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ABSTRACT

The impact of future greenhouse gas forcing on the North Atlantic and North Pacific tropospheric jets

remains uncertain. Opposing changes in the latitudinal temperature gradient—forced by amplified lower-

atmospheric Arctic warming versus upper-atmospheric tropical warming—make robust predictions a chal-

lenge. Despite some models simulating more realistic jets than others, it remains the prevailing approach to

treat each model as equally probable (i.e., democratic weighting). This study compares democratically

weighted projections to an alternative Bayesian-weighting method based on the ability of models to simulate

historical wintertime jet climatology. The novel Bayesian technique is developed to be broadly applicable to

high-dimensional fields. Results show the Bayesian weighting can reduce systematic bias and suggest the

wintertime jet response to greenhouse gas forcing is largely independent of this historical bias (i.e., not state

dependent). A future strengthening and narrowing is seen in both winter jets, particularly at the upper levels.

The widely reported poleward shift at the level of the eddy-driven jet does not appear statistically robust,

particularly over the North Atlantic, indicating sensitivity to current model deficiencies.

1. Introduction

The tropospheric westerly jet streams play a central

role inmuch of the weather and climate variability in the

wintertime extratropics. In the Southern Hemisphere a

single jet circumvents the globe, whereas in the North-

ern Hemisphere (NH) two distinct jets form over the

Atlantic and Pacific (Fig. 1a). These jets act as waveguides

for regions of preferential cyclone activity, or storm tracks

(Hoskins and Ambrizzi 1993; Lorenz and Hartmann

2003), which are responsible for wind, precipitation,

and temperature extremes (see review by Shaw et al.

2016). In fact, the north–south wobbling of these jets

represents the primary modes of atmospheric variabil-

ity away from the tropics (Wittman et al. 2005).

Two dynamical processes are responsible for the for-

mation of these jets. The first is poleward-moving air

accelerating westward to create a jet on the edge of the

Hadley cell. The second is eddy heat flux and momentum

flux convergence caused by atmospheric waves forming

in regions of enhanced baroclinicity. These two jets are

often separated conceptually and referred to as the sub-

tropical and eddy-driven jets, respectively (Hartmann

2007). In reality, both processes often operate and in-

teract continuously making it difficult to attribute a given

jet to either process (Lee and Kim 2003).

Predicting future changes in the jets, and corre-

sponding shifts in circulation, would provide valuable
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information to assess the societal impacts of climate

change. Any modification of global temperature distri-

butions may impact circulation through changes to both

temperature gradients and stability (e.g., Butler et al.

2010). Unlike the thermodynamics response, however,

the dynamic response to increase greenhouse gas forcing

is not well understood (Shepherd 2014).

It has been hypothesized that Arctic amplification—

the accelerated warming of the Arctic relative to the

global mean—will decrease the latitudinal temperature

gradient, slow down the zonal jets, and cause them to

shift equatorward (Francis and Vavrus 2012; Liu et al.

2012). While Deser et al. (2004) and others have shown

in targeted modeling experiments that a warming Arctic

can induce an equatorward shift of the midlatitude jets,

this does not mean that a future Arctic amplification will

necessitate such a shift (Barnes and Screen 2015). In

fact, many climate projections simulate a poleward or

negligible shift of the tropospheric jets by the end of the

twenty-first century, despite all exhibiting Arctic am-

plification (Barnes and Polvani 2015).

This apparent contradiction can be reconciled by model

predictions of enhanced warming in the tropical upper

troposphere resulting from changes in moist adiabatic

lapse rate (Vallis et al. 2015). That is, while the lower-level

equator–pole temperature gradient is expected to de-

crease, the upper-level equator–pole temperature gradient

is expected to increase (Fig. 1b; IPCC 2007, their Fig. 10.7).

Which of these will emerge as the dominant forcing on

future jets and storm tracks remains an open question.

The complexity of midlatitude dynamics makes it chal-

lenging to predict how jets will respond to climate change

using simple theoretical reasoning alone. Atmosphere–

ocean general circulation models (AOGCMs) attempt to

realistically simulate the global climate system and its

response to greenhouse gas emissions. These compre-

hensive models aspire to be a culmination of the scien-

tific community’s current knowledge and computational

ability. Coordinated modeling experiments conducted

by a range of institutions, such as phase 5 of the Coupled

Model Intercomparison Project (CMIP5), attempt to

quantify the uncertainty in projections that results from

our incomplete understanding of nature and its imper-

fect representation in models (Knutti et al. 2017). Vallis

et al. (2015) studied the CMIP5 archive to investigate

future changes in large-scale circulation, including the

midlatitude jets. As is the prevailing approach, their

study assumes ‘‘model democracy’’; each of the CMIP5

models is thought to be equally skillful and its pro-

jection equally likely (Knutti 2010). However, there is

clear evidence that some models are more capable of

modeling particular phenomena compared to others

(Gleckler et al. 2008).

An alternative to model democracy is to weigh model

projections based on its skill to realistically simulate

historical conditions. The key assumption in this ap-

proach is that if amodel faithfully reproduces an observed

phenomenon, the key processes responsible for that

phenomenon are being realistically simulated. It follows

that the model is more likely to respond realistically to

FIG. 1. (a) Climatology ofDJF zonal wind at 500hPa (1950–2005; NCEP–NCARreanalysis). Boxes showNorth Pacific

(08–908N, 1358W–1258E) and North Atlantic (08–908N, 08–608W) domains. (b) Latitude–height cross section showing the

projectedDJF temperature change (shading) at the end of the twenty-first century (RCP8.5; 2075–99) relative to historical

simulations (1950–2005). Contours show the DJF temperature climatology in historical CMIP5 simulations at intervals of

10K from 290K at left to 210K at right. Values were calculated using the AEM of all CMIP5 simulations in Table 1.
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future forcing. This holds providing futuremean climate is

within the envelope of historical variability (i.e., the cli-

mate system has drifted but not converted to another

mode of variability). Knutti et al. (2017) provide a concise

overview of the arguments for and against weighing

models. The main challenge in pursuing this approach is

how to convert a ‘‘model performance metric’’ (i.e., how

well a model simulates observations) into weights in an

objective manner.

The two goals of this studywere to 1) analyze the future

changes in the NH wintertime atmospheric jets as simu-

lated by the CMIP5 ensemble by 2) developing and

applying a novel Bayesian-weighting scheme. The ap-

proach relies on decomposition of the simulated atmo-

spheric fields onto dominantmodes of variability. Section 2

describes the data and methods used in our study. The

historical bias associated with the democratic weighting

of the jets is investigated in section 3. In section 4 we

outline the Bayesian-weighting approach and verify its

use on historical data. We then use these weights to in-

vestigate changes in the jets at the end of the twenty-first

century in section 5. Section 6 offers some conclusions.

2. Data and methods

In this study we compare simulations performed in

CMIP5 (Taylor et al. 2012) to our ‘‘best guess’’ of histor-

ical conditions—provided by atmospheric reanalysis data.

Atmospheric zonal wind and temperature data spanning

from 1000 to 100hPa were from the National Centers for

Environmental Prediction (NCEP)–National Center for

Atmospheric Research (NCAR) reanalysis (Kalnay et al.

1996). Although a number of new reanalysis products

that offer improved quality are now available, none

match the length of the NCEP–NCAR observational

record. Long-duration records are required for the ro-

bust calculation of eigenvalues outlined in the method-

ology for our Bayesian-weighting approach (section 4).

We analyze the output from 30 CMIP5 simulations from

17 models (Table 1). Our approach considers all simula-

tions independently (i.e., we do not attempt to consider

the dependence of simulations from the same model).

This assumption is not strictly true as ensembles of the

same model are clearly related and many models from

different groups exchange both ideas and code. To ad-

dress such dependence Knutti et al. (2017) suggest an

approach that penalizes similar models. However, this

has the inherent limitation of reducing model weights if

they converge on reality. The CMIP5 data were obtained

through the Earth System Grid Federation data portal

(http://pcmdi9.llnl.gov/) and represent the complete set

available at the time of access. The simulations were

performed at a range of resolutions so were first mapped

onto the common 2.58 NCEP–NCAR reanalysis grid us-

ing triangulation-based cubic interpolation.

Our analysis focuses onDecember–February zonal wind

u calculated from monthly mean data. Winter is when

the northward shift of the NH jets is least consistent

TABLE 1. List of CMIP5models, including number of ensemble runs, used in this study. Square brackets denote the samemodel runwith

different physics packages. Ensembles refer to realizations of the same model using different but equally realistic initial conditions.

(Expansions of acronyms are available online at http://www.ametsoc.org/PubsAcronymList.)

Model name Model center No. of ensembles

BCC_CSM1.1 Beijing Climate Center, China Meteorological Administration 1

BCC_CSM1.1(m) Beijing Climate Center, China Meteorological Administration 1

CCSM4 National Center for Atmospheric Research 5

CESM1(CAM5) National Center for Atmospheric Research 2

CNRM-CM5 Centre National de Recherches Météorologiques 1

GFDL CM3 Geophysical Fluid Dynamics Laboratory 1

GISS-E2-R [P1] NASA Goddard Institute for Space Studies 2

GISS-E2-R [P3] NASA Goddard Institute for Space Studies 2

INM-CM4.0 Institute of Numerical Mathematics 1

IPSL-CM5A-LR L’Intitut Pierre-Simon Laplace 4

IPSL-CM5A-MR L’Intitut Pierre-Simon Laplace 1

IPSL-CM5B-LR L’Intitut Pierre-Simon Laplace 1

MIROC5 Japan Agency for Marine-Earth Science and Technology, Atmosphere

and Ocean Research Institute (The University of Tokyo),

and National Institute for Environmental Studies

2

MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere

and Ocean Research Institute (The University of Tokyo),

and National Institute for Environmental Studies

1

MPI-ESM-LR Max Planck Institute for Meteorology 3

MPI-ESM-MR Max Planck Institute for Meteorology 1

NorESM1-M Norwegian Climate Centre 1
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from year to year and model to model, and both the

upper- and lower-tropospheric temperature gradients

are thought to play a significant role (Harvey et al.

2014; Simpson et al. 2014). To characterize the two jets

we zonally average atmospheric data across the North

Pacific (1358E–1258W) and North Atlantic (608W–08)
domains shown in Fig. 1. These regions were chosen

to be consistent with earlier analyses (Eichelberger and

Hartmann 2007; Barnes and Polvani 2013). We analyze

latitude–height cross sections, as opposed to geometric

indices (e.g., Woollings et al. 2010), so we can assess the

structures of the jets throughout the depth of the tro-

posphere and to allow for visual verification of our

Bayesian-weighting method.

Our historical period of analysis was constrained to

the NCEP–NCAR data period spanning January 1950–

December 2005 (55 DJF winters). Historical CMIP5

simulations were forced by observed greenhouse gas

emissions, anthropogenic aerosol, and solar and volca-

nic activities and so represent the scientific commun-

ity’s best attempt to model the historical jets. CMIP5

projections of future climate are from the representative

concentration pathway 8.5 (RCP8.5) emission scenario

in which greenhouse gas emissions result in top-of-

atmosphere radiative forcing of 8.5Wm22 by 2100

(van Vuuren et al. 2011). RCP8.5 represents the most

extreme CMIP5 future emissions scenario and was

chosen to maximize the signal-to-noise ratio in our

analysis. We define the future state of the jets as their

climatology during the last 25 years of the twenty-first

century (2075–99).

3. Historical jets in CMIP5

The contrasting structure of the historical North At-

lantic and North Pacific jets is evident in Fig. 2. Weak

Hadley circulation and a zone of baroclinicity that is

relatively far north result in distinct subtropical and

eddy-driven jets over the North Atlantic (‘‘separated

jets’’; Fig. 2a).While the subtropical jet is confined to the

upper levels, the eddy-driven jet extends through the

depth of the troposphere. Over the North Pacific, strong

FIG. 2. Climatology (1950–2005) of zonally averagedDJF zonal wind over the NorthAtlantic in (a) NCEP–NCAR

reanalysis and (b) theCMIPAEM. CMIPAEM refers to theAEMof theCMIP5 simulations. (c),(d)As in (a),(b), but for

the North Pacific domain. Contours show the reanalysis climatology at intervals of 5m s21, starting from 5m s21.
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Hadley circulation and an equatorward zone of bar-

oclinicity result in a single jet maxima (‘‘combined jets’’;

Fig. 2c) (Li and Wettstein 2012). Figures 2b,d show the

arithmetic ensemble mean (AEM) of the CMIP5 model

jets. They successfully simulate the general differences

between the zonal wind climatology in two regions, ex-

hibiting clearly distinct jets in theAtlantic and combined

jets in the Pacific.

While the broad features of the different jets are

distinguishable there are clear differences between

the AEM of the CMIP simulations and reanalysis clima-

tology (Figs. 2b,d and 3). These broad differences are

independent of the reanalysis product (Fig. S1 in the

supplemental material). Over the North Pacific, we see a

clear bias in the latitudinal position of the North Pacific

jet, particularly in the lower troposphere. This is consis-

tent with analysis by Barnes and Polvani (2013) that fo-

cused on the eddy-driven jet. This latitudinal shift also

corresponds to a positive bias in the jet strength in the

upper troposphere at its maximum (Figs. 2d and 3b).

In the North Atlantic there is a weak bias in the

southern core and significant strong bias in the northern

core. The strong bias at the latitude of the eddy-driven

jet maxima is consistent with findings of positive bias in

DJF jet strength over the North Atlantic in the CMIP3

ensemble (Woollings and Blackburn 2012). This bias is

surprising given the large range of eddy-driven jet lati-

tudes observed across the different models (Barnes and

Polvani 2013), which one might expect to appear in the

ensemble average as a weakening and spreading of the

jet core. What we see in Fig. 3 is the opposite—a bias

toward a stronger and narrower eddy-driven jet in the

zonal mean. Much of this bias may be explained by the

tendency of the North Atlantic storm tracks to be too

zonal in models (Zappa et al. 2013) because jets that are

more zonal would appear to have stronger and narrower

cores in the zonal average. That is, the latitudinal tilt of

the North Atlantic jet results in a ‘‘smearing’’ of the jet

structure in the zonal average (Fig. 2a). Alternatively,

this bias could be explained by unrealistically low vari-

ability in jet latitude over the North Atlantic (Gong

et al. 2016).

4. Bayesian weighting

a. Deriving Bayesian weights

The CMIP5 models simulate a range of distinct DJF

zonal wind climatologies (Figs. S8–S11 in the supple-

mental material) that are democratically weighted to

produce the AEM climatology shown in Figs. 2 and 3.

From visual inspection it is clear some models simulate

more unrealistic climatology than others—resulting in

the bias shown in Fig. 3—so it would be reasonable to

argue these models should be given less weight in pre-

dicting future conditions. To pursue this approach we

must (i) choose a model quality metric and (ii) convert

this metric into a weight for each model. As we wish to

understand changes in the jets, the ability of a model to

simulate historical zonal wind climatology (Fig. 2a) seems

a reasonable choice for a model quality metric. This as-

sumes that future mean changes will remain within the

envelope of historical variability. While this could hypo-

thetically not be the case, the authors are not aware of any

literature suggesting either the North Atlantic or North

Pacific mean jet will undergo such dramatic changes. Our

approach also assumes that the dominant processes

setting the mean state are also those that set the response

to forcing.

Our goal is to assign low weight to CMIP model imi if

its simulation of historical zonal wind climatology agrees

FIG. 3. Difference between NCEP–NCAR reanalysis and CMIP5 AEM zonal wind climatology (1950–2005) for

the (a) North Atlantic and (b) North Pacific. Contours show the reanalysis climatology at intervals of 5m s21,

starting from 5m s21. Stippling marks differences significant at aFDR 5 0.1 on a two-tailed test (see the appendix).
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poorly with reanalysis data d. To achieve approach (ii) we

propose a method that builds on the Bayesian model

averaging (BMA) framework developed by Min et al.

(2004, 2007). We extend their approach so that high-

dimensional observations d—such as zonal wind

climatology—can be used as a metric for model quality.

Starting from Bayes’s rule we have

P(m
i
j d)5 P(d jm

i
)P(m

i
)

�
N

j51

P(d jm
j
)P(m

j
)

, (1)

where P(mi jd) is the posterior, P(d jmi) is the likeli-

hood, P(mi) is the prior, and �N

j51P(d jmj)P(mj) is the

marginal distribution. If we assume uniform priors,

P(mi) 5 1/N, and (1) simplifies to

P(m
i
j d)5 P(d jm

i
)

�
N

j51

P(d jm
j
)

. (2)

However, if there is a source of information on prior

probabilities, this framework can incorporate them into

the model weighting.With uniform priors, the weighting

scheme is also equivalent to the maximum likelihood

estimator. The ratio P(mi jd)/P(d jmj) corresponds to

the Bayes factor often used for model selection (Gelman

et al. 2003). Assuming the model realizations and ob-

servations follow a multivariate Gaussian distribution,

P(d jmi) can be formulated as follows:

P(d jm
i
)

5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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d
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Here the exponent represents the Mahalanobis distance

between the observational data and model simulations.

Here q is the length of vectors mi and d. Following Min

et al. (2007) we assume thatSm, the covariancematrix of

the model, is equal to the covariance matrix of the ob-

servations. Substituting (3) into (2) gives

P(m
i
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4
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The challenge in calculating (4) arises when trying to

invert the covariance matrix Sd. As we must estimate

Sd fromobservations, the theoretical limit of its condition

number is the number of observations (55 yr). This im-

plies that the largest data vector d, which we can use to

assess model quality, is the length of our observations.

If d exceeds this, Sd will be ill-conditioned and we will

be unable to calculate the inverse. In practice, a well-

conditioned and invertible Sd requires the length of d to

be much shorter than the number of observations. This

limit on d means that, in its current form, (4) cannot be

used with high-dimensional geophysical fields as a basis

to test model quality. Min et al. (2007) address this by

reducing the dimensionality of their model quality

metric. We propose a general solution that allows (4)

to be calculated from leading eigenvectors of high-

dimensional data. Using eigenvector decomposition the

inverse of the covariance matrix may be written as

S
21
d 5 eL21eT , (5)

where e and L are the eigenvectors and eigenvalues of

Sd (Calenge et al. 2008). Defining bi 5 eT(d 2 mi) and

substituting (5) into (3) yields

P(d jm
i
)5

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pq det S

d

q exp

 
2
1

4
�
k

b2
ik

l
k

!
, (6)

where �k is the summation over the subsequent ei-

genvectors e and eigenvalues l of our observations,

ranked in order from largest eigenvalue (k 5 1) to

smallest (k 5 K, where K is the total number of eigen-

vectors). Substituting (6) into (2) allows us to calculate

the model weights as

P(m
i
j d)5

exp 2
1

4
�
k

b2
ik

l
k

 !

�
N

j51

exp 2
1

4
�
k

b2
ik

l
k

 ! . (7)

The total number of eigenvectors K is equal to the

number of observations. However, in any field with co-

herent patterns of variability, as k increases the magni-

tude of the corresponding eigenvalue l decreases.When

calculating (7) small eigenvalues cause the exponential

term to become very large and the weighting distribu-

tion overly selective. Because of this, care must be taken

in limiting the number of eigenvalues used to calculate

the summation (see below).

b. Calculating Bayesian weights

We now apply the weighting scheme and assess how

the Bayesian-weighting framework can be used to re-

duce bias in the ensemble average of the CMIP5 his-

torical jet simulations. The data vector d is the reanalysis
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climatology shown in Figs. 2a,c but spatially decomposed

into an N 3 1 vector. The model field we are assessing

mi is the corresponding N 3 1 (spatially decomposed)

zonal wind climatology for each simulation. We calculate

the eigenvalues and eigenvectors from the N 3 M re-

analysis data, where M is the number of observations

(55 DJF averages between 1950 and 2005).

Figure 4 shows the leading two eigenvectors of

density-weighted zonal wind. We apply (7) to the zonal

wind field weighted by both density and grid area.

Density weighting ensures that the eigenvectors draw

power through the depth of the troposphere and not just

the upper levels where low-density winds with high

variance dominate. Weighting by grid area [cos(lat)]

compensates for unequal grid boxes (e.g., Baldwin and

Thompson 2009). The first and second eigenvectors

in each region represent the north–south wobble and

pulsing of the jet, respectively (Lorenz and Hartmann

2003). Together, these patterns explain the majority of

variance in the zonal wind field and appear well sepa-

rated in the eigenvalue spectrum (Figs. 4c,f). The lead-

ing six eigenvectors are shown in Figs. S2 and S3 of the

supplemental material.

We argue that the dominance of the leading two ei-

genvectors justifies setting K 5 2 as the limit in (7). In

Fig. 5 we show the distribution of model weights for

K 5 2. This choice is somewhat subjective and depends

on inspection of the eigenvalue spectrum and corre-

sponding distributions of weights (shown forK5 1–6 in

Figs. S4 and S5 of the supplemental material). In the

future it would be desirable to formalize this choice

using knowledge of sampling errors in EOF analysis

(e.g., North et al. 1982; Quadrelli et al. 2005) applied to

(7). That ensembles of the same model are assigned

consistent weights tells us that the field we are using to

assess model quality is characteristic of the model and

not simply a result of internal variability. The model

weight distribution is different for the North Atlantic

and North Pacific, suggesting this metric of model

quality is specific to the different phenomena (i.e., a

model’s ability to simulate the North Atlantic jet is not

closely related to its ability to simulate the North Pacific

jet). In fact, the Pearson correlation coefficient be-

tween the two weight distributions is 20.01. This could

be a reflection of the relative importance of the eddy

driving and thermal driving in the two jets (Li and

Wettstein 2012).

We compare the jets in historical reanalysis to the

Bayesian-weighted CMIP5 ensemble average in Fig. 6.

While there are still large regions of statistical significance

FIG. 4. Leading two eigenvectors of mean DJF density-weighted zonal wind (shading; NCEP–NCAR reanalysis; 1950–2005) over the

(a),(b) North Atlantic and (d),(e) North Pacific domains. Black contours show the climatology of NCEP–NCAR zonal wind (see Fig. 2).

(c),(f) The percent variance explained by the leading 14 eigenvectors.
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over the North Atlantic, the magnitude of the Bayesian-

weighted (BMA) composite bias is clearly reduced rela-

tive to the democratically weighted (AEM) composite

shown in Fig. 3. Over the North Pacific the significant

equatorward bias is removed completely. This reduced

historical bias provides confidence in (7), including our

choice of K.

5. Future jets in CMIP5

We now look at the Bayesian-weighted future cli-

matology of the CMIP5 projections. Figure 7 displays

the future jet composites while Fig. 8 shows their dif-

ference from historical conditions. Both jets show

similar patterns of future change—a strengthening in

the upper-tropospheric westerlies between 308 and 508N
and a weakening either side reaching into the mid-to-

low troposphere. As mentioned previously, this rela-

tive strengthening and narrowing in the zonal mean,

time-averaged jet could result from a combination of

1) a physical strengthening and narrowing, 2) reduced

variability in latitude position (i.e., less jet ‘‘wobbling’’),

or 3) a reduced latitudinal tilt. Barnes and Polvani (2013)

found a shift in the dominant mode of variability in the

eddy-driven jet, with less wobbling and more jet pulsing

in the future, which is consistent with Fig. 8.

Over the North Atlantic, the upper-level intensifica-

tion appears to have merged the distinct wind maxima,

suggesting this jet may shift toward a combined core

regime through midwinter. In idealizedmodeling studies

FIG. 5. Distribution of model weights for successive summations of k in (7) for the (a) North Atlantic and

(b)North Pacific.Horizontal gray line corresponds to equalmodel weights 1/N. Error bars denote a 90%confidence

interval calculated by resampling with replacement the years used to estimate themodel climatology and reanalysis

climatology, eigenvalues, and eigenvectors used in (7). This bootstrapping was repeated 1000 times to produce

a distribution of weights for each model.

FIG. 6. Difference between NCEP–NCAR reanalysis and CMIP5 BMA zonal wind climatology (1950–2005) for

the (a) North Atlantic and (b) North Pacific. Contours show the reanalysis climatology at intervals of 5m s21,

starting from 5m s21. Stippling marks differences significant at aFDR 5 0.1 on a two-tailed test (see the appendix).
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Lee and Kim (2003) found that a strong subtropical jet

inhibits the latitudinal variability of eddies and the for-

mation of a well-separated (eddy driven) midlatitude jet,

which may be what we observe over the North Atlantic

in Fig. 7. A poleward jet shift is not the full story of

Fig. 8—reduced westerlies poleward of 608N are co-

incident with projections of Arctic amplification at these

latitudes and appear to be squeezing the poleward flank

of the jet. However, it is not possible to concludewhether

this is driven by a direct thermal response or is due to

changes in eddies.

Consistent with previous studies that use geometric

analysis, Fig. 8 shows a poleward shift and intensification

at the center of the surface-level eddy-driven jets (e.g., Yin

2005; Barnes and Polvani 2013). The latitude–height cross

sections suggest this feature is linked to a significant

strengthening of the upper-level westerlies at the jet cores,

which is consistent with theoretical expectations of an in-

creased temperature gradient in the upper troposphere

(Butler et al. 2010).While our analysis suggests a poleward

shift of the eddy-driven jets it is worth considering the

statistical robustness of this projection. Although the

strengthening and poleward shift toward the surface is

associated with a statistically significant response in the

upper troposphere, the significance of the northward shift

at the surface is limited, particularly in the North Atlantic.

This likely represents the competing influence of the

equatorward shift associated with low-level Arctic

amplification. By virtue of the nonuniform weighting,

the standard error constraints (see the appendix) of the

Bayesian-weighted changes (Fig. 8) are more stringent

than a democratically weighted composite (Fig. S7 in

the supplemental material). However, both show this

limited significance of the implied surface jet shift.

Figure 9 shows a significant difference between future

jet climatology in Bayesian-weighted and democrati-

cally weighted composites. These patterns closely match

the historical bias (Fig. 3), also indicating that the

Bayesian-weighted projected jet change does not differ

significantly from the democratically weighted projected

jet change (Fig. S7). This suggests that changes in these

jets is largely independent of the historical jet charac-

teristics. That is, greenhouse gas (GHG)-forced change

in future jets is largely first-order linear. This is in con-

trast with analysis of CMIP5 ensemble (Bracegirdle

et al. 2013) that found themagnitude of the jet shift to be

well correlated with the bias in the initial position.

Woollings and Blackburn (2012) found a similar lack of

coherence between future jet changes and bias in

CMIP3 and report that diagnoses of jet stream changes

are sensitive to differences in methodology.

6. Conclusions

In this study we assess the significant biases in both

the North Pacific and North Atlantic jets (Fig. 3). We

present a novel Bayesian-weighting framework that re-

duces this bias (Fig. 6) and use it to assess future changes

in the jet structure (Fig. 8). Both regions show broadly

similar changes throughout the troposphere; the ap-

parent squeezing of the jet as warming in the upper

troposphere pushes the subtropical jet north and Arctic

amplification slows westerlies on the jet’s poleward

flank. That the widely documented poleward shift of

the near-surface eddy-driven jet occurs at the conflu-

ence of Arctic and tropical influences may explain its

lack of statistical robustness during winter. While the

upper-tropospheric tropical warming is a well-understood

FIG. 7. Future climatology (2075–99) of jets calculated as the Bayesian-weighted ensemble average (shading) for

the (a) North Atlantic and (b) North Pacific.White contours show North Atlantic future climatology at intervals of

1m s21, starting at 30m s21. Black contours show the historical CMIP5 BMA climatology at intervals of 5m s21,

starting from 5m s21. Jets are the DJF zonal wind averaged latitudinally across the domains shown in Fig. 1.
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response to climate change, the processes involved with

Arctic amplification are less clear (Vallis et al. 2015).

Quantifying the relative influence of processes such as

future sea ice loss (e.g., Screen and Simmonds 2010) and

cloud cover (e.g., Li et al. 2015) should allow for more

robust predictions of future jet variability. Alternatively,

it may be that the processes competing to change jet

variability do in fact cancel one another, resulting in

no change to surface jet climatology. Over the North

Atlantic, the simulations project a shift from a separated

to a combined jet regime. This may be a reflection of

enhanced control exerted over eddy propagation by the

strengthened subtropical jet (Lee and Kim 2003).

Our Bayesian-weighted future jet composites are

significantly different from the commonly used demo-

cratic mean (AEM; Fig. 9). As such, leveraging the

Bayesian composites has the potential to prevent

the misinterpretation of future jet conditions. That the

Bayesian-weighted future minus historical composites

(Fig. 8) are not significantly different from the demo-

cratically weighted ones (Fig. S7) suggests that response

of the wintertime tropospheric jets to GHG forcing

is first-order linear. A significant decision in applying

the Bayesian framework was choosing the number of

eigenvectors to include in (6). Well-established insight

into the physical meaning of the eigenvectors, repre-

senting jet wobbling and jet pulsing, and a well-separated

eigenvalue spectrum provided a clear choice for K. This

may not prove to be the case in other applications.

A key goal of this study was to showcase the Bayesian-

weighting methodology as applied to high-dimensional

fields, which we believe could be useful in a range of

applications. While we apply the weighting to the same

field used to define model quality (i.e., zonal wind cli-

matology), there is no reason the weights could not be

applied to other circulation metrics related to the tro-

pospheric jets. For example, it would be interesting to

see whether our weights reduced biases in wave extent,

wave speed, and blocking metrics (Barnes and Polvani

2015). A number of recent studies have highlighted the

importance of zonal jet asymmetries (Zappa et al. 2013,

among others) that are not considered in our analysis of

FIG. 8. Projected change in jets calculated as future (2075–99) minus historical (1950–2005) climatology for the

(a) and (b). The projected change in jets weighted by density for (c) North Atlantic and (d) North Pacific. Contours

show the historical CMIP5 BMA climatology at intervals of 5m s21, starting from 5m s21. Stippling marks

differences significant at aFDR 5 0.1 on a two-tailed test (see methods).
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zonal mean climatology. Our primary motivation for

studying 2D fields was to illustrate our methodology, but

we foresee no reason the approach could not be ex-

tended to 3D representations of the zonal wind field.

Such analysis would allow the weighting framework to

incorporate the bias of overly zonal flow in the quality

metric. By choosing to study DJF averages our choice of

model quality metric largely disregards some subtleties

relating to jet variance. For example, we do not directly

consider how faithfully models reproduce the preferred

jet locations over the North Atlantic (Woollings et al.

2010) or how this may change in the future.

Acknowledgments. DW and DE were supported by

the National Science Foundation Grant 1503966. KM

was supported by the Ziff Environmental Fellowship

from Harvard University’s Center for the Environment.

APPENDIX

Significance Calculations

All significance levels in this study are calculated from

the standard error of the climatologies (mean):

SE5
D

s
, (A1)

where D is the difference between the model and re-

analysis climatology, and s is the standard deviation of

the climatology. Here s can be calculated as the square

root of the variance (see below). In Figs. 3, 6, and 8

the variance of the climatology can be calculated as

follows:
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where E(X) is the expected value of zonal wind, which

corresponds to climatology. Variable Pi is the proba-

bility (weight) of model i. In the arithmetic ensemble

means this was calculated as 1/N. Similarly, the variance

of the composite means in Fig. 9 was calculated as

follows:
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Once the standard error has been used to calculate

p values at each grid point, the false discovery rate

(FDR) approach is used to calculate critical p values

(Ventura et al. 2004; Wilks 2016).

FIG. 9. Difference between projected future (2075–99) climatology calculated using BMA vs AEM (BMA

minus AEM) for the (a) North Atlantic and (b) North Pacific. Contours show the reanalysis climatology at

intervals of 5 m s21, starting from 5m s21. Stippling marks differences significant at aFDR 5 0.1 on a two-tailed

test (see methods).
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