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Abstract
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buck converter for low voltage dc dc conversion was performed. The three level buck,
Resonant Switch Capacitor (ResSC), and Cuk-Buck2 were selected to be studied
further based on the fact that they contain few components and were discovered
in this work to have the possibility of operating at fixed frequency while smoothly
regulating output voltage over the entire conversion ratio of 0 to 1. All three use a
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and used to confirm functionality of the new control schemes and balancing methods.
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Chapter 1

Introduction

With the continued increasing presence of digital processors in our world, a challenge
of providing power to all of these chips exists. These processors push to be smaller,
faster, and more efficient every year, in a cycle that has been reoccurring for a long
time. A great invention to power these devices was the buck converter. This circuit
is able to efficiency produce lower DC voltages from higher DC voltages and regulate
its output via feedback. This allows energy to be transported at a higher voltage
over distance and then stepped-down by a buck converter to the voltage needed by
processors. This is much the same structure that power grids for towns, states, and
countries have but on a significantly smaller scale and with DC instead of AC power.
The buck converter still remains the best choice for many applications and is widely

used.

Over the years this converter has improved as materials have improved and more
fabrication techniques and knowledge have been discovered, but it is possible this
converter may be reaching its limits. What then could the next step be if the buck

converter has almost been perfected given its constraints?

One solution could be an alternative topology (a different circuit). Compared to
the buck converter, other converters might be able to trade increased complexity for

some ability that the buck converter does not have. This thesis focuses on alternative
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converters, attempting to see whether they could be used commercially and could

provide any benefits.

1.1 Low-Voltage DC DC Conversion

1.1.1 Applications

One main application for low-voltage DC-DC conversion is the powering of digital
processors. As process technology improves, we are able to make smaller and smaller
transistors which can use lower voltages to achieve higher energy efficiency or speed.
Modern processors can draw currents in excess of 100A around 1V. Two examples
utilizing Linear Technology conversion parts for a Xilinx FPGA|3] and an Altera
FPGAJ1] use 52A at 1V and 109A at 0.9V respectively. 100W may not be a ridiculous
amount of power, but this power is usually transmitted at a higher voltage, so less
current is carried over a longer distance. Common transmitted power voltages are
5V, 12V, and 48V. This is done for the same reason as high voltage power lines, as

carrying power at higher voltage over distance leads to less loss.

1.1.2 Wanted Characteristics

Some wanted characteristics of these converters are fixed frequency switching and
continuous conversion ratio. Having a fixed frequency means that electrical and mag-
netic noise created by the converter will mostly be kept within certain frequency
ranges, which allows designers who use these converter to check for interference at
the operational frequency. If the frequency were to change due to temperature, volt-
age, or current changes, the frequency may be such that the noise produced interferes
with the circuit being powered. If the frequency can change due to many things, it
would be hard to test if this would ever be a problem, so it is advisable to avoid the
possible problem in the first place by always switching at an determined frequency
independent of any conditions. A continuous conversion ratio is important to be able

to maintain the output voltage well. Even if a single output voltage is required, the
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input voltage is likely to change a bit with many factors, which means that a contin-
uous ratio would be required to keep the output voltage correct. Switched capacitor
converters lack this ability as they have an inherent conversion ratio/s that is tied to
their topology. Their output from fixed frequency operation can be regulated with a
linear regulator, however that reduces efficiency.

A full output range is also good, as it allows for a general use converter. If a topology
is limited to only a 5:1 to 5:0 conversion ratio, it would not be able to convert from
5V to 2.5V or 3.3V. While this isn’t necessary, this work is looking for a replacement

for the buck converter which can do any conversion ration less than one.

1.2 The Buck Converter

|

JEa

D ‘/out :: out I loac

Figure 1-1: A buck converter with a constant current load.

‘fout — out I load

Figure 1-2: A synchronous buck converter with a constant current load.
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1.2.1 Function

A standard low voltage buck converter is made up of two switches that create a square
wave of voltage, which is then passed through an inductor and an output capacitor
to create a DC voltage. It can be operated in two modes. One is where the inductor
always has a non-zero voltage applied across it called continuous conduction mode
(CCM), meaning the inductor current is always changing in time. The second is
where the inductor current is always positive and allowed to remain at zero for some

period of time, called discontinuous conduction mode (DCM) due to the inductor

current remaining at zero at some point in the cycle.

Figure 1-3: Buck Converter in Figure 1-4: Buck Converter in
CCM. DCM.

Either the top switch is on or the bottom switch is on in CCM, the top switch is on
D of the time and the bottom switch is on (1-D) of the time, where D is a duty cycle
between 0 and 1. The output voltage then ends up being D times the input voltage.
In DCM the relationship between Vin and Vout at steady state is more complicated

and depends on the output current.
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1.2.2 Control

Feedback is added in order to maintain the output at a specific voltage. A number
of different feedback types can be used, which will not be discussed in detail here,
but are voltage mode feeedback and current mode feedback. The inductor current
is sensed in current mode feedback and is regulated in order to maintain the output

voltage, instead of just regulating D.

1.3 What Could Be Improved

Things that can be improved for these converters are better transient response, smaller

size, higher efficiency, and lower cost.

1.3.1 Transient Response

A better transient response means the converter is better able to maintain the output
voltage when its load changes. If it is powering a processor, a better response could
mean less overhead is needed to make sure the processor always has enough voltage,
which would increase efficiency and reliability. A better response could allow for

smaller output capacitors, which would reduce size and cost.

1.3.2 Size

A smaller size allows the conversion circuit to take up a smaller part of a PCB or fit

in a constrained space such at the boxes in a server room or in a mobile phone.

1.3.3 Efficiency

Higher efficiency means that less heat will be dissipated, so the circuit can run at a
lower temperature which will increase its lifespan, or the size can be reduced more for
a given power dissipation if thermal limits are the constraining factor for maximum

power delivery.
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1.3.4 Cost

Lower cost is fairly simple, it is better for either the seller (higher profit for a given

selling price) or the buyer (cheaper to buy).

1.4 Focus Of This Work

This work will limit itself to fixed frequency, full output range, continuous conversion
ratio, and high efficiency low voltage DC-DC converters. After preliminary research,
the Three Level Buck, Cuk-Buck2 , and Resonant Switched Capacitor (ResSC) were
selected as converters of interest. It was found that the capabilities of the Three
Level buck are relatively well known and it functions very similarly to a normal buck
converter. The only new challenge is balancing the flying capacitor voltage. This has
been studied in many papers (one example here[13] and a practical implementation

will be discussed later in this document.

The Cuk-Buck?2 was not found to be in literature much,the author’s only information
coming from an online article[4] and a patent[9], but it was later found to operate
in a very similar manner to the ResSC converter. It uses two inductors and a flying
capacitor. One inductor is resonant and helps to balance the flying capacitor and
the other inductor is larger and works similar to a Three Level Buck. Ordinarily this
converter is limited to a 2:1 to 2:0 conversion ratio, but it will be shown later in this
document that the full conversion range can be achieved with the addition of one
more switch while retaining the normal functioning of the circuit and not affecting

the converter in the 2:1 to 2:0 range.

Particular emphasis was placed on using printed circuit board (PCB) air core
inductors, as they save on cost and possible increase efficiency due to lack of core
losses. Papers were reviewed|7|[10][6] and a resistance of 2mOhm/nH will be as-

sumed for PCB trace inductors for the rest of this work. Some monolithic converters
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are being packaged with small PCBs as modules (such as the LTM4650|2]), which
could make use of this type of inductor. The three mentioned converters are able to
use air core inductors at single digit MHz due to their topologies, whereas a normal
buck converter may suffer unacceptable efficiency losses if air core inductors were to

be used.

1.5 Previous Work

When looking at previous work, converters were looked for that had continuous con-
version ratios, possibility of fixed frequency operation, and simplicity (avoiding un-
needed complexity that adds size). Four topologies were found and three were eval-
uated for this work. Those three are the 3-Level Buck[13], Cuk-Buck2 [4][9], and
Resonant Switched Capacitor|8|[5][12][11]. The one not evaluated was the Series Ca-

pacitor Buck, due to the limited output range.
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Chapter 2

Topology Overviews

The diagrams shown in this section are idealized, which most importantly means that
are no losses, the output capacitance is very large (so that output ripple is negligible

compared to the DC output voltage), and the input impedance is zero.

2.1 3-Level Buck

2.1.1 Brief Description

The Three Level Buck converter|[13] is very similar to the standard buck converter.
For comparison, the standard buck would be called a two level converter using the
same naming convention. The number of levels refers to the number of voltages that
can be produced at the node connected to the side of the inductor opposite the out-

put. The normal buck can produce V;, or OV at this node, hence it is two level.

The three level buck utilizes an additional flying capacitor (C,) in order to cre-
ate Vi, Vin/2, or OV at this node. The flying capacitor nominally has a voltage of
Vin/2, so Vi, /2 on the switch node is achieved as just the flying capacitor voltage or

V;» minus the flying capacitor voltage.

If the output voltage is desired to be less than Vj, /2, then the switch node is con-
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trolled to be either V;, /2 or OV. If the output voltage is desired to be greater than
Vin/2, then the switch node is controlled to be either Vj, or V;, /2.

As mentioned in Chapter 1 with the standard buck converter, the Three Level Buck

can operate in CCM or DCM in much the same way. The mode depends on the input

and output voltages, L, the switching frequency, and possibly other factors.

2.1.2 Circuit Diagram

_l_

ZIVM Cot == Voue () Tious
ti )

Figure 2-1: A three level buck converter.
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2.1.3 Timing Diagram

Three Level Buck, CCM, V,,; > V;,/2

Three Level Buck, CCM, V,; < V;,/2

Ctrl

Ctrl

- -[lou,d

Figure 2-3: Timing diagram for
Three Level Buck in CCM at high

output voltage.

Figure 2-2: Timing diagram for
Three Level Buck in CCM at low

output voltage.
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Three Level Buck, DCM, V,,; < V;,/2 Three Level Buck, DCM, V,,; > V;,,/2
Ctrl Ctrl

Figure 2-4: Timing diagram for Figure 2-5: Timing diagram for
Three Level Buck in DCM at low Three Level Buck in DCM at high
output voltage. output voltage.

If the output voltage is exactly equal to half the input voltage with the idealities
assumed to plot these graphs, the inductor current would remain exactly the same
always, since there would never be a voltage across it. This is not the case in reality as
the flying capacitance is not infinite, so the flying capacitor voltage does not remain

constant throughout a switching period.
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Vin/2

Three Level Buck, V,;

Ctrl

Q1

Q2

Q3

Q4

Iy,

Viw

to

3]

Figure 2-6: Timing diagram for Three Level Buck at middle output

voltage.
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2.2 Resonant Switched Capacitor (ResSC)

2.2.1 Brief Description

The Resonant Switched Capacitor converter[8][5][12][11] is a 2 to 1 switched capaci-
tor circuit with an inductor inserted to produce resonant switching operation. This
converter can still be operated as a 2 to 1 converter, but the inductor allows for two

additional states that can be utilized to smoothly regulate the output voltage.

State notation will be borrowed from [12| which labeled the four possible states A, B,
C, and D. If the output voltage is desired to be less than V;, /2, then only states B,
C, and D will be present. If the output voltage is desired to be greater than V;,/2,
then only states A, B, and D will be present. If the output voltage is desired to be
equal to V;,,/2, then an ideal converter would only have states B and D. The control

methods seen in these diagrams are taken from [12].

2.2.2 Circuit Diagram
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2.2.3 Timing Diagram

ReSSC> V;mt > ‘/;n/2

ResSC, V,u: < Vin/2

Ctrl

Ctrl

!
)

Q3

Q2

Iout

Iout

chl'y

chl:t/

Figure 2-8: Timing diagram for
Resonant Switched Capacitor at

high output voltage.

Figure 2-7: Timing diagram for
Resonant Switched Capacitor at

low output voltage.
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Vin/2

ResSC, V,

Ctrl

Iout

Figure 2-9: Timing diagram for Resonant Switched Capacitor at

middle output voltage.
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2.3  Cuk-Buck2

2.3.1 Brief Description

The Cuk-Buck2 [4][9] converter operates similarly to the Three Level Buck. In this
thesis, will be extended in a later chapter for full output range with the addition of a
fiftth switch. It uses an additional "flying" capacitor to produce V;, — V,u, or OV on
the node connected to the side of the inductor opposite to the output. This converter

also has a resonant inductor (L,) which is used to reset the flying capacitor voltage.

2.3.2 Circuit Diagram
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Figure 2-10: Cuk-Buck2 with second resonant inductance L.
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Figure 2-11: Cuk-Buck?2 without second resonant inductance L,.
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2.3.3 Timing Diagram

CukBuck2 without Lres, V,,; < V,/2

CukBuck2 with Lres, V,,; < Vj,/2

Ctrl

Ctrl

Q1

Q4

Q1

Q4

I7L(JR€’S

Ip,.,

Iout

Figure 2-13: Timing diagram for
Cuk-Buck?2 without second reso-

Timing diagram for

Cuk-Buck2 with second resonant

Figure 2-12:

nant inductance L, at low output

voltage.

inductance L, at low output volt-

age.
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Chapter 3

Topology Work Completed

3.1 Three Level Buck

3.1.1 Design Constraints

The flying capacitor for the Three Level Buck|[13] should be large enough such that
its voltage does not swing too much with the maximum output current. Some de-
signs may allow for large flying voltage changes, but those were not considered for this
work, as a standard Three Level Buck maintains a relatively constant flying capacitor
voltage. The inductor must be significantly larger than the output capacitor’s para-
sitic inductance in order to have reasonable ripple, which is important when dealing

with very small PCB trace inductors, as larger values take up much more space.

3.1.2 Capacitor Balancing

The flying capacitor in the Three Level Buck does not maintain the correct voltage
by itself. If the converter was perfectly controlled and lossless, then the average flying
voltage would remain the same. In reality the control will not be perfect, which can
lead to different duty cycles period to period along with other perturbations that

could force the flying capacitor voltage higher or lower than nominal.

It was found in simulations that a lossy converter provides some restoring force for
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this voltage, but not significant enough that the voltage does not need to be actively
maintained. A mechanism inherent to the topology provides an increased restoring
force in DCM, which could be large enough to maintain the correct voltage in some

cases, however active balancing will ensure the right voltage is present.

In non-phase correct PWM control, varying ctrll and ctrl2 (see Figure 3-4) by oppo-
site amounts will either increase or decrease the flying capacitor voltage depending
on the direction they are varied. This allows a second slower control loop to vary
ctrll and ctrl2 to control the flying capacitor voltage. If the sum of ctrll and ctrl2
stays the same, the average output voltage is not affected, although some additional
ripple will be present. This ripple remains small unless the flying cap voltage gets
significantly away from V;,/2 and only small shifts in ctrll and ctrl2 are normally

needed to maintain this.

3.1.3 Mode Transition

It was found that the transition around an output of V;,/2 produced instabilities in
simulation, most likely due to the fact that the converter can enter resonant states

when the output is very close to V;, /2.

A solution to this was to not use a perfect phase shift of 180deg, but instead 162deg,
which is 0.45 of a period, instead of 0.5 of a period like normal. This appeared to
allow the converter to avoid entering the resonant states around V,,; = V;,/2 and
provide smooth output voltage regulation over the entire output range. Active flying
capacitor balancing must be used, otherwise this shifted phase will cause the flying

capacitor voltage to drift.
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Three Level Buck, CCM, Capacitor Balancing, V,,; < V,/2

Ctrl

‘Ql

e e e e e e ——— - =

L e o o o - - - - - o

=2T

tr ts

= 3T/2

tg

Figure 3-1: A Three Level Buck operating in CCM with V,,; < V;,/2.
Dashed lines are plotted for Iy, Ic,,,, and Vg, which show the

result if Ve, was a bit lower than its nominal value of Vi,/2. No

self-correction of the flying capacitor voltage is seen.
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Three Level Buck, CCM, Capacitor Balancing, V,,; > V;,/2
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Three Level Buck, Capacitor Balancing, V,,, = V;,/2

Ctrl

i

L e e e e e o —

=2T

tg

tr

37/2

tg

lines are plotted for I, I¢;, , and Vi, which show the result if Vi,
was a bit lower than its nominal value of V;,,/2. No self-correction

Figure 3-3: A Three Level Buck operating with V,,; ~ V;,,/2. Dashed
of the flying capacitor voltage is seen.
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Three Level Buck, Fixed Frequency and Smooth Control, V,,, < V;,/2

Ctrl

ctrll

zero-current(Q3)

zero-current(Q3)

Figure 3-4: A Three Level Buck operating with V,,; < V;,/2 at a

fixed frequency with period T'. A ctrll timing is set by feedback and
is measured from reset. Another ctrl2 timing is offset from 0.45*T

by a fixed amount.
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3.1.4 DCM operation

Overall there is nothing particularly special about DCM operation as compared with
CCM, except that the duty cycle to output voltage transfer function is no longer
linear. It is better approximated by being proportional to the square of the duty cycle,
as an increase in duty cycle increases both the peak and width of the triangular current
waveform, leading to a square relationship with the current. In order to counteract
this and maintain a similar transient response over the range of output voltages and
currents, the duty cycle from a CCM control circuit can be passed through a square

root transform to control a converter in DCM operation.

3.1.5 Low Voltage Switch Possibility

If started up and controlled while keeping the maximum voltage across the switches
minimized, it would be possible to use lower voltage rated switches than the input
power rail. This would lead to an increase in efficiency, as lower voltage switches
have a lower R,, * (), factor, so the combined switching and conduction losses for the

MOSFETs could be reduced.

This would add additional control complexity, because the lower voltages would have
to be maintained across the switches at all times, including startup, where the flying

capacitor could have zero voltage.

It was chosen to use switches rated for the full input voltage in this work for in-

creased robustness against fault states and to reduce complexity.
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t1o

ts g

t7

=2T

3T/2

Ctrl

Three Level Buck, DCM, Capacitor Balancing, V,,; < Vj,/2

tg

ts
46

ty

t3
T/2

to

t1

Figure 3-5: A Three Level Buck operating in DCM with V,,; <
Vin/2. Dashed lines are plotted for Iy, I¢,,,, and Vi, which show
the result if Ve, was a bit lower than its nominal value of Vin/2.
@1, Q2, Q3, and Q4 logic are only plotted for the nominal flying
capacitor voltage, timing for the lower voltage would be very slightly
different. Self-correction of the flying capacitor voltage can seen.



Three Level Boost, DCM, Capacitor Balancing, V,,; > V;,/2

Ctrl

=2T

3T/2

T/2

Figure 3-6: A Three Level Buck operating in DCM with V,,; >

Vin/2. Dashed lines are plotted for Iy, I¢,,,, and Vi, which show

the result if Ve, was a bit lower than its nominal value of Vin/2.

@1, Q2, Q3, and Q4 logic are only plotted for the nominal flying

capacitor voltage, timing for the lower voltage would be very slightly

different. Self-correction of the flying capacitor voltage can seen.
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3.2 ResSC

3.2.1 Fixed Frequency Operation

It is possible to have the ResSC[8][5|[12][11] run at a fixed switching frequency by
inserting a blank time every period. During this blank time no circuit elements will

change state except for the output capacitor being discharged by the load.

ResSC, Fixed Frequency, V,,; < Vi, /2
Ctrl

fly

t=T/2 ty t3 t,=T ts =3T/2 ts by tg=2T

D B—0r D B—Cr

Figure 3-7: A ResSC operating with V,,; < V;,/2 at a fixed frequency with period
T. This is the same operation as Figure 2-7 with a blank period inserted from ¢
to t4 where only @2 is on. The flying capacitor must not be above V. 4+ Viodaybiode
during this period, or unintended currents will reduce efficiency.
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This blank time can by only having one switch active. This work chooses to have
Q2 remain active during these blank periods. It is important that if switches with
body diodes are used, that the peak to peak voltage swing on the flying capacitor is
not larger than two times the forward voltage of these diodes. If so, large currents
will flow through the body diodes during this off time and reduce efficiency. This will
constrain the capacitor size, switching frequency, and output current. Otherwise the

circuit can operate normally.

ResSC, Fixed Frequency, V. > Vj,/2
Ctrl

Ve

fly

i :T/2 to ty ty =T t5:3T/2t6 ty tg =2T

D @r—B— D @ —B—

Figure 3-8: A ResSC operating with V,,; < V;,/2 at a fixed frequency with period
T. This is the same operation as Figure 2-8 with a blank period inserted from t3
to t4 where only ()2 is on. The flying capacitor must not be above Vot 4+ Vioaypiode
during this period, or unintended currents will reduce efficiency.
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3.2.2 Smooth Transitioning Full-Range Output

The converter operates in two different modes, when V,,; > Vin/2 or V,,; > Vin/2.
As V,,; approaches V;, /2, there must exist a way to transition smoothly from one
mode to the other. The output would jump and possibly oscillate if there was no
transition and no hysteresis. Ideally, there should be no visible indication on the

output voltage that the mode has switched.

ResSC, Fixed Frequency and Smooth Control, V,,; << V,/2
Ctrl

: D———-Br0" D DR O
T ctrl T offset T
reset T/2 reset(T)

zero-current(Q3)

Figure 3-9: A ResSC operating with V,,; < Vj,,/2 at a fixed frequency with period 7.
This is the same operation as Figure 3-7 with control timing events listed below. A
ctrl timing is set by feedback and is measured from reset. An offset timing is offset
from ctrl by a fixed amount. The timing ctrl has no effect when it comes before 7'/2,
so it is pictured in red.

50



ResSC, Fixed Frequency and Smooth Control, V,,; ~ V;,/2
Ctrl

T T ctrl offset T
reset T/2 reset(T)

zero-current(Q3)

Figure 3-10: A ResSC operating with V,,; ~ V;,,/2 at a fixed fre-
quency with period T'. This is a joined operation with elements from
Figure 3-7 and Figure 3-8 with control timing events listed below. A
ctrl timing is set by feedback and is measured from reset. An offset
timing is offset from ctrl by a fixed amount.
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ResSC, Fixed Frequency and Smooth Control, V,,; >> V;,/2
Ctrl

| | T
T T ctrl Toffset
reset T/2 reset(T)

zero-current(Q3)

Figure 3-11: A ResSC operating with V,,, > V;,/2 at a fixed fre-
quency with period 7. This is the same operation as Figure 3-8
with control timing events listed below. A ctrl timing is set by feed-
back and is measured from reset. An offset timing is offset from ctrl
by a fixed amount. The timing offset has no effect when it comes
after reset(T) or zero-current(Q3), so it is pictured in red.
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3.2.3 Capacitor Balancing

It was found that the flying capacitor can exhibit sub-harmonic oscillation. Oscilla-
tion at half the switching frequency was seen and it noticeably impacts output ripple
and regulation in simulation. In extreme cases it can even cause the body diodes of

switched to conduct where they would not normally.

It was found that the feedback network was integral in producing these oscillations.
With no feedback network there is a self-correcting aspect, where the flying capacitor

voltage will naturally return to where it should be.

It was found the control voltage varying cycle to cycle can cause this oscillation
to occur in an otherwise normally operating converter, so a notch filter was placed
at half the switching frequency in the control voltage. This successfully stopped the
sub-harmonic oscillations. A sample and hold circuit for the control voltage was also

tried, and had the same effect.

3.2.4 "DCM" Mode

When there is not current being pushed to the output (load current is very small
or zero), the flying capacitor still needs to be maintained at the output voltage for
smooth startup when the converter turns on again. This can be done by only en-
tering modes D and C, which does not transfer any more energy to the output, but

maintains the flying capacitor voltage at the output.

This mode is important as there is not continuous conduction mode associated with
the control method presented in this thesis. If charge was always transferred to the
output, no matter how small, it would cause the output to rise out of regulation if

there was no load.
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ResSC, Self Balancing, V,,; <<V, /2

Ctrl

Iout

zero-current(Q3)

Figure 3-12: A ResSC with V,,; < Vj,/2. Dashed lines are plotted

for I, Iout, and Vyy,, which show the result if Vi, was a bit lower
than its nominal value of V;,/2 at the start. Self-correction of the

flying capacitor voltage is seen.
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ResSC, Self Balancing, V,,; >> V,/2

Ctrl

Iout

zero-current(Q3)

Figure 3-13: A ResSC with V,,; > V;, /2. Dashed lines are plotted
for I, Iout, and Vyy,, which show the result if Vi, was a bit lower

than its nominal value of V;,/2 at the start. Self-correction of the

flying capacitor voltage is seen.
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3.2.5 Passive Component Limitations (MLCC, etc)

The table below was populated using Murata’s Simsurfing tool to find the highest
self-resonant frequency of a given capacitance for standard MLCCs. The maximum
output current is calculated using the maximum flying capacitor voltage swing al-
lowed with the switching frequency and capacitance.

I,

= st * C'fly * 2 % %odyDiode

Utmax

The table below is populated for Viodypioge = 0.7V

Cap Freq Self-Resonant ESRmin Max Output Current

100uF 0.55MHz 1.602mOhm 77.0A
4TuF 0.8MHz 1.768mOhm 52.6A
10uF 2.5MHz 1.3mOhm 35.0A
4.7uF 4.0MHz 1.687mOhm 26.3A
luF 10.0MHz 3.622mOhm 14.0A
0.47uF 18.0MHz 5.256mOhm 11.8A
0.1uF 23MHz 18.357mOhm 3.2A
0.047uF 45MHz 26.289mOhm 2.1A
0.010uF 100MHz 57.98mOhm 1.4A

3.2.6 Output Ripple

This topology has discontinuous output currents, which can cause output capacitor
parasitic inductance to have a large effect on the output ripple. An additional output

filter may be required to reduce ripple to desired levels.
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3.3 Cuk-Buck2

3.3.1 Fifth switch for full range output

A fifth switch was added to the Cuk-Buck2 [4][9] in order to allow full output range.
This lets the input side of the main inductor be connected to Vj, through Q5 and
then to Vi, — Vs or OV like before. This allows this modified Cuk-Buck2 to operate

with a conversion ratio anywhere from 1:1 to 1:0.
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C(out — Vou Q) Iload

=

(L L

Figure 3-14: A Cuk-Buck2 with added Q5 to enable full-range output
conversion ratios of 0 to 1.
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It is possible to operate a Cuk-Buck2 without L,, but may be more inefficient due

to charge sharing loss between the flying capacitor and the output capacitor.
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Figure 3-15: A Cuk-Buck2 with added Q5 to enable full-range output
conversion ratios of 0 to 1. L, is set to 0H and is shown as a wire.
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Cuk-Buck?2 without Lres, Vo > Vi /2

Cuk-Buck2 with Lres, V,,; > Vi,,/2

Ctrl

Ctrl

- v%ut

InoRcs

[out

I,..

Iout

Figure 3-17: Timing diagram for
Cuk-Buck2 without second reso-

Figure 3-16: Timing diagram for
Cuk-Buck2 with second resonant

nant inductance L, at low output

voltage.

inductance L, at low output volt-

age.
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3.3.2 Fixed Frequency Operation

Cuk-Buck?2 , Fixed Frequency, Vyu < Vin /2
Ctrl

Ip,..

L=T/2 ty t3 t4=T ts =3T/2 tg  tr tg=2T

X = X X—-

Figure 3-18: A Cuk-Buck2 operating with V,,; < Vi, /2 at a fixed
frequency with period 7. This is the same operation as 2-12 with
a blank period inserted from t3 to t; where only Q4 is on. The
flying capacitor must not be below V,,,; — 0.7 during this period, or
unintended currents will reduce efficiency.
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Cuk-Buck2 , Fixed Frequency, Vo > Vi, /2
Ctrl

I,..

Vo,

L =T/2 ty t3 t4=T ts =3T/2 tg  tr tg=2T

X QO X Q=

Figure 3-19: A Cuk-Buck2 operating with V,,; > V;,/2 at a fixed
frequency with period T'. This is the same operation as Figure 3-16
with a blank period inserted from t3 to t4 where only (94 is on. The
flying capacitor must not be below V,,; — 0.7 during this period, or
unintended currents will reduce efficiency.

61



3.3.3 Smooth Transitioning Full-Range Output

Cuk-Buck2 , Fixed Frequency and Smooth Control, V,,; < V;,/2
Ctrl

T |
ty iy ty

e el e el

| |
—_—
I

|
e
D

T ctrl T offset T
reset T/2 reset(T)

zero-current(Q3)

Figure 3-20: A Cuk-Buck2 operating with V,,;, < Vin/2 at a fixed
frequency with period 7. This is the same operation as Figure 3-
18 with control timing events listed below. A ctrl timing is set by
feedback and is measured from reset. An offset timing is offset from
ctrl by a fixed amount. The timing ctrl has no effect when it comes
before T'/2, so it is pictured in red.
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Cuk-Buck2 , Fixed Frequency and Smooth Control, V,,, ~ V;,/2
Ctrl

o f,f(@h fs@g f tc®t7 tg@Dtg to

...y

[N
I [

T T ctrl offset T
reset T/2 eset(T")
zero-current(Q3)

Figure 3-21: A Cuk-Buck2 operating with V,,; ~ Vi, /2 at a fixed
frequency with period 7. This is a joined operation with elements
from Figure 3-18 Figure 3-19 with control timing events listed below.
A ctrl timing is set by feedback and is measured from reset. An offset
timing is offset from ctrl by a fixed amount.
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Cuk-Buck2 , Fixed Frequency and Smooth Control, V,,; > Vj,/2
Ctrl

i | | T | | T
0 ty t2 t3 t4 ts tg t7 ts tg
i v

X O O—-
T T ctrl Toﬂ”sut
reset T/2 eset(T")

zero-current(Q3)

Figure 3-22: A Cuk-Buck2 operating with V,,, > V;,/2 at a fixed
frequency with period 7. This is the same operation as Figure 3-
19 with control timing events listed below. A ctrl timing is set by
feedback and is measured from reset. An offset timing is offset from
ctrl by a fixed amount. The timing offset has no effect when it comes
after reset(T) or zero-current(Q3), so it is pictured in red.

64



3.3.4 Capacitor Balancing

This is largely identical to the ResSC balancing and can be solved in the same way of
filtering at half the switching frequency, by sampling and holding control values for

two periods.

Cuk-Buck2 , Self Balancing, V,.; < Vi,/2
Ctrl

3 1 o
1 ctrl | offset ] 1

reset(T")

zero-current(Q3)

reset T/2

Figure 3-23: A Cuk-Buck2 with V,,; < Vi, /2. Dashed lines are plotted for I, Iy, ._,
Iout; and Vegy, which show the result if Vi, was a bit lower than its nominal value
of V;,,/2 at the start. Self-correction of the flying capacitor voltage is seen.
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Cuk-Buck?2 , Self Balancing, V. > Vi, /2

Ctrl

=== =2

=== =2

I,..

Tout

zero-current(Q3)

Buck2 with V,,, > V;,/2. Dashed lines are

A Cuk

24:
plotted for I, Iy, ., I,

Figure 3

and Vcyy,, which show the result if Vo,

ut

was a bit lower than its nominal value of V;,/2 at the start. Self-

correction of the flying capacitor voltage is seen.
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Chapter 4

Evaluations and Comparisons

4.1 Efficiency

Since it was chosen to focus on converters that could convert 5V down to around
1V needed for modern processors, an application mirroring the capabilities of (some
linear part that would be good to compare to). So 5V to 1V 5A output is where

efficiency was optimized.

4.2 Additional Complexities

Each of these topolgies needs an additional capacitor that the buck converter does
not, and has multiple flying switches. The available capacitors can be a limiting
factor for the maximum output current. The multiple flying switches require level

conversion for digital control signals and multiple power rails to drive them.

Multiple zero current sensors are also required, some on flying switches, which may

be complicated to implement in a monolithic IC.
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Efficiency Comparison
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Figure 4-1: Simulated Efficiency of converters running at 2MHz with
sub-10nH inductances in Linear Technology’s 0.35 pm BCD process.
An approximation for a 2-to-1 switched capacitor converter is also
shown.

4.3 Output Ripple

Output ripple can be problematic on both the ResSC and Cuk-Buck? , since they both

have a point of chopped output current. This with parasitic inductances can cause
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a large spike in the output voltage. This can be filtered with an additional inductor

and capacitor, but that reduces density and efficiency and increases the cost.

Output Ripple with Filter

0.05

0.04

=4
=}
@

NJ\/\ —&— DCM Budck

—e—ResSC
Cuk-Buck2
—#—3 Level DCM Buck 5V switches

/\ [\ D —e—RessC 4 State Smooth Control
ﬂw ) W
o

Peak to Peak Ripple (V)

=4
=}
[~}

D

0.01 /

0 0.5 1 1.5 2 2.3 3 3.5 4 4.5 5
Output Voltage (V)

Figure 4-2: Output ripple for different converters simulated in LT-
Spice that were each hand optimized for efficiency. Each converter
has a sub-10nH inductances and single digit MHz switching frequen-
cies. All simulations had the same output capacitance and filtering,
which can be seen in Figure 4-3.
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PCB trace inductor

around 2mOhm/nH Murata Murata
L1 LLL31MR60J106MEO1 LLL31MR60J106ME01 i
filt 1 filt_ OUT
- 2nH
output
Cout1 _|Cout2 _|Cout3 @
Murata T-04F 7.04uF 7.04pF {lout}
LLL31MR60J106MEO1
N

Figure 4-3: Output capacitor (Coutl) and output filter used for
the simulations for Figure 4-2. Parasitic inductance and resistance
were included for the capacitors and resistance for the inductor was
included to best estimate a PCB trace inductor.

4.4 Transient Response

All three converters can have approximately equivalent transient responses if con-
trolled in the manner described in this thesis and the feedback network is tuned

correctly. Work was performed in the area, but will not be discussed in this thesis.
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Chapter 5

Prototype

5.1 Purpose

The purpose of making a physical prototype in this case is solely to determine how
and if un-simulated real world effects impact how the control schemes function. Some
of these effects are frequency dependent wire resistance and voltage dependent capac-
itance of MLCCs. The prototypes were scaled down in frequency by approximately
ten times from the simulations, which means that the inductances were increased by
ten times and the capacitances were increased by ten times in order to provide equiv-
alent operation to higher frequency. The switch resistances were constrained by other

requirements, but ended up being approximately the same as the simulated switches.

5.2 Overview

A modular power PCB was designed and manufactured to test the new control meth-
ods on the three topologies. It is also able to work as a normal buck converter. Par-
ticular attention was paid to reducing parasitic inductance as low as possible, which
made it not possible to incorporate the 5th switch for the full range Cuk-Buck2 on
the PCB. It would be able to be added in dead-bug style for testing.

A secondary control PCB was also designed and manufactured. It utilizes the con-
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figurable analog and digital hardware of a PSoC 5LP chip in order to have flexible

analog feedback with changeable digital logic that can operate without a microcon-

troller in the loop.

This means that all control loops are entirely performed in hardware for this pro-

totype, despite the fact that it may appear to be controlled by a microcontroller, as

the PSoC chip has many independent analog and digital circuits that can be connected

to its pins like a mixed-signal FPGA.

5.3 Logic

5.3.1 Shared

Opamp_2 R 4 PGA_1 c 5
VDACS_1 Opamp ] shift_pin M ECA S
VDAC8 10K i omb;
+ & Vc_shift_pin + )
= R5 — 1
» A > comp3
P10k
AMux_1
FreqDi ve' @ 'h
reqDiv_3 dq dq 1
Freq Divider DFF DFF d
[T Fen div clk clk FregDiv_4
[0 }reset sr sr Freq Divider
Nelock [T1-len div @ clockHalf
Do reset
+100
clock
Control_Reg_1 +400
Control Reg
control_0
IDAC8_1 Comp 1
FreqDiv_1 IDAC8 o
Freq Divider omp
T}en div, }
© e 0 o
N E w Status_Reg_1
timer_clock [T} rpclock o= Status Reg
20MHz +200 clock € clock
IDAC8_2 c 2 ——{status_0
IDACS Vss oo
FregDiv_2 omp
Freq Divider Ve2 e 2
[T }+-en div > L € comp2
reset i
N‘ UE
clock © l
< Status_Reg_2
200 clock2_inv Vs Status Reg
clock2 € clock
——{status_0

Figure 5-1: PWM circuits running on PSoC in hardware. Elements in blue represent
hardware on the PCBs that is connected to the PSoC externally.
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Vc2_neg_pin feif
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Figure 5-2: Feedback circuits running on PSoC in hardware. Elements in blue repre-
sent hardware on the PCBs that is connected to the PSoC externally.
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5.3.2 Three Level Buck (DCM)

comp1 ctrl1_3levdcm

Q ctrl4_3levdcm

O gatel_waslLast

gate3 &

comp2 ctrl2_3levdcm

O ctrl3_3levdcm

gate1_wasLast Q—L

zc3 &

gated & dq dq
DFF DFF
Clock_1[fm} clk clk
10 MHz
gate3

Figure 5-3: Control logic for the 3 Level Buck running on PSoC in hardware.

74



5.3.3 ResSC

O ctrl1_fullRange

comp3_done €

& ctri2_fullRange

comp3

gate3 © d qHd q
DFF | |DFF
Clock_1[fm} clk clk comp3_done €

[T}Hd g4 clock2_done clock2 Q————
DFF comp1_done Q; Q ctrl3_fullRange
clock2 @—— | clk comp3_done O—{>O
ar

o comp3_done O—{>O
clock clock2_done ——|

comp1 Q—{>O—
d g€ comp1_done

DFF
comp1 Q—{>O— :Irk 263

o
gatel Q————
clock Oj

comp3_done O—{>07

¢ comp3_done

O ctrl4_fullRange

clock2 €
compi1_done €

comp1 €

clock2_done €

Figure 5-4: Control logic for the ResSC running on PSoC in hardware.
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5.4 Schematic

5.4.1 Power

SRR AAAR
T T L I ITT
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o
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conpixes

Figure 5-5: Power stage section of the Power PCB schematic from KiCAD.
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Figure 5-6: V¢, sensing section of the Power PCB schematic from KiCAD.
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Figure 5-7: Zero current sensing section of the Power PCB schematic from KiCAD.
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5.5 Bill-of-Materials (BOM)

5.5.1 Power
Designation Part Number Description
X1,X2 ADuM7223A 5V 4A Half-bridge Isolated Gate Driver
Q1,Q2,Q3,Q4 IRF6616 5mOhm 40V N-Fet
U8,U9,U10 ROE-0505S 5V 0.2A Isolated Power Supply
U5,U6 LT1711CMSS8 4.5ns Rail-to-Rail Comparator
U7 ADuM110N1BRZ Single Channel Digital Isolator
U1 ADS8531ARTZ 3MHz Op Amp
C11,C46,C19,C20 16SVF1000M 16V 1000uF 12mOhm Al-Polymer Capacitor
Passives varied varied
Connectors various 0.1" pitch various 0.1" pitch

5.5.2 Control

Designation Part Number Description

U2 CY8KIT-059 Cypress PSoC-5LP Breakout

SW1,SW2,SW3,SW4 B3F-1000 Tactile Switch Through Hole
D1,D2,D3,D4 0603 Led 0603 Led
Ubs AD5272 1024 20K digitally programmable resistor
U6 ADGT15 Analog Octal SPST CMOS Switches
Passives varied varied
Connectors various 0.1" pitch various 0.1" pitch
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5.6 Layout

5.6.1 Power

Figure 5-9: Top view of the layout for the power PCB in KiCAD.

5.6.2 Control

Figure 5-10: Top view of the layout for the control PCB in KiCAD.
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5.7 Outcome

5.7.1 Three Level Buck (DCM)

Figure 5-11: Completed Three Level Buck with 220nH inductor and 100uF flying
capacitance.
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500V 3 = 500v 4 = soov

Figure 5-12: Three Level Buck control signals when V,,; < V;,,/2. From top to bottom
the signals are Q1, @2, @3, and Q4.
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Figure 5-13: Three Level Buck control signals when V,,; &~ V;,,/2. From top to bottom
the signals are Q1, 2, (3, and Q4.
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Figure 5-14: Three Level Buck control signals when V,,; > V;,,/2. From top to bottom
the signals are 1, 2, @3, and Q4.

1‘.1““;“ Sl i ® 140V

Ymid=seras Freg=21.4mHz
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Figure 5-15: Output voltage ramp of Three Level Buck over 45s with a 5% offset in
phase from 180deg. A 40hm load is connected with 5V input.
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Figure 5-16: Output voltage ramp of Three Level Buck over 45s with no offset in
phase from 180deg.
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Figure 5-17: Output ripple for the Three Level Buck at 1V 5A output.
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5.7.2 ResSC

Figure 5-18: Completed ResSC with 47nH inductor and 82uF flying capacitance.
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Figure 5-19: ResSC control signals when V,,; < V;,/2. From top to bottom the
signals are Q1, 2, @3, and Q4.
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Figure 5-20: ResSC control signals when V,,; ~ V;,/2. From top to bottom the
signals are Q1, )2, @3, and Q4.
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Figure 5-21: ResSC control signals when V,,; > V;,/2. From top to bottom the
signals are @1, (2, 3, and Q4.
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Figure 5-22: Output voltage ramp of 3 Level Buck over 45s with no offset in phase
from 180deg. A 40hm load is connected with 5V input.
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Figure 5-23: Output ripple for the ResSC at 1V 5A output.

5.7.3 Cuk-Buck2

Time constraints prevented the completion of a prototype Cuk-Buck? circuit, but one

could be constructed using the same PCBs as for the Three Level Buck and ResSC.
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Chapter 6

Conclusions

6.1 Practical Takeaway

To the author of this work, it appears the takeway is that each converter had benefits

and downsides and each could be most useful in different situations.

The Three Level Buck has very low output ripple, so it would be good for cases
where output ripple is important. It however requires additional circuitry to sense
the flying capacitor voltage, which could make it undesirable when simplicity is needed

for feedback circuits.

The ResSC appears to have the lowest efficiency out of the three converters, but
it does not require any voltage sensing circuity or a fifth switch to operate. It could
be useful for applications like LED lighting that are more tolerant of output ripple

and utilize parasitic inductance to operate.

The Cuk-Buck?2 appears to be generally more efficiency than the ResSC, but requires
a fifth switch to operate with full range output. This could make the Cuk-Buck? the
best choice for cases that need high efficiency and also require parasitic inductance
to be used, as parasitic inductance of the flying capacitor can easily be absorbed into

the Cuk-Buck?2 topology, but not the Three Level Buck.
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6.2 Future Work

Additional work for feedback compensation for the Cuk-Buck2 and ResSC will need
to be performed. Work on feedback compensation was done as part of this research,

but was not included in this thesis.

Comparisons were performed with silicon-based MOSFETs in simulation and real
life, but other switching devices like GaN may need to be evaluated separately for
these toplogies, as optimization could reveal different comparative results with differ-

ent switch characteristics.
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Appendix A

Equations

A.1 Simplified Converter Timing and Current Equa-

tions
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ResSC - Buck Mode

Timing

to Vm‘zj‘t/out sty + t
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b= 72
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DCM 3-Level Buck - Buck Mode

Timing
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Buck Mode Comparison

Timing
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Component RMS Comparison: V,,; << Vj,/2
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Figure B-1: Bottom sides of both Power and Control PCBs.
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Figure B-2: Bottom sides of both Power and Control PCBs.
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Figure B-8: Side of the populated ResSC power PCB.
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Figure B-10: Bottom of a populated power PCElementsReRe
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Appendix C

Code

C.1 LTSpice RAW File Processing (1/3)

#reads the raw file from LTSpice and extracts data
rawFile:
#generated by this class:

#headerNames — list of titles of data in the header
“#headerValues — list of the header data

#varNames — list of variable names

#varData — list of lists of data

__init__ (self , fileName):
self .fileName = fileName; #should not have an extension on it , will
— look for .raw

#—— open file
f = (fileName+" .raw", "1 7)
rawText = f.read();

#split into parts

##header

rawHeader = rawText.split (" Variables: ' n", 1)[0];
#variables

Y

rawVariables = rawText.split ("Values:", 1)[0].split (" Variables: n", 1)
= [=1]
#data
rawData = rawText.split ("Values:", 1)[—1];
rawText ;

#—— extract header data

#split into lines

header = rawHeader.split (' '\n’);
rawHeader ;

#remove empty

header2 = [];
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line header:
( (line)>0):
header2.append(line);

header;
#get names and values, remove whitespace
self .headerNames = |[];
self . headerValues = [];
line header2:
self . headerNames.append(line.split(": ",1)[0].1lstrip());
self . headerValues.append(line.split(": ",1)[—1].1strip ());
header2;

#—— extract variable data
#split into lines
variables = rawVariables.split (' \n’);
rawVariables
#remove empty
variables2 = |[];
line variables:
( (line)>0):
variables2 .append(line);
variables
#get names, remove whitespace
self.varNames = |[];
line variables2:
self .varNames.append(line.split (" t")[2].1lstrip());
variables?2;

#—— extract data data
%pllt into lines
data = rawData.split (" '\n’);
rawData ;
#remove empty
data2 = |[];
line data:
( (line)>0):
data2.append(line);
data;
#get values, remove whitespace
varDataTemp = [];

line data2:
varDataTemp . append ( (line.split (" t")[—=1].Istrip ()));
data?2 ;

#split into different variables
self .varData = [];

X ( (self.varNames)):
self.varData.append ([]) ;
y ( ( (varDataTemp) / (self.varNames)) ):

(self.varNames)):
self varData|z|.append (varDataTemp |y* (self.varNames)+z]|) ;

varDataTemp ;
#unequal timesteps, so calculate time per data point
self.delTime = [i — ] i, j (self.getVar("time")[1:], self.

— getVar("time")[: =1]) |;
self .endTime = self.getVar("time")[—1];

#get variable data from variable name

getVar(self , varName):
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self .varData|self.varNames.index (varName) |;

, [ ("NaN")|;
#get average value from variable name
avgVar (self , varName):

[ 1%] i,] (self.getVar(varName)[: —1],self.delTime
< )|)/self .endTime;

(’NaN");

C.2 LTSpice Multithreaded Batch Simulation and Process-

ing (2/3)

subprocess; #for calling command line
spiceRaw ;
itertools;
pPp;
numpy ;
time ;
gc,
glob ;
0s;
#from concurrent.futures import ProcessPoolExecutor;

ppservers = ();

job _server = pp.Server (ncpus=10, ppservers=ppservers);

#job _server = pp.Server(ppservers=ppservers);

#print (" Starting pp with", job server.get ncpus(), "workers");
spiceBatch:

job server;

~_init__ (self , , outFile, leaveFiles = False):

#create a netlist from asc

#subprocess.call (’"C:\ Program Files (x86)\LTC\LTspicelV\scad3.exe" —
— mnetlist ’ + file + ".asc", shell=True);

#open the generated netlist file

Htry:

# self .netlist = open(file + ".cir", "r");
#except:

# self .netlist = open(file + ".net", "r");
#read the netlist file as lines
#self . netlistLines = self.netlist.readline();

#open the provided netlist file
with ( + ".net") as f:
self . netlistLines = f.readlines();
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#check to see if ".save" and not "x.save" exists, otherwise memory
— usage is too large
for line in self.netlistLines:
if("+.save" in line):
print ("No valid save statement in netlist , please add .save
— statement to reduce memory usage');
exit () ;
look = 0;
for line in self.netlistLines:
(" save" in line):
look = 1;
i1t look==0:
print ("No valid save statement in netlist, please add .save statement
— to reduce memory usage");
exit () ;

self.outFile = outFile;
self.first = 0;
self.leaveFiles = leaveFiles;
self . times = [];
self .startTime = 0;
del sim(self , paramNames, paramValues, num):

outputNetlist = [];

#modify template netlist
for line in self.netlistLines:

replaced = False;
for x in range(len (paramNames)) :
0 (".param" in line) and (line.count(" "4paramNames|[x|+" ")==1) )
—
outputNetlist .append(line.split (paramNames|[x]) [0] + paramNames|x]
— + " " 4str(paramValues|[x]|) + "\n’);
replaced = True;

1f(not replaced):
outputNetlist .append(line);

H#write circuit file

fileName = "spiceBatch"
for x in paramValues:
fileName += "—"+4+st(r (x);
#fileName = "SC "+str(width)+ —+str(voltage)+’—"+str (inductor);
textFile = open(fileName+".cir", 'w’);

for line in outputNetlist:
textFile.write(line);

textFile.close ();

del outputNetlist;

#simulate the circuit
subprocess.call (’"C:\ Program Files (x86)\LTC\LTspicelV\scad3.exe" —
< ascii —b ' + fileName + ".cir", shell=True);

#process the result
a = spiceRaw.rawFile(fileName);

#remove files created

i (not self.leaveFiles):
try:
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0s . re.move(fileName#' ceir");

oé . reimove (fileName+" . log");

oé . re?move (fileName+" .op.raw");

oé . rémove(fileName+" .raw'");
#signal ;nn is complete with file
doneFile = ( (num)+" . done", 'w');

doneFile. write(" ");
doneFile. close () ;

#return the rawfile object
( (paramValues) ,a) ;

run (self , paramNames, paramValues):
self .paramNames = paramNames;

job server;
self . first = 1;

jobs = {};
#figure out the number of total combinations
numberOfJobs = 1;

X ( (paramNames) ) :
numberOfJobs = numberOfJobs x (paramValues [x]) ;

#jobCorrelation = {};
#enumerate the combinations and start running
num = 0;
combo (itertools.product (xparamValues) ) :
#print ((paramNames, combo));
#jobs .append (job server.submit(self.sim, (paramNames,combo,num), (

— self.sim,), ("spiceRaw","subprocess")))
jobs | (num) | = (job server.submit(self.sim, (paramNames,combo,num),
<~ (self.sim,), ("spiceRaw","subprocess")));
num = num + 1;
self .startTime = time.time();
results = 0;

(results <numberOfJobs) :
o+ ( (results))+"/"+str (numberOfJobs) ,
#get results
#see if any sims are done

done = glob.glob("*.done")
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( (done) >0):

doneNum = (done [0]. split (".")[0]) ;
result = jobs| (doneNum) | () ;
self . writeToFile(result , paramNames) ;

jobs | (doneNum) |;

results = results + 1;
result ;
#print progress
secRemain = ((time.time()—self.startTime)/results * (numberOfJobs—

< results));
r’ o+ ( (results))+"/"+str (numberOfJobs) + '\ tMin
— Remaining: ’ + ( (secRemain /60.0) ),
gc.collect ()

#print ("Removing file ")

#print (done[0])
05 . remove (done [0]) ;

#with ProcessPoolExecutor () as p:
# f = p.submit(jobs |[0]())
# result = f.result (timeout=5)

time.sleep (1);
#del jobs[0];

#save result to file
#writeSuccess = 0;

#print ("here")

#print (" here2")

results;

writeToFile(self , output, inputParamNames):

#array to hold names of data

dataNames = |[];

#array to hold extracted outputs of spiceRaw objects
extractedOutputs = [];

#print (output) ;
(conditions , a) = output;
output;
#unequal timesteps, so get time per data point
times a.delTime;
#stopping time, data starts at 0O
endTime = a.getVar("time")|[—1];

avgOutputVoltage = a.avgVar("V(out)");

outputVoltageRipplePtP = (numpy . amax (a.getVar ("V(outfilt)")) — numpy
< .amin(a.getVar("V(outfilt)")));
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#avgOutputCurrent = a.avgVar("I(Output)");
outputCurrent = conditions [inputParamNames.index ("Tout") |;

avgPowerIn = a.avgVar("V(inputpower)");

powerOutArray = numpy.multiply (a.getVar("V(out)"), outputCurrent)|: —1];

a7
avgPowerOut = (numpy . dot (powerOutArray, times))/endTime;
times ;

temp = (conditions);

conditions;
temp2 — (inputParamNames) ;
temp2.append (" Efficiency");
temp.append ( avgPowerOut/avgPowerIn );
temp2.append ("Output Voltage (V)");
temp . append ( avgOutputVoltage );
temp2.append ("Output Ripple PtP (V)");
temp.append( outputVoltageRipplePtP );

#temp2 . append ("Avg Pow In");
#temp . append ( avgPowerln );
#temp2 . append ("Avg Pow Out");
#temp . append ( avgPowerOut ) ;

dataNames = (temp2);

extractedOutputs.append( temp );

#print ("here3 ")

H#write to file

writeSuccess = 0;
(writeSuccess==0):

fileOut = (self.outFile, 'a’);
#write header labels
(self.first = 1):
fileOut . write(",".join (dataNames) + "'n");

self.first = 0;
#write data
result extractedOutputs:
chunk result:
fileOut . write ( (chunk)+".");
fileOut . write(’'\n’);
fileOut . close () ;

writeSuccess = 1;

junk= ("Error writing file , press enter to try again.");

C.3 LTSpice Example Batch File Run (3/3)

spiceBatch ;
numpy ;
math ;

time ;
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#input parameters
inputParamNames = [];
inputParamValues = |[];

inputParamNames . append (" freq ") ;
inputParamValues.append ([3.0e6]) ;
#inputParamValues . append (numpy . arange (1.0e6 ,3.5e6,0.5€6) ) ;

inputParamNames . append (" size ") ;

inputParamValues.append ([750e3]) ;

#inputParamValues . append (numpy . arange (100e3,2000e3 ,50e3) ) ;
inputParamNames . append ("ind") ;

inputParamValues.append ([10e—9]);

#inputParamValues . append (numpy. arange (le—9,11e—9,1e—9)) ;

inputParamNames . append ("set ") ;
#inputParamValues.append ([1.0]) ;

inputParamValues . append (numpy. arange (0.1,5.0,0.1) );
inputParamNames . append ("gateMult") ;
inputParamValues.append ([0.6]) ;

inputParamNames . append ("lout");
inputParamValues.append (|1,5,10]) ;

#simulation timing

#inputParamNames . append ("simTime") ;
#inputParamValues.append (["500/{ freq }"]) ;
#inputParamNames . append (" start Time") ;
#inputParamValues.append (|"400/{ freq }"]) ;

##name of output file

¢ = "output 3 3Vdev.csv'";

#Run the simulations, output is array of spiceRaw objects from the
— simulations

b = spiceBatch.spiceBatch ("3 level template", c¢);

startTime = time.time();
b.run (inputParamNames, inputParamValues);
elapTime = (time.time()—startTime)

nn

(”FiI’liShQ(l. Elapsed Time: " + ( (elapTime /60.0)) + "min " +
— (elapTime ) %60) + "sec.");

C.4 Python ResSC State Space Modeling

math ;
graph;
random ;
numpy as np;
control;
matplotlib.pyplot as plt;
matplotlib.widgets Slider , Button, RadioButtons;
matplotlib.lines as lines;
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#circuit parameters

Cfly = 4e—06;

Cout = 100e—6;

L = 2e—-9;

T = 2xmath. pi*(Lx( Cflysk—1+Coutsx—1)xx—1)x%0.5;
fsw = 2e6;

ITout = 5.0;

Vin = 5.0;

Vset = 1.0;

#initial conditions (will be re—written)
Vefly = float (Vset);

Vout = float (Vset);
outFB3 = 0.0;
outFB2 = 0.0;
outFB1 = 0.0;

#feedback system

nmn

Vout |
; |
O S | |
] ] | | | [=(set—outFB1)/10000*(R1+R2)/
— R2 o
| ! NS
I o
| | D W
| | | |
| |R3 | |
- | | O O outFB3
| | — |
] o
B N
| R4 |
o C3
| —
C1 o
- O——outFB2
C2
O——0O—outFB1
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d/dt (outFB1) d/dt (out)=*(R3/R1+1) + (R3/R1-1)/Cl*out — (R3/RI1+R3/R2)/Clx
— outFBl1

d/dt (outFB2) = 1/(R4%C2)*outFB3 — 1/(R4xC2)xoutFB2

d/dt (outFB3) = set*(RI+R2) /(10000%xC3+«R2) — (R1+R2)/(10000%C3xR2)*outFB1 —
— 1/(R4xC3)*outFB3 + 1/(R4xC3)xoutFB2

#initial feedback circuit wvalues

R1 = 19e3;
R2 = 1e3;
R3 = 10.0;
R4 = 2000.0;
Cl = 1.0e—-12;
C2 = 4e—9;
C3 = 0.5e—12;

advancePeriod (inputArray):
#simulate a period by using math equations
#Vout is inputArray [0]
#Vecfly is inputArray[1]
#outFB3 is inputArray [2]

#state D

Vefly 1 = (—=1.042.0xCfly /(Cout+Cfly ) )*inputArray [1] + (2.0xCout/(Cout+
< Cfly))*inputArray [0] + (—0.5%xT/(Cout+Cfly)*Iout);

Vout_1 = (2.0%Cfly /(Cout+Cfly))*inputArray [1] + (—1.0+2.0xCout /(Cout+Cfly
— ))xinputArray [0] + (—0.5%T/(Cout+Cfly)=«Iout):

H#state B

Vefly 2 = (1.0 —2.0%(math. sin (math. pixinputArray [2]) ) **2xCout /( Cout+Cfly))
— *«Vefly 1 — (2.0%xCout/(Cout+Cfly ) *(math. sin (math. pixinputArray [2]) )
— **x2)xVout_1 + 2.0%xCout/(Cout+Cfly)*Vin*(math.sin (math. pixinputArray
< [2]))*%2 + inputArray [2]|*Iout+T/(Cout+Cfly)*(math.sin (math. pix
< inputArray [2]) ) *x2;

Vout 2 = (—=2.0%Cfly /(Cout+Cfly ) *(math. sin (math. pixinputArray [2]) ) **2)x
— Vefly 1 4+ (1.0 — 2.0%Cfly /(Cout+Cfly ) *(math. sin (math. pixinputArray
— [2]))*x2)*Vout_1 + (2.0% Cfly /(Cout+Cfly)*Vinx(math.sin (math. pix
— inputArray[2]))**2 — inputArray [2]*Iout«T/(Cout+Cfly)*(math.sin (
< math. pixinputArray [2]) ) *%2);

iLtemp = math.sqrt((—Cfly «(Vefly 2#x2—Vefly 1%%x2) — Cout*(Vout 2x%x2—
< Vout 1xx%2) + ITout=*(Vout 1+Vout 2)sTxinputArray|[2] + 2xCfly*Vinx*(
— Vefly 2—Vefly 1))/L);

#state C

Vefly 3 = math.sqrt (Vefly 2#x2+L/CflyxiLtemp*%2) ;

Vout 3 = Vout 2 — JTout/Coutx(1.0/fsw —0.5%+T—inputArray|[2]|*T);

#update variables

| (Vout_3), (Vefly 3), (inputArray [2]) |;

#sets outFB3 and Vcfly for current Iout Vout via bisection search
updateFB3 () :
outFB3;
Vout ;
Vefly ;
#save what Vout was before running
temp Vout = (Vout) ;
#duty cycle steps will be taken down to 2%x—levels
levels = 40;
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#start searching with duty cycle of one quarter (as ResSC is only being
— looked at in buck mode)
outFB3 = 0.25;
maxDuty = 0.5;
minDuty = 0.0;
(levels >=1):
#sim to get output voltage

diff = 1.0;
diff2 = 1.0;
num = 0;
(((diff =0.001) or (diff2 =0.001)) num<10000) :
diff = (Vout ) ;
diff2 = (Vefly);
i (100) :
[Vout, Vcfly ,outFB3| = advancePeriod ([ Vout, Vcfly ,outFB3]) ;
diff = (diff —=Vout) ;
diff2 = abs (diff2 —Vefly);
num += 1;
(Vout>temp Vout):
maxDuty = (outFB3) ;
outFB3 = (0.5%xoutFB3 + 0.5%minDuty) ;
minDuty = (outFB3) ;
outFB3 = (0.5x0outFB3 + 0.5xmaxDuty) ;
levels = levels — 1;

#return Vout to what it was set to before
#Vcfly and outFB3 have been re—written as part of the simulations
Vout = (temp_ Vout);

#get what outFB3 and Vcfly should be
updateFB3 () ;

#save original values

orig_ Vout = (Vout ) ;
orig Vecfly = (Vefly);
orig_Vin = (Vin) ;

orig Tout = (Tout);
orig Vset = (Vset);
orig outFB3 = (outFB3) ;
#data save for plotting

t = [0.0];

outFB3 t = (outFB3) |;
Vily t = | (Vefly) |;
Vout t = | (Vout) |;

Vily t2 = [0x (Vefly) |;
Vout t2 = [0x (Vout) |;
outFB3 t2 = [0x outFB3) |;
outFB2 t2 = | (outFB2) |;
outFB1 t2 = | (outFB1) |;
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nmn

[ Vout | [

— a, b, c,
— . 0, 0] [ Vout | [g]
o i) K] | 0 |
d | Vefly] [
— d, e, f,
S 0. o] [ Verly] [ [
ey 1] | 0 |
d t [outFB3] = |
< 0, 0, —1/(R4xC3), 1/(
— R4xC3) , —(Rl +R2) / (10000*C3*R2)]*[0utFB3] + [0] + [0]*Vin
<+ [0]«Tout + [(R1+R2)/(10000%C3+R2) | set
[outFB2| |
<0, 0, 1/(R4%C2)
— —1/(R4xC2) , 0] [outFB2] [0]
= 0] 0] | 0
[outFB1]  [((R3/Rl) /(R3/RI+R3/R2+1)) /C1 + ax((R3/R1+1)/(R3/RI+R3/R2+1)
< ). bx((R3/R1+1)/(R3/R1{R3/R2+1)), cx((R3/R1+1)/(R3/RIIR3/R2+1)),
< 0, —((R3/R1+R3/R2)/(R3/R1IR3/R2+1))/C1] [outFB1]  [0]
nmn - [0] [ ] 0 ]
d | Vout | [a, b, ¢|] | Vout | [ ]
d t | Vefly|] = |d, e, f|x]| Vefly| + |[k]
[outFB3| [g, h, i] [outFB3] [1]

nmnn

#number of periods to average over

numPeriods = 2;
#takes an array of the initial states of the state space variables

#and a function that returns the next period of the system
del getStateSpace(initialState , getNextPeriod):
initialState = np.array(initialState);
n = len(initialState);
#returns linearized state space models of current system
#has the form dx/dt = Axdelta x and solves for A
dxdt = np.zeros((n,n));
delta x = np.zeros((n,n)

newState = np.array(initialState);
#get how these move over numPeriods periods
for x in range(numPeriods):
newState = advancePeriod (newState) ;
oneP = np.array(newState);
#get how these move over another numPeriods periods
for x in range(numPeriods):
newState = advancePeriod (newState) ;
twoP = np.array(newState);

for ssv in range(n):
newState = np.array (initialState);
newState[ssv] = 1.0lxnewState[ssv|;

dxdt = np.transpose (dxdt);
dxdt|[ssv]| = np.array(—lxnewState);
dxdt = np.transpose (dxdt);
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delta x = np.transpose(delta x);
delta x|[ssv] = np.array(—1sinitialState);
delta x = np.transpose(delta x);

for x in range(numPeriods) :
newState = advancePeriod (newState) ;
delta x = np.transpose (delta x);
delta x|[ssv] = delta x|[ssv]| + np.array(newState);
delta x = np.transpose (delta x);

for x in range(numPeriods) :
newState = advancePeriod (newState) ;
dxdt = np.transpose (dxdt);
dxdt|[ssv| = dxdt[ssv| + np.array(newState);
dxdt = np.transpose (dxdt);

#print (dxdt)

#print (delta x);

dxdt = dxdtxfsw /(2.0xnumPeriods)

A = np.dot(dxdt,np.linalg.inv(delta x));
#print (A) ;

return A;

nnn

#get how move with a wiggle in Vin

Vout = float (orig2 Vout);

Vefly = float (orig2 Vefly);

outFB3 = float (orig2 outFB3);

Vin = float (orig2 Vin);

Vin = 1.01%Vin;

for x in range(numPeriods):
advancePeriod () ;

wVin_twoP_Vout = float (Vout) ;

wVin_ twoP Vefly = float (Vefly);

bl Vin = (wVin_twoP_ Vout—twoP Vout) /(0.01%orig2 Vin) /(1.0/fsw)/float (
— numPeriods) ;

b2 Vin = (wVin_twoP_ Vefly—twoP Vefly) /(0.01%o0rig2 Vin) /(1.0/fsw)/float (
— numPeriods) ;

b3 Vin = 0;

B Vin = np.array ([[bl_Vin| ,[b2 Vin]|,[b3_ Vin|]|);

#get how move with a wiggle in Tout

Vout = float (orig2 Vout);

Vefly = float (orig2 Vefly);

outFB3 = float (orig2 outFB3);

Vin = float (orig2 Vin);

Tout float (orig2 lTout);

Tout 1.01xIout;

for x in range(numPeriods):
advancePeriod () ;
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wlout _twoP_Vout = float (Vout);

wlout twoP Vecfly = float (Vefly);

bl Tout = (wlout twoP Vout—twoP Vout) /(0.01xorig2 Iout)/(1.0/fsw)/float (
— numPeriods) ;

b2 Tout = (wlout twoP Vefly—twoP Vefly) /(0.01%xo0rig2 Tout)/(1.0/fsw)/float
— (numPeriods);

b3 Tout = 0;

B Iout = np.array ([|[bl_Iout],[b2 Iout|,[b3 Iout]]):;

#get the three constants by comparing the output of the matrix
— linearization to the full discrete time estimate
matrix Vout 1 = orig2 Vout + float (numPeriods)(1.0/fsw)x*(a*orig2 Vout +
— bxorig2 Vecfly + cxorig2 outFB3 + bl Vinxorig2 Vin + bl _Toutx
— orig2 Tout );
matrix Vefly 1 orig2 Vecfly + float (numPeriods)*(1.0/fsw)x*(d*orig2 Vout
— + exorig2 Vecfly + fxorig2 outFB3 + b2 Vinxorig2 Vin + b2 Iout=x
— orig2 Tout);
matrix outFB3 1 = orig2 outFB3 + float (numPeriods) *(1.0/fsw)x(gx
— orig2 Vout + hxorig2 Vecfly + ixorig2 outFB3 + b3 Vinxorig2 Vin -+
— b3 IToutxorig2 Tout);
j = (twoP_Vout — matrix Vout 1)/(1.0/fsw)/float (numPeriods);
k = (twoP_Vecfly — matrix Vefly 1) /(1.0/fsw)/float (numPeriods);
1 = 0;

B = np.array ([[j],[k],[l]]);

#restore state variables
Vout = float (orig2 Vout);
Vefly = float (orig2 Vefly);
outFB3 = float (orig2 outFB3);
Vin = float (orig2 Vin);

Iout = float (orig2 Iout);

return (A, B, B_Vin, B Tout);

nmnn

A = getStateSpace (| Vout, Vcfly ,outFB3]|,advancePeriod) ;

#add feedback network to linear model
del addFeedback(A) :

#resize A matrix

A = np.concatenate ((A,np.zeros((3,2))),1);

A = np.concatenate ((A,np.zeros((2,5))),0);

#add outFB3 terms

Al2][2] —1.0/(R4xC3) ;

Al2]]3 1.0/ (R4xC3) ;

Al2]]4] = —(RI4R2) /(10000.0%C3%R2) ;

#add outFB2 terms

A[3]]2] = 1.0/(R4xC2);

Al3]]13] = —1.0/(R4xC2);

#add outFB1 terms

Al4]10] = ((R3/R1)/(R3/R14+R3/R2+1.0)) /(C1%«R3) + A[0][0]=*((R3/R1+1.0)/(R3/
— RI1+R3/R2+1.0));
Al4]]1] = A[0][1]*((R3/R1+1)/(R3/R14+R3/R2+1.0));
Al4][2] = Al0][2]*((R3/R1+1)/(R3/R1+R3/R2+1.0));
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A[4][4] = —((R3/R1+R3/R2) /(R3/R1+R3/R2+1.0)) /(C1%R3) ;

#add new B matrix for V _set
#B_Vset = np.zeros ((5,1));
#B Vset[2][0] = 1.0/(10000.0%C3);

#add new B matrix for feedback

B feedback = np.zeros ((5,1));

B feedback [4][0] = ((R3/R1)/(R3/R1+R3/R2+1.0))/(C1xR3) + A[0][0]*((R3/R1
— +1.0) /(R3/R1+R3/R2+1.0) ) ;

(A, B _feedback)
#print (addFeedback (A)) ;
zoom = 1;
#plot interactive pole zero diagram of system with no feedback

plotOpenLoop () :

#get state space system with Vout as output

A = getStateSpace ([orig Vout,orig Vcfly ,orig outFB3], advancePeriod);
B — [[0] [0] [0]]:

C=|1. 0.0];

D= 0.

Hget poles and zeros

#sys = control.ss(A,B,C,D);

#transfunc = control tf(qu)'

#poles = control.pole(transfunc);

poles = np.linalg.eig(A)[0];

#print(polcs);

#zeros = control.zero(transfunc);

qipllnt(zeloq)

#now plot pole zero map

fig , ax = plt.subplots()

plt.subplots adjust(bottom=0.25)

1 = plt.scatter (np.real(poles), np.imag(poles), s=50, marker="x",
— edgecolors="b")

#m = plt.scatter (np.real(zeros), np.imag(zeros), s=50, marker="o0",
— facecolors="none’, edgecolors='g’)

plt . axhline (0, color="black")

plt .axvline (0, color="black")

plt.grid ()
axcolor = ’lightgoldenrodyellow’
axl plt.axes ([0.25, 0.1, 0.65, 0.03], facecolor=axcolor)

axV plt .axes (|0.25, 0.15, 0.65, 0.03], facecolor=axcolor)
axB plt .axes (|0.05, 0.05, 0.14, 0.1], facecolor=axcolor)
#add interactive sliders

sI Slider (axI, ’Tout’, 0.1, 10.0, valinit=orig Tout)

sV Slider (axV, ’Vout’, 0.1, 2.5, valinit=orig Vout)

sB RadioButtons (axB, ('Zoom Fit’, 'Fix Zoom'))

update (val):
Tout;
Vset ;
Vout;
Vefly ;
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Tout = (I);
V = sV.val;

Vset = (V);
Vout = (V);
Vefly = (V);

updateFB3 () ;

#print (outFB3) ;

A = getStateSpace (| Vout, Vefly ,outFB3|, advancePeriod);
(0. 00001] [o 0],[0.0]]:

[1.0,0.0,

gaw
A1l

#sys = control.ss(A,B,C,D);

#transfunc = control.tf(sys);

#print (control.pole(transfunc));

poles = np.linalg.eig(A)[0];

#zeros = control.zero(transfunc);

zeros = |[];

l.set offsets(np.column stack((np.real(poles), np.imag(poles))));
#m. set offbets(np column _stack ((np.real(zeros), np.imag(zeros))));
H#auto reset axis limits:

(zoom==1):

Xmin= (np. (np.append(np.real (poles) ,np.real(zeros))) ,0,ax.
— get_xlim () [0]);

Xmax— (np. (np.append (np.real (poles) ,np.real(zeros))) ,0,ax.
— get xlim()[1]);

ymin= (np. (np.append (np.imag(poles) ,np.imag(zeros))),—0.001,ax.
= get_ylim () [0]);

ymax— (np. (np.append (np.imag(poles) ,np.imag(zeros))) ,0.001 ,ax.

< get_ylim () [1]);
ax.set xlim (xmin,xmax)
ax.set ylim (ymin,ymax)

plt.draw ()
button (val):
zoom ;
(val=="Zoom Fit):
zoom = 1;
xmin=min (np. (np append( real (poles) ,np.real(zeros))) ,0,ax.
— get xlim () [0
xmax—=nax (np. (np. append(np. real (poles) ,np.real(zeros))),0,ax.
— get_ xlim () [1]);
ymin= (np. (np. append(np.imag(poles) ,np.imag(zeros))),—0.001,ax
> get_ylim () [0])
ymax—nax (np (np. append( imag(poles) ,np.imag(zeros))) ,0.001,ax

— get_ylim()[1]);
ax.set xlim (xmin ,Xmax)
ax.set ylim (ymin,ymax)
plt .draw ()

zodm = 0;
sI.on changed (update);
sV.on_changed (update) ;
sB.on clicked (button);

plt .show ()
#return state variables to what they were before
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Iout = (orig Tout);
Vset = (orig Vset);
Vout = (orig_Vout) ;
Vefly = (orig Vefly);
updateFB3 () ;

#plotOpenLoop () ;
Hexit () ;

#frequency should be in degrees, output is in degrees
freqResp ((A,B,C,D) ,inputFreqs):
outputMag = ;
outputPhase = [];
freq inputFreqs:
#print (C);
temp = np.dot(np.dot(C,np.linalg.inv( (0,freq*2.0%3.14159) *np.
— identity ( (A))-A)),B) + D;
#print (temp) :
#exit
*"C*(froq*np identity (len(A))-A)"=1 + D
#temp2 = temp / (temp — temp/float (np. abbolute(temp)))
#outputMag append ( float (np. absolute (temp)) /(float (np. absolute(temp)) 1)

— )3
outputMag . append ( (np.absolute (temp)));
outputPhase . append ( (np.angle (temp))/2.0/3.14159%360.0) ;

np.array (outputMag) , np.array (outputPhase) ;

#plot interactive pole zero diagram of system with feedback
plotClosedLoop () :

Tout;

Vset ;

Vout;

Vefly;
#get state space system with Vout as output

S

(A,B) = addFeedback (A = getStateSpace (|orig Vout,orig Vecfly ,orig outFB3],
< advancePeriod));

[1000000000]
0.0;
Hoet poles and zeros

Sys control.ss(A,B,C,D);

transfunc = control.tf(sys);

poles = control.pole(transfunc);

#poles?2 np.linalg.eig(A)[0];

zeros = control.zero(transfunc);

#now plot pole zero map

fig plt.figure (1) ;

#fig , |ax,axl] = plt.subplots(ncols=2)

ax = plt.subplot(121);

axl = plt.subplot (222);

ax2 = plt.subplot (224);

plt.subplots adjust(bottom=0.35)

]l = ax.scatter (np.real(poles), np.imag(poles), s=50, marker="x",
— edgecolors="hb")

m = ax.scatter (np.real(zeros), np.imag(zeros), s=50, marker="0",
< facecolors="none’, edgecolors="g")

00
1l
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#q = ax.scatter (np.real(poles2), np.imag(poles2), s=50, marker="o0",
— facecolors="none’, edgecolors='r")

#ax.set xscale(’symlog’);

ax.axhline (0, color="black ")

ax.axvline (0, color="black")

ax.grid ()

axcolor = ’lightgoldenrodyellow’

ax] = plt.axes([0.3, 0.18, 0.6, 0.03], facecolor=axcolor)
afo plt . axes (|0.3, 0.23, 0.6, 0.03], facecolor=axcolor)
axCl = plt.axes([0.3, 0.13, 0.6, 0.03], facecolor=axcolor)
axR4 = plt.axes([0.3, 0.08, 0.6, 0.03|, facecolor=axcolor)
axC2 = plt.axes ([0.3, 0.03, 0.6, 0.03|, facecolor=axcolor)
axB = plt.axes([0.05, 0.05, 0.14, 0.1], facecolor=axcolor)
#now plot bode

ax1l.grid () ;

ax2.grid () ;

freqs = [];

freqs += (1000,10000,100) ;

freqs +— (10000,100000,1000) ;

freqs 4= (100000,1000000,10000) ;

freqs += (1000000,10000000,100000) ;

mag, phase = freqResp ((A,B,C,D),freqs);

n, — axl.semilogx (np.array(freqs) ,np.array (mag). flatten());
o, = ax2.semilogx (np.array(freqs),np.array (phase).flatten());

vertl = axl.add line(lines.Line2D ([],[], color="red’”));
vert2 = ax2.add_ line(lines.Line2D (|],[], color="red’”));
axl.set title("PM: " 4+ "Crossover Freq: ");

#add interactive sliders
sI = Slider (axI, ’ITout’
sV = Slider (axV, ’"Vout’
sC1 Slider (axC1, 'CI1°
sR4 Slider (axR4, 'R4’
sC2 Slider (axC2, 'C2’

, 10.0, valinit=orig_lout , valfmt= %1.1fA ")
= RadioButtons (axB, (’

, 2.5, valinit=orig Vout Valfmt* %1.2fV ")
, 200.0, valinit=1.0, Valfrnt* %1.0fpF ")

.0, 5000 valinit =100. 0,valfmt="%1.0fOhms ")
, 20.0, Valinit:20.0,valfmt:'%].lan")

oom Fit’, "Fix Zoom’))

1

0.
0.
1.
10
0.
7

zoom==1
update(val):

Tout;
Vset ;
Vout;
Vecfly ;
C1;

R4;

C2;

slider I = sI.val;

Iout = (sllder I);
slider V = sV.val;

Vset = (slider V)
Vout = (slider ),
Vefly = (slider V);
slider C1 = sCl.val;

Cl = (slider_Cl x10%%x—12) ;
slider R4 = sR4.val;

R4 = (slider R4);
slider C2 = sC2.val;
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C2 = float (slider C2x10%xx—9);

#Vout = float (orig Vout);

#Vecfly = float (orig ch]y)

updateFB3 () ;

(A,B) = addFeedback(A = getStateSpace ([ Vout, Vcfly ,outFB3],
— advancePeriod)

C [1.0,0.0,0.0,0.0 00];

D 0.0;

sys = control.ss(A,B,C,D);

#update bode plot
#mag, phase, omega = control. freqresp (sys, freqs);
#B = B Iout;

#sys — control.ss(A,B,C,D);

mag, phase = freqResp((A B,C,D) ,freq
n.set ydata(np.array (mag). flatten()),
o.set ydata(np.array(phase).flatten ()
axl.set ylim (np.min(mag) ,np.max(mag) ) ;
ax2.set ylim (np.min(phase) ,np.max(pha

8)5

)
)
ée))

mmnn

gm, pm, Omega_cg, Omega cp = control.margin(sys);
if ((Omega cg/2.0/3.14159)>np.min(freqs) and pm!=None) :
print (" Phase Margin: " + str(pm) ) ;
print (" Crossover Freq :" + str(Omega cg/2.0/3.14159));
#print ((Iout , Vset ,Vout, Vefly ,C1,R4,C2))
print (u u) :
axl.set title("PM: "+"{:3.1f}". fonnat(pm) + "deg Crossover Freq: " +

< "{:6.0f}".format (Omega cg/2.0/3.14159/1000.0)+"kHz") ;
elif (pm==None) :
print "." ;
nmnn

#get phase magin from closed loop
pm = np.min(np.array(phase)[np.array (mag) >=1.0]) — 90.0;
“pm — 0.0
Omega cg = 0.0;
axl.set title("PM: "4"{:3.1f}".format(pm) + "deg Crossover Freq: " + "
< {:6.0f}". format (Omega cg/2.0/3.14159/1000.0)+"kHz");
#ax1.add line(lines.Line2D ([Omega cg/2.0/3.14159 ,0mega_cg
< /270/3.14159],[9999, —9999], color="red’))
vertl.set data([Omega cg/2 0/3. 14159 ,Omega_cg
< /2.0/3.14159],[9999, -9999]);
vert2.set data([Omega cg/2 0/3. 14159 ,Omega_cg
< /2.0/3.14159],[9999, —9999]) ;

transfunc = control.tf(sys);
poles = control.pole(transfunc
zeros = control.zero(transfunc

#poles2 = np.linalg.eig(A)[0];
l.set offsets (np. column_stack(
m. set offsets(np.column stack(
#q.set offbets(np column stack
#auto reset axis limits:
il (zoom==1):

xmin=max (min(np.min(np.append (np.real (poles) ,np.real(zeros))) ,0,ax.

— get_xlim()[0]), —lel2);

. )
np.real (zeros), np.lmag(zeros))Q))'

);
) ;
Enp real (poles), np.imag(poles))));
( 1))

(np.real(poles2), np.imag(poles
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xmax—=11n ( (np (np.append (np.real (poles) ,np.real(zeros))) ,0,ax.

— get th() [1]),

ymin= (np. (np.append (np.imag(poles) ,np.imag(zeros))),—0.001,ax.
— get_ylim () [0]);

ymax= (np. (np.append (np.imag(poles) ,np.imag(zeros))),0.001, ax.

> get_ylim () [1])
ax.set xlim (xmin,xmax)
ax.set ylim (ymin,ymax)

plt .draw () ;

sI.on changed (update);

sV.on_ changed (update) ;

sCl.on_changed (update) ;
sR4.on changed (update);

sC2.on_changed (update) ;

button (val):

Z0OOm ;

(val="Zoom Fit"):

zoom = 1;

xmin— (np. (np.append (np.real
— get_xlim () [0]) ;

Xmax— (np. (np.append (np.real
— get xlim()[1]);

ymin= (np. (np.append (np.imag
> get_ylim () [0])

ymax= (np. (np.append (np.imag

= get_ylim () [1]) ;
ax.set xlim (xmin,xmax)
ax.set ylim (ymin,ymax)
plt.draw ()

zoém = 0;
sB.on clicked (button);

plt .show ()

#return state variables to what they were before

Iout = (orig Tout);
Vset = (orig Vset);
Vout = (orig_Vout);
Vefly = (orig Vefly);
updateFB3 () ;

plotClosedLoop () ;

Vout2 = 0% (Vout) ;
Vefly2 = 0% (Vefly);
D2 = 0x (outFB3) ;
bestR4 = (R4);
bestCl = (Cl1);
bestC2 = (C2);

bestCrossOverFreq = 0.0;
bestPhaseMargin = 0.0;

Vout = 1.0
("Vout , Iout ,C1,C2,R4");
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listCurr = np.arange(0.1,10.0,0.1);

for Tout in listCurr:
bestLoss = 999999999999.0;
updateFB3 () ;

#find best controller
for Cl in np.arange(le—12, 2e—12, le—12):
for R4 in np.arange(100, 5000, 10):
for C2 in np.arange(2e—9, 5e—9, 0.1e—9):
A = getStateSpace (| Vout, Vefly ,outFB3|,advancePeriod) ;
(A,B) = addFeedback(A);

#check if all eigenvalues have real part less than zero
eigenValues = np.linalg.eig(A)[0];

allNeg = np. all(np.real(eigenValues)<0);

il (allNeg):

#let ’s get the phase margin

#B = B + B_VinxVin + B Joutxlout + B _VsetxVset;

4C = [1.0,0.0,0.0,0.0,0.0];

#D = 0;

#sys = control.ss(A,B,C,D);

#em, pm, Omega cg, Omega cp = control.margin(sys):;

#if ((pm>=60.0) and (pm<=70.0) and Omega cg!=None and Omega cp!=
< None) :

# print ((gm, pm, Omega cg/2.0/3.14159, Omega cp/2.0/3.14159));

# 1f ((Omega cg/2.0/3.14159) > bestCrossOverFreq):

#  bestCrossOverFreq = float (Omega cg/2.0/3.14159);

#  bestPhaseMargin = float (pm);

#  bestR4 = float (R4);

#  bestCl = float (Cl);

#  bestC2 = float (C2);

#pick out eigenValue and eigenVector the correspond most to
— output

eigenVectors = np.absolute(np.linalg.eig(A)[1]);

eigenValues = np.linalg.eig(A)[0];

slowestIndex = np.argmin(np.absolute (np.real (eigenValues)));

#print (eigenValues) ;

#print (slowestIndex);

#exit () ;

#eigenVectorsMag = np.sum(eigenVectors, axis=0);
#eigenVectorsPercent = (eigenVectors/eigenVectorsMag) [0];
#outputVectorIndexMost = np.argmax(eigenVectorsPercent);

#get metric to rate controller , smaller is better

#eigenVectors = eigenVectors|eigenVectorsMag<1e9|; #only keep
— those that affect things above lus—ish

#loss = np.max(abs(180.0 —np.angle (eigenValues |
— outputVectorIndexMost|, deg=True)))/180.0;

loss = min(abs(150.0—np.angle (eigenValues|[slowestIndex|, deg=True
<)), abs(210.0—np.angle(eigenValues|slowestIndex|, deg=True)

= ));
#wantedSpeed = 1e9; #50e3;
#loss += abs(wantedSpeed—np.sum(np.absolute (eigenValues |

— outputVectorIndexMost|)))/wantedSpeed;
i1f(loss<bestLoss):
bestLoss = float (loss);
bestR4 = float (R4);
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bestCl = (C1);

bestC2 = (C2);
#print ("bestPhaseMargin: " + str(bestPhaseMargin));
#print ("bestCrossOverFreq: " + str(bestCrossOverFreq));

( Vout) + "," + (Tout) + "," + (bestCl) + ", " + (bestC2)
— 4+ "," 4 (bestR4));
#print ("CLl: " + str(bestCl));
#print ("C2: " + str(bestC2));
#print ("R4: " + str(bestR4))
exit () ;
R4 = (bestR4) ;
Cl = (bestC1);
C2 = (bestC2);

A = getStateSpace (| Vout, Vefly ,outFB3| , advancePeriod) ;

eigenValues = np.linalg.eig(A)[0];

eigenVectors = np.linalg.eig(A)[1];
("eigenValues: " + (eigenValues));
("eigenVectors: " -+ (np.absolute (eigenVectors)));

(A,B) = addFeedback(A);

#print ("A:" + str(A));

#print(”B " + str(B + B _VinxVin + B Ioutxlout + B_ VsetxVset));

#print ("B_Vin:" + str(B_Vin));

#print ("B_Iout:" + str(B_Iout));
( )

#print ("B_Vset:" + str(B_Vset

eigenValues = np.linalg.eig(A)[0];

eigenVectors = np.linalg.eig(A)[1];
("eigenValues: " + (eigenValues) ) ;
(" elgen\/alueAngles "4 (np.angle (eigenValues , deg=True)));
("eigenVectors: " + (np.absolute (eigenVectors)));

#exit () ;

matrixAdvancePeriod () :
Vout2;
Vefly2;
inputl = np.array ([[Vout2] ,| Vcfly2]| ,[outFB3]|]) ;

output = inputl + 1.0/fswx(np.dot(A,inputl));
Vout2 = (output [0][0]) ;
Vefly2 = (output [1][0]) ;

matrixAdvancePeriodFeedback () :
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Vout2;

Vefly2;

outFB3;

outFB2;

outFB1;

A.B;
inputl = np.array ([[Vout2] ,[ Vcfly2 ]| ,[outFB3] ,[outFB2]| ,[outFB1]]) ;
#print (inputl);

p (1000) :
inputl = inputl + 1.0/fsw/1000.0%(np.dot(A,inputl) + BxVset);

#print (inputl)

Vout2 = (inputl [0][0]) ;

Vefly2 = (inputl[1][0]):

outFB3 — (inputl [2][0]) ;

outFB2 — (inputl [3]]0])

outFB1 = (inputl [4]]0]) ;

#(A,B,B_Vin,B_lIout) = getStateSpace();

#(A,B,B Vin,B Iout,B Vset) = addFeedback(A,B,B Vin,B Iout);
p (200) :

#if ((px1.0/fsw)>100e—6 and (px1.0/fsw)<200e—6):

4D = 0.045;

Helse:

4D = 0.040;

#if ((p*1.0/fsw)>300e—6 and (px1.0/fsw)<400e—6):

# lout = 1.5xorig lout;

#else:

# lout = orig Iout;

((px1.0/fsw)>50e—6 (px1.0/fsw)<400e—6):
Vset = 0.1;
Vset = 0.0:

mmn

try:

[Vout , Vefly ,outFB3| = advancePeriod (| Vout, Vefly ,outFB3]) ;
except:
print ([Vout, Vcfly ,outFB3]) ;
exit ();
outFB3 t.append (outFB3);
Vily t.append(Vecfly);
Vout t.append(Vout) ;

nmnn

matrixAdvancePeriodFeedback () ;
Vily t2.append(Vcfly2);
Vout_t2.append(Vout2);
outFB3 t2.append (outFB3);
outFB2 t2.append (outFB2) ;
outFB1 t2.append(outFB1);
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t .append ((p+1)*1.0/fsw);

#plot voltages

#a = graph.grapher ([t,t,t,t,t,t,t], [Vout t,Vfly t,Vout2 t,Vfly2 t, outFB3 ¢t
— ,outFB2 t,outFBl t], ["Vout” ”Vfly" ”Vout matrix " "Vfly matrix" "
< outFB3" "outFBQ" "outFBl"] "time", "voltage"):
= graph. grapher([t tot,t,t], [Vout t2 Vﬂy t2 outFB3 t2,0utFB2 t2,
— outFB1 t2], [”Vout_matrix ,"Vily matrix" ”outFB%” ”outFBQ” ”outFB]”]
— "time", "voltage");

graph.plt.grid () ;

a.plot () ;

#now plot pole zero map
control;
matplotlib.pyplot as plt;

(A);
Al2][0] = 0;
Al2][1] = 0;
Al2]]2] = 0;
Al2][3] = 0;
Af2][4] = 0;
(A);
B =B + B _VinxVin + B _ToutxIout + B_VsetxVset;
C = [1.0,0.0,0.0,0.0,0.0];
D= 0.0;
sys = control. ss (A,B,C,D);
transfunc = control. tf(sys);

control . matlab.pzmap(transfunc);

Zeros control.zero(transfunc);

plt.scatter (np.real(zeros), np.imag(zeros), s=50, marker="0’, facecolors=’
< mnone’, edgecolors="g")

plt .show () ;

mag, phase, omega = control.matlab.bode(sys, (1000,1000000,1000) ,dB=

< True,deg=True, Plot=False)
#print (mag)
plt.plot (np.divide (omega,(2%3.14159)) ,mag) ;
plt.plot (np.divide (omega,(2%3.14159) ) ,phase);
plt .show () ;

C.5 Simplified Symbolic Efficiency Estimation

__future print _function
sympy *;

itertools;

random ;
si_prefix si_format;
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#names and units of inputs
names —
units = |[|;
names . append
names . append
names . append
names . append
names . append
names . append

("fsw’);units.append("Hz");
("Vout’);units.append("V");
("Vin’);units.append("V");
("Tout”);units.append("A");
('L7);units.append("H");
('C’);units.append("F");
names.append ('Lres’);units.append("H");
names . append ( 'FOM’) ; units .append ("");
names . append ( 'Rover.”) ;units.append("");
names . append ( 'CtimesR ") ; units .append ("");
names . append ( 'RtimesW ') ; units.append ("");
("CtimesW ") ;units.append("");
('"WI1");units.append("m");
("W27);units.append("m");
("W37); units.append("m");
(W47 ; )

names . append
names . append
names . append
names . append

names . append units.append("m"

#create the sympy variables that will be used as symbols in equations
fsw,Vout, Vin, Iout ,L.,C, Lres ,FOM, RoverL , CtimesR , RtimesW , CoverW ,W1, W2, W3, W4 =
< symbols (names[0:16]) ;

#ResSC

loss_ ResSC(returnAll=False):

swl_RMS = 2%%0.75%3%x—0.5 % (VoutxIout/Vin)*x0.75 % ((Vin—2«Vout) /L)
— *%0.25 * (fsw)xx—0.25;

swl loss = swl RMSx%2 x RtimesW /W1;

sw2 RMS = Lx%x—0.25 % (2.0%%1.5/3.0xfswxx—0.5%(Vin—2xVout)**1.5%(Iout/Vin)
— xx1.5xVout*x0.5 + (pi)/8.0xfswxx—1x(lout/Vin)**2x(Vin—Vout)
— *x2%Cxx —0.5) xx0.5;

sw2 loss = sw2 RMS#*x%2 x RtimesW /W2;

sw3 RMS = 2x%x0.75%3**x—0.5 * (VoutxIout/Vin)=*x0.75 x ((Vin—2xVout) /L)
— %%0.25 * ((Vin—Vout)/Vout)*x0.5 % (fsw)xx—0.25;

sw3 loss = sw3_ RMSx%2 x RtimesW /W3;

swd RMS = (pi)**%0.5%2.0%%x —1.5%(Vout*Iout /Vin) *((Vin—Vout) /Vout) L
— xx—0.25%xCxx —0.25xfswx*x —0.5;

swd loss = swd RMSx%2 x RtimesW /W4;

L RMS = Lxx—0.25 % (2.0%%1.5/3.0%fswxx—0.5%(Vin—2«Vout) **x0.5%( lout/Vin)
— *x1.5%(Vin—Vout) + (pi)/8.0%fswix—1x(Iout/Vin) x*2%(Vin—Vout)
< *#%2%Cxx —0.5) x%0.5

L loss = L RMS*%2 *x L % RoverL;

C RMS = L_RMS;

C loss = C_RMS#%x2 x CtimesR / C;

switching loss = CoverWxVins*2x fsw s« (WLHW24W3+W4) ;

#a = 1.0/(2.0xfloat (pi)*(LxC)x%0.5)
#valid loss = VinxIout x(abs(a—fsw)—(a—fsw))

t1 = (loutxfswxx—1x(Vin/Vout)sxx—1%((Vin—2.0%«Vout) /(2*L) )*x—1) %%0.5;
t2 = (Vin—2.0%xVout) /Voutxt1l+t1;

t3 = (pi) *(LxC) *%0.5+1t2;

valid time loss = 9999.0/t3*VinxIout x( (1.0/fsw—t3) —(1.0/fsw—t3) ) ;
#cl = Tout*(Vin—Vout) /(2.0+xCxfswVinxVout) ;

#c2 = lout*(Vin—Vout) /(2.0xCxfswx*(Vin—2«xVout) ) ;

cl = Tout /(2.0%xCxfsw);
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#valid cap loss = 999999.0% VinxIout*(abs(0.1—cl)—(0.1—c1)) + 999999.0x*Vin
< xlout*(abs(0.1—c2)—(0.1—c2));
valid cap loss = 999999.0x* VinxIout *( (0.5—cl)—(0.5—cl));

(returnAll):

[swl loss,sw2 loss,sw3 loss,sw4 loss,L loss,C loss,
< switching loss,valid time loss,valid cap loss]

VoutxIout /((swl_ losstsw2 losstsw3 losstswd loss+L loss+C _loss+
— switching loss+valid time loss+valid cap loss) + Voutxlout);
#return swl loss+sw2 loss+sw3 loss+sw4d loss+L loss+C loss+switching loss;

#3—Level Buck

loss 3LevBuck(returnAll=False):

swl RMS = 2%%0.5%3%%x—0.5 % (VoutxIout/Vin)*x0.75 * ((Vin—2«Vout)/L)x*%0.25
— % (fsw)*xx—0.25;

swl loss = swl RMS#%2 x RtimesW /WI;

sw2 RMS = swl RMS;

sw2 loss — sw2 RMS##2 x RtimesW /W2;

sw3 RMS = 2%%0.5%3%x—0.5 * (Voutxlout/Vin)**0.75 x ((Vin—2+Vout)/L)*%0.25
<~ % ((Vin—Vout)/Vout) *%0.5 * (fsw)xx—0.25;

sw3 loss = sw3_ RMS#*x%2 * RtimesW /W3;

sw4_RMS = sw3_RMS;

swl loss — swi RMS##2 x RtimesW /W4,

L RMS = 2%#0.5%3%% —0.5 % (Iout)*%0.75 % ((Vin—2%Vout)/L)*%x0.25 * (Vout/
< Vin) *x0.25 % (fsw)**x—0.25;

L loss = L _RMS*%2 % L % RoverL;

C RMS = 2%3xx—0.5 % (Vout*xIout/Vin)=*x0.75 x ((Vin—2xVout)/L)*x0.25 * (fsw
— )*xx—0.25;

C loss — C RMS##2 * CtimesR / C;

switching loss = CoverW*Vln**Z*fsw*(W1+W2+W3+W4)

t1 (Tout*fswxx—1%(Vin/Vout)*x —1%((Vin—2.0xVout) /(4%L) )*x—1)*x0.5;

t2 (Vin—2.0%xVout) / (2.0« Vout ) «t1+t1;

valid _time loss = 9999.0/t2+VinxIout x( (0.5/fsw—t2) —(0.5/fsw—t2) ) ;

cl = JToutxVout/(CxfswxVinxx2);

c2 = TIout*Vout/(CsfswxVinx(Vin—2xVout) ) ;

valid cap loss = 999999.0* VinxIout *( (0.1—cl)—(0.1—c1)) + 999999.0% Vinx
< Tout *( (0.1—c2)—(0.1—-c2));

(returnAll):
[swl loss,sw2 loss,sw3 loss,swd loss,L loss,C loss,
< switching loss,valid time loss,valid cap loss]

VoutxIout /((swl _loss+sw2 losstsw3 loss+swd loss+L loss+C _loss+
<+ switching losstvalid time losstvalid cap loss) + Voutxlout);

#ResCuk
loss ResCuk (returnAll=False):
swl RMS = 2x%%0.75%3%%x—0.5 % (Voutxlout/Vin)*%0.75 % ((Vin—2«Vout) /L)
— %%x0.25 x (fsw)x*x—0.25;
swl loss = swl RMSx*x*2 =x RtlmesW/Wl
sw2 RMS = (pi) *%0.5%8.0%*% —0.5%( Vout*Iout /Vin) *( Lres*C) «x —0.25%(fsw)
" *x—0.5#T0DO SOMETHING IS WRONG WITH THIS
sw2 loss = sw2 RMSx*x2 * RtimesW /W2;
sw3 RMS = 2x%%0.75%3%% —0.5 * (VoutxIout/Vin)*%0.75 * ((Vin—2%Vout) /L)
— %%x0.25 * ((Vin—Vout)/Vout)*x0.5 % (fsw)xx—0.25;
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sw3 loss = sw3_ RMS«*x2 x RtimesW /W3;

swd RMS = (2.0%#%1.5%3.0%% —1x((Vin—2+Vout) /L) *0.5%( Vout*Iout /Vin) s 1.5 ((
< Vin—2xVout) /Vout ) *(fsw)*x—0.5 + (pi)*8xx—1x(VoutxIlout /Vin)
— #%2%(LresxC) xx —0.5%(fsw )xx—1)*%0.5

swd loss = swd RMSx%2 x RtimesW /W4;

L RMS = sw3 RMS;

L loss =L _ RMS##2 * L # RoverL;

Lres RMS = sw2_ RMS;

Lres loss = LreS_RMS**Q x Lres * RoverL;

C RMS = (2.0%%1.5%3.0%% —1x((Vin—2%xVout) /L) *%0.5%(Vout«xlout /Vin) *x1.5%(fsw
— )*x*x—0.5 + (pi)*8+x—1%(Vout*xlout/Vin) x«x2x%(Lres*C) % —0.5%(fsw)
— #«x—1)%x0.5

C loss = C RMS*x2 x CtimesR / C;

switching loss = CoverWxVins*2x fsw x (WHW2W3+W4) ;

t1 = (Toutxfswxx—1%(Vin/Vout)xx—1%((Vin—2.0%Vout) /(2*L) )*x—1) %%0.5;
t2 = (Vin—2.0%Vout)/Voutxtl+tl;
t3 = (pi)=* (Lres*C)**O 5+t1;

valid time loss = 9999. O/tB*Vln*Iout*( (1.0/fsw—t3) —(1.0/fsw—t3) ) ;

cl = Tout /(2.0%Cxfsw*Vin) ;

c2 = ToutxVout /(2. O*C*fsw*Vin*(Vin—2*Vout));

valid_cap_loss = 999999.0% VinxIout ( (0.1—c1)—(0.1—c1)) + 999999.0% Vinx
— Tout*( (0.1=¢2)—(0.1—¢2));

(returnAll):

[swl loss,sw2 loss,sw3 loss,sw4d loss,L loss,Lres loss,C loss,
— switching_loss Valld time loss,valid cap loss]

Vout*Iout /((swl losstsw2 loss+sw3 loss+sw4d loss+L loss+Lres loss
< +C _losstswitching loss+valid time loss+valid cap loss) + Voutx
— lout);

#create loss functions in numpy with vector inputs to speed up
numpy as np;
np loss ResSC = lambdify ((fsw, Vout, Vin, Iout, L, C, Lres, FOM, RoverL,
<« CtimesR, RtimesW, CoverW, W1, W2, W3, W4), loss ResSC(), "numpy")
np loss 3LevBuck = lambdify ((fsw, Vout, Vin, Iout, L, C, Lres, FOM, RoverL,
< CtimesR, RtimesW, CoverW, W1, W2, W3, W4), loss 3LevBuck(), "numpy")
np loss ResCuk = lambdify ((fsw, Vout, Vin, Iout, L, C, Lres, FOM RoverL,
— CtimesR, RtimesW, CoverW, W1, W2, W3, Wi), loss_ResCuk (), "numpy")
#print (np _ 1055 ResCuk(QeG 1,5.,5, 26—9 2e—6 0 09—9 0,4e—3/2e—9,2e —6x4de —3,4e
< —3%0.5,2¢—9/0.5,1,1,1,1));
#exit () ;
#print(latex(loqs ResSC()))
#pllnt (H U) .
(latex (loss ResSC () .expand()))

#print

#print ("");

globalMax = [0,0,0];

inputsMax = |[[None,None, None, None, None, None, None, None, None, None , None , None,

< None, None, None,None| , [ None, None, None ,None , None , None , None , None , None ,
< None, None, None,None, None, None ,None | , [ None, None, None , None , None , None ,
< None, None, None ,None, None , None , None , None , None , None | | ;

e (True):
inputs = [[],[] 07, 01U TS TS TS T T T T T T T T
100000) :

combo (
inputs [0]. append (random. uniform (1.0e6,10e6) ) ;#fsw
(1.0) ;#Vout

inputs |1].append
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inputs [2].append (5.0) ;#Vin
inputs [3].append (5.0) ;#Iout
inputs [4].append(r andom . uniform (2e—9,10e—9)) ;#L
inputs [5].append (7.04e—6);#C
inputs |[6]. append (random. unlform(O.le—Q,IOe—Q));#Lres
inputs [7].append (0) ;#OM
inputs [8].append(4e—3/2e—9); #RoverL
inputs |9]. append (7.04e —6x0. 002513) ;#CtimesR
inputs [10].append(4e—3%0.5); thlmeaVV
inputs 11].append(2e—9/0.5); HCoverW
inputs 12].append(random.uniform(o 5 ,1.5) ) ;#Wl1
inputs [13]. append (random. uniform (0.5,1.5) ) ,#WQ
inputs 14].append(random.uniform(() ,1.5) ) ;#W3
inputs|15].append (random. uniform (0.5,1.5) ) ;#W4
a0 = np_ loss ResSC(xinputs);
al = np loss 3LevBuck(xinputs);
a2 = np loss ResCuk(xinputs);
b0 = np.argmax(a0);
bl = np.argmax(al);
b2 = np.argmax(a2);

#if something better has been found

(a0|b0]>globalMax [0]

" n n

(a0 [bO]>globalMaX [0]) :

al|bl]>globalMax [1]|

("ResSCx" . 1just (25,7 7),end="")
globalMax [0] = a0[b0];
X (inputs)):
inputsMax [0][x] = inputs|[x][bO];
("ResSC" . ljust (25,7 ') ,end="")
(al|bl]>globalMax[1]) :
("3LevBucks".1ljust (25, ') ,end="")
globalMax [1] = al[bl];
X (inputs)):
inputsMax [1][x] = inputs|[x][bl];
("3LevBuck".ljust (25, 7),end="")

(a2|b2]>globalMax [2]) :
("ResCukx")
globalMax [2] a2|b2];
rox ( (ir}puts )):
{nputsMaX[Q][x] inputs [x]|[b2];

("ResCuk")

#print output to console

"ResSC".ljust (25,
IJust(lO 7)) 4+ {0
+O("EEE . Tjust (10, 7.0 +

CO) VR Tjust (10,

#print

(
((

( (names)):
((names|x]. 13us§(10, )+ osi

— |).1ljust (25, ) + (names[x]

— inputsMax[l][x],3)+un1ts[ ) -
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") +"3LevBuck". ljust (25,
3fp".

"{0:.3f

) 4 {053}

t (globalMax [0]) ).

a2|b2]|>globalMax [2]) :

")+"ResCuk ")

ljust (25,
(globalMax [1]) ).
(globalMax

format (inputsMax [0][x],3)+units [x

ljust (10,
ljust (25,

T) o osi_
") + names|[x].ljust (10,

format (




< .7) + si_format (inputsMax [2][x],3)+units|x]);
(".",end="");

nnn
if (a[b]>globalMax) :
globalMax = al|b];
print ("\n");
print ("Eff".ljust (10, ’.7) + "{0:.3f}".format(a|b]));
for x in range(len (names)):
print (names|[x|.ljust (10,’.") + si_format (inputs|[x]|[b],3)+units|x]);

nnn

graph;
b = graph.grapher (| (len(a))], [al, [""])s
#b.plot () ;

C.6 PCB uC Code

#include "project.h"
#include <stdio.h>

void configTri(int mVpeak)

{
Control Reg OutputEnable Write (0) ;
AMux 1 FastSelect(1);

//16 bit adc is 65536

//so OV is 32768 and 6.144V is 65536

//block until input voltge is above 4.6V

ADC _DelSig 1 StartConvert () ;

CyDelay (100) ;

int mVinput = (ADC DelSig 1 Readl6() —32768)*6144/32768;
while (mVinput <4600)

ADC DelSig 1 StartConvert () ;

CyDelay (100) ;

mVinput = ADC_ DelSig 1 CountsTo mVolts(ADC DelSig 1 GetResult32());
//Led pin_Write (1) ;

//Led pin_Write (0) ;
//start triangle wave current sources

IDAC8 1 _Start();
IDAC8 2 Start() ;

int maxValuel = 255;
int minValuel = 0;
int maxValue2 = 255;
int minValue2 = 0;

//set the reference at the peak that we want, max of 4.080V
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if (mVpeak<0)

mVpeak = 0;
if (mVpeak>4080)

mVpeak = 4080;
%/DACS_l_SetValue(mVpeak/ 16);

//figure out what the current values should be to have a peak of mVpeak
//triangle wave 1

int currentVal = (minValuel4+maxValuel) /2;

while ((minValuel!=currentVal) & (maxValuell=currentVal))

IDAC8 1 SetValue(currentVal);
//clear the sample bit
CyDelayUs (1000) ;
Status Reg 1 Read();
CyDelayUs (1000) ;

//see if the bit has been set

if (Status_Reg 1 Read()==0)

maxValuel currentVal;

else

minValuel = currentVal;

currentVal = (minValueltmaxValuel) /2;
//triangle wave 2

currentVal = (minValuel+maxValuel) /2;

while ((minValue2!=currentVal) & (maxValue2!=currentVal))

IDAC8 2 SetValue(currentVal);
//clear the sample bit
CyDelayUs (1000) ;
Status_ Reg 2 Read();
CyDelayUs (1000) ;

//see if the bit has been set
if (Status_Reg 2 Read()==0)

maxValue2 = currentVal;

else

minValue2 currentVal;

currentVal = (minValuel+maxValuel) /2;

Y

}

AMux 1 FastSelect(0);

Control Reg OutputEnable Write (1) ;
return ;
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uint8 DAC setOut;
uint8 DAC_setFly = 2500/16/2;
void setOutput(int mVout)

{

}

//Control Reg OutputEnable Write (0) ;

//set the output to what we want, max of 4.080V

if (mVout<0)
mVout = 0;
}';f (mVout>4080)
mVout = 4080;
} /VDAC8 3 SetValue(mVout/16/2) ;

DAC setOut = mVout/16/2;
//CyDelay (100) ;

//Control Reg OutputEnable Write (1) ;

void clearScreen ()

{

}

while (1USBUART 1_CDClsReady (

USBUART 1 PutChar(27) ;

while (USBUART 1 CDCIsReady (

USBUART 1 PutString("[2J");

while (IUSBUART 1 CDCIsReady (
(

) ;
) ;
_ ) ;
USBUART 1 PutChar(27) ;
)

while (!USBUART 1 CDCIsReady
USBUART 1 PutString(" [H");

)

)
)
)
)

unsigned int currentR = 0;
void setResistorI2C (unsigned int Ohms)

//full range is 20kOhms with 1024 steps
if (Ohms>20000)

Ohms = 20000;

unsigned int steps = Ohmsx1023;

steps = steps /20000;

currentR = steps*20000;

currentR = currentR /1023;

//send new command to digital potentiometer

uint8 address = 0b00101111;

//data bytes are 0—0—C3-C2—C1-C0-D9-D8 then D7-D6-D5-D4-D3-D2-D1-D0
//enable updating of RDAC register

uint8 toWrite [2] = {0b00011100,0b00000010 };

I12C 1 MasterWriteBuf(address, toWrite, 2, 2C 1 MODE COMPLETE XFER) ;
CyDelay (1) ;

//update the RDAC register

toWrite [0] = 0b00000100 + ((steps&(1<<9))>>8) + ((steps&(1<<8))>>8);
toWrite | 1] 0b00000000 + (steps&(0b11111111));
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[2C 1 MasterWriteBuf(address, toWrite, 2, 2C 1 MODE COMPLETE XFER) ;
CyDelay (1) ;

//list of soldered capacitor values in pF
//unsigned int attachedC|[8] = {12800,6400,3200,1600,800,400,200,100};
unsigned int attachedC|[8] = {100000,10000,4700,2200,1000,470,220,100};
unsigned int currentC = 0;
void setCapacitorI2C (unsigned int pFset) //not done yet, not tested
{
un51gned char toConnect[1] = {0b00000000 };
/see what capacitors should be connected
attdchedCllj must have decreasing values with decreasing i
currentC = 0;
for (int i=0; i<8; i++)
{
if (attachedC|i]<pFset)

toConnect [0] = toConnect|[0] | (1<<i);
pFset = pFset — attachedC|1i];
currentC += attachedC]|1i|;

}
s
//toConnect [0] = 0b11111111;

/send the result to the analog switch
u1nt8 address = 0b1001000;
12C 1 MastererteBuf(address, toConnect, 1, 2C 1 MODE COMPLETE XFER) ;
CyDelay (1) ;

}

char menuStrings|[10][30] = {"Set_Triangle_Wave_Height","Set_Output_Voltage"
— ,"Set _I2C_Resistor" ,"Set_I2C_capacitor" ,"Set_Cfly_Voltage" "testC" "
— testD" ,"testE" "testF" "testG"};

//char menu[10][24] = {"TestAl","TestA2" " TestA3" ,"testA" "testB" " testC","
— testD","testE","testF ", "teth”},

char dts[lO]f{O7 10,027,737, '57,767,777,°87,797 };

int menu = —1;

unblgned int inputValue =
/int inputValuePlace = 0;

v01d drawMenu ()

0;

clearScreen () ;

while ('USBUART 1 _CDCIsReady () ) ;

USBUART 1 PutString("Press_m_to_escape_and_return_to\r\n");
while (1USBUART 1 CDCIsReady () ) ;

USBUART 1 PutString("the_main_menu_at_any_time.\r\n");

/output voltage
CyDelayUs(lOO)
int countsl = ADC_SAR_l_GetResulth();
CyDelayUs (100) ;
int counts2 = ADC_SAR_ 1 GetResultl6() ;
CyDelayUs (100) ;
int counts3 = ADC_SAR 1 GetResultl6() ;
CyDelayUs (100) ;
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int counts4d = ADC_SAR 1 GetResultl6() ;
CyDelayUs (100) ;
int countsb = ADC_ SAR 1 GetResultl6

()
OF
CyDelayUs(lOO) ;
int counts6 = ADC_SAR 1 GetResultl6() ;
CyDelayUs (100) ;

ADC SAR 1 GetResultl6()

);

int counts7 =

CyDelayUs(lOO)

int countss8 — ADC_SAR 1 _ GetResult16 () ;

int readV = 2x*ADC_SAR_1_CountsTo mVolts((countsl+count82+counts3+
<+ counts4tcounts5+counts6+counts7+countss) /8);

char toPrint [20];

sprintf(toPrint ,”%d" , readV);

while (USBUART 1 CDCIsReady () ) ;

USBUART 1 PutString("Output/set_(mV):_");

while (|USBUART 1 CDCIsReady () ) ;

USBUART 1 PutString(toPrint) ;

()

while (! USBUART 1 CDCIsReady

USBUART 1 _PutString("/") ;

sprintf (toPrint ,"%d", DAC_ setOut*32) ;

while ('USBUART_I_CDCISReady() ) ;

USBUART 1 PutString(toPrint);

//flying cap voltage

CyDelayUs(lOO)

countsl ADC_SAR 2 GetResult16()

CyDelayUs(lOO)

counts2 = ADC SAR 2 GetResult16()

CyDelayUs(lOO)

counts3 = ADC_SAR_2_GetResu1t16()

CyDelayUs (100) ;

counts4 = ADC_ SAR 2 GetResultl6 () ;
()
()
()

)

)
)

Y

countsd ADC_SAR_2 GetResultl6

CyDelayUs 100) ;

counts6 = ADC SAR 2 GetResultl6

CyDelayUs (100);

counts7? = ADC_SAR_Z_GetResulth

CyDelayUs (100) ;

counts8 = ADC_ SAR 2 GetResultl6 () ;

readV = Z*ADC _SAR_2 CountsTo rnVolts((counts1+count82+count83+counts4+
<+ counts5tcounts6tcounts7+countss) /8);

sprintf(toPrint ,"%d", readV);

while (USBUART 1 CDCIsReady())

USBUART 1 PutString (" 1 nFlylng Cap_(mV):_");

while (! USBUART 1 CDCIsReady())

USBUART 1 _PutString(toPrint ) ;

//feedback resistor

sprintf (toPrint ,"%d", currentR);

while (USBUART 1 CDCIsReady())

USBUART 1 PutString("\r" nFeedbdck Resistance_(Ohms):_");

while (! USBUART 1 CDCIsReady())

USBUART 1 PutString(toPrint) ;

//feedback capacitance

sprintf(toPrint %A, currentC) ;

while (IUSBUART 1 CDCIsReady () ) ;

USBUART 1 PutString("\r\nFeedback_Capacitance_(pF):_");

)

CyDelayUs (100);
(

)

)
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while (IUSBUART 1 CDCIsReady () ) ;

USBUART 1_PutString(toPrint ) ;
/die temperature

1nt16 t dieTemp;

DieTemp 1 GetTemp(&dieTemp) ;

sprintf(toPrint ,"%d" dleTemp),

while (USBUART 1 CDCIsReady())

USBUART 1 PutString("\r\nDie_ Tempeldture (degC):_");

while (! USBUART 1 CDCIsReady())
USBUART 1 PutString(toPrint) ;

while (! USBUART 1 CDCIsReady())
USBUART 1 PutString(" \r'\n\r\n\r\n");

if (menu==-1)

while (USBUART 1 CDCIsReady() ) ;

USBUART 1 _PutString ("
while (USBUART 1 CDCIsReady() ) ;
USBUART 1 PutStrlng( e Main_Menu_

while (IUSBUART 1 CDCIsReady () ) ;

USBUART_1_PutString ("
for (uint8 i=0; i<10; i++)

{

USBUART 1 PutChar(dts|[i]) ;
while (! USBUART 1 CDCISReady()
USBUART 1 _PutString("_—_");
while (! USBUART 1 CDCISReady() ) ;
USBUART 1 PutString(menuStrings|i]) ;
while (! USBUART 1 CDCISReady() B
USBUART 1 PutString("\r'\n");

)

while (USBUART 1_CDClsReady () ) ;
)

}
while (IUSBUART 1 CDCIsReady () ) :
USBUART 1 PutString ("

else if (menu==0)

while (1USBUART 1 CDCIsReady () ) ;
USBUART 1 PutChar(dts [menu]) ;
(
(

while (!USBUART 1_CDCIsReady
USBUART 1 PutString("_—_");

Y

while (!USBUART 1 CDCIsReady
USBUART 1 PutString(menuStri

I

\r\n");

USBUART 1 PutString("'r\n
while (! USBUART 1 CDCISReady(
USBUART 1 _PutString ("Maximum
while (! USBUART 1 CDCIsReady (
USBUART 1 PutString ("mVpeak:

);
);
);
gs [menu]) ;
)
) \
; _4080(mV)\n\r");

)
)
n
while (! USBUART 1 CDCIsReady()
)
)

”)’7
else if (menu==1)

while (IUSBUART 1 CDCIsReady() ) ;
USBUART 1 PutChar(dts|[menu]) ;
while (IUSBUART 1 CDCIsReady () ) ;
USBUART 1 PutString("_—_");

136




{

while (IUSBUART 1 _CDCIsReady () ) ;
USBUART 1 PutStrlng(menuStrlngs[menu])
while (IUSBUART 1_CDClsReady () ) ;

USBUART _1_PutString("\ r'n
while (!USBUART_l_CDCISReady() );
USBUART 1 PutString (" Output_Voltage_(mV):_");

//else if (menu==4)

while (!USBUART 1 CDCIsReady/() )
// USBUART 1 PutChar(dts [menu]) ;

// while (! USBUART 1 CDCIbReddy() )
// USBUART _1_PutString(" — ") ;

while (! USBUART 1 CDCI@RCady() ) ;
USBUART 1 PutStrlng(menuStrlngb [menu]) ;
while (1USBUART 1 CDCIsReady () ) ;

\r\\n”) )

USBUART _1_PutString("\ r\n

int timer = 0;
void checkUSBSerial ()

timer += 1;
if (timer >100)
{
if ((menu==-1) | (menu==4))
drawMenu () ;
}
timer = 0;
}

/see 1if there is any incoming usb data
1nt count = USBUART 1 DatalsReady () ;
if (count!=0)

{
uint8 buffer [64];

int len = USBUART 1 GetAll( buffer);
for (int i=0; i<len; i+t+)

while (IUSBUART _1_CDCIsReady () ) ;
USBUART 1 PutChar(buffer[i]) ;

if (buffer|i|=="m")

menu = —1;
//keyPressed = 0;

if (menu==-1)

{
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if (buffer|[i|=="0")
menu = 0;

oo .
flse if (buffer|i|=="1")

menu = 1;

oo .
flse if (buffer|i|=="2")

menu = 2;
else if (buffer|[i]=="3")
{

menu = 3;
}
else if (buffer|[i]=="4")
{

menu = 4;
oo .
else if (buffer|i]=="5")
{

menu = 9;
else if (buffer[i]=="6")
{

menu = 6;
oo .
else if (buffer|[i]=="7")
{

menu = 7;
oo
else if (buffer[i]=="8")
{

menu = §;
else if (buffer[i]=="9")
{

menu = 9;

}
drawMenu () ;
inputValue = 0;

else if ((menu==0) | (menu==1) | (menu==2) | (menu==3) | (menu
o =)

if (buffer|[i]=="\1")
{ if (menu==0)
if (inputValue >5000)
inputValue = 5000;
configTri(inputValue) ;

else if(menu==1)
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if (inputValue >5000)
inputValue = 5000;
setOutput (inputValue) ;
else if(menu==2)
setResistorI2C (inputValue) ;
else if (menu==3)

setCapacitorI2C (inputValue) ;

}

inputValue = 0;
menu = —1;
drawMenu () ;

}
else if ((menu==1) & (buffer|[i]=="w"))

/VDAC8 3 SetValue(VDAC8 3 Data+1);
DAC setOut = DAC _setOut + 1;
drawMenu () ;
inputValue = 0;

}
else if ((menu==1) & (buffer[i]=="5"))

/VDAC8 3 SetValue(VDAC8 3 Data—1);
DAC setOut = DAC_ setOut — 1;
drawMenu () ;
inputValue = 0;

else if ((menu==4) & (buffer[i]=="w"))

/VDAC8 3 SetValue(VDAC8 3 Data+1);
1f(DAC setFly <255)

{
DAC _ setFly = DAC setFly + 1;

}
drawMenu () ;
inputValue = 0;

else if ((menu==4) & (buffer|[i]=="5"))

/VDAC8 3 SetValue(VDAC8 3 Data—1);
1f(DAC setFly >0)

DAC _ setFly = DAC setFly — 1;

}
drawMenu () ;
inputValue = 0;

else if((buffer[i]!:’O’)&(buffer[i]!:’1’)&(buffer[ |1="2"
— &(buffer [1]!1="3")&(buffer [{]I="4")&(buffer[i]!="5")
< buffer[i|!="6")&(buffer [i]!="7")&(buffer[i|l="8")&(
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— buffer[i]!="9"))

drawMenu () ;
inputValue = 0;

else

{

inputValue = 10;
if (buffer[i]=="0")

inputValue += 0;
else if (buffer|[i]=="1"
inputValue += 1;
else if(buffer|i]=="2"
inputValue += 2;
}else if (buffer|[i]=="3"
inputValue += 3;
else if(buffer|i]=="4"
inputValue += 4;
else if (buffer|i]=="5"
inputValue += 5;
}else if (buffer|[i]=="6"
inputValue += 6;
else if (buffer|i]=="7"
inputValue += 7;
else if (buffer|i]=="8"
inputValue += 8;
%alse if (buffer |[i]=="9"

inputValue += 9;
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int main(void)

{

CyGloballntEnable; /+ Enable global interrupts. x/
//CyWdtStart (CYWDT 1024 TICKS,CYWDT IPMODE NOCHANGE) ;
CyDelay (100) ;

DAC setOut = VDAC8 3 Data;

Control Reg OutputEnable Write (0) ;

//start freq dividers for triangle wave synchronization
Control Reg 1 Write(0) ;

VDAC8 1 Start() ;
Comp 1 Start () ;
Comp_ 2 Start();

//Timer 1 Start();
//Timer 2 Start () ;
//Timer 3 Start () ;
//Timer 4 Start ()

VDACS8 3 Start () ;
ADC _ DelSig 1 Start () ;

Opamp 1 Start();
Opamp_ 2 Start();
PGA 1 Start();
Comp_ 3 Start();
Sample Hold 1 Start();
Sample Hold 2 Start();
Sample Hold 3 Start();
//Opamp_vc2 Start() ;

Opamp 3 _Start () ;

PWM 1 Start() ;

//PWM 2 Start () ;

//configure the triangle wave outputs for 0—4V, blocks
— above 4.6V

configTri(4000);

setOutput (3000) ;
DAC_setOut = 31;

//start the usb serial port
USBUART 1 Start (0, USBUART 1 5V_OPERATION) ;
while (lUSBUART 1 bGetConfiguration() ) ;
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USBUART 1 CDC_Init() ;
drawMenu () ;

//uint8 writeBuffer [100];

12C 1 _Start();

setResistorI2C (1000) ;

setCapacitorI2C (100000) ;

//12C 2 SlavelnitWriteBuf (writeBuffer , 100);
//12C 2 Start () ;

Control Reg OutputEnable Write (1) ;

ADC SAR 1 Start() ;
ADC_SAR 1 StartConvert () ;
ADC_SAR_ 2 Start() ;
ADC SAR 2 StartConvert () ;

VDAC8 1 SetValue(1000/16) ;

unsigned char flip = 0;
for (55)

//CyWdtClear () ;

//t+h holds when high
Control Reg 2 Write(1);
Control Reg 3 Write(1);
CyDelay (1) ;

if (flip)

Control Reg 2 Write(0) ;
VDAC8 3 SetValue(DAC_setOut) ;

else

Control Reg 3 Write(0);
VDAC8 3 SetValue(DAC setFly) ;

flip =1 — flip;

CyDelay (10) ;

//12C 2 SlaveClearWriteStatus () ;

//12C _2 SlaveClearWriteBuf () ;

if (Button0 pin_Read ()==0)
Bootloadable 1 Load()
CyDelay (1000) ;

//uint8 toWrite[100] = "Hello";
//12C 1 MasterWriteBuf (73, toWrite, 23, 2C 1 MODE COMPLETE XFER) ;
//12C 1 MasterWriteByte (0b01010101 ) ;
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checkUSBSerial () ;

/% [] END OF FILE x/

143




144



Bibliography

1]
2]
3]
4]

[5]

6]

7]

18]

19]

[10]

[11]

Linear Technology - Altera Arria 10 FPGA Development Kit. http://www.
linear.com/solutions/5844. Accessed: 2018-01-24.

Linear Technology - LTM4650 - Dual 25A or Single 50A DC/DC pModule Reg-
ulator. http://www.linear.com/product/LTM4650. Accessed: 2018-01-25.

Linear Technology - Xilinx Virtex™-7 High-End Networking Card With Dual
CXP Ports. http://www.linear.com/solutions/5471. Accessed: 2018-01-24.

Prof. Slobodan Cuk - New Topology Eliminates Magnetic Cores at 50kHz
NOT 50MHz! http://gecs.ieee.tn/wp-content/uploads/2017/03/
GECS2017PaperEDITED.pdf. Accessed: 2018-01-24.

E. Abramov, A. Cervera, and M. M. Peretz. Optimal design of a voltage regulator
based resonant switched-capacitor converter ic. In 2016 IEEE Applied Power
FElectronics Conference and Exposition (APEC), pages 692-699, March 2016.

M. Biglarbegian, N. Shah, I. Mazhari, and B. Parkhideh. Design considera-
tions for high power density /efficient pcb embedded inductor. In 2015 IEEE 3rd

Workshop on Wide Bandgap Power Devices and Applications (WiPDA), pages
247-252, Nov 2015.

Mehrdad Biglarbegian, Neel Shah, Iman Mazhari, Johan Enslin, and Babak
Parkhideh. Design and Evaluation of High Current PCB Embedded Inductor for
High Frequency Inverters. (1):2998-3003, 2016.

A. Cervera, M. Evzelman, M. M. Peretz, and S. (. Ben-Yaakov. A high-efficiency
resonant switched capacitor converter with continuous conversion ratio. IFEE
Transactions on Power Electronics, 30(3):1373-1382, March 2015.

S. Cuk. Step-down converter having a resonant inductor, a resonant capacitor
and a hybrid transformer, March 29 2011. US Patent 7,915,874.

Y. Nour, Z. Ouyang, A. Knott, and 1. H. H. Jorgensen. Design and implementa-
tion of high frequency buck converter using multi-layer pcb inductor. In IECON
2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, pages
1313-1317, Oct 2016.

K. Sano and H. Fujita. Performance of a high-efficiency switched-capacitor-

based resonant converter with phase-shift control. IEEE Transactions on Power
FElectronics, 26(2):344-354, Feb 2011.

145


http://www.linear.com/solutions/5844
http://www.linear.com/solutions/5844
http://www.linear.com/product/LTM4650
http://www.linear.com/solutions/5471
http://gecs.ieee.tn/wp-content/uploads/2017/03/GECS2017PaperEDITED.pdf
http://gecs.ieee.tn/wp-content/uploads/2017/03/GECS2017PaperEDITED.pdf

[12] Christopher Schaef and Jason T. Stauth. A 3-Phase Resonant Switched Ca-
pacitor Converter Delivering 7.7 W at 85% Efficiency Using 1.1 nH PCB Trace
Inductors. IEEE Journal of Solid-State Circuits, 50(12):2861-2869, 2015.

[13] V. Yousefzadeh, E. Alarcon, and D. Maksimovic. Three-level buck converter

for envelope tracking applications. [EEE Transactions on Power FElectronics,
21(2):549-552, March 2006.

146



	1 Introduction
	1.1 Low-Voltage DC DC Conversion
	1.1.1 Applications
	1.1.2 Wanted Characteristics

	1.2 The Buck Converter
	1.2.1 Function
	1.2.2 Control

	1.3 What Could Be Improved
	1.3.1 Transient Response
	1.3.2 Size
	1.3.3 Efficiency
	1.3.4 Cost

	1.4 Focus Of This Work
	1.5 Previous Work

	2 Topology Overviews
	2.1 3-Level Buck
	2.1.1 Brief Description
	2.1.2 Circuit Diagram
	2.1.3 Timing Diagram

	2.2 Resonant Switched Capacitor (ResSC)
	2.2.1 Brief Description
	2.2.2 Circuit Diagram
	2.2.3 Timing Diagram

	2.3 Cuk-Buck2 
	2.3.1 Brief Description
	2.3.2 Circuit Diagram
	2.3.3 Timing Diagram


	3 Topology Work Completed
	3.1 Three Level Buck
	3.1.1 Design Constraints
	3.1.2 Capacitor Balancing
	3.1.3 Mode Transition
	3.1.4 DCM operation
	3.1.5 Low Voltage Switch Possibility

	3.2 ResSC
	3.2.1 Fixed Frequency Operation
	3.2.2 Smooth Transitioning Full-Range Output
	3.2.3 Capacitor Balancing
	3.2.4 "DCM" Mode
	3.2.5 Passive Component Limitations (MLCC, etc)
	3.2.6 Output Ripple

	3.3 Cuk-Buck2 
	3.3.1 Fifth switch for full range output
	3.3.2 Fixed Frequency Operation
	3.3.3 Smooth Transitioning Full-Range Output
	3.3.4 Capacitor Balancing


	4 Evaluations and Comparisons
	4.1 Efficiency
	4.2 Additional Complexities
	4.3 Output Ripple
	4.4 Transient Response

	5 Prototype
	5.1 Purpose
	5.2 Overview
	5.3 Logic
	5.3.1 Shared
	5.3.2 Three Level Buck (DCM)
	5.3.3 ResSC

	5.4 Schematic
	5.4.1 Power
	5.4.2 Control

	5.5 Bill-of-Materials (BOM)
	5.5.1 Power
	5.5.2 Control

	5.6 Layout
	5.6.1 Power
	5.6.2 Control

	5.7 Outcome
	5.7.1 Three Level Buck (DCM)
	5.7.2 ResSC
	5.7.3 Cuk-Buck2 


	6 Conclusions
	6.1 Practical Takeaway
	6.2 Future Work

	A Equations
	A.1 Simplified Converter Timing and Current Equations

	B Figures
	C Code
	C.1 LTSpice RAW File Processing (1/3)
	C.2 LTSpice Multithreaded Batch Simulation and Processing (2/3)
	C.3 LTSpice Example Batch File Run (3/3)
	C.4 Python ResSC State Space Modeling
	C.5 Simplified Symbolic Efficiency Estimation
	C.6 PCB uC Code


