined in Section 2.2,

the collection of which constitutes the set 𝒯ℎ.

The DG finite-element solution space is

𝒱ℎ ≡
{︀
𝑣ℎ ∈ 𝐿2(Ω) : 𝑣ℎ|𝐾 ∈ 𝒫𝑝(𝐾), ∀𝐾 ∈ 𝒯ℎ

}︀
(3.2)

where 𝒫𝑝(𝐾) denotes the space of polynomials of degree up to 𝑝 that are restricted

to the element 𝐾. Let {𝒲𝑗} (𝑗 = 1, 2, . . .) be a complete set of basis functions of

𝒱ℎ that are locally supported on finite elements and discontinuous across element

boundaries. The DG approximation of the primary unknowns 𝑣 = [𝛿,𝒜]𝑇 is

𝑣ℎ|𝐾 (𝜉) =
∑︁
𝑗

𝑣ℎ,𝑗 𝒲𝑗(𝜉) ∀𝐾 ∈ 𝒯ℎ (3.3)

Similar to the solution discretization, the shape of the triangulation 𝒯ℎ as defined by

the position vector r|𝐾 is approximated as

rℎ|𝐾 (𝜉) =
∑︁
𝑗

rℎ,𝑗 𝒲𝑗(𝜉) ∀𝐾 ∈ 𝒯ℎ (3.4)

In the discretization of PDEs on manifolds, rℎ can be represented using a different

set of basis functions from the solution approximation 𝑣ℎ, but requires a sufficient

polynomial degree to realize the optimal order of accuracy in the DG solution. Also,

a continuity condition is imposed in the current numerical implementation for con-

venience, although the geometry representation rℎ is allowed to be discontinuous in

general.

The local basis vector of an element 𝐾 is conveniently constructed as a unit vector

70



tangent to the element,

ê ≡ 𝜕rℎ/𝜕𝜉

‖𝜕rℎ/𝜕𝜉‖
,

𝜕rℎ
𝜕𝜉

=
∑︁
𝑗

rℎ,𝑗
𝜕𝒲𝑗

𝜕𝜉
(3.5)

Note that this definition allows ê to be discontinuous across finite element interfaces

since the local definition of the reference coordinate 𝜉 can vary across elements and

two adjacent elements may not be tangent to each other at their interface.

3.2 Residual Definitions

The goal here is to develop a DG discretization scheme for general manifold PDEs of

the convection-source type and to apply it to the IBL equations. Bernard et al. [23]

also proposed a DG scheme for manifold PDEs by resolving vectorial equations in a

local basis and applied it to shallow water equations. That formulation assumes that

the vector unknown can be expressed as a product of a scalar solution approximation

and the local basis vector. However, this assumption does not apply to the IBL

equations formulated in this thesis as well as general PDEs where the construction

of vector quantities is not simply a scalar product with the local basis. Hence, a

generalized manifold DG finite-element method is proposed here and applied to the

2D IBL equations as an example.

First, the discretization of the vectorial momentum equation (2.106) is developed

here. The equation is resolved along the local basis vector ê with an inner product.

The resulting scalar equation is weighted by a DG basis function 𝒲 ∈ 𝒱ℎ and

integrated over a single finite element 𝐾. Then, using integration by parts, the
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element-wise DG residual of the steady-state momentum equation (2.106) is

ℛmom
𝐾 (𝑣ℎ,𝒲) =

ˆ
𝐾

𝒲 ê ·
[︁̃︀∇ ·P +

(︁̃︀∇qe

)︁
·M− 𝜏w

]︁
dℓ

=

ˆ
𝐾

𝒲
[︂̃︀∇ ·

(︂
P

𝑇
· ê
)︂
− tr

(︂
P

𝑇
·
(︁̃︀∇ê

)︁)︂
+ ê ·

(︁̃︀∇qe

)︁
·M− 𝜏w · ê

]︂
dℓ

=

ˆ
𝐾

𝒲
[︂
− tr

(︂
P

𝑇
·
(︁̃︀∇ê

)︁)︂
+ ê ·

(︁̃︀∇qe

)︁
·M− 𝜏w · ê

]︂
dℓ

−
ˆ
𝐾

̃︀∇𝒲 ·
(︂
P

𝑇
· ê
)︂

dℓ +
∑︁
𝜕𝐾

𝒲
(︂
t̂ ·P

𝑇
· ê
)︂

(3.6)

where the identity (2.58) is used and t̂ is the outward-pointing unit normal vector of

the element boundary 𝜕𝐾 (as shown in Figure 2-2).

Similarly, the kinetic energy equation (2.63), which is already scalar, has the

following element-wise DG residual

ℛk.e.
𝐾 (𝑣ℎ,𝒲) =

ˆ
𝐾

𝒲
[︁
D · ̃︀∇ (︀𝑞2e)︀ − 2𝒟

]︁
dℓ−

ˆ
𝐾

̃︀∇𝒲 ·K dℓ+
∑︁
𝜕𝐾

𝒲
(︀
K · t̂

)︀
(3.7)

The elemental DG residuals of the 2D IBL equations are assembled to give the

following global residuals,

ℛmom
IBL (𝑣ℎ,𝒲) ≡

∑︁
𝐾∈𝒯ℎ

{︂ˆ
𝐾

𝒲
[︂
− tr

(︂
P

𝑇
·
(︁̃︀∇ê

)︁)︂
+ ê ·

(︁̃︀∇qe

)︁
·M− 𝜏w · ê

]︂
dℓ
}︂

−
∑︁
𝐾∈𝒯ℎ

[︂ˆ
𝐾

̃︀∇𝒲 ·
(︂
P

𝑇
· ê
)︂

dℓ
]︂

+
∑︁

𝜕𝐾∈𝜕𝒯ℎ

𝒲
(︃

̂
t ·P

𝑇
· ê
)︃

ℛk.e.
IBL (𝑣ℎ,𝒲) ≡

∑︁
𝐾∈𝒯ℎ

{︂ˆ
𝐾

𝒲
[︁
D · ̃︀∇ (︀𝑞2e)︀ − 2𝒟

]︁
dℓ
}︂
−
∑︁
𝐾∈𝒯ℎ

(︂ˆ
𝐾

̃︀∇𝒲 ·K dℓ
)︂

+
∑︁

𝜕𝐾∈𝜕𝒯ℎ

𝒲
(︁
K̂ · t

)︁

(3.8)

(3.9)
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where 𝜕𝒯ℎ denotes the set of all the element boundaries 𝜕𝐾. The terms {
̂

t ·P
𝑇
· ê, K̂ · t}

are the numerical fluxes. Using a Lax-Friedrichs scheme, they are defined as

̂︂f · tL
(𝑣L

ℎ ,𝑣
R
ℎ ; êL, êR

L ) ≡ 1

2

[︀
f(𝑣L

ℎ ; êL) + f(𝑣R
ℎ ; êR

L )
]︀
· t̂L +

𝛼

2

[︀
𝑢(𝑣L

ℎ ; êL) − 𝑢(𝑣R
ℎ ; êR

L )
]︀

̂︂f · tR
(𝑣L

ℎ ,𝑣
R
ℎ ; êL

R, ê
R) ≡ 1

2

[︀
f(𝑣L

ℎ ; êL
R) + f(𝑣R

ℎ ; êR)
]︀
· t̂R +

𝛼

2

[︀
𝑢(𝑣L

ℎ ; êL
R) − 𝑢(𝑣R

ℎ ; êR)
]︀

(3.10)

where the superscripts “L” and “R” denote evaluation on, respectively, the left and

right of an interface between neighboring elements, as shown in Figure 3-1. Deduced

Right

Interface

Left

Figure 3-1: Discontinuous local basis vectors and interface unit normal vectors of
linear grid elements

from the governing equations (2.106) and (2.107), the conservative variable 𝑢 and

flux f for the IBL equations are

𝑢(𝑣; ê) ≡

⎡⎣p · ê

𝑘

⎤⎦ , f(𝑣; ê) ≡

⎡⎣— P
𝑇
· ê —

— K —

⎤⎦ (3.11)

Note that the definitions of 𝑢 and f both depend on the choice of ê which is defined

by (3.5) and is local to each finite element. Then, the numerical fluxes ̂︂f · tL
and ̂︂f · tR

in (3.10) should use basis vectors that are defined consistently with the corresponding
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elements (i.e. left and right, respectively) which they are associated with. Therefore,

the local basis vectors in evaluating the numerical flux are necessarily modified as

êR
L ≡ −

(︀
t̂L · êL)︀ t̂R, êL

R ≡ −
(︀
t̂R · êR)︀ t̂L (3.12)

where êR
L , for example, gives the proper basis vector that is located on the right of

the element interface and consistent with the basis vector ê definition for the element

to the left of that interface. The vector êR
L is effectively rotated from a vector (i.e.

t̂L) tangent to the left element into the right one. This interpretation can be readily

extended to 3D with the vector component unchanged along the axis of rotation (i.e.

the local tangent line of the element interface).

Also, note that êR
L , ê

L
R are not necessarily tangent to the left and right elements

respectively, and that t̂L, t̂R are not collinear (or coplanar) in general. This stems

from the discretization rℎ as in (3.4) of a generally curved manifold domain Ω of true

geometry r. The discretization error associated with rℎ decreases as the mesh refine-

ment and the order of approximation increases, similar to the solution discretization

𝑣ℎ in (3.3). The numerical consistency of the overall discretization scheme remains

intact, as evidenced by the numerical results in Section 5.1.

Furthermore, in the interest of convenient numerical implementation, a unique

interface unit normal vector t̂ is defined (in Figure 3-1) as pointing from the left

element to the right element, and orthogonal to the bisector of interface normal

vectors t̂L and t̂R. The following substitution is then applied to the numerical flux

definition (3.10),

t̂L ≈ t̂, t̂R ≈ −t̂ (3.13)

Such an approximation is justified since the error introduced is comparable to that

74



of the geometry discretization. It has been observed that switching the definition of

t̂ to t̂ = t̂L or t̂ = t̂R introduces negligible changes to the numerical solution.

The parameter 𝛼 in the numerical flux (3.10) carries the dimension of velocity

and serves to stabilize the DG method by introducing numerical dissipation. In order

to provide sufficient stabilization, the value of 𝛼 is often chosen to be the eigenvalue

of the flux jacobian 𝜕f/𝜕𝑢 that is largest in magnitude, which characterizes the

maximum propagation speed of the characteristic waves. Although the eigenvalue of

the IBL flux jacobian is not readily available, a suitable and convenient alternative

is to define 𝛼 with a representative convective speed normal to the interface based

on the edge velocity,

𝛼 ≡ max
{︀⃒⃒
qL

e · t̂
⃒⃒
,
⃒⃒
qR

e · t̂
⃒⃒}︀

(3.14)

A more conservative but dissipative choice of 𝛼 is

𝛼 ≡ max
{︀⃦⃦

qL
e

⃦⃦
,
⃦⃦
qR

e

⃦⃦}︀
(3.15)

which prevents 𝛼 from vanishing in the case of qe · t̂ = 0 (𝑞e ̸= 0) in 3D but is

approximately the same as (3.14) in 2D. The formulation (3.15) is adopted in the

current numerical implementation. The choice is insignificant in 2D, and the trade-off

remains to be investigated in 3D.

In addition, the fluxes at the domain boundary 𝜕Ω are defined as

̂︂f · t ≡
⎧⎨⎩f · t̂, qe · t̂ > 0

finlet · t̂, qe · t̂ < 0
(3.16)

where the inflow boundary flux finlet · t̂ is described in Section 3.3. The convection-

source nature of the IBL equations only requires a prescribed boundary condition at
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the inflow boundary.

3.3 Matching Conditions

Scenarios where viscous layers merge frequently occur in aerodynamic analysis. For

example, in a 2D flow over an airfoil, the boundary layers on upper and lower walls

combine into the wake at the trailing edge (TE). At this confluence of boundary

layers, mass conservation is not automatically guaranteed by the IBL equations which

govern the momentum and kinetic energy. However, it is essential to preserve mass

at the wall-to-wake junction since mass defect directly figures in VII problems. In

addition, given a momentum defect thickness 𝜃1, the viscous profile employed in the

IBL formulation is uniquely defined by the displacement thickness 𝛿*1, but can be

ambiguous if the kinetic energy defect thickness 𝜃*11 is given instead.

Therefore, it is crucial that mass and momentum conservation is imposed explic-

itly when viscous layers join. As in XFOIL [2], for example, the matching conditions

t the TE of an airfoil are,

(𝛿*1)TE, upper + (𝛿*1)TE, lower + ℎTE = (𝛿*1)wake, inlet (mass conservation)

(𝜃1)TE, upper + (𝜃1)TE, lower = (𝜃1)wake, inlet (momentum conservation)

(3.17)

(3.18)

where ℎTE is the thickness of the trailing edge gap, modeled as an additional dis-

placement. All the defect thicknesses are evaluated from the DG solution 𝑣ℎ. The

matching conditions (3.17) and (3.18) are introduced in addition to the IBL equa-

tions, so that the mass and momentum conservation is enforced at the wall-to-wake

junction.

Also, in order not to over-constrain the equation system, two more scalar un-

knowns are defined: {𝐹𝜃, 𝐹𝜃*}, scalar momentum and kinetic energy defect fluxes
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respectively, which provide the proper wake inflow boundary flux in (3.16),

finlet · t̂ ≡

⎡⎣𝐹𝜃

𝐹𝜃*

⎤⎦ (3.19)
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Chapter 4

Strong Viscous-Inviscid Coupling

This chapter fits the aforementioned DG IBL formulation into a strongly-coupled

viscous-inviscid scheme. The coupling method is designed to be sufficiently general

to allow for a flexible choice of the inviscid solver. The current implementation

adopts a panel method and, in the future, is expected to include full potential (e.g.

an in-house code [33]) and Euler solvers (e.g. the Cart3D code by NASA [34]). The

simultaneous solution method of VII problems is also described.

4.1 Strongly-coupled System

The discretized global system of strongly-coupled IBL equations is constructed in this

section. All the residuals and variables are summarized in Table 4.1. Auxiliary vari-

ables and residuals are introduced in order to couple the viscous and inviscid solvers

without modifying their original implementations. In turn, the inviscid solver can

be switched flexibly by using this coupling framework. Only the auxiliary residuals

and variables need to be modified according to the chosen inviscid solver.
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Abbreviation Variable 𝑄 Residual ℛ Governing Equation

IBL 𝛿,𝒜 (𝐹𝜃, 𝐹𝜃*) 2D IBL (4.1) ((3.17), (3.18))

inv 𝑄inv (generic) Inviscid By choice, e.g. (4.4) to (4.6)

auxv qe, 𝑝0e , 𝑇0e Auxiliary viscous (4.7)

auxi Λ Auxiliary inviscid (4.2)

Table 4.1: List of abbreviations, variables, residuals and governing equations in the
coupled global system

Viscous Governing Equations

The viscous formulation is defined by the following equations using the DG IBL

global residuals (3.8) and (3.9),

ℛmom
IBL (𝑣ℎ,𝒲) = 0, ℛk.e.

IBL (𝑣ℎ,𝒲) = 0, ∀𝒲 ∈ {𝒲𝑗} (4.1)

Auxiliary Inviscid Equation: Wall Transpiration Prescription

In the wall transpiration condition (2.110), the auxiliary inviscid variable Λ is dis-

continuous in general since it is prescribed as the in-manifold divergence of the mass

defect flux M which is evaluated from the DG IBL solution. Hence, the auxiliary

inviscid equation (2.110) is necessarily discretized using a DG method as follows,

0 = ℛauxi ≡
∑︁
𝐾∈𝒯ℎ

[︂ˆ
𝐾

𝒲
(︁

Λ − ̃︀∇ ·M
)︁

dℓ
]︂

=
∑︁
𝐾∈𝒯ℎ

[︂ˆ
𝐾

(︁
𝒲 Λ + ̃︀∇𝒲 ·M

)︁
dℓ
]︂
−

∑︁
𝜕𝐾∈𝜕𝒯ℎ

𝒲
(︁
M̂ · t

)︁
, ∀𝒲 ∈ {𝒲𝑗}(4.2)
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where the numerical flux M̂ · t is defined using a simple upwinding formulation,

M̂ · t ≡

⎧⎨⎩ML · t̂, qL
e · t̂ > 0

MR · t̂, qL
e · t̂ < 0

(4.3)

The DG basis function 𝒲 is allowed to differ from that used in discretizing the

IBL equations in terms of the polynomial degree. The inviscid solver adopted in

this thesis is a panel method of a piecewise constant source distribution (despite a

piecewise linear reconstruction procedure in the actual computation). Accordingly,

the auxiliary inviscid variable Λ is discretized with a piecewise constant basis function

𝒲 (i.e. polynomial degree 𝑝 = 0).

Inviscid Governing Equations

The EIF equations are defined by the inviscid solver and can be chosen flexibly. A

panel method adapted from the XFOIL formulation [2] is used in the current imple-

mentation as an example. In this case, the incompressible potential flow equation

(2.108) is reformulated and discretized as follows,

0 = ℛΨ
inv ≡ Ψ(𝛾, 𝜆) − Ψ0 (flow tangency) (4.4)

0 = ℛK
inv ≡

∑︁
𝑗∈TE

𝛾𝑗 (Kutta condition) (4.5)

0 = ℛ𝜆
inv ≡ 𝜆− Λ/𝜌i (source strength prescription) (4.6)

where the inviscid variables 𝑄inv ≡ {𝛾,Ψ0, 𝜆} are the vortex strength, the stream-

function and the source strength respectively. More details on the panel method are

given in Appendix B. Note that the inviscid flow equations involve only the inviscid
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and the auxiliary inviscid variable Λ instead of the IBL variables. This treatment fits

in the current coupling scheme without direct interdependence between the viscous

and inviscid solvers.

Auxiliary Viscous Equation: Edge Velocity Projection

In the coupling of the integral boundary layer and panel (IBL/panel) solver, the flow

is assumed to be incompressible so that the stagnation pressure 𝑝0i and temperature

𝑇0i remain constant. Thus, only (2.101) is necessary among all the auxiliary viscous

equations. Since qi computed from the panel solver is continuous and piecewise

linear, (2.101) is cast as the 𝐿2-projection onto the auxiliary viscous variable qe,

0 = ℛauxv ≡
∑︁
𝐾∈𝒯ℎ

[︂ˆ
𝐾

𝒲 (qe − qi) dℓ
]︂
, ∀𝒲 ∈ {𝒲𝑗} (4.7)

where {𝒲𝑗} is the set of all the piecewise linear basis functions.

4.2 Global Newton Method

The coupled system of equations is written compactly as

ℛ(𝑄) = 0, ℛ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ℛauxv(𝑄auxv, 𝑄inv)

ℛauxi(𝑄auxv, 𝑄auxi, 𝑄IBL)

ℛIBL(𝑄auxv, 𝑄IBL)

ℛinv(𝑄auxi, 𝑄inv)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑄 ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝑄auxv

𝑄auxi

𝑄IBL

𝑄inv

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(4.8)

where ℛ and 𝑄 denote the global residual and solution respectively. The global

system (4.8) is solved simultaneously using a Newton method, in which the solution
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is updated at iteration 𝑛 via the following formula,

ℛ(𝑄𝑛) +

[︂
𝜕ℛ
𝜕𝑄

]︂𝑛
∆𝑄𝑛 = 0 (4.9)

𝑄𝑛+1 = 𝑄𝑛 + ∆𝑄𝑛 (4.10)

where ∆𝑄 is the solution update step, and some initial solution guess 𝑄0 is required

for the Newton update to start with.

Depending on the characteristics of the inviscid solver, the global jacobian can

be permuted to optimize fill-in and matrix storage. The current IBL/panel coupling

implementation in particular has the following structure,

[︂
𝜕ℛ
𝜕𝑄

]︂
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[︂
𝜕ℛauxv

𝜕𝑄auxv

]︂
0 0

[︂
𝜕ℛauxv

𝜕𝑄inv

]︂
[︂
𝜕ℛauxi

𝜕𝑄auxv

]︂ [︂
𝜕ℛauxi

𝜕𝑄auxi

]︂ [︂
𝜕ℛauxi

𝜕𝑄IBL

]︂
0

[︂
𝜕ℛIBL

𝜕𝑄auxv

]︂
0

[︂
𝜕ℛIBL

𝜕𝑄IBL

]︂
0

0

[︂
𝜕ℛinv

𝜕𝑄auxi

]︂
0

[︂
𝜕ℛinv

𝜕𝑄inv

]︂
(4.11)

It is intentionally designed that the matrix blocks 𝜕ℛinv/𝜕𝑄IBL and 𝜕ℛIBL/𝜕𝑄inv are

invariantly zero, resulting in the block-diagonal 2-by-2 system on the lower right of

the current global jacobian. This prevents direct communication between the IBL

and inviscid solvers, and thus allows for flexible swapping of the inviscid solver.

For viscous and inviscid solvers that are developed separately, the computation

of individual residuals (e.g. ℛIBL,ℛinv) is reusable. Adding the auxiliary equations

to build the coupled system of equations does not require much additional overhead.
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The global jacobian is conveniently constructed using automatic differentiation [35].

Note that the Newton update in its primitive form (4.10) may fail to solve the

global nonlinear system (4.8) for some initial solution guesses 𝑄0. For example, the

updated solution can include non-physical states such as a negative boundary layer

thickness 𝛿 which causes the solution iteration to stall. Hence, in order to enhance

the solution robustness, the current numerical implementation augments the Newton

method with a line-search algorithm. The corresponding solution update formula

then becomes

𝑄𝑛+1 = 𝑄𝑛 + 𝛽 ∆𝑄𝑛 (4.12)

where 𝛽 > 0 is a step-sizing factor that is halved from one iteratively in the presence

of any difficulty in solution convergence, identified by the following criteria.

1. Residual reduction failure: Any component of the global residual ℛ fails to

decrease before the solution converges below the prescribed tolerance.

2. Physical validity failure: the boundary layer thickness parameter fails to remain

strictly positive; that is, 𝛿 ≤ 0.

The line-search algorithm allows the nonlinear solution procedure to continue in

some otherwise stalling solution iterations. The resulting nonlinear solution has been

observed to be more robust in terms of admitting various initial solution guesses.
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Chapter 5

Results

This chapter provides results of the numerical implementation to verify the DG

discretization scheme for the convection-source type of PDEs on manifolds and to

demonstrate utility of the proposed strongly-coupled IBL method for aerodynamic

analysis.

5.1 Shallow Water Flow on Elliptic Curve

To demonstrate that the current DG formulation is generally applicable to PDEs

defined on curved manifolds and enables high-order solution, the first test case applies

this discretization scheme to the shallow water flow on an elliptic curve.

For the unknowns {𝐻, 𝑣𝑠}, water depth and convective speed respectively, the

governing 2D steady-state shallow water equations are

̃︀∇ · (𝐻𝑣) = 0 (mass conservation)

̃︀∇ · (𝐻 𝑣 ⊗ 𝑣) + 𝑔𝐻 ̃︀∇(𝐻 − 𝑏) = 0 (momentum conservation)

(5.1)

(5.2)

85



where 𝑔 = 9.81 m/s2 is the gravitational acceleration constant, 𝑏 is the bathymetry,

𝑣 ≡ 𝑣𝑠 ŝ is the water flow velocity, and ŝ is the streamwise unit vector. Equations

Figure 5-1: Configuration of the shallow water flow on an elliptic curve

(5.1) and (5.2) are solved on an elliptic curve defined by

r(𝜃) = 2 cos 𝜃 x̂ + sin 𝜃 ŷ, 𝜃 ∈ (𝜃1, 𝜃2) =

(︂
1

60
,

23

360

)︂
radians (5.3)

The streamwise unit vector is prescribed to be tangent to the elliptic curve,

ŝ =
(−2 sin 𝜃 x̂ + cos 𝜃 ŷ)√

4 sin2 𝜃 + cos2 𝜃
(5.4)

The test case is set up such that the shallow water flow remains supercritical (i.e.

Froude number Fr ≡ 𝑣𝑠/
√
𝑔𝐻 > 1) throughout the domain. Hence, the boundary

conditions are a supercritical inflow (𝜃 = 𝜃1) condition and a natural outflow at the

outlet boundary (𝜃 = 𝜃2). That is, only 𝐻(𝜃1) and 𝑣𝑠(𝜃1) need to be prescribed.

For the purpose of grid convergence study, an exact solution {𝐻, 𝑣𝑠} is manufac-
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tured as

𝐻(𝜃) =
5∑︁

𝑘=0

𝜃𝑘, 𝑣𝑠(𝜃) =
𝐶

𝐻
, 𝐶 ≡ 𝐻(𝜃1) 𝑣𝑠(𝜃1) (5.5)

with a corresponding bathymetry 𝑏 that satisfies

d𝑏
d𝜃

=

(︂
1 − 𝐶2

𝑔𝐻3

)︂
d𝐻
d𝜃

(5.6)

Note that 𝐻 and 𝑣𝑠 carry the units of m and m/s respectively. The corresponding

inflow boundary condition is

𝐻(𝜃1) =
5∑︁

𝑘=0

𝜃51, 𝑣𝑠(𝜃1) = 2
√︀

𝑔𝐻(𝜃1) (5.7)

Line grids of uniform sizing in 𝜃 are employed. Both structured and unstructured

grids have been tested. Unstructured grids are constructed such that the basis vector

ê of any two neighboring elements have opposite senses of direction as illustrated in

Figure 3-1, whereas all the elements in a structured grid have the same sense of

direction. The basis vector modification (3.12) has been observed to be the key in

enabling solution on unstructured grids. The numerical results of these two types of

grids turned out to effectively the same as expected, and thus only the unstructured

grid solution is shown for this test in the following discussion.

The discrete geometry representation rℎ uses basis functions of polynomial de-

gree of 4 (which is greater than or equal to the polynomial degree of the solution

approximation that has been tested; that is, the geometry approximation is either

superparametric or isoparametric).

A grid convergence study is conducted to examine the DG solution. The 𝐿2 error

in the DG solution of water depth 𝐻 measured against the analytic solution (5.5) is

87



used as the error metric. As shown in Figure 5-2, the error in DG solution of polyno-

mial degree 𝑝 converges at an asymptotic rate of 𝑝+1 as the grid is uniformly refined.

This demonstrates the support of high-order solution accuracy using the proposed

DG discretization. Also, it is worth noting that the order of solution convergence has

-1.8 -1.6 -1.4 -1.2 -1 -0.8

-14

-12

-10
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-2

slope=5

slope=4

slope=3

slope=2

slope=1

Figure 5-2: 𝐿2 error of DG solution of water depth 𝐻 converges with uniform grid
refinement at an asymptotic rate of 𝑝 + 1.

been observed to fall short of the optimal value 𝑝+1 in general when a subparametric

geometry representation is used. The reason is that the discretization error depends

on not only the solution approximation but also the geometry discretization. Hence,

it is recommended that at least an isoparametric geometry representation is used in

the interest of obtaining optimal solution accuracy.

88



5.2 Flow over NACA 0004 Airfoil

The strongly-coupled DG IBL formulation is applied to aerodynamic analysis of the

flow over a NACA 0004 airfoil at zero angle of attack. The flow is chosen to be

effectively incompressible with a Reynolds number of 105 defined with respect to the

chord length. The stagnation pressure and temperature are 105 Pa and 300 K re-

spectively. Both the fully laminar and fully turbulent boundary layers are simulated.

The viscous wake is invariantly chosen to be fully turbulent.

The DG IBL formulation uses a 𝑝 = 1 solution approximation for all the tests

as it is coupled with a panel method of piecewise linear vorticity distribution and

piecewise constant source strength (with piecewise linear reconstruction). A sample

grid is illustrated in Figure 5-3. In this airfoil-wake grid configuration, the airfoil TE

has a finite thickness, and the wake length is chosen to be the same as the airfoil

chord length since the results have been observed to be relatively insensitive to the

wake length as it further increases.

airfoil wake

Figure 5-3: Sample grid for the aerodynamic analysis of NACA 0004 airfoil (64 and
14 elements on the airfoil and the wake respectively)

More details about the IBL/panel solver setup are summarized as follows.

∙ Numerical quadrature: A 3-point Gauss-Legendre quadrature is used for

evaluating the basis-weighted integrals in the discrete residuals {ℛIBL,ℛauxi,ℛauxv}.
It is able to numerically integrate polynomials of degree 5 exactly up to machine

precision.

∙ Solution initialization: The initial solution 𝑄0 for the Newton solver is set
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up using the following procedure. First, the initial inviscid solution 𝑄0
inv is set

to be the uncoupled inviscid solution obtained by solving the panel method

with a zero source strength (i.e. no viscous effect). Given 𝑄0
inv, the auxiliary

viscous equation (4.7) is then solved to initialize the auxiliary viscous variable

𝑄0
auxv. Each of the first two steps only involves a single step of linear solution,

and takes a negligible fraction of the computational time required to solve the

nonlinear coupled IBL/panel system. The initial viscous solution 𝑄0
IBL in a fully

laminar boundary layer is solved inversely to match the thicknesses {𝛿*1, 𝜃11} of

the corresponding solution given by XFOIL. As for the fully turbulent boundary

layer and the viscous wake, the solution 𝑄0
IBL is initialized with constant values

{𝛿 = 0.005 𝑐,𝒜 = 1} where 𝑐 is the airfoil chord length. The auxiliary inviscid

solution is initially set as 𝑄0
IBL = 0.

∙ Nonlinear solver: The Newton solver with a line-search algorithm described

in Section 4.2 is used. The nonlinear solution is determined as converged when

each component of the global residual ℛ has a magnitude that is smaller than

the prescribed tolerance of 10−12 (with a proper dimension consistent with the

respective equation). For the cases that have been run, solution convergence is

mostly achieved within a few Newton iterations and with very few to none of

line-search updates. For example, the case of a fully laminar boundary layer

takes 8 iterations for a grid of 64 elements on the airfoil, and the fully turbulent

case takes 9 iterations on a grid of 63 elements on the airfoil.

Note that the strongly-coupled IBL/panel solver is sufficiently robust so that it tol-

erates most arbitrarily chosen initial guess 𝑄0
IBL (albeit within the range of physical

and modeling validity). In contrast, attempts to initialize 𝑄0
IBL by solving the un-

coupled IBL equations given 𝑄0
auxv frequently encounters nonlinear solution failure
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for lack of robustness. This provides supporting evidence of the improved solution

robustness brought by the strong viscous-inviscid coupling.

On the other hand, the choice of the initial solution has been observed to af-

fect whether the solution converges or the number of Newton iterations required to

achieve solution convergence, especially in the fully turbulent case. The current solu-

tion initialization strategy is selected based on trial and error, but it is worth further

investigation and improvement for better efficiency and robustness.

The IBL/panel coupled solution is compared to the viscous solution of XFOIL,

which is an established code base for 2D viscous-inviscid analysis by coupling an

IBL formulation with a panel method (from which the panel method in this thesis

is derived). Since the turbulent closure modeling is not the primary focus of this

thesis, it is desirable to minimize the modeling discrepancy between XFOIL and the

current IBL/panel implementation. To that end, the turbulent lag effect is effectively

neglected in the XFOIL simulation, so that its model resembles the equilibrium

turbulent flow formulation used by the IBL/panel solver developed in this thesis as

much as possible. In addition, since XFOIL cannot directly simulate a fully turbulent

boundary layer flow, forced transition is imposed at 1% chord downstream from the

leading edge of the airfoil. Note that this inevitably introduces a modeling difference.

Figure 5-4 and 5-5 compare the solutions of the IBL/panel method and XFOIL

in the cases of fully laminar and fully turbulent boundary layers respectively. A

good agreement is observed for the fully laminar cases in terms of the edge speed

distribution and integral defects including the scalar momentum defect 𝑃 ≡ 𝜌𝑒 𝑞
2
𝑒 𝜃11

and kinetic energy defect 𝐾 ≡ 𝜌𝑒 𝑞
3
𝑒 𝜃

*
1 in the non-dimensionalized form. These

directly lead to a match in aerodynamic quantities of interest such as lift and drag

coefficients. As for the fully turbulent cases, the comparison agrees not as closely,

which is anticipated to mainly stem from the different dissipation closure models used
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for turbulent flows between the IBL/panel method and XFOIL. Further comparison

and investigation on the turbulent boundary layer cases will be conducted in future

studies as the turbulent closure model is updated for the IBL/panel method.

The integral defects 𝑃,𝐾 of both upper and lower airfoil surfaces are shown in

Figure 5-4 and 5-5. They sum up at the trailing edge and merge into the wake,

hence the jumps in their values. Theoretically, the non-dimensionalized values of

these integral defects in the far wake asymptote to the sectional drag coefficient 𝑐𝐷,

𝑐𝐷 ≡ 2𝐷′

𝜌∞𝑞2∞
=

2𝑃∞

𝜌∞𝑞2∞
≈ 𝐾∞

𝜌∞𝑞3∞
(5.8)

where ∞ denotes the far-field downstream of the wake and 𝐷′ is the sectional drag

(i.e. drag divided by the span). This asymptotic behavior is shown in Figure 5-4

and 5-5, where 𝑐𝐷 is computed using the Squire-Young correction [7]. The resulting

drag prediction for a fully laminar boundary layer agrees well between the XFOIL

(𝑐𝐷 = 9.6524 × 10−3 for a grid of 159 airfoil elements) and the coupled IBL/panel

solver (𝑐𝐷 = 9.5805× 10−3 for a grid of 128 airfoil elements), with a difference of less

than one drag count (i.e. 10−4). For fully turbulent boundary layers, the predicted

drag coefficients differ more between XFOIL (𝑐𝐷 = 1.5735×10−2) and the IBL/panel

solver (𝑐𝐷 = 1.7502×10−2) on the same grid of 127 airfoil elements, which is expected

due to the difference in the turbulent boundary layer modeling.
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Figure 5-4: Comparison of numerical results of XFOIL and the IBL/panel solver
for fully laminar boundary layers
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Figure 5-5: Comparison of numerical results of XFOIL and the IBL/panel solver
for fully turbulent boundary layers
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A grid convergence study is also conducted on the IBL/panel solution in which

the error in the sectional drag coefficient 𝑐𝐷 is examined. The reference value is

chosen to be (𝑐𝐷)ref = 9.5790× 10−3 for fully laminar boundary layer cases, which is

obtained from the IBL/panel solution on a fine grid of 2048 elements on the airfoil.

The reference value is (𝑐𝐷)ref = 1.7483 × 10−2 for fully turbulent boundary layer

cases, as obtained from the IBL/panel solution on a fine grid of 799 elements on

the airfoil. Note that the fully turbulent boundary layer cases are not run on even

finer grids due to the relatively slow nonlinear solution convergence and excessively

long computational time, which are anticipated to be caused mainly by the turbulent

closure model in use.

Airfoil element # 64 96 128 192 256
Absolute error 5.0e-5 9.8e-6 1.5e-6 2.1e-6 1.4e-6
Relative error (%) 5.2e-1 1.0e-1 1.6e-2 2.2e-2 1.4e-2
Convergence rate - 4.01 6.43 -0.75 1.51

Airfoil element # 360 512 640 800 1024
Absolute error 1.3e-6 8.6e-7 6.2e-7 3.8e-7 2.5e-7
Relative error (%) 1.3e-2 9.0e-3 6.5e-3 4.0e-3 2.6e-3
Convergence rate 0.14 1.14 1.48 2.14 1.70

Table 5.1: Convergence of 𝑐𝐷 error with grid refinement for fully laminar boundary
layer cases

The grid convergence results are summarized in Table 5.1 and 5.2, and Figure 5-6

and 5-7. The coefficient 𝑐𝐷 obtained from the IBL/panel solution converges to the

reference value as the grid is refined for both fully laminar and fully turbulent bound-

ary layers. Although the theoretical order of accuracy is not straightforward due to

the coupling between solvers of different discretization schemes, an approximately

second-order convergence is observed in the asymptotic regime. This rate of con-
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Airfoil element # 63 95 127 191 255 359
Absolute error 6.2e-05 3.1e-05 1.9e-05 9.3e-06 5.1e-06 2.4e-06
Relative error (%) 3.5e-01 1.7e-01 1.1e-01 5.3e-02 2.9e-02 1.4e-02
Convergence rate - 1.71 1.69 1.71 2.07 2.22

Table 5.2: Convergence of 𝑐𝐷 error with grid refinement for fully turbulent
boundary layer cases
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Figure 5-6: Sectional drag coefficient 𝑐𝐷 of IBL/panel solution converges with grid
refinement for fully laminar boundary layer cases
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vergence is considered satisfactory since it does not degrade the expected individual

order of accuracy of the IBL and the panel solvers.
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Figure 5-7: Sectional drag coefficient 𝑐𝐷 of IBL/panel solution converges with grid
refinement for fully turbulent boundary layer cases

97



98



Chapter 6

Conclusions

This thesis presents a discontinuous Galerkin (DG) formulation of the integral bound-

ary layer (IBL) equations in a 2D setting and with strong viscous-inviscid coupling.

The proposed non-parametric formulation enabled by the DG discretization elim-

inates the need of constructing curvilinear coordinates explicitly and thus sets the

stage for application to 3D general configurations. It applies to general PDEs of the

convection-source type defined on manifolds, and also maintains the benefits of a

DG method, such as convenient realization of high-order solution and applicability

to unstructured meshes.

The importance of strong viscous-inviscid coupling for robust solution is also

stressed in this thesis. A flexible formulation and convenient implementation of the

viscous-inviscid coupling framework is presented, featuring flexibility in interchanging

the inviscid solver and simultaneous viscous-inviscid solution using a global Newton

method.

The numerical results of the proposed methodology are presented. The test case

of shallow water flow on an elliptic curve demonstrates the applicability of the DG
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discretization to general PDEs on manifolds and unstructured grids, as well as sup-

port for high-order solution. Another test case of aerodynamic flow over the NACA

0004 airfoil corroborates the utility of the current strongly-coupled DG IBL method

for aerodynamic analysis, with comparison to the well-established XFOIL code base.

Future Work

In future studies, the current work will be extended in many ways, with a focus on

the boundary layer modeling and numerical implementation.

In the modeling front, proper treatment of (laminar-to-turbulent) flow transition

in the current DG IBL formulation remains to be investigated in both 2D and 3D

settings. Turbulent closure relations can also be improved, including the dissipation

closure model and an additional transport PDE for the shear stress.

The numerical implementation will also be extended to include 3D, unsteady and

compressible flow effects (following earlier developments in the 3D IBL formulation

[13, 1]). The DG IBL formulation will be applied to genuinely 3D aerodynamic

analysis on general configurations.

The nonlinear solution algorithm can be further improved regarding efficiency

and robustness. To that end, a better solution initialization strategy is anticipated

to be beneficial for the current Newton solver. The pseudo-transient continuation

(PTC) method [36, 37, 38] is also considered for future implementation in the coupled

IBL solver.

Moreover, the coupling between IBL and other inviscid solvers, such as full poten-

tial and Euler, will be implemented to leverage the flexibility of the current viscous-

inviscid coupling framework and expand the capability of the strongly-coupled IBL

method to, for example, transonic aerodynamic analysis.
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Another expected extension is to apply the strongly-coupled IBL method to mul-

tidisciplinary design and optimization, for example, in coupling with structural anal-

ysis for investigation of aeroelasticity. The current viscous-inviscid coupling scheme

can be naturally enriched to include structural solvers, such as a hybrid shell model

[39].
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Appendix A

Quadrature Rule for Defect Integrals

The numerical quadrature rule for evaluating the defect thickness and dissipation

integrals is described in this appendix.

For laminar flows and the turbulent wake flow, the velocity profile 𝑈(𝜂) assumes

a polynomial form as in (2.72) and (2.81), and so are the integrands in the thickness

integrals (2.69) and the dissipation coefficient (2.79). Hence, a standard Gaussian

quadrature rule (e.g. [40]) of some moderate order suffices to compute the integrals

(2.69) exactly (up to machine precision). The current numerical implementation uses

a 20-point Gauss-Legendre quadrature, which is able to exactly integrate polynomi-

als of degree up to 39 and is the maximum quadrature order implemented in the

current code base. This is more than what is necessary to evaluate the thickness and

dissipation integrals of laminar flows and the turbulent wake exactly up to numer-

ical precision. To improve the computational efficiency, the number of quadrature

points can be reduced to what is necessary according to the polynomial degree of the

corresponding integrands.

The turbulent boundary layer flow velocity profile (2.81) is non-polynomial since
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its inner-layer part is based on Spalding’s law. The wall-units velocity profile 𝑢+(𝜂)

(as shown in Figure 2-8) displays an approximately logarithmic growth rate. Hence,

a Gaussian quadrature is no longer able to yield exact integration for the defect

thickness integrals of turbulent flows.

To ensure the accuracy of numerical integration, the quadrature rule is employed

with caution. One strategy is to use a sufficiently high-order Gaussian quadrature

(e.g. the current implementation uses an order of 39) in evaluating integrals so that

the error is controlled within an acceptable range. This method is effective and

simple to implement but can be computationally expensive for some flow regimes

(e.g. flow region with large 𝑅𝑒𝛿 and 𝒜 where the turbulent boundary layer flow is

more attached to the wall).

A more economical strategy implemented by Drela [1] is to leverage properties of

the Gaussian quadrature points. The turbulent boundary layer velocity profile 𝑈(𝜂)

defined in (2.81) is first extrapolated as follows,

𝑈(𝜂) ≡

⎧⎨⎩𝑈(𝜂) 𝜂 ∈ [0, 1]

𝑈(2 − 𝜂) 𝜂 ∈ (1, 2]
(A.1)

Note that 𝑈 is smooth over 𝜂 ∈ (0, 2) since 𝑈 is smooth over 𝜂 ∈ (0, 1) and all

its derivative vanishes at the viscous layer edge (i.e. d𝑘𝑈/d𝑘𝜂 = 0 at 𝜂 = 1 for

𝑘 = 0, 1, 2, . . .). Let 𝜂𝑗, (𝑗 = 1, 2, . . . , 𝑁𝑞) be the 𝑁𝑞 Gaussian quadrature point

coordinates defined on the interval [0, 2] with associated weights 𝑤𝑗. It is known

that 𝜂𝑗 are distributed symmetrically with respect to 𝜂 = 1. It follows that some
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generic integral of the velocity profile can be evaluated as follows,

𝐼 ≡
ˆ 1

0

𝑈 d𝜂 =
1

2

ˆ 2

0

𝑈 d𝜂 ≈ 1

2

𝑁𝑞∑︁
𝑗

𝑤𝑗 𝑈(𝜂𝑗)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑁𝑞/2∑︁
𝑗=1

𝑤𝑗 𝑈(𝜂𝑗), 𝑁𝑞 even

1

2
𝑤𝑗 𝑈(𝜂𝑗)

⃒⃒⃒⃒
𝑗=(𝑁𝑞+1)/2

+

(𝑁𝑞−1)/2∑︁
𝑗=1

𝑤𝑗 𝑈(𝜂𝑗), 𝑁𝑞 odd

(A.2)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑁𝑞/2∑︁
𝑗=1

𝑤𝑗 𝑈(𝜂𝑗), 𝑁𝑞 even

1

2
𝑤𝑗 𝑈(𝜂𝑗)

⃒⃒⃒⃒
𝑗=(𝑁𝑞+1)/2

+

(𝑁𝑞−1)/2∑︁
𝑗=1

𝑤𝑗 𝑈(𝜂𝑗), 𝑁𝑞 odd

(A.3)

which provides a numerical quadrature rule that is generalizable to the thickness

integrals (2.69). Since the quadrature points are clustered more densely near the two

end points of the interval (i.e. 𝜂 = 0, 2), the resulting accuracy turns out to be better

than directly applying the Gaussian quadrature rule of 𝑁𝑞 points to the interval of

𝜂 ∈ [0, 1].

Investigation of other quadrature rules constitutes ongoing research. Another

avenue for thickness integral evaluation is to sidestep the numerical integration.

Instead, those thicknesses (2.68) can be explicitly parametrized by the boundary

layer parameters (e.g. {𝛿,𝒜}) and directly computed. For example, this method is

adopted in MSES [3] and XFOIL [2] for 2D flows. Since the parametrization can

be constructed offline and the explicit evaluation is straightforward, such a strat-

egy is generally much faster than performing numerical integration using quadrature

rules. Therefore, in practice, a production code is likely to favor the approach of

explicit parametrization for its competitive speed. However, one caveat is that the
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parametrization can be complicated by the larger number of boundary layer param-

eters involved in 3D flows. The parametrization needs to be carried out cautiously

and using potentially more sophisticated regression techniques.
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Appendix B

Panel Method

This appendix presents the details underlying the panel method implementation in

this thesis. A 2D panel method is formulated using a linear-vorticity streamfunction

with source distribution for viscous modeling. It closely follows the inviscid solver of

the version 6.99 of XFOIL [41], and thus the following sections can be treated as an

updated documentation compared to the original XFOIL formulation [2].

A 2D potential flow field is represented by a superposition of uniform freestream

flow of speed 𝑞∞ at an angle of attack 𝛼 and the velocity field induced by a vortex

sheet of strength 𝛾 on the airfoil surface and a source sheet of strength 𝜆 on both

the airfoil surface and the wake. The streamfunction of the overall flow field is given

by

Ψ(𝑥, 𝑦) = 𝑢∞𝑦 − 𝑣∞𝑥

+
1

2𝜋

ˆ
Ωa

𝛾(𝑠) ln 𝑟(𝑠;𝑥, 𝑦) d𝑠 +
1

2𝜋

ˆ
Ωa ∪Ωw

𝜆(𝑠) 𝜃(𝑠;𝑥, 𝑦) d𝑠

such that 𝑢 =
𝜕Ψ

𝜕𝑦
, 𝑣 = −𝜕Ψ

𝜕𝑥

(B.1)

(B.2)

where 𝑠 is the curvilinear coordinate along the vortex and source sheets; it is chosen to
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be defined in a counterclockwise direction and forms a right-handed locally Cartesian

𝑠-𝑛 coordinate system with a normal coordinate 𝑛. The relative position vector r

from the integration point at 𝑠 to the field point (𝑥, 𝑦) has magnitude 𝑟 and vector

angle 𝜃 which is chosen to be defined in the 𝑠-𝑛 coordinate system. Note that the

definition of 𝜃 is arbitrary up to a constant, which changes Ψ only by a constant as

well and results in the same velocity field. The 𝑥, 𝑦 components of the freestream

velocity are 𝑢∞ = 𝑞∞ cos𝛼 and 𝑣∞ = 𝑞∞ sin𝛼 respectively, while 𝑢 and 𝑣 are the

velocity components of the overall potential flow. The 1D domains of the airfoil

surface and the wake are denoted by Ωa and Ωw respectively.

Figure B-1: Airfoil and wake panel configuration with vorticity and source
distributions, and trailing edge details (figure adapted from [2] with permission)

The airfoil surface and the wake trajectory are discretized into flat panels, with 𝑁a

(or simply 𝑁) nodes on the airfoil and 𝑁w nodes on the wake as shown in Figure B-

1. The vortex strength 𝛾(𝑠) is discretized in a continuously piecewise linear manner

over all the airfoil panels and is defined by nodal values 𝛾𝑖 (1 ≤ 𝑖 ≤ 𝑁a). The

source strength 𝜆(𝑠) is first represented by constant distribution 𝜆𝑖 over each airfoil

(1 ≤ 𝑖 ≤ 𝑁a − 1) and wake (𝑁a ≤ 𝑖 ≤ 𝑁a + 𝑁w − 2) panel. Each panel is further

divided into halves. On the two sub-panels, 𝜆(𝑠) is reconstructed to be continuously

piecewise linear and is defined by three nodal values: the interior nodal value 𝜆∘
𝑖 ≡ 𝜆𝑖

and the boundary nodal values, 𝜆−
𝑖 and 𝜆+

𝑖 , which are averaged over neighboring

panels and weighted by panel sizes. At nodes (𝑖 = 1, 𝑁a, 𝑁a +1, 𝑁a +𝑁w) where only

108



one neighboring panel exists, the panel boundary nodal source strength is defined to

be equal to the panel interior value. For example, on the airfoil, the reconstructed

panel boundary values of source strength are given by

𝜆−
𝑖 ≡ 𝑚𝑖+1 −𝑚𝑖−1

|r𝑖+1 − r𝑖−1|
=

|r𝑖 − r𝑖−1|
|r𝑖+1 − r𝑖−1|

𝜆𝑖−1 +
|r𝑖+1 − r𝑖|
|r𝑖+1 − r𝑖−1|

𝜆𝑖, (2 ≤ 𝑖 ≤ 𝑁a − 1),

𝜆−
1 ≡ 𝜆1

𝜆+
𝑖 ≡ 𝑚𝑖+2 −𝑚𝑖

|r𝑖+2 − r𝑖|
=

|r𝑖+1 − r𝑖|
|r𝑖+2 − r𝑖|

𝜆𝑖 +
|r𝑖+2 − r𝑖+1|
|r𝑖+2 − r𝑖|

𝜆𝑖+1, (1 ≤ 𝑖 ≤ 𝑁a − 2),

𝜆+
𝑁a−1 ≡ 𝜆𝑁a−1

(B.3)

(B.4)

where 𝑚𝑖 ≡ 𝑞e 𝛿
*
1 is the mass defect normalized by the edge density 𝜌e (following a

proper sign convention consistent with source strength 𝜆 and should not be confused

with the mass defect defined in the IBL formulation) and r𝑖 is position vector. Both

𝑚𝑖 and r𝑖 are defined at each node 𝑖. The definition on the wake panels follows

similarly.

If the airfoil has a finite thickness at the trailing edge, a panel of constant source

strength 𝜆TE and vortex strength 𝛾TE needs to be placed across that the trailing edge

gap. For a smooth flow off the trailing edge, the source and vortex strengths 𝜆TE

and 𝛾TE must be related to the local airfoil surface vorticity by

𝜆TE =
1

2
(𝛾1 − 𝛾𝑁a)

⃒⃒
t̂× ŝ

⃒⃒
, 𝛾TE =

1

2
(𝛾1 − 𝛾𝑁a)

⃒⃒
t̂ · ŝ

⃒⃒
(B.5)

where t̂ is the unit vector bisecting the trailing edge angle and pointing away from

the airfoil, and ŝ is the unit vector along the trailing edge panel pointing from the

lower edge to the upper edge (i.e. counterclockwise around the airfoil).

Based on the aforementioned discretization, the streamfunction defined in (B.1)
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evaluates to the following expression at any field point (𝑥, 𝑦),

Ψ(𝑥, 𝑦) = 𝑢∞𝑦 − 𝑣∞𝑥 +
1

4𝜋

𝑁a−1∑︁
𝑗=1

[︁
Ψ𝛾+

𝑗 (𝑥, 𝑦) (𝛾𝑗+1 + 𝛾𝑗) + Ψ𝛾−

𝑗 (𝑥, 𝑦) (𝛾𝑗+1 − 𝛾𝑗)
]︁

+
1

4𝜋

𝑁a+𝑁w−2∑︁
𝑗=1

[︁
Ψ𝜆+

𝑗10
(𝑥, 𝑦)

(︀
𝜆∘
𝑗 + 𝜆−

𝑗

)︀
+ Ψ𝜆−

𝑗10
(𝑥, 𝑦)

(︀
𝜆∘
𝑗 − 𝜆−

𝑗

)︀]︁

+
1

4𝜋

𝑁a+𝑁w−2∑︁
𝑗=1

[︁
Ψ𝜆+

𝑗02
(𝑥, 𝑦)

(︀
𝜆+
𝑗 + 𝜆∘

𝑗

)︀
+ Ψ𝜆−

𝑗02
(𝑥, 𝑦)

(︀
𝜆+
𝑗 − 𝜆∘

𝑗

)︀]︁
+

1

4𝜋

(︀
Ψ𝜆

TE(𝑥, 𝑦)
⃒⃒
t̂× ŝ

⃒⃒
+ Ψ𝛾

TE(𝑥, 𝑦)
⃒⃒
t̂ · ŝ

⃒⃒)︀
(𝛾1 − 𝛾𝑁a) (B.6)

Figure B-2: Panel local coordinates (figure adapted from [2] with permission)

The unit streamfunctions in (B.6) are defined using panel local coordinates 𝑠, �̄�
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as shown in Figure B-2. Analytic expressions of the integrals are derived as

Ψ𝛾+

𝑗 (𝑥, 𝑦) = 𝑠1 ln 𝑟1 − 𝑠2 ln 𝑟2 + 𝑠2 − 𝑠1 + �̄� (𝛽1 − 𝛽2) (B.7)

Ψ𝛾−

𝑗 (𝑥, 𝑦) =

(︂
(𝑠1 + 𝑠2) Ψ𝛾+

𝑗 + 𝑟22 ln 𝑟2 − 𝑟21 ln 𝑟1 +
1

2

(︀
𝑠21 − 𝑠22

)︀)︂ 1

𝑠1 − 𝑠2
(B.8)

Ψ𝜆+

𝑗𝑝𝑞(𝑥, 𝑦) = 𝑠𝑞 𝛽𝑞 − 𝑠𝑝 𝛽𝑝 + �̄� ln
𝑟𝑝
𝑟𝑞

(B.9)

Ψ𝜆−

𝑗𝑝𝑞(𝑥, 𝑦) =
(︁

(𝑠𝑝 + 𝑠𝑞) Ψ𝜆+

𝑗𝑝𝑞 + 𝑟2𝑝 𝛽𝑝 − 𝑟2𝑞 𝛽𝑞 + �̄� (𝑠𝑞 − 𝑠𝑝)
)︁ 1

𝑠𝑝 − 𝑠𝑞
(B.10)

Ψ𝜆
TE(𝑥, 𝑦) = 𝑠1 𝜃1 − 𝑠2 𝜃2 + �̄� ln

𝑟1
𝑟2

(B.11)

Ψ𝛾
TE(𝑥, 𝑦) = Ψ𝛾+

TE(𝑥, 𝑦) (B.12)

More details on the derivation can be found in, for example, a text by Katz [42].

The canonical 1, 2 nodes of the trailing edge panel are nodes 𝑖 = 𝑁a, 𝑖 = 1 respec-

tively. Note that that the equation (B.11) uses 𝜃 whereas other unit streamfunction

definitions use 𝛽. That is,

𝜃 ≡ arctan
(︁ �̄�
𝑠

)︁
, 𝛽 ≡ arctan

(︁ 𝑠
�̄�

)︁
, 𝜃, 𝛽 ∈ [−𝜋, 𝜋] , 𝜃 + 𝛽 ≡ 𝜋

2
+ 𝑘𝜋 (∃𝑘 ∈ Z)

(B.13)

This choice is intended to ensure that the arctan( ) branch cut does not intersect the

airfoil surface.

Flow tangency on the airfoil surface (approached from the inside) is attained by

requiring the streamfunction to be equal to some constant value Ψ0. That is,

∇Ψ · ŝ = qi · n̂ = 0 ⇔ Ψ − Ψ0 = 0 (B.14)

where qi is the flow velocity. This condition is imposed at each node (𝑥𝑖, 𝑦𝑖) on the
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airfoil surface, resulting in the following 𝑁a linear equations,

𝑁a∑︁
𝑗=1

𝑎𝑖𝑗 𝛾𝑗 − Ψ0 = −𝑢∞ 𝑦𝑖 + 𝑣∞ 𝑥𝑖 −
𝑁a+𝑁w−2∑︁

𝑗=1

𝑏𝑖𝑗 𝜆𝑗, 1 ≤ 𝑖 ≤ 𝑁a (B.15)

The coefficient matrices 𝑎𝑖𝑗 and 𝑏𝑖𝑗 are fully determined from the unit streamfunction

and the panel geometry. Combining (B.15) with the Kutta condition

𝛾1 + 𝛾𝑁a = 0 (B.16)

completes a (𝑁a + 1) × (𝑁a + 1) linear system for the 𝑁a nodal values 𝛾𝑖 and the

airfoil surface streamfunction Ψ0.

A special treatment is required for an airfoil with a sharp trailing edge. In this

case, the nodes 𝑖 = 1 and 𝑖 = 𝑁a coincide, rendering one equation redundant in

(B.15) and thus a singular global linear system. This problem can be sidestepped

by replacing the 𝑖 = 𝑁a equation in (B.15) with a linear extrapolation of the mean

𝛾 (between upper and lower surfaces) to the trailing edge [2],

(𝛾1 − 𝛾𝑁a) − (𝛾2 − 𝛾𝑁a−1) = (𝛾2 − 𝛾𝑁a−1) − (𝛾3 − 𝛾𝑁a−2) (B.17)

The version 6.99 of XFOIL [41] treats this singularity issue differently by requiring

the internal velocity inside airfoil near the trailing edge to be zero, which is adopted

in the current numerical implementation as follows,

qi · t̂ = ∇Ψ ·
(︀
ẑ× t̂

)︀
= 0 at (𝑥, 𝑦) = (𝑥1, 𝑦1) − 𝑑 (t̂ · x̂, t̂ · ŷ) (B.18)

where ẑ = x̂× ŷ and the velocity qi in (B.18) is computed such that only the vortex

and source on the airfoil are accounted for, which is an ad-hoc implementation simply
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for the purpose of being consistent with XFOIL. The length scale 𝑑 is set to be small

compared to the panel sizes,

𝑑 ≡ 0.1 min{|r1 − r2| , |r𝑁a − r𝑁a−1|} (B.19)

The idea underlying the treatment (B.18) is that the discrete pure Neumann condi-

tion in (B.15) does not guarantee a well-posed problem. It can result in non-physical

outflow from the airfoil interior through the trailing edge, which can be eliminated

by requiring the internal velocity to vanish.

Sample results of the panel method presented in this thesis are shown in Figure B-

3 and B-4, which demonstrate a good agreement with XFOIL solutions. In obtaining

the results, the XFOIL viscous mode is used. Also, the source strength 𝜆 for the

panel method formulated in this thesis is prescribed from the XFOIL viscous solution

as in (4.6).
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Figure B-3: Panel solution comparison between XFOIL (version 6.99) and the
panel method of this thesis (SANS panel): NACA0004 airfoil with a finite-thickness

trailing edge. 𝑅𝑒 = 105, Mach ≈ 0, 128 panels on the airfoil
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Figure B-4: Panel solution comparison between XFOIL Version 6.99 (XFOIL
panel) and the panel method of this thesis (SANS panel): Joukowski airfoil
(thickness-to-chord ratio 𝑡/𝑐 ≈ 0.378) with a cusp trailing edge. 𝑅𝑒 = 105,

Mach ≈ 0, 128 panels on the airfoil
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