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Abstract

Pulmonary diseases are a leading cause of death worldwide. Much of their burden
disproportionately affects the developing world. The MIT Mobile Technology Lab
has developed a Mobile Kit which screens and diagnoses COPD and asthma. In this
thesis, we analyze and further develop tools in this kit.

All of the data for this thesis were collected as part of a large medical study
with our partner, the Chest Research Foundation (CRF), in Pune, India. The data
consisted of 325 patients (135 healthy, 76 asthma, 46 COPD, 29 allergic rhinitis,
and 39 other). Among the asthma and COPD patients, 67 had allergic rhinitis. All
patients were examined using a mobile diagnostic kit designed at MIT consisting
of a mobile stethoscope, peak flow meter, and questionnaire. All patients were also
examained using the convential gold standard pulmonary function testing (PFT) lab.
The performance of our Mobile Kit platform was previously analyzed and presented
in a prior Master’s thesis.

Building on our group’s prior work, in this thesis we present three main contri-
butions: 1) we have created a classifier for a new disease category, allergic rhinitis,
which accounts for roughly half of all respiratory clinic patients; 2) we have explored
and anlayzed the value of cough sounds as a diagnostic tools for pulmonary disease;
and 3) we have analyzed data from a pulmonary function testing lab which were
collected in parallel with our group’s Mobile Diagnostic Kit, and have compared the
performance.

In the first section of this thesis, we created a classifier for allergic rhinitis diagno-
sis, using the same multi-layer classification structure as was used in our group’s prior
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work. This integrated classifier demonstrated moderate performance with AUCs
ranging from 0.87 to 0.90. As a second approach, a standalone classifier was also
explored, which produced much better results, with an AUC of 0.96. Going forward,
we plan to use an independent classifier as part of our diagnostics.

In the second part of this thesis, we explored the value of cough sounds for pul-
monary diagnosis. Various classifiers were created for the screening and diagnosis of
pulmonary disease through the analysis of cough sounds. We first created a classi-
fier for the detection of Wet and Dry coughs (which can indicate overall pulmonary
health), which had a high classification performance but limited diagnostic value. We
then explored the diagnostic value of specific physical features of the cough sounds,
including kurtosis, variance, zero crossing irregularity, and rate of decay. the utility
of these features were then analyzed both in isolation and integrated with other Mo-
bile Kit tools. It was discovered that these cough sound features do have value as
a simple diagnostic tool to distinguish between asthma and COPD, as well as basic
pulmonary health; however, it was found that cough sounds alone provide less value
than other diagnostic tools for providing disease-specific diagnosis. When integrated
with the Mobile Kit tools, cough sounds only improved performance on lung sounds;
otherwise, coughs did not have any added benefit. Given the ease of data collection,
we demonstrated that cough sounds can play a role in simple disease screening for
use with community health workers.

For the third major part of this thesis, we did a thorough analysis of pulmonary
function testing (PFT) data, which is the gold standard for pulmonary disease di-
agnosis. The PFT laboratory tools included spirometry, impulse oscillometry, body
plethysmography, and lung gas diffusion (DLCO). We first explored a multi-layer
classification structure. Using this structure, the PFT machines produced good re-
sults on each classification layer: Healthy vs. Unhealthy [AUC=0.90 (0.04)], Obstruc-
tive (Obs.) vs. Non-obstructive [AUC=0.95 (0.05)], Obs. AR vs. Obs. Non-AR
[AUC=0.72 (0.10)], COPD + AR vs. Asthma + AR [AUC=0.95 (0.15)], COPD
vs. Asthma [AUC=1.00 (0.04)], Non-Obs. AR vs. Non-Obs. Non-AR [AUC=0.92
(0.12)]. These results are only moderately better than the results yielded by our Mo-
bile Diagnostic Kit: Healthy vs. Unhealthy [AUC=0.98 (0.02)], Obstructive (Obs.)
vs. Non-obstructive [AUC=0.96 (0.04)], Obs. AR vs. Obs. Non-AR [AUC=0.90
(0.06)], COPD + AR vs. Asthma + AR [AUC=0.93 (0.09)], COPD vs. Asthma
[AUC=1.00 (0.00)], Non-Obs. AR vs. Non-Obs. Non-AR [AUC=0.87 (0.12)]. Al-
though these results are moderately good, the compounded error represents an un-
acceptable level of misclassification.

As an alternative to the multi-layer classification structure, we explored the use of
individual classifiers for each disease, which yielded much better results. For the PFT
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data, the individual classifiers produced the following results: asthma [AUC=0.96
(0.04)], COPD [AUC=0.99 (0.03)], and allergic rhinitis [AUC=0.74 (0.08)]. For the
Mobile Kit data, the individual classifiers produced the following results: asthma
[AUC=0.90 (0.05)], COPD [AUC=0.94 (0.05)], and allergic rhinitis [AUC=0.96 (0.03)].

In summary, building on our group’s prior work, in this thesis we have expanded
the capability of our Mobile Diagnostic Kit to include allergic rhinitis, as well as
improved the diagnostic specificity to account for co-morbidities (asthma + AR,
COPD + AR). Although our multi-layer classifier design has value in providing
diagnostic insight and feedback to clinicians, we recommend that future versions
of our Mobile Kit also include individual classifiers for specific disease categories
(asthma, COPD, allergic rhinitis, asthma + AR, COPD + AR) in order to improve
performance.

Thesis Supervisor: Richard R. Fletcher
Title: Research Scientist, D-Lab
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Chapter 1

Introduction

1.1 Burden of Pulmonary Disease

1.1.1 Worldwide

Pulmonary diseases are a leading cause of death worldwide. Lower respiratory infec-

tions, chronic obstructive pulmonary disease (COPD), lung cancer, and tuberculosis

accounted for 14% of deaths worldwide in 2012, and 11% of disability-adjusted-life-

years (DALYs) lost worldwide in 2008 [11, 7]. Lower respiratory infections alone were

the leading cause of DALYs lost (5.4%) [7].

An estimated 235 million people suffer from asthma, and 200 million people

suffer from COPD [5, 6]. Asthma is characterized by airway inflammation whose

symptoms include coughing, wheezing, breathlessness, and/or chest pain. Asthma

patients usually also suffer from allergies [13].

An estimated 180,000 people die annually from asthma, with over 80% of these

deaths occurring in low and lower-middle income countries [5, 9]. Most of these

deaths occur in middle-aged patients and are considered preventable (either due to
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inadequate or lack of care) [9]. The burden of asthma is expounded in developing

countries, where patients have limited access to medications and proper care [9].

COPD is characterized by restricted air flow due to damaged air sacs (alveoli)

and/or inflamed airways [8]. COPD is not exclusively a smoker’s disease, as previ-

ously thought, even though smoking is its leading cause [13]. Other factors, such as

poor air quality and poorly ventilated indoor biomass cooking, also cause COPD [10].

It causes irreversible lung damage, though the prevention of further deterioration is

possible with appropriate treatment and lifestyle changes.

Most of the information known about COPD (its prevalence, morbidity, and

mortality) is from data obtained in affluent countries; however, over 90% of COPD

deaths occur in low- and middle-income countries [6]. COPD disproportionately

affects these regions due to increased exposure to harmful environmental factors,

such as air pollution and fumes from indoor biomass cooking.

1.1.2 India-specific

High Prevalence

In India, non-communicable diseases accounted for 53% of all deaths in 2005. Of

these, 7% were due to chronic respiratory disease [42]. It is believed that around

20 million people suffer from COPD, and 30 million from asthma, in India [43].

Additionally, the country is suffering from a significant growing percentage of COPD

mortality, believed to be one of the highest in the world [44].

Tobacco Use

Although the cigarette use in India is considerable, a significant number of Indian

people use tobacco of other forms, such as hookah (pipes), bidi, chewing tobacco,
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and chillum.)

It is estimated that 275 million people use tobacco in India, many under the age of

15. There is an increase in hookah use within Indian young adults, with prevalence

reports within 5-14% [49]. Studies have shown that hookah smoking leads to an

increased risk of lung disease; for example, lung cancer has been found to be six

times more likely in hookah smokers than non-smokers [41].

Air Pollution

Outdoor

Air pollution is another concern. India has 13 of the 20 most polluted cities in the

world [37]. Since 2010, there has been a 30% increase in acute respiratory infections

cases. Many doctors blame this on poor air quality [36].

Indoor

Another aspect of Indian life that might indicate why pulmonary disease is so preva-

lent is the use of biomass cooking stoves, many of which are used indoors. In India,

70% of homes use biomass fuels for cooking in kitchens with poor ventilation [39].

The disparity between rural and urban settings is stark: 90% of rural homes use

biomass stoves, whereas 32% of urban homes do [40]. In the rural settings, the

negative effects of biomass stoves tend to affect women more [38].

Shortage of Doctors

Another reason for the high burden of pulmonary disease on India is a shortage of

medical professionals, especially in rural areas. According to the WHO, there are

only 0.725 physicians per 1000 citizens, a figure that has decreased since 1991 (when

India had 1.225 physicians per 1,000 citizens. As reference, the United States has

25



2.554 physicians per 1,000 citizens [58].

Alternative Medicine

A study of pulmonary patients from Asian-Pacific countries (including India) quanti-

fied the burden of pulmonary disease, mainly looking at the utilization of healthcare

and cost to the patient. It found that patients with rhinosinusitis (sinus infection),

COPD, or asthma most frequently used a general practitioner (GP), while patients

with allergic rhinitis (AR, an inflammation in the nose caused by allergens) tended

to visit a pharmacist or a traditional medicine practitioner. The study also showed

the use of drugs for these patients. When the patients were interviewed, 80% in-

dicated that they had taken medication (usually inhalers, antibiotics, or antihis-

tamines) within the previous four weeks. One interesting note is the popularity of

traditional medicine among AR patients (23% of them visited a traditional medicine

practitioner).

The direct (like medications) and indirect (like lost work hours) annual costs for

an average patient of a pulmonary disease was found to be, on average, 637 USD.

The biggest component of this was productivity loss. It should be noted that most of

people used in this study had full-time jobs, most likely leading to the large annual

cost due to work productivity loss [35].

1.2 Gold Standard for Pulmonary Disease Diagnosis

The gold standard for the diagnosis of many pulmonary diseases, as per the American

Thoracic Society (ATS) and the European Respiratory Society (ERS) is Pulmonary

Function Testing (PFT) [45]. these instruments include:
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i) Body plethysmograph: a transparent box in which the patient sits and breathes

in and out of a mouthpiece. The pressure within the box can change, allowing for a

determination of lung volume.

ii) Spirometry : a recording of the amount and rate of air breathed in and out

over a period of time.

iii) Diffusing capacity of the lungs for carbon monoxide (DLCO): a measurement

of the how much oxygen passes through the lungs into the blood.

iv) Impulse Oscillometry : a measurement of pulmonary resistance and reactance.

Many people in developing countries are unable to undergo PFT, either because

it is too expensive, not available, or is administered by someone without adequate

training. Therefore, many of the diagnoses in these regions rely on stethoscopes

and/or clinical histories. To further aggravate the situation, many patients in these

regions use traditional, non-Western medicine.

The burden of these diseases, coupled with the inadequacies of current diagnostic

procedures in the developing world, creates a distinct need for high-quality, accurate,

and affordable tools. There is increasing interest in mobile health technology, specif-

ically through smart phone applications. For example, India has recently launched

the Mobile Health Program, training community health worker to use a mobile health

platform to improve maternal and child care in rural regions [4].

1.3 The Need for AI-Based Diagnostic Support

In the developing world, there is a scarcity of pulmonologists. This creates a dilemma:

even if these areas had access to Pulmonary Function Testing (PFT), there are not

sufficient trained professionals to accurately interpret the results. Additionally, many
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patients in these regions seek help from practitioners of traditional (non-Western)

medicine, which does not appropriately cover pulmonary disease.

Diagnostic tools based on an artificial intelligence foundation would address the

above concerns. For one, the tool would be built from an analysis of data validated

by the current gold standard for diagnosis. Also, utilizing these tools would require

no knowledge of how they were created. These tools would therefore empower indi-

viduals without a medical background to accurately screen for pulmonary disease.

1.4 Previous Work in AI for Pulmonary Diagnostics

1.4.1 MIT Mobile Dianostic and Screening Kit

Work done by a former MIT student, Daniel Chamberliain, culminated in a Mobile

Kit to screen for COPD and asthma, which provide the laragest burden of pulmonary

disease worldwide. The Mobile Kit is hosted entirely on an Android phone. There

are three main components to the Kit:

(i) Questionnaire: An electronic questionnaire was created with the guidance of

a pulmonologist, using various other questionnaires as guidance. The questionnaire

ultimately captured basic patient information (sex, weight, height, etc.), as well as

"the onset, duration, and progress of breathlessness, coughing, chest pain, fever, and

nasal symptoms".

(ii) Peak Flow Meter : An inexpensive tool commonly used by asthma patients to

determine lung performance. A test involves taking a deep breath and blowing into

the tube; the results are in liters per minute. Various trials of this tool are recorded

by the Mobile Kit. The data are collected via augmented reality.

(iii) Electronic Stethoscope: A custom-made stethoscope was designed, using a
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microphone and an auxiliary port. It allows lung and cough sounds to be recorded

directly onto the Android device.

Previous work showed that the questionnaire and the peak flow meter provide

the best diagnostic guidance for distinguishing between COPD and asthma.

1.4.2 Commercial Products

There are commercial products aimed at the developed world that allow users to

monitor pulmonary health. One such product is Eko Device’s DUO, an electronic

stethoscope and EKG which continually monitors a user for any cardiac abnormalities

[56]. Another product is StethoMe, which is an electronic stethoscope aimed for quick

check-ups on children to determine whether or not a doctor’s visit is required [57]

Many of the solutions for pulmonary disease screening in developing countries

(and of any disease in general) is to check symptoms through the completion of a

questionnaire. There are questionnaire-based solutions that focus on specific diseases,

COPD and asthma being the most common. For COPD, sample solutions include

the Lung Function Questionnaire and the COPD Population Screener questionnaire

[52, 53]. These tools ask a couple questions related to smoking, age, and symptoms;

however, patients determined to be at risk are advised to complete diagnostic exams

(i.e. spirometry). Similarly, asthma has tools such as the Asthma Control Test, the

Asthma Control Questionnaire, and the Asthma Therapy Assessment Questionnaire.

Unlike the COPD tools described above, some of these asthma questionnaires are

also very lengthy, making them tedious [54].

Another proposed solution, specific to COPD, is COPD-6, a mobile tool which

mimics a spirometer. However, creating an entirely new piece of hardware as a solu-

tion proves costly (the COPD-6 is priced around 100-125 USD) [50, 51]. Financially,
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this solution would not be viable in developing areas.

This leads to the desire to integrate a solution within pre-existing hardware.

Given the rising interest of mobile health technology in developing countries, the

natural progression is to host pulmonary disease screening software tools on a mobile

device.

The current research is in using machine learning to create these tools. One

Australia-based group, ResApp, is trying to diagnose disease through voluntary

coughs [46]. However, all of their work so far relies on involuntary coughs, which are

more cumbersome to acquire (since a microphone must be placed near a patient for

hours). It is unclear whether it is proper to use their results on involuntary coughs

and associate them to voluntary ones. Research has been done within the medical

community to analyze the diagnostic value of involuntary coughs, but work still must

be done to determine the value of voluntary coughs [55].

1.5 Scope of Thesis

This thesis continues from the work of Daniel Chamberlain, who developed and ana-

lyzed the first version of our group’s Mobile Kit. There are three main contributions

from my work:

1) The Mobile Kit has been further validated by comparing its results to Pul-

monary Function Testing (PFT) data

2) Disease classification has been expanded to include allergic rhinitis (AR)

3) A new data source (cough sounds) has been analyzed

From Daniel Chamberlain’s work, the Mobile Kit’s classification scheme followed
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Figure 3-4.

Figure 1-1: Previous classification scheme.

This classification scheme has been updated with the following:

1) A classifier to detect infective pulmonary diseases (tuberculosis, pneumonia,

upper respiratory infection). While this thesis does not validate this classifier due to

a lack of patients in the dataset with these diseases, the structure has been included

for an upcoming study funded by the National Institutes of Health (NIH).

2) A classifier to differentiate between chronic (tuberculosis) and acute (pneu-

momnia, URI) infective pulmonary diseases. This classifier is not validated in this
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Figure 1-2: New classification scheme. Dotted lines denote classifiers that will be
created in the future. Yellow boxes denote additions to the old scheme.

thesis, but the structure has been included for the NIH study.

3) Classifiers to detect interstitial lung disease (ILD) and cancer. These classifiers

are not validated in this thesis, but the structure has been included for the NIH study.

4) A classifier to detect AR. Before, unhealthy patients were distinguished as hav-

ing either an obstructive pulmonary disease (COPD or asthma) or a non-obstructive

pulmonary disease (AR). Then, the patients classified as having an obstructive dis-

ease went through a COPD/asthma classifier. This design does not address the fact
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that many COPD and asthma patients also have AR. Therefore, in the new classifi-

cation scheme, all non-infective patients go through two classifiers: one that checks

for AR, and another that checks for COPD/asthma.

This new scheme is summarized in Figure 4-4.

1.5.1 Overview

Chapter 2 summarizes the development of a new classifier which detects allergic

rhinitis. First, an unsupervised analysis was done on the full risk factor and symptom

questionnaire data to detect if an allergic rhinitis cluster emerged, and if so, what

specific questions were useful to diagnose it. Second, a supervised analysis was done

in which the new AR classifier was trained and validated. A coefficient analysis for

this second portion determined the most important features (questions) from the

questionnaire.

Chapter 3 analyzes cough sounds, a potential new feature source for the Mobile

Kit. This analysis was done in three parts. First, an unsupervised analysis was done

in search of any clusters within the data that corresponded to disease. Second, a

supervised analysis was done for various classifiers, including Wet vs. Dry cough.

Finally, the supervised analysis was repeated with the classifiers being trained on

non-comorbid patients, but tested on both non-comorbid and comorbid patients.

This was done under the hypothesis that non-comorbid patients would yield more

accurate classifiers.

Chapter 4 analyzes raw Pulmonary Function Testing (PFT) data. We first sum-

marize an unsupervised analysis. This was done in search of any inherent clusters,

and if they emerged, how they correlated to disease. The second part of Chapter 2
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analyzes the performance of data extracted from the PFT machines, both in isola-

tion and in combination, when used to train our classifiers. These results were then

compared to those of the Mobile Kit.

Chapter 5 summarizes all of the above findings, and suggests future improvements

that can be made to the Mobile Kit implemented on a smart phone.
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Chapter 2

Diagnosis of Allergic Rhinitis (AR)

Up to now, the Mobile Kit has focused on the diagnosis of COPD and asthma.

However, allergic rhinitis is a common disease in developing nations, and oftentimes

presents itself as a comorbidity. In this chapter, we address the diagnosis of allergic

rhinitis. We begin by conducting an unsupervised analysis of the risk factor and

symptom questionnaire (determined to be the most effective tool for the diagnosis

of AR). We then integrate the AR classifer within the full diagnostic protocol. We

conclude by analyzing an independent AR classifier.

2.1 Data Collection

Data were collected as part of a clinical trial hosted at a pulmonary research hos-

pital (Chest Research Foundation) in Pune, India. Aside from the healthy controls,

subjects were recruited from an equal sample of all patients arriving at the clinic

exhibiting pulmonary symptoms. Table 3.1 shows the distribution of diseases within

the dataset. The most common pulmonary diseases exhibited by patients were res-
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piratory infections, Asthma, and COPD; this distribution is typical of that found in

many developing countries.

All patients underwent our Mobile Kit’s tools, which consisted of a clinical ques-

tionnaire, peak flow meter test, and auscultation (lung sounds) from 11 standard sites

on the torso administered by a trained pulmonologist. The presence of any abnormal

(adventitious) lung sounds at each site were noted manually by the pulmonologist.

Following the use of the mobile phone tools, each patient also underwent pul-

monary function testing (PFT), which consisted of spirometry, body plethysmogra-

phy, gas diffusion test (DLCO), and impulse oscillometry. Based on the PFT data

and the clinical examination, the pulmonologist provided the final disease diagnosis,

which was used as our labels for model training.

The protocol for this study received ethics approval from the appropriate boards

at the Chest Research Foundation (Pune, India) and the Massachusetts Institute of

Technology (Cambridge, USA).

Diagnosis Count

No Pulmonary Disease 130

COPD Only 35

Asthma Only 47

Allergic Rhinitis Only 29

COPD + Allergic Rhinitis 11

Asthma + Allergic Rhinitis 56

Total 308

Table 2.1: Disease distribution within the cough analysis dataset
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2.2 Feature Extraction

A description of each of the Mobile Kit’s tools (developed and analyzed as part of

Daniel Chamberlain’s work), along with an explanation of the features extracted

from each, is provided below. All of the extracted features were standardized to

have zero-mean and unit-variance.

2.2.1 Risk Factor and Symptom Questionnaire

The Mobile Kit questionnaire was created with the aid of a pulmonologist to obtain

details about the onset, duration, and progress of breathlessness, coughing, chest

pain, fever, and nasal symptoms in a patient. The questionnaire also captures basic

demographic information (age, sex, weight, etc.).

All binary responses were converted to Boolean variables, if they were not Boolean

already. For example, the questionnaire asks if a patient is experiencing breathlessness–

this question was converted to the feature Breathlessness Flag, True if the patient is

breathless and False otherwise.

2.2.2 Peak Flow Meter

The second feature source consisted of five trials of a peak flow meter test. Each

result can range from 0 to 800 L/min. Two features were extracted from these trials:

1) the maximum value, and 2) the ratio between the maximum value and the ex-

pected value given the patient’s age, sex, and height (using equations 1 and 2 below).

We call this feature "Peak Flow Meter Measure Over Reference".

(1) Male: -1.807 * Age (years) + 3.206 * Height (cm)
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(2) Female: -1.454 *Age (years) + 2.368 * Height (cm)

2.2.3 Lung Sounds

During the 11-site auscultation, the pulmonologist noted the presence of abnormal

(adventitious) lung sounds at each site (if any). The pulmonologist labeled the

sound heard at each site as: Normal, Wheeze (polyphonic, monophonic), Crepita-

tions (coarse, fine), Pleural Rub, or Squeak.

From these labels, 10 features were extracted. They are summarized in Table 2.2

Feature Description

abnormal_sound_flag True if at least 1 abnormal lung sound was noted at any
of the 11 sites; False otherwise

num_abnormal_sounds Total number of abnormal lung sounds heard across the
11 sites

wheeze_flag True if at least 1 wheeze was noted at any of the 11 sites;
False otherwise

num_wheezes Total number of wheezes heard across the 11 sites

crackle_flag True if at least 1 crackle was noted at any of the 11 sites;
False otherwise

num_crackles Total number of crackles heard across the 11 sites

num_wheezes_lower Total number of wheezes heard in the lower lungs

num_wheezes_upper Total number of wheezes heard in the upper lungs

num_crackles_lower Total number of crackles heard in the lower lungs

num_crackles_upper Total number of crackles heard in the upper lungs

Table 2.2: Summary of lung sound features

38



2.3 Classification Scheme

We updated the diagnostic protocol to account for allergic rhinitis. We did so by in-

cluding an AR classifier among two subpopulations: obstructive and non-obstructive

patients.

This scheme is summarized in Figure 2-1.

Figure 2-1: New classification scheme. Dotted lines denote classifiers that will be
created in the future. Yellow boxes denote additions to the old scheme.
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2.4 Ideal Tool for AR Diagnosis

In order to determine the best feature set for the diagnosis of allergic rhinitis, we

trained two separate classifiers, one trained on all of the PFT data, and the other

trained on all of the Mobile Kit tools. We did so under two scenarios:

1. We assumed the final classifier would be used within the full diagnostic pro-

tocol. Therefore, both classifiers had their testing and training sets extracted from

patients with pulmonary disease.

2. We assumed the final classifier would be used independently. Therefore, both

classifiers had their testing and training sets extracted from patients with and without

pulmonary disease.

Tables 2.4 and 2.5 summarize the AR classifiers (under the obstructive and non-

obstructive branches of the full diagnostic protocol) under Scenario #1. Table 2.3

summarizes the results of AR classifier under Scenario #2.

Features Used AUC Sensitivity Specificity

PFT 0.69 - 0.74 - 0.77 0.50 - 0.71 - 0.86 0.56 - 0.71 - 0.86

Mobile Kit 0.94 - 0.96 - 0.97 0.94 - 0.94 - 1.00 0.87 - 0.89 - 0.92

Table 2.3: Performance of independent AR classifier trained on PFT vs. Mobile Kit

Features Used AUC Sensitivity Specificity

PFT 0.65 - 0.69 - 0.73 0.50 - 0.80 - 0.90 0.45 - 0.64 - 0.82

Mobile Kit 0.87 - 0.90 - 0.93 0.85 - 0.92 - 1.00 0.73 - 0.80 - 0.87

Table 2.4: Performance of full diagnostic protocol’s AR classifier (obstructive) trained
on PFT vs. Mobile Kit

When the classifier is a part of the full diagnostic protocol (Scenario #1 above),

utilizing either the Mobile Kit (median AUC: 0.89) or the PFT data (median AUC:
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Features Used AUC Sensitivity Specificity

PFT 0.88 - 0.92 - 1.00 0.75 - 1.00 - 1.00 0.67 - 1.00 - 1.00

Mobile Kit 0.81 - 0.87 - 0.93 0.67 - 0.83 - 1.00 0.67 - 0.89 - 0.89

Table 2.5: Performance of full diagnostic protocol’s AR classifier (non-obstructive)
trained on PFT vs. Mobile Kitnobs

0.93) result in similar performance under the non-obstructive branch (Table 2.5).

However, for the classifier under the obstructive branch (Table 2.4, the Mobile Kit

(median AUC: 0.90) has a clear advantage over PFT (median AUC: 0.69).

Additionally, when the classifier is standalone (Scenario #2 above), the Mobile

Kit (median AUC: 0.96) has a clear advantage over PFT (median AUC: 0.74). From

the supervised learning analysis of cough data, we determined that the questionnaire

and the peak flow meter are the most useful tools for determining if a pulmonary

disease is obstructive or not. Therefore, for the rest of this analysis, we focus on

determining the efficacy of each questionnaire question for allergic rhinitis diagnosis.

2.5 Unsupervised Analysis

We began by running a factor analysis of the full questionnaire to determine the

main features (or factors) it captures to determine how a future version of the tool

could be shortened. We then ran a k-means cluster analysis on the full questionnaire

in search of any clusters that correlated with allergic rhinitis, and if so, what risk

factors and symptoms defined it.
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2.5.1 Methods

Factor Analysis

Factor analysis assumes independent features. This condition failed, and so 5 fea-

tures were removed (red sputum; colorless sputum; fever chills; fever rigors; fever

sweating). This was due to a lack of positive examples in the dataset for these fea-

tures. Additionally, the few positive examples tended to also be positive for some of

the other features, creating a linear dependence.

The 65 features were pre-processed by their z-scores and the full feature space un-

derwent the Kaiser-Meyer-Olkin (KMO) test for sampling adequacy, which attempts

to determine if it is appropriate to explain the variance in dataset by a small number

of factors. Generally, a value greater than 0.60 denotes appropriateness. Our dataset

had a KMO score of 0.78.

In order to determine the appropriate number of factors, we used three methods:

the Kaiser test, a Cattel scree plot, and an analysis of the cumulative variance. The

Kaiser test states that all factors with eigenvalues greater than 1.00 should be kept.

In our case, the test recommended we keep 17 factors. It should be noted that while

this is a common technique, it has been criticized for overestimating the number of

required factors.

We also used the Cattel Scree plot, which plots the number of features against

their eigenvalues. Generally, these plots have a ’kink’, after which point the eigen-

values level out. This method suggests the number of factors used is determined

by this location. Figure 2-2 shows the scree plot for our data. It suggests using 10

factors. Like the Kaiser test, this method is criticized, specifically for being highly

subjective.

Finally, we also analyzed the cumulative percent variance explained by the factors.
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Figure 2-2: Cattel Scree plot from factor analysis of questionnaire data

The threshold for how much variance should be explained is research-dependent.

Table 2.6 shows the minimum number of factors necessary to explain various amounts

of data variance.

Percent of Variance Explained 50 60 70 80 90 95

Minimum Factors Required 5 8 11 16 24 31

Table 2.6: Results of variance test for determining number of factors for factor
analysis of questionnaire data

Ultimately, we decided to run a factor analysis with 15 factors. Loadings less

than 0.40 were suppressed.

43



k-Means Analysis

The data were standardized to have zero mean and unit variance. In order to deter-

mine the appropriate number of clusters, the mean silhouette score was calculated

for cluster sizes ranging from 2 to 20 over 100 trials. The maximum silhouette score

(0.21) occurred with 4 clusters.

2.5.2 Results

Factor Analysis

The following features failed to have a loading of at least 0.4 for any of the 15 factors:

weight, height, paroxysmal nocturnal dyspnea, yellow sputum, green sputum, weight

loss, loss of appetite, headache, somnambulance, family history of COPD, personal

history of allergies, and alcohol intake. Of the 15 factors, 6 failed to have at least

3 loadings. The final 9 factors can be described as: Nasal Symptoms, Coughing,

Breathlessness, Fever, Sputum Abnormalities, Chest Pain, Tobacco Use, Biomass

Cooking, and Throat Symptoms.

K-means

The final k-means cluster analysis ran with 4 clusters. Table 2.7 summarizes the

relevant aspects of each cluster. Cluster 1 was defined by a mean age of 62.49

years, and high incidences of chest pain (7.25%), family history of COPD (4.35%),

and smoking (37.68%), relative to the other clusters. We initially believed this was

indicative of a COPD cluster, given the older age of the group and the percentage of

smokers. However, the group had almost even numbers of COPD patients (27.5%),

asthma patients (34.7%), and healthy patients (34.7%). Yet, 54.3% of all COPD
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patients in our dataset were included in this cluster. We ultimately believe that

COPD did not arise as a dominant cluster due to a class imbalance; specifically, our

dataset had many more patients with asthma and/or allergic rhinitis.

Cluster 2 was defined by low incidences of breathlessness (23.8%) and coughing

symptoms (0.0%), relative to the other clusters. 83.5% of this cluster were subjects

with no pulmonary disease, which we expected. Cluster 3 was small (5 patients).

Interestingly, it captured all of the patients in the dataset with fever. We believe this

is an outlier, potentially infectious, cluster. Cluster 4 was defined by high incidences

of nasal symptoms (97.32%) and family history of allergies (41.96%). 78.5% of this

cluster were patients with allergic rhinitis.

Feature Cluster 1 Cluster 2 Cluster 3 Cluster 4

Age (yrs.) 62.49 41.11 44.20 50.71

Breathlessness (%) 92.8 23.8 80.0 89.3

Cough (%) 100.00 0.00 100.00 83.93

Chest pain (%) 7.25 3.28 40.00 3.57

Fever (%) 0.00 0.00 100.00 0.00

Nasal Symptoms (%) 0.00 2.46 80.00 97.32

Loss of appetite (%) 14.50 4.10 80.00 5.40

Family history of COPD (%) 4.35 0.82 0.00 1.79

Family history of asthma (%) 26.09 23.77 20.00 41.96

Smoke (%) 37.68 12.30 20.00 27.68

Number of Patients 69 122 5 112

Table 2.7: Summary of k-means cluster analysis on questionnaire features
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Diagnosis Cluster 1 Cluster 2 Cluster 3 Cluster 4

Asthma + AR 1 0 2 53

COPD + AR 1 0 0 10

AR 0 4 1 24

COPD 19 6 0 10

Asthma 24 11 1 11

Healthy 24 101 1 4

Number of Patients 69 122 5 112

Table 2.8: Disesase composition of clusters from k-means analysis of risk factor and
symptom questionnaire

2.5.3 Discussion

The k-means analysis shows clear clusters for subjects without pulmonary disease

and patients with allergic rhinitis. A clear COPD cluster potentially did not emerge

due to a lack of COPD samples in the data. Future iterations of this analysis should

aim to acquire more data to balance the classes out. A clear asthma cluster also

did not emerge. Among asthma patients, most appeared in cluster 1 (51%), and

the rest appeared evenly between clusters 2 and 3. The confusion between asthma

and allergic rhinitis is expected, given they oftentimes go hand-in-hand. Overall, this

analysis predicted some pertinent features for diagnosing allergic rhinitis, specifically:

age, smoking, family history of allergies, nasal symptoms, coughing, breathlessness,

and fever.

Factor analysis provided evidence that it is possible to explain the dataset with 9

latent factors. We predict that a relatively short questionnaire which captures these

main ideas should perform similar to the full questionnaire.
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2.6 Independent Classifier

2.6.1 Methods

We retrained the independent AR classifier with only the questionnaire to confirm

that it was the most useful tool in the Kit. We then performed a coefficient analysis

to determine the most useful questions.

2.6.2 Results

Table 2.9 summarizes the results of the AR classifier trained solely on the question-

naire data. Figure 2-3 summarizes the classifier’s top coefficients.

Features Used AUC Sensitivity Specificity

Questionnaire 0.94 - 0.96 - 0.97 0.95 - 1.00 - 1.00 0.85 - 0.88 - 0.90

Table 2.9: Performance of independent AR classifier trained on the questionnaire

Figure 2-3: Top 10 coefficients of independent AR classifier when utilizing only the
questionnaire
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2.6.3 Discussion

As shown in Table 2.9, the independent classifier had comparable performance when

it was trained with all of the Mobile Kit tools to when it was trained with just the

questionnaire data. This further reinforces our previous finding that the question-

naire is the most useful feature for AR diagnosis, and an AR-specific questionnaire

would be the ideal tool within the Mobile Kit.

The coefficient analysis (Figure 2-3) aligns with the findings from the unsuper-

vised analysis. The most important features were determined to be Nasal Symptoms,

Age, Smoking, Fever, and Family History of Allergy. This suggests that a very short

questionnaire which captures these data may accurately diagnose allergic rhinitis.

2.7 Integration of AR Classification into Full Diag-

nostic Protocol

2.7.1 Methods

We restructured the old classification scheme by introducing allergic rhinitis classi-

fiers. These are found under the Obstructive vs. Non-obstructive Pulmonary Disease

branch; one handles patients labeled as having obstructive disease, while the other

handles patients labeled as having a non-obstructive disease.

2.7.2 Results

Table 2.15 shows the results of the AR classifier under the obstructive branch. Table

2.13 shows the results of the AR classifier under the non-obstructive branch. For

completion, we have updated the performance of the Mobile Kit by retraining and
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testing the other classifiers in the new diagnostic protocol. They are summarized in

Tables 2.10, 2.11, 2.12, and 2.14.

Features Set(s) AUC Sensitivity Specificity

L 0.61 - 0.63 - 0.66 0.22 - 0.27 - 0.31 1.00 - 1.00 - 1.00

Q 0.97 - 0.98 - 0.99 0.91 - 0.93 - 0.98 0.94 - 1.00 - 1.00

P 0.83 - 0.86 - 0.88 0.55 - 0.70 - 0.80 0.81 - 0.94 - 1.00

Q + P 0.97 - 0.98 - 0.99 0.90 - 0.92 - 0.95 1.00 - 1.00 - 1.00

Q + L 0.98 - 0.99 - 0.99 0.91 - 0.95 - 0.98 1.00 - 1.00 - 1.00

P + L 0.85 - 0.88 - 0.90 0.60 - 0.68 - 0.78 0.88 - 0.94 - 1.00

Q + P + L 0.97 - 0.98 - 0.99 0.90 - 0.92 - 0.95 1.00 - 1.00 - 1.00

Table 2.10: Performance of Healthy vs. Unhealthy classifier utilizing different Mobile
Kit feature set combinations under the new classification scheme

2.7.3 Discussion

For the AR classifier handling patients with obstructive disease (Table 2.15), the

questionnaire (median AUC: 0.91) greatly outperforms lung sounds (median AUC:

0.59) and the peak flow meter (median AUC: 0.68). While the questionnaire achieves

the best specificity of any combination of feature sets, it is not ideal (median speci-

ficity: 0.82) and has a large interquartile range (17%).

For the AR classifier handling patients with non-obstructive disease (Table 2.13),

both the questionnaire and peak flow meter have comparable performance (for both,

median AUC: 0.91). However, the questionnaire outperforms the peak flow meter in

sensitivity (median sensitivity of 0.86, compared to 0.83 for the peak flow meter) and

specificity (median specificity of 0.90, compared to 0.89 for the peak flow meter).
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Features Set(s) AUC Sensitivity Specificity

L 0.60 - 0.65 - 0.68 0.23 - 0.26 - 0.39 0.83 - 1.00 - 1.00

Q 0.87 - 0.89 - 0.92 0.60 - 0.77 - 0.90 0.83 - 0.83 - 1.00

P 0.88 - 0.91 - 0.95 0.71 - 0.79 - 0.89 0.80 - 1.00 - 1.00

Q + P 0.92 - 0.96 - 0.98 0.79 - 0.86 - 0.96 0.80 - 1.00 - 1.00

Q + L 0.90 - 0.94 - 0.96 0.68 - 0.81 - 0.90 0.83 - 1.00 - 1.00

P + L 0.88 - 0.93 - 0.96 0.71 - 0.82 - 0.89 0.80 - 1.00 - 1.00

Q + P + L 0.94 - 0.96 - 0.98 0.81 - 0.89 - 0.93 0.95 - 1.00 - 1.00

Table 2.11: Performance of Obstructive vs. Non-obstructive classifier utilizing dif-
ferent Mobile Kit feature set combinations under the new classification scheme

It is clear from the performance of these two classifiers that the questionnaire is

the best Mobile Kit tool for detecting allergic rhinitis. However, a lower-than-ideal

specificity, coupled with any error carrying over from higher branches, will decrease

performace of the new diagnostic protocol when used in the field. Therefore, it is

recommended that an independent classifier be used for the detection of allergic

rhinitis, based on relevant questionnaire questions. The restructuring of the full

diagnostic protocol to one of multiple, independent, and disease-specific classifiers is

explored in the PFT analysis chapter.
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Features Set(s) AUC Sensitivity Specificity

L 0.56 - 0.63 - 0.66 0.83 - 0.92 - 1.00 0.25 - 0.38 - 0.63

Q 0.96 - 1.00 - 1.00 1.00 - 1.00 - 1.00 0.86 - 1.00 - 1.00

P 0.73 - 0.81 - 0.87 0.60 - 0.80 - 1.00 0.68 - 0.71 - 0.86

Q + P 0.98 - 1.00 - 1.00 1.00 - 1.00 - 1.00 0.96 - 1.00 - 1.00

Q + L 0.95 - 1.00 - 1.00 1.00 - 1.00 - 1.00 0.86 - 1.00 - 1.00

P + L 0.76 - 0.83 - 0.89 0.65 - 0.90 - 1.00 0.57 - 0.71 - 0.86

Q + P + L 1.00 - 1.00 - 1.00 1.00 - 1.00 - 1.00 1.00 - 1.00 - 1.00

Table 2.12: Performance of Pure COPD vs. Pure Asthma classifier utilizing different
Mobile Kit feature set combinations under the new classification scheme

Features Set(s) AUC Sensitivity Specificity

L 0.58 - 0.60 - 0.65 0.29 - 0.43 - 0.86 0.33 - 0.90 - 1.00

Q 0.86 - 0.91 - 0.95 0.71 - 0.86 - 1.00 0.79 - 0.90 - 1.00

P 0.86 - 0.91 - 0.96 0.79 - 0.83 - 1.00 0.78 - 0.89 - 0.89

Q + P 0.83 - 0.88 - 0.93 0.67 - 0.83 - 1.00 0.67 - 0.78 - 0.89

Q + L 0.84 - 0.90 - 0.94 0.71 - 0.86 - 0.86 0.79 - 0.89 - 0.90

P + L 0.85 - 0.89 - 0.94 0.67 - 0.83 - 1.00 0.78 - 0.89 - 0.89

Q + P + L 0.81 - 0.87 - 0.93 0.67 - 0.83 - 1.0 0.67 - 0.89 - 0.89

Table 2.13: Performance of AR classifier (non-obstructive) utilizing different Mobile
Kit feature set combinations under the new classification scheme
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Features Set(s) AUC Sensitivity Specificity

L 0.67 - 0.70 - 0.77 0.33 - 0.58 - 0.67 0.73 - 1.00 - 1.00

Q 0.91 - 0.93 - 0.97 1.00 - 1.00 - 1.00 0.73 - 0.82 - 0.91

P 0.77 - 0.82 - 0.91 0.50 - 1.00 - 1.00 0.55 - 0.73 - 1.00

Q + P 0.90 - 0.94 - 0.98 1.00 - 1.00 - 1.00 0.73 - 0.82 - 0.91

Q + L 0.89 - 0.93 - 0.97 1.00 - 1.00 - 1.00 0.73 - 0.82 - 0.91

P + L 0.64 - 0.67 - 0.70 0.54 - 0.77 - 0.92 0.40 - 0.53 - 0.75

Q + P + L 0.86 - 0.93 - 0.95 1.00 - 1.00 - 1.00 0.72 - 0.82 - 0.91

Table 2.14: Performance of COPD vs. Asthma (comorbid) classifier utilizing different
Mobile Kit feature set combinations under the new classification scheme

Features Set(s) AUC Sensitivity Specificity

L 0.55 - 0.59 - 0.64 0.21 - 0.39 - 1.00 0.24 - 0.82 - 0.96

Q 0.87 - 0.91 - 0.94 0.86 - 0.93 - 1.00 0.71 - 0.82 - 0.88

P 0.65 - 0.68 - 0.72 0.62 - 0.77 - 0.92 0.40 - 0.53 - 0.68

Q + P 0.89 - 0.92 - 0.95 0.85 - 0.92 - 1.00 0.73 - 0.80 - 0.87

Q + L 0.87 - 0.90 - 0.93 0.86 - 0.93 - 1.00 0.71 - 0.81 - 0.88

P + L 0.64 - 0.67 - 0.70 0.54 - 0.77 - 0.92 0.40 - 0.53 - 0.75

Q + P + L 0.87 - 0.90 - 0.93 0.85 - 0.92 - 1.00 0.73 - 0.80 - 0.87

Table 2.15: Performance of AR classifier (obstructive) utilizing different Mobile Kit
feature set combinations under the new classification scheme
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Chapter 3

Use of Cough Sounds for Screening

and Diagnosis of Pulmonary Disease

In this chapter, we analyze the screening and diagnostic value of adding cough sound

analysis to the Mobile Kit. We do so in four parts. First, we summarize an ex-

ploratory analysis involving unsupervised learning to detect any inherent clusters

that map cough sound features to disease. Second, we analyze the value of coughs

in isolation via a supervised learning approach, first to discern between wet and dry

coughs, and then to discern between various levels of pulmonary disease screening

and diagnosis. Third, we integrate cough sounds with the other Mobile Kit tools

(questionnaire, peak flow meter, and lung sounds) to analyze the use of coughs as an

additional feature. Finally, we extend the supervised learning analysis by training

the classifiers with non-comorbid patients, and seeing if there are any improvements

when compared to the classifier trained on both comorbid and non-comorbid patients.
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3.1 Motivation

Cough is one of the earliest symptoms of many pulmonary diseases. It is also very

simple to record, not requiring any special tools. Whereas the recording of lung

sounds in the current Mobile Kit requires the use of an electronic stethoscope, coughs

can be recorded directly with the phone. This can be of use in resource-lacking

areas where the use of our current kit’s peripherals (like the peak flow meter or the

stethoscope) might be too costly, or too difficult (for example, a very young child

might have trouble completing the peak flow meter test).

A cough is generally categorized as wet or dry. However, these categories are

highly subjective, with wet coughs tending to be characterized by the presence of

phlegm, and dry coughs characterized by the lack of phlegm. Given the subjectiv-

ity of classification, it is very enticing for pulmonologists to have a tool that can

accurately (and automatically) classify coughs.

Knowing whether a cough is wet or dry can give some insight into a patient’s

pulmonary health. For example, a wet cough can indicate conditions like lower

respiratory tract infections, pneumonia, and bronchitis, while dry coughs can indicate

conditions like allergies and asthma. Recent work on cough analysis has primarily

focused on naturally occurring involuntary coughs. This form of data collection

requires continuous recording, often over many hours, to ensure a sufficient number

of coughs are collected [33, 34]. However, for the purpose of a screening tool, it is

more relevant to study voluntary coughs that can be readily acquired. Many groups

who are trying to create a diagnostic tool using voluntary coughs are extending on

their previous work on involuntary coughs.
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3.1.1 Previous Work

Aside from wet/dry classification, there are three main areas of research within the

cough community:

Segmentation

Cough segmentation involves the automatic extraction of individual coughs from a

recording containing multiple coughs. Many studies involving cough sounds manually

segment coughs. However, for use in final products, automatic segmentation methods

are required. Much of the recent work in cough segmentation involves complex,

computationally-intensive models, such as neural networks.

Detection

Cough detection involves the automatic classification of a sound as a cough. This is of

great interest to the smart home community, especially with the growing work being

done in telemedicine. The general application within this context is to continuously

record sound and be able to detect when a user coughs. Just like cough segmentation,

many of the recent approaches are computationally expensive. However, this process

is not a requirement for our Mobile Kit.

Analysis

Cough analysis involves a combination of signal analysis and machine learning. Much

of the work done in this area involves: a) extracting relevant time- and frequency-

domain features from cough signals, and b) creating machine learning classifiers to
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screen for various pulmonary disease (asthma, COPD, allergic rhinitis, pneumonia,

etc.).

3.2 Data Collection

Cough recordings (30 seconds in length) were captured from each patient at the

trachea, during which time patients were asked to cough multiple times. Each indi-

vidual cough used for training was also labeled as Wet (containing phlegm) or Dry

(not containing phlegm). Since cough sound data were only available for a portion

of the patients in our study, we used a sample of a larger data set which was used

for our larger diagnostic study. The disease distribution within the dataset is shown

in Table 3.1. Summary statistics are shown in Table 3.2.

Diagnosis Count

No Pulmonary Disease 33

COPD Only 7

Asthma Only 15

Allergic Rhinitis Only 11

COPD + Allergic Rhinitis 4

Asthma + Allergic Rhinitis 17

Total 87

Table 3.1: Disease distribution within the cough analysis dataset
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Statistic Value Statistic Value

Male (%) 52.05 Family History of COPD
(%)

0.00

Age (years) 46.34 Family History of Allergies
(%)

32.88

Weight (kg) 61.38 Personal History of Aller-
gies (%)

15.07

Breathless (%) 58.90 Exposed to Biomass Cook-
ing (%)

13.70

Coughing (%) 42.47 Smoke (%) 19.18

Chest Pain (%) 42.47 Chew Tobacco (%) 26.03

Fever (%) 1.37 Consume Alcohol (%) 9.59

Nasal Symptoms (%) 35.62 Max Peak Flow Meter
Reading (L/min)

296.71

Table 3.2: Summary statistics of the cough analysis dataset

3.3 Data Preprocessing

From each cough sound recording, the first complete cough (defined as having 100

milliseconds of silence before and after the cough event) was extracted manually

using the Audacity software. For some patients, it was impossible to detect a single,

distinct cough (usually due to uncontrollable coughing episodes common in COPD

or asthma patients). These patients were discarded from the analysis.

Figure 3-1 shows a sample signal of a full recording lasting 30 seconds, containing

seven complete coughs; Figure 3-3 shows the extracted cough signal.
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3.4 Cough Feature Selection

3.4.1 Segmentation

The first step in cough analysis is to find the presence of a cough within the recorded

sound file. We implemented a cough segmentation algorithm which extracts the first

complete cough in a recording using the following algorithm:

1. The original sound file (Figure 3-1) is smoothed by applying local regression

(weighted least squares with a 2nd degree polynomial model) using a span of 2% of

the data. The signal is then normalized to span from 0 to 1. Figure 3-1 shows an

example of a complete recording. Figure 3-2 shows the smoothed signal.

2. A peak detection algorithm is applied to the smoothed signal (Figure 3-2) to

find all cough peaks present in the file.

3. In order to select the first complete cough in the series, each peak is analyzed

individually. The zero-crossing of the first derivative is used to determine the starting

point of the cough, and the slope of the trailing edge of the cough is used to determine

the end of the cough.

4. The flatness of the slope is used as a criterion to determine if the cough segment

is complete. If the algorithm encounters a new peak before the previous cough sound

has settled (defined as the slope being below a pre-determined threshold), then the

algorithm discards the current cough segment and starts a new search using the next

available cough peak.

3.4.2 Feature Extraction

Once the leading cough segment was extracted from a recording, the next step is to

analyze the sound and extract specific features. Figure 3-3 shows the automatically
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Figure 3-1: Sample sound file showing raw cough data

extracted cough signal from the original signal (Figure 3-1).

Starting from an initial set of approximately 30 features published in the litera-

ture, we selected features which have been previously used for diagnostic prediction

and also gave good results on initial trials. They are summarized in Table 3.3.

3.5 Classification

3.5.1 Wet vs. Dry Cough

The first classification we performed with the cough data was to discern between wet

(containing phlegm) and dry (not containing phlegm) coughs.

3.5.2 Pulmonary Health and Disease

Given the fact that much of the data had to be removed due to the inability to extract

a single valid cough from patients’ cough recordings, we followed the classification
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Figure 3-2: Smoothed cough signal magnitude and detected peaks (circled)

scheme used in Daniel Chamberlain’s work. It is a tree-like structure composed of

three layers. The first layer determines whether a patient has a pulmonary disease

or not (Respiratory vs. Non-Respiratory, or Unhealthy vs. Healthy). Respiratory

patients then go through the next layer of classification which determines whether

they have an Obstructive or Non-obstructive pulmonary disease. Obstructive pa-

tients then go through the final layer, which determines whether they have COPD or

asthma. For this analysis, at any given layer, we assume perfect classification from

the previous layer, if applicable. For example, we assume that the Obstructive clas-

sifier is perfect, and only train the COPD vs. Asthma classifier on patients known

to have Obstructive pulmonary disease.

This scheme is summarized in Figure 3-4.
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Figure 3-3: Plot of extract cough segment (blue); computed upper envelope (red);
exponential fit (green)

3.6 Unsupervised Analysis

3.6.1 Methods

In order to explore any potential hidden correlations between cough features and

disease, we performed a standard k-means clustering analysis. The ideal number of

clusters was determined to be three (by averaging the silhouette score over a range

of cluster sizes from two to ten, over 100 trials).

3.6.2 Results

The results of the cluster analysis are shown in Table 3.4. Table 3.5 show the average

feature values (normalized) within each cluster.
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Feature Description

Kurtosis

The fourth-order moment of the signal, computed from the
magnitude, |x(t)|, which is a measure of its "Gaussianity".
This feature has been used to automatically detect pertus-
sis (whooping cough). [24]

Variance The variance of the signal’s magnitude. This feature has
been used to detect abnormal pulmonary function. [20]

Zero cross irregularity
A measure of the deviation between time intervals in which
the cough signal crossed the x-axis. This measure has been
used in previous analyses to detect wheezes. [15]

Rate of decay

The exponent value of an exponential curve fitted to the
magnitude of the cough signal, |x(t)|: Figure 3-3 shows
the computed upper envelope and the fitted curve for the
automatically extracted cough described above.

Table 3.3: Description of extracted cough sound features

Diagnosis Cluster 1 Cluster 2 Cluster 3
Asthma 7 0 5
Asthma + Allergic Rhinitis 4 4 7
Allergic Rhinitis 4 3 4
COPD 1 1 4
COPD + Allergic Rhinitis 0 2 2
Healthy 13 1 17
Total 29 11 39

Table 3.4: Results of k-means cluster analysis utilizing cough sound features
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Figure 3-4: Classification scheme used in cough sound analysis

3.6.3 Discussion

While other types of clustering analysis are possible, the results from our simple

k-means cluster analysis shown in Table 3.4 and Table 3.5 do not reveal any clear

clusters in this set of features that map to disease diagnosis.

However, there are some results worth noting. Cluster 1 contained relatively few

instances of COPD patients. This might indicate two difficulties: 1) differentiating

patients with asthma from those with allergic rhinitis (since they appear in equal

quantities in this cluster), and 2) differentiating asthma/allergic rhinitis patients

from healthy patients. Additionally, the two features defining this cluster were Rate
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Feature Cluster 1 Cluster 2 Cluster 3
Rate of Decay 1.01 -0.47 -1.01
Zero Crossing Irregularity -0.06 0.08 -0.12
Variance -0.33 -0.35 2.12
Kurtosis 1.00 -0.49 -0.91
Number of Patients 29 11 39

Table 3.5: Summary of normalized feature values from k-means cluster analysis

of Decay and Kurtosis. Figure 3-5 illustrates the difficulty of determining pulmonary

health when using these two features.

Cluster 2, though containing the smallest quantity of patients, is mostly composed

of asthma and allergic rhinitis patients. When analyzing the average feature values

for this cluster, we noted that the main difference came from the Zero Crossing

Irregularity feature. Figure 3-6 shows the difficulty of detecting Obstructive vs.

Non-obstructive pulmonary disease when using Zero Cross Irregularity and Rate of

Decay.

Cluster 3 had many examples of all disease types, and no clear insight can be

gained from it.

3.7 Supervised Analysis (Trained with Non-Comorbid

and Comorbid Patients)

3.7.1 Methods

All of the cough features were treated as continuous variables and standardized to

have zero-mean and unit-variance. Logistic regression models with L1-penalty were

used to create the binary classifiers. 70 percent of the data were used for training,
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Figure 3-5: Plot of patients (Unhealthy vs. Healthy) using Kurtosis and Rate of
Decay

30 percent for testing. During every trial, the data split for testing and training was

done randomly. 100 training trials were run. To determine the ideal penalization

parameter during each training trial, 100 trials of randomized cross validation were

run over an exponential distribution; the parameter value with the lowest validation

error was chosen to create the final tested classifier.

3.7.2 Results (Coughs in Isolation)

We first analyzed the utility of cough sounds in isolation.

Wet vs. Dry Cough

Figure 3-7 shows the distribution of coughs when comparing kurtosis and rate of

decay, while Table 3.6 shows the results from our classifier for wet/dry coughs. It

demonstrates that our classifier has high specificity (0.87) and sensitivity (1.0). The

65



Figure 3-6: Plot of paatients (Obstructive vs. Non-obstructive) using Zero Cross
Irregulairty and Rate of Decay

classifier also attained an AUC of 0.94. Figure 3-8 shows the classifier’s ROC curve.

These metrics indicate that our features are suitable for detecting wet/dry coughs.

Other Pulmonary Classifiers

The first classifier (Figure 3-9) determined pulmonary health, without specifying

a disease (Healthy vs. Unhealthy). All of the data were used when creating this

Percentiles (25th - 50th - 75th)

Accuracy 0.85 - 0.89 - 0.92

AUC 0.91 - 0.94 - 0.96

Sensitivity 1.00 - 1.00 - 1.00

Specificity 0.78 - 0.87 - 0.96

Table 3.6: Wet/Dry Classifier Results
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Figure 3-7: Plot of wet/dry coughs comparing the features kurtosis and rate of decay

Classifier AUC

Healthy vs. Unhealthy 0.65 - 0.74 - 0.80

Obstructive vs. Non-obstructive 0.70 - 0.75 - 0.79

COPD vs. Asthma 0.75 - 0.81 - 0.83

Table 3.7: Performance of classifiers utilizing cough features in isolation

classifier.

The second classifier (Figure 3-10) determined whether patients had an obstruc-

tive pulmonary disease (COPD or asthma) or a non-obstructive pulmonary disease

(allergic rhinitis). Healthy patients were omitted when creating this classifier.

The third classifier (Figure 3-11) determined whether patients had COPD or

asthma. Healthy and allergic rhinitis patients were omitted when creating this clas-

sifier.

Table 3.7 summarizes the performance of the three classifiers using only the cough

features.
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Figure 3-8: Receiver operator curve for wet-dry cough classifier

3.7.3 Results (Coughs Integrated into Mobile Kit)

The classifiers (Healthy vs. Unhealthy, Obstructive vs. Non-obstructive, COPD

vs. Asthma) were retrained 14 times. The new trials used the peak flow meter,

questionnaire, and lung sound features in isolation, all pairings between peak flow

meter, questionnaire, lung sounds, and cough features, and all four sets combined.

The same procedures described in the previous section were followed here.

Tables 3.8, 3.9, and 3.10 show the median AUC for each classification (Healthy vs.

Unhealthy, Obstructive vs. Non-obstructive, and COPD vs. Asthma, respectively )

and for different combination of diagnostic tools (L=lung sounds; Q=questionnaire,

P=peak flow meter). Results are shown with and without the addition of cough

analysis features.
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Feature Set(s) AUC without Cough Features AUC with Cough Features
L 0.57 - 0.61 - 0.64 0.66 - 0.71 - 0.76
Q 0.94 - 0.98 - 0.99 0.95 - 0.97 - 0.99
P 0.81 - 0.89 - 0.94 0.80 - 0.86 - 0.91
Q + P 0.93 - 0.96 - 0.99 0.92 - 0.96 - 0.99
Q + L 0.95 - 0.97 - 1.00 0.95 - 0.97 - 1.00
P + L 0.86 - 0.91 - 0.94 0.80 - 0.88 - 0.95
Q + P + L 0.94 - 0.96 - 0.99 0.94 - 0.97 - 0.99

Table 3.8: Performance of Healthy vs. Unhealthy classifier utilizing different feature
set combinations

Feature Set(s) AUC without Cough Features AUC with Cough Features
L 0.56 - 0.60 - 0.64 0.69 - 0.73 - 0.80
Q 0.76 - 0.86 - 0.91 0.73 - 0.79 - 0.88
P 0.88 - 0.92 - 0.95 0.80 - 0.87 - 0.92
Q + P 0.78 - 0.84 - 0.93 0.77 - 0.86 - 0.93
Q + L 0.75 - 0.81 - 0.88 0.75 - 0.77 - 0.88
P + L 0.84 - 0.91 - 0.96 0.79 - 0.89 - 0.95
Q + P + L 0.81 - 0.88 - 0.94 0.79 - 0.88 - 0.93

Table 3.9: Performance of Obstructive vs. Non-obstructive classifier utilizing differ-
ent feature set combinations
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Figure 3-9: Receiver operator curve for Healthy vs. Unhealthy classifier using cough
features in isolation

Coefficient Analysis

Figures 3-12, 4-6, and 3-14 note the top 10 coefficients of the pulmonary health,

obstructive pulmonary disease, and COPD/asthma classifiers, respectively.

3.7.4 Discussion

Wet vs. Dry Cough

Our classification algorithm for cough type was able to accurately distinguish between

wet and dry coughs using only a few time-domain features. This contrasts with

recent attempts at creating a wet/dry classifier, which used many more features

(both in time- and frequency-domain) and more complicated algorithms (like neural

networks) [27, 29]. This is promising for two reasons. First is cost–coughs can be
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Figure 3-10: Receiver operator curve for Obstructive vs. Non-obstructive classifier
using cough features in isolation

recorded directly with the phone, eliminating the need for the Mobile Kit’s custom-

made stethoscope. Second is simplicity–coughs alone do not require the use of extra

peripherals, like the peak flow meter.

Additionally, the questionnaire does not need to be completed. This is particu-

larly useful because there are groups which might have trouble with it–children, for

example, may not be able to answer all of the questions.

Our analysis demonstrates that the detection of coughs, which we have shown

are highly specific at detecting unhealthy patients, can be automated through our

classifier.

A key limitation of this analysis is the small number of wet coughs. While we are

optimistic about our results, we are unable to predict with a high degree of certainty

that our algorithm will generalize well. Another iteration of this analysis should be
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Figure 3-11: Receiver operator curve for COPD vs. Asthma classifier using cough
features in isolation

conducted, with a greater sample of wet coughs.

Pulmonary Health Screening

The questionnaire by itself is able to provide near-perfect classification of pulmonary

health (median AUC: 0.98). Even though cough features have been previously shown

to be effective at detecting whether a cough is wet or dry, by themselves these

features have moderate performance for pulmonary disease detection (median AUC:

0.74). No combination of tools (including cough features) performs better than the

questionnaire in isolation.

Generally, cough features do not have an added benefit as part of a pulmonary

health screener. However, they do increase performance when integrated with lung

sounds (median AUC increases from 0.61 to 0.71). It should be noted, though, that
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Feature Set(s) AUC without Cough Features AUC with Cough Features
L 0.57 - 0.64 - 0.75 0.75 - 0.83 - 0.92
Q 0.86 - 0.93 - 0.96 0.80 - 0.90 - 0.95
P 0.83 - 0.96 - 1.00 0.80 - 0.85 - 0.95
Q + P 0.79 - 0.88 - 0.92 0.80 - 0.82 - 0.95
Q + L 0.89 - 0.93 - 0.97 0.85 - 0.90 - 0.95
P + L 0.79 - 0.92 - 0.96 0.80 - 0.88 - 0.95
Q + P + L 0.82 - 0.92 - 1.00 0.75 - 0.80 - 0.90

Table 3.10: Performance of COPD vs. Asthma classifier utilizing different feature
set combinations

cough features alone achieve better performance.

In the coefficient analysis of the pulmonary health classifier, cough signal variance

was the fifth most important feature. However, all coefficients beyond the top three

have values close to zero (when considering their medians over 100 trials). This

follows the above finding that overall cough features do not improve the performance

of the Mobile Kit.

Obstructive Pulmonary Health Screening

When considering feature sets in isolation, the peak flow meter performed best when

screening for obstructive disease (median AUC: 0.92). Out of all possible combina-

tions, the best performance was achieved from the peak flow meter in isolation. Even

though the questionnaire decreases in performance when compared to the pulmonary

health classifier, it still performs fairly well (median AUC: 0.86). Just as in the pul-

monary health classifier, the classifier trained on lung sound features increased in

performance when paired with cough features (median AUC increased from 0.60 to

0.73), though the cough features in isolation achieved slightly better performance
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Figure 3-12: Top 10 coefficients of pulmonary health classifier when utilizing features
extracted from all mobile kit tools

(median AUC: 0.75).

The coefficient analysis for the obstructive disease classifier reinforces the above

findings. The questionnaire and peak flow meter make up all but one of the top

10 features. Zero cross irregularity (a cough feature) was the sixth most important

feature, but again, like in the case of pulmonary health, its median value over 100

trials was near zero.

Asthma and COPD Screening

When considering feature sets in isolation, the peak flow meter again achieved the

best performance (median AUC: 0.96). The peak flow meter in isolation also per-

formed best when compared to all possible combinations, though the questionnaire

had comparable results (median AUC: 0.93). Additionally, the classifier trained

on lung sound features increased in performance when paired with cough features
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Figure 3-13: Top 10 coefficients of obstructive pulmonary disease classifier when
utilizing features extracted from all mobile kit tools

(median AUC increased from 0.64 to 0.83). Unlike the other two classifiers, this

combination achieved slightly better performance than cough features in isolation

(median AUC: 0.81).

Unlike the pulmonary health and obstructive disease classifiers, which had median

coefficient weights that did not deviate greatly from 0, the COPD/Asthma classi-

fier had a large variance among its coefficient weights. The two strongest features,

kurtosis (a cough feature) and the maximum peak flow meter reading, reinforce the

finding that in combination these tools create a high performing classifier.

Utility of Cough Sound Features

Cough features in isolation did not achieve high performance for any of the classifiers,

although it consistently performed better than lung sound features. The peak flow

meter and the questionnaire were the top tools for all three classifiers. There was no
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Figure 3-14: Top 10 coefficients of COPD/asthma classifier when utilizing features
extracted from all mobile kit tools

clear improvement to their performance when combined with cough features. Overall,

even though cough features in isolation can provide moderate performance (median

AUC ranging from 0.74 to 0.81), we are not confident that they can form an integral

part of the screening and diagnosis of pulmonary disease.

3.8 Supervised Analysis (Trained with Non-Comorbid

Patients)

3.8.1 Methods

We repeated the supervised analysis, but trained the classifiers only with pure (non-

comorbid) patients, and tested the classifiers with both pure and comorbid patients.

The motivation for doing so was to see if training classifiers on pure patients achieved
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better results. We hypothesized that it would, since classifiers trained on pure pa-

tients might learn more defining characteristics of each disease. Other than this

distinction about what data were used for training, the same methods from the

previous supervised analysis were followed here.

3.8.2 Results

Pulmonary Health

The results of training the pulmonary health classifier using only non-comorbid pa-

tients are shown in Table 3.11. The results of the same classifier, but trained using

both comorbid and non-comorbid patients, have also been included for ease of com-

parison. On average, the classifier trained using non-comorbid patients achieved an

increase of 2.13% in median AUC, and a decrease of 4.47% in the AUC’s interquartile

range.

Obstructive Pulmonary Disease

The results of training the obstructive pulmonary disease classifier using only non-

comorbid patients are shown in Table 3.12. The results of the same classifier, but

trained using both comorbid and non-comorbid patients, have also been included for

ease of comparison. On average, the classifier trained using non-comorbid patients

achieved an an increase of 3.4% in median AUC, and an increase of 1.93% in the

AUC’s interquartile range.

COPD/Asthma

The results of training the COPD/Asthma classifier using only non-comorbid patients

are shown in Table 3.13. The results of the same classifier, but trained using both
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Features
Used

AUC (trained on
ALL patients)

AUC (trained on
PURE patients)

Delta
(+/- %)

L 0.57 - 0.61 - 0.64 0.60 - 0.61 - 0.63 + 0

Q 0.94 - 0.98 - 0.99 1.00 - 1.00 - 1.00 + 2

P 0.81 - 0.89 - 0.94 0.90 - 0.92 - 0.94 + 3

C 0.65 - 0.74 - 0.80 0.63 - 0.69 - 0.74 - 5

L + C 0.66 - 0.71 - 0.76 0.62 - 0.69 - 0.73 - 2

Q + C 0.95 - 0.97 - 0.99 0.99 - 1.00 - 1.00 + 3

P + C 0.80 - 0.86 - 0.91 0.85 - 0.90 - 0.94 + 4

Q + P 0.93 - 0.96 - 0.99 1.00 - 1.00 - 1.00 + 4

Q + L 0.95 - 0.97 - 1.00 1.00 - 1.00 - 1.00 + 3

P + L 0.86 - 0.91 - 0.94 0.92 - 0.94 - 0.97 + 3

Q + P + C 0.92 - 0.96 - 0.99 0.99 - 1.00 - 1.00 + 4

Q + L + C 0.95 - 0.97 - 1.00 1.00 - 1.00 - 1.00 + 3

P + L + C 0.80 - 0.88 - 0.95 0.86 - 0.91 - 0.94 + 3

Q + P + L 0.94 - 0.96 - 0.99 1.00 - 1.00 - 1.00 + 4

Q + P + L + C 0.94 - 0.97 - 0.99 0.99 - 1.00 - 1.00 + 3

Table 3.11: Performance of Unhealthy classifier trained on all patients (comorbid
and non-comorbid) vs. trained on pure patients (non-comorbid)
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Features
Used

AUC (trained on
ALL patients)

AUC (trained on
PURE patients)

Delta
(+/- %)

L 0.56 - 0.60 - 0.64 0.50 - 0.57 - 0.70 - 3

Q 0.76 - 0.86 - 0.91 0.78 - 0.86 - 0.99 + 0

P 0.88 - 0.92 - 0.95 0.86 - 0.94 - 0.96 + 2

C 0.70 - 0.75 - 0.79 0.75 - 0.80 - 0.88 + 5

L + C 0.69 - 0.73 - 0.80 0.76 - 0.81 - 0.86 + 8

Q + C 0.73 - 0.79 - 0.88 0.78 - 0.86 - 0.97 + 7

P + C 0.80 - 0.87 - 0.92 0.82 - 0.89 - 0.93 + 2

Q + P 0.78 - 0.84 - 0.93 0.85 - 0.94 - 0.99 + 10

Q + L 0.75 - 0.81 - 0.88 0.80 - 0.85 - 0.98 + 4

P + L 0.84 - 0.91 - 0.96 0.84 - 0.90 - 0.95 - 1

Q + P + C 0.77 - 0.86 - 0.93 0.84 - 0.91 - 0.98 + 5

Q + L + C 0.75 - 0.77 - 0.88 0.80 - 0.86 - 0.93 + 9

P + L + C 0.79 - 0.89 - 0.95 0.84 - 0.89 - 0.93 + 0

Q + P + L 0.81 - 0.88 - 0.94 0.80 - 0.90 - 0.99 + 2

Q + P + L + C 0.79 - 0.88 - 0.93 0.83 - 0.89 - 0.99 + 1

Table 3.12: Performance of Obstructive classifier trained on all patients (comorbid
and non-comorbid) vs. trained on pure patients (non-comorbid)
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comorbid and non-comorbid patients, have also been included for ease of comparison.

On average, the classifier trained using non-comorbid patients achieved an an increase

of 2.73% in median AUC, and a decrease of 8.67% in the AUC’s interquartile range.

Features
Used

AUC (trained on
ALL patients)

AUC (trained on
PURE patients)

Delta
(+/- %)

L 0.57- 0.64 - 0.75 0.53 - 0.57 - 0.60 - 7

Q 0.86 - 0.93 - 0.96 0.93 - 0.95 - 0.97 + 2

P 0.83 - 0.96 - 1.00 0.92 - 0.94 - 0.96 - 2

C 0.75 - 0.81 - 0.83 0.73 - 0.76 - 0.80 - 5

L + C 0.75 - 0.83 - 0.92 0.70 - 0.74 - 0.79 - 9

Q + C 0.80 - 0.90 - 0.95 0.93 - 0.96 - 0.97 + 6

P + C 0.80 - 0.85 - 0.95 0.87 - 0.90 - 0.93 + 5

Q + P 0.79 - 0.88 - 0.92 0.91 - 0.96 - 0.98 + 8

Q + L 0.89 - 0.93 - 0.97 0.94 - 0.96 - 0.98 + 3

P + L 0.79 - 0.92 - 0.96 0.84 - 0.92 - 0.95 + 0

Q + P + C 0.80 - 0.82 - 0.95 0.88 - 0.95 - 0.97 + 13

Q + L + C 0.85 - 0.90 - 0.95 0.94 - 0.96 - 0.98 + 6

P + L + C 0.80 - 0.88 - 0.95 0.87 - 0.89 - 0.92 + 1

Q + P + L 0.82 - 0.92 - 1.00 0.93 - 0.97 - 0.98 + 5

Q + P + L + C 0.75 - 0.80 - 0.90 0.91 - 0.95 - 0.96 + 15

Table 3.13: Performance of COPD/Asthma classifier trained on all patients (comor-
bid and non-comorbid) vs. trained on pure patients (non-comorbid)
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3.8.3 Discussion

All classifier results improved when trained with only non-comorbid patients. How-

ever, it should be noted that when the classifiers used features from lung sounds

and/or cough sounds, and were trained with non-comorbid paitents, they tended to

perform worse. Additionally, the pulmonary health and COPD/asthma classifiers

tended to achieve a smaller interquartile range for AUC.

Physiologically, the better performance from classifiers trained on non-comorbid

patients makes sense – these are "pure" patients, with respect to disease. It is much

more likely that the features extracted from these patients’ data are more indicative

of their respective disease. Training classifiers on both comorbid and non-comorbid

patients introduces a degree of uncertainty into the classifier. For example, a patient

with both COPD and allergic rhinitis might have symptoms that are more indicative

of COPD than allergic rhinitis (or vice versa). However, a classifier trained on such

a patient would not know this, and would attribute the distinctive features to both

diseases. Based on our results, we believe that training classifiers using only non-

comorbid patients is preferable.

It should be noted that this finding goes against the machine learning assumption

that a classifier be trained from independent samples extracted from an i.i.d. space.

A consequence of this is that while we have demonstrated stronger predictive power,

we are not able to guarantee that our classifiers generalize well.
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3.9 Future Improvements

Inclusion of Infectious Diseases

Our analyses have focused on COPD, asthma, and allergic rhinitis. While these are

prevalent and burdensome diseases, we have not addressed pulmonary infections.

Tuberculosis and pneumonia (especially in children) create a huge burden on the

developing world. Including these diseases into our pulmonary health kit could help

alleviate this healthcare concern. We have begun to address this by creating a new

classification scheme, summarized in Figure 4-4.

New Cough Features

For this analysis, we chose computationally inexpensive time-domain features to ex-

tract from the cough signal. However, there are many more features we can add

which can potentially improve the contribution of cough sounds to the classifiers.

For example, there are many frequency-domain features which are used for speech

recognition, like the Mel-Frequency Cepstral Coefficient (MFCC), entropy, and for-

mants.

Improved Interpretability

Interpretability is a main concern in all machine learning problems involving health-

care. We have used logistic regression classifiers in order to address this, given the

insight the coefficients give into what information helped the system make its deci-

sion.

In future work, we wish to include other, potentially more interpretable, models.

For example, a Bayesian model (such as Bayesian logistic regression) allows for the
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Figure 3-15: New classification scheme. Dotted lines denote classifiers that will be
created in the future. Yellow boxes denote additions to the old scheme.

use of known prior distributions of unknown parameters, and provides posterior

predictive distributions for all learned paramters.
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Chapter 4

Analysis of Pulmonary Function

Testing (PFT) Data

Pulmonary Function Testing (PFT) is the current gold-standard for pulmonary dis-

ease diagnosis. However, the accurate interpretation of its results requires training

and experience. The automatic analysis of these data would allow technicians with

little interpretive experience to accurately diagnose pulmonary disease. In this chap-

ter, we search for any hidden clusters with the data extracted from PFT machines,

and see how they correlate with disease and any patient subpopulations. We then

conduct a variety of supervised learning analyses: first, we use various combinations

of PFT machines to train the classifiers within the new diagnostic protocol; second,

we analyze the use of adding clinical features (lung sounds and questionnaire) to

the PFT data; third, we explore a new classification scheme composed of various

independent disease classifiers. We conclude by comparing the performance of the

classifiers created from the PFT data to those results from the Mobile Kit data.
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4.1 Motivation

Pulmonary Function Testing (PFT) requires interpretation of results by an expert,

using prior knowledge and guidelines established by the European Respiratory So-

ciety (ERS) and the American Thoracic Society (ATS), usually in the form of hard

cut-offs of measured physiological parameters. Recently, there has been a growing

interest in the role artificial intelligence can play in improving the accuracy of pul-

monary disease diagnosis from PFT data.

4.1.1 Past Work

A 2012 study analyzed the data acquired from spirometry and forced oscillation

machines on 50 subjects (25 healthy, 25 with COPD). They concluded that k-nearest

neighbors (kNN), support vector machines (SVM), and artificial neural networks

(ANN) provided good results (AUC > 0.95) [60].

A 2017 study analyzed PFT data from 968 subjects. They developed an auto-

mated algorithm using the ATS and ERS guidelines, and compared it to a classifier

developed using machine learning. While they were able to achieve moderate results

for the detection of COPD (74% accuracy), overall they achieved poor results for

other diseases (asthma, interstitial lung disease, and neuromuscular disorder) with

an overall accuracy of 38%. Nonetheless, the researchers from this study conclude

that their classifier improves the interpretability of current diagnosis methods [59].

4.2 Machine Overview

For this analysis, we collected data from four machines, all of the MasterScreen

model, manufactured by Jaegar. LabManager v5.32.0 was used to extract and com-
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pile the machines’ readings. An explanation of each machine, its testing procedure,

and the fields extracted are summarized below.

- Spirometry. For this test, the patient must inhale to maximum capacity, and

exhale as quickly as possible into a tube. The test measures lung capacity, as well as

the rate of exhalation. For new patients, this test can take up to 30 minutes (due to

the need to complete multiple training trials in order to perform the test correctly);

more experienced patients generally complete the test in 15 minutes. Only one trial

is done, consisting of a pre-test (before a bronchodilator is administered) and a post-

test (after a bronchodilator is administered). A summary of the spirometry fields

used in this analysis can be found in Table 4.1.

- Diffusing capacity of the lungs for carbon monoxide (DLCO). For this

test, the patient breathes in, holds his or her breath for 10 seconds, and then rapidly

exhales into a gas analyzer machine. This test measures the diffusion of gas be-

tween the patient’s air sacs (alveoli) and the patient’s blood. The total time for this

test (two trials) is eight to nine minutes. Each trial consists of a pre-test (before a

bronchodilator is administered) and a post-test (after a bronchodilator is adminis-

tered). A summary of the DLCO fields used in this analysis can be found in Table 4.1.

- Body plethysmography, or Body box (BB). For this test, the patient sits

inside an airtight box which measures tiny displacements of air in order to measure

the different lung volumes inside the patient’s body. The patient breathes through

a mouthpiece while wearing a nose clip. The patient is asked to breathe normally;

then, a shutter inside the mouthpiece closes. Measurements are taken while the

patient attempts to inhale. Throughout the test, a shutter on the air tube opens and
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closes five times. A summary of the BB fields used in this analysis can be found in

Table 4.2.

- Impulse oscillometry (IOS). This machine measures the frequency response

of a patient’s lungs, measuring both the real and imaginary components of the impe-

dence. For this test, the patient places his/her mouth on a mouthpiece and air tube

and breathes normally. A machine produces pulses of air which are superimposed on

the patient’s normal breathing. Pulmonary resistance, reactance, and impedance are

recorded when waves at various frequencies (5, 10, and 20 Hz) are superimposed on

normal breathing. The total time for this test (three trials) is five minutes. Unlike

the other machines, IOS does not involve pre- and post-tests. A summary of the IOS

fields used in this analysis can be found in Table 4.2.

4.3 Data Collection

As per the study protocol, all patients (healthy and unhealthy) were requested to

undergo PFT. However, many opted out, usually out of discomfort (many found the

procedure physically demanding). Table 4.3 summarizes how many patients com-

pleted the tests for each machine, in isolation and combination, as well as some basic

demographic information about each group.
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Field Unit Machine Explanation

FVC L Spirometry Forced vital capacity. The volume of
air that the patient exhaled.

FEV 1 L Spirometry
Forced expiratory volume in 1 sec-
ond. The volume of air that the pa-
tient exhaled in 1 second.

FEV 1 / max VC % Spirometry The ratio of FEV 1 to FVC.

PEF L/s Spirometry
Peak expiratory flow. The maxi-
mum flow achieved during exhala-
tion.

MMEF 75 % 25 L/s Spirometry
Maximal mid-expiratory flow. The
maximum of expiratory flow be-
tween 25% and 75% of FVC.

TLC-SB L DLCO Total lung capacity in a single
breath.

RV % TLC % DLCO The ratio of residual volume to total
lung capacity.

DLCO-SB mmol/(s*kPa) DLCO DLCO for a single breath.

DLCOc mmol/(s*kPa) DLCO
DLCO adjusted to the patient’s
hemoglobin level. Equation found
[REF].

KCO mmol/(s*kPa*L) DLCO The ratio of DLCO to alveolar vol-
ume.

Table 4.1: Summary of PFT fields which were included in the analysis
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Field Unit Machine Explanation
R5Hz kPa/(L/s) IOS Resistance at 5 Hz.
R10Hz kPa/(L/s) IOS Resistance at 10 Hz.
R20Hz kPa/(L/s) IOS Resistance at 20 Hz.
X5Hz kPa/(L/s) IOS Reactance at 5 Hz.

SG total 1/(kPa*s) BB Specific airway resistance over to-
tal flow range.

SG 0.5 1/(kPa*s) BB Specific airway resistance at flow
rate equal to +/- 0.5 L/s.

TLC L BB Total lung capacity.
WoB kPa*L BB Work of breathing.

RV % TLC % BB The raio of residual volume to to-
tal lung capacity.

Table 4.2: Summary of PFT fields which were included in the analysis
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Machines # Age (yrs.) Male Weight (kg) COPD Asthma AR Healthy

S 253 47.59 140 61.00 39 96 82 73

BB 260 47.58 148 61.12 41 97 85 79

IOS 269 47.97 151 61.33 42 98 86 79

DLCO 227 46.18 129 61.54 28 85 72 73

S + BB 247 47.30 138 61.04 37 96 81 73

S + IOS 249 47.40 139 61.10 37 95 82 73

S + DLCO 216 45.98 121 61.25 26 83 69 68

BB + IOS 257 47.47 147 61.18 40 96 85 79

BB + DLCO 220 45.84 125 61.60 26 84 71 73

IOS + DLCO 223 45.95 128 61.74 26 84 72 73

S + IOS + DLCO 214 45.92 121 61.37 25 83 69 68

S + BB + IOS 244 47.18 137 61.10 36 95 81 73

S + BB + DLCO 212 45.84 119 61.21 25 83 68 68

BB + IOS + DLCO 218 45.78 125 61.71 25 84 71 73

S + BB + IOS + DLCO 210 45.78 119 61.33 24 83 68 68

Table 4.3: Summary statistics of patients who completed various combinations of the PFT machines
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4.4 Data Pre-processing and Feature Selection

Each subsection below describes how the final classification features were calculated

from each machine’s extracted fields. All of the final features were standardized to

have zero-mean and unit-variance.

4.4.1 Spirometry and DLCO

All of the utilized fields for spirometry and DLCO have positive predicted values.

These predicted values were used to create the final classification features for these

machines. For each field, three features were calculated, as follows:

- Pre-test (median) / predicted value

- Post-test (median) / predicted value

- [Post-test (median) - Pre-test (median)] / predicted value

4.4.2 Impulse Oscillometry

Pulmonary resistance at 5 Hz, 10 Hz, and 20 Hz (labeled as R5Hz, R10Hz, and

R20Hz, respectively) have positive predicted values. For each of these three fields,

three features were calculated in the same manner as for spirometry and DLCO,

repeated here for convenience:

- Pre-test (median) / predicted value

- Post-test (median) / predicted value

- [Post-test (median) - Pre-test (median)] / predicted value
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Pulmonary reactance at 5 Hz (X5Hz) can have negative, positive, or zero pre-

dicted value. Unlike the three IOS fields above, we could not divide by the predicted

value to determine X5Hz’s final three classification features. Therefore, subtraction

was used, as follows:

- Pre-test (median) - predicted value

- Post-test (median) - predicted value

- [Post-test (median) - Pre-test (median)] - predicted value

4.4.3 Body Plethysmography

Body plethysmography requires five trials. The first three trials determine pulmonary

conductance (or resistance). The final three trials determine lung volume. The third

trial is common between the two measurements.

This exam is physically demanding, and some patients were not able to complete

all trials. The data for any patient who did not complete at least one of the first

three trials, and at least one of the final three trials, were excluded from the analysis.

All of the utilized fields for body plethysmography have positive predicted val-

ues, determined by [REF], except for Work of Breathing (which does not have any

predicted value). When determining the median values below, only the first three

trials were considered for pulmonary resistance fields (SG total and SG 0.5), while

only the final three trials were considered for pulmonary volume fields (TLC and RV

% TLC). When determining the median, missing trials were ignored. For each field

except Work of Breathing, three features were calculated, as follows:

- Pre-test (median) / predicted value

- Post-test (median) / predicted value
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- [Post-test (median) - Pre-test (median)] / predicted value

A third feature, labeled Work of Breathing, was defined as the median value of

the first three trials (excluding any missing trials) was directly used as a classification

feature.

4.5 Unsupervised Learning Analysis

4.5.1 Choice of Methods

We performed an unsupervised analysis to search for any disease clusters within the

dataset. Additionally, we searched for any patient subpopulations.

Given the unbalanced class sizes of our data, we chose the DBSCAN algorithm

which is optimized to analyze changes in the data density in multi-dimensional space.

As an alternative, the standard k-means algorithm was also used, which attempts

to identify clusters based on Euclidean distance while assuming even class sizes.

4.5.2 Cluster Analysis Results

Results from DBSCAN Algorithm

The DBSCAN algorithm was unable to converge, labeling all data points as belonging

to the same cluster. This algorithm assumes clusters of high-density separated by

regions of low-density. Given the failure of the DBSCAN algorithm to converge,

we suspect that our data are fairly evenly and sparsely distributed with no regions

of high density. In order to visualize the high-dimensional data, we plotted several

two-dimensional slices (plotting patients against two features). These are shown in
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Figures 4-1, 4-2, and 4-3.

Figure 4-1: Top 10 coefficients of pulmonary health classifier when utilizing features
extracted from all PFT machines

Results from K-means Algorithm

After poor results from the DBSCAN algorithm, we utilized the common k-means

algorithm. For the analysis of the full PFT dataset, the maximum silhouette score

suggested the use of five clusters. For the analysis of the COPD patients within

the PFT dataset, the maximum silhouette score suggested the use of four clusters;

however, we used two in order to combine clusters with few patients. For the anal-

ysis of the asthma patients within the PFT dataset, the maximum silhouette score

suggested the use of four clusters.

All Disease Types

We began by analyzing the entire data set for any disease clusters. Table 4.4 sum-

95



Figure 4-2: Top 10 coefficients of pulmonary health classifier when utilizing features
extracted from all PFT machines

marizes the disease breakdown of each cluster.

Healthy Asthma AR COPD Total
Cluster 1 39 11 14 0 67
Cluster 2 0 18 15 1 19
Cluster 3 3 39 22 2 49
Cluster 4 26 10 13 2 49
Cluster 5 0 5 4 19 26

Table 4.4: Intra-cluster disease breakdown within PFT dataset

COPD Patients

Table 4.5 summarizes the risk factors and symptoms of the patients belonging to

the two clusters.

Asthma Patients
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Figure 4-3: Top 10 coefficients of pulmonary health classifier when utilizing features
extracted from all PFT machines

Table 4.6 summarizes the risk factors and symptoms of the patients belonging to the

four clusters.
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Cluster 1 (n=12) Cluster 2 (n=12)
Male (%) 75.00 83.33
Age (years) 55.33 50.94
Weight (kg) 58.61 57.57
Breathless (%) 100.00 100.00
Cough (%) 75.00 100.00
Chest Pain (%) 16.67 0.00
Fever (%) 8.33 0.00
Nasal (%) 75.00 66.67
COPD (Family History) (%) 0.00 0.00
Allergy (Family History) (%) 25.00 8.33
Allergy (Personal History) (%) 16.67 0.00
Biomass Cooking (%) 8.33 8.33
Smoking (%) 66.67 50.00
Tobacco Chewing (%) 75.00 33.33
Alcohol (%) 41.67 0.00

Table 4.5: Results of unsupervised analysis of COPD patients from PFT dataset
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Cluster 1 (n=30) Cluster 2 (n=11) Cluster 3 (n=11) Cluster 4 (n=31)

Male (%) 63.33 72.72 54.55 54.84

Age (years) 50.97 59.09 52.82 52.19

Weight (kg) 59.28 57.72 53.77 62.13

Breathless (%) 80.00 100.00 100.00 77.42

Cough (%) 73.33 72.72 81.82 70.97

Chest Pain (%) 6.67 9.01 0.00 6.45

Fever (%) 3.33 0.00 0.00 0.00

Nasal Symptoms (%) 63.33 54.55 54.55 54.84

COPD (Family History) (%) 0.00 0.00 0.00 0.00

Allergy (Family History) (%) 36.67 27.27 18.18 38.71

Allergy (Personal History) (%) 20.00 18.18 27.27 32.26

Biomass Cooking (%) 6.67 0.00 9.09 16.13

Smoking (%) 30.00 54.55 36.26 25.81

Tobacco Chewing (%) 30.00 54.55 54.55 25.81

Alcohol Intake (%) 10.00 18.18 18.18 12.9

Table 4.6: Results of unsupervised analysis of asthma paptients from PFT datset
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4.5.3 Discussion of Cluster Analysis Results

The inability of the DBSCAN algorithm to find any clusters suggests that there are

no clear clusters within the dataset. This is reinforced by the lack of clusters in

Figures 4-1, 4-2, and 4-3. Even though a supervised analysis might provide highly

accurate classifiers, the data is inherently of equal density across the N-dimensional

space (N = number of features). There is no indication from the analysis of these

data that there are clear clusters corresponding to disease.

The results of the k-means analysis on the entire dataset (Table 4.4) suggests

that there are two types of asthma and AR patients: one which is similar to healthy

subjects (Clusters 1 and 4), and another which is not (Clusters 2 and 3). This can

either indicate symptomatic and asymptomatic versions of the diseases, or that the

asymptomatic patients had to have medication administered to allow the patients

to complete the examination. These results also indicate that asthma and allergic

rhinitis are very similar, and the presence of one might indicate the presence of the

other. Finally, COPD does appear as a mostly separate cluster (Cluster 5). This

indicates that while the PFT data are useful for detecting COPD, they may falter

at distinguishing between healthy, asthma, and AR subjects.

While the above reuslts suggest that PFT data are useful for the detection of

COPD, the cluster analysis of the COPD patients (Table 4.5) indicate that there

are no clear COPD subpopulations. The only apparent difference between the two

groups is that Cluster 1 contains more tobacco chewers and alcohol drinkers. It

is possible that this indicates a type of patient who abuses tobacco and alcohol.

However, further analysis is necessary given the small sample of COPD patients in

the datset.

Among the asthma patents (Table 4.6), the risk factors and symptoms are fairly
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uniform. Nonetheless, Cluster 2 provides an interesting result. This cluster is more

heavily male (73%), older (59 years), does not have exposure to biomass cooking,

and tends to smoke more (55%). This might indicate a common type of asthma

patient within the Indian population.

Overall, while there are some insights gained from this analysis, the exploration

of a larger dataset using alternate algorithms might provide richer results.

4.6 Supervised Learning Analysis of PFT Data in

Isolation

4.6.1 Motivation

While PFT results are usually analyzed by physicians in combination with clinical

features (questionnaire, lung sounds), in this section we are interested in comparing

the utility of each PFT machine. Therefore, we trained and tested the various

classifiers using only various combinations of the PFT machines.

4.6.2 Classification Design

In the following analysis, we follow the new multi-layer classifier structure summa-

rized in Figure 4-4, which has been described previously.

4.6.3 Methods

All of the features were standardized to have zero-mean and unit-variance. Logistic

regression models with L1-penalty were used to create the binary classifiers. 70

percent of the data were used for training, 30 percent for testing. During every trial,
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Figure 4-4: New classification scheme. Dotted lines denote classifiers that will be
created in the future. Yellow boxes denote additions to the old scheme.

the data split for testing and training was done randomly. 100 training trials were

run. To determine the ideal penalization parameter during each training trial, 100

trials of randomized cross validation were run over an exponential distribution; the

parameter value with the lowest validation error was chosen to create the final tested

classifier.
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4.6.4 Results of Supervised Learning Analysis

Table 4.7 summarizes the performance of the pulmonary health classifier when trained

on various combinations of the features extracted from the PFT machines. With the

same training protocol, Table 4.8 summarizes the performance of the obstructive pul-

monary disease classifier, Table 4.9 of the AR (obstructive) classifier, Table 4.10 of

the COPD (comorbid) classifier, Table 4.11 of the COPD (non-comorbid) classifier,

and Table 4.12 of the AR (non-obstructive) classifier.

PFT Machine(s) Used AUC Sensitivity Specificity
S 0.88 - 0.90 - 0.92 0.71 - 0.76 - 0.82 0.93 - 0.93 - 1.00
BB 0.87 - 0.89 - 0.91 0.72 - 0.74 - 0.79 0.88 - 0.94 - 0.94
IOS 0.85 - 0.87 - 0.90 0.61 - 0.68 - 0.76 0.88 - 0.94 - 1.00
DLCO 0.71 - 0.77 - 0.81 0.57 - 0.68 - 0.79 0.67 - 0.73 - 0.87
S + BB 0.88 - 0.90 - 0.91 0.73 - 0.76 - 0.81 0.87 - 0.93 - 1.00
S + IOS 0.88 - 0.90 - 0.92 0.70 - 0.76 - 0.81 0.93 - 0.93 - 1.00
S + DLCO 0.88 - 0.90 - 0.93 0.69 - 0.78 - 0.84 0.86 - 0.93 - 0.93
BB + IOS 0.87 - 0.89 - 0.91 0.71 - 0.76 - 0.82 0.88 - 0.94 - 1.00
BB + DLCO 0.85 - 0.88 - 0.92 0.70 - 0.74 - 0.81 0.87 - 0.87 - 0.93
IOS + DLCO 0.87 - 0.89 - 0.91 0.66 - 0.81 - 0.88 0.73 - 0.87 - 0.93
S + BB + IOS 0.88 - 0.90 - 0.92 0.69 - 0.75 - 0.81 0.87 - 0.93 - 1.00
S + BB + DLCO 0.87 - 0.90 - 0.92 0.70 - 0.74 - 0.84 0.86 - 0.93 - 1.00
S + IOS + DLCO 0.89 - 0.91 - 0.93 0.74 - 0.77 - 0.84 0.86 - 0.93 - 1.00
BB + IOS + DLCO 0.87 - 0.89 - 0.91 0.71 - 0.77 - 0.84 0.80 - 0.87 - 0.93
S + BB + IOS + DLCO 0.88 - 0.90 - 0.92 0.70 - 0.77 - 0.83 0.86 - 0.93 - 1.00

Table 4.7: Performance of Healthy vs. Unhealthy classifier different PFT feature set
combinations
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PFT Machine(s) Used AUC Sensitivity Specificity
S 0.91 - 0.94 - 0.96 0.78 - 0.89 - 0.96 0.82 - 0.91 - 0.91
BB 0.88 - 0.91 - 0.95 0.79 - 0.89 - 0.93 0.73 - 0.82 - 0.91
IOS 0.85 - 0.89 - 0.91 0.71 - 0.79 - 0.86 0.77 - 0.85 - 0.92
DLCO 0.64 - 0.66 - 0.71 0.43 - 0.59 - 0.78 0.50 - 0.70 - 0.80
S + BB 0.90 - 0.92 - 0.95 0.81 - 0.88 - 0.96 0.73 - 0.82 - 0.91
S + IOS 0.92 - 0.95 - 0.97 0.85 - 0.88 - 0.96 0.82 - 0.91 - 0.87
S + DLCO 0.91 - 0.94 - 0.96 0.77 - 0.86 - 0.95 0.80 - 0.90 - 1.00
BB + IOS 0.90 - 0.93 - 0.96 0.81 - 0.87 - 0.96 0.79 - 0.87 - 0.95
BB + DLCO 0.88 - 0.91 - 0.94 0.77 - 0.86 - 0.91 0.78 - 0.89 - 1.00
IOS + DLCO 0.85 - 0.88 - 0.92 0.68 - 0.77 - 0.86 0.80 - 0.90 - 1.00
S + IOS + DLCO 0.91 - 0.94 - 0.97 0.82 - 0.91 - 0.95 0.78 - 0.89 - 0.89
S + BB + IOS 0.90 - 0.93 - 0.96 0.81 - 0.92 - 0.96 0.80 - 0.80 - 0.90
S + BB + DLCO 0.90 - 0.93 - 0.96 0.77 - 0.86 - 0.91 0.78 - 0.89 - 1.00
BB + IOS + DLCO 0.88 - 0.92 - 0.95 0.77 - 0.86 - 0.91 0.78 - 0.89 - 1.00
S + BB + IOS + DLCO 0.91 - 0.93 - 0.96 0.82 - 0.91 - 0.95 0.75 - 0.88 - 1.00

Table 4.8: Performance of Obstructive vs. Non-obstructive classifier different PFT
feature set combinations

Coefficient Analysis

When each of the classifiers was trained using the data from all of the PFT machines,

we avareaged the top 10 coefficient weight magnitudes. The top 10 coefficients for

the pulmonary health classifier are summarized in Figure 4-5, for the obstructive

pulmonary disease classifier in Figure 4-6, for the AR (obstructive) classifier in Figure

4-7, for the COPD (comorbid) classifier in Figure 4-8, for the COPD (non-comorbid)

classifier in Figure 4-9, and for the AR (non-obstructive) classifier in Figure 4-10
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PFT Machines(s) Used AUC Sensitivity Specificity
S 0.69 - 0.72 - 0.76 0.69 - 0.85 - 0.92 0.43 - 0.57 - 0.71
BB 0.63 - 0.66 - 0.68 0.54 - 0.69 - 0.85 0.45 - 0.60 - 0.73
IOS 0.65 - 0.68 - 0.72 0.46 - 0.62 - 0.77 0.53 - 0.73 - 0.80
DLCO 0.66 - 0.71 - 0.78 0.60 - 0.80 - 1.00 0.46 - 0.62 - 0.77
S + BB 0.65 - 0.67 - 0.71 0.54 - 0.77 - 0.92 0.40 - 0.57 - 0.73
S + IOS 0.66 - 0.69 - 0.84 0.46 - 0.62 - 0.85 0.46 - 0.69 - 0.85
S + DLCO 0.67 - 0.72 - 0.77 0.58 - 0.70 - 0.90 0.50 - 0.67 - 0.83
BB + IOS 0.64 - 0.67 - 0.71 0.44 - 0.62 - 0.77 0.53 - 0.73 - 0.87
BB + DLCO 0.64 - 0.68 - 0.72 0.45 - 0.64 - 0.82 0.52 -0.73 - 0.82
IOS + DLCO 0.66 - 0.70 - 0.75 0.43 - 0.64 - 0.82 0.55 - 0.73 - 0.84
S + BB + IOS 0.65- 0.68 - 0.72 0.38 - 0.62 - 0.79 0.46 - 0.62 - 0.85
S + BB + DLCO 0.67 - 0.70 - 0.74 0.50 - 0.70 - 0.80 0.45 - 0.68 - 0.82
S + IOS + DLCO 0.67 - 0.71 - 0.77 0.60 - 0.80 - 0.93 0.36 - 0.55 - 0.72
BB + IOS + DLCO 0.65 - 0.69 - 0.73 0.45 - 0.64 - 0.82 0.52 - 0.73 - 0.82
S + BB + IOS + DLCO 0.65 - 0.69 - 0.73 0.50 - 0.80 - 0.90 0.45 - 0.64 - 0.82

Table 4.9: Performance of AR vs. Non-AR (Obstructive) classifier different PFT
feature set combinations

4.6.5 Discussion of Individual Classifier Results

Detecting Pulmonary Health

When considering machines in isolation, the spirometer performs the best (median

AUC of 0.90), with the body box achieving comparable performance (median AUC

of 0.89). Impulse oscillometry had worse sensitivity (0.68, compared to 0.76 for the

spirometer). DLCO had worse performance overall (median AUC of 0.77).

No combination of machines performed better than the spirometer in isolation.

The only improvement upon the spirometer was achieved in sensitivity by the impulse

oscillometer and DLCO; however, the interquartile range was much larger (0.66 - 0.81
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PFT Machines(s) Used AUC Sensitivity Specificity
S 0.90 - 0.95 - 0.98 1.00 - 1.00 - 1.00 0.73 - 0.82 - 0.91
BB 0.81 - 0.91 - 0.95 0.88 - 1.00 - 1.00 0.82 - 0.91 - 1.00
IOS 0.89 - 0.95 - 0.98 1.00 - 1.00 - 1.00 0.73 - 0.91 - 1.00
DLCO 0.89 - 0.94 - 0.96 1.00 - 1.00 - 1.00 0.78 - 0.89 - 0.92
S + BB 0.82 - 0.95 - 0.98 1.00 - 1.00 - 1.00 0.82 - 0.91 - 1.00
S + IOS 0.93 - 0.95 - 1.00 1.00 - 1.00 - 1.00 0.73 - 0.86 - 1.00
S + DLCO 0.67 - 0.72 - 0.77 1.00 - 1.00 - 1.00 0.78 - 0.89 - 0.89
BB + IOS 0.77 - 0.91 - 0.98 0.50 - 1.00 - 1.00 0.82 - 0.91 - 1.00
BB + DLCO 0.90 - 0.95 - 1.00 1.00 - 1.00 - 1.00 0.80 - 0.90 - 1.00
IOS + DLCO 0.90 - 0.95 - 1.00 1.00 - 1.00 - 1.00 0.80 - 0.90 - 1.00
S + BB + IOS 0.89 - 0.93 - 1.00 1.00 - 1.00 - 1.00 0.64 - 0.91 - 1.00
S + BB + DLCO 0.89 - 0.94 - 0.94 1.00 - 1.00 - 1.00 0.78 - 0.89 - 0.89
S + IOS + DLCO 0.89 - 0.94 - 1.00 1.00 - 1.00 - 1.00 0.78 - 0.89 - 1.00
BB + IOS + DLCO 0.85 - 0.95 - 1.00 1.00 - 1.00 - 1.00 0.70 - 0.90 - 1.00
S + BB + IOS + DLCO 0.89 - 0.94 - 1.00 1.00 - 1.00 - 1.00 0.78 - 0.89 - 1.00

Table 4.10: Performance of COPD vs. Asthma (Comorbid) classifier different PFT
feature set combinations

- 0.88 vs. 0.71 - 0.76 - 0.82).

From the coefficient analysis, there are two clear features that helped detect

unhealthy patients: DLCO-SB (from DLCO) and FEV1 (from the spirometer). The

top two features for detecting healthy patients were KCO (from DLCO) and FEV1.

Detecting Obstructive Pulmonary Disease

When considering machines in isolation, the spirometer performed significantly better

than the other machines (median AUC of 0.94). Like the the pulmonary health

classifier, DLCO performed the worst (median AUC of 0.66).

Only the spirometer combined with the impulse oscillometer achieved better per-
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PFT Machines(s) Used AUC Sensitivity Specificity
S 0.92 - 0.96 - 1.00 0.83 - 1.00 - 1.00 0.88 - 0.88 - 1.00
BB 0.85 - 0.92 - 0.95 0.83 - 0.83 - 1.00 0.78 - 0.89 - 1.00
IOS 0.85 - 0.90 - 0.94 0.83 - 1.00 - 1.00 0.67 - 0.78 - 0.89
DLCO 0.81 - 0.89 - 0.95 0.80 - 0.80 - 1.00 0.63 - 0.88 - 0.88
S + BB 0.86 - 0.91 - 0.94 0.83 - 0.83 - 1.00 0.78 - 0.89 - 0.92
S + IOS 0.96 - 0.99 - 1.00 1.00 - 1.00 - 1.00 0.88 - 1.00 - 1.00
S + DLCO 0.91 - 0.97 - 1.00 0.75 - 1.00 - 1.00 0.88 - 1.00 - 1.00
BB + IOS 0.91 - 0.94 - 0.97 0.83 - 0.92 - 1.00 0.78 - 0.89 - 0.89
BB + DLCO 0.87 - 0.93 - 0.96 0.75 - 0.75 - 1.00 0.86 - 0.86 - 1.00
IOS + DLCO 0.93 - 0.96 - 1.00 0.75 - 1.00 - 1.00 0.86 - 1.00 - 1.00
S + BB + IOS 0.94 - 0.98 - 1.00 0.80 - 1.00 - 1.00 0.88 - 1.00 - 1.00
S + BB + DLCO 0.88 - 0.97 - 1.00 0.75 - 1.00 - 1.00 1.00 - 1.00 - 1.00
S + IOS + DLCO 0.94 - 0.98 - 1.00 0.75 - 1.00 - 1.00 0.86 - 1.00 - 1.00
BB + IOS + DLCO 0.95 - 0.98 - 1.00 0.75 - 1.00 - 1.00 0.86 - 1.00 - 1.00
S + BB + IOS + DLCO 0.96 - 1.00 - 1.00 0.75 - 1.00 - 1.00 1.00 - 1.00 - 1.00

Table 4.11: Performance of COPD vs. Asthma (Non-comorbid) classifier different
PFT feature set combinations

formance than the spirometer in isolation; however, the improvement was minimal

(median AUC of 0.95). Overall, just like with the pulmonary health classifier, the

best performance was achieved with just the spirometer.

From the coefficient analysis, the most important feature came from the spirom-

eter (MMEF 75/25), which was specifically useful for detecting non-obstructive pul-

monary diseases. The top feature for detecting obstructive diseases was DLCO

(DLCO-SB).
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PFT Machines(s) Used AUC Sensitivity Specificity
S 0.75 - 0.80 - 0.88 0.69 - 1.00 - 1.00 0.60 - 0.80 - 0.85
BB 0.70 - 073 - 0.80 0.50 - 0.75 - 1.00 0.40 - 0.60 - 0.80
IOS 0.75 - 0.79 - 0.88 0.50 - 0.75 - 1.00 0.67 - 0.83 - 0.83
DLCO 0.81 - 0.88 - 0.94 0.50 - 0.75 - 1.00 0.75 - 1.00 - 1.00
S + BB 0.73 - 0.78 - 0.85 0.50 - 0.75 - 1.00 0.60 - 0.80 - 1.00
S + IOS 0.78 - 0.85 - 0.95 0.75 - 1.00 - 1.00 0.60 - 0.80 - 1.00
S + DLCO 0.80 - 0.84 - 0.91 0.50 - 0.75 - 1.00 0.75 - 0.75 - 1.00
BB + IOS 0.78 - 0.88 - 0.91 0.50 - 0.75 - 0.81 0.75 - 1.00 - 1.00
BB + DLCO 0.72 - 0.81 - 0.88 0.50 - 0.75 - 0.81 0.75 - 1.00 - 1.00
IOS + DLCO 0.75 - 0.81 - 0.88 0.50 - 0.75 - 0.81 0.75 - 1.00 - 1.00
S + BB + IOS 0.81 - 0.91 - 0.97 0.75 - 0.75 - 1.00 0.75 - 1.00 - 1.00
S + BB + DLCO 0.75 - 0.81 - 0.88 0.50 - 0.75 - 1.00 0.75 - 0.75 - 1.00
S + IOS + DLCO 0.75 - 0.81 - 0.88 0.50 - 0.75 - 1.00 0.75 - 0.75 - 1.00
BB + IOS + DLCO 0.83 - 0.88 - 0.96 0.75 - 0.75 - 1.00 0.67 - 1.00 - 1.00
S + BB + IOS + DLCO 0.88 - 0.92 - 1.00 0.75 - 1.00 - 1.00 0.67 - 1.00 - 1.00

Table 4.12: Performance of AR vs. Non-AR (Non-obstructive) classifier different
PFT feature set combinations

Detecting AR

The detection of allergic rhinitis under the obstructive branch (that is, the detection

of allergic rhinitis in patients who also have COPD or asthma) is the bottleneck in

overall system performance. When all PFT machines are used, the classifier achieved

poor results (median AUC: 0.69). This low performance was slightly ameliorated by

using the spirometer in isolation, but even then the performance was moderate at

best (median AUC: 0.72). We expect most patients to go through this branch, and

its poor performance predicts inaccurate results when the full diagnostic protocol is

used in the field.
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Figure 4-5: Top 10 coefficients of pulmonary health classifier when utilizing features
extracted from all PFT machines

The detection of allergic rhinitis under the non-obstructive branch achieves good

performance. The best tool in isolation is the DLCO (median AUC: 0.88). However,

its sensitivity is moderate (median sensitivity: 0.75). For the best performance,

all machines should be used (median AUC: 0.92, median sensitivity: 1.00, median

specificity: 1.00).

The top coefficients for the two allergic rhinitis classifiers (Figures 4-7 and 4-10)

reinforce the difficult they have at classification: all median coefficients are around

zero. This suggests that none of the PFT features aid in detection of AR.

Detecting COPD and Asthma

Both of the COPD/Asthma classifiers (under the AR and non-AR branches) perform

well. In isolation under the AR branch, the best machine was the IOS, which achieved

the same median AUC as the spirometer (0.95), but had higher specificity (median
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Figure 4-6: Top 10 coefficients of obstructive pulmonary health classifier when uti-
lizing features extracted from all PFT machines

specificty: 0.91). No combination of features achieved better performance than the

IOS in isolation.

In isolation under the non-AR branch, the best performance was achieved by the

spirometer in isolation (median AUC: 0.96). However, the best performance was

achieved by using all the machines (median AUC: 1.00).

The better performance of the COPD/Asthma classifier under the non-AR branch

suggests that it is easier to detect patients without comorbidities than those with

comorbidities. It reinforces our motivation in our cough analysis to train our classifier

on non-comorbid patients.

From the coefficient analysis of the comorbid COPD analysis, TLC-SB (from the

DLCO) was the main useful feature. For the non-comorbid analysis, FEV 1 and PEF

(both from the spirometer) and RV % TLC and RLC (both from the body box) are

the most useful features. Overall, this indicates the importance of the spirometer,
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Figure 4-7: Top 10 coefficients of AR vs. Non-AR (Obstructive) classifier when
utilizing features extracted from all PFT machines

DLCO, and body box for the detecting of COPD. Specifically, FEV1 and TLC are

the most important features.

4.6.6 Recommendations

Diagnostic Value of Individual PFT Machines

For detecting pulmonary health or obstructive pulmonary disease, using more than

one machine does not significantly improve performance from the spirometer in iso-

lation. For detecting pulmonary health the spirometer has a median AUC of 0.90;

for detecting obstructive pulmonary disease it has a median AUC of 0.94. Overall,

as far as these two classifiers are concerned, the spirometer in isolation is sufficient

for accurate screening.

Combining more than one machine is useful for the detection of COPD and

asthma. If using the fewest number of machines is desired, one should combine the
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Figure 4-8: Top 10 coefficients of COPD/asthma (comorbid) classifier when utilizing
features extracted from all PFT machines

spirometer with either the impulse oscillometer (median AUC of 0.98) or the DLCO

(median AUC of 0.97). Practically, the impulse oscillometer should be administered

given the brevity, ease, and affordability of the exam relative to the DLCO (which

requires a blood exam for hemoglobin calibration).

If the maximum accuracy is desired, then all four machines should be adminis-

tered – this results in near-perfect classification (median AUC of 0.99).

Recommendation for PFT Feature Selection

From the coefficient analyses for the three classification schemes, multiple features

appeared multiple times as the top features. The most useful feature comes from the

spirometer (FEV1) – this is an important feature for detecting healthy patients and

asthma. DLCO-SB is another important feature, specifically for detecting unhealthy

patients and obstructive pulmonary disease. For detecting COPD, TLC is vital
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Figure 4-9: Top 10 coefficients of COPD/asthma (pure) classifier when utilizing
features extracted from all PFT machines

(either from the DLCO or body box). Finally, the feature MMEF 75/25 from the

spirometer is important for detecting non-obstructive pulmonary diseases.

4.7 Supervised Analysis of PFT Data with Clinical

Features

4.7.1 Motivation

In this section, we aimed to simulate a more realistic clinical scenario by combining

the PFT data with clinical features (questionnaire, lung sounds). We aimed to

discover the utility of clinical features for diagnosis in combination with the PFT

data.
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Figure 4-10: Top 10 coefficients of AR vs. Non-AR (Non-obstructive) classifier when
utilizing features extracted from all PFT machines

4.7.2 Methods

Similar to the previous section, the following analysis uses the same multi-layer clas-

sification shown in 4-4. We analyzed each classifier with the PFT data in isolation,

combined with one of either lung sounds or questionnaire data, and then combined

with both.

4.7.3 Results of Supervised Learning Analysis

Tables 4.13, 4.14, 4.15, 4.16, 4.17, and 4.18 summarize the performance of the full

diagnostic protocol classifiers when trained using various combinations of PFT and

clinical data.

114



Features Used AUC Sensitivity Specificity
PFT 0.88 - 0.90 - 0.93 0.71 - 0.75 - 0.82 0.86 - 0.93 - 1.00
PFT + Q 0.98 - 0.99 - 1.00 0.93 - 0.93 - 0.96 1.00 - 1.00 - 1.00
PFT + L 0.88 - 0.90 - 0.92 0.71 - 0.75 - 0.82 0.86 - 0.93 - 1.00
PFT + L + Q 0.98 - 0.99 - 1.00 0.89 - 0.93 - 0.96 1.00 - 1.00 - 1.00

Table 4.13: Performance of Healthy vs. Unhealthy classifier when trained on different
combinations of PFT and clinical data

Features Used AUC Sensitivity Specificity
PFT 0.96 - 0.99 - 1.00 0.86 - 0.93 - 1.00 1.00 - 1.00 - 1.00
PFT + Q 0.98 - 0.99 - 1.00 0.93 - 0.93 - 0.96 1.00 - 1.00 - 1.00
PFT + L 0.97 - 0.99 - 0.99 0.86 - 0.95 - 1.00 1.00 - 1.00 - 1.00
PFT + L + Q 0.99 - 0.99 - 1.00 0.95 - 0.95 - 1.00 1.00 - 1.00 - 1.00

Table 4.14: Performance of Obstructive vs. Non-obstructive classifier when trained
on different combinations of PFT and clinical data

4.7.4 Discussion

For the detection of pulmonary health, the questionnaire is critical for good perfor-

mance. From the cough analysis, we know that the questionnaire in isolation achieves

near perfect classification of pulmonary health. For this classifier, lung sounds do

not add any benefit to PFT data.

For the detection of obstructive disease, neither lung sounds nor the questionnaire

caused an increase in performance.

For the detection of pure COPD and pure asthma, both lung sounds and the

questionnaire increase the performance of the PFT data slightly (from a median

AUC of 0.98 to 1.00). The clinical features are not required for this classification.

For the detection of allergic rhinitis, both lung sounds and the questionnaire

increase performance, though the questionnaire increases the median AUC more (by
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Features Used AUC Sensitivity Specificity
PFT 0.66 - 0.70 - 0.74 0.50 - 0.60 - 0.90 0.45 - 0.64 - 0.82
PFT + Q 0.87 - 0.92 - 0.96 0.90 - 1.00 - 1.00 0.73 - 0.82 - 0.91
PFT + L 0.67 - 0.70 - 0.74 0.50 - 0.70 - 0.90 0.45 - 0.89 - 1.00
PFT + L + Q 0.87 - 0.91 - 0.96 0.90 - 0.95 - 1.00 0.70 - 0.82 - 0.90

Table 4.15: Performance of AR classifier (obstructive) when trained on different
combinations of PFT and clinical data

Features Used AUC Sensitivity Specificity
PFT 0.89 - 0.94 - 1.00 1.00 - 1.00 - 1.00 0.78 - 0.89 - 1.00
PFT + Q 0.89 - 0.94 - 1.00 1.00 - 1.00 - 1.00 0.78 - 0.89 - 1.00
PFT + L 0.89 - 0.94 - 1.00 1.00 - 1.00 - 1.00 0.78 - 0.89 - 1.00
PFT + L + Q 0.89 - 0.94 - 1.00 1.00 - 1.00 - 1.00 0.78 - 0.89 - 1.00

Table 4.16: Performance of COPD vs. Asthma (comorbid) classifier when trained
on different combinations of PFT and clinical data

0.06, instead of 0.02). This indicates that the questionnaire is an important tool for

classifying AR.

For the detection of patients with both COPD and AR, lung sounds and the

questionnaire do not offer increased performance. The PFT data are ideal for the

detection of COPD. However, for the detection of patients with both asthma and

AR, the addition of the questionnaire significantly increases performance (the median

AUC increases by 0.22).

These results suggest that the addition of clinical features is important to allow

the PFT data to accurately detect pulmonary health and allergic rhinitis. The

questionnaire, specifically, is the more important tool, and it should be included in

any future classifiers trained on PFT data in order to ensure maximum performance.
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Features Used AUC Sensitivity Specificity
PFT 0.91 - 0.98 - 1.00 0.75 - 1.00 - 1.00 1.00 - 1.00 - 1.00
PFT + Q 0.98 - 0.99 - 1.00 1.00 - 1.00 - 1.00 1.00 - 1.00 - 1.00
PFT + L 0.96 - 1.00 - 1.00 0.75 - 1.00 - 1.00 0.75 - 1.00 - 1.00
PFT + L + Q 1.00 - 1.00 - 1.00 1.00 - 1.00 - 1.00 1.00 - 1.00 - 1.00

Table 4.17: Performance of COPD vs. Asthma (non-comorbid) classifier when
trained on different combinations of PFT and clinical data

Features Used AUC Sensitivity Specificity
PFT 0.83 - 0.94 - 1.00 0.75 - 1.00 - 1.00 0.67 - 1.00 - 1.00
PFT + Q 1.00 - 1.00 - 1.00 1.00 - 1.00 - 1.00 1.00 - 1.00 - 1.00
PFT + L 0.86 - 0.96 - 1.00 0.75 - 1.00 - 1.00 0.67 - 1.00 - 1.00
PFT + L + Q 1.00 - 1.00 - 1.00 1.00 - 1.00 - 1.00 1.00 - 1.00 - 1.00

Table 4.18: Performance of AR (non-obstructive) classifier when trained on different
combinations of PFT and clinical data

4.8 Supervised Learning Analysis of PFT Data Us-

ing Independent Classifiers

4.8.1 Motivation

While the full, tree-like diagnostic protocol is medically intuitive, its tree structure

exacerbates errors that originate in higher nodes. For example, we have shown

that the PFT tools alone are not adequate for the detection of pulmonary health,

especially when compared to the risk factor and symptom questionnaire. Since this is

the root node of the diagnostic tree, the reduced performance leads to poor accuracy.

Therefore, we analyzed disease-specific classifiers trained and tested on all patients

as a means of exploring potential improvement in diagnostic prediction.
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4.8.2 Classification Design

Unlike the previous supervised learning analyses that used a multi-layer classifica-

tion structure, in this analysis we explored a single-layer classifier for each disease.

Although this approach is less informative to the clinician, it eliminates the com-

pounding of errors produced by the multi-layer design.

4.8.3 Methods

We trained three binary classifiers for the detection of COPD, asthma, and allergic

rhinitis, using all Mobile Kit tools, and compared the results when trained on all

PFT data. The classifiers trained on the Mobile Kit were trained and tested using

the entire dataset. The classifiers trained on the entire PFT dataset, but tested using

only the patients which had a complete set of PFT data, Mobile Kit data, and cough

sound data.

In addition, we also explored the effect of comorbidities on the accuracy of the

classifiers. We did so by checking the union of the COPD and AR classifiers and the

union of the asthma and AR classifiers. For these patients, we can only report the

sensitivity.

4.8.4 Results

4.8.5 Discussion

The full diagnostic protocol contains two bottlenecks in performance: the root node

which detects pulmonary health, and the AR classifier under the obstructive branch.

In the multi-layer classifier structure, the relatively poor performance of these

classifiers degrades the overall performance of all the subsequent layers underneath.
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Classifier Sensitivity (PFT) Specificity (PFT)
Unhealthy 0.88 1.00
AR 0.71 0.83
Asthma 0.93 1.00
COPD 1.00 1.00
Asthma + AR 0.73 N/A
COPD + AR 0.63 N/A

Table 4.19: Performance (sensitivity and specificity) of independent classifiers when
trained using data from all PFT machines

The AR classifier increases slightly in performance when diagnosed with an inde-

pendent classifier (Table 4.19). Nonetheless, the AR classifier still only achieves

moderate accuracy.

Unlike the AR classifier, the COPD and asthma classifiers do achieve good per-

formance, especially the one for COPD.

The performance of comorbid detection (AR plus either COPD or asthma) is

moderate, given the inability of the PFT data to properly detect AR.

Overall, these results suggest that having multiple independent classifiers might

lead to better overall performance, as opposed to the tree-like diagnostic protocol.

While it may not be the preferred setup from a medical perspective, it provides an

easy and effective solution to the lowered performance of the full protocol.

4.9 Performance Comparison of PFT vs. Mobile Kit

In order to analyze the entire classification scheme, we trained the scheme’s classifiers

using all of the PFT data and simulated the classification on a subset of patients

(meaning that if a patient was misclassified in a higher node, the patient did not

119



go through the classifiers of lower nodes). We repeated the analysis using classifiers

trained on data from all of the Mobile Kit’s tools.

4.9.1 Multi-Layer Classifier Structure

Table 4.20 shows the confusion matrix from the simulation run using the multi-layer

classifiers trained on the PFT data, while Table 4.21 shows the confusion matrix

from the simulation run using the classifiers trained on the Mobile Kit data.

Compared to the PFT tools in isolation, the Mobile Kit has a clear advantage

at detecting pulmonary health. Even though the supervised analysis showed that

the classifiers trained on the PFT data would perform better at the disease-level,

the inability of these classifiers to accurately detect pulmonary health prematurely

removes patients from further analysis and leads to poor performance.

When compared to the PFT integrated with clinical features, the Mobile Kit

performs relatively well, but has degraded performance in the ability to distinguish

between specific diseases.

This indicates that the independent classifier approach might be preferable to the

tree-structure of diagnosis, since it removes the interdependencies of the classifiers.

4.9.2 Independent Classifiers

Table 4.22 shows the confusion matrix from the simulation run using independent

classifiers trained on the PFT data compared to when they were trained on the

Mobile Kit data.

In summary, we see that while the Mobile Kit has better performance for classi-

fying Unhealthy and AR patients, the PFT exhibits slightly better performance for

distinguishing between asthma and COPD.
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Predicted

Healthy AR Asthma COPD
Asthma
+
AR

COPD
+
AR

Other

A
ct

ua
l

Healthy 9 1 1 3 2 1 2
AR 2 0 0 1 1 0 1

Asthma 0 0 4 6 4 5 2
COPD 0 0 3 4 1 4 0

Asthma+AR 0 0 4 9 6 6 3
COPD+AR 0 0 0 1 0 1 0

Other 2 0 0 1 1 1 0

Table 4.20: Classification results of running patients through full diagnostic protocol
trained on PFT data

We see that the use of independent classifiers reduces the misclassification error

overall. The implications of these results for the design of the Mobile Diagnostic Kit

is discussed in the next chapter.
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Predicted

Healthy AR Asthma COPD
Asthma
+
AR

COPD
+
AR

Other

A
ct

ua
l

Healthy 15 0 0 0 0 0 0
AR 0 2 0 2 2 1 3

Asthma 0 0 6 7 6 5 3
COPD 0 0 4 3 2 4 2

Asthma+AR 0 0 1 10 8 2 10
COPD+AR 0 0 1 2 1 1 2

Other 2 0 4 3 4 3 1

Table 4.21: Classification results of running patients through full diagnostic protocol
trained on Mobile Kit data

Classifier Sensitivity
(PFT)

Specificity
(PFT)

Sensitivity
(Mobile

Kit)

Specificity
(Mobile

Kit)
Unhealthy 0.88 1.00 0.93 1.00
AR 0.71 0.83 0.80 1.00
Asthma 0.93 1.00 0.89 0.87
COPD 1.00 1.00 1.00 0.87
Asthma + AR 0.73 N/A 0.77 N/A
COPD + AR 0.63 N/A 0.40 N/A

Table 4.22: Performance (sensitivity and specificity) of independent classifiers when
trained using PFT data vs. Mobile Kit tools
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Chapter 5

Summary of Findings and

Recommendation for Mobile

Diagnostic Kit

5.1 Summary of Findings

The work of this thesis had three main contributions: the development of an allergic

rhinitis classifier, the exploration of cough sounds as an additional feature for pul-

monary disease diagnosis, and the analysis of pulmonary function testing (PFT) for

further validation of the Mobile Kit. These topics are briefly summarized below.

5.1.1 Allergic Rhinitis Classifier

An allergic rhinitis classifier has been analyzed both in isolation and integrated in

the full diagnostic protocol. While the integrated classifier creates a bottleneck in

overall system performance, the isolated classifier performs well.
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5.1.2 Cough Sound Analysis

Cough sounds have been analyzed as a new source for the Mobile Kit. In isolation,

cough sound analysis provides moderate performance for pulmonary disease diagno-

sis. Except in addition to lung sounds, cough sounds do not have any added benefit

with the other Mobile Kit tools. However, our analysis of cough sounds has identified

an opportunity to create a simplified diagnostic kit that can be used by low-skilled

community health care workers.

5.1.3 Pulmonary Function Testing (PFT) Analysis

Pulmonary function testing (PFT) data have been used to train the same classifiers

as the Mobile Kit. Our results showed that the Mobile Diagnostic Kit developed

in our group performs well compared to the gold standard PFT lab, with slightly

degraded performance in distinguishing between specific disease categories.

A more significant implication of our analysis revolves around the use of a multi-

layer classifier instead of a single-layer classifier. While the multi-layer classifier

provides helpful diagnostic guidance to the clinician, it suffers from lowered perfor-

mance compared to the individual single-layer classifiers for each disease. This is a

general observation of many machine learning systems which will need to be further

discussed for the design of future diagnostic systems.
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5.2 Mobile Pulmonary Screening Application

5.2.1 Current Application Design

The Android implementation of the Pulmonary Screener was developed by Daniel

Chamberlain. It involves a user interface which requests the information of the

Mobile Kit (questionnaire, peak flow meter, lung sounds), with the machine learning

models working in the background.

The application works with the old classification scheme, summarized in Figure

5-1. There is a script which converts the coefficient weights and intercept of each

logistic regression model into XML, a format readable by Android code.

For each model, there is an ArrayList of features (such as questionnaire questions)

ordered from largest magnitude of weight to smallest. In essence, for each model,

the application asks for features in order of importance. This is to make the process

as quick as possible, for once the application is certain enough of its classification

(defined as crossing a 50% threshold), it moves on to the next model if the classifi-

cation is positive (negative classifications, under the old scheme, will never appear

in lower leaves of the diagnostic tree).

The Android code is modeled as per Figure 5-2, taken from Daniel Chamberlain’s

thesis.

5.2.2 Recommendations for Future Versions

Allergic Rhinitis Classification

From the work of this thesis, there are three possible directions that a future version

of the Pulmonary Screener can take with regards to allergic rhinitis classification.

They are summarized below.
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Figure 5-1: Previous classification scheme.

Scenario #1: Integrate Allergic Rhinitis Classifier into Classification

Scheme

The first scenario is to integrate the AR classifier within the diagnostic tree, as

summarized in Figure 5-3. Six models will have to be saved within the application

as XML files, parsed by ModelParser and used by the Model object.

Additional logic will have to be added to determine when to call subsequent mod-

els. At the moment, the application proceeds to the next model only if the current

model has a positive result. However, under this scenario, the obstructive disease

model would have to proceed to one of two AR classifiers depending on whether the
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Figure 5-2: Figure from Daniel Chamberlain’s thesis summarizing the workflow of
the Pulmonary Screener Application.

application determines a patient as having an obstructive or non-obstructive disease.

Similarly, the AR classifier under the obstructive branch needs to proceed to one

of two COPD/Asthma classifiers depending on whether the patient is classified as

either AR or not. This can be done via simple conditional statements.

While this scenario is intuitive for physicians, the performance of the AR classifier

under the obstructive branch is moderate at best. In order to ensure the optimum

performance of the Android application, this scenario is not recommended until the

performance of this classifier can be improved.

Scenario #2: Make All Classifiers Independent

The second scenario is to replace the diagnostic tree with independent and disease-

specific classifiers. There would be four models saved within the application as XML

files: pulmonary health, COPD, asthma, and allergic rhinitis.

Give that there would no longer be any dependence among the classifiers, the

user can decide which classifier(s) to run. This can be achieved by having multiple

buttons that call up the appropriate model and run the algorithm. The question of

comorbidities can be handled in this case by simply calling both the AR classifier and

either the COPD or asthma classifier. In order to minimize the number of questions

asked, the same protocol used in the current model (of asking questions in order of
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Figure 5-3: New classification scheme. Dotted lines denote classifiers that will be
created in the future. Yellow boxes denote additions to the old scheme.

importance and stopping once a 50% threshold is passed) would be used.

While this scenario would provide the optimum performance for disease diagno-

sis, it is not intuitive for physicians. However, we are still able to provide the most

relevant coefficients used for determining the classification. This scenario would not

be a black box; physicians will be given feedback as to the algorithm’s logic, provid-

ing a sense of interpretability to the application.
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Scenario #3: Add Independent Allergic Rhinitis Classifier

The third scenario is a hybrid of the two scenarios above. It would leave the

application as it exists, and add an extra model (for AR diagnosis) that is always run.

One can imagine adding an initial model which diagnoses AR and then, regardless

of outcome, begins the Pulmonary Health classifier and runs through the rest of the

current application’s logic as normal. In the end, the application will provide both

the outcome of the AR classifier and the current diagnostic protocol.

Presently, his is the recommended approach. It avoids the performance bottleneck

of integrating the AR classifiers within the diagnostic tree while also avoiding the

cumbersome nature of having to manually run individual classifiers. As far as the

use is concerned, there would be no change to the application; all changes would

occur in the back-end.

Addition of Cough Sound Analysis

While cough sounds were not found to have an added benefit to the Mobile Di-

agnostic Kit, they did achieve moderate performance in isolation. As mentioned

previously, we have identified an the potential for an alternative Mobile Diagnostic

Kit based on cough sounds alone, which would be easier and quicker to use than a

full questionnaire, peak flow meter, and auscultation. Such a kit could be used by

low-skilled community health care workers. In terms of the software implementation,

this can be done via the same platform which the current application currently uses

to collect the peak flow meter and lung sound data. While we do not expect the

performance of this simplified tool to be equivalent to the full diagnostic kit, it is an

option for areas where using some of the Mobile Kit’s tools is impractical (for exam-

ple, administering the questionnaire to children, buying the electronic stethoscope,
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or undergoing the peak flow meter tests).

5.3 Summary

In this thesis, we have presented several new contributions which can be integrated

into our current Mobile Diagnostic Kit for pulmonary disease. These new contri-

butions include: 1) expanding our diagnosis classification to include allergic rhinitis

and comorbidities, in addition to asthma and COPD; 2) the use of cough sounds

as a potential simplified pulmonary disease screening tool for use by community

health care workers; 3) validation of our Mobile Diagnostic Kit against the gold

standard pulmonary function testing (PFT) lab; and 4) exploration of the use of

single-layer, disease-specific classifiers to be used in conjunction with the current

multi-layer classification design. Going forward, we feel that these contributions

will play an important role in improving the performance and utility of our Mobile

Diagnostic Kit.
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