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Abstract

An autonomous system needs to be aware of its surroundings and know where it is in
its environment in order to operate robustly in unknown environments. This problem
is known as Simultaneous Localization and Mapping (SLAM). SLAM techniques have
been successfully implemented on systems operating in the real world.

However, most SLAM approaches assume that the environment does not change
during operation — the static world assumption. When this assumption is violated
(e.g. an object moves), the SLAM estimate degrades. Consequently, the static world
assumption prevents robots from interacting with their environments (e.g. manipu-
lating objects) and restricts them to navigating in static environments. Additionally,
most SLAM systems generate maps composed of low-level features that lack infor-
mation about objects and their locations in the scene. This representation limits
the map’s utility, preventing it from being used for tasks beyond navigation such as
object manipulation and task planning.

We present Simultaneous Tracking, Object Registration, and Mapping (STORM),
a SLAM system that represents an environment as a collection of dynamic objects.
STORM enables a robot to build and maintain maps of dynamic environments, use the
map estimates to manipulate objects, and localize itself in the map when revisiting the
environment. We demonstrate STORM’s capabilities with simulation and real-world
experiments and compare its performance against that of a typical SLAM approach.
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Chapter 1

Introduction

Over the past decade, there has been a large increase in applications of robotics

technologies to a wide variety of fields. Some of these applications include self-driving

cars [10, 35, 53], drones [40, 14], and warehouse robots [37, 36]. These systems operate

autonomously in real-world environments where people are present, and sometimes

even in collaboration with people or other robots.

As a result, autonomous robots need to be aware of their surroundings and know

where they are with respect to objects to robustly perform tasks such as collision-free

navigation, object manipulation, and task planning (see Figure 1-1). This problem

has been the focus of research for the past few decades and is known as Simultaneous

Localization and Mapping (SLAM). As a robot explores an unknown environment,

the robot’s SLAM system uses the robot’s on-board sensors to construct a model

of an environment (mapping) and estimate the robot’s position and orientation, or

pose, in the map (localization). In the past ten years, practical SLAM techniques

have been developed and successfully implemented on systems operating in the real

world [17, 28, 25, 23].

However, most of these systems assume that the environment does not change as

the robot explores it — the static world assumption [6]. This clearly is not the case

as human environments are highly dynamic; we are constantly moving from place to

place and moving objects around us. When an environment changes (e.g. objects

move), most SLAM systems fail to accurately estimate their pose and maintain an

13



Figure 1-1: Example of a robot in a real-world environment. The robot needs
to be aware of the identity and location of objects in its surroundings to robustly per-
form tasks such as collision-free navigation, object manipulation, and task planning.

accurate map of the environment. As a result, this assumption prevents robots from

manipulating objects in their environment, as observing the objects after moving

them will degrade the SLAM estimates. Consequently, the static world assumption

limits SLAM systems to navigating in static environments, preventing true robot

autonomy and functionality.

Additionally, most SLAM systems generate maps that are suitable only for navi-

gation as the maps are composed of low-level primitives (i.e. points, surfaces, image

features) [39]. These primitives do not have any associated semantic information —

qualitative descriptors such as object identification [27]. These low-level represen-

tations prevent robots from being able to manipulate objects even if their SLAM

systems are able to overcome the static world assumption.

14



This thesis is about overcoming these limitations to enable a robot to build maps

of dynamic environments and use the maps to manipulate objects and localize itself.

1.1 Objective and Contributions

This thesis proposes a novel representation of the SLAM problem that models an

environment as a collection of dynamic objects — Simultaneous Tracking, Object

Registration, and Mapping (STORM). STORM relaxes the static world assumption,

enabling a robot to operate in dynamic environments and manipulate objects. Ad-

ditionally, STORM enables a robot to return to a previously mapped environment

and operate as before. STORM localizes the robot in the environment and updates

the map as objects move or are manipulated by the robot. We also present SegICP

[56, 57], a real-time object pose estimator STORM uses to estimate 6DoF object

poses.

To the best of our knowledge, STORM is the first SLAM system that builds an ac-

curate object map of a dynamic environment and enables a robot to both manipulate

objects and robustly relocalize in the future using the map.

The two main contributions of this thesis are:

1. A novel representation for modeling dynamic environments that enables robust

localization and object manipulation (STORM)

2. An accurate, real-time object pose estimator (SegICP [56, 57])

1.2 Publications

The following publications resulted from research done during this MEng:

SegICP: Integrated Deep Semantic Segmentation and Pose Estimation

[56]. Jay M. Wong, Vincent Kee, Tiffany Le, Syler Wagner, Gian-Luca Mariottini,

Abraham Schneider, Lei Hamilton, Rahul Chipalkatty, Mitchell Hebert, David M.S.

Johnson, Jimmy Wu, Bolei Zhou, and Antonio Torralba. IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2017.

15



SegICP-DSR: Dense Semantic Scene Reconstruction and Registration

[57]. Jay M. Wong, Syler Wagner, Connor Lawson, Vincent Kee, Mitchell Hebert,

Justin Rooney, Gian-Luca Mariottini, Rebecca Russell, Abraham Schneider, Rahul

Chipalkatty, and David M.S. Johnson. arXiv preprint arXiv:1711.02216.

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 addresses the limitations of most

SLAM systems — the static world assumption and lack of semantic object-based maps

— in more detail. This chapter presents existing approaches and their limitations,

developing the main motivation for this work.

Chapter 3 reviews SLAM, first introducing the SLAM problem and then represent-

ing it as a probabilistic estimate. The chapter then presents the standard architecture

of modern SLAM systems, their main components, and maps that they generate.

Chapter 4 presents STORM, developing the main ideas and contributions of this

thesis. Chapter 5 provides analysis and results from evaluating STORM with sim-

ulation and real-world experiments, comparing STORM to a baseline approach and

demonstrating its feasibility and capabilities. Chapter 6 concludes the thesis with a

short discussion of directions for future work.

16



Chapter 2

Motivation and Related Work

In the past decade, practical SLAM techniques have been successfully implemented

on a wide variety of systems operating in the real world [17, 28, 25, 23], building

large-scale photorealistic maps of their environment while accurately estimating their

sensor trajectory (see Figure 2-1).

Figure 2-1: Map of the Colosseum in Rome created in one pass The map was
created using Kaarta’s Stencil [25]. Note the detail and accuracy of the model.

Despite all of these achievements, SLAM is far from solved [18, 6]. Most SLAM

systems assume that their operational environment is static and their performance

17



suffers when objects move. Additionally, most maps generated by SLAM systems

are composed of low-level features without semantic information, restricting map

usage beyond collision-free navigation. These two limitations are the static world

assumption and the lack of semantic object-based maps. They prevent operation in

a variety of real-world conditions and limit the utility of the map for tasks beyond

navigation such as object manipulation.

In this chapter, we present the two major challenges and review existing work on

resolving them.

2.1 Static World Assumption

As the name suggests, the static world assumption is the requirement that the en-

vironment does not change while a robot performs SLAM [6]. Most existing SLAM

algorithms use a feature extractor to create landmarks from entities in the environ-

ment, and then derive the robot’s location from its relative position to these land-

marks. When landmarks move, the SLAM robot pose and map estimate degrade

since the SLAM system handles landmark observations as if the landmarks remained

in the same place.

Consider this motivating example shown in Figure 2-2: a robot performing SLAM

observes a chair, creates a landmark out of the chair, and adds the landmark to its

map. Suppose the chair is moved (either by the robot or an external actor) but

the SLAM system assumes that the chair remained in the same pose (static world

assumption). As a result, the chair’s pose is not updated appropriately in the map and

the robot’s pose estimate is inaccurate. Consequently, the map is no longer consistent

with the environment. Future observations of the chair will result in inaccurate robot

localization as the SLAM system assumes the chair remains in its previous position.

As a result of the static world assumption, landmarks must remain static for the

entire duration that SLAM operates in the environment. Since a feature extractor

can create landmarks from almost anything in the environment, no moving people

or objects can share the environment with the robot. This restriction drastically

18
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Figure 2-2: Example of a static world assumption failure mode 1) A robot
observes a chair. 2) The SLAM system creates a landmark out of the chair and is able
to estimate the chair’s location quite accurately as well as the robot’s position. 3) The
robot stays in place but the chair moves. 4) Because of the static world assumption,
the SLAM system assumes that the chair has remained in the same location. As a
result, after observing the chair again, the chair’s pose is not updated appropriately
in the map and the robot is localized incorrectly.

limits the utility of SLAM in places such as buildings, warehouses, and urban envi-

ronments where we would like to deploy autonomous robots. Additionally, as SLAM

is performed in larger-scale environments over longer periods of time, the static world

assumption is more likely to be violated [6]. When part of a scene changes, we would

prefer to update the map rather than having to remap the entire environment.

Even when a robot is the sole actor in an environment, the static world assump-

tion drastically limits interaction with its surroundings. Any task that could move

landmarks (e.g. object manipulation) would degrade the SLAM solution. Conse-

quently, typical SLAM systems only enable robots to navigate static environments

and prevents them from interacting with their environment.

19



The static world assumption is clearly not suitable for robots operating in the real

world. This assumption limits both the range of environments that the robot is able

to operate in as well as the robot’s capabilities, preventing true robot autonomy and

functionality.

2.2 Lack of Semantic Object-based Maps

Most SLAM maps are composed of low-level units such as image features, geometric

features, or surface representations [39] (see Figure 2-1). As described by Civera et

al. [9], these primitives are “meaningless” as they contain no semantic information

(e.g. object category). Without post-processing by additional perception systems,

the robot has no notion what a collection of units represents. Consequently, the

maps are only suitable for localization and navigation through the identified free

space. Additionally, these maps represent environments inefficiently as many entities

are used to model scenes even if the environment is simple [8, 6, 39]. For example,

a SLAM map of a room with many repeated objects would typically represent each

object instance with a large number of features rather than just the object identity

and pose.

Semantic object-based maps offer several advantages [6]. Embedding the identity

and pose of objects in the map enables robots to use the map to perform tasks at the

object level such as object manipulation and task planning [31]. Physical properties

(e.g. mass, moment of inertia, and stiffness) can be associated with each object,

which is useful for manipulating the objects. Other properties (e.g. “do_not_move”,

“keep_upright”, and “my_coffee_cup”) can also be associated with each object, which

is useful for task planning. This representation is better for human-robot interaction

as humans describe environments at the level of objects and their properties, not

low-level primitives [48, 6]. We want to be able to tell a robot to “bring me my cup

of coffee from the kitchen counter” rather than telling the robot the grasp pose of the

cup.

Representing an environment as a collection of objects rather than low-level enti-

20



ties is also better for modeling dynamic environments where objects may move or be

manipulated by the robot [48, 15]. Rather than searching for and identifying all of the

features that correspond to the moving object, the SLAM system would just update

the object instance in the map. Object-based maps also enable a robot to reason

about occluded parts of an environment as the robot knows the geometry of occluded

portions of objects [6]. This knowledge is useful for tasks such as relocalizing in an

environment where the robot observes the same objects but from a new viewpoint.

Finally, semantic object-based maps provide computational performance benefits.

Object maps enable significant map compression as an object can be represented by

its identity, pose, and relevant properties rather than a large collection of low-level

entities [39, 38, 6]. For graph optimization-based SLAM systems, object-based maps

drastically reduce computation. Each object is represented by one node whereas

typical systems would represent each object using many nodes, with one node for

each of the object’s many features [8].

2.3 Related Work

There has been much work tackling these two limitations in SLAM independently.

We briefly discuss some of the existing work.

2.3.1 SLAM in Dynamic Environments

SLAM algorithms designed for operation in dynamic environments use widely varying

techniques to localize and maintain accurate maps.

Walcott-Bryant et al. [50, 49] compare laser scans of an environment taken at

different times to detect environmental changes. Separate static and dynamic com-

ponents are used to construct 2D maps of low-dynamic, indoor planar environments.

Wang et al. [52, 51] handle moving and static objects separately and localize using

only static objects to perform 2D SLAM with a ground vehicle in dynamic urban en-

vironments. Wolf et al. [55] maintain two occupancy grid maps to model static and

dynamic parts of the environment and determine static landmarks for localization,
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which are tracked in a third map.

Although they all take different approaches to solve the dynamic SLAM problem,

these methods ultimately try to separate the environment into static and dynamic

components, with the latter two methods [52, 55] only using static landmarks or fea-

tures for localization. The 2D maps these methods generate lack semantic information

and cannot be used to manipulate objects in the environment.

Hähnel et al. [22] use expectation maximization (EM) to ignore laser measure-

ments containing moving objects to improve localization and mapping performance

in indoor and outdoor environments. Xiang et al. [58] use an EM-based technique

to learn landmark mobilities and weight landmark measurements accordingly, giving

observations of more static landmarks more weight to improve SLAM performance.

However, it is not an online approach. While these EM-based approaches were able

to improve SLAM results in dynamic environments, they do not build semantic maps.

Newcombe et al. [33] estimate a dense volumetric motion field to construct dense

maps of non-rigid scenes in real-time. Like the other dynamic SLAM techniques

mentioned, this estimate does not build maps with semantic information.

2.3.2 Semantic Object-based SLAM

Numerous object-based SLAM systems have been developed utilizing different tech-

niques for combining object tracking and SLAM.

Gálvez-López et al. [19] incorporate bag-of-visual-words object detection into

monocular SLAM, improving each system’s performance. Similarly, Pillai et al. [34]

use SLAM to improve object recognition performance. However, these approaches

rely on the static world assumption.

Salas-Moreno et al. [39] present an ‘object-oriented’ SLAM approach, achieving

significant map compression while generating dense surface reconstructions in real

time. It does not rely on the static world assumption, but stops tracking moving

objects. Sünderhauf et al. [46] integrate deep learning object detection techniques

into SLAM to create semantic, object-oriented maps without needing a prior database

of object models. However, the semantic knowledge is not used to improve SLAM.
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Choudhary et al. [7] achieve multiple orders-of-magnitude map compression by

building object-based maps with multiple robots. Choudhary et al. [8] combine online

object discovery and modeling with SLAM to improve loop closure detection and

SLAM performance. Mu et al. [31] model data association and object-based SLAM

in a single framework improving localization and data association. However, all these

approaches depend on the static world assumption and do not use the estimates to

manipulate objects.

Ma et al. [30] present a framework to robustly detect objects and perform dense

SLAM on each object in real-time. It is able to handle moving objects but the focus is

on creating accurate object models rather than creating a map to manipulate objects

or relocalize a robot in future visits.

2.3.3 SLAM for Manipulation

There have not been many SLAM approaches developed for object manipulation as

it requires resolving the two challenges mentioned previously. We present the two

approaches we are aware of. Ma et al. [29] extend [30] by adding in manipulation for

more robust object discovery. However, it does not operate in real-time and again

the focus is on discovering objects and building accurate models of them rather than

using the map for relocalizing in the future. Babu et al. [2] couple manipulation and

visual SLAM to increase success rates of a grasping task with a dynamically unstable

robot. However, SLAM is only used to estimate the robot’s state to improve dynamic

motion plans and assemble a consistent point cloud as the robot moves. It does not

estimate the object state.

2.4 Discussion

In this chapter, we presented two significant limitations of current SLAM systems that

restrict real-world performance and map utility — the static world assumption and

lack of semantic, object-based maps. Table 2.1 summarizes the existing work reviewed

in this chapter. Most existing work has focused on only one of these challenges
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Table 2.1: Comparison of SLAM Approaches

Work
Map dynamic
scene (* ignore
moving objects)

Object
Map

Map for
Manipulation

Real-time
Operation

Relocalize
with Map

Walcott-Bryant
[50, 49] 4 8 8 4 8

Wang [52] 4 8 8 4 8
Wolf [55] 4 8 8 4 8

Hähnel et al. [22] 4 8 8 4 8
Xiang et al. [58] 4 8 8 8 8

Newcombe et al. [33] 4 8 8 4 8
Gálvez-López et al. [19] 8 4 8 4 8

Pillai et al. [34] 8 4 8 4 8
Salas-Moreno [39] 4* 4 8 4 4

Sünderhauf et al. [46] 8 4 8 4 8
Choudhary [7, 8] 8 4 8 4 8

Mu [31] 8 4 8 4 8
Ma [29] 4 4 4 4 8
Babu [2] 8 8 8 4 8
STORM 4 4 4 4 4

with varying levels of success. Not much work has been done on using SLAM map

estimates for object manipulation as it requires resolving both limitations. This is

the motivation for our work.

In this thesis, we present Simultaneous Tracking, Object Registration, and Map-

ping (STORM), a framework for resolving both the static world assumption and lack

of semantic, object-based information in SLAM maps. STORM represents its en-

vironment as a collection of dynamic objects and build maps of objects where the

object pose estimates are used for both manipulation and relocalization in the future.

STORM is described in detail in Chapter 4.
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Chapter 3

Simultaneous Localization and

Mapping (SLAM)

In this chapter, we discuss the core components of SLAM, borrowing from the ex-

cellent overviews in [42, 45, 6, 43]. We first introduce the SLAM problem and show

how it can be formulated as a probabilistic estimate. We then present the standard

state-of-the-art SLAM architecture and approach to solve the problem. Finally, we

discuss a key assumption of most SLAM systems — the static world assumption. For

a more in-depth review of SLAM, we refer readers to [47, 42, 45, 6, 43].

3.1 The SLAM Problem

The SLAM problem is as follows: as a robot explores an unknown environment, build

a map of the environment and determine where the robot is in the map using the

robot’s noisy onboard sensors. The robot’s sensors enable it to roughly estimate its

own motion and observe its surroundings.

The SLAM problem can be divided into two problems that need to be solved

simultaneously: localization and mapping. The localization problem is to determine

where the robot is in the environment given sensor data and a map of the environment.

The mapping problem is to build a map of the environment given sensor data and the

robot’s trajectory. SLAM is a chicken-or-egg problem as the robot needs an accurate
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estimate of its position and orientation, or pose, to build an accurate map but at the

same time, the robot needs an accurate map to determine its pose. Note that dead

reckoning — estimating the robot’s pose only using on-board sensor data — will drift

over time as small errors in the robot’s motion estimates are integrated. The map

enables the robot to correct its pose estimate when it visits part of the environment

it has already mapped.

Initially, both the map and the robot’s location in the environment are unknown.

As a result, the robot must solve the localization and mapping problem simultaneously

as it explores the environment, hence the name SLAM. Furthermore, due to sensor

noise and algorithm approximations, the robot is unable perfectly estimate its motion

or the surroundings, which increases the difficulty of performing SLAM. With all

this inherent uncertainty in the robot’s motion estimates and observations of the

environment, SLAM is typically approached using probabilistic techniques [21, 45].

3.1.1 Representing SLAM as a Probabilistic Estimate

We now begin to formulate the typical SLAM problem more formally so that we can

use probabilistic methods to approach the SLAM problem. In SLAM, we want to es-

timate the robot’s trajectory and the poses of landmarks in the environment as shown

in Figure 3-1. Landmarks are extracted from sensor data and can be anything from

low-level image features and geometric features to a complete object. We discretize

time into time-steps and denote the current time-step as t. The robot’s trajectory is

represented as

XT = {x0,x1,x2, . . . ,xT} (3.1)

where xi represents the robot’s pose in the global coordinate frame at time-step i

and T is some terminal time (possibly 1). For 2D poses, xi =
⇥
xi yi ✓i

⇤> where xi

and yi denote the position and ✓i denotes the heading in the global coordinate frame.

For 3D poses (as used in this thesis), xi =
⇥
xi yi zi �i ✓i  i

⇤> where xi, yi, and zi

denote the position and �i, ✓i, and  i denote the orientation in the global coordinate
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Figure 3-1: An example of a robot performing SLAM As a robot explores an
unknown environment, it tries to estimate its trajectory and the poses of landmarks in
the environment. The robot poses, xi, are represented by triangles and the landmark
poses, li, are represented by stars. Odometry measurements, ui, are represented by
black edges and sensor measurements, zi, are represented by blue edges. Note that
the global coordinate frame is typically set to the local coordinate frame of x0 unless
additional information is available.

frame. The global coordinate frame is set to the local coordinate frame of the first

robot pose x0, unless additional information is available.

The landmark poses are defined in the global coordinate frame like the robot

poses. We represent the landmark poses as

M = {l1, l2, . . . , ln} (3.2)

where li is the pose of landmark i. Note that we estimate a landmark’s pose, not its

trajectory, which implicitly assumes that the landmark is static in the environment.

We will discuss this important assumption more later.

To estimate XT and M , the robot extracts measurements from its sensor data. A

typical category of sensor measurements used for SLAM are odometry measurements,
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which give information about the robot’s motion between consecutive poses. These

measurements can be extracted with data from proprioceptive sensors which measure

the robot’s internal state (i.e. wheel rotation, heading) or exteroceptive sensors which

observe the environment (i.e. track landmarks) to estimate the robot’s motion. The

measurements also can come from control inputs to the robot’s motors; hence they are

sometimes referred to as control inputs. We represent the odometry measurements

as

UT = {u0,u1,u2, . . . ,uT} (3.3)

where ui is the odometry measurement at time-step i. These odometry measurements

come from the robot’s motion model, which is derived from the robot’s kinematic

model and often nonlinear. The motion model gives a distribution of the robot’s pose

given an existing pose and odometry measurement:

xi+1 = h(xi,ui)� !u (3.4)

where xi+1 is the pose at time i+1, h(·) is the robot’s motion model, !u is zero-mean

Gaussian noise with the information matrix (inverse of the covariance matrix) ⌦u,

and � is the standard motion composition operator [41] that maps the measurement

noise to an element of the manifold of 2D or 3D poses, SE(2) or SE(3) respectively

[6]. Therefore,

xi+1 ⇠ N
⇣
h(xi,ui),⌦

�1
u

⌘
(3.5)

Note that if all the odometry measurements were noise-free, UT would perfectly cap-

ture the robot’s trajectory.

As the robot observes landmarks in the environment with its sensors, it is able

to make sensor measurements of the environment other than the odometry readings.

These measurements can come from a wide range of sensors such as cameras, LiDARs,

and GPS and can range from being bearing, range, or even pose measurements of

landmarks to laser rangefinder range measurements and absolute sensor pose readings.

We represent these measurements as
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ZT = {z1, z2, . . . , zT , } (3.6)

where zi is the i-th landmark measurement. These measurements come from the

sensor’s observation model, which is often nonlinear and a rough approximation of the

actual sensor behavior [45]. The observation model predicts the expected observation

given the estimated robot pose and map:

zi = h(xi,M)� !z (3.7)

where h(·) is the observation model and !z is zero-mean Gaussian noise with the

information matrix ⌦z.

Over the past 30 years of the SLAM field’s existence, there have been different

probabilistic approaches to SLAM [6, 45]. For the first 20 years of the field, the

popular approaches were based on Extended Kalman filters and Rao-Blackwellised

particle filters and came to be known as filters. These filters are able to run in real-

time and solve what is known as the online SLAM problem or filtering. The online

SLAM problem is defined as follows:

P (xt,M |Ut�1, Zt) (3.8)

where the filter estimates a distribution over the current robot pose xt and state

of the map M . Filters typically run incrementally, processing each measurement

individually [43].

In comparison, graph-based optimization techniques, referred to as smoothers,

solve what is known as the full SLAM problem or smoothing. They represent the

SLAM problem as a graph and use optimization techniques to efficiently solve the

full SLAM problem. The full SLAM problem is defined as:

P (XT ,M |UT , ZT ) (3.9)

where the smoothers estimates a distribution over the entire robot’s trajectory XT and
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state of the map M . Note that all of the measurements ZT over the entire history are

used to solve the full SLAM problem, so smoothers run offline by nature. Additionally,

smoothers typically process all the measurements at once and are referred to as batch

[43]. In the past 10 years, recent developments with smoothing-based techniques have

achieved state-of-the-art performance [6, 45].

Additionally, incremental smoothing approaches [26] have been introduced which

enable online smoothing:

P (Xt,M |Ut�1, Zt) (3.10)

where the incremental smoother estimates the current trajectory, Xt, and state of the

map M using the available measurements Zt and Ut�1.

We refer the reader to [16, 4, 47, 43, 42, 1] for more information about filtering

techniques. In the remainder of this review, we focus on approaches that estimate

(3.9) and (3.10).
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Measurement	
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Figure 3-2: Architecture of a Modern SLAM System The front-end extracts
measurements from raw sensor data and constructs a graph representation of the
SLAM problem while the back-end optimizes the graph to solve the SLAM problem.

3.2 Architecture of a Modern SLAM System

As shown in Figure 3-2, a modern SLAM system consists of two main components:

a front-end and a back-end. The front-end extracts measurements from raw sensor

data and constructs a graph representation of the SLAM problem while the back-end

optimizes the graph to solve the SLAM problem. Each component of STORM is

discussed in greater detail below.

3.3 Front-End

The front-end plays a critical role in the performance of a SLAM system. It converts

raw sensor data into a representation that the back-end can use to estimate (3.9) and

(3.10). The two main tasks that the front-end performs are measurement extraction

and model construction.

3.3.1 Measurement Extraction

The front-end extracts relevant measurements from sensors onboard the robot. These

measurements can come from a wide variety of proprioceptive sensors (which mea-

sure internal state) and exteroceptive sensors (which acquire information about the
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environment). Proprioceptive sensors include inertial measurement units (IMU) and

wheel and joint encoders. Exteroceptive sensors include cameras, laser scanners, and

GPS receivers. As mentioned previously, there are two categories of sensor measure-

ments: odometry measurements and landmark measurements.

Odometry measurements (U) describe the robot’s motion between consecutive

poses (xi to xi+1). As each robot pose (xi) defines a local coordinate frame i, we can

represent an odometry measurement as the transformation iTi+1 expressing the pose

xi+1 in the frame of xi.

Landmark measurements (Z) describe an observed landmark’s pose (li) in the

frame of the robot pose (xi) in which it was observed. We can represent the land-

mark measurement as the transformation xiTli expressing the pose of li in the frame

xi. A critical part of making a landmark measurement is correctly associating each

measurement with its landmark — data association [4].

Data Association

Data association happens on two time scales: short-term and long-term. The short-

term data association problem is tracking features across data taken at consecutive

time-steps. The long-term data association problem is loop closure detection, which is

determining when the robot is revisiting part of the environment. As a robot explores

an environment, its pose estimate will inevitably drift as small errors in odometry

and landmark measurements accumulate over time. If a robot revisits part of the

environment and is able to determine that it has done so (e.g. determining that it is

observing previously observed landmarks), it can eliminate much of this accumulated

error.

3.3.2 Model Construction

As the robot explores an environment and the front-end extracts measurements, the

front-end uses the measurements to construct a graph of the robot’s trajectory and

the environment for the back-end to optimize to estimate (3.9) and (3.10).
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Graph Representations of SLAM

Two common graph representations of SLAM are Dynamic Bayesian Networks (DBN)

and factor graphs.

x2x1x0 x3

l2l1 l3

u1u0 u2

z2z1 z3 z5z4 z6

Figure 3-3: The SLAM Problem in Figure 3-1 as a Dynamic Bayesian Net-

work Each node represents a random variable and each arrow represents a conditional
dependence between two nodes (the child node depends on the parent node). The
shaded nodes represent the observed random variables (the odometry measurements
ui and landmark measurements zi) and the white nodes represent the hidden random
variables (the robot poses xi and landmark poses li) that SLAM is trying to estimate.

A Dynamic Bayesian Network (DBN) is a probabilistic graphical model that rep-

resents time-dependent random variables and their conditional dependencies as a

directed acyclic graph (DAG) [45, 21]. As shown in Figure 3-3, each node represents

a random variable and each arrow represents a conditional dependence between two

nodes (the child node depends on the parent node). The connectivity of the DBN is

defined by the motion (3.4) and observation (3.7) models.

Another way to represent the SLAM problem is with a different graphical model,

the factor graph. A factor graph is a bipartite graph consisting of variables and

factors which contain probabilistic information on variables [11]. The factors encode

the conditional dependencies between variables as each edge in a factor graph is

between a factor node and a variable node [45]. In SLAM, the variables represent

the robot trajectory and landmark poses and the factors represent the measurements

and impose probabilistic spatial constraints on the variables. The factors are defined

by the motion (3.4) and observation (3.7) models. Loop closures are encoded as
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x2x1x0 x3

l2l1 l3

Figure 3-4: The SLAM Problem in Figure 3-1 as a Factor Graph Variable
nodes are shown as circles and factor nodes are shown as squares. The blue circles
represent robot poses (xi) and the orange circles represent landmark poses (li). The
hollow blue square represents a constraint from prior information, the solid blue
squares represent odometry measurements (ui), and the the orange squares represent
landmark measurements (zi).

factors between two non-consecutive robot poses and defined by the motion model as

a loop closure describes the displacement between two non-consecutive robot poses

[45]. Modern SLAM systems tend use factor graphs to represent the SLAM problem

[6].

Once the graph is constructed, the graph is passed to the back-end to be optimized.

The SLAM solution is the variable node configuration that is maximally consistent

with the measurements encoded in the factors. In full SLAM, the front-end would

construct a complete graph with all measurements and then pass it to the back-end.

In incremental smoothing, the front-end constructs a graph as the robot explores

environment and passes it to the backend.
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3.4 Back-End

The back-end estimates the robot’s trajectory (XT ) and landmark poses (M) by ap-

plying nonlinear least squares optimization techniques on the abstracted model of the

environment created by the front-end. Since the model is a graph of constraints, the

SLAM solution is the maximally likely configuration of nodes given all the measure-

ments. This is a maximum-a-posteriori (MAP) estimate:

XT ,M = argmax
XT ,M

P (XT ,M |UT , ZT ) (3.11)

Before we show how SLAM can be turned into a nonlinear least squares optimiza-

tion, we briefly mention an intuitive analogy for graph-based SLAM techniques from

[20, 45]. We can represent the factor graph constructed by the front-end as a mass-

spring model where the variables are represented by small masses and the factors are

represented by springs that connect the masses and have strengths inversely propor-

tional to the corresponding factor’s covariance matrices. Thus, the resting state of the

spring-mass model corresponds to the SLAM solution and the stored energy of the

system corresponds to the error in SLAM solution. Note that springs incorrectly con-

necting masses represent wrong data associations and springs with incorrect strengths

represent inaccurate certainty in the measurements and that these both would affect

the resting state of the system.

Just to recap, the SLAM solution is the robot trajectory and landmark poses most

consistent with the measurements. We now show how the SLAM MAP estimate can

be turned into a nonlinear least squares optimization, adopting the formulation of

[6, 45].

3.4.1 SLAM as a Nonlinear Least Squares Optimization

To simplify notation, we follow [6] and represent the SLAM state we are estimating

as

X = {x0,x1,x2, . . . ,xt, l1, l2, . . . , ln} (3.12)
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and the set of measurements we use to estimate X as

Z = {zk : k = 1, 2, . . . ,m} (3.13)

with zk is defined as follows:

zk = hk(Xk)� !k (3.14)

where hk(·) is a non-linear function that computes the measurement (from the odom-

etry or observation model), Xk ✓ X , and !k is zero-mean Gaussian noise with the

information matrix ⌦k.

Therefore,

zk ⇠ N
⇣
hk

�
Xk

�
,⌦�1

k

⌘
(3.15)

We rewrite (3.11) using X and Z:

X ⇤ = argmax
X

P (X|Z) = argmax
X

P (Z|X )P (X ) (3.16)

We use Bayes’ rule for the last equality and initialize the prior P (X ) to a uniform

distribution unless we have prior information about X . Note that in the case of

no prior information, the MAP estimate is equivalent to the maximum likelihood

estimate.

We assume that the measurements are independent (noise is uncorrelated), which

allows us to refactor (3.16) as

X ⇤ = argmax
X

P (Z|X )P (X ) = argmax
X

P (X )
mY

k=1

P (zk|X ) (3.17)

Since each measurement zk only depends on a subset of X ,

X ⇤ = argmax
X

P (X )
mY

k=1

P (zk|X ) = argmax
X

P (X )
mY

k=1

P (zk|Xk) (3.18)
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From (3.15), we know

P (zk|Xk) =
1q

2⇡|⌦�1
k |

exp
✓
� 1

2

⇣
hk

�
Xk

�
 zk

⌘>
⌦k

⇣
hk

�
Xk

�
 zk

⌘◆
(3.19)

where  is the inverse of the standard motion composition operator [41] and a “dif-

ference” on the manifold SE(3) [6].

Using the definition of squared Mahalanobis distance,

||a� b||2⌦ = (a� b)>⌦(a� b) (3.20)

we simplify (3.19)

P (zk|Xk) =
1q

2⇡|⌦�1
k |

exp
✓
� 1

2

���
���hk

�
Xk

�
 zk

���
���
2

⌦k

◆
/ exp

✓
� 1

2

���
���hk

�
Xk

�
 zk

���
���
2

⌦k

◆

(3.21)

The prior can be formulated similarly

P (X ) / exp
✓
� 1

2

���
���h0

�
X
�
 z0

���
���
2

⌦0

◆
(3.22)

which simplifies (3.18)

X ⇤ = argmax
X

P (X )
mY

k=1

(zk|Xk) = argmax
X

mY

k=0

P (zk|Xk) (3.23)

Because maximizing the posterior is equivalent to minimizing the negative log poste-

rior,

X ⇤ = argmax
X

mY

k=0

P (zk|Xk) = argmin
X

� log

 
mY

k=0

P (zk|Xk)

!

= argmin
X

mX

k=0

���
���hk

�
Xk

�
 zk

���
���
2

⌦k

(3.24)

(3.24) is a nonlinear least squares problem. Therefore, X ⇤ can be solved with

various nonlinear least squares optimization techniques and SLAM libraries, such as
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GTSAM [11]. Note that this formulation assumes the noise is Gaussian. When using

other noise models, this formulation will result in different cost functions [6].

This optimization is solved efficiently in large part due to the sparsity of the SLAM

factor graph. Note that the degree of variable nodes is low as shown in Figure 3-4.

The degree of landmark nodes stays low as landmarks are often only observed by a

small subset of the robot poses. The degree of robot nodes stays low as loop closures

do not happen too frequently and generally only a small subset of the landmarks are

observed at each robot pose. In larger-scale environments, this sparsity increases. The

reader is directed to [12, 13, 45] for more details about how SLAM solvers optimize

(3.24) efficiently.

3.5 Map Types

Once a SLAM system optimizes the factor graph, it has an estimate of its trajectory

and the poses of landmarks in the environment. There are a variety of approaches to

creating maps: some systems build a map composed of the landmarks while others

only use the landmarks for localization and construct a map by projecting sensor

measurements at each pose into a global coordinate frame. We briefly mention some

of the different types of maps SLAM systems produce, which vary depending on the

robot’s sensors and map use case. The reader is directed to [48, 5, 6] for more details

about the various map representations.

Occupancy grid maps discretize the world into a grid with each individual cell

indicating the probability of a cell being occupied [45]. The top left image of Figure

3-5 depicts a 3D occupancy grid map of an office building created by a robot with a

laser scanner mounted to a pan-tilt unit to generate 360� laser scans [24].

Landmark or feature-based maps are sparse representations of environments cre-

ated from the landmarks identified by SLAM [45, 6]. The top right image of Figure

3-5 depicts a feature-based map of a park and college campus created by a robot with

a monocular camera [32].

Dense maps are high-resolution representations of environments created from raw

38
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(c) (d)

Figure 3-5: Example SLAM Maps Figure (a) depicts a 3D occupancy grid map of
an office created with laser scans [24]. Figure (b) depicts a feature-based map of a
park and college campus created with a monocular camera as well as the estimated
trajectory in green [32]. Figure (c) depicts a dense map of an office created with an
RGB-D camera [54]. Figure (d) depicts an object map of an office created with an
RGB-D camera [39].

sensor data or surface or volume representations of the raw data [6]. The bottom left

image of Figure 3-5 depicts a dense map of an office environment created using data

collected with an RGB-D camera [54].

Object maps represent environments as collections of 3D objects. The bottom

right image of Figure 3-5 depicts an object map of an office environment created

using data collected with an RGB-D camera [39].

As mentioned in Chapter 2, these maps are typically used solely for robot navi-

gation and localization, not for interacting with the environment.

39



3.6 The Static World Assumption

One key assumption most SLAM systems rely is on the static world assumption, which

is the requirement that the environment does not change while performing SLAM [6].

Note how the state SLAM estimates, X (4.1), includes the landmark poses li with

no time-dependencies. This representation of the landmark poses assumes that the

landmarks do not move as the robot observes the landmarks over time. As shown

in the factor graph representation of the SLAM problem (Figure 3-4), the landmarks

are encoded with a single node rather than a trajectory like the moving robot. If the

landmarks move, then the resulting SLAM estimates will be poor as the landmark

measurements (zi) will be inconsistent.

As many environments are dynamic, the static world assumption significantly lim-

its the types of environments that SLAM can function in. Additionally, as mentioned

in Section 2.1, the robot cannot interact with environment because moving objects

in the environment will break the static world assumption. This limitation motivates

our system which we present in Chapter 4.
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Chapter 4

Simultaneous Tracking, Object

Registration, and Mapping (STORM)

As discussed in Chapter 2, existing SLAM algorithms are limited by the static world

assumption and lack of semantic, object-based maps. To our knowledge, existing

SLAM approaches only tackle one of these problems. There are no existing systems

that build maps of objects where the object pose estimates are used for both manip-

ulation and relocalization in the future.

This thesis uses some ideas of existing approaches to resolve both the static world

assumption and lack of semantic information in one unified framework. Simultaneous

Tracking, Object Registration, and Mapping (STORM) represents an environment

as a collection of dynamic objects. STORM enables a robot to operate in dynamic

environments, localizing the robot accurately even when objects are moving indepen-

dently or being manipulated by the robot. STORM maintains a map of the objects

parameterized with 6DoF poses, allowing a robot to manipulate objects with their

pose estimates. Each object is represented by a 6DoF pose and semantic label rather

than a large number of points or features. As a result, the STORM-generated map is

orders of magnitude smaller than typical SLAM maps which are composed of millions

of low-level entities. This representation compression enables more efficient estima-

tion and mapping of larger environments than would be otherwise possible.

In this chapter, we present STORM. We begin by presenting an overview of
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STORM and its architecture. We then describe the front-end and back-end. We

end the chapter by explaining how STORM relocalizes with an existing map.

4.1 Overview of STORM

STORM represents an environment as a collection of dynamic objects as shown in

Figure 4-1. In comparison to standard SLAM approaches, STORM estimates the

robot’s sensor trajectory and the trajectories (rather than the poses) of objects in

an environment. The state STORM estimates at time t is the multivariate random

variable

X = {x0,x1,x2, . . . ,xt,o
1
1,o

1
2, . . . ,o

1
t ,o

2
1,o

2
2, . . . ,o

2
t ,o

m
1 ,o

m
2 , . . . ,o

m
t } (4.1)

where xi is the estimated 6DoF pose of the robot’s sensor at time i and o
j
i is the

estimated 6DoF pose of object j at time i. These poses are estimated in the global

coordinate frame, set to the first robot sensor pose x0 unless additional information

is given.

Measurement	
Extraction

Sensor	Data SLAM	Estimate

Factor	Graph	
Construction

Graph	
Optimization

Front-End

Back-End

STORM

Figure 4-2: Overview of the STORM Pipeline The front-end of STORM extracts
object measurements from sensor data to construct a factor graph. The factor graph
is passed to the back-end of STORM to perform graph optimization.

The architecture of STORM is that of a standard SLAM system as described in

Chapter 3. As shown in Figure 4-2, raw sensor data is passed to STORM’s front-end,
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(a)

(b)

Figure 4-1: STORM represents an environment as a collection of objects

Figure (a) depicts a cluttered table of objects in front of a robot. Figure (b) depicts the
raw Kinect point cloud along with STORM estimates, visualizing the robot, objects
of interest, and their respective estimated poses. Notice how the object meshes closely
align with the raw point cloud. Note that the images are not taken concurrently.
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which extracts measurements from the data and uses them to construct a factor graph.

The factor graph is passed to STORM’s back-end to perform graph optimization.

This modular architecture enables different components to be added or removed (e.g.

different feature extractors in the front-end for different sensors). Each component of

STORM is discussed in greater detail below.

4.2 Front-End

The front-end plays a critical role in the performance of a SLAM system, as described

in Section 3.3 of Chapter 3. It extracts relevant measurements from proprioceptive

and exteroceptive sensor data, performs data association, and constructs the factor

graph that the back-end performs MAP estimation on. Without good measurements,

the estimates will be poor.

Each time STORM extracts new measurements, it performs a graph update. It

adds the new measurements to the factor graph, passes the factor graph to the back-

end, and updates the factor graph with the optimized estimates from the back-end.

4.2.1 Measurement Extraction

STORM extracts two categories of measurements from sensor data: sensor-pose mea-

surements (from proprioceptive sensors) and object-pose measurements (from exte-

roceptive sensors). When a new measurement is extracted, STORM checks for other

available measurements. These new measurements along with the time elapsed since

the last graph update are used to perform a graph update.

Sensor-Pose Measurements

There are two types of sensor-pose measurements that STORM handles: odometry

measurements (zui ) and absolute sensor pose measurements (zai ). As a robot explores

an environment, STORM takes odometry measurements (zui ) to estimate the robot’s

sensor trajectory. As described in Chapter 3, odometry measurements describe the
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robot’s sensor motion between consecutive poses (xi to xi+1) and are represented as

the transformation iTi+1 expressing the sensor pose xi+1 in the frame of xi.

On the fixed base robot platform used for this work, the sensor is mounted on a

pan-tilt unit (PTU) that gives the sensor two degrees of freedom (roll and pitch) to

survey the surroundings. The PTU gives absolute angle measurements (zai ) with high

accuracy, enabling STORM to estimate the sensor’s pose (xi) with high certainty.

These absolute sensor pose measurements are represented as the transformation 0Ti

expressing the pose xi in the frame of the first sensor pose x0. Each time an odometry

measurement is taken, STORM applies available object measurements from SegICP

and its manipulators and performs a graph update.

Object-Pose Measurements

As a robot observes and interacts with surrounding objects, STORM takes object-

pose measurements to estimate the objects’ 6DoF poses. These estimates are used to

build a map of the environment, manipulate the objects, and relocalize the robot in

the map in future trials. On the platform used for this work, there are two ways to

get object-pose measurements: SegICP (which generates SegICP measurements z
sj
i )

and object manipulation (which generates manipulation measurements z
mj
i ). Object-

pose measurements are taken in the frame of the sensor and are represented as the

transformation xiToj
i
, expressing the pose of object j (oj

i ) in the sensor frame xi.

SegICP SegICP [56, 57] is a perception pipeline that uses RGB-D sensor data (and

proprioceptive information when available) to estimate the 6DoF poses of objects in

the scene. In particular, SegICP performs deep pixel-level semantic segmentation

and model-based point cloud registration without any prior object pose seeds, with

an overall position accuracy of 1 cm and rotation accuracy of 2 deg at 14 Hz. Figure

4-3 shows some SegICP object pose estimates on a sample cluttered tabletop scene.

We now provide a brief overview of the SegICP pipeline. The reader is directed to

[56, 57] for further details. As outlined in Figure 4-4, the RGB image from the RGB-

D data is first passed through an adversarially-trained convolutional neural network
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(a) (b)

Figure 4-3: SegICP object pose estimates of a sample cluttered tabletop

scene Figure (a) is an RGB image of the scene. Figure (b) visualizes object model
point clouds at their respective estimated object poses. These are overlaid on the
scene point cloud in the sensor frame xi. Note how the model point clouds (purple
for engine, blue for oil bottle, red for blue funnel, pink for black bottle) are closely
aligned with their target objects in the scene point cloud.

(CNN), SegNet [3], which outputs a segmented mask with pixel-wise semantic object

labels. This segmented mask is used to extract each object’s point cloud from the

depth map corresponding to the original RGB image. Additionally, the labels in the

mask are used to retrieve their corresponding 3D object mesh models from an object

model library. These mesh models are converted into point clouds, downsampled,

and registered with their corresponding object scene clouds to estimate each object’s

6DoF pose. 3D-3D point cloud registration is performed for tracking by using rigid

point-to-point iterative closest point (ICP).

The point cloud registration process is divided into two phases: acquisition and

tracking. In acquisition, SegICP determines the visible face of the object and then

initializes the tracking phase with a good initial pose and crop of the mesh model.

Registration is performed using a crop of the mesh model, rather than the entire

model, as the scene object point cloud only contains points visible to the RGB-D

sensor. Raycasting is used to render candidate model crops from various azimuths
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Figure 4-4: The SegICP pipeline operating in a cluttered environment.

SegICP detects objects relevant to an automotive oil change task and estimates a
6DOF pose for each object in the scene. 1) SegICP performs semantic segmentation
on an RGB image captured by a Kinect V1 mounted on a PR2 robot. The colored
overlay pixels in the segmented image (top-right image) correspond to a blue funnel
(red), an oil bottle (blue), and the engine (purple). These semantic labels are used
to: 2) crop an object’s point cloud from the depth map and 3) retrieve an object’s
mesh model from an object library. 4) Various crops of the mesh model are used to
register against the cropped object’s point cloud. 5) These hypothesis registrations
are evaluated in parallel to determine the object crop with largest score. 6) The
highest scoring model crop is then used to initialize a 3D-3D tracking routine (ICP).
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and elevations. To remove segmentation outliers and prevent ICP from converging to

incorrect local minima, each candidate crop is initialized at the median position of the

object’s point cloud. In parallel, each candidate crop is aligned with the scene object

cloud with a few iterations of ICP. Then, each aligned candidate crop is evaluated with

a model-to-scene alignment metric that determines which candidate crop aligns best

with the object scene cloud. The metric finds the number of points in the candidate

crop with a unique corresponding point in the object scene cloud. The highest scoring

candidate crop and its estimated pose are used to initialize the tracking phase.

In tracking, additional iterations of ICP are used to further refine the object pose

estimate. To make the tracking robust to imperfections on the boundary of the

object’s segmentation, the object’s scene point cloud is further pruned by removing

points outside a bounding box of the candidate crop at the latest estimated pose.

The estimated pose is used as a measurement update in a Kalman filter tracking

the object’s 6DoF pose and twist. By fusing measured sensor motion (such as from a

robot’s odometry), the filter is able to handle temporary object occlusions and outlier

pose estimates. The alignment metric is used to approximate the uncertainty of the

current pose measurement. If the metric score is below a threshold ✓, the Kalman

filter propagates the objects’ pose based on available odometry (and until a maximum

pose uncertainty) while switching back to acquisition mode.

At the time of writing, SegICP assumes there is only one instance of each object

class in the environment. Consequently, STORM has the same assumption. With this

assumption, SegICP solves the data association problem by directly outputting each

object’s 6DoF pose in the sensor frame. Each object pose estimate is used to create a

SegICP measurement (zsji ). z
sj
i is represented as the transformation xiToj

i
, expressing

the pose of object j at time i (oj
i ) in the sensor frame xi. Each time a SegICP

measurement is taken (that is not initiated by another measurement), STORM applies

available manipulator measurements (zmj
i ) for the graph update.

Object Manipulation When manipulating an object, the robot has a low variance

estimate of the object’s pose (oj
i ), assuming that the object remains grasped by the
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gripper. This enables STORM to have an estimate of an object’s pose even if the

object is not observable by SegICP. The object’s pose can be retrieved by reading

arm joint encoder values to recover the end-effector pose and create a manipulation

measurement (zmj
i ). z

sj
i is represented as the transformation xiToj

i
, expressing the

pose of object j at time i (oj
i ) in the sensor frame xi. Each time an object manipula-

tion measurement is taken (that is not initiated by another measurement), STORM

applies available SegICP measurements (zsji ) from SegICP for the graph update.

4.2.2 Constructing the Factor Graph

Like many state-of-the-art SLAM approaches, STORM uses a factor graph to model

its environment and sensor trajectory. As shown in Figure 4-5, the variables nodes

represent the robot sensor and object poses in SE(3) and the factor nodes encode

probabilistic constraints over the nodes. These poses are all estimated in the global

coordinate frame, which is set to the first robot sensor pose x0 unless additional

information is given.

In contrast to most SLAM factor graph representations, STORM models the en-

vironment as being dynamic rather than static. Objects are assumed to be dynamic

rather than static and are represented accordingly. As a result, STORM estimates

each object’s trajectory in the environment rather than an object’s single static pose.

If STORM has information about the object’s motion (such as the object having on-

board odometry measurements) other than by observing the object (i.e. SegICP or

manipulation), this information can be used to estimate the object’s pose similarly to

(3.4). Otherwise, STORM models the object’s motion as a random walk, where the

mean of the transformation iTi+1 expressing the object pose o
j
i+1 in the frame of o

j
i is

set to the identity transformation and its covariance is determined by the knowledge

STORM has of the object’s pose.

As a robot explores an environment, STORM constructs a factor graph with

the measurements it extracts from its observations. Each time a graph update is

performed, a new node is added to the robot sensor trajectory and every tracked

object trajectory using the available information (shown in Figure 4-5).
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Figure 4-5: Example STORM factor graph Variable nodes are shown as circles
and factor nodes are shown as squares. The blue circles represent robot sensor poses
(xi) and the orange circles represent object poses (oj

i ) in SE(3) where i is the time-
step and j is the j-th object. These poses are all estimated in the global coordinate
frame, which is set to the first sensor pose x0 unless additional information is given.
The hollow blue squares represents constraints from the priors and absolute pose
measurements (zai ), solid blue squares represent odometry measurements (zui ), the
black squares represent SegICP object measurements (zsji ), the green squares rep-
resent object manipulation measurements (zmj

i ), and the orange squares represent
object motion measurements (ztji ). Note at t = 4, object 1 was observed with SegICP
and object 2 was manipulated. These measurements, along with the odometry, abso-
lute pose, and object motion measurements, are added to the factor graph as part of
a graph update (in the shaded box).

We now discuss how the measurements are added to the factor graph.

Odometry Measurements

Odometry measurements (zui ) describe the relative motion of the sensor in the envi-

ronment. As the solid blue boxes in Figure 4-5 show, these measurements are used to

construct factors between sensor poses at consecutive time-steps. In the cases where

absolute sensor pose measurements (zai ) are available, this additional information can

be used to further constrain the estimate as shown by the blue hollow boxes in Figure

4-5.
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At each graph update, the back-end creates a new node for the sensor trajectory

(xi+1 if the last sensor pose is xi). If there is an odometry measurement in the

update, it is used to construct the odometry factor. Otherwise, STORM assumes that

the sensor has not moved and sets the mean of the odometry factor to the identity

transformation. If there is an absolute sensor measurement in the update, it used to

construct an absolute sensor pose measurement. Otherwise, STORM assumes that

the sensor has not moved and uses the previous absolute sensor pose measurement

for the new node.

Object Measurements

Object measurements describe the relative pose of an object in the sensor coordinate

frame. As the solid black and green boxes in Figure 4-5 show, these measurements are

used to construct factors between the object pose and the sensor pose corresponding

to when the measurement was taken.

At each graph update, the back-end creates a new node for each tracked object

trajectory (oj
i+1 for object j if the last object pose is o

j
i ). STORM also constructs a

factor modeling each object’s motion between the current object pose node and the

previous object pose node (solid orange squares in Figure 4-5). As described earlier, if

information about the object’s motion is available (such as the object having onboard

odometry estimates), this information can be used to construct the factor. Otherwise,

the object’s motion is modeled as a random walk, with the mean set to the identity

transformation and the covariance determined by the knowledge STORM has of the

object’s pose. We now discuss the different types of object measurements: SegICP,

Manipulation, Unobserved, Null.

1. SegICP Since SegICP measurements (zsji ) are 6DoF object pose estimates in

the sensor coordinate frame xi, they fully constrain the object pose estimate

with cm and deg accuracy. If an object is observed by SegICP in consecutive

frames, its random walk covariance matrix values will be relatively small as

SegICP runs at 14Hz and STORM assumes the object will not have moved
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more than 1 m between frames (68% of the time even in a dynamic environ-

ment). Consequently, multiple SegICP observations of an object will increase

the robot’s certainty of the object’s pose.

2. Manipulation Manipulation measurements (zmj
i ) also fully constrain the ob-

ject pose estimate as the end effector pose is found by reading the arm joint

encoder values. While an object is being manipulated, its random walk covari-

ance matrix values are based on the accuracy of the encoders and the physical

limits of the manipulator in moving the object.

3. Unobserved If an object is not observed in the current frame or the previous

frame, then STORM does not have any information about the object’s motion

over the previous time frame. As a result, the random walk covariance is large

and based on the estimated dynamicity of the environment.

4. Null Observation If an object is not observed in the current frame and

STORM estimates the object should be in a sensor’s field of view, the object

has likely moved. Since STORM has no information about the object’s current

pose, the random walk covariance is set to be very large.

4.3 Back-End

As described in Chapter 3, finding the most likely sensor trajectory and map state

is equivalent to finding the most likely configuration of the graph. This task is a

maximum-a-posteriori (MAP) estimation problem. As the robot surveys its sur-

roundings and constructs the factor graph, the front-end of STORM passes the factor

graph to the back-end of STORM, which solves the MAP problem by incrementally

smoothing the graph.

4.3.1 STORM as a Nonlinear Least Squares Optimization

Now we show how the factor graph constructed by STORM can be turned into a

nonlinear least squares optimization. We adopt the formulation of [6, 45], modifying
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it to account for STORM’s factor representation.

First, we show how the STORM problem is a MAP estimate. As mentioned

previously in (4.1), the state STORM estimates at time t is the multivariate random

variable

X = {x0,x1,x2, . . . ,xt,o
1
1,o

1
2, . . . ,o

1
t ,o

2
1,o

2
2, . . . ,o

2
t ,o

m
1 ,o

m
2 , . . . ,o

m
t } (4.2)

where xi is the estimated 6DoF pose of the sensor at time i (represented by the

blue nodes in Figure 4-5) and o
j
i is the estimated 6DoF pose of object j at time i

(represented by the orange nodes in Figure 4-5).

The set of measurements Z = {zk : k = 1, 2, . . . , n} STORM uses to estimate X

are:

1. SegICP measurements of the object poses in the sensor frame (denoted by

z
sj
i )

2. Manipulation measurements of manipulated objects in the sensor frame

(denoted by z
mj
i )

3. Odometry measurements between consecutive sensor poses (denoted by z
u
i )

4. Object motion measurements between consecutive object poses (denoted

by z
tj
i )

5. Absolute sensor pose measurements (denoted by z
a
i )

Each SegICP measurement (zsji ) is used to define a SegICP factor (represented by

a black square in Figure 4-5) and described by the following measurement model:

z
sj
i = hs(xi,o

j
i )� !s (4.3)

where z
sj
i is the SegICP measurement of object j at time i, hs(·) computes the relative

transform xiToj
i
expressing o

j
i in the frame of xi, !s is zero-mean Gaussian noise with

the information matrix ⌦s, and � is the standard motion composition operator [41]
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that maps the measurement noise to an element of the manifold of 3D poses, SE(3)

[6].

Each manipulation measurement (zmj
i ) is used to define an object manipulation

factor (represented by a green square in Figure 4-5) and described by the following

measurement model:

z
mj
i = hm(xi,o

j
i )� !m (4.4)

where z
mj
i is the manipulation measurement of object j at time i, hm(·) computes

the relative transform xiToj
i

expressing o
j
i in the frame of xi, and !m is zero-mean

Gaussian noise with the information matrix ⌦m.

Each odometry measurement (zui ) is used to define an odometry factor (repre-

sented by a blue solid square in Figure 4-5) and described by the following measure-

ment model:

z
u
i = hu(xi,xi+1)� !u (4.5)

where z
u
i is the odometry measurement at time i, hu(·) computes the relative trans-

form iTi+1 expressing xi+1 in the frame of xi, and !u is zero-mean Gaussian noise

with the information matrix ⌦u.

Each object motion measurement (ztji ) is used to define an object motion fac-

tor (represented by a orange square in Figure 4-5) and described by the following

measurement model:

z
tj
i = ht(o

j
i ,o

j
i+1)� !t (4.6)

where z
tj
i is the object motion measurement of object j at time i, ht(·) computes

the relative transform iTi+1 expressing o
j
i+1 in the frame of o

j
i , and !t is zero-mean

Gaussian noise with the information matrix ⌦t.

Each absolute sensor pose measurement (zai ) is used to define an absolute sensor

pose factor (represented by a hollow square in Figure 4-5) and described by the

following measurement model:

z
a
i = ha(xi)� !a (4.7)
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where z
a
i is the absolute sensor pose measurement at time i, ha(·) computes the abso-

lute pose of xi in the frame of the first sensor pose x0, and !a is zero-mean Gaussian

noise with the information matrix ⌦a. If no absolute sensor pose measurements are

available, then a prior factor (zp) is set on the first sensor pose node:

z
p = x1 � !p (4.8)

where z
p is the prior mean of x1 and !p is zero-mean Gaussian noise with the infor-

mation matrix ⌦p. If there is no prior information on x1, then it is set to the identity

transformation by convention [6].

To simplify notation in the rest of the STORM MAP formulation, we express each

of the STORM measurements (zk) as a function of a subset of X as follows:

zk = hk(Xk)� !k (4.9)

where hk(·) is a non-linear function that computes the measurement (from the mea-

surement model), Xk ✓ X , and !k is zero-mean Gaussian noise with the information

matrix ⌦k.

Therefore,

zk ⇠ N
⇣
hk

�
Xk

�
,⌦�1

k

⌘
(4.10)

We can formulate the STORM problem as a MAP estimate, where X ⇤ is the most

likely node configuration given all the measurements:

X ⇤ = argmax
X

P (X|Z) = argmax
X

P (Z|X )P (X ) (4.11)

We use Bayes’ rule for the last equality and initialize the prior P (X ) to a uniform

distribution unless we have prior information about X such as absolute sensor pose

measurements as described above (in the case of no prior information, the MAP

estimate is equivalent to the maximum likelihood estimate).

Note that (4.11) is in the same form as (3.11) so we can follow the derivation in
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Section 3.4.1 to turn (4.11) into a nonlinear optimization problem and solve for X ⇤.

STORM uses iSAM2 [26] from the Georgia Tech Smoothing and Mapping (GTSAM)

library [11]. iSAM2 converts the factor graph into a Bayes tree for more efficient

incremental smoothing. The reader is directed to [26] for more details on iSAM2.

4.4 Relocalizing with Existing Map

When a robot revisits an environment, STORM can use the map it built previously

to localize the robot. Furthermore, STORM updates the map to be consistent with

the object observations it makes in the current trial. At the end of a trial, STORM

stores its latest estimates of the object poses as well as the relationships (relative

poses) between the objects to relocalize the robot in the map in future trials.

To relocalize with an existing map, STORM assumes that objects are not rigidly

attached to each other and move independently of each other. Between robot trials,

objects can move as long as they do not maintain the same relative poses with respect

to each other. With this assumption, STORM can determine where it is in the map

when it detects two or more objects in its field of view with the same relative poses

(within a threshold).

When relocalizing, STORM constructs a factor graph just like when building a

map. STORM assumes that the sensor starts at the first sensor pose of the first trial

(which is the origin in the map’s coordinate frame) since it has no prior information.

Once STORM has determined where it is in the previous map, it updates all the

absolute sensor pose measurement and prior factors to reflect where it is in the map.

Additionally, STORM adds object pose estimates for objects that are unobserved in

the current trial but were observed in previous trials.
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Chapter 5

Experiments

In this chapter, we demonstrate that STORM constructs accurate maps of dynamic

environments and can use the maps to localize and manipulate objects. We evaluate

STORM with simulation and real-world experiments.

First, we describe the robot platform we use to conduct the experiments. Then,

we evaluate STORM in simulation, comparing its performance against a baseline

pose graph SLAM with landmarks approach described in Chapter 3. We measure the

accuracy in estimating the robot’s Kinect sensor pose and the object poses as well as

the computation speed. Next, we demonstrate STORM’s capabilities with a pair of

real-world experiments. Finally, we discuss the results.

5.1 STORM Robot Platform

As shown in Figure 5-1, the robot platform used for the STORM consists of a fixed-

base torso with an arm and head. The arm is a KUKA LBR iiwa14 R820 with a

Robotiq 2-Finger 85 Adaptive Robot Gripper end effector and Intel RealSense SR300

RGB-D sensor mounted at the wrist. The head is a Microsoft Kinect v1 sensor

mounted to a FLIR PTU-E46-17P70T pan-tilt unit (PTU). The arm has a position

repeatability of ±0.15 mm, allowing the robot to consistently grasp objects given a

6DoF pose and to accurately put RealSense observations in the Kinect frame. The

PTU enables the Kinect to pan 318� and tilt 78� at 0.013� and 0.003� resolution respec-
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Figure 5-1: STORM robot platform consists of a fixed-base torso with an

arm and head. The arm has a two-finger gripper and wrist-mounted RealSense
RGB-D sensor. The head is a Kinect v1 mounted to a pan-tilt unit that pans 318�

and tilts 78�.

tively, giving STORM accurate absolute measurements of the Kinect’s orientation.

The arm and PTU enable STORM to survey significantly more of the surroundings

on the fixed-base platform than would be otherwise possible.

For our experiments, we set the global coordinate frame as the local coordinate

frame of the Kinect at initialization (pan and tilt set to 0�).

5.2 Simulations

We evaluate STORM in simulation to quantitatively evaluate its accuracy. As shown

in Figure 5-2, we visualize a Unified Robot Description Format (URDF) of the robot

platform, Kinect and object pose estimates, and the simulation environment in RVIZ,

the ROS 3D visualization tool.

We compare STORM to a baseline pose graph SLAM with landmarks approach

as described in Chapter 3, where the objects are the landmarks. It takes the same
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Figure 5-2: Visualization of STORM estimates and the simulation environ-

ment We visualize the STORM robot platform, estimated and ground truth poses of
the Kinect and objects as coordinate frames, Kinect and RealSense field of views, and
the simulation environment in RVIZ. We visualize the positive z-axis of the Kinect
sensor ground truth pose as an opaque green arrow and the positive z-axis Kinect pose
estimate as a translucent red arrow. Similarly, we render an object mesh model at
the object’s true pose as opaque and at 75% scale and at the object’s estimated pose
as translucent and at full scale. Note how the estimated and ground truth coordinate
frames are closely aligned and visualizations are closely aligned.

measurements as STORM, but assumes that the objects are static. Both STORM

and the baseline use the same relocalization algorithm as described in Section 4.4.

5.2.1 Simulation Robot Platform

We use the STORM robot platform as described in Section 5.1 with a few changes.

To increase the space of scenarios to test, we relax the physical constraints of arm

reachability and base mobility. We enable the robot to manipulate any object it has

a pose estimate of. Additionally, we enable the robot to move the RealSense to any

pose, greatly increasing the observable region of the environment. Finally, we enable

the fixed-base platform to move, which allows for a more compelling demonstration
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of relocalizing with a previous map.

5.2.2 Generating Measurements in Simulation

We now discuss how we obtain measurements from the simulation environment. As

discussed in Section 4.2.1, STORM handles 5 types of measurements: odometry mea-

surements (zui ), absolute sensor pose measurements (zai ), object motion measurements

(ztji ), SegICP measurements (zsji ), and manipulation measurements (zmj
i ).

Odometry and Absolute Sensor Pose Measurements

When the robot moves its head, STORM takes odometry and absolute sensor pose

measurements. To get the absolute sensor pose measurement, STORM looks up the

transform from the robot base frame to the Kinect frame. We add measurement noise

which we generate from a zero-mean Gaussian with �pitch = 0.003�, �yaw = 0.013�,

�roll = 0.00�, and �trans = 0.0m for the translation pose components (from the pan-tilt

unit specifications).

To generate odometry measurements, we compute the transform from the Kinect

pose at the previous time-step to the Kinect pose at the current time-step. We add

the same measurement noise as the absolute sensor pose measurement.

SegICP Measurements

At each time-step, STORM checks for objects in the field of view (FOV) of the Kinect

or RealSense. The Kinect has a vertical FOV of 43�, horizontal FOV of 57�, and max

range of 4m. The RealSense has a vertical FOV of 55�, horizontal FOV of 71.5�, and

max range of 1.5m.

In the simulation environment, we do not account for occlusion. If an object’s

coordinate frame is in the FOV view cone of a sensor, it is considered to be observable.

STORM extracts a SegICP measurement for each object in a sensor’s FOV. To

get the SegICP measurement, STORM looks up the transform from the sensor frame

to the object frame. We add measurement noise which we generate from a zero-mean
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Gaussian with �trans = 0.005 m and �rot = 1.0� (from [56, 57]).

Manipulation Measurements

At each time-step, STORM checks if it is manipulating an object. If it is, STORM

extracts a manipulation measurement by looking up the transform from the Kinect

frame to the object frame. We add measurement noise which we generate from a

zero-mean Gaussian with �trans = 0.015 m and �rot = 0.5� (modeling our uncertainty

of the object’s pose in the gripper).

5.2.3 Evaluation Metrics

We compare the performance of STORM with that of a standard pose graph SLAM

with landmarks approach as a baseline. To quantitatively evaluate performance, we

compare each object and Kinect pose estimate to its respective ground truth pose.

We use two common accuracy metrics from the SLAM literature to evaluate each

estimate: the absolute trajectory (ATE) root-mean-square error (RMSE) metric [44]

to measure position error and quaternion root-mean-square error (RMSE) [45] to mea-

sure orientation error. We also compare the computational performance of STORM

with the baseline.

Absolute trajectory (ATE) root-mean-square error (RMSE)

The absolute trajectory (ATE) root-mean square error (RMSE) is the root-mean-

square of the trajectory’s position error between each estimated pose with its corre-

sponding ground truth pose [44]. It is defined as:

RMSEATE =

vuut 1

n

nX

i=1

⇣
xx,y,z
i � x̂x,y,z

i

⌘2
(5.1)

where xx,y,z
i is the i-th estimated position, x̂x,y,z

i is the i-th ground truth position,

and xx,y,z
i � x̂x,y,z

i is the Euclidean distance between the estimated and ground truth

position [45].
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Quaternion root-mean-square error (RMSE)

The quaternion root-mean square error (RMSE) is the root-mean-square of the tra-

jectory’s orientation error between each estimated pose with its corresponding ground

truth pose [45]. It is defined as:

RMSEquaternion =

vuut 1

n

nX

i=1

⇣
cos�1(2hqi, q̂ii2 � 1)

⌘2
(5.2)

where qi is the quaternion representing the i-th estimated orientation, q̂i is quaternion

representing the i-th ground truth orientation, and cos�1(2hqi, q̂ii2 � 1) is the angle

of rotation between the estimated and ground truth quaternion. We use the Eigen

implementation of (5.2).

Computation Time

To quantitatively compare the computational performance of STORM with the base-

line, we record the time to perform a graph update — that is to update and optimize

the respective factor graph representations. We do not include the simulation mea-

surement extraction processes as they are the same and take a negligible amount of

time as they involve looking up a transform. The test platform is a laptop with an

Intel Core i7-7820HK CPU with 4 2.9 GHz cores and 32GB of RAM.

5.2.4 Simulation Experiments

We design two experiments to demonstrate the capabilities of STORM in simulation.

In these experiments, the robot observes and manipulates objects in the environment.

The first experiment, which we call ‘Mapping’, demonstrates STORM’s ability to

create and maintain an accurate object map of a dynamic environment and use the

object pose estimates to manipulate objects. The second experiment, which we call

‘Relocalization’, demonstrates STORM’s ability to relocalize with the map created

in the Mapping experiment, update the map, and use the estimates to manipulate

objects. We assume that the robot is able to grasp an object even if its pose estimate

62



is significantly off (by other means such as visual servoing). For reference, we mention

the error of each object pose estimate when the object is grasped in Section 5.2.5.

Experiment 1: Mapping

In this experiment, the robot has no prior knowledge of the environment and builds

an initial map of the dynamic environment and manipulates some objects.

Figure 5-3: Setup of Simulation Experiment 1: Mapping Note that the Re-
alSense sensor (small black object in the the middle of the image) appears to be
floating and the robot arm is not visible as we relax all physical constraints in simu-
lation for a larger space of scenarios.

At the start of the experiment, the robot platform’s base frame is set at the origin

of the world frame and various objects are placed in the surrounding environment.

As shown in Figure 5-3, there is a table in front of the robot with an blue bottle on

it (table A), a table to the left of the robot with a pink bottle and red funnel on it

(table B), and a purple engine between table A and table B.
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Figure 5-4: Steps of Simulation Experiment 1: Mapping Each colored circle
depicts the approximate location of the similarly colored object at the displayed step.

As depicted in Figure 5-4, the Mapping experiment is as follows:

1. The robot begins surveying the environment and building a map, observing the

blue bottle on table A with the Kinect and RealSense.

2. The robot observes the purple engine with the Kinect and RealSense.

3. The robot observes the pink bottle and red funnel on table B with the Kinect

and RealSense.

4. The blue bottle and pink bottle are moved under table B, out of the field of

views of the Kinect and RealSense.

5. The purple engine and red funnel are moved a few inches.

6. The pink bottle is placed on table A, close to where the blue bottle was.

7. The robot surveys the environment again now in reverse, first reobserving the

red funnel on table B with the Kinect and RealSense and updating the map.
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8. The robot reobserves the purple engine with the Kinect and RealSense.

9. The robot reobserves the pink bottle on table A with the Kinect and RealSense.

10. The robot uses the pink bottle pose estimate to grasp the bottle.

11. The red funnel is moved and the blue bottle appears back on table B.

12. The robot places the pink bottle next to the blue bottle on table B

13. The robot reobserves table B.

Before Experiment 2 starts, the red funnel and pink bottle are moved indepen-

dently on table B so that they do not have the same relative pose with respect to each

other as shown in Figure 5-5. The blue bottle and purple engine are left untouched.

Additionally, the robot platform’s base frame is translated two meters in the x and y

direction from the origin of the world frame and rotated 45� as shown in Figure 5-6.

(a) (b)

Figure 5-5: Object movement before Experiment 2 Note how the pink bottle and
red bottle move as indicated on the arrows in Figure (a). The resulting environment
before Experiment 2 is depicted in Figure (b).
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Experiment 2: Relocalization

Figure 5-6: Setup of Simulation Experiment 2: Relocalization Note that the
robot base has been translated significantly from its position in Experiment 1 and
rotated 45�.

In this experiment, the robot knows that it is returning to the environment it visited

in Experiment 1, but it does not know where it is in the environment. The robot

attempts to relocalize itself with the map it created in Experiment 1, update the map

with the observed changes in the environment, and manipulate some of the objects.

As depicted in Figure 5-7, the Relocalization experiment is as follows:

1. The robot observes the red funnel on table B with the RealSense.

2. The robot observes the pink bottle on table B with the RealSense.
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Figure 5-7: Steps of Simulation Experiment 2: Relocalization Each colored
circle depicts the approximate location of the similarly colored object at the displayed
step.

3. The robot observes the blue bottle on table B with the RealSense.

4. The robot observes the blue bottle on table B and the purple engine with the

RealSense.

5. The robot then grasps the pink bottle and places it on table A.

6. The red funnel and blue bottle swap places in the meantime.

7. The robot reobserves table B with the Kinect.

8. The robot grasps the blue bottle and places it on table A.
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5.2.5 Experimental Results

In this section, we discuss the results of the simulation experiments. We compare the

performance of STORM with the performance of the baseline (pose graph SLAM with

landmarks) evaluated over 24 trials by looking at their respective Kinect and object

pose estimates during the experiments. We only evaluate object estimates when they

are observed. In the case that an object is moved independently and is unobserved,

the error would increase for both systems equally. Note that when an object moves

and STORM looks at the previous object location and observes that the object is not

there, STORM makes a null observation of the object. STORM now knows that the

object is not there and has moved. In comparison, the baseline approach assumes the

object is still there and attempts to reconcile new observations of the moved object

with the previous observations, leading to greater errors in its estimates.

Experiment 1: Mapping

Table 5.1: STORM and Baseline Error in Experiment 1 Over 24 Trials

Sensors

/

Objects

STORM ATE

RMSE [m]

(µ,�)

STORM

Quaternion

RMSE [deg] (µ,�)

Baseline ATE

RMSE [m]

(µ,�)

Baseline

Quaternion

RMSE [deg] (µ,�)

kinect 1e-5, 1e-5 0.003, 0.0007 0.0001, 1e-5 0.003, 0.0007

Red

Funnel

0.004, 0.001 1.4, 0.3 0.09, 0.001 61.0, 0.1

Pink

Bottle

0.004, 0.0002 0.9, 0.03 0.3, 0.0004 22.5, 0.05

Purple

Engine

0.007, 0.002 1.1, 0.4 0.07, 0.004 28.5, 0.3

Blue

Bottle

0.007, 0.002 1.6, 0.6 0.3, 0.001 3.2, 0.2

Table 5.1 reports the mean and standard deviation of the ATE RMSE (5.1) and

quaternion RMSE (5.2) of STORM and the baseline estimates in Experiment 1 over

24 trials. The table confirms that STORM builds more accurate maps of dynamic
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(a) (b)

Figure 5-8: STORM vs. Baseline Kinect Pose Estimate Error in Experiment

1 The plots depict the Kinect pose estimate translation and quaternion error from
STORM and the baseline during one trial of Experiment 1. Both estimate the Kinect’s
pose quite well. Note that the baseline estimates begin to stray around frame 20 when
the moved objects are reobserved, though the error is kept low by the absolute sensor
pose measurements.

Table 5.2: STORM and Baseline Pose Error when Grasping Pink Bottle in

Experiment 1 Over 24 Trials

STORM

Translation

Error [m] (µ,�)

STORM

Quaternion

Error [deg] (µ,�)

Baseline

Translation

Error [m] (µ,�)

Baseline

Quaternion

Error [deg] (µ,�)
0.005, 0.003 1.1, 0.4 0.9, 0.005 67.9, 0.3

environments than the baseline approach.

Figure 5-8 compares the Kinect pose estimates of STORM and the baseline from

one trial of Experiment 1. Both the STORM and baseline estimates are highly accu-

rate due to the accurate absolute sensor pose measurements. The baseline estimates

begin to drift when the moved objects are reobserved, though the error is kept low

by the absolute pose measurements.

Figure 5-9 compares the pink bottle pose estimates of STORM and the baseline

from one trial of Experiment 1. The STORM estimates remain accurate despite

objects being manipulated and moving independently as shown in Table 5.1 and

Figure 5-9. As reported in Table 5.2, the robot is able to grasp the pink bottle using

the STORM estimates with high accuracy over the 24 trials of Experiment 1.
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(a) (b)

Figure 5-9: STORM vs. Baseline Pink Bottle Pose Estimate Error in Exper-

iment 1 The plots depict the pink bottle pose estimate translation and quaternion
error from STORM and the baseline during one trial of Experiment 1. Note how the
baseline translation error quickly grows once the pink bottle is moved and manipu-
lated starting at frame 20.

The baseline does not have as accurate estimates since it assumes that the objects

are all static. As a result, the baseline assumes that the pink bottle remains at the

same pose over the entire experiment and smooths pink bottle measurements from

when the bottle is at table A and at table B. This incorrect assumption leads to the

high error in the pink bottle pose estimates as shown in Figure 5-9. The same issue

is what leads to the poor estimates of the other objects with the baseline such as the

blue bottle. In comparison to the STORM estimate, the robot grasps the pink bottle

with a baseline pose estimate that is not accurate (shown in Table 5.2). This amount

of error would not be good enough for a manipulator using just the pose estimate to

grasp the pink bottle.

Plots of the other object pose estimates depict similar results and are located in

Appendix A.

Experiment 2: Relocalization

Table 5.3 reports the mean and standard deviation of the ATE RMSE (5.1) and

quaternion RMSE (5.2) of STORM and the baseline estimates in Experiment 2 over
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24 trials. The table confirms that STORM is able to consistently relocalize itself in

the map in future trials, whereas the baseline was unable to.

Table 5.3: STORM and Baseline Error in Experiment 2 Over 24 Trials

(values in parentheses are computed after relocalization)

Sensors

/

Objects

STORM ATE

RMSE [m]

(µ,�)

STORM

Quaternion

RMSE [deg] (µ,�)

Baseline ATE

RMSE [m]

(µ,�)

Baseline

Quaternion

RMSE [deg] (µ,�)

kinect
0.5, 0.1

(0.04, 0.02)

7.3, 1.1

(1.5, 0.7)
2.8, 4e-6 45.0, 0.0003

Red

Funnel

0.5, 0.1

(0.02, 0.003)

10.2, 1.5

(2.3, 0.5)
2.4, 0.001 57.5, 0.2

Pink

Bottle

0.3, 0.1

(0.02, 0.01)

6.4, 1.2

(1.8, 0.7)
2.8, 0.0004 77.8, 0.1

Purple

Engine

0.1, 0.1

(0.01, 0.01)

3.7, 2.1

(2.2, 1.1)
2.5, 0.002 44.9, 0.4

Blue

Bottle

0.4, 0.1

(0.01, 0.004)

6.9, 2.1

(1.8, 0.6)
2.6, 0.0004 38.3, 0.1

Figure 5-10 displays the Kinect pose estimates of STORM and the baseline from

one trial of Experiment 2. STORM and the baseline perform very differently. Initially,

the robot does not know where it is and assumes that it is at the origin when it is

actually translated 2 meters in the x and y direction and rotated 45�. Hence, the

translation and quaternion error are high. However, once STORM is able to relocalize

itself in the environment, the translation and quaternion error drop significantly. The

baseline approach is unable to relocalize using the same technique as STORM since

objects moved and were manipulated in Experiment 1 so the object pose estimates

were off at the end of Experiment 1 as shown in Figure 5-9. Note that had the baseline

approach localized off the first object it observed, the Kinect estimate error would be

dependent on how far the object had moved since the previous trial and would not

necessarily be reduced.

Figure 5-11 compares the blue bottle pose estimates of STORM and the baseline
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(a) (b)

Figure 5-10: STORM vs. Baseline Kinect Pose Estimate Error in Experi-

ment 2 The plots depict the Kinect pose estimate translation and quaternion error
from STORM and the baseline during Experiment 2. Note how both translation es-
timates are significantly off initially but after relocalization on frame 3, the STORM
estimate error drops to levels near those on Experiment 1. The baseline approach is
unable to relocalize and the translation error stays high.

from one trial of Experiment 2. The STORM and baseline object estimate errors are

due to the same causes behind the object pose errors in Experiment 1 and the Kinect

pose errors in Experiment 2. Both the STORM and baseline estimates are initially off

significantly, with the STORM estimates improving after relocalization. The baseline

estimates do not improve as the baseline is unable to relocalize and actually worsen

since the baseline assumes that the blue bottle remains static.

Table 5.4 reports the mean and standard deviation of the translation and quater-

nion error of the STORM and baseline object pose estimates when grasping objects

in Experiment 2 over 24 trials. The table shows the large discrepancy in accuracy at

the time of grasping the objects. A manipulator would not be able to grasp the pink

bottle or blue bottle with the baseline estimates, whereas it could with STORM’s as

will be demonstrated in the real-world experiments.

Plots of the other object pose estimates depict similar results and are located in

Appendix A.
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(a) (b)

Figure 5-11: STORM vs. Baseline Blue Bottle Pose Estimate Error in Ex-

periment 2 The plots depict the blue bottle pose estimate translation and quaternion
error from STORM and the baseline during Experiment 2. Note how both translation
estimates are significantly off initially but after relocalization on frame 3, the STORM
estimate error drops to levels near those in Experiment 1. The baseline approach is
unable to relocalize and suffers from the same issues once the objects begin to move
or are manipulated so the translation error stays high.

Computational Performance

The mean time for STORM to perform a graph update was 4.3 ms with a standard

deviation of 0.2 ms. The mean time for the baseline to perform a graph update was

2.4 ms with a standard deviation of 0.1 ms. Both of these graph update times are

more than sufficient for real-time performance as the object pose estimator SegICP

operates at 14 Hz.

Table 5.4: STORM and Baseline Pose Error when Grasping Objects in

Experiment 2 Over 24 Trials

Objects

STORM

Translation

Error [m] (µ,�)

STORM

Quaternion

Error [deg] (µ,�)

Baseline

Translation

Error [m] (µ,�)

Baseline

Quaternion

Error [deg] (µ,�)

Pink Bottle 0.01, 0.01 2.4, 1.1 2.4, 0.002 45.0, 0.4

Blue Bottle 0.02, 0.01 2.1, 1.2 2.1, 0.002 29.4, 0.3
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5.3 Real-World Experiments

We use real-world experiments to demonstrate that STORM is able to build an accu-

rate object map of a dynamic environment and use the map to localize and manipulate

objects in the real world. We use the robot platform discussed in Section 5.1. Since

the platform is a fixed-base setup, the arm has physical reachability constraints, which

limits the space of the manipulatable environment. Like the simulation experiments,

we visualize a Unified Robot Description Format (URDF) of the robot platform,

STORM estimates, and real-world sensor data in RVIZ as shown in Figure 5-12.

Figure 5-12: Visualization of STORM estimates and real-world sensor data

We visualize the STORM robot platform, STORM estimates with mesh models, and
real-world sensor data in RVIZ. The bottom right image is the RGB image from the
Kinect overlaid with pixel-level semantic segmentation from SegNet. Note how closely
the object meshes align with the objects in the raw point cloud.
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5.3.1 Experiments

We design two experiments to demonstrate STORM’s capabilities in a real-world en-

vironment. The first experiment, which we call ‘Mapping and Relocalization’, demon-

strates STORM’s ability to create and maintain an accurate object map of a dynamic

environment and use the map to relocalize itself in the environment over many trials.

The second experiment, which we call ‘Manipulation’, demonstrates STORM’s ability

to use its pose estimates of objects to grasp objects and update the map.

Experiment 1: Mapping and Relocalization

In this experiment, STORM has no prior knowledge of the environment and builds

an initial map of the scene (shown in Figure 5-13).

Figure 5-13: Setup of Real-World Experiment 1: Mapping and Relocaliza-

tion Objects of interest (oil bottle, blue funnel, black power steering fluid bottle,
engine) are placed on and behind two tables with clutter. Objects are moved by
humans as the robot surveys the scene and relocalizes in it over 24 trials.
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As people move objects in the scene, STORM maintains the map as it reobserves

the objects. Over the course of 24 trials, STORM relocalizes the robot from various

viewpoints even as some objects are moved between trials. Note that there are always

at least two objects that are not moved so that STORM can use them to relocalize,

though STORM is not informed which objects are moved or not.

Experiment 2: Manipulation

(a) (b)

Figure 5-14: Table Setups of Real-World Experiment 2: Manipulation Figure
(a) is of the table in front of the robot platform and Figure (b) is of the table to the
left of the robot platform. The colored overlays are pixel-level semantic segmentation
from SegNet. In this experiment, the robot uses STORM’s object pose estimates
to swap the oil bottle on the table in Figure (a) (overlaid in blue) with the power
steering fluid bottle on the table in Figure (b) (overlaid in pink).

In this experiment, STORM again has no prior knowledge of the environment and

builds an initial map of the scene. The setup is similar to that in Figure 5-13 but

with the table setups shown in Figure 5-14.

STORM uses the pose estimates to swap the oil bottle on one table (overlaid in

blue) with the power steering fluid bottle on another table (overlaid in pink). STORM

then updates the map to reflect the current scene.
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5.3.2 Experimental Results

In this section, we discuss the results of the real-world experiments. Note that we do

not have ground truth pose information for the Kinect or the objects so we are not

able to evaluate the results in the same way as the simulation experiments.

Experiment 1: Mapping and Relocalization

Figure 5-15 depicts some of the object pose estimates from the experiment.

Figure 5-15: Various Object Pose Estimates in Real-World Experiment 1

Object pose estimates from various trials in Real-World Experiment 1 are shown as
object mesh models rendered at their estimated poses. Note how closely the object
meshes align with the scene point cloud. The blue mesh corresponds to the gray oil
bottle, the red mesh corresponds to the blue funnel, the pink mesh corresponds to
the black bottle, and the purple mesh corresponds to the engine.
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STORM was able to successfully build accurate maps of the dynamic environment

and relocalize from the different viewpoints in the 24 trials.

Since the robot platform is fixed to the ground, we are unable to move the robot to

a new location and relocalize with the Kinect. Though we do not have ground truth

of the Kinect pose, we have accurate Kinect pose measurements from the encoders

in the pan-tilt unit. If we are able to localize using the Kinect, we can compare the

estimated Kinect pose is with the actual Kinect pose.

STORM was able to relocalize with translation error with mean of 0.026 m and

standard deviation of 0.020 m and quaternion error with mean of 1.4� and standard

deviation of 1.1�. STORM relocalized with lower error when relocalizing from a view

similar to the view from which the map was last updated.

Experiment 2: Manipulation

STORM was able to successfully swap the oil bottle and power fluid steering bottle

and update the map as shown in Figure 5-16.

(a) (b)

Figure 5-16: Object Pose Estimates in Real-World Experiment 2 Object pose
estimates from Real-World Experiment 2 are shown as object mesh models rendered
at the estimated pose. Note how closely the object meshes align with the raw point
cloud.

Though we do not have ground truth poses of objects in the scene, we have some

bounds on the pose tolerances for a successful grasp from the object dimensions and

the gripper limits. The Robotiq 2-Finger 85 Adaptive Robot Gripper opens to 85
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mm wide. Since the oil bottle is 55 mm wide and the black bottle is 60 mm wide, we

have 2.5 cm of tolerance for a successful grasp if the pose estimate is perfectly aligned

and less if not.

5.4 Discussion

As shown by the baseline results in Section 5.2.5, a SLAM approach that relies on

the static world assumption in a dynamic environment will have inaccurate estimates

of dynamic objects. Another approach that relies on the static world assumption

but instead ignores moving objects such as SLAM++ [39] would also have inaccurate

estimates of dynamic objects. In these cases, the estimates would be not be good

enough to manipulate the objects using the pose estimates alone. Additionally, as

shown in Simulation Experiment 2, these inaccurate estimates leads to an inability

to relocalize using the map in future trials.

One case not demonstrated in the experiments is if an object disappears from the

robot’s sensors’ field of view. STORM treats this case as a null observation of the

object. Typical SLAM approaches assume that the object was still there such as after

step 4 of Simulation Experiment 1. The robot would try and grasp the object even

though it is no longer there. With STORM, the robot would know that the object is

no longer there and could plan to search for the object.

With the simulation and real-world experiments, we demonstrated that STORM

is able to build and maintain object-based maps of dynamic environments and use

the maps to manipulate objects and relocalize in the future. In simulation, we showed

both qualitatively and quantitatively that STORM is able to do these tasks better

than a standard approach relying on the static world assumption. Finally, we verified

STORM’s performance in the real-world by demonstrating map building, relocaliza-

tion, and object manipulation.
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Chapter 6

Conclusions

This thesis started by presenting the SLAM problem, current accomplishments in

the field, and some of the limitations of current techniques. Chapter 2 expanded on

these limitations motivating our work — the static world assumption and the lack of

semantic object-based maps — and reviewed research being done on these challenges.

Chapter 3 provided an overview of the SLAM problem, formally defining SLAM as a

probabilistic estimate. The section then reviewed the modern approach to performing

SLAM, providing a foundation upon which we present our approach.

6.1 Novel Contributions

Chapter 4 presented Simultaneous Tracking, Object Registration, and Mapping (STORM),

an object-based SLAM system that enables a robot to operate in dynamic environ-

ments. STORM localizes the robot accurately even when objects are moving inde-

pendently or being manipulated by the robot and enables the robot to manipulate

objects with the object pose estimates in the map. The key contribution of our work

is the representation of an environment as a collection of dynamic (rather than static)

objects. We also presented SegICP [56, 57], a real-time object pose estimator that we

use in STORM’s front-end. SegICP performs deep pixel-level semantic segmentation

and model-based point cloud registration to robustly estimate 6DoF object poses in

real-time.
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Chapter 5 demonstrated that STORM constructs accurate object maps of dy-

namic environments and can use the map to localize and manipulate objects. We

evaluated STORM in simulations and compared STORM’s performance against a

baseline approach. We showed that STORM was able to build an accurate map of

the dynamic scene and use it to localize and manipulate objects while the baseline ap-

proach was not able to. Finally, we demonstrated STORM’s capabilities in real-world

experiments.

6.2 Discussion and Future Work

We demonstrated the benefits of representing an environment as a collection of dy-

namic rather than static objects. There are a number of interesting directions for

future work. First, implementing STORM on a moving base would add new chal-

lenges in estimating the robot pose, necessitating detecting loop closures. Using an

approach like that in [39] for loop closure detection and relocalization would likely

improve STORM’s performance. On the front-end, adding more object classes and

handling multiple instances of a single class using an approach such as [31] would

greatly increase the utility of STORM. Finally, adding additional object detectors

would further constrain the factor graph and add robustness to failure modes of in-

dividual detectors.
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Appendix A

Simulation Experiment Error Plots

In this appendix, we present the remaining object pose estimate error plots from the

simulation experiments that we did not present in Chapter 5.

First we show the error plots from Simulation Experiment 1: Mapping:

(a) (b)

Figure A-1: STORM vs. Baseline Blue Bottle Pose Estimate Error in Ex-

periment 1 The plots depict the blue bottle pose estimate translation and quaternion
error from STORM and the baseline during Experiment 1. Note how the baseline
translation error quickly grows once the blue bottle is moved starting at frame 20.
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(a) (b)

Figure A-2: STORM vs. Baseline Engine Pose Estimate Error in Experi-

ment 1 The plots depict the engine pose estimate translation and quaternion error
from STORM and the baseline during Experiment 1. Note how the baseline transla-
tion error quickly grows once the engine is moved starting at frame 20.

(a) (b)

Figure A-3: STORM vs. Baseline Red Funnel Pose Estimate Error in Ex-

periment 1 The plots depict the red funnel pose estimate translation and quaternion
error from STORM and the baseline during Experiment 1. Note how the baseline
translation error quickly grows once the red funnel is moved starting at frame 20.

Next, we show the plots from Simulation Experiment 2: Relocalization:
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(a) (b)

Figure A-4: STORM vs. Baseline Pink Bottle Pose Estimate Error in Ex-

periment 2 The plots depict the pink bottle pose estimate translation and quaternion
error from STORM and the baseline during Experiment 2. Note how both translation
estimates are significantly off initially but after relocalization on frame 3, the STORM
estimate error drops to levels near those in Experiment 1. The baseline approach is
unable to relocalize and suffers from the same issues once the objects begin to move
or are manipulated so the translation error stays high.

(a) (b)

Figure A-5: STORM vs. Baseline Engine Pose Estimate Error in Experi-

ment 2 The plots depict the engine pose estimate translation and quaternion error
from STORM and the baseline during Experiment 2. Note how both translation es-
timates are significantly off initially but after relocalization on frame 3, the STORM
estimate error drops to levels near those in Experiment 1. The baseline approach is
unable to relocalize and suffers from the same issues once the objects begin to move
or are manipulated so the translation error stays high.
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(a) (b)

Figure A-6: STORM vs. Baseline Red Funnel Pose Estimate Error in Ex-

periment 2 The plots depict the red funnel pose estimate translation and quaternion
error from STORM and the baseline during Experiment 2. Note how both translation
estimates are significantly off initially but after relocalization on frame 3, the STORM
estimate error drops to levels near those in Experiment 1. The baseline approach is
unable to relocalize and suffers from the same issues once the objects begin to move
or are manipulated so the translation error stays high.
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