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ABSTRACT

The objective of this thesis is to develop a rigorous mathematical
framework for studying the nonlinear dynamics of simple and compound
drops and bubbles and to apply this theory to several of the outstanding
problems in drop dynamics. A combination of domain perturbation and
multiple timescale methods are used to systematically compute the evolution
of axisymmetric and inviscid simple and compound drops. The complexity
of the nonlinear equations is reduced by using the symbolic manipulator
MACSYMA.

The moderate-amplitude oscillations of incompressible drops and
bubbles are first studied using a Poincare-Lindstedt technique. The
two cases are complimentary to each other which simplifies their treatment.
It is shown that the increased inertia of the system slows down the motion
by decreasing the frequency of the oscillation as the magnitude of the
deformation increases. The corrections to the drop shape and velocity
potential caused by mode coupling at second order in amplitude are predicted
for two-, three-, and four-lobed motions. The two-lobed shape is named
prolate when the axis of symmerty is the larger of the axes of the ellipsoid,
whereas it is named oblate when the axis of symmetry is the smallest.
The agreement of the analytic results with both experiments carried out
at JPL and numerical solutions of Foote (1973), Alonso (1974) and Benner
(1983) is very good.

Nuclear physics have contributed theoretical analysis and impetus
for experimental study of liquid drops, since Bohr and Wheeler began
modeling atomic nuclei as uniformly charged liquid drops with surface
tension. The analysis is extended to the oscillations of a conducting
charged drop. Again, a decrease in the oscillation frequency with increasing
deformation is observed, but with a magnitude which depended on the total
surface charge. The analysis also demonstrated the possibility of resonance
between the fundamental mode of oscillation and one of its harmonics
for particular values of the net charge on the drop. Both frequency
and amplitude modulation of the oscillations are predicted for drop motions
starting from general initial conditions. This effect cannot be anticipated
from the linear analysis and proves that Rayleigh's solution (1882) for
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small-amplitude oscillations can actually be unstable.

The dynamics of breakup of a charged drop is a long standing issue,

although the neutrally stable shapes have been known since the early
sixties. Rayleigh (1882) calculated the maximum charge that a spherical

drop can carry before it becomes unstable due to electrostatic repulsion.

The treatment shows that the first bifurcating family from the spherical
shape evolves transcritically, so that the drop will be either unstable

for elongated prolate shapes or stable for flat oblate shapes. The evolution

of drop shape leading to breakup is also analyzed and the dependence
of the amount of charge on the amplitude of the deformation is computed.

The asymptotic analysis for the static shapes is in very good agreement
with the finite element calculations for even large amplitude deformations

of the drop.

Finally, the dynamics of a compound drop are examined in an effort
to explain the observed motion of a bubble towards the center of the

surrounding drop (Lee et al. 1981). This centering force is critical
in the formation of hollow spherosymmetric shells that are made by centering

a bubble inside a drop and solidifying the resulting shell. Metal and

glass shells are currently being used as fuel targets for Inertial Confinement
Fusion experiments and have great possibilities as a matrix material
for load-bearing materials with extremely high strength to weight ratios.
Physically, the centering must be due to the nonlinear dynamic coupling
of the interfaces during oscillation, because all locations of a bubble

inside a static drop are energetically equivalent. The analysis presented,

reveals that a strong centering force is created by this dynamic mechanism

when the compound drop oscillates in one of the two possible modes, the
sloshing mode, in which the two interfaces are oscillating out of phase.

Thesis Supervisor: Robert A. Brown

Title: Professor of Chemical Engineering
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In a letter to Karl Popper, Einstein once wrote:

"Theory cannot be fabricated out of the results of observation, it can

only be invented."

Popper replied:

"Observation is always selective. It needs a chosen object, a definite

task, an interest, a point of view, a problem.
Observations are always INTERPRETATIONS of the facts observed, ... they

are interpretations in the light of theories."
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I. OVERVIEW

The dynamics of liquid drops and bubbles held together by surface

tension and vibrating because of induced perturbation have long been

of interest to scientists and engineers in a variety of physical and

biological applications, spaning areas as diverse as the length scales

of the systems modeled by the fluid globes. Centimeter-sized drops and

bubbles are important in chemical engineering separations, meteorology,

and materials processing in space, where freely-suspended drops and liquid

shells can be handled. Femtometer-sized (10-15 m) liquid drops with

surface tension and electric charge have been used as models for predicting

the dynamics of heavy nuclei (Bohr and Wheeler 1939), whereas celestrial-sized

fluid bodies held together by self-gravitation and destabilized by centripetal

acceleration are old, but still employed, models for the evolution of

stars (Chandrasekhar 1969).

Each of these systems is described mathematically by a nonlinear

moving-boundary problem for the shape of the fluid/fluid interface and

the field variables, velocity, pressure, and electric potential, throughout

the drop or in the surrounding fluid (for a bubble). These variables

are calculated using conservation laws of momentum, mass and species

in the bulk fluid and on the interface. The classical theories that

form the basis for each of the applications of drop dynamics dealt with

either the small-amplitude motions of the interface that can be analyzed

by linear methods or with the nonlinear equilibrium or static shapes

of bodies affected by the appropriate body forces and surface tension.

These results are insufficient to explain a wide range of observations

1
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of large-amplitude dynamic evolution.

The objective of this thesis is to develop a rigorous mathematical

framework for studying the nonlinear dynamics of simple and compound

drops and bubbles and to apply this theory to several of the outstanding

problems in drop dynamics. As opposed to numerical solutions, our semi-

analytical method is relatively inexpensive, yields an exhaustive mapping

of the long-time response of the drop as a function of the initial defor-

mation, and other appropriate parameters and uncovers the nonlinear effects

of fluid inertia and capillarity. The analyses focus on the dynamics

of freely oscillating, inviscid drops, bubbles and liquid shells, whereas

the importance of the viscous forces are discussed elsewhere (Tsamopoulos

and Brown 1983 & 1984).

The first area of interest is the nonlinear oscillations of single

drops or bubbles in an infinite medium. The two cases are complimentary

to each other which simplifies their treatment. It is shown that the

increased inertia of the system slows down the motion by decreasing the

frequency of the oscillation as the magnitude of the deformation increases.

The experimentally observed first three modes of oscillation of a simple

drop are shown in figure 1.0.1, after Trinh et al. (1982). The two-lobed

shape is named prolate when the axis of symmerty is the larger of the

axes of the ellipsoid, whereas it is named oblate when the axis of symmetry

is the smallest. The agreement of our analytic results with both experi-

ments carried out at JPL and numerical solutions of Foote (1973), Alonso

(1974) and Benner (1983) increased our confidence in the method we have

followed.

Nuclear physics have contributed theoretical analysis and impetus
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Figure 1.0.1 Neutrally buoyant uncharged drop of silicone oil - CC14
Immersed in distilled water and undergoing oscillation
in the L=2,3,4 axisymmetric oscillation modes (Trinh et
al. 1982).
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for experimental study of liquid drops, since Bohr and Wheeler began

modeling atomic nuclei as uniformly charged liquid drops with surface

tension. We have extended this analysis to the oscillations of a conducting

charged drop. Again a decrease in the oscillation frequency with increasing

deformation is predicted, but with a magnitude which depended on the

total surface charge. The analysis also demonstrated the possibility

of resonance between the fundamental mode of oscillation and one of its

harmonics for particular values of the net charge on the drop. This

effect cannot be anticipated from the linear analysis and proves that

Rayleigh's solution (1882) for small-amplitude oscillations can actually

be unstable.

The dynamics of breakup of a charged drop is a long standing issue,

although the neutrally stable shapes have been known since the early

sixties. Rayleigh (1882) calculated the maximum charge that a spherical

drop can carry before it becomes unstable due to electrostatic repulsion.

Our treatment shows that the first bifurcating family from the spherical

shape evolves transcritically, so that the drop will be either unstable

for elongated prolate shapes or stable for flat oblate shapes. The evolution

of drop shape leading to breakup is also analyzed and the dependence

of the amount of charge on the amplitude of the deformation is computed.

Finally, the dynamics of a compound drop are examined in an effort

to explain the observed motion of a bubble towards the center of the

surrounding drop (Lee et al. 1981). This centering force is critical

in the formation of hollow spherosymmetric shells that are made by centering

a bubble inside a drop and solidifying the resulting shell. Metal and

glass shells are currently being used as fuel targets for Inertial Confinement
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Fusion experiments and have great possibilities as a matrix material

for load-bearing materials with extremely high strength to weight ratios.

Physically, the centering must be due to the nonlinear dynamic coupling

of the interfaces during oscillation, because all locations of a bubble

inside a static drop are energetically equivalent. The analysis presented

in chapter VII reveals that a strong centering force is created by this

dynamic mechanism.
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II. PHYSICAL SYSTEMS DESCRIBED BY DROP DYNAMICS

Many studies have examined the equilibrium and stability of fluid

globes in the presence of various internal and external fields of force. The

classic investigations by Newton, Maclaurin, Jacobi, Riemann, Laplace,

Lyttleton and Poincar6 regarding the shape and stability of a homogeneous

self-gravitating fluid in rigid body rotation and under the influence

of surface tension have been summarized by Chandrasekhar (1969).

Swiatecki (1974) presented a survey of the equilibrium configurations

of a rotating charged or gravitating liquid mass in a way that unifies

the treatment of idealized rotating heavenly bodies, rotating drops in

a weightless environment, and fluid mechanical equivalents of rotating

nuclei. This unification was achieved by varying continuously two physical

parameters in the equations. The first parameter, x, was the relative

intensity of the inverse-distance (gravitational or electrostatic) energy

to that of the surface energy. The second parameter, y, was a measure

of the square of the angular momentum, and thus of the size of the disruptive

centrifugal forces compared to the cohesive surface tension forces. Each

system is described by a pair of x-y values as shown in figure 11.0.1,

after Swiatecki (1974). The y=0 axis implies no rotation, so the positive

x-axis corresponds to nonrotating idealized nuclei, from light to heavy

with increasing x. Self-gravitating globes exist for negative x. The

classic case of astronomical masses without surface tension corresponds

to x -+ -W, as indicated in the left. Plateau's rotating globes, with

no charge and negligible gravitation, correspond to the positive y-axis.

Rotating nuclei and rotating gravitating masses with surface tension
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fill the upper half-plane. The negative y-plane corresponds to a bubble

in a rotating container filled with a liquid (simple, gravitating, or

uniformly charged). The bubble has negative inertial mass relative to

the surrounding liquid, and experiences a negative centrifugal force

which, instead of flattening the bubble, tends to elongate it along the

axis of rotation.

Electrohydrodynamic phenomena in drops and bubbles are of interest

in a wide variety of scientific and engineering applications and have

long fascinated researchers starting with Lord Raleigh (1882). The dynamic

response of liquid drops held together by surface tension, which carry

electric charge and in the presence of an A.C. or D.C. electric field

has been studied in physical systems ranging in size from milimeter raindrops

(Sartor 1961 ; Brazier-Smith et al. 1971) to micron-sized spheres produced

by fuel atomizers and ink jet delivery systems (Hendricks 1962; Williams

1973; Takamatsu et al. 1982). In particular, Brook and Latham (1968)

have shown that size distributions of raindrops can be determined from

a study of the fluctuations in the radar signal returned by falling raindrops,

which in turn is caused by drop vibration. In this case, it is necessary

to establish the relationship between the vibrational frequency and the

charge carried by the drop, or the strength of the electric field in

which it is situated and thereby to define conditions under which the

electric forces may be important or may be neglected.

There is renewed interest in the shape and stability of charged

drops as a mechanism of isolation and transport of small liquid masses.

A conducting drop can be levitated statically in an insulating medium

by accumulating a net charge Q on its interface and by applying a D.C. field
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wi-th a component E0 in the direction of gravity. Such electrostatic

levitators have been used to investigate physical properties and size

distributions of aerosol particles (0' Konski and Thacker 1953; Davis

and Ray 1980; Philip et al. 1983) and have been proposed for use in the

containerless processing of ultra-pure or highly reactive materials such

as semiconductor melts (Carruthers 1974).

A contribution of Fluid Mechanics to Biomedical research is to elucidate

some of the general dynamical features that affect the disposition of

an single cell, cell colonies and tissues (Greenspan 1981) and to effectively

perform the biological separation between living and dead cells (Crane

and Pohl 1968). Strong analogies exist between droplets (with or without

charge) and cells, i.e. droplet - cell shape, encapsulated droplet -

cell and cell membrane, adhesion and spread of a drop - cell mobility

and adhesion.

Compound drops are considered in multiphase separations. The liquid

in the shell acts as a liquid membrane which during settling causes a

separation process to take place between the liquid inside it and the

liquid outside. Such systems have been called double emulsions (Li 1971;

Martin and Davies 1976).

Also, there are a variety of phenomena, both in nature and in industry,

which involve drop or bubble formation and disappearance by mass transfer

processes (Zwick and Plesset 1955). Other phenomena are related with

their interactions with one another, or with other surfaces. Obvious

natural examples are the growth of raindrops by the coalescence of drop

pairs (Saunders 1974), the break up of large falling drops caused by

their interaction with an air stream (Harper et al. 1972) and the splashing
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and erosion produced by raindrops impacting on soil or by bubbles formed

by cavitation near fast moving submerged surfaces (Van Winjgaarden 1976;

Lauterborn and Bole 1975; Blake and Gibson 1981; Longuet-Higgins 1983).

The coupled motion of two spherical drops submerged in an unbounded velocity

field in the low Reynolds number regime has been studied by Hetsroni

and Haber (1978) who computed the drag forces and the terminal settling

velocities of the two drops.

The deformation and burst of a single drop in a shear field are

of great importance. Depending on conditions, the drop may become a

greatly elongated filament, or it may deform only moderately before bursting

(Bathes-Biesel and Acrivos 1973; Torza et al. 1972; Rallison 1984).

All these cases involve the details of the deformation process and

incorporate forces arising from surface tension, gravity, electric and

magnetic fields, pressure, inertial and viscous action.

II.1 DYNAMICS OF CHARGED DROPS

II.1a Liquid drop model for the nucleus

The dynamics of a nucleus have been compared to those of a liquid

drop which carries volumetrically distributed electric charge (Bohr and

Wheeler 1939). In this case the molecules of the liquid correspond to

the nucleons in the nucleus. When internal gravity and surface tension

dominate in a drop, there is a close mathematical analogy with the case

of volume charge and surface tension. The energy of self-gravitation

shares the inverse-distance dependence of electrostatic energy. The

density of a liquid is almost independent of its size so that the radius
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of the drop is proportional to the cubic root of the number of molecules

- a rule that closely applies to the nucleus. The energy necessary to

evaporate the drop into well separated molecules is approximately proportional

to their number which is analogous to the binding energy of a nucleus. On

the other hand, in liquids, the motion of the constituents can be described

in classical terms and their positions can be well defined, whereas in

a nucleus the motion is necessarily of quantum character, since the un-

certainty in the localization of the constituents is of the order of

magnitude of their distance, 10-14 m. The transition point from the

classical to the quantum mechanical regime is taken to be at the temperature

where the De Broglie wavelength equals the inter-nucleon spacing (Alonso

1974).

In spite of these differences, attempts were made to describe nuclear

dynamics and in particular, surface vibrations which arise from the excitation

energy of the nucleus, in terms of the motion of a liquid drop under

the influence of nuclear surface tension (Bersch 1983, A. Bohr and Mottelson

1975). If one includes the quantum effects for the giant vibrations

the theory gives a quite simple and unexpected result, namely that the

nucleus has a rigidity making it to respond like an elastic solid to

sudden forces and like a viscous liquid to slow ones.

Swiatecki and Cohen (1956a, 1956b, 1962, 1963) in a series of papers

have extensively studied the deformation energy of a charged drop with

special reference to the fission process. Fission is a result of compe-

tition between the long-range electrostatic repulsion and the attractive

short-range nuclear forces, idealized in this model as surface tension.

A charged drop is stable against small deformations when the potential
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energy is an increasing function of deformation (local minimum). The

least energy necessary to divide the drop and the drop shape before break

up are of importance in the discussion of fission thresholds and fission

symmetry. The shapes of neutral equilibrium vary from a simple sphere

and necked-in saddle-point shapes (Bohr and Wheeler family) to a cylinder

like configuration with increasing equatorial waist and finally to two

spheres (Frankel and Metropolis family) depending on the amount of net

charge on the drop. The transition between these main families and some

recently calculated ones was not believed to be continuous.

At low values of charge, fission, in the usual sense, does not exist.

A sufficiently excited drop might split off fragments of various sizes

in a way that may be termed spallation. Fission as a separate process

would first appear for intermediate values of net charge and would follow

the Frankel and Metropolis family of symmetric shapes. For still higher

values of charge (close to the neutral stability limit for a spherical

configuration) fission may lead to three or four fragments. Cohen and

Swiatecki (1962) further suggest that the dynamical problem should change

from an essentially two-body problem for low values of charge to a many-body

problem for higher ones and thus introduce the idea of the formation

of satelite drops during the fission.

Nevertheless, the stages between saddle points and scission present

a problem of quite a different nature than the static equilibrium shapes.

In particular, the dynamics of the process would be involved and the

physical properties of the drop which determine the hydrodynamic behavior

would have to be considered. Accurate and exhaustive experiments on

many aspects of nucleus fisssion are available for a long time and further
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information may be readily obtained owing to the ease of observing the

fission of heavy elements. The real difficulties lie on the theoretical

side, where the fundamental questions on the nature of the process have

to be explored and settled.

II.1b Fluid Mechanics of a charged oscillating drop and dynamics of

fission.

The analysis presented in the previous section is devoted to a study

of the potential energy of deformation of a charged drop. The next step

should be to calculate the kinetic energy and develop the solutions of

the equations of motion of the system for different initial conditions.

The large number of possible initial conditions will call for a discussion

of the Statistical Mechanics of the problem in order to correlate average

initial conditions with average end results of the division. On completion

of the classical solution, the next step will be to replace the conjugate

momenta in the Hamiltonian with quantum-mechanical operators and to study

in an analogous way the quantummechanical and quantum-statistical properties

of the resulting Schrondinger equation (Cohen and Swiatecki, 1963).

Tsang (1974) has investigated the similarities between volumetrically

charged (nuclear) drops and conducting (rain) drops which were first

considered by Rayleigh (1882). By an energy stability analysis applied

to conducting drops immersed in an insulating medium, Rayleigh calculated

the frequncies for small amplitude oscillations of an inviscid drop and

established the amount of charge necessary to fission the drop. The

modes of shape oscillation were described by Legendre polynomials and

the levels of charge necessary to disrupt the n-th mode were given by
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~(n) 3 1/2
( = 4[cmaR (n+2)] , n>1c

where a is the surface tension of the drop, em is the permittivity of

the medium and R is the radius of the spherical shape. The mode number

n corresponds to the number of lobes on the deformed drop. At each critical

value the spherical shape is neutrally stable with respect to the appropriate

shape perturbation. Elementary bifurcation analysis applied to the modified

Young-Laplace equation that governs the shape of the drop shows that

new families of equilibrium shapes branch from these critical values

and evolve transcritically in charge. The drop shapes in each family

have the symmetry of the shape perturbation; for example, shapes in the

(2)
first family have two lobes and the corresponding value Qc marks the

absolute stability limit for spherical drops.

Oscillations of an inviscid liquid drop carrying surface charge

can be altered by the Coulomb forces and by charge convection. Eliassen

(1963) used the "pillbox" method to construct the general conservation

equation on a moving and deforming surface that separates two immiscible

fluids. The conservation principles are applied to an arbitrary cylinder-like

volume element of fluid which contains a portion of the interface, and

then the limit of the equation is taken as the height of the cylinder

approaches zero. This method has also been used by Bupara (1965) to

derive interfacial continuity, species, energy and momentum equations,

(also see Aris 1962). We have derived the conservation equation for

surface charge, and have shown that when the drop medium is a perfect

conductor, the characteristic times for charge convection and conduction

on the surface are much smaller than the characteristic time of drop

motion. In this case the charge distribution on the surface assumes
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the equilibrium value and the surface remains equipotential during the

motion.

II.1c Effects of viscosity on drop dynamics

Initial oscillations of a deformed single or compound drop may be

virtually irrotational if the ratio of the viscous boundary layer on

11/2
the interface(s) - scaled as (v/w) where v is the dynamic viscosity

and w the natural frequency of the motion - is small compared to the

characteristic length of the system. Viscosity generates vorticity near

the interface(s) which diffuses eventually throughout the bulk fluid

according to a transient conduction equation. A first order theory for

viscous charged drop oscillations has been developed by Tang and Wong

(1974).

The damping effects of viscosity can also be observed in Alonso's

(1974) finite difference (see section III.2b) simulations of a dielectric

charged drop. Figure II.1.1 reproduces her results and demonstrates

the asymptotic decrease of both the kinematic and surface (dynamic) energy

with time.

Miller and Scriven (1968) have carried out a normal mode analysis

of the small amplitude oscillations of a viscous fluid droplet immersed

in another viscous fluid. They derived a general dispersion relarion

by which the frequency and the rate of damping can be calculated for

arbitrary values of droplet size, physical properties of the fluids and

interfacial viscosity and elasticity coefficients. When the viscosities

of both fluids are low, but not zero, the primary contribution to the

rate of damping of oscillations is generally the viscous dissipation
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ina boundary layer near the interface. For this reason inviscid velocity

profiles, which do not account for the boundary layer flow, do not lead

to good approximations to the damping rate. The two exceptions in which

the approximation based on inviscid profiles is adequate occur when the

interface is free and either the interior or the exterior fluid is a

gas of negligible density and viscosity, corresponding to the single

bubble and drop case.

Prosperetti (1980a, 1980b) has examined the same linear viscous

problem using Laplace transforms and has predicted the transient regime

of the oscillations. The governing equation for the amplitude evolution

is not a simple harmonic oscillator, but also includes an integral term

of the interface velocity up to the time considered. This result is

more general than the result of Miller and Scriven (1968). It reduces

to the almost irrotational result for short times in the single fluid

case, if its viscosity is low and the initial conditions do not introduce

vorticity into the system (Lamb 1932). It also reduces to the normal

mode analysis of Miller and Scriven for large times and any fluid properties,

because then all past "memory" of the motion carried by the integral

will have damped out and only the effects of the normal mode will prevail.

In intermediate times this integral term acts as a forcing to the damped

oscillator and changes its transition from the appropriate initial conditions

to the expected final motion by modulating both its frequency and damping

rate. Prosperetti's results are better understood using figure I1.1.2

where the amplitude evolution of the 2-lobed mode is given with zero

initial velocity according to the numerical inversion of an integro-

differential equation ( ). This is compared to the least-damped normal
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mode (----) and the initial irrotational approximation (----).

Earlier Prosperetti (1974) showed that the damping factor of the

system increases with time, in the early stages of the motion, and most

unexpectedly that this increase is a function of t3 / 2 instead of t1/2

as is the case for transient diffusion in an infinite domain. This is

the reason why the small-time irrotational solution is correct in practice

for real fluids.

The nonlinear coupling of viscosity and free drop oscillations is

still unresolved, except for the limited numerical simulations of Alonso

(1974) and Foote (1973).

11.2 DYNAMICS OF COMPOUND DROPS

II.2a Inertial Confinement Fusion (ICF) target

Nuclear fusion reactors with inertial confinement and ignition systems

are currently being developed for use as electricity generating units

(Nuckolls et al. 1972, Kammash 1975, Yonas 1978). In these systems a

fuel pellet containing an equimolar mixture of Deuterium and Tritium

(DT) at 10-100 atm is exposed to a large pulse of energy from either

laser- or electron-beam sources. The outer surface of the fuel pellet

ablates and drives the remainder of the target into the intense compression

needed to initiate a thermo-nuclear burning of the fuel. Hollow glass

shells containing the fuel mixture are being produced for ICF targets

(Hendricks 1976, 1977, 1981). Such a simple target is shown schematically

in figure 11.2.1 and is characterized by its outer radius R, and wall

thickness, usually reported as aspect ratio A=(R1 -R 2 )/R where R2 is
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the inner radius of the shell. More complicated structures such as the

multilayer assemblies shown in figure 11.2.2 have become necessary to

test and understand the laser-target interactions and may be fabricated

at a later stage. The surrounding layers may be of glass, polymeric,

cryogenic or other inorganic materials and metals.

The production and precise characterization of adequate targets

require a combination of several technical and scientific disciplines,

including glass technology, polymer chemistry and physics, optics and

electron microscopy. For developmental work, fuel targets with outer

radii of several hundred microns and aspect ratios of a few hundredths

have been required. The economics of large-scale operation and the achieve-

ment of "breakeven" require targets of several millimeters in radius

and aspect ratios of several hundredths.

The energy produced in any economical power production system must

be worth more than the input power and investment costs to produce it.

In addition, the cost must be competitive with other production sources.

Simplistic arguments show that targets must be produced at rates of 5

to 10 per second and at cost of a few cents to a dollar each. The material

cost of a shell is extremely small - as low as 1 microcent. The cost

of the fuel is not as small (0.1 cents per 100 ng of Tritium). Thus,

the total material cost in this simple, but often used target, is about

0.2 cents. It becomes then obvious, that the cost of a target in a finished

state is essentially the cost of the manpower to handle, select, measure

and assemble - items which will be greatly reduced, if the fabrication

step meets the preset standards. For more details see Hendricks and
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Johnson (1977).

Many of the most difficult production problems result from the stringent

design requirements for surface finish, concentricity and target material

composition. For example, the surface finish on a glass sphere used

in a high-density implosion experiment may be no more than 100-300 AO

peak to valley, the wall nonuniformity cannot exceed 1% and the microspheres

must hold up to 100 atm of DT over a long period of time. It has been

demonstrated (Nuckolls et al. 1972) that even a slight eccentricity of

the shell leads to a large deviation from sphericity during the fuel

implosion, which places severe limitations on the efficiency of the reaction

by restricting the maximum pressure attainable inside the shell. Surfaces

of such high quality are seldom found or studied in most materials research,

development or use situations. Besides these surface requirements, one

must achieve reproducibility of the ICF target, which translates into

reproducing the initial droplets with the same mass of glass and injecting

them under prespecified conditions in the furnace. For relatively simple

targets of the exploding pusher type, the quality of the glass shell

is not extremely critical. Variations in wall thickness, surface irregular-

ities and some voids in the wall can be tolerated. However, even with

such relaxed tolerances only a few in 106 to 109 of the commercially

produced shells are acceptable, and even then, the only shells available

have limited thicknesses (0.5 to 1.5 pm) and diameters (40 to 250 pm). As

the requirements for higher quality and lower cost production were clarified,

the need for a reliable source of spheres became obvious.

For these reasons it is imperative to develop the means of producing
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high-quality hollow glass microspheres. In general, the melting point

of the glass must ensure rapid and complete gel to glass fusion and its

viscosity must be low enough to allow high sphericity and concentricity.

Three distinctly different processes are currently being used for manu-

facturing hollow spheres.

LIQUID DROPLET TECHNIQUE. According to this method (Rosencwaig

and Hendricks, 1977) an aqueous solution of glass forming chemicals (e.g.

sodium silicate, boric acid, sodium and potassium hydroxide etc.) is

forced through an orifice to form a cylindrical jet. A capillary wave

launched onto the jet by means of a piezo-electric transducer, breaks

up the jet into a series of uniform drops. These will attain an almost

spherical shape in free fall as a result of surface tension in this low

viscosity glass state. The solvent (water) is evaporated from the drops

in a vertical column at about 3500 C, leaving dry particles which continue

into a higher temperature region of the furnace to form glass spheres. Water

of hydration and gasses evolved from the chemical constituents expand

in the molten glass spheres acting as an internal blowing agent and deform

the glass into quite uniform hollow shells. These shells are then cooled,

solidified - both during free-fall - and collected. The right temperature,

solution composition, size of the orifice in the liquid-droplet generator

and droplet transit time will produce hollow glass microspheres with

specified diameter and wall thickness in a controlled fashion. For more

details on the liquid droplet generator see Hendricks (1976), whereas

a detailed description of the vertical furnace and the various Physical

and Chemical processes that take place during the microshell fabrication

is given by Hendricks (1977).
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ANNULAR LIQUID JET METHOD. An axial flow of liquid surrounding

a flow of gas at its core is extremely unstable (Calligher et al. 1977,

Kendall 1980, 1981). Axisymmetric oscillations arise spontaneously,

and grow so rapidly along the axial dimension that a pinch-off of the

liquid and an encapsulation of the core gas occurs within as few as four

jet diameters, whereas it required more than 500 diameters for the unperturbed

regular liquid jet. The breakup in hollow drops is still driven by the

surface tension instability, first described by Rayleigh (1879). Another

advantage of the annular jet method is that, because of the external

forcing, only a very short range of modes seem to become unstable, which

yields a short range of drop sizes, whereas a wide range of wave numbers

are unstable in the Rayleigh jet. The shells which result thereby may

be described as thick wall bubbles, for which Van der Waals forces are

unimportant. It has also been observed that altering the viscosities

or densities of the fluids does not negatively affect the obtained shell.

DRIED GEL PROCESS. In this method dried granules of hydrated glass-

forming oxides are dropped through a furnace (Hendricks et al. 1979,

Woerner et al. 1980). The water of hydration is encapsulated and gases

are evolved from the components forming small bubbles, whose walls become

thin as expansion occurs. The internal bubble walls perforate and shortly

one internal relatively large bubble is formed of all the smaller ones.

This single bubble continues to expand and a hollow shell is formed.

Preparation of the dry particles to be put into the furnace, requires

that they are mixed into a slurry, dried, pulverized and sieved to gain

high uniformity in size. Another method involved dissolving the chemicals

in water and spray drying to form the dry particles which were then introduced
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in, the furnace. Unlike the two previous methods this one produces a

distribution of shell sizes and thus considerable shorting must follow

the primary fabrication. After the spheres have been collected from

the furnace, they are washed, carefully examined (methods used include

transmission interferometry, scanning electron microscopy etc.), filled

with the DT mixture and coated with several layers of polymers or inorganic

materials. Deuterium and Tritium diffuse rapidly through the wall when

the spheres are at a temperature of about 350 0 C and at appropriate pressures

of that mixture.

II.2b The Fluid Mechanics of a bubble inside a drop

No matter which method for the fabrication of the ICF target is

used, a bubble trapped inside a drop is ultimately produced. Any eccentricity

of the liquid shell is transmitted to the shell used as ICF target upon

solidification. The sphericity of the shell, and thus its value as a

fusion target, depends on the ability of the forces acting on the bubble

and drop, e.g. dynamic pressure, liquid inertia, viscosity and surface

tension to counterbalance the net buoyancy of the bubble within the drop

and the hydrodynamic drag on the outer surface of the drop; both of these

forces if uncontrolled deform the spherosymmetric shell. For the initial

stages of fusion experiments the quality requirements for the ICF targets

were not as strict and the hollow glass shells could be very thin and

have radii of the order of a few hundred microns. For these small and

thin shells, surface tension forces dominate over all the others and

the concentricity of the target is preserved. For targets with outer

radii of several millimeters surface tension will not be sufficient and
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the fluid mechanics of liquid shells will play an important role.

Only in the absence of gravity can a bubble inside a drop reach

static equilibrium; gravity always causes the bubble to drift upwards

(against the gravity field) through the drop. In this equilibrium state

both the bubble and its surrounding liquid shell will be spherical, for

surface tension drives both interfaces to the shapes with lowest surface

energy or equivalently lowest surface area. When the liquid shell is

static, all locations of the spherical bubble inside the drop are energetic-

ally equivalent and the relative position of the bubble is undetermined. Any

tendency of the bubble to center inside the drop must be related either

to fluid motions in the shell or bubble, or to forces other than surface

tension that act on the static shell. In the more general case, the

bubble will not stay at a certain position inside the shell but will

move with an acceleration dictated by the net force acting on it.

For a static liquid shell one candidate for stabilizing the sphero-

symmetric configuration is an electrostatic force created between the

two gas-liquid interfaces since it prohibits any tendency of the interfaces

to move closer together. One possibility is the electrostatic force

due to double layers at both interfaces that may be created by the collection

of charged species on them. It has been shown by many authors (Vrij

1966, Vrij and Overbeck 1968 etc.) that these forces, which give rise

to the so-called disjoining pressure at an interface, are appreciable

only for films with thickness less than 1000 A0 (this value depends on

the ionic strength of the liquid) - much thinner than the shells of interest

for ICF targets. These forces are important in preventing or promoting
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the total collapse of the shell and Patzer and Homsy (1975) have obtained

an expression for the critical thickness of the spherical fluid films

at rupture.

The simplest induced fluid motion that could cause bubble centering

- at least about one axis - is a rigid rotation of the entire shell. As

Annamalai et al. (1980) have shown, a bubble in a more dense and rigidly

rotating liquid migrates to the axis of rotation. Centripetal acceleration

also causes the bubble to elongate along the axis of rotation and the

outer shell surface to flaten at the poles (Brown and Scriven 1980, Chandra-

sekhar 1965, Princen et al. 1967) and hence leave the shell asymmetric.

The equilibrium size and thickness of a shell formed from given

amounts of liquid and captured gas, depends only on the pressure in the

gas surrounding the liquid. Sudden changes in the external pressure

cause the diameter of the shell to contract, expand, or oscillate in

time. Viscosity damps these motions and the shell finally settles into

the new equilibrium shape dictated by a balance of bulk phase pressure

differencies and capillary pressure.

Saffren et al. (1981) have developed an experimental procedure to

study the effectiveness of the shell oscillations in centering the bubble.

The heart of their apparatus is a neutral buoyancy tank which is a lucite

box filled with silicon oil. Taking advantage of the fact that the density

of the silicon oil is less than the water density, they created a vertical

density gradient by adding a small amount of freon to the silicon oil,

until the water droplet floated in the middle of the tank. A static

compound drop was prepared so that the inner and outer boundary surfaces
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were not concentric due to a slight density mismatch. However, as the

shell was excited to oscillate in one of its normal mode frequencies

(n=2), the two boundaries became concentric within the accuracy of their

observation. This centering phenomenon took place within a few cycles

of oscillation and the centering force seems to depend on the ocillation

amplitude and the shell thickness. Also Lee et al. (1981) observed that

by amplitude modulating the driving voltage of an acoustic levitating

apparatus (Trinh et al. 1982), a strong centering force is generated

in a submilimeter compound drop suspended by the radiation pressure in

a gaseous medium. On the other hand, the force is much weaker when the

drop radius is 5 mm or larger.

One mechanism proposed by Chi (1979) for this centering phenomenon

relies on a dynamic pressure gradient, induced by the oscillations that

makes the center position most favorable. The pressure fluctuations

introduced by Saffren et al. (1981) and Lee et al. (1981) are not sphero-

symmetric, but take on the shape of the most dominant mode of the oscil-

lation. The decomposition into normal modes of infinitesimal amplitude

describes the decentering of the trapped bubble entirely by the first

spherical harmonic P1 (cosO) (Morse and Feshbach 1953). These disturbances

are calculated to be neutrally stable and induce no tendency for the

bubble to move with respect of the drop, or equivalently, the linearization

of the governing equations of fluid motion proves that the time constant

associated with these disturbances is identically zero. As a result,

it is necessary to consider the nonlinear effects to find the restoring

forces responsible for the observed centering of the bubble inside the

drop.
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The normal mode analysis of Patzer and Homsy (1975) for small amplitude

oscillations of a viscous liquid shell gives the same result for the

decentering disturbance and makes it obvious that any tendency of the

bubble to center must be described in terms of at least moderate amplitude

motions, where fluid inertia and nonlinear interface curvature are accounted

for.

Lee and Wang (1984) have attempted an analytical solution aimed

at explaining the centering phenomenon. They have assumed that the displace-

ment of the bubble from the center of the liquid drop is small compared

with the bubble radius, but large compared with the amplitude of the

wave on the shell surface. Thus, they have treated the linearized problem

and included only some interaction terms. According to their results,

the direction of the motion of the bubble center can be both towards

or away from the liquid drop center, depending on the shell thickness

and on the mode which was initially excited which is in contrast with

the experiments.
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III. METHODS OF SOLUTION FOR MOVING-BOUNDARY PROBLEMS

Physically motivated problems sometimes require the solution of

a system of equations or the evaluation of an integral on a variable

domain, not known a priori but determined as part of the problem. Depending

on whether these boundaries are stationary or moving, such problems are

usually referred to as free- or moving-boundary problems (Elliott and

Ockendon 1982). Many fluid dynamical free- and moving-boundary problems

are of this kind (wave motion, problems with phase change, coating flows

etc.). In all these cases nonlinear partial differential equations are

augmented by boundary conditions that apply on the "unknown" boundary

and which further complicate the problem.

Traditionally, as a first step towards an understanding of the physical

system, the governing equations are linearized, and thus infinitesimal

disturbances (perturbations to the base solution of the linear problem)

are considered. The study of the linearized problem is straightforward,

in principle, although in practice the actual implementation of its solution

may be involved, if more than one spatial dimension is considered or

complicated boundary and initial conditions are imposed.

When one considers nonlinear problems the methods of solution are

far more limited than those existing for linear problems. The intrinsic

difficulty associated with the nonlinearity is essentially due to the

fact that one cannot use superposition of elementary solutions to construct

a more general solution of the governing equations. On the other hand,

it is well known that the presence of a nonlinearity usually does not

simply modify the results obtained by examining the linearized problem.
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In fact, in some situations the most important and physically interesting

phenomena (multiple steady states, time periodic phenomena etc.) are

contained in the nonlinear terms. However, despite the progress made

in the last few years in solving certain nonlinear equations exactly,

the solutions of most systems remain unknown. Therefore, one is forced

rather soon to look for meaningful approximations which could provide

some understanding of nonlinear phenomena before, if necessary, proceeding

to a numerical solution.

III.1 PERTURBATION METHODS

As mentioned before, nonlinear equations can be tackled by carrying

out a perturbation expansion about a known solution. Furthermore, much

of the interesting behavior occurs far from a known linear solution.

This is unavoidable because we are looking at the behavior of highly

nonlinear systems and hence cannot always utilize local linearizations

around known solutions, since they are simple and typically symmetric

and uniform.

One characteristic that distinguishes problems with spherical geometry

from those in Cartesian or cylindrical geometry is the natural periodicity

of the interface. This yields a discrete spectrum of the fundamental

modes instead of a continuous one and allows us to disregard small variations

in the spatial wavelength.

III.1a Domain Perturbation

Mathematically rigorous demonstrations of the existence of two dimension-



31

al progressive waves which are analytic in the amplitude of the wave

can be found in Stoker's book (1957, Chapter 12). These demonstrations

rely heavily on the theory of analytic functions of a complex variable

and cannot be extended to three dimensional wave problems or to problems

with more complicated boundary or initial conditions, like the one that

is treated here.

The higher order theory of water waves uses a perturbation theory

which represents solutions to problems as a power series in the amplitude

of the wave. The procedure was familiar to applied mathematicians and

Joseph in 1973 gave a systematic development which has now been applied

to general elliptic and parabolic free- and moving-boundary problems. He

named the method domain perturbation - a name that will be used hereafter.

This "Lagrangian" formulation does not rely on complex variables

and applies to more general problems. A one parameter family of domains

is used on which the field equations and boundary conditions are to be

solved. The solution must be known in some reference (possibly static)

domain onto which all higher order problems can be mapped. The solution

in the perturbed domain is developed in a power series in the perturbation

parameter, the coefficients of which are total derivatives of the field

variables evaluated in the reference domain using the chain rule. The

values of the coefficients on the boundary may be computed using the

properties of the mapping on the boundary only, so that its nature in

the interior need not be known. As a result the solution in the perturbed

domain depends only on the boundary values of the perturbation method

and can be computed solving a hierarchy of linear problems. In essence,

by transforming the governing equations and the boundary conditions to
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the, undeformed domain we obtain a problem posed unambiguously there,

whose solution implies that of the original problem on the perturbed

domain.

More recently, Lebovitz (1982) proposed an "Euler-like" approach

for. the perturbation expansions which does not require transformation

of the domain. He carries out the formal expansions of the dependent

variables of the problem as if the domain were not perturbed, i.e., without

making the coordinate transformation. If analytic continuation of the

obtained solution is possible this method yields the correct result in

the perturbed domain.

To date, all free-surface calculations involving surface tension

are based on generalized Monge' surface representations (Brown et al. 1980)

where the position vector identifying the free surface is expressed in

a specific curvilinear coordinate system. The natural choice of system

for a liquid shell is a radial representation in spherical polar coordinates.

These representations are all limited to distortions of the interface

that are not so severe that the menisci become multi-valued, although

a perturbation solution may fail long before this has occured.

III.1b Nonlinear dynamics and stability

Some of the ideas used in studies of nonlinear waves (nonlinear

periodic motion) have proved to be very useful in nonlinear stability

problems as well. For small perturbations to a certain basic flow, the

linearized governing equations provide the phase speed (eigenfrequency)

of the perurbation as a function of the wave number (order of excited

mode) and of certain dimensionless parameters, such as the Reynolds or
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the Capillary number through the solution of an appropriate eigenvalue

problem. The correspondence between dispersive water waves and nonlinear

oscillations is indicated in parenthesis. For temporal instability,

the wavenumber is taken to be real and, depending on the sign the imaginary

part of the corresponding phase speed, perturbations either grow or decay

exponentially, according to the linear theory. The locus of real wavenumbers

would correspond to neutrally stable disturbances on a stability diagram.

The exponential growth or decay rates predicted by linear theory will

be modified when the neglected nonlinear terms are included and nonlinear

hydrodynamic stability theories attempt to describe the evolution of

disturbancies in the nonlinear regime.

The existing nonlinear stability theories are based on the ideas

of Landau (1944) and the later work by Stuart (1971). The essential

point is that a finite amplitude perturbation close to the stability

curve can be described as a wave of slowly varying amplitude. Thus,

for weakly nonlinear disturbances, evolution equations for the long time

behavior of the amplitude can be derived by singular perturbation methods,

such as the Linstedt-Poincar6 technique, the multiple time scales etc., well

described in standard texts (Bender and Orzag 1978; Nayfeh and Mook 1979).

In this sense, there is similarity between nonlinear dispersive

waves and nonlinear stability theories. As expected both developments

reduce to sinusoidal waves of constant amplitude in the linear limit.

The modifications of the amplitude due to nonlinearity and away from

neutral conditions are described by the evolution equations.

Among the nonlinear mechanisms through which energy can be transfered

from one mode to another is the harmonic resonance, which has been a
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subject of much interest in the last twenty years (Phillips 1981). This

phenomenon takes place whenever the harmonic eigenfrequency of a conservative

system is an integral multiple of the fundamental. It is called second

harmonic resonance when this occurs between the fundamental and its second

harmonic. Harmonic resonance occurs in the oscillating charged drop

for various values of the net charge on the drop surface and is analyzed

in Chapter V.

Another possibility which in certain situations can initiate quite

dramatic effects is provided by physical systems in which two frequencies

can assume almost equal values. In this case there exist solutions of

the linearized equations which have linearly growing amplitudes. This

secular behavior of the amplitude, which is somewhat similar to resonance

in an externally forced, simple harmonic oscillator, has been called

direct resonance, (see Akylas and Benney 1980). In the nonlinear regime,

the linear growth of a disturbance at direct resonance will be modified,

but nevertheless, the amplitude of such a disturbance must be larger

than expected. Also the nonlinear interactions must be stronger due

to the presence of secularly growing terms in the linear level. A drop

can be brought into a neutrally stable situation when the charge it carries

creates a repulsive force which is almost equal to the surface tension

force that keeps it together. In this case the eigenfrequencies of the

motion, which are imaginary and of opposite sign, simultaneously approach

zero.
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III.2 NUMERICAL METHODS

It is widely believed that exact analytic solutions are superior

to numerical solutions in that they are valid for arbitrary parameter

values and often give more insight into the behavior of the system. Un-

fortunately there are cases where the nonlinear perturbation solution

cannot be reached either because the algebra is very involved or a systematic

and consistent way cannot be developed. Furthermore, given the fairly

complicated equations we are dealing with, even when a formal analytical

solution can be found, it is often of limited utility.

In these cases but also to verify approximate results computer-aided

methods can be used to reveal the full nonlinear behavior. Numerical

and analytical methods for solving nonlinear problems are closely related,

both relying heavily on local expansions. Indeed, similar expansions

are often used in both cases, the difference arising from the necessary

use of discretized equations and specific parameter values in the computer-

aided analysis. Numerical methods also allow the use of important iterative

techniques which give rapid convergence to solutions which are infeasible

to obtain otherwise.

III.2a Finite Element methods

Finite element methods are systematic techniques for constructing

approximations to functions which are themselves solutions to partial

differential equations. To formulate these approximations, the domain

of the function is divided into subdomains or elements and in each element

the unknown functions are approximated by low-order polynomials. The
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coefficients of the polynomials are chosen so that the function has a

specified degree of inter-element continuity and so that the weighted

residuals of the equation governing the behavior of the function are

zeroed. In this way the original problem defined for continuous variables

is reduced to a system of algebraic equations for the coefficients of

the polynomials - a discrete problem. The so-called finite element basis

functions (Strang and Fix 1973) are combinations of element polynomials

that automatically satisfy the continuity constraints and which are more

convenient than the element polynomials for computer-aided calculation.

Finite element techniques are the preferred method for solving steady

free-surface viscous flow problems where one phase is tenuous. The methods

that have been developed differ in the technique used to determine the

location of the free-surface, and in the numerical iteration scheme used

to solve the resulting set of nonlinear algebraic equations.

Ettouney and Brown (1983) and Beris et al. (1984) transformed the

domain with a free-boundary to a fixed domain before discretizing the

problem with a fixed finite-element mesh. This transformation has the

advantage of making explicit the nonlinearities inherent in the problem.

They exploited this by using Newton's method to solve the nonlinear equation

set that resulted from the finite element formulation. Newton's method

converges quadratically to the solution, a marked improvement over the

linearly convergent schemes of successive substitutions, and also forms

the basis for modern methods for studying numerically the multiplicity

and existence of steady flow fields (Ungar and Brown 1982). Saito and

Scriven (1981) and Chang and Brown (1984) have solved similar problems

in the original domain also using Newton's method. Instead of the global
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mapping of Ettouney and Brown they took advantage of the isoparametric

mapping for each quadrilateral element onto a square element where the

dependence of the basis functions on the moving surface is expressed

explicitly.

Numerical techniques for solving free-surface problems also differ

in the algorithm used to locate the meniscus. Two schemes are in use,

the so-called kinematic and normal stress iteration methods (Silliman

and Scriven 1980). The kinematic scheme locates the interface so that

the fluid velocity evaluated at the interface agrees with the value extra-

polated from the bulk flow. Since the balance of normal stress on the

interface, which includes the action of the surface tension, is satisfied

only approximately the kinematic iteration is most applicable in the

absence of surface tension (high Weber or Capillary numbers). Free-surface

location based on the balance of normal stresses across the interface

is most applicable when surface tension is important.

In a time-dependent calculation the finite element discretization

results in a system of ordinary differential equations. Explicit methods

of solution are possible when the finite element mass matrix is diagonalized

and include the classical Runge-Kutta and Adams-Bashforth methods (Gear

1971). These will circumvent the problem of solving a large system of

nonlinear equations at each time step, but may be limited by numerical

stability constaints to severly small time steps. Implicit methods such

as the Euler-predictor/Newton-corrector formulation employed by Gresho

et al. (1978) have the advantage of increased stability but require the

solution of algebraic equation sets.

Patzek et al. (1982) and Basaran et al. (1982) have calculated the
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inviscid axisymmetric oscillations of the free liquid conducting drops

with or without electrical charge. They solved Bernoulli's equation

for the surface shape and Laplace's equation for the velocity potential.

Galerkin's weighted residual method was used and the velocity potential

was represented by biquadratic finite element basis functions on a tessella-

tion that deforms in proportion to the free surface. The integral equation

for the surface charge was solved by the boundary element method. The

trapezoidal rule with variable step size was used for the time integration.

The accuracy of the results was tested by the constancy of drop volume

and smallness of mass and momentum fluxes across the the drop interface.

III.2b Finite Difference and Spectral methods

Finite difference schemes have been developed for free-surface flows

using either Lagrangian techniques (particle based coordinates) or Eulerian

techniques (fixed coordinates). The Marker-and-Cell method (MAC) developed

at Los Alamos (Harlow and Welsch, 1965) solves the full Navier-Stokes

equations for an incompressible, viscous fluid with free- or moving-surface.

Velocity components and pressure are defined over a staggered Eulerian

mesh. A Langrangian system of marker particles is defined and these

markers are moved through the grid at interpolated local fluid speeds,

behaving like dye particles in actual experiments. As time progresses,

the position of these marker particles serves to specify the location

of the fluid surface, and hence, can define in which computing "cells"

the surface boundary conditions should be applied. The forces and pressures

are calculated at the centers of the cells, and velocities are evaluated

at the cell boundaries. The code first calculates a set of velocities
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over the cells by solving the bulk equations in the finite-difference

form. Then it adjusts the velocities to conserve volume, and satisfy

the boundary conditions and vorticity requirements. When a unique solution

has been reached, the particles move according to the local velocities

for a small time step, new forces are calculated and the processes is

repeated. The MAC method is well documented elsewhere (Welch et al., 1966)

and some of the necessary modifications will be mentioned in the following.

In the original MAC calculations, the surface is specified as being

a region of surface "cells", and is only resolved by the fixed Eulerian

mesh. Daly (1969) improved this crude evaluation of curvatures by using

the Lagrangian marker particles whose spacing is important. He then

determined the actual surface curvature from the orientation of an inter-

polation curve which passed through the surface particle array. He employed

a cubic spline which not only ensures smooth variation but also permits

the evaluation of necessary derivatives on the surface. Since, in general,

the spline curve will not go through the center of a given cell, where

the pressure is defined, it is necessary to specify where the surface

curvature is actually evaluated, and several methods have been tested.

Others have proposed to evaluate the boundary condition on the cell surface

rather than on the center.

If Lagrangian particles are too far apart the surface is not well

resolved, if the spacing is too close, small fluctuations in particle

position will generate faulty curvatures which in turn requires "smoothing"

of the surface. Also one has the option to add or delete particles from

the surface to keep their spacing within proper bounds. The last limitation

in this method is that it applies to axially symmetric geometries.
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Foote (1973) has used this MAC code and Alonso (1974) has used a

modified version called SQUISH in problems related to drop dynamics.

Their results will be compared with our analysis in the Chapter IV.

Longuet-Higgins and Cokelet (1976) have developed a different finite

difference method to treat water waves of finite depth. They used boundary

particles and by exploiting the irrotationality throughout the flow field

reduced the problem to one of solving a linear integral equation on the

free-surface as part of the time-stepping procedure.

Most of the numerical schemes depend on the use of point values

to represent continuous variation and use finite-difference methods for

differentiation and integration. If the flow region is large, or the

boundary radii of curvature small, then the numerical approximations

through finite differences may be rather poor. It has been shown by

Fornberg and Whitham (1978) that spectral and pseudospectral methods,

using Fourier series to represent horizontal variation, were particularly

accurate and effective in solving the Korteweg de Vries equation of shallow-

water waves. They preferred these spectral methods over finite difference

techniques. For irrotational motion the governing equations (described

in Chapter IV) are linear, the nonlinearity arises from the boundary

conditions which apply on the unknown moving surface. Also, only the

boundary conditions contain first order time derivatives, so that, if

an initial solution is known, advancing this solution in time should

be a relative simple linear process. The most severe problem is that

of approximating accurately the dependent variables and their derivatives

on the surface.

Fenton and Rienecker (1982) assumed that all dependent variables
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can be represented at any instant in time by a finite Fourier series

in x, throughout the region of interest, which is a direct result of

the normal mode analysis of the linearized water wave problem. At the

same time this requires that the motion is periodic in x, with some finite

period L, the wavelength, a true limitation in the cartesian geometry

but a natural condition on the spherical one. Substituting the finite

Fourier series form for the velocity potential into the kinematic and

dynamic free-surface conditions yielded a coupled set of ordinary differ-

ential equations which they solved numerically to obtain the time evolution

of the Fourier components. Advancing the interface shape function in

time is straight forward but the field variables are more complicated,

and computationally expensive. This is because advancing the field variables

at points on the surface, gives information about them on the updated

boundary surface from which it is not possible to simply obtain the space

derivatives needed for the next time step, which have to be evaluated

independently and prior to the time integration.

Multer (1973) also used Fourier methods in an attempt to solve the

full nonlinear equations numerically. The free-surface was defined by

discretely spaced boundary particles, as used in several of the finite

difference methods described earlier. While this is an advantage for

finite difference methods because the computational particles tend to

congregate where the curvature is high, it is not an advantage for Fourier

approximations, as observed by Rienecker and Fenton (1981). In addition

if the particles are free to move, then one of the advantages of the

Fourier approximation is lost, namely that the trapezoidal rule can be

used for integrations with the same accuracy as the Fourier approximation.
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In summary, a spectral method would have definite advantages in

treating this problem because it can resolve easier the discrete spectrum

of the eigenmodes which is, for all practical purposes, finite, as the

analytic results show, even when the nonlinear coupling is included (see

Chapter IV).
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IV. NONLINEAR OSCILLATIONS OF INVISCID DROPS AND BUBBLES

In order to understand the mechanics of coupling of spherical modes,

the problem of single drop or bubble oscillations in an infinite medium

was undertaken - a problem which has interest of its own as described

in chapter II. This study will reveal which is the appropriate action

towards enhancing the centering motion of the bubble inside an oscillating

drop and will improve the undestanding of breakup dynamics.

The free oscillations of drops and bubbles have been studied since

the original reports by Savart (1833) and Plateau (1873) of pulsating

motions caused by the breakup of a liquid jet. The small-amplitude oscil-

lations of an inviscid globe held together by interfacial tension were

first analysed by Rayleigh (1879, see also Lamb 1932), who identified

the fundamental modes of motion in terms of Legendre polynomials and

calculated the corresponding frequencies. These linear results have

been extended to include viscosity, first for a drop surrounded by a

low-density gas (Reid 1960), and then for a drop in a viscous outer medium

by Miller and Scriven (1968) and more recently by Marston (1980) and

Prosperetti (1980ab). Experiments (Marston & Apfel 1979, 1980; Trinh

et al. 1982) performed on drops suspended in a neutrally buoyant and

immiscible liquid have confirmed the oscillation frequencies of the linear

theory for small amplitude deformations, but have shown a marked decrease

in frequency with increasing amplitude (Trinh & Wang 1982). This decrease

was anticipated by Rayleigh (1879), but has not been explained by either

analysis or full numerical simulation of drop oscillations. The only

computer simulations for slightly viscous drops have been carried out
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by Foote (1973) and Alonso (1974). Both authors used the marker-and-cell

finite-difference technique for solving time-depended free-surface flows

with viscosity, an extremely difficult numerical problem. The small

number of calculations available in these works makes difficult the quanti-

tative prediction of the sensitivity of the frequency and the evolution

of the drop shape on the amplitude and mode of oscillation. More recently

Benner (1983; see also Basaran et al. 1982) has approached the problem

of inviscid drop oscillations using the method of finite elements, but

these results have not been extensively published, yet.

In this chapter we present the asymptotic analysis for moderate-amplitude

axisymmetric oscillations of inviscid and incompressible liquid globes. As

pointed out by Miller & Scriven (1968), the analysis of the motion of

an interface separating two inviscid liquids leads to a discontinuity

between the components of fluid velocity tangential to and on either

side of the interface. The slip is a result of neglecting a viscous

boundary layer that develops on both sides of the interface and removes

the singularity in tangential velocity. We avoid the physically unacceptable

results associated with inviscid liquid/liquid systems by limiting our

study to cases where one phase is either a vacuum or a tenuous gas, so

that its hydrodynamical effects can be neglected. The two limits of

liquid internal and external to the closed interface are denoted as drops

and bubbles, respectively. In these single-fluid flows no boundary layers

develop as the viscosity of the liquid is taken to be zero.

The analysis is based on the method of Lindstedt & Poincare (see

Nayfeh & Mook 1979) for approximating the time-periodic solutions of

nonlinear differential equations. This method is simpler and less powerful
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than the multiple-scale method since it is applicable to phenomena that

do not exhibit amplitude variation. Our approach to the problem of an

oscillating drop parallels previous applications of this perturbation

scheme to inviscid standing waves (Tadjbakhsh & Keller 1960; Concus 1962).

IV.1 FORMULATION

IV.1a Drops

We consider the time-periodic, irrotational and incompressible motion

of an inviscid drop with volume V=4ffR 3/3, density p and interfacial tension

a. It is assumed that the ratio gR 2p/a is sufficiently small, so that

gravitational forces are negligible. The surface of the drop during

axisymmetric oscillations is described by RF(e,t), where F(6,t) is the

dimensionless shape function of the drop and 6 is the meridional angle

in spherical coordinates. Scales based on the results of the linear

theory are used to define the dimensional velocity potential (OR/p)1 / 2

$(rO,t), pressure (2a/R)P(r,6,t), angular frequency (a/pR 3 ) 1 / 2 w, and

time (pR3) 1/2t/w, each in terms of its dimensionless counterpart. The

dimensionless radial coordinate is scaled with the static radius R of

the drop. In terms of these variables the equations governing the inviscid

time-periodic motion are

V2q = 0 (O5r F(O,t), O5O5), (IV.1.1)

= 0 (r = 0, 0:5 6), (IV.1.2)
Dr

2P + w + [( )2 + ( )2] = G(t) (0 r:F(6,t), O56 f), (IV.1.3)
at 2 ar r a6
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1 M 2(r=F(e,t)), (IV.1.4)
r at 7 ae56

Fe0  F F 2 F 2 F 2 3/2

APO + 2P = - cot(F) [1+( ) ] + 2 + 3( )/{ F [1+() ]

(r=F(e,t)), (IV.1.5)

V$(r,6,t+2ff) = V$(r,e,t), (IV.1.6)

J F3 (e,t) sin(6) d6 = 2, (IV.1.7)
0

f 21 27re

C f21F(6,t) Pn(e) sin(e) cos(t) dt de = 2n+1 (n = 2,3,..), (IV.1.8)
0 0 2+

J7 12 7F(0,t) Pn(0) sin(e) sin(t) dt d6 = 0 (n = 2,3,..). (IV.1.9)
0 0

Equation (IV.1.1) is the Laplace equation governing irrotational

flow; (IV.1.2) is the condition for zero radial velocity at the center

of the drop; (IV.1.3) is Bernoulli's equation for the pressure everywhere

in the drop; (IV.1.4) is the kinematic condition relating the surface

velocity to the velocity field of the material there, so that fluid does

not penetrate the interface. Equation (IV.1.5) is the balance of dynamic

and capillary pressure across the interface, where the right-hand side

of this equation is the negative of the local mean curvature 2H of the

interface; (IV.1.6) is the condition for the periodicity in time of the

velocity field; (IV.1.7) is the constraint for constant volume of the

drop. The static pressure difference across the interface is APO; the

function G(t) is introduced into (IV.1.3) by integration. With the choice

of the mean value of F, it is clear that the mean value of $t cannot

be zero and the potential must at least have a term proportional to t

in its expansion, which is circumvented by absorbing the constant of
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integration G(t) in $t (see Lamb 1932). Since only space derivatives

of the potential occur in physical quantities, terms proportional to

t are still acceptable in $. Equations (IV.1.8) and (IV.1.9) define

the amplitude and phase of the oscillatory motion, respectively. If

the shape function F(6,t) is represented as a series of Legendre polynomials,

the constraint (IV.1.8) dictates that only the term proportional to Pn(6)

cos(t) contributes to the amplitude E. Equation (IV.1 .9) requires the

shape function to be always orthogonal to Pn(O)sin(t) and hence sets

the phase of the oscillation to be given by cos(t) alone.

IV.1b Bubbles

The equation set governing the dynamics of bubbles is identical

with (IV.1.1) - (IV.1.9) except that the velocity potential is defined

external to the interface F(6,t) and the boundary condition (IV.1.2)

is replaced by an appropriate far-field condition (IV.1.11)

V2$ = 0 (F(e,t)5r:oo, 06On), (IV.1.10)

+ 0 (r + o, 0 x) , ( IV.1 .11)

Also the sign on the pressure contribution in the Young-Laplace equation

(IV.1.5) is changed.

IV.2 PERTURBATION SOLUTION

IV.2a Drops

The solutions of the problem (IV.1.1) - (IV.1.9) are composed of

the shape function F(O,t), the velocity potential $(r,6,t) and the frequency
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w. We calculate these variables as the terms in expansions of the amplitude

of the motion by the now classical Poincare-Linstedt method. This application

is complicated by the dependence of the velocity potential $(r,6,t) on

the shape of the mathematical domain as given by the moving boundary

r=F(6,t). We account for changes in this boundary shape by combining

the normal Poincare-Linstedt expansion with the domain perturbation technique

as detailed by Joseph (1973). To do this, the boundary shape is immobilized

as a sphere by introducing the change of coordinates rEfnF(6,t). The

expansions of the dependent variables in terms of e are

F(6,t;e) F (k) (6,t)

ODEk [k]

k=0 '!

(E:) ] (k)

where

F(k) 6,t) - dkF(6,t;o) (k) dk (0 ) [k] ( k dk$(_, ,t;0) IV.2.2)
F det)de dEk (V2)

dE k dEk E k,(~et

The static spherical drop is recovered as the zeroth-order solution of

the equation set, i.e. F (0)(6,t) = 1 and (0)(nq ,t) = 0, where the arbitrary

reference potential inside the drop has been set to zero. Using the

chain rule for differentiation, each term [k](n,6,t) in the expansion

for the potential can be written as a sum of a contribution evaluated

on the spherical domain (05n51, 05857T) and terms that account for the

deformation of the domain at each order of E. The first three relationships

are

[0] (0)4(n9ejt;0) 4,(no 6t ;0), PI..a (IV. 2.3a)
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$[O](n6,t;0) S' O, 6,t;0) + F 1 (, ,t) (n,06,t;0)

0 $ (n, ot) + F (1)(,t) , (IV.2.3b)

$[2(n,0,t;0) (2n,,t) (2) t) M2i0  F(1 )2  (1 +[2] 60;0 Tit2) t + F 6 9 , + F+ 2F

(IV.2.3c)

(k) k k
where 4(n,0,t) = 0/k E are always defined in the spherical coordinate

system. As outlined by Joseph (1973), the equation sets governing the

terms (k)(n,O,t) account for changes in the domain shape only through

corrections to the boundary conditions on the meniscous at each order

of E. These equation sets are presented below.

The expansion of the mean curvature in (IV.1.5) is greatly facilitated

if the corrections to the shape function are represented at each order

as a series of Legendre polynomials

F(k)(t) = 6Fk)(e,t) = 6k) t)Pm() (IV.2.4)
m=0 m=0

Then the mean curvature is expanded in terms of the amplitude as

-2H = 2 + I (i-1)(i+2)F (6,t) + f [ (j-1)(j+2)Fj (e,t)
i=2 j=0

- 4 (k2 +k-1)(Fk (6,t)) 2 + (E3). (IV.2.5)
k=2

The equations governing the terms (F(), (1), ,(0)) are

V2 (1) = 0 (05n 1, 0 r5IT), (IV.2.6)

~(1)_
= 0 (n=0, 050:5r), (IV.2.7)
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(1) W (0) __ __

at

, ( 1) ej
(0) t + I (n-1)(n+2)F1 ) (6,t) = 0
at n=2

V4 (n,e,t+21T) =V (n,,t)

JF (1 )6,t) sin(e) de = 0,
0

21TF Pn(6) sin(e) cos(t) dt d6 = 2n+1

0 0

J" f 27F Pn(O) sin(O) sin(t) dt d6 = 0
0 0

The pressure has been eliminated from (IV.2.9) by

first-order form of Bernoulli's equation (IV.1.3).

The equation set (IV.2.6) - (IV.2.13) has

solutions, each of the form

(n=2,3,..).

(IV.2.8)

(IV.2.9)

(IV.2.10)

(IV.2.1 1)

(IV.2.12)

(IV.2.13)

substitution from the

an infinite number of

F (1) t) = F ( )
F (et) n (e,t) = cos(t) PnWQ)

$1) (n,,t) M $ (nqt) = (n-1) +2) 11n sin(t) Pn(O), (IV.2.14)

( W ( 0) = (n(n-1)(n+2)) 1/2  (n = 2,3,..),n

which corresponds to the linear modes of the oscillation analysed by

Rayleigh (1879). The mode n=1 describes a rigid translation of the drop

and has. been omitted so that the centre of mass of the drop is fixed

with respect to the coordinate system.

The equations governing the terms (F(2 ), 0(2), w(1)) are

(IV.2.15)V2 (2) = 0

( n=1 , O0M6<W1) ,

(n=1), I

( 05 1,9 ; 0 6 IT),
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(2)

=ni
(IV.2.16)

3(2) 3F (2) 3F 0 3F 0 30a2 ( 1)

- 2(0) (1 = n + 2n -2F 1) nl(n=1) ,(IV.2.17)an m at n ~ at +2ae Doaa 2

( ) (2)

W t

CO (1) 2 (1)

+ 2 (m-1)(m+2)F (2)(6,t) = - 2 n - 2w F (1)

M= 2 m n at n n anat

(1) 2 1 $ 2
(n )+ ( n 2 (1)2

- an n + n 1 + 4(n +n-1)Fn (n=1), (IV.2.18)

V$ (n,,t+2r) = V$(2) 0,6,t),

J {2 F )2 + F (2) sin(6) dO = 0,
0

J T f 21T F(2) Pn(6) sin(e) cos(t) dt de = 0 (n=2,3,..),

0 '0f (27 (2)
J f F Pn(6) sin(e) sin(t) dt d6 = 0 (n=2,3,..),

0 0

where the subscripts n denote the particular linear solution

for which the solutions of (IV.2.15) - (IV.2.22) hold. The

potential $(2) is expanded in a Legendre series that satisfies

and (IV.2.16),

(2) 0 6,t) = I Ym(t) nm P ( ),t
m=0

(IV.2.19)

(IV.2.20)

(IV. 2.21)

(IV.2.22)

(IV.2.14)

velocity

(IV. 2.15)

(IV.2.23)

and the shape function F(2) is assumed to be given by (IV.2.4). Equations

(IV.2.17) and (IV.2.18) are reduced to a sequence of non-homogeneous

second-order equations for the coefficients {Ym(t)} and the correction

to the frequency w(1) by forming successively the integrals of (IV.2.17)

and (IV.2.18) with each of the set {sin(e)Pm(6)}. Applying the orthogonality

(q=0,I O= 6<= ), P
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(2)
property of Legendre polynomials and eliminating the coefficients {6m (t)}

between the two equations yields

2y + m(m-1)(m+2) YM (2m+1)(m-)(m+2) (1) sin(t) <Pn 9 Pm>
dt (0)2 2w(O )2

(n-1)(+2) sin(2t) <Pn 2 (n-1)nPn 2

+ (m-1)(m+2) sin(2t) [ - 2(n +3n -2) <Pn 2  m>

(n-1) 2 (n+2)2  2 2 +2 P P > (IV.2.24)

w(0) <n Pn n m

where the notation <h(6),g(6)> stands for the inner product

<h(6),g(6)> J h(6) g(6) sin(6) d6 (IV.2.25)
0

The integrals in the non-homogeneous terms in the set (IV.2.24)

are expressed in terms of the well-known 3j and 6j symbols for spherical

harmonics (Rotenberg et al. 1959) which extend the orthogonality properties

of integrals of two Legendre polynomials to integrals involving products

of three or four polynomials and their derivatives. In other words,

these so called Clebsch-Gordan relations, provide rules by which the

transformation of products of Legendre polynomials or their derivatives

to a finite sum of Legendre polynomials is carried out. These rules

are equivalent to the well-known transformations of products of trigonometric

functions into sums, which are useful when the geometry of the problem

is cartesian. A graphic example of the mode coupling at higher orders

in the perturbation expansion is given in figure IV.2.1, where the most

common normal modes are excited by the initial deformation. Only a few

of the integrals on the right-side of (IV.2.24) are non-zero for each

choice of the first-order solution (IV.2.14), and these dictate the coupling
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of modes of oscillation that arise at second order. The algebra in this

and subsequent manipulations is tedious, and the reduction of the formulas

has been greatly expedited by the use of the symbolic manipulator MACSYMA

Pavelle et al. 1981) available on

The non-trivial equations that result from (IV.2.24)

the M.I.T. computer

are as follows:

for n = 2, L2 2 (y2(t)) = - 2w sin(t) - 70) sin(2t),

L2 4(y 4 (t)) = 32( sin(2t),
35w

(IV.2.26a)

(IV.2.26b)

for n = 3, L3 2 (y2 (t)) =

L3 3(Y3 (t)) =

L3(Y4(t))

L36(y6(t)) =

- 32 sin(2t),
(0)

w

~4 (1
W sin(t),

(IV.2.27a)

(IV.2.27b)

(IV.2.27c)

(IV.2.27d)

= 300 sin(2t),

1 1W(0)

3200 sin(2t),

77w(O)

for n = 4, L4 2 (y2(t)) =

L44(Y4(t)) =

L46(y6(t)) =

L48 (Y8 (t)) =

4150 sin(2t),

77w(0)

w(1) sin(t) - 53136

1001 w
sin(2t),

- 350 sin(2t

11w iO

124950 sin(2t),

143w 0

(IV.2.28a)

(IV.2.28b)

(IV.2.28c)

(IV.2.28d)

Lnm(m(t)) d2()+ m(m-1)(m+2)

dt2 (0)2dt wn

equation sets it has been assumed that the contribution

(MACSYMA 1 977;

system.

where I Ym(t)

In forming these
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of any purely homogeneous equation is zero. This is formally true only

if m is constainted to satisfy

m(m-1)(m+2) * (integer)2 , (IV.2.29)

Wn

for m * n. Equation (IV.2.29) excludes values of m for which the linear

theory yields a time frequency that is an integral multiple of a fundamental

frequency.

In each set the frequency correction w(1) is determined so that

secular terms in the solution vanish, which leads to

(1) = 0 (n = 2,3,..) (IV.2.30)

The solutions of (IV.2.26) - (IV.2.28) are then determined so that the

constraints (IV.2.20) - (IV.2.22) are satisfied. The final forms for

the corrections (F(2), p(2 )) are as follows

for n = 2, F (2)(6,t) = COS2(t) + 1(1 - L9- cos(2t)) P2 (e) +

+ (1 + cos(2t)) PW(e), (IV.2.31)
35 5

$(2) (C,6,t) = sin(2t) [2.3 + P2 (6) n2 + P4(E) a4]; (IV.2.32)
(0) 5 21 175

(12

for n = 3, F (2)(6,t) = - cos 2 (t) + - (1 - - cos(2t)) P2 (6) +7 21 11

(1 - cos(2t)) P4(6) + (1 + cos(2t)) P6(6),

(IV.2.33)

(2) ),e,t) = sin (2t) + P2(6) 2 + P14(6) i4 + 800 P6 (0) n6 ];
(0) .14  . 34

3 (IV.2.34)
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for n = 4, F(2) 6,t) = - 2 cos 2 (t) + 3575 (1 - 1097 cos(2t)) P 2 (6) +9 2772 5005

2 1 cos(2t)) P4 (0) + (1 - 263 cos(2t)) P6 (6)

70 274~4+ (1 - 9163 cos(2t)) P8 (e), (IV.2.35)

(2) (n,,t) = sir(2t) 2 + P2(6) n2 + 17712 P(e) r4 + P6(6) 6
Wi(0) 2 539 1001 11 6 O)~
44

661 508+ 2431 P8 (e) n 8 ] (IV.2.36)

The corrections then to the velocity potential in the physical coordinate

system (r, 6) are reconstructed by substituting the expressions for $) (n, ,t)

and (2)(n,O,t) into (IV.2.1) and using the definition of the coordinate

2
= r/F(e,t;E) to order E

The analysis is extended to third order in order to calculate the

first non-zero correction to the frequency W(2). The corrections to

the velocity potential and the shape function ($' , F ) are written

as expansions analogous to (IV.2.23) and (IV.2.4), and the kinematic

and dynamic equations are reduced to a sequence of decoupled second-order

equations in time by the same procedure used to calculate the sets (IV.2.26)

- (IV.2.28). The correction w (2) is determined so that the solutions

to these equations contain no secular terms. The details of this derivation

are given in the Appendix B, here we list only the frequency corrections

(2) 34409 (0) -(0)for n = 2, W = - 29400 - 1.17037 ( (IV.2.37)

for n = 3, (2) _ 783899 (0) 1.97757 (0) (IV.2.38)

(2) 181430960793 (0) - (0)for n = 4, = 64865536736 w - 2.79703 O . (IV.2.39)
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Since the correction w will be identically zero, the terms (IV.2.37

- 39) give predictions for the frequency that are valid up to the fourth

order in the amplitude, (see Tsamopoulos and Brown 1983).

The kinetic K and surface P energies of the drop are given by the

expressions

K s J V$-V$ dv, P J (F2 + F2) 1/2 F sin(6) d6, (IV.2.40)
1v 0

where v is the volume of the drop. These quantities are approximated

as follows

for n=2, K = E2 sin2 (t) + o(e 3 ), P = 2 + E2 cos2 (t) + o(e3 ); (IV.2.41)
5 5

for n=3, K = 120 2 sin2(t) + (e3), P = 2 + 2 9E2 cOS 2(t) + o(e 3); (IV.2.42)
7 7

for n=14, K = 262 sin2(t) + 0(E3 ), P = 2 + 2E2 cos2(t) + 0(0); (IV.2.143)

The lowest-order terms in both the kinetic and potential energies are

due to E-order corrections in the shape and velocity potential, and thus

do not represent the finite-amplitude behaviour of the oscillations.

IV.2b Bubbles

The procedure for calculating the first- and second-order corrections

to the frequency, shape and velocity potential for a bubble follows directly

from that outlined in IV.2a. The results are given here in the form

of the series (IV.2.1). The solutions to the first order problem are

(1) (1)F (o,t) Fn (e,t) = cos(t) Pn(O)



$ (n,t) = $) (n0 t) = (n-1)(n+2) sin(t)n W' (0) T1n+1

W(0) =- (0)
n

(n = 2,3,..)

The second order corrections S ,(2) (1)) are as follows

for n = 2, F (2)(6,t) = - 1 cos2 (t)
5

+ (1 - cos(2t)) P2 (6)7 9

+ 4 (1 + cos(2t)) P4 (6),105 7 "

(2) sin(2t)

(0)
- +5 L P2 (e) n + 3072245 P 1 O

-5

(1=) 0;

(IV.2. 45a)

(IV.2. 45b)

(IV.2. 45c)

for n = 3, F(2)(6,t) = - 1 cos 2 (t) + (1
7 8

- cos(2t)) P 2 (6)1961

( - 9 cos(2t)) 85) (1 - 1571 cos(2t)) P6 (e),((Io.2 ) 188
(IV.2.'46a)

(2) (n,O,t) =
sin(2t)

(0)
- 51~4 + 50 P2 (6) -3 + 2150 6(e)+63P(O -7I,

(IV.2.46b)

(IV.2. 46c)W = 0;

=- cos 2 (t)
9

+ 590 71
+ 9 (1 - 7-1cos(2t)) P2 (6)

(1 - cos(2t))

- 1253(1 -
6)435

(2) (C, ot) = sin(2t) _ 15 2
(0) 2 2

P4 (6) - (1 1)

1791 cos(2t)) P8 (6),

P6 ( e)

(IV.2.47a)

+ 8532 P4(6)1001 n-5
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Pn(6) (IV. 2. 44)

+

+

for n = 4, F(2) (e,t) +

= ((n2-1) (n+2))1/2

0400 P2(e) -n-3
233

,

44
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- P6 (e) n + 212 98 -9] (IV.2.47b)

W 1 = 0. (IV.2.47c)

The first non-zero corrections to the oscillation frequency appear at

second order in the amplitude and are as follows

for n = 2, ( = - 23549 O) - 1.52569 O) (IV.2.48)

(2) 5672825 (0) -305 (o)
for n = 3, ( =- 2461536 W = 230459 ; (IV.2.49)

(2) 14775015009 (0) - (0)
for n = 4, W 4939864930 W = -2.99098 w (IV.2.50)

And in general, the frequency decreases proportionally to the square

of the amplitude, result which should be expected on physical grounds

since the introduction of the nonlinear terms in Bernoulli's equation

increases the inertia of the system.

IV.3 RESULTS AND COMPARISONS

Representative shapes of drops and bubbles through a half-period

of oscillation are shown on figures IV.3.1 and IV.3.2 for the lowest

three fundamental modes of deformation, n = 2, 3, 4. In both figures,

the continuous curves represent the shapes predicted by the first-order

results and the dashed curves are the shapes corrected to second order

in amplitude. In each case, the amplitude has been set to c=0.4, which

for n=2 corresponded to a pure prolate-to-oblate oscillation of a L/W

1.81. This value of e has been chosen so that the correction to the
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shape at order e3 will be 0(10-2) of the deformation (assuming F (,t)

=0(1)) and so that the shapes in figures IV.3.1 and IV.3.2 show the same

magnitude of deformation as the numerical calculations of Foote (1973)

and Alonso (1974).

For the shapes in figure IV.3.1, the drop had its largest distortion

at t=0 when it had no velocity. The linear theory predicted a perfectly

spherical shape after a quarter of a period (t=7r/2). The second-order

corrections deformed this sphere into a prolate shape for the fundamental

(n=2) mode of oscillation and into multilobed forms for the n=3 and n=4

modes. At t=r the distortion of the shape was again maximum and the

velocity zero. For times between 1T and 27r the drop retraced the shapes

in its evolution between t=0 and r.

The differences between the contributions of inertia in drops and

bubbles are seen by comparing the second-order approximations shown in

figures IV.3.1 and IV.3.2. Two-, three- and four-lobed drop oscillations

were much more elongated along the axis of symmetry for iT/4t53r/4 than

corresponding oscillating bubbles. For n=2 mode oscillation, the coefficient

for the term P2 (6) in (IV.2.31) was largest in the second-order correction

for the drop shape, whereas the term proportional to P4 (6) dominated

the correction (IV.2.45a) for the bubble. For the n=4 oscillation mode,

the shapes of the drop and bubble became qualitatively different for

n/4:Its3ir/4. For t near iT/2, the bubble had an eight-lobed shape, while

the drop had a four-lobed form at the same times; compare figures (IV.3.1m)

and (IV.3.2m).

A number of asymptotic results for oscillating drops can be compared

directly with the numerical calculations of Foote (1973) and Alonso (1974)
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for viscous drops oscillating in the fundamental mode. The effect of

viscosity on the frequency of oscillation and on the shape of the drop

is small when the product (oR/pv2)1/2 is large, where v is the kinematic

viscosity (see Chandrasekhar 1961). In the calculations of Foote (R

= 0.06 cm, v = 0.06 cm2/s, a = 75 dyn/cm, p = 1 g/cm3 , a = 1.7) and Alonso

(R = 0.66*10-12 cm, v = 0.75*10-4 cm2 /s, a = 1.6*1020 dyn/cm, p = 1.66*1015

g/cm3 , a = 1.8 and 2.5) this ratio was 35.4 and 3.3 respectively. Thus

the comparison of Foote's calculations with our inviscid theory is reasonable,

while Alonso's results may deviate substantially solely because of viscosity.

The drop shapes shown in figure IV.3.1 are in qualitative agreement

with those calculated by both Foote and Alonso. Several other points

of agreement are worth mentioning. As noted by Foote, the linear theory

predicted shapes that were slightly re-entrant when t=0. This feature

was not apparent in either our asymptotic results correct to second order

(see figure IV.3.1a) or in Foote's numerical results. Alonso used least-

squares techniques to fit her numerically calculated shapes with a sequence

of Legendre polynomials and discovered that the shapes were well represented

by sums of the P 2 (6) and P4(8) functions alone, as predicted by (IV.2.14)

and (IV.2.31). Also, the sine-squared time dependence of the kinetic

and potential energies predicted in equation (IV.2.41) agreed with the

calculations of both Foote and Alonso.

A drop undergoing n=2 oscillations spent a considerably longer part

of each period in a prolate form than in an oblate one. The percentage

excess time is shown in figure IV.3..3 as a function of the amplitude

of the oscillation, as measured by a=L/W. Also shown in this figure

are the results of Foote (1973) that have been extrapolated from the



68

0

LaJ

-J
0
C:

z

z
'I)
il

z
LJ
U
ccwL
a-~ 1.2 1.4 1.6 1.8 2.0

AXIS RATIO AT MAXIMUM PROLATE SHAPE (L/W)

Figure IV.3.3 The percentage of each period that the drop in n-2 oscillation
spends in a prolate form as a function of the amplitude
of the oscillation measured by the maximum ratio of the
major to minor axis L/W. Asymptotic results (-), numerical
calculations of Foote (---) and experimental results (0)
of Trinh and Wang are shown.

65.0

60.0

1.0

55.0 1

I I I I

0#

- -0

DROP 4 - 3 C

FOOTE

BUBBLE

I I

50.0

45.0



69

data point (a=1.7, excess time=1 4%) and his comment that the excess time

varied linearly with oscillation amplitude. The agreement is reasonable.

Bubbles exhibited only a slight tendency to stay in prolate forms, as

shown by the line on figure IV.3.3.

The quadratic decrease in frequency with amplitude predicted here

is compared on figure IV.3.4 to the numerical results of Foote and Alonso.

The asymptotic results are within four per cent of Foote's viscous calcu-

lations over the entire range of amplitude 0 acx1.8 presented by that

author. The single value calculated from Alonso's report differed more

significantly from our results.

Finally, the inviscid predictions are compared on figures IV.3.3

and IV.3.4 to experimental results of Trinh & Wang (1982) for almost

neutrally buoyant drops of silicone oil and carbon tetrachloride suspended

in distilled water. The shapes were set into oscillation by acoustically

driving the drop near its fundamental frequency. The driver was then

turned off and the drop motion evolved into free oscillation. In the

limit of moderate-amplitude oscillations and large drops (RZ1 cm), the

oscillation frequencies measured this way were expected to be near those

of an inviscid liquid/liquid system. This conclusion was reached by

calculating the viscous correction to the inviscid frequency derived

by Prosperetti (1980b, see figure 14) using the physical parameters from

the experiments of Trinh & Wang. 1

Trinh & Wang's measurements for the percentage of time spent in

prolate shapes by the neutrally buoyant drop qre shown on figure IV.3.3,

'We have assumed a = 40 dyn/cm as a reasonable interfacial tension for
a clean oil/water interface.
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and,, as expected, are bracketed by the inviscid calculations for drops

and bubbles. Experimental data for the dependence of frequency on amplitude

for drops with radii of 0.62 cm (0) and 0.49 cm (e) are shown on figure

IV.3.4. The data for the larger drop are again described by an asymptotic

result intermediate to the calculations for drops and bubbles for a less

than 1.7. The experimental measurements for the smaller drop differ

systematically from the inviscid results; this difference may represent

the coupling between viscosity and the finite-amplitude motion.
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V. RESONANT OSCILLATIONS OF INVISCID CHARGED DROPS

The dynamic response of liquid drops held together by surface tension

and carrying electrical charge is important in a great variety of applica-

tions. The motion of such drops has been studied in physical systems

ranging in size from milimeter raindrops (Brazier-Smith et al. 1971;

Tsang 1974) and micron-sized spheres produced by fuel atomizers and ink-jet

delivery systems (Williams 1973) to the femtometer drops used as models

for nuclear fission (Cohen & Swiatecki 1962, 1963; Nix 1972). Rayleigh

(1982; also see Hendricks & Schneider 1963) was the first to treat the

effect of electrical charge on nearly spherical drops. By an energy

stability analysis applied to conducting drops immersed in an insulating

medium, Rayleigh calculated the frequencies for small-amplitude oscillations

of an inviscid drop and established the amount of charge necessary to

fission the drop. The modes of shape oscillation were described by single

Legendre polynomials and the levels of charge necessary to disrupt the

nth mode were given as

(n) = 47{emaR3(n+2)1
1 /2

where a is the surface tension of the drop, em the permittivity of the

medium and R is the radius of the spherical shape. The mode number n

corresponds to the number of lobes on the deformed shape. The two-lobed

form becomes unstable at the lowest value c=52 ), which marks the absolute

stability limit for nearly spherical drops.

Rayleigh's pioneering work has been the basis for other analyses

of drop dynamics which generalize the calculations to include viscosity
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(Tang & Wong 1974; Hasse 1975) and charge relaxation due to a dielectric

drop and external medium (Saville 1974). These studies considered only

small-amplitude oscillations and values of charge below the Rayleigh

limit. The finite-difference calculations of Alonso (1974) for a slightly

viscous drop with volumetrically distributed charge and the finite-element

calculations of Basaran et al. (1982) for inviscid drops with surface

charge are the only studies of nonlinear dynamics for charged drops. Such

computations are relatively expensive, so that an exhaustive mapping

of drop response as a function of the initial drop shape and the net

electrical charge has not been undertaken. Experiments aboard the Space

Shuttle are also planned, but must be even more limited in scope because

of time restrictions. The use of perturbation analysis to guide both

the experiments and further calculations is in order.

It is anticipated that the oscillation frequency of a charged drop

will be less than that for an uncharged one. The physical reason behind

it is that the restoring capillary force is now weakened, being opposed

by the electrostatic repulsion.

In this chapter the asymptotic analysis is presented of the moderate-

amplitude axisymmetric oscillations of an inviscid conducting drop with

electrical charge suspended in a tenuous insulating medium. The calculations

are focused on describing the effect of the amplitude of deformation

on the form of the oscillation and on describing the harmonic resonance

between the fundamental motion and secondary modes induced by nonlinear

interactions. The present analysis is based on the method of multiple

timescales as applied to approximating the time-periodic solutions of

nonlinear conservative differential equations. This method is a general-'
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ization of the Poincare-Linstedt technique since it allows for both frequency

and amplitude modulations on timescales that differ from the associated

with fundamental motion. As shown in section V.2, the two approaches

are identical for regular oscillations. The multiple-timescale approach

affords systematic treatment of the cases of harmonic resonance.

Harmonic resonance has long been known for two- and three-dimensional

inviscid waves. Wilton (1915) first demonstrated secondary harmonic

resonance in capillary-gravity waves and computed the special case of

waves of permanent form with a phase shift relative to the fundamental

frequency. Bretherton (1964) was the first to solve the general equations

derived from a multiple-scale expansion which included slow amplitude

modulation of the waveform. In a series of papers McGoldrick (1965,

1970b, 1972) and his collaborators have thoroughly analysed second- and

third-order resonance in water waves including both surface tension and

gravity. Both phenomena have been confirmed experimentally (McGoldrick

et al. 1966; McGoldrick 1970a). In general the higher order corrections

to a weakly nonlinear oscillator can be considered as a response of the

system of oscillators described by the linear part of the equations to

the forcing terms due to the nonlinear part. This response is normally

constant and small, but an exception occurs when the frequency of the

forced oscillation is equal to the frequency of the free oscillations

that can serve as its harmonics, then resonance occurs and the harmonic

can draw energy from the fundamental. Phillips (1981) has recently reviewed

the rapid developments in the theory of wave interactions.

The analysis of nonlinear oscillations and resonance of an isolated

drop has advantages over the parallel studies of initially planar waves.
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The natural periodicity of the drop's surface results in a discrete spectrum

of the fundamental modes as described by Rayleigh. For planar water

waves the spectrum is continuous in the spatial wavenumber and detuning

of resonant interactions caused by variation of this wavenumber from

the critical value for resonance, must be considered in both experiments

and calculations. Also, the formulation of the planar-wave problem requires

consideration of the variation of this spatial wavelength with the amplitude

of the oscillation. The general problem of combined wavelength, amplitude

and frequency modulation for two-dimensional waves is, as yet, unsolved.

Again, the periodicity of the drop removes the need for incorporating

wavelength variation and makes the formulation in section V.1 the most

general for this problem. The major disadvantage of calculations for

an oscillating drop over the analysis for planar waves is the more complex

algebra generated by the velocity and electrostatic potentials expressed

in terms of Legendre polynomials. We have again, carried out these calcu-

lations using the symbolic manipulator MACSYMA.

V.1 FORMULATION

We consider the irrotational and incompressible motion of an electrically

conducting inviscid drop with volume V=47R3 /3, density p, surface tension

a and net electrical charge Q. The motion of the drop in a tenuous sur-

rounding medium is caused by initially introducing a small axisymmetric

deformation. As in chapter IV, the surface of the drop is described

by RF(O,t), where F(6,t) is the dimensionless shape function of the drop

and 6 is the meridional angle in spherical coordinates. The same scales



employed in chapter IV are used to define the

(aR/p) 112(r,0,t), pressure (2a/R)P(r,e,t)

of their dimensionless counterparts. The

and boundary conditions are

=r 0

2P + + L [()22P +t 2 3 r

- 3F~ 1
3r -3t 72

1 e
AP0 + 2P + 2r(Tn2
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dimensional velocity potential

and time (pR3 Ia) 1/2t in terms

inviscid equations of motion

(r = 0, 0 6:0),

+ ( )2] =
r 30

Tn1 2

G(t)

(V.1.1)

(V.1.2)

(V.1.3)

(V.1 .4)

(V.1.5)

(V.1.6)

(r=F(0,t)),

(r=F( 6,t) 0;56 ) e 7

F (6 ,t) sin(6) d6 = 2,
0

The above mentioned equations are the same as in chapter IV except the

normal-stress balance (V.1.5) that equates the pressure differences caused

by capillarity and drop motion to the contributions of the normal electric

stress from inside Tnn and outside Tn2 the drop. The reference pressure

difference APO is determined by the constraint of constant drop volume

(V.1 .6). We absorb the constant of integration G(t) into the time derivative

3$/3t. As explained by Lamb (1932, section 227), including this integration

constant in (V.1.3) leads to terms constant in space and proportional

to t in the velocity potential, but has no other effect on the solution

to (V.1.1) - (V.1.6) because only space derivatives of $ appear in these

equations.

The medium surrounding the drop is assumed to be electrically insulating,

(0 r; F(6,t), O; e T),

(%r; F(6,t), O 6; w),
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and the dimensionless electrostatic potential V(r,0,t) and the uniform

potential in the drop VO are both scaled with (4wem/aR)- 1/2, where Cm

is the permittivity of the medium. The electric field is related to

the potential as E=-VV and is scaled with (47EmR/a)- 1/2; the dimensionless

3 -1/2
net charge Q is scaled with (4waE-mR - . The equations and boundary

conditions governing the electrostatic potentials are

V 2V = 0 (F(e,t);5rsw, 0O6 iT), (V.1.7)

V + 0 (r + m, 055w), (V.1.8)

n - VV = - 47q(e,t) (r=F(t), 0;0err), (V.1.9)

t - VV = 0 (r=F(0,t), 056:57), (V.1.10)

2w qF(F2 + Fe2)12 sin(e) dO = Q . (V.1.11)
0

in which q(Ot) is the local surface charge density and n and t are the

unit vectors normal and tangential to the drop surface and are defined

as

Fe - Fe 0 + FO0r
n 2 2 1/2 ,' 2 2 1/2 .(V.1.12)
(F + Fe ) (F + Fe )

In these equations Fe=3F/a0, and (ertee) are the unit vectors in spherical

coordinates. In formulating (V.1.7) - (V.1.12) we have assumed that

charge is confined to the interface and equilibrates in a time much shorter

than the characteristic time of the fluid motion. With these assumptions,

(V.1.11) is the charge balance on the interface. Equation (V.1.11) follows

from the general conservation equation for a species on a deforming surface

first derived by Bupara (1965; see also Moeckel 1974) when bulk and surface
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convection are negligible compared to conduction. Then the assumption

of electrostatic equilibrium follows if the characteristic time for the

conduction is much smaller than the time for a typical drop oscillation,

or

( ) 1/2 >> X0
a 47emR;' *

where X0 is the resistivity of the drop. For the case of even distilled

water (XO = 104 Qm, p = 1 g/cm 3 , a = 75 dyn/cm) in air (cm = 8.8*10-2

F/m) this inequality is satisfied by several orders of magnitude when

R = 0.1 cm. Equation (V.1.10) guarantees that the tangential component

of the electric field is continuous across the interface. This is equivalent

to the requirement that the potential be continuous across F(6,t), and

sets the constant potential VO.

The electric stress caused by the external electric field is defined

as (Stratton 1941)

Te = EE - |E121 (V.1.13)

where I is the identity tensor and IEI is the magnitude of E. The component

of this stress normal to the surface of the drop,

e nfl: e 1 2

appears in the normal-stress balance (V.1.5) and couples together the

fluid flow and electrostatic problems. The spatially uniform potential

inside the conducting drop forces T1 to be zero, hence Tne = 0.

The dynamical problem for the velocity and electrostatic potentials

and the drop shape are solved for motions originating with an initial
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deformation of the drop. We describe initial deformations which satisfy

conservation of mass (V.1.6) and which have no initial velocity, i.e.

(0,0) = 0. (V.1.15)

We define the amplitude of the oscillation e in terms of this initial

deformation as

F(,O) = 1 + ePn(e) + 0(c2 ). (V.1.16)

where Pn(6) is the Legendre polynomial of nth order. The forms of the

initial condition (V.1.16) that satisfy the volume integral (V.1.6) up

to 0( ) are

F(et) = 1 + eP2 (6) - IE2 - 23 +5 105

F(e,t) = 1 + eP3 (e) - .iE2 - OE3 +
7

F(6,t) = 1 + eP 4(e) - IE2 - 6 3 +
9 1001

The amplitude e is taken to be a small parameter

follows.

for n=2,

for n=3,

for n=4.

(V.1 .16a)

(V.1 .16b)

(V.1 .16c)

in the analysis that

V.2 PERTURBATION SOLUTION AWAY FROM RESONANCE

We determine the potential fields ($(r,e,t), V(r,0,t)) and drop

shape F(6,t) for moderate-amplitude motions by constructing expansions

in the initial amplitude of the deformation e. The asymptotic methods

couple together the method of multiple timescales for freely oscillating

non-dissipative systems and the domain perturbation technique outlined
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by Joseph (1973) and used also in Chapter IV. Formally, we assume that

the dependent variables are functions of three timescales related to

the actual time as TO=t, T1 =et and T2 =E
2t/2. The different timescales

are introduced into the field equations by expanding the partial derivative

3/3t as

++ + O(e3). (V.2.1)3t 3TO aTj 2 3T2

The expansion for the domain shape is implemented by transforming

the drop shape to the unit sphere using the change of coordinates r=nF(6,t)

and expanding each dependent variable in a Taylor series

F(et;e) F (k)(6,TO,Tl,T2 )

Go Ek [k ]
$(ret;E) = (n,8,TOTjT2) , (V.2.2)

k=0 k

V(r,6,t;c) V [k] (nO6,T,TT2 )j

where the superscript [k] denotes the kth total derivative of the quantity

with respect to e. As in chapter IV, each term in these expansions for

the potentials can be written as a sum of a contribution based on the

spherical domain (On51, 056w) and terms that account for the deformation

of the domain at each order of e. The derivatives evaluated on the spherical

domain are denoted by $(k)(n,, TOTjT2 )3 (k) (k ) . Because the drop

shape F(Ot) is independent of the radial coordinate, Fk (8,TOTjT2 )=

F ( 6,TO,Tj,T2 ). Expressions for the total derivatives of a potential

up to [2] are given by equation (IV.2.3) of chapter IV. We anticipate

the form of the solution to the drop shape and expand F(k) at each order

as a series of Legendre polynomials
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(0,TO,T1 ,T2 ) = Fm (,T 0 ,T1 ,T2 ) = 6m (TO,T1,T2 ) Pm(e). (V.2.3)

Using these forms for the corrections to F(O,t), the mean curvature of

the drop and the unit normal and tangent vectors are conveniently expanded

in c; the results valid up to O(e 3) are given in Appendix A.

The equations governing the zeroth-order contributions from the

set (V.1.1) - (V.1.16) describe a static charged drop and have the solution

[
The arbi

to Q.

The

V ) is

F (,T O

(0) (Tit 6, T0 )

(0) (n6TO)
V (n,O,T0 ).

0

Q/n j

(V.2.4)

trary reference potential VO inside the drop has been set equal

equation set that governs the first-order corrections (F(1) , $(1)

2 (1)

(1)
= a

=n 0

( (=0, 0V26.5))

(n=1 ,0:5 6;S)I,)

(V. 2.5)

(V.2.6)

(V. 2.7)

30 1
3T0 4 f

3(0) 1 v(1)+F ,aVOav V (1 2 (0)
an ha + F 2~ Van

= -1 (n-1)(n+2)F ( ,t)(n=1)
n=2 n

F e(,t) sin(e) dO = 0,
0

2 (1)V V =0

(V.2.8)

(V. 2.9)

(V.2.10)

0

F0
To

( 1 ; n co, % 8 7r) ,
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V (1) 0

S (1) + 2 (0)

v() + (F a (0 0

3V 3F0) 3V
36 +0,,0 = 0

F () 00 ,0 0) = Pn(e),

sin(6) dO = 0 (n=1),

( n=1 , 0'=56 1 IT) ,

3F ( ,o,0,0) = 0.
0

(V.2.11)

(V.2.12)

(V.2.13)

(V.2.14)

(V.2.15)

The pressure and normal electric stress have been eliminated from

(V.2.8) by substituting from the first-order forms of Bernoulli's equation

and the definition of the electric stress tensor. Also, (V.2.12) is

a combination of the conditions for the jump in the normal component

of the electric field at the interface and the condition for conservation

of total charge.

The solutions to (V.2.5) - (V.2.15) have the form of the linear

oscillation modes described by Rayleigh (1882) cast in the framework

of the multiple-scale expansion

F (6,TO,Tl,T2 ) = cn(T1,T2) cos(Tn) Pn(0),

(0)

(,6,To,T,T2)= - cn(TlT2) n sin(n) Pn(e),

V (n,O,TO,T1 ,T2 ) = cn(TlT2) 7+7 cos(Tn) Pn(6).

2 1/2
where Tn wnTO + hn(T1,T2), wn [ n(n-1)(n+2 - -) 1/4

(V. 2.16a)

(V. 2.16b)

(V.2.16c)

(V.2.16d)

and {cn(T1,T2), hn(Tl,T2)} are functions of the slower timescales which

( n+CO, 0 6; IT), 9
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are to be determined as part of the second-order problem subject to the

initial conditions

cn(0,0) = 1, hn(0,0) = 0- (V.2.17)

The functions {cn(T1,T2)} and {hn(T1,T2)1 represent the modulation in

the slow timescales of the amplitude and frequency of the oscillations,

respectively. As noted by Rayleigh, drops with net charge less than

QC = [47(n+2)] 1 /2 oscillate with stable standing waves, whereas drops

(n)
with greater charge are unstable and fission. The lowest value of Qc

that sets the maximum admissible charge on the drop, corresponds to n=2

(2) 1 /2
and is the Rayleigh stability limit Qc  =4r r. In this chapter, we

consider only drops with net charge below this limit.

The equation set for the second-order terms ($(2) 9V(2) F (2 ) is

cumbersome because of the multitude of non-homogeneous terms that are

generated by the domain perturbation, but is listed in Appendix B. These

equations are solved by expanding the two potentials (2) V (2) in

series of Legendre polynomials and powers of n

$ (n, , , T , T1T2) 1 Ym(ToT,T2)lm  1
(2) = X m(e) -m-1 (V.2.18)

V (n, 6, To, Ti , T2 ) m=0 L m(QTO,T ,9T21

which satisfy the field equations and boundary conditions, except those

on the drop surface. The correction to the drop shape is given by (V.2.3).

The displacement condition (B9) can be integrated directly with respect

to 6 to give V (2) in terms of F (2) and lower-order quantities. Substituting

this result into (B3) and (B4) and forming the integrals with {sin(6)Pm(0)}

yields a sequence of second-order non-homogeneous equations for the co-
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effi cients {Ym(TOTjT2)1. These are

2 2 2 ac 3h

2M + m Ym = 2(- + -)[ cos(n) - cn sin(n) -] <Pn Pm>
aT2 m n 3T1  3T102

- 2 sin(22n) [32 + 4(n2 + n - ) Q n2 + 8n - 3)

2

+ (m + 1)(2n) - (n- 1) ,Pm>

2 2 2

+cnn sin(2Tn)[ + 7 + ] (P2 + (m+1 ) A<, Pm>- (V.2.19)

where <f(6),g(6)> is the inner product of these functions weighted with

sin(6) on the interval [O, 1T, and Km is an integration constant from

(B9).

The solvability condition for the equations (V.2.19) eliminates

the secular terms and leads to the result

ac alhnn n n 0. (V.2.20)
aT1  aTj

or that the modulation functions depend only on T2 - The solutions of

(V.2.19), determined so that the initial conditions (B10), (B11) and

the integral constraints (B5), (B8) are satisfied, are written in the

form

(2) 8
Fk (6,TOTjT2 ) = . L2kj (ToT2) Pj(6). (V.2.21)

j=0

where the numerical values for the coefficients are tabulated in Appendix

B. The corrections for $ (2) and V (2) can be expressed in a matrix form

similar to (V.2.21) with the elements {n 3M2 kj(TOT2)1 and {N2 kj(ToT2)/

n I respectively, replacing {L2 kj(TOT2)). The exact forms of these

coefficients are also given in Appendix B (see equations (B13) and (B14).
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The dependence of the frequency and amplitude modulations on the

slow timescale T 2 is computed from the solvability conditions of the

third-order problem, which is listed in Appendix C. The corrections

to the shape and the potentials (F , $ , V ) are again expanded

in Legendre series, and a set of second-order ordinary differential equations

is derived by the same procedure used to solve the second-order problem.

The solvability condition for this set dictates that

ac
n = 0, (V.2.22)

so that the amplitude of the oscillation is not modulated up to O(e2 );

the {cn} are taken to be unity to satisfy the initial condition (V.2.17).

Solvability also requires that the frequency modulation takes the form

4
T2  A 2jQ

h22 3 2 2 for n=2, (V.2.23a)

o2 4 4 2

6

T2 1 A . Q3

h32 11011 2 2 2 2 2 2 for n=3, (V.2.23b)

W3 2  4  6  42 ~ )3 6 3

8
T2 I A 4j Q

h (T) = 2488320 j=0 for n=4,
4 2 2433431 2 3 2 2 2 2 2 2 2 2 fo '

2 1 6 8 2 4 6 4 8 4
(V.2.23c)

2
where QsQ /14, and the coefficients {A. I are listed in Table V.2.1. Because

13

there can be no dependence of the frequency modulation on any odd powers

of the amplitude, the results (V.2.23) are accurate up to O(E 4). For

values of Q in the range of 0:5Q<4, the drop oscillates stably and both
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Table V.2.1 Coefficients in the frequency corrections in equation

(V.2.23)

L=2 L=3 L=4

A10 6606528 4214241024000 55735591155609600

A 1 -4961440 -4128178176000 -77949491906388480

A12 1419804 1682216124000 45351373912349312

A13 -177168 -362825358328 -14555386948486656

A 7945 43303979512 2840187292166640

A15 - -2679419780 -345863703031648

A16 - 66094721 25619763735024

A - -1049270108016

A18 - 18006768899
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h2 (T2) and h 3(T 2) remain negative. The frequency modulation h4 (T2 ) for

the four-lobed oscillation is positive in the region 2.3:4<8/3 and is

infinite at Q=8/3. At this value of the net charge the four-lobed motion

resonates with six-lobed oscillations and the scalings for the modulation

functions derived in this section are no longer valid. The proper analysis

close to this resonant point is described in section V.3. The above

mentioned frequency modulations reduce to the results of the previous

analysis (chapter IV) for Q=O.

V.3 SECOND HARMONIC RESONANCE

The regular forms of the weakly nonlinear oscillations described

in V.2 are not valid when the frequencies of the higher harmonics of

the fundamental mode are close to integral multiples of its frequency.

This does not occur for uncharged drops up to second order in amplitude,

but happens for charged drops that satisfy the condition

m(m-1) (m+2 - Q2/14) _2

2 = (integer) , m*n. (V.3.1)

n

For the two- and three-lobed modes of oscillation, the values of Q required

for resonance are above the Rayleigh limit for electrostatic bursting.

Resonance is detectable for four-lobed oscillations when the net charge

1/2 2 2
is near Q r=(327/3) <Q c, where w6 =4w4. Then the four-lobed fundamental

resonates with the six-lobed form, and the two modes exchange energy

in a periodic or aperiodic fashion, depending on the initial deformation

of the drop.

In the remainder of this section we analyse this second harmonic
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resonance. The analysis used here parallels the work of McGoldrick (1972)

for capillary-gravity waves. We consider drops with net charge slightly

different from Q - (0) or
r=Q o

(1)3r1/
Q = Q + Q E 0 Q + (T / 3E) , (V.3.2)

where A=0(1). The linear oscillation frequencies at these values of

Q are given by

= 2/10 (1 - 3 ), (V.3.3)4 20

6= 4/10 (1 - XE), (V.3.4)

The formulation of the linear problem (V.2.5) - (V.2.15) for n=4 is unaffected

by the possibility of resonance, and, for convenience in subsequent manipu-

lations, its solution is written in complex form as

F (6,TO, T1 ) = {A(T1 )e-i4 T0 + c.c.} P 4(e), (V.3.5a)

4(1)(reTT 1 14T0 '4 ( .b
$ 1) (n,6,TO, T ) -iwA(T )e + c.c.} P () n , (V.3.5b)

V (nO,TO, T1 ) = {A(T1 )e-4 T
0 + c.c.} P 4(e) Q(0)/n5, (V.3.5c)

where {c.c.} stands for the complex conjugate of the immediately preceding

term. We carry our analysis of resonance only to terms O(e); so to this

order of approximation the term A(T ) will depend on only the single

slow timescale T, (see Tsamopoulos and Brown 1984).

The form of the singularities of the second-order coefficients in

the regular perturbation when Q is near Qr (e.g. see the coefficients

161 and I62 in (B13)) suggests that the first-order solution be modified



to Xnclude a second harmonic constituent (n=6).

be present initially (t=0), but will be excited

with the exciting fundamental (n=4). We write

solution as

This new

through

the more

89

mode may not

the resonance

general O(c)

F (6,TO,T 1 ) = {A(T1 )e T

+ {B(T 1

+ c.c.} P 4(8)

)e 60 + c.c.1 P6 (6)

(1) 1 -w 4T0$ ( ,,To,T 1 ) = {- AiwA(Te)e + c.c.} P (6) n

+ {- iw6B(Tl)e 60 + c.c.} P6 (6) l 6

v(1)(n,6,T, T1 ) = {A(T1 )e- 4T0 + c.c.} P 4(e) Q(0) /n 5

+ {B(T1 )e
-iw6 + c.c.} P6(0) (0) 7

The dependence of the net charge on the amplitude through (V.3.2)

introduces new terms into the non-homogeneous parts of (B4) and (B9). These

terms are, for (B4)

(0) (1) FC0

2 7

and, for (B9),

(1) __F_

- 2Q (1 (V.3.8)

Introducing the generalized solutions (V.3.6) into the modified form

of the second-order problem and following the same procedure outlined

in section V.2 leads to a second-order differential equation like (V.2.19).

(V.3.7)

(V.3.6a)

(V.3.6b)

(V.3.6c)
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Eliminating secular terms from this equation requires setting to zero

the coefficients multiplying not only the terms exp(+iwjTO) and exp(+iw6TO)

that resonate exactly, but also those coefficients multiplied by exp(+2i4T O )

and exp[+i(w6-w4)TO] that nearly resonate because

2w T W - Ne) T = W T - NT , (V.3.9a)~40 6 0 6 0 1

(W6 - W4 ) T0  (W 4 + Ne) T0 = w4 T0 + NT1 . (V.3.9b)

where Nm9X/10/40. Thus the differences between these two frequencies

and the fundamental n=4 and n=6 modes are only in the slow timescale

T1 . The solvability conditions that result from equating to zero these

secular terms are

dA * -iNT
" (dT_ a3 iA) = iA Be iT1  (V.3.10a)

"2 dT _ iB) = iA 2e NT1 , (V.3.10b)

where 143 88 a 9X
h 267/10, (2 89/10, 3 = and 4= 410'

Equations similar to (V.3.10) were first derived by Bretherton (1964)

for planar water waves. In sections V.3a and V.3b we consider separately

the cases of exact resonance (A=0) and the detuning caused by a slight

variation in Q from Qr (A*0).

V.3a Exact Resonance

Introducing the substitutions A(T1 ) r1 (Tl)e1(T1 ) and B(T1 ) r2 (T1 )

ei'2(T1), where the {ri,6i} are real functions of the slow timescale,

reduces (V.3.10) to
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dr
1

a.1 dT r1 r2 sin(e),

a r1  d L r2  cos(e),
1 1 1 2

dr 2  2
a 2dT - r, sin(e),

d6O2 2
a 2 r2 = r, cos(e).

(V.3.11a,b)

(V.3.11c,d)

where =6"2-2ej . Just as for the modulation equations arising for planar

water waves (Benney 1962), the first two relations (V.3.11a,b) have an

energy-like integral

2 2
aC r + a2 r2 m E,
1 1 2 2 (V.3.12)

where E is proportional to the 0(e) energy carried in the system. The

functions r1 (T1 ), r 2 (T 1 ) and the relative phase 0(T1 ) are, from (V.3.11),

related by

2
r1 r2 cos() m L, (V.3.13)

where L is a constant. Using (V.3.12) and (V.3.13), the set (V.3.11)

is decoupled into the form

a 1 
dr 

2

1 1 6
2 dT 1 Va 2 1 1

a 2 dr 
2

2 2 = 1(a 2r -
2 1 26

2 d61 2 dO2
a1r1 dT a2r2 dT

1 1

The third-order polynomial

has three real roots {pij which

+ Er - L 2L21/2
1 -C 2L

2Ear + E2r - a L2 1/2
2 2 2 1

2
in r1 on the right-hand side of

satisfy the inequalities

-E/3aL 5 P1 : 0 5 P2 ; 2E/3aL : P3 S E/al .

( V. 3.1 4a)

V.3.14b)

(V.3.14c)

(V.3.14a)
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The solutions of (V.3.14) are expressed as

r T1) = p3 + (p2  p) sn2 (;k), (V.3.15a)

2 a1  2
r 2 (T) =- (p1 + p2 - (p2  ) sn (t;k)), (V.3.15b)

1 /2
(a2 a1) L p2

6 1(T1) = 1(0) + 21/2 31(1 - - -I|k), (V.3.15c)

p3 (p3 ~ P1)3

1 /2
(a /a ) L p2 + p3

62 1) = 62(0) + 2 1 1/2 pV ; jk) , (V.3.15d)

(p1 + p2 )(p 3 - P1 ) 1  2

where sn is Jacobi's elliptic function and H is the incomplete elliptic

integral of the third kind (Abramowitz & Stegun 1964) with T m [(P3-P1)/

1 /2 T n
(ala2 )] T1 and k (p3-P2)/(P3-P1). The first-order solution (V.3.6)

then consists of periodic amplitude modulations between the two largest

roots (P2, P3) together with periodic phase modulations of the same period

superimposed on a slow linear frequency shift on the slow timescale,

which is similar to the O(c2) Poincare correction to the frequency for

regular oscillations.

Phase-plane plots for the amplitudes of the two modes are readily

constructed using (V.3.14) and are shown in figure V.3.1. For initial

conditions such that L=0, the individual phases of the two interacting

modes are constant and the modal amplitudes follow the outermost trajectory

in figure V.3.1. Then the initial condition corresponds to purely four-lobed

deformation (r1 (0)=R1 , r 2 (0)=0), and the general solution (V.3.15) simplifies

to
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R T
rCT) = R sech 1 1 , (V.3.16a)

11( a 12
(1z2

r2CT1 )=R 1/2 R T

2 2 exanh )1/2 , cV.3.16b)

02 - 20 . ( V.3.16c)

At exact resonance a purely four-lobed oscillation of any amplitude cannot

persist, but transforms into a six-lobed oscillation within less than

three periods of the initially excited mode. Drop shapes for this case

are shown in figure V.3.2 for the initial phase conditions 61(0)=O and

02(0)=Tr/2 with E=0.2.

The amplitudes of the interacting four- and six-lobed modes are

given in figure V.3.3 as functions of time for the same conditions used

to calculate the drop shapes in figure V.3.2. When E=0.2 the n=4 mode

has decreased to 71.6% of its maximum value and the n=6 mode has reached

69.8% of its maximum value within one oscillation cycle. The corresponding

percentages after three cycles are 14.9% and 98.9% for the n=4 and n=6

modes respectively. Because of this transient in the O(E) solution,

the complete solution of the second-order problem will initially have

terms proportional to the n=2,4,6 and 8 Legendre modes, but after about

three cycles the shape will have significant components from the n=10

and n=12 modes.

The inner trajectories in figure V.3.1 correspond to initial conditions

such that 0 < L < 4E 3/27a a2 a Lm for which the disturbances are combinations

of four- and six-lobed shapes with continuous modulations of both magnitude

and phase. These modes continuously exchange energy during oscillations
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at .a frequency which is slightly modulated about the mean value. The

relative phase e between these modes always falls between -7T/2 < -em

S e S em < 7r/2, where Om=cos (L/Lm). This phase is maximum when the

2 2
amplitudes are undergoing maximum growth (ac rl = 2a2r 2 ), and is zero

when the rate of change of the amplitudes is zero.

The timescale for these resonant oscillations is better understood

2 2
by considering the case L =L /2. If the initial amplitude of the defor-

mation is taken as c=0.2 one full cycle of the energy exchange between

the four- and six-lobed modes occurs in

W 4 a la 2 1/2 0.8256

En P3 - 1 E1/2

cycles for the n=4 fundamental oscillation. This implies that the time

for the resonant interaction is inversely proportional to the square

root of the total energy input E or the initial amplitude, F, of the

oscillations.

For initial conditions such that L=L , both the amplitude and

the phase modulations present for 0 < L < L vanish entirely and the

timescale of the resonant interaction between the n=4 and n=6 modes has

dropped to zero. The trajectories for this initial condition are represented

by the single point on each of the phase-plane plots shown in figure

V.3.1. The general solution of the modulation equations (V.3.15) reduces

in this case to

1 2 2 1
2 r 1  a2 r2 =3E, (V.3.17a)

261 = 2 2 1/2 r1 T, (V.3.17b)
1 21
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where we have assumed 61(0)=0.

V.3b Oscillations near resonance

Variations in the oscillation frequencies of the four- and six-lobed

motions caused by the dependence of these frequencies on the small amplitude

and small differences between the true net charge and the value Qr will

detune the resonance. The effect of this detuning on the drop motion

is considered by analysing (V.3.10) with A*0. With the substitution

W(T1 ) iA*2Be-iNT1 (V.3.18)

(V.3.10) are reduced to

d * d
a -(AA ) = - a -(BB ) = 2Re(W), (V.3.19)

1  2d 1

so that an integral quantity analogous to E in (V.3.12) is defined as

* *
E = AA + a2 BB , (V.3.20)

and is independed of the detuning parameter A, which appears only in

the coefficients a3 and a4. To derive a condition equivalent to (V.3.13)

we introduce a real-valued function

2 * * 2
Z(T ) 1 (R1 - AA ) a2 (BB - R2, (V.3.21)

where R1 and R 2 are the moduli of the initial amplitudes of the n=4 and

n=6 modes respectively. Substituting (V.3.18) and (V.3.21) into the

set (V.3.10) leads to the second integral

(2a3 - a + N)Z - 2L = 21m(W) .3 (V. 3.22)
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Combining (V.3.18) - (V.3.22) gives the general equation

(dZ )2 2 Z )R2 + Z - [L - (2a -a +N)Z/2]2 , (V.3.23)dT1  1 a 2 a2 3 4

which can be integrated in terms of elliptic integrals.

We consider the solution of (V.3.23) only in the case when the initial

condition is composed of only the fundamental mode (R 2 =0). For this

2
situation it is readily shown that W(0)=Z(0)=L=0, E=a 2 R1 , and (V.3.23)

reduces to

(dZ 2 1) _ 2 -2Z
(-)2 = 4Z 2 (E -Z)2 N Z} , (V.3.24)
dT 1 2

1 a1 2

where N=(2a3 -a4+N)/2; this constant is somewhat different from the one

derived for planar waves by McGoldrick (1972) because of the existence

of the linear terms in (V.3.10). The quadratic polynomial in Z in (V.3.24)

has two distinct positive roots, 0 p, E 5 P2, if N*O or two roots

equal to E if N=0. This later case corresponds to the situation at exact

resonance (A=Q) and (V.3.24) can be easily integrated to yield

2 2T1 (E_1/2
Z(T ) = E tanh E_-1/2 ] . (V.3.25)

1 1 a2

which when combined with the definition (V.3.21) can be reduced to a

form similar to (V.3.16). The initial value Z(0) is equal to E and is

the maximum value of the four-lobed component of the oscillation.

When detuning occurs N is not zero and the general solution of (V.3.24)

is an oscillation of finite period with value between the smaller root

of (V.3.24)

2 '2
a 2 N 2E 4E 1/2

P = 2 [1 + 2 '2 1 2 ^2 (V.3.26)
a1 a2 N a 1 a2 N
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and zero. The root p1 is the largest value of Z obtained during the

detuned oscillations. The effect of detuning on the energy transfer

between the initial fundamental (n=4) and the second harmonic (n=6) is

shown in figure V.3.4 by a plot of the maximum amplitude of the six-lobed

component as a function of N which measures the variation of Q from Qr-

The amplitude of the n=6 component is scaled with its asymptotic value

(E/a2 1/2 for exact resonance. The ability of the resonance mechanism

to transfer energy between the fundamental its second harmonic decreases

as N_ or A. As this plot indicates there is a band of frequencies

and therefore electric charges near Qr for which the resonant interaction

is most effective.

V.4 THIRD HARMONIC RESONANCE

Resonance between, the fundamental mode and one of its third-order

(2)
harmonics occurs for charged drops at particular values of Q<Qc In

particular, the fundamental two-lobed motion resonates with its four-lobed

harmonic for Q=O, i.e. for uncharged inviscid drops. Also, the n=3 funda-

mental and its n=5 harmonic resonate at Q=/(2601T/17) and the n=4 fundamental

and its n=8 harmonic resonate at Q=/(88n/13). In each case the O(c)

solution F(1) (6, To, T , T2 ) must be taken to be a combination of the fundamental

and resonant harmonic modes and the amplitude modulations (corresponding

to A(T1 ,T 2 ) and B(T,T2 ) in (V.3.6)) are determined from the solvability

of the second- and third-order problems. The solvability condition at

WE2 ) will guarantee that the amplitude modulations are only functions

of the slowest timescale T2 , and the conditions at O(e3) give equations
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which govern the amplitude modulations A(T 2 ) and B(T2 ) as a function

of T2 and the Poincare correction to the frequency. The derivation of

these equations and their solution will be tedious, as suggested by the

form of the third-order problem far from resonance given in Appendix

C. Qualitatively these equations will be of the form

d 2 * *2*
- A = c A A + c A B + c BB A + c A (V.4.1a)
dT 2  11 12 13 1

d 2 * * 3d B = c B B + c AA B + c A 3+ c B (V.4.1b)dT 2  21 22 23 2

We have not pursued this work in detail; see McGoldrick (1972) and Nayfeh

(1971) for the parallel analysis for capillary-gravity waves. McGoldrick

et al. (1966) have also observed these third-order interactions experiment-

ally.

The third harmonic resonance for an uncharged drop set into motion

from an initial deformation with components of both the n=2 fundamental

and the n=4 harmonic modes will appear as a continuous and periodic modulation

of amplitude for these modes in time with a frequency which modulates

2
with c . For the case of e=0.2 discussed earlier, this scaling implies

that 0(10) oscillation cycles of the fundamental frequency will be needed

to observe the resonant energy exchange.

V.5 DISCUSSION

Moderate-amplitude oscillations of inviscid charged drops display

an array of nonlinear dynamic phenomena as varied as those that have

been observed for planar water waves. Besides a decrease in oscillation

frequency with amplitude caused by interactions between the fluid inertia
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and, drop shape, resonant interactions between the fundamental mode and

secondary and tertiary harmonics can completely change the pattern of

the oscillation. In terms of the classifications used by McGoldrick

(1972), these resonances are selective and weak. They are selective

in that only particular combinations of the fundamental and its harmonic

can resonate at particular values of the electrical charge Q. They are

weak because the timescale for the resonant interaction is long when

compared with a typical period for the fundamental oscillation.

In general, since the oscillating inviscid drop is a conservative

system a single mode can rarely persist in steady state, instead it will

share its energy with those of its harmonics that resonate with it. On

the other hand steady-state can be reached in a non-conservative system

when the energy input to the higher harmonics by the fundamental is balanced

by their own viscous energy loss.

The analysis presented in section V.3 for the second harmonic resonance

of a four-lobed oscillation for Q=Qr shows three particular forms for

this long timescale response, depending on the initial deformation of

the drop. An aperiodic drop motion is only possible when the initial

deformation is composed of the fundamental n=4 mode alone. Small changes

in frequency caused by variation in Q from Qr and oscillation amplitude

detune the resonance so that the actual motion described a time-periodic

exchange of energy between the n=4 mode and its n=6 harmonic. This type

of periodic exchange occurs for more general initial deformations which

include both modes and are accompanied by small frequency modulations

about the mean.

For either of these periodic or aperiodic motions the oscillation
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pattern is distinct from the form valid far from resonance. In both

cases, the amplitude of the harmonic mode has magnitude similar to the

fundamental for the initial part of the motion. This change in pattern

should be observable in calculations and experiments so long as data

is collected for a period comparable to the long timescale. We feel

that the second-harmonic resonance described in V.3 will be easily observed,

but that some of the cases of tertiary resonance described in V.4 will

be more difficult. The third type of resonant oscillation is strictly

periodic with constant amplitude and phase, but is the most unlikely

to be observed because of the precise ratio of initial amplitudes required.

Predictions of experimental observation of these three types of

resonance must take into account the effects of the omnipresent viscosity

of real drops, which will detune the interactions and cause damping.

The quantitative effects of this detuning are difficult to calculate

rigorously; however, its qualitative significance can be estimated from

simple approximate calculations. As mentioned in section II.1c, Prosperetti

(1980a) has shown that the damping of small-amplitude oscillations of

a viscous drop is governed by an integrodifferential equation which reduces

to Lamb's (1932, section 305) theory for a drop with small viscosity

at short times when the initial disturbance is irrotational. For the

resonant interactions predicted by the inviscid analysis to be observed

in slightly viscous drops, the timescale for viscous dissipation, or

equivalently for vorticity diffusion from the interface, must be much

longer than the characteristic time for the inviscid motion

2 3 1/2
-1 >> [ ] 

E , (V.5.1)

n (n - 1)(2n + 1) P a



105

where n is the primary mode of oscillation. This condition is satisfied

for water drops with n up to eight.

When there are a number of small-amplitude modes of the form given

by (V.3.6), the orthogonality between each component guarantees that,

within the order of the approximation, each mode decays independently

of the others. When the rate of energy transfer between resonantly coupled

modes is independet of the viscosity, the amplitude equations for exact

second-order resonance are modified to account for viscous damping and

give

dA a 1 dB 2 a2B
t iA B - i- A, a = iA - i- B. (V.5.2a,b)

1 dT 42 dT 6

The effects of viscosity on the resonant interactions of internal waves

(Davis & Acrivos 1967) and capillary waves (McGoldrick 1970) have been

derived using similar arguments. McGoldrick analysed the equivalent

set of spatial equations in the (AB) phase plane as a function of initial

conditions.

Comparing (V.5.2) with (V.3.10) shows that the principal effect

of a slight viscosity is to attenuate the two interacting modes at the

same decay rates present in the absence of their interaction. Because

the timescale for third-order resonance (uncharged drops) is an order

of magnitude greater than the one discussed above, it is more favourably

comparable to the viscous timescale. As a result, these interactions

will be more difficult to observe experimentally.

The experimental systems presently in use rely on acoustic pressure

(Jacobi et al. 1981) or electric fields (Davis & Ray 1980) to position

the drop. The acoustic field forces the drop to oscillate, and opens
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the, possibility of parametrically excited oscillations. Levitation of

a charged drop in a d.c. electric field allows the determination of the

net charge, but deforms the drop and changes the oscillation frequencies.

These deformations have recently been calculated for a static drop (Adornato

& Brown 1983), and are small for the full range of values for the field

strength and charge accessible before breakup. This suggests that the

oscillation frequencies computed for small values of the field by Sample,

Raghupathy & Hendricks (1970) are good approximations. Resonant oscillations

are detuned even for small changes in these frequencies.

All the calculations presented in this chapter are restricted to

charge values below the Rayleigh limit for breakup of the spherical form.

Introducing oscillation will interact with this limit, thus causing the

drop to become unstable at lower values of the charge. This effect is

considered in the next chapter.
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VI. DYNAMICS OF CHARGED DROP BREAKUP

The prediction of the shape and stability of fluid globes in the

presence of various internal and external force fields has been a long

standing problem of interest in a variety of applications, ranging from

theories for the formation of heavenly bodies (Chandrasekhar 1969) to

calculations of nuclear fission based on liquid drop models of nuclear

cohesion (Bohr and Wheeler 1939). Cohen et al. (1974) brought together

all the calculations of static equilibrium and energy stability analysis

for liquid masses ranging from nuclear to astrophysical dimension, when

the forces present are rigid-body rotation and a volumetrically distributed

charge or gravitational attraction. Surface tension forces, which are

present in ordinary liquid drops, are not included in models of heavenly

masses, but are included in calculations for the nucleus as an approximation

to short-range attractive forces between the nucleons. The calculations

summarized by Cohen et al. are all based on determining static shapes

as the stationary points for an appropriate potential energy function

and ascertaining stability by calculating whether the shape is a local

minimum to all small deformations. The energy input necessary to divide

the drop and the drop shape before breakup are important in discussions

of fission thresholds and fission symmetry; however, these questions

involve consideration of fission dynamics and have only been addressed

by a few investigators (Bohr and Mottelson 1975; Bersch 1983). The goal

of this chapter is to present a complete view of the dynamics near drop

breakup for one important limit of the force fields present in Cohen

et al.'s summary.
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We consider an electrically charged liquid drop of millimeter size

or larger held together by surface tension. The drop is electrically

conducting with a net surface charge Q and is immersed in an insulating

medium. Lord Rayleigh (1882) considered the stability of such spherical

drops to infinitesimal shape disturbances described by Legendre polynomials

and determined that the critical amount of charge just necessary to disrupt

the nth mode axisymmetric disturbance was

-(n) = 47EmaR3 (n+2)}1 /2 n>2,

where R is the radius of the spherical drop, a is the interfacial tension

between the drop and the medium and Em is the electrical permittivity

of the medium. The mode number n indicates the number of lobes on the

deformed drop that is neutrally stable at the value of charge given by

~ (n)
Q = Qc The two-lobed shape perturbation becomes unstable at the lowest

~ ~ (2)
value of Q = Qc and corresponds to the limit of stability for the spherical

shape computed by Rayleigh. Tsang (1 9 7 4 ) has shown the similarities

between the linear stability theory for non-conducting drops with volume-

trically distributed charge and the results of Rayleigh.

-(n)
The evolution of the drop close to the critical value Q = Qc

is not predicted by these linear analyses. Experiments with charged

liquid drops (Hendricks 1962; Pfeifer and Hendricks 1967) suggest that

the Rayleigh limit marks the end of stable, static configurations for

a whole drop. Basaran and Scriven (1981) and Adornato and Brown (1983)

used partial results of finite element calculations of the shapes of

static charged drops to surmise that the Rayleigh limit corresponds to
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a subcritical bifurcation in terms of charge between the families of

spheres and two-lobed (both prolate and oblate) forms. Only the approximate

solutions of Hill and Wheeler (1953) for a volumetrically charged drop

and those of Taylor (1964) for a drop with surface charge disagree with

this assertion. Hill and Wheeler used series of Legendre polynomials

to approximate the axisymmetric shapes originating from the value of

charge for neutral stability of a sphere and show that this point marks

a transcritical bifurcation near which the family of two-lobed forms

exists at both higher and lower values of charge. The same feature is

contained in G.I. Taylor's calculations for the conducting drop, but

has gone unnoticed by either the author or other researchers. This point

is critical to unraveling the dynamics of drop breakup. Hill and Wheeler's

calculations and the more accurate calculations of Cohen and Swiatecki

(1963) predicted that prolate shapes exist for Q less than the Rayleigh

limit and hence should be unstable to small amplitude axisymmetric dis-

turbances from elementary arguments linking bifurcation to linear stability.

The oblate forms evolved to higher values of charge and should be stable.

The solution structure predicted by this analysis is shown schematically

in figure VI.0.1.

Bohr and Wheeler (1939) first recognized the importance of the prolate

axisymmetric forms in the theory of nuclear fission, as estimates for

the energy barrier separating stable spherical forms from fission. They

predicted the evolution of these forms to low values of Q and conjectured

that the shape family ends at Q=O with the static form of two equal spheres

with the same total volume just touching each other. Cohen and Swiatecki

(1962 and 1963) used better approximations to drop shape to verify this
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evolution of the family of axisymmetric prolate shapes. Cohen et al. (1974)

have expanded on this approach to include rigid rotation of the drop

and have linked these axisymmetric forms with the stable, tri-axial rigidly

rotating shapes known for uncharged drops (Plateau 1863; Brown and Scriven

1980a and 1980b). The stability to non-axisymmetric disturbances of

the oblate forms predicted to exist beyond the Rayleigh limit does not

seem to have been rigorously examined, although Businaro and Galone (1955)

state without proof that oblate shapes are unstable.

We use a combination of nonlinear asymptotic methods for drop dynamics

and finite element calculations of static forms to determine the evolution

of axisymmetric, charged inviscid drops near the Rayleigh limit. The

asymptotic methods follow in the spirit of the nonlinear stability theories

of Landau (1944) and Stuart (1971) in that a finite amplitude perturbation

to a static form, close to the point of neutral stability, is described

as a wave of slowly varying amplitude. Thus, for weakly nonlinear dis-

turbances, the evolution equations for the long time behavior can be

described by singular perturbation methods, such as the multiple time-

scale technique used here. The dynamical analysis used here expands

on the previous stability predictions for static charged drops by providing

information about drop breakup.

Analysis of the nonlinear dynamics of an inviscid charged drop near

the Rayleigh limit presents a particularly interesting problem because

(2)
two fundamental frequencies of its motion coalesce as Q approaches Qc

and because the nonlinear couplings of surface tension and inertial forces

in the spherical geometry are different than in the planar or cylindrical

configurations. The approach of two frequencies to almost equal values
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has been shown to initiate solutions to the linearized equations with

linearly growing amplitudes in time. This secular behavior of the amplitude

is somewhat similar to resonance in an externally forced, harmonic oscillator

and has been called direct resonance by Akylas and Benney (1980). It

leads to stronger nonlinear interactions and relatively larger deformations

of the drop near the Rayleigh limit.

The strength of the nonlinear interactions described below depend

simultaneously on the magnitude of the deformation of the drop and on

the distance of Q from the Rayleigh limit. Accordingly, the small parameter

c used in the expansions must scale both effects. Similar analyses have

been presented by Nayfeh (1970), Kiang (1969), and others for determination

of the cutoff wavenumber for the breakup of a liquid jet and of an accel-

erating planar interface separating two fluids, the Rayleigh-Taylor problem.

The critical points in both these problems correspond to subcritical

bifurcations between the families of either cylindrical (liquid jet;

Brown and Scriven 1980c) or planar (Rayleigh-Taylor; Pimbley 1976) interfaces

and deformed static shapes. The different nonlinear couplings described

by Legendre polynomials in the spherical geometry make the bifurcation

transcritical for the charged drop problem.

In the previous chapter we presented the nonlinear dynamics of charged

(2)
drops for Q away from Qc and showed that the regular perturbation equations

and their solutions are singular at the Rayleigh limit. In this chapter,

we give a rescaled equation set that alleviates this singularity. Thus,

the analysis in chapter V can be viewed as the mathematical outer expansion

to the inner expansion presented here. Many of the perturbation equations

derived in the inner analysis have similar form to equations presented
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in chapter V and the details of the new results are presented as extensions

of equations given there.

The multiple timescale expansions appropriate for studying the dynamics

of inviscid drops near the Rayleigh limit are presented in Section VI.2.

These results confirm the prediction of the transcritical bifurcation

of Taylor's theory, but show the oblate forms to be unstable to moderate

amplitude, axisymmetric shape disturbances. The evolution of these

instabilites is charted. The axisymmetric equilibrium shapes in the

two-, three- and four-lobed families are computed by the same finite-

element analysis used by Adornato and Brown (1983) to study levitated

drops. The numerical calculations of the prolate and oblate forms are

described in section VI.3 and demonstrate that the validity of the asymptotic

analysis extends well into the nonlinear regime. The stability of the

oblate forms to non-axisymmetric disturbances in discussed briefly in

Section VI.4.

VI.1 GOVERNING EQUATIONS

We consider the irrotational and incompressible motion of an electrically

conducting inviscid drop with volume V s 4nR3/3 and density p. The motion

of the drop in a tenuous surrounding medium is caused by introducing

initially either a small axisymmetric deformation or a finite velocity

of vibration. The evolution of the surface of the drop is described

in spherical coordinates by the radial position r = RF(6,t), where F(6,t)

is the dimensionless shape function for the drop and 6 is the meridional

angle in spherical coordinates. The dimensionless equations of motion
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and boundary conditions for the fluid in the drop and its surface are

written in terms of the velocity potential $(r,e,t) as

V 2 = 0

3 = 0
ar

2P + + 2 [(2) 2 + ) 2 ] =a
at 2 3r r 36

3 = 3+ 1 L
Dr -at r2 3e ae

APO + 2P + 1- (Te2 - Te1 ) = - 2

F 3 (a,t) sin(e) dO = 2,

0

(r = 0, 0;0err),

G(t)

(r=F(6,t)),

(r=F(6,it),I 0 6; ) TH

The normal-stress balance (VI.1.5) equates the pressure differences caused

by capillarity and drop motion to the contributions of the normal electric

stress from inside Tn and outside T 2 the drop. The expression for

the mean curvature H written in terms of F(O,t) and its expansion in

terms of the amplitude of deformation about a sphere are given in Appendix

A. The equations and boundary conditions governing the electrostatic

potential V(n,6,t) are

V2V = 0

V + 0

n - VV = - 47q(et)

t - VV = 0

2 7j qF(F2 + Fe 2 ) 1/2

0

(VI.1 .7)

(VI.1 .8)

(VI.1 .9)

(VI.1 .10)

(VI. 1.11)

(r=F(Ot), 0d5O Q )

(r=F( Ot), 0: 8 ), i

sin(O) dO = Q .

(VI.1 .1)

(VI.1 .2)

(VI.1 .3)

(VI.1 .4 )

(VI.1 .5)

(vI.1 .6)

(0:5r5F(6,t), 056 7),

(F(e,t) r;5w, %56:57),

(r + w, %6:57),
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where q(6,t) is the local surface charge density, n and t are the unit

-~ 31/2
vectors normal and tangential to the drop surface, and Q = Q (a4TrrmR )

is the dimensionless net charge on the drop. The expansions of the unit

vectors n and t about a spherical shape are presented Appendix A. The

electric stress is defined in terms of the of the electric field E =

- V V as (Stratton 1941)

T2 EE - 1EI (VI.1.13)

where I is the identity tensor and |Et is the magnitude of E. The component

e
of this stress normal to the surface of the drop Tn2 appears in the normal

stress balance (VI.1.5) and couples together the flow field and electrostatic

problems. The spatially uniform potential inside the conducting drop

e
forces the electric stress T1 to be zero there.

The dynamical problem for the velocity and electrostatic potentials

and the drop shape is solved for two types of initial conditions. First,

we consider the case when drop motion due to the initial deformation

satisfies conservation of mass and zero initial velocity

(e,0) = 0, (VI.1 .14a)
at

F(0,0) = 1 P (6) - 12 + , (VI.1.14b)
2 5

where prolate and oblate disturbances correspond to the positive and

negative signs in the last equation. The second set of initial conditions

studied are motions due to non-zero, but irrotational velocity fields

and deformed drop shape

(3 ,0) = g1 ( ;E) # 0, (VI-1.15a)
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F(6,0) = g2 (6;E). (VI.1.15b)

The scaling near the Rayleigh limit necessary to handle these two initial

conditions is different.

VI.2 PERTURBATION SOLUTIONS NEAR RAYLEIGH LIMIT

The potential fields ($(r,e,t), V(r,e,t)) and the drop shape F(e,t)

for moderate-amplitude motions are determined by constructing expansions

in the amplitude of the deformation E, as defined by the boundary conditions,

for E<1. The solution procedure involves a combination of domain per-

turbations (Joseph 1973) and the method of multiple timescale expansions,

(2)
as outlined in the previous chapter for the dynamics away from Q = QC

The singularity of the asymptotic equations, as this value of charge

is approached, is readily seen from the results of the regular perturbation

(2)
analysis in chapter V. First, as Q approaches Qc the linear frequency

of the inviscid two-lobed oscillation 2 (4 - Q 2 Ai)1/2 approaches

zero. In this same limit, the asymptotic approximations for the second-

and higher-order terms of the solution in a formal power series in E

become singular (for example see equations B3, B4 and B12, as well as

expressions for G2 1 , G 2 2 , and G 2 in Appendix B). This singularity is

(2)
a manifestation of the multiplicity of solutions near Qc caused by

the bifurcation to other static shape families. The local analysis must

account for this multiplicity.

To remove this singularity we rescale the variables in e so that

this parameter also determines the relationship between the distance,
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in terms of net charge from the Rayleigh limit, and the deformation of

the drop. Then the new perturbation expansion will yield an explicit

expression between Q and e for constructing the bifurcating solution

families. The proper scaling for each of the two initial conditions

(VI.1.14) and (VI.1.15) and the analysis of these cases is outlined below.

VI.2a Dynamics of Drops with Zero Initial Velocity

When the net charge Q approaches the Rayleigh limit (w2 + 0) the

dominant terms in the regular perturbation expansions described in chapter

V behave as

F(e) - I Hn n P2 (6) , (VI.2.1a)
n=1

(n,6) - Gn n n2 P 2(6), (VI.2.1b)
n=1

2-2n
where the coefficients {Hn} and {Gn} are both O(N2  ) and the transformed

radial coordinate n is defined below. The form of the series suggests

that the appropriate scaling between the amplitude of the motion and

-1/2 1/2the frequency is w2 , or w 2 = (KE) where K = 0(1) when the drop

starts from rest with the initial conditions (VI.1.14).

This dependence of frequency on amplitude is valid only for a range

of values for Q close to the Rayleigh limit given by

Q 4 /7 ( 1 - - ... ) Q(0) + c Q 0 + E2 (2) + ... (VI.2.2)

The method of multiple timescales is applied by assuming that the dependent

variables are functions of two scales related to the actual time by T0 =t

1/2and T1 /2=e t, and 3/3t is expressed as
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a = + E1/2 a (VI. 2.3)at DT aTT /

The expansion of the domain shape about a sphere is implemented by trans-

forming the drop shape by r a n F(6,t) and expanding each variable in

the form

F(6,t;s) F (k/2)(6,TT11/2

4(rOt~c)k [k/2]
$ E0 0 (n,6,TO' 1/2 , (VI.2.4)
k=0

V(ret;e) _ V[k/2] neTOT1/2 -

As in chapter V, each term in these expansions for the potentials is

written as a sum of a contribution based on the spherical domain (05n51,

056 5) and terms that account for the deformation of the domain at each

order of c. The terms evaluated on the spherical domain are denoted

by l (k/2 ) (T, ,TO,T1/2) and calculated by the formulas given in chapter

IV (see equation IV.2.3). Because of the appearance of the fractional

powers of e in the expansions (VI.2.4), the factorial term used in chapter

V has been omitted so that perturbation equations of second or higher

order given in Appendix B must be modified appropriately. The shape

function F(O,t) is independent of the radial coordinate, and its derivatives

are simplified as F (6,TOT12 F (k/2)(6TOT1/2 We anticipate

the form of the drop shape at each order in the expansion as a series

of Legendre polynomials

F (k/2) (6,TOT / = 6 (k/2) (TOT / m( ) (VI.2.5)01/2 CT M1/
m=0 m tTe pm(t)

Expressions for the mean curvature of the drop and the unit normal and
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tangent vectors expanded in terms of c are given in the Appendix of B

with the drop shape at each order represented by equation (VI.2.5).

The static spherical drop is recovered as the leading order solution

in the expansion (VI.2.4):

F (,T
0 )

$ (n, 6,T0)

V (n,0,T 0 ) j

(VI.2.6)0  ]
- 0 n _

where the arbitrary reference potentials inside the drop have been set

to zero for the velocity and to Q(0) for the electric field.

The next non-trivial problem appears at O(E) and is given by equations (V.2.5)

-(V.2.11) and (V.2.13)-(V.2.15) in the previous chapter, where only the

expression for the conservation of charge (V.2.12) must be modified to

account for the dependence of the net charge on the amplitude through

equation (VI.2.2) above. This equation becomes

[T + F ]2(O) I sin(6) dO = -2Q(1) (n=1).
0

(VI.2.7)

The solution of this equation set as Q approaches 4/ from below is

F 0 (6,TO,T11 2) 

(1) (I6TO, 1/2)

V4 (n,,T , T 11/ 2 )

where A(T 1

determined

the initial

A(T 1/2 2(6)

= 0 ,(VI. 2.8)

Q 0/n + A(T 1/2 )P2 Q(0) 3

/2) is the slowly varying amplitude of the motion which is

along with Q(1) as part of the higher-order problem using

condition
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A(O) = 1 , (VI.2.9)

derived from equation (VI.1.14b). Here the positive sign gives a prolate

perturbation and the negative sign an oblate one. The form of the solution

(VI.2.8) can also be computed by taking the limit w2 -* 0 of the result

(V.2.16) of chapter V, but then the correct timescale is not recovered.

It can also be predicted in advance that the correction to the velocity

potential vanishes to first order, because the characteristic timescale

for the motion approaches infinity in this limit.

The variables defining the correction at O(E)3/2 are governed by

the equation set

V2 (3/2) = 0

(3/2)

an 1/2

(nV01, 0%6:Tr),

n=0,% 06: ) T

n=1, 0<.6<.T),

(3/2) 1 (0) 1(3/2) (3/2) a 2V( 0 )

-

0 4 i +F 2 a= -
F(3/2)e(,t) sin(O) d6 = 0,

0

V2 (3/2) = 0 (

V(3/2) +0 (

II (3/2) + F(3/2) 2V(O) I sin(
0 an n=1

av(3/2) 3F(3/2) av (0)
e 

+ =0

n+< , 0:5 O),

6) dO = -2Q(3/2)

(VI.2. 10)

(VI.2.11)

(VI.2.12)

(VI.2.13)

(VI. 2.14)

(VI.2.15)

(VI.2.16)

(VI.2.17)

(VI.2.18)

,(3/2)4F ( T=1,00: 6: T),

71=1,0 0<6<=1),
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F(3/2) (6,0,0) = 0 (0;5e0 ), (VI.2.19)

(0,0,0) + (6,0,0) = 0 (0;06ir). (VI.2.20)
DT0  " ) 1/2

The solution to equations (VI.2.10)-(VI.2.20) is calculated as

F(3 /2 ) (6,TOT 1/2) 0

$ (0, 0,TT 1 /2 B(T + dA P2(e) n 2 (VI.2.21)
2 1 2 BT )1/2-

V(3/2) (n,6,TOT 1 / 2  - -

where B(T 1/2) is unknown and is determined from the solution of the next

non-trivial problem. Equation (VI.2.20) gives the second initial condition

on the function A(T11 2 ) as

dA (0) = 0. (VI.2.22)
dT

1/2

The appearance of the first nonzero correction to the velocity potential

at this order of approximation, as well as the form of solution in (VI.2.21),

can be anticipated from the O(E) solution valid away from the Rayleigh

limit and from the correct timescale valid in the inner region where

(2)
Q +* QC2

The equation set that governs the variables at OC ) is lengthy

because of the many non-homogenous terms generated by the domain perturbation

at this order. These equations are given in a somewhat different form

in Appendix B. The differences are due to (a) the 2! used in the definition

of the series expansion used in chapter V is not included here, (b) the

different scaling on time arising near the Rayleigh limit which introduces

the additional terms 3F(3/2) /3T 1/2 in equation (B3) and 3$(3/2)/3T1/2
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in .(B4), and (c) the dependence of the net charge on E which leads to

the terms - Q Q F /27 in (B4), -2Q1) (3F(1)/) in (B9), and -2Q(2)

in the right-hand side of (B8). The solution to this equation set is

found by expanding the potentials (2) V (2) in Legendre polynomials

and powers of n as

[(2) (n,, TOT1 /2 1 O Ym(T 0 T1/2fn
m

=Y Pm() (VI..23)

V(2) (jn6TO, 1/2 - m=0 L. M , OT -m-1

which satisfy the field equations and boundary conditions everywhere

except on the drop surface. Substituting the forms (VI.2.23) and (VI.2.5)

into the normal stress and kinematic conditions for the O( 2) problem

yields differential equations for the coefficients in the corrections

to the velocity potential and drop shape, {Ym} and {6m}, respectively,

as

CO dY (0)2 dB
I [ dTm + (m-1)(m+2 - ) m ] = - dB

m=0 0 1/2

(1)2 Q(O) 2
+ + C1 d A P (6)8 Tr 77_ 2 d2 2

1/2

(0) (1)
+ 2 4 -A(T1/2 2(a)

+ A(T1 /2 2 - - + - P () + P (6) , (VI.2.24)
125 7 2 35 4I

and

(m d6

(m Ym - ) P (6) = 0, (VI.2.25)
M=e 0

where c is an integration constant. The solvability conditions for this
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differential equation set yields the evolution equation for the slowly

varying amplitude A(T 1/2)

d2A + KA 24 2 0 (VI.2.26)
dT2 7

1/2

with the initial conditions (VI.2.9) and (VI.2.22). This amplitude equation

differs from the result of the standard nonlinear stability analyses

valid in the vicinity of the critical wavelength in the liquid jet and

Rayleigh-Taylor problems (Kiang 1969; Nayfeh 1970). The A 2 term arises

from the spherical geometry instead of the term A2A*, where A* is the

complex conjugate of A, which appears in the other studies. The second

derivative of the modulating amplitude in equation (VI.2.26) is expected

because of the direct resonance between the P 2 () terms at different

orders of e (Akylas and Benney 1980).

Equation (VI.2.26) is integrated once to give

d = - (A 1) [ -K (A 1) + - ( A2 A + 1)]. (VI.2.27)dT 1 /27

Static drop shapes are given by the roots of the polynomial on the right-

hand side of the expression, depending on whether Q is less than (K>0)

or greater than (K<0) the Rayleigh limit. The family of spherical shapes

corresponds to the stationary point A = 0 for all values of K (charge).

As predicted by Taylor's analysis and shown schematically in figure VI.O.1,

prolate static forms exist for A = 7K/24 and K > 0 or values of Q < 4/r.

Oblate forms are possible for K < 0 and are given by the root A = 7K/24.

The stability of the static shapes follows from a phase-plane analysis

of equation (VI.2.27); plots of A'(T 1/2) versus A(T 1/2) are shown in

figure VI.2.1 for fixed values of K greater than (figure VI.2.1A) and
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less than (figure VI.2.1B) zero. For small amplitude perturbations,

the spherical form (A,A') = (0,0) is a stable center for K > 0 and a

saddle point for K < 0. The oblate static shapes (A,A') = (7K/24,0),

K < 0, are stable centers and the prolate forms (A,A') = (7K/24,0), K

> 0, are saddle points. These results agree with bifurcation analysis

of only the static forms.

The nonlinear dynamic analysis predicts the stability of the spherical

forms to moderate amplitude perturbations. It follows from equation (VI.2.27)

that spherical shapes with initial disturbances of magnitude -7K/48 <

A(0) < 7K/24 evolve along orbits inside the separatrix for this particular

positive value of K and are stable. The drop oscillates between prolate

and oblate forms during each period of oscillation. Initial disturbances

outside the separatrix lead eventually to drop breakup through a succession

of prolate configurations. The oblate shapes are predicted to be stable

for K < 0 for initial shape perturbations satisfying 7K/1 6 < A(O) < 0,

where the resulting oscillations are restricted to oblate forms. Shape

perturbations leading to either slightly prolate or highly deformed oblate

drop shapes cause instability through a sequence of elongating prolate

forms, (see Tsamopoulos et al. 1984).

The form of the amplitude modulation caused by the direct resonance

near the Rayleigh limit for the stable motions about the sphere is calculated

exactly as the solution of equation (VI.2.27). For K : 24/7 and A(O)

= +1, the third-order polynomial in A on the right hand side of equation

(VI.2.27) has three real roots pi which satisfy the inequalities

-1 < p, 5 -1/2 < p 2 5 7K/24 5 p3 5 7K/16 ,
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where p2 = 1. Then the stable solution of (VI.2.27) is

A(T1/2 ) P p 1 + (P2 - p,) sn2 (t ;k), (VI.2.28)

T m 2[(p3 - P,)/71/2 T1/ 2 , k (P2 - Pl)/(P 3 - P), (VI.2.29)

where sn is the Jacobi elliptic function (Abramowitz and Stegun 1964).

According to equation (VI.2.28), amplitude modulation occurs between

the two smaller roots p, and p2 - Equation (VI.2.28) also holds when

K 48/7 and A(O) = -1, but the roots follow the inequalities

-1 = pI < 1 < P 2 5 2 : 7K/24 5 p3 5 7K/1 6

These two cases for the roots of the polynomial correspond to the same

physical picture of drop oscillation.

The last case arises when K < -24/7 and A(O) = -1 and leads to quite

different results. The roots of the polynomial obey the inequalities

7K/1 6 < pI < 7K/24 5 p 2 < 1/2 -7K/48 < p 3 < 1,

where P2 = -1- The initial amplitude A(O) = -1 is exactly stationary

for K = -24/7 -3.4286 and the stable oscillations of A(T1/2) are described

by equation (VI.2.28) for K less than this value. This stationary point

corresponds to a static oblate shape existing for Q > 4Y/r. The stable

oscillations of the amplitude A(T 1/2) with time is shown in figure VI.2.2

for A(O) = +1 and values of K > Kc = +24/7. Away from Kc the motion

resembles the simple sinusoidal oscillation between prolate and oblate

forms expected from the regular perturbation analysis of the previous

chapter. The period of the motion increases as K approaches Kc and the

drop spends more time in the prolate form. The evolution of an initially
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prolate perturbation (A(O) = +1) for drops with K < KC is shown in figure

VI.2.3. The deformation of the drop grows slowly until a point where

it suddenly increases almost exponentially in time. The perturbation

analysis ceases to be valid when the deformation becomes large. The

pause before the exponential increase is larger for K closer to Kc.

The bounds given by equation (VI.2.27) on the amplitude of the initial

perturbation for stable oscillation about a spherical drop for Q close

to Q 2 ) can be rewritten in terms of equation (VI.2.2) as a correction

to the Rayleigh limit for loss-of-stability of a spherical form. Then

Q = - (VI.2.30)
7

indicating that finite amplitude prolate disturbances destabilize the

drop, whereas the drop is more stable to oblate perturbations. The nonzero

coefficient at O(E) in equation (VI.2.2) also confirms the transcritical

bifurcation. The increased stability of the oblate forms is caused by

two effects. First, the surface area for the oblate shapes is larger

than that for a prolate form with the same amount of deformation, so

that the effective surface charge density is lower. Also, the Coulomb

forces associated with surface charge along the equator of an oblate

spheroid are smaller than those produced at the poles of a prolate form

by a similar net charge density.

The complete solution of the O(c2 ) problem includes terms introduced

through the nonlinear coupling to lower orders in E and is computed by

the procedure outlined in chapter V. These results are

F (2)(,T0,T1 /2 ) = - - A(T1 /2 ) + - [ A(T1 / 2 - cos(2T0 /6)] P (6),12 5 12 35 1/0 4
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(2) (n, 6, TO, T1 12 ) = /6 sin (2T 0/6) n4 P 4( 6) , (VI.2.31)

V (2)n, ,TT 11 /2 ) Q + [ -Q A(T1/2) + Q (] A(T1/2 2(e)
n 71/1/2

+ 12Q(0)[ A(T1/2 
2 - cos (2T/6)] n-5 P4(O),

where Q (2) must be computed from the solvability condition at 0(ed).

The solution at O(e ) is completed by calculating the constant B(T /2)

in the velocity potential (see equation (VI.2.21)) from the equation

(2) 2(1)

1/2 = + 5 A(T1/22 (VI.2.32)

The calculation of Q(2) from the third order dynamical problem is

very involved because the 0(E5/2 ) and 0(e) problems must be computed.

This constant can also be computed from a straight forward bifurcation

analysis (e.g. see Brown and Scriven 1980a and Ungar and Brown 1982)

of only the static forms carried out to 0(E 3 ). The equation set for

the static forms is simply equations (VI.1.1)-(VI.1.13) without the time

dependence for either the field variables or drop shape. Then the per-

turbation method is completely regular in powers of the amplitude e of

the drop deformation and the forms valid to O(c2 ) for the prolate and

oblate shapes are computed as

F(6;e) = 1 + e P2 (6) + C2 [- + 24 P (e)] + 0(E3) , (VI.2.33a)
2 5 35 14

(0) (1) (0) 2 Q(2 )
V(n,6;e) = + E [ + 3 P2(6)] + E n +

[ Q(0) + Q(l)] P (6) + 12Q(0 ) P (e) } + O(e 3 ),(VI.2.33b)
13 7 2 7ri5 14
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6( = - 6r +2 363 .3Q( ) = 4/f - e + E2 /7 + 0(33) , (VI.2.33c)

where Q(2 ) = (363/7)/490 in equations (VI.2.31) and (VI.2.32).

The drop shapes predicted by the O(E 2 ) solution for the breakup

of a sphere perturbed by a prolate deformation with e = 0.3 are shown

in figure VI.2.4 for K = 3.4125 < KC. The shape slowly elongates, developing

a neck, before it breaks into two drops with one or more satelite drops.

This evolution is independent of whether the initial perturbation is

prolate or oblate. For unstable oblate forms at To = 0, the drop first

evolves to a prolate form before following this path. The actual prediction

of the number and size of the fission products formed by Rayleigh breakup

involves understanding the fluid mechanics for drops with thin necks.

Viscous forces will eventually become important for these forms and a

rigorous theory must account for their effect.

The fact that the asymptotic series formed from the expansion (VI.2.4)

are the inner solutions to the regular expansion given in chapter V is

easily seen by taking the appropriate limits of the amplitude function

A(T 12) computed with A(O) = +1:

lim A(T112 ) - cos (4 - Q ()2 /4)1/2 To,1 /2m

k + 0

lim A(T 12) - cosh (-4 + Q (0)2 /41T) 1 2 To

k +0

where K and k are defined by equations (VI.2.2) and (VI.2.29), respectively.

These forms agree with those of the outer expression as the Rayleigh

limit is approached.
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VI.2b Dynamics of Drops with Nonzero Initial Velocity

The dominant terms as w2 + 0 in a regular perturbation solution

for perturbations with nonzero initial velocity behave as

F(e) ~ 1 + I Hn n 2(8), (VI.2.34a)
n=1

$(n,e) - 1 + Gn n n2 2 (6), (VI.2.34b)
n=1

2- 3n
where the coefficients {Hn} and {Gn} scale as O(n 3 This form suggests

that the appropriate scaling for the frequency is w2 - E1/3 or 2 = (CKE)1/3

where K = 0(1). The slow timescale for these initial conditions is T1/3

= E1/3 t. This rescaling indicates that the nonlinear dynamics leading

to breakup will take place in a shorter time, which is not a surprising

result since the additional kinetic energy contained in the velocity

perturbation is available to aid for the process.

The perturbation problems occuring in an analysis like the one described

in section VI.2a will involve terms of orders E2/3 4/3, etc., and result

in a correction to the Rayleigh limit of the form Q = 4/Tr + E2/3 Q + ... *

The initial conditions on the modulating amplitude A(T 1/3) are of the

form

dA (0) = g,(6;E) * 0, A(O) = 1, (VI.2.35)
dT1 /3

where the initial fluid motion described by gl(6;E) is irrotational.

Apart from these changes, the analysis will be identical.
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VI.3 FINITE ELEMENT ANALYSIS OF STATIC SHAPES

VI.3a Methodology

The region of validity of the perturbation results presented in

the previous Section was established by comparing the static drop shapes

predicted by equations (VI.2.33) to results of finite element calculations.

The shape of electrostatic stationary drops and the electric potential

in the outer medium described by the equation set (VI.1.5) - (VI.1.13)

are calculated by the Galerkin finite element method. This method was

originally developed by Ettouney and Brown (1983) for solving free-boundary

problems and implemented by Beris et al. (1984) for the creeping flow

of a sphere in a Bingham fluid and also by Adornato and Brown (1983)

for the shape and stability of electrostatically levitated drops. In

this approach, the equations governing the static shape and electrostatic

potential are transformed to a fixed finite domain, where the finite

element approximation to the potential is formulated. The far-field

boundary condition (equation (VI.1.8)) is replaced with the approximation

to the potential at a large radius R. from the drop surface

V(Ro,6) = , (VI.3.1)

which slightly affects the static problem if the drop is not very deformed.

The free-boundary problem defined on (F(O)5r0Ro, 0 e:5n) is transformed

using the mapping

E= r - F(e)] / [Ro - F(6)] , (VI.3.2)

to a fixed domain (0551, 05O51) which is divided into quadrilateral
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subdomains or elements. The potential V(EPO)=V(rO,) and the drop shape

F(6) are approximated in terms of Lagrangian biquadratic {Ti(C,O)} or

quadratic {[i(6)} basis functions, respectively. The details of these

bases are given in Ettouney and Brown (1983) and in standard finite element

texts, (Strang and Fix (1973)). The finite element representations are

Ni Ns Ns 0v(C,e) = (co) + V. i(, ) + t T (Ce), (VI.3.3a)
1=1 i=1 =

N8
F(6) = X S. 9.(6) (VI.3.3b)

i=111

where the coefficients {cql and {ail are to be determined and the {Xi}

are the interpolated values of the far-field condition (VI.3.1). The

total number of quadratic basis functions defined on each of the boundaries

at C=0 and C=1 is N5 and the number of functions defined on the rest

of the domain is Ni. The splitting of the expansion for V(C,e) used

in (VI.3.3a) is a convenient method of accounting for the constant, but

unknown potential Vo and the boundary condition (VI.3.1). The normal

stress balance (VI.1.5) is distinguished as the equation for determining

the drop shape and the unknowns Xt = {a, , Vo, APO1t are determined

by solving the nonlinear algebraic equations that result from the Gelerkin

weighted residual equations of (VI.1.5) - (VI.1.13). These are

Iv VV . VT dv = 0, i =(VI3.4)

I{EFF (. + 4.(2F2 + F )]/(F2 + F )1/2 - F 2.[AP + (nVV)2 /87])
0 O,0 1 1 0

sin(6) d6 = 0, i = 1,...,Ns, (VI.3.5)

along with the integral constraints for volume (VI.1.6) and charge (VI.1.11)
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through which the static pressure difference APO and the constant drop

potential Vo, respectively, are calculated. The symmetry around the

axis and the vanishing of the Ni basis functions Ti(C,6) at C=0 and C=1

have been used in the derivation of (VI.3.4) and (VI.3.5). If a plane

of symmetry exists, the computational domain can be cut in half (05O6M/2).

Starting with a first approximation to the solution vector X(0) these

(Ni+Ns+2) algebraic equations, written in condensed form as R(X; Q),

are solved by Newton's method, which converges iteratively according

to the sequence

X(i+1) =X + (i+1) , (VI.3.6)

where 6 (i+1) is the solution of

J(X ) 6 +1) - R(X i ; Q) , (VI.3.7)

and J is the Jacobian matrix, i.e. J. .=R./aX.. Equation (VI.3.7) is

solved by Gaussian elimination by implementing a so-called arrow routine

(Ettouney and Brown). Newton's method has several advantages over the

more simply formulated techniques for solving these equations. Besides

the rapid convergence to a solution, the Jacobian matrix used in (VI.3.7)

is the basis of computer implemented perturbation methods for tracking

families of solutions and for detecting multiple solutions in terms of

variations of in one or more parameters.

Intersections between two families of static shapes (simple bifurcation

points) in the parameter space are signalled by a singular Jacobian matrix

of the converged solution and are easily detected by checking the sign

of the determinant of J, which changes upon crossing a simple bifurcation
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point. The methods used to force the finite element algorithm to converge

to the new bifurcating solution family include the discretization of

existing approximate solution and the null vector calculation close to

the bifurcation point. The relative stability of multiple solutions

is determined directly from the structure of the bifurcating families

(Ioos and Joseph 1980). As described by Ungar and Brown (1982), changes

in stability of the drop shapes can also occur at a limit point where

a single family reverses direction in terms of a parameter. These points

on the solution family are determined by the criteria for a vertical

tangent (MXi/3Q) of the field variables with respect to the surface charge.

A new monotonically increasing parameter analogous to the arc-length

of the solution curve is introduced. The vector of unknowns is augmented

by the parameter being varied along a shape family (the net charge Q

for this problem) and the equation set is augmented by adding the constraint

R = X - X11 2 + (Q - Q ) (S - S ) = 0 , (VI.3.8)
N++3 0 0

In this equation So is an arbitrary reference value for the arc-length

at a regular and close to the limit point solution (X0 9 Q0 ). Keller

(1977) has shown that the Jacobian matrix of the augmented equation set

is regular in the vicinity of the limit point.

VI.3b Implementation and results

The location of the unknown boundary in the mathematical problem

is moved to R. = 12 in all the calculations presented here. Finite element

meshes of 8 azimuthal and 20 radial Lagrangian biquadratic elements were

used for the solution of the transformed field equations on the region
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(05C51; 056;5/2) for shapes in the two-lobed and four-lobed families.

This discretization yielded a system of 682 nonlinear algebraic equations.

The elements were graded radially toward the surface of the drop for

better approximation to the potential gradients there. Shapes in the

three-lobed family were computed using 16 elements distributed uniformly

in the azimuthal direction (0O6O5) and 1322 total equations.

The accuracy of the finite element approximations was determined

by computing the values of Q for the lowest four bifurcation points between

the family of spheres and multi-lobed static forms. The results are

presented in Table VI.3.1 with the exact results from Rayleigh's analysis.

The finite element results are in very good agreement, as have been the

previous calculations of these critical points (Basaran and Scriven 1981

Adornato and Brown 1983).

The families of static shapes evolving from the first three bifurcation

points are represented in figure VI.3.1 by the component of the corresponding

bifurcating mode in the computed shape. In this projection, the transcritical

bifurcation of the prolate and oblate shapes is approximated very well

by the asymptotic analysis. The three-lobed forms bifurcate supercritically

(to higher values of Q) from the spheres. The stability of the static

shapes to small amplitude disturbances follows from elementary ideas

about the connections between bifurcation and linear dynamical analyses.

Since the spheres are stable for Q < 4/w, the oblate forms are stable

and the prolate ones unstable as computed in the dynamical analysis above.

The three- and four-lobed shapes are all unstable. All bifurcations

of even-lobed shape families will be transcritical and all odd-lobed

families will be either sub- or supercritical because of the mode coupling
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Table VI.3.1 Comparison of critical values of charge computed by finite

element analysis with exact solution to linear problem.

Bifurcating

Shape Family

Two-Lobed

Three-Lobed

Four-Lobed

Exact Value

of Q

7.090

7.927

8.683

Finite Element

Calculation

7.095

7.936

8.697

Relative

Error

0.0007

0.0011

0.0016

Five-Lobed

I

9.379 9.400 0.0022
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of the spherical harmonics.

The family of prolate forms evolving from Q = 4/r is the analog

of the Bohr-Wheeler saddle shapes for a conducting drop and are expected

to evolve to the uncharged configuration of two spheres just touching

with Q=0. Both the finite element calculations and the asymptotic analysis

of the bifurcating prolate shapes predict that this family passes through

a limit point where it turns towards higher values of charge Q. The

value of Q at the limit point Q, is predicted to be 6.6504 from equation

(VI.2.33c) and 6.678 from the finite element calculations. We have been

unsuccessful in numerically tracking the evolution of the prolate forms

through a second limit point and back toward Q=0 because of incorrect

interactions between the drop shape and the imposed boundary condition

at r = Rw = 12. To accurately compute very deformed prolate shapes we

would need either to increase R, drastically, or to match the finite

element approximation of the potential field near the drop to a perturbation

solution valid far away, as done by Orr et al. (1977).

A limit point in the family of three-lobed shapes was found where

the shapes evolved to lower values of Q. This is expected by analogy

with the Bohr-Wheeler forms: the three-lobed shapes should terminate

at Q=0 in a shape composed of three equal size spheres. Prolate and

oblate drop shapes computed by finite element analyis are shown in figure

VI.3.2 for several values of Q. Sample shapes in the three- and four-lobed

families are shown in figure VI.3.3.

A quantitative comparison between these forms and the perturbation

results, equation (VI.2.33) is made by decomposing the shapes in finite

element representation into a Legendre-Fourier series



PROLATE (UNSTABLE) OBLATE (STABLE)

2

(a)

0-

O-6-6

-2.6I

-1 0
X COORDINATE

2

1

w

z

0
0

0

-1

-21
-22 -1 0

X COORDINATE

Figure VI.3.2 Sample drop prolate and oblate shapes in the family of
two-lobed static forms for different values of charge.

r\)

w

z
25
0t
0
0

(b)

- 8.45

2I



(b)

-1.0 -0.5 0.0 0.5

1.5
( I I I I i

(a)
=7951

C =-0.09
E =+0.109-

i i i i C

-0.5

-1

-I-

1.0 15

.0I

-1.5

X COORDINATE

Figure VI.3.3

-1.0 -05 0.0 0.5

X-COORDINATE

1.0 1.5

Sample shapes in the (a) three-lobed and (b) four-lobed
shape families for different values of charge.

1.0

0.5

0.0

.0

w
!a
z
0

0

0.5-

0.0

-0 5 5

w

z

8

.0t-

-I.5
- .

(b)

0=10.20
9.00-
8.35

5

.

(a)

I

I

" i l



144

m
F(6) = I c.P.(), (VI.3.9)

j=0 ' a

where the coefficients are computed as

c = J f (6) Pn (6) sin(6) do . (VI.3.10)

The values of the first eight coefficients calculated from equation (VI.3.10)

for the two-lobed shapes are given in Table VI.3.2 and compared to similar

coefficients {cj} resulting from the perturbation solution at O(E2 ).

Drop shapes with the identical component c 2 are compared, so that the

value of charge for the two forms may be different. The coefficients

c2n-1 = 0, because of the plane of symmetry at 6 = 7/2 for these shapes.

Even for deformations as large as e = -0.5043, the coefficients for the

P4(6) component differed by less than 2 percent. The values of net charge

used in the finite element calculations and computed from the formula

(VI.2.33c) are also compared in Table VI.3.2 and agree to within 1 percent

for the most extreme deformations listed. The analytical result, equation

(VI.2.33c) is also plotted on figure VI.3.1 for comparison with the numerical

results.

VI.4 CONCLUDING REMARKS

The asymptotic analysis presented here gives a complete description

of the nonlinear dynamics of an inviscid, charged drop near the Rayleigh

limit where an initially spherical drop breaks into fragments. The dynamics

of drop breakup is expressed in terms of a slowly varying amplitude,



Table VI.3.2 Legendre-Fourier coefficients and net charge calculated

from series expansion {cj,Q} and finite element results {ci,Q).

Results are compared for the same value of the magnitude of the

P2 (8) component of the shape.

E=C =C 2  c0  co C4  C4  C 6  ce Q Q

0.1049 0.9978 0.9978 0.0076 0.0076 0.0005 0 6.945 6.950

0.1924 0.9926 0.9923 0.0254 0.0260 0.0030 0.0003 6.846 6.850

0.3066 0.9812 0.9797 0.0645 0.0683 0.0131 0.0020 6.747 6.750

0.3935 0.9690 0.9649 0.1062 0.1163 0.0303 0.0065 6.695 6.700

0.4625 0.9572 0.9490 0.1467 0.1661 0.0536 0.0150 6.668 6.680

-0.1044 0.9978 0.9978 0.0075 0.0074 -0.0004 0 7.263 7.270

-0.1922 0.9926 0.9926 0.0253 0.0249 -0.0026 0.0002 7.430 7.440

-0.2992 0.9821 0.9819 0.0614 0.0607 -0.0099 0.0010 7.662 7.680

-0.4087 0.9666 0.9654 0.1145 0.1147 -0.0262 0.0041 7.930 7.970

-0.5043 0.9491 0.9454 0.1744 0.1781 -0.0519 0.0108 8.190 8.270

U,
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the initial shape deformation of the drop, and the net charge. Spheres

with charge less than the Rayleigh limit are unstable only when the initial

deformation is large enough to drive the motion beyond the separatrix

that surrounds the stable center. This precise criterion for drop instability

can be compared directly to the estimate used in the nuclear physics

literature of determining the prolate or Bohr-Wheeler saddle shape with

the same amount of charge as the "energy barrier" for fission of the

drop. Our results predict that instability of the spherical drop is

initiated by a shape deformation substantially smaller than predicted

by using the unstable prolate form as the energy barrier. This conclusion

is clear from the phase-plane diagram figure VI.2.1a. A perturbation

to the spherical shape (0,0) can reach the separatrix with a smaller

absolute deformation than required to reach the saddle point corresponding

to the static prolate form. Then this initially oblate deformation will

evolve toward the saddle point and eventually lead to drop breakup after

a "long time". This type of secular instability is not accounted for

in the "energy barrier" approach to nonlinear stability of the drop.

Formally, deformation to the static prolate form is a sufficient, but

(2)
not necessary, condition for drop instability with Q < Qc

Examining the stability of the oblate forms to non-axisymmetric

forms is an extremely difficult task because of the complexity of the

perturbation equations when dependence on the azimuthal angle $ is allowed.

The linear analysis will follow closely the work reported by Wong and

Tang (1974) for a volumetrically charged drop and show that the set of

modes at Q=4/7 with zero frequency must be expanded to include all shape

perturbations expressed in terms of general spherical harmonics as
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F(6, ,t ) = 1 + e Y 2m(e,$), m = 0,1,2,

where Y2m(6,4) is a spherical harmonic function. The shapes with m=0

are the prolate and oblate axisymmetric forms discussed above. The other

infinitesimal non-axisymmetric perturbations represent the same small

amplitude, prolate and oblate shapes described in a spherical coordinate

system rotated from the original one, and so are not unique configurations.

Cohen and Siatecki (1962) realized this fact and stated, as do Businaro

and Gallone (1955), that oblate forms with volumetrically distributed

charge are unstable to non-axisymmetric perturbations. Neither author

presents an analysis to support this claim. To do this requires examining

the effect of threee-dimensional disturbances on the stability of the

axisymmetric oblate shapes given approximately by equation (VI.2.33c).

Whether or not the oblate forms are physically realizable is of

special significance in determining the effects of an applied electric

field on the shape of a charged drop. Adornato and Brown (1983) correctly

computed the shape of a charged drop in a uniform field and showed that

the field acts as an imperfection, causing the shape family originating

from a sphere to turn at a limit point to a value of charge below the

Rayleigh limit. They did not compute the evolution of the separated

solution family containing oblate shapes which will result from splitting

the transcritical bifurcation described here. If the oblate forms are

stable in the absence of an applied field, the shapes in this separated

branch will also be stable when the applied field is present.
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VII. OSCILLATIONS OF COMPOUND DROPS

Hollow spherosymmetric shells of metal or glass have been produced

by centering a bubble inside a drop and solidifying the resulting shell

or so-called compound drop (Hendricks 1976, 1977, 1981). The first step

in this process is to manufacture these compound drops by breaking an

annular liquid jet into hollow spheres through a Rayleigh-like instability.

By doing so the compound drops have well defined gaseous and liquid content

and are also spherosymmetric. The first characteristic is understood

as a result of external forcing on the annular liquid jet that initiates

the instability at a very short range of wave-lengths, the second is

analysed in this chapter. In the compound drops of interest van der

Waals forces that would tend to bring the two interfaces as far apart

as possible are unimportant, since the distance between them is typically

larger than 1000 A. Also, surface tension forces are ineffective in

positioning the bubble inside the drop, since all locations of the spherical

bubble are energetically equivalent.

In spite of these preliminary thoughts, experiments by Lee et al. (1981)

show that the centering force attainable by means of mode oscillations

initiated during the breakup process is very strong. In addition, if

surfactant is added to the liquid of the shell the frequency and amplitude

of this oscillation is greatly diminished but still the final centering

of the surfaces is equally good. Experiments performed by Saffren et

al. (1981) on neutrally buoyant compound drops suspended in an immiscible

liquid have confirmed the existence of two distinct oscillation frequencies

which are predicted by the linear hydrodynamic theory for inviscid flows.
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The, "bubble" mode results when the two interfaces oscillate in phase

and is characterized by a higher oscillation frequency, whereas the "sloshing"

mode results when the two interfaces oscillate out of phase with lower

frequency. Shapes of compound drops oscillating in these distinct modes

are shown in figure VII.O.1.

The decomposition into normal modes of infinitesimal amplitude describes

the motion of the trapped bubble about the center of the drop entirely

by the first spherical harmonic P (cosO) (Morse and Feshbach 1953).

These disturbances are calculated to be neutrally stable and induce no

tendency for the bubble to move with respect of the drop, or equivalently,

the linearization of the governing equations of fluid motion proves that

the time constant associated with these disturbances is identically zero.

As a result, the restoring forces responsible for centering of the bubble

inside the drop can only be accounted for by considering nonlinear inter-

actions between the fluid in the shells and the two interfaces. The

normal mode analysis of Patzer and Homsy (1975) for small amplitude oscil-

lations of a viscous liquid shell gives the same result for the decentering

disturbance.

Lee and Wang (1984) attempted an analysis aimed at explaining the

centering phenomenon. They assumed that the displacement of the bubble

from the center of the liquid drop is small compared with the bubble

radius, but large compared with the amplitude of the wave on the shell

surface. This scaling argument allowed them to consider the motion of

the system due to the core displacement alone and solve for the linearized

equations of motion. However, they had to include nonlinear terms to

calculate a nonzero force on the bubble in an ad hoc manner. According
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Figure VII.O.1 "Bubble" mode (top) and "sloshing" mode (bottom) oscillations
of an oil-water-oil compound drop (Saffren et al. 1981).
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to their results, the direction of the motion of the bubble center can

be both towards or away from the liquid drop center, depending on the

shell thickness and on the mode which was initially excited. This result

is not confirmed by experiments which have always shown centering of

the bubble inside the drop.

We undertake here the weakly nonlinear analysis of axisymmetric

mode oscillations, of a compound inviscid drop which is initially eccentric.

To avoid the physically unacceptable results associated with the inviscid

liquid/liquid interfaces we limit our study to cases where both the fluid

in the bubble and that of the surrounding medium are either a vacuum

or a tenuous gas, so that its hydrodynamical effects can be neglected.

The calculations are focused on predicting the conditions under which

the centering of the bubble is enhanced, along with describing the effect

of the finite amplitude of deformation on the oscillation frequency and

shape of the compound drop. The present analysis is based on the method

of multiple timescales as applied to approximating the time-periodic

solutions of conservative systems. In section VII.1 the governing equations

are given and their solution follows in section VII.2.

VII.1 FORMULATION

The irrotational and incompressible motion of a compound drop of

total volume V =41TR3/3 which contains a bubble of volume V =4TR /3 is
2 2 1 1

considered. The density of the liquid in this shell is p and the surface

tension of both gas/liquid interfaces is a. The motion of the spherical

shell in a tenuous medium is caused by initially introducing a small
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axisymmetric deformation with the center of the inside bubble translated

from the center of the drop along the axis of symmetry. The unperturbed

radius of the outer surface, R2 , is used as a characteristic length of

the system and is used to dimensionalize the outer and inner interfaces

by describing them as F2 (6,t) and F1 (e,t) respectively, where 6 is the

meridional angle in spherical coordinates. The inner surface disturbance

contains the first Legendre polynomial that describes the off-centered

bubble with respect to the drop in addition to the appropriate oscillation

mode. Scales based on the results of the linear theory are used to define

the dimensional velocity potential (aR2 /P) 1/2(r,e,t), pressure (2a/R 2 )

P(r,O,t) and time (pR 3 /a)11 2t each in terms of its dimensionless counterpart.2

Then the equations governing the inviscid motion are

V2$ 0 (F1 (6,t)r F2 (,t), 0565w), (VII.1.1)

F =F
- (r=F (6,t)), (VII.1.2)

Dt 3r 2 DO 36
r

= - 1 (r=F ( ,t)), (VII.1.3)a r 2 ae 36 2
r

- [( )2 + ( )2] - 2P (F (6,t)<r<F (et), 0o05er), (VII.1.4)
Bt 2 3r r rDe 12

AP1 + 2P = - 2H1  (r=F1 (0,t), 00 i), (VII.1.5)

AP2 - 2P = - 2H2 (r=F 2(6t), 0e567), (VII.1.6)

JF 3 (,t) sin(6) de = F (f,t) sin(6) dO = 2 . (VII.1.7a,b)
0 R 1

Equation (VII.1.1) is the Laplace equation governing the irrotational

flow inside the shell; (VI.1.2,3) are the kinematic conditions in the
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inner and the outer interface respectively; (VII.1.14) is Bernoulli's

equation for the pressure everywhere in the shell. Equations (VII.1.5,6)

are the balances of dynamic and capillary pressure across the inner and

outer interface respectively, where the right-hand side is the negative

of the local mean curvature of the inner (H 1 ), or outer (H2) interface;

(IV.1.7) are the constraints for constant volume of the liquid shell

and the encapsulated bubble. The static pressure difference across the

inner interface is AP1 and across the outer AP 2 whereas the ratio of

the inner to the outer static radius is R and provides the only new parameter

in this problem.

The dynamical problem is solved for the velocity potential in the

shell and the two interfaces for motions originating with an initial

deformation of the compound drop. Initial deformations are used that

satisfy conservation of mass (VII.1.7) and have no initial velocity,

i.e.

3F 1 F
(0,0) = 0, (C,0) = 0 . (VII.1.8)at at

The amplitude of the oscillation c is defined in terms of the initial

deformation of the outer surface as

F 2(e,0) = 1 + EP 2() - 12 + W( ) (VII.1.9)

where P2 (e) is the Legendre polynomial of the second order. The initial

deformation of the bubble interface is of similar form but also includes

the first Legendre polynomial to describe its off-centered position.

The distance between the two centers is confined to be of order e so

that the analysis can be carried out on the simple reference domain of

two concentric spheres, in which Laplace's equation is readily solvable.
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Therefore

2 2
F (6,0) = R [1 + E[AP (6) + BP (6)] - E2B + A + O(E: ) (VII.1.10)

1 1 2 5

where the initial distance between the two centers, A, is an arbitrary

constant which is taken to be one for convenience and B is an unknown

constant determined from the solution of the linear problem. The amplitude

of deformation of the outer interface, E, is taken to be the small parameter

in the analysis that follows and is subject to the additional requirement

that also EB is much smaller than one.

VII.1 PERTURBATION SOLUTION

The potential field $(r,0,t) and compound drop shapes F (0,t), F2(6,t)

are determined for moderate-amplitude motions by constructing expansions

in the initial disturbance of the outer interface c. The asymptotic

methods couple together the technique of multiple timescales for freely

oscillating non-dissipative systems and the domain perturbation analysis

outlined by Joseph (1973) and described in chapter IV of this thesis.

Formally, we assume that the dependent variables are functions of three

timescales related to the actual time as T0=t, T1 =Et and T2=e
2 t/2. The

different timescales are introduced into the field equations by expanding

the partial derivative 3/at as

2
3 + F + + O(e ). (VII.2.1)

3t 3TO aT1 2 DT2

The expansion for the domain shape is implemented by transforming

the inner and outer interfaces to the surfaces of two concentric spheres
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of radius R and 1 respectively, using the coordinate transformation

- F -F + RF -F (VII.2.2)
2 1 1 2

and expanding each dependent variable in a Taylor series

F (e,t;e)

F 2(,t; E)

$(r,6,t; E)

I=
k=0

(k) -
F (6,To,T1 ,T2 )

2 ( (,T ,T ,T 2 )

$[]n,O,T0 ,T1 ,T2).

where the superscript [k] denotes the kth total derivative of the quantity

with respect to E. As in chapter IV, each term in these expansions for

the potential can be written as a sum of a contribution based on the

domain between two concentric spheres (R;n51, 0 O:r) and terms that account

for the deformation of the domain at each order of c. The derivatives

evaluated on this domain are denoted by $(k) (nOTo, T1 , T2 () k

Because the compound drop shape is independent of the radial coordinate,

F [k (6,T O ,Tl,T2 ) = F(k) (6,TO,T1 ,T2 ) for both interfaces. Expressions

for the total derivatives of a potential up to $[2] are given by equation

(IV.2.3) of chapter IV. We anticipate the form of the solution to the

compound drop shape and expand it at each order as a series of Legendre

polynomials

(k) () T1 T2F (6,TO,T 1 ,T2 ) a 3m (TO,Tl,T2)

(k ) =(k)
F2 ( ,T0 ,Tl,T2 ) m= a (TO,T,T2) IP (e).m

(VII.2. 4)

Using these forms for the corrections to the interfaces, the mean curvatures

9 (VII.2.3)
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H1, H2 are conveniently expanded in E; the results valid up to O(E3)

are given in Appendix A.

Similarly the potential in the domain between two concentric spheres

in each order has the form

(km= m (T ,T ,T2 ) nm + a (TO,T1 ,T2 )-m-1 (6).

(VII.2.5)

The equations governing the

(VII.1.1) - (VII.1.10) describe

and have the solution

zeroth-order contributions from the

a static compound and concentric

F (0) TO

F (0) ,TO)

(0) (n, 6, TO)

The

potential

V2 (1)

1)aT0

2

aT
0

equation set that governs the

and the interfaces ($F1), F

= 0

first-order corrections to the

F )

(VII.2.7)

(VII.2.8)an

an (VII.2.9)

= + (n-1)(n+2)F(1) (t)/R
2

(1)
-- (n-1)(n+2)F2 (e(Ot)

(VII.2.10)

(VII.2.1 1)

set

drop

[ R -

0

(VII.2.6)

T(1)

aT0

$(k ) (n,0,TOTT 2 )

( R:_Sn 1 , % e: T) ,

(Ti=R, 0 e r), 9

n=1 , 06M7) .

(I=R, 0:5 6 ),

(n=1, 0: 8 I),
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f F ( ,t) sin(6) de = f' F (1 )6,t) sin( ) de = 0,
0o 0

F (0,0,0,0) = R [AP1 (6) + BP2 (6)1,

F (,0,0,0) = P (6)2 2

F 1)3F(1)

1 6,0,0,0) = 2 e ,0,0,0) = 0.
0 0

(VII.2.12ab)

(VII.2.13)

(VII.2.14)

(VII.2.15)

The solutions to (VII.2.7) - (VII.2.12) describe the linear modes

of oscillation calculated previously by Saffren et al. (1981). These

are cast here in the framework of the multiple-scale expansion as

(1)
a1n 0,T1 ,T2)

a () (TO, T ,T2

(1)
a3n 0 ,T1 ,T2)

(1)
a4n (T0,T1 ,T2)

Xln

X2n

X3n

X4n

wT0Dn(T1 ,T2 ) e + c.c. ,(VII.2.16)

where c.c. stands for the complex conjugate of the immediately preceding

term and w are the imaginary eigenvalues of the initial value problem

defined by (VII.2.8) - (VII.2.11) and are given by

2 2 (n-1)(n+2) 2n+4) - 3 2n+1
W S'W n =2R 3 -R2n+1 E - (n+1)(1+R ) nR +R ) vS J,(VII.2.17a)

with

S m (n+1)2R4n+8 - 2n(n+1)R4n+5 + n2 R4n+2

+ 2n(n+1)R2n+7 + 2(6n2+6n+1)R2n+4 + 2n(n+1)R2n+1
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+ n2 R6 - 2n(n+1)R3 + (n+1)2 . (VII.2.17b)

The bubble mode corresponds to the negative sign in equation (VII.2.17a)

and the sloshing mode corresponds to the positive sign. The variation

of the in-phase and out-of-phase frequencies with the ratio of the inner

to the outer radius, R, is shown in figure VII.2.1 for n=2,3,4. The

the components of the eigenvectors of the same system of equations for

only n=2, X riXi, are given below;

42R 3+ 48 42 R8 - 32R5  20OwR4
X = - __X3 P _ X = 1, (VII-2.18a)

with

P M (W2RO - 8R5 - 2 R3 - 12)w . (VII.2.18b)

The constant B used in the initial condition given by equation (VII.1.10)

is determined from the linear solution to be equal to X3. The ratio

X3/X4 gives the relative displacement between the inner and the outer

interfaces and is plotted in figure VII.2.2 as a function of R. In the

case of the sloshing mode this relative displacement is 0(1) for all

values of R, whereas it becomes unbounded for low values of R for the

bubble mode. Expansion in a Taylor series of this ratio for small values

of R and for the bubble mode yields

lim = 1 [ 3 - 2 + 2R + O(R2 ) 1 , (VII.2.19a)
R + 0 X 5 R

whereas for the sloshing mode yields

lim - [ 1 + + O(R 6) ] . (VII.2.19a)
R + 0 X4 3 3
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The perturbation series defined by equation (VII.2.3) converges to a

solution if the amplitude on either interface is much smaller than one.

This result requires that for the bubble mode and as R + 0 the perturbation

parameter c must satisfy

E << R .(VII.2.19c)

The complex functions Dn(TlT2) and their conjugates D*(Tl,T2 ) depend

on the slower timescales and are determined as part of the second- and

third-order problems subject to the initial conditions

Dn(0,0) = D*(0,0) = 1/2 . (VII.2.20)

They represent the modulation in the slow timescales of the amplitude

and frequency of the oscillations.

Equation (VII.2.17) demonstrates the fact that the eigenfrequency

is identically zero for n=1, which in turn means that the decentering

mode is independent of time and no motion of the bubble relative to the

drop occurs according to the linear theory. The linear solution for

this mode is

a(1) (TT 1 ,T2 ) 0

(1) 0
21 T,T1 ,T2
a(1) A(T1 ,T2 ) , (VII.2.21)

(1)2
a 1 0 , TT 2 )

(1)
w i ,i T ,T2 io0

with the initial condition

A(0,0) = 1 .( (VII.2.22)
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The complete solution to the equation set (VII.2.7) - (VII.2.15) is the

superposition of equations (VII.2.21) and (VII.2.16) evaluated for n=2.

It is anticipated that the nonlinearities caused by inertia, capillarity,

and the moving boundary will interact at higher order approximations

to force the centering of the bubble relative to the drop.

(2)(2) (2)
The equation set for the second-order terms ( F , F2 ) in

the expansion is cumbersome because of the multitude of non-homogeneous

terms that are generated by the domain perturbation. This set is listed

in Appendix E and is solved by expanding the potential $(2) and interface

(2) (2)
shapes (F( , F2  ) in series of Legendre polynomials and powers of r

similar to those given by equations (VII.2.4) and (VII.2.5), which satisfy

the field equations. Equations (E2) - (E5) are reduced to a sequence

of non-homogeneous initial value problems by applying the orthogonality

properties of Legendre polynomials. Their homogeneous solution is similar

to equation (VII.2.16). The solvability condition for the equations

(E2) - (E5) requires their inhomogeneous part to be orthogonal to the

adjoint eigenvector of the first order problem for n=2 and also to the

right-hand-side of equation (VII.2.21) which leads to two equations for

the slowly varying amplitudes of the initial modes

3A aD DD-
= 0. (VII.2.23)

1 1 1T

This result indicates that the slowly varying functions D, D* and A depend

at best on T2 - The solutions to the second order problem, determined

so that the initial conditions (E7) - (E10) and the integral constraints

(E6) are satisfied, are written in the form of equations (VII.2.4) and

(VII.2.5), where the numerical values for the coefficients are tabulated
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in Appendix E. The form of this solution along with equation (VII.2.23)

indicates that there is an induced oscillatory motion of the bubble with

respect to the drop with the same frequency as the initial mode, but

relative to the bubble center, not to the drop center. Obviously, this

result does not provide a centering mechanism.

The dependence of the frequency and amplitude modulations on the

slow timescale T2 is computed from the solvability conditions of the

third-order problem. The corrections to the shapes and the potential

($ 3), F F (3 ) are again expanded in Legendre series, and a set of

ordinary differential equations is derived by the same procedure used

to solve the second-order problem. The solvability condition for this

o(E3) problem is nontrivial and results in two first-order ordinary dif-

ferential equations for the amplitude of the centering mode A(T 2 ) and

the complex amplitudes of the excited mode D(T2 ), D7T2 )

dA
dT2 = A , (VII.2.24)

dD * 2 2
dT = iY D D + iY2A D + iY3D (VII.2.25a)

*
dD *2 2* *
d iY D D - iY A D - iY D , (VII.2.25b)
dT 2  1 2 3

22
where all amplitudes are functions of the slow timescale T 2 E2t/2, and

the real constants Yj, Y2, Y3 are functions of the radius of bubble,

R. For the sloshing mode, $ is given by

10 2 2 5 2 9 49
B [5(2R 10 + 3x2 + 4R x3) + 2w(2R X, - 3R X2)x3] / (5R ), (VII.2.26)

and is negative for all R, as shown in figure VII.2.3.
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The asymptotic forms of a for small and large values of R are given

below

14 2 2
lim R - 1 +3 + 16(R - 1) + 0((R - 1) ) ], (VII.2.27a)
R +- 1-

-20R -ER3 OC 6

lim a = - [ 1 - + O(R) VII.2.27b)
R +* 0 3 3

On the contrary, a is identically zero for the bubble mode.

As a result, when the compound drop oscillates in the sloshing mode

centering occurs on a slow timescale and the distance between the two

centers diminishes exponentially, whereas when the compound drop oscillates

in the bubble mode alone, no centering is observed up to this order of

analysis. The centering mechanism is most effective in a thin shell

when the nonlinear interaction of the two interfaces is most prominent,

whereas it is less effective for a small bubble contained in a drop.

This result is also demonstrated by comparing figures VII.2.4a and VII.2.4b.

In the first one there is an exponential decay of the distance between

the two centers with the induced oscillation and in the second only the

undamped oscillation exists. The long-time distance between the bubble

and drop centers is slightly negative because of the second-order homogeneous

term in equation (Ella). Higher-order approximations will offset this

result and will lead to a concentric configuration.

The second of the amplitude equations (VII.2.25a) and its complex

conjugate (VII.2.25b) are readily solved using the transformation

D(T2 ) 2 i(T , CVII.2.28a)

2 2
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where r, 6 are the real amplitude and phase modulations. Introducing

equations (VII.2.28) into (VII.2.25) and separating real from imaginary

parts yields

dr= 0 (VII.2.29a)

de 2
dT =Y 1r + Y2A + Y . (VII.2.29b)

Thus according to equation (VII.2.29a) no amplitude modulation or energy

exchange occurs between the modes. There is no deformation or kinetic

energy associated with the centering mode and the total energy of the

system remains constant, as expected for a conservative system. Equation

(VII.2.29b) shows a slow frequency decrease that is proportional to the

square of the amplitude of the motion and depends on the ratio of radii,

R and on the instantaneous distance between the two centers. This is

the same result derived previously for the oscillations of a simple drop.

Because there can be no dependence of the frequency modulation on any

odd powers of the amplitude, the result (V.2.29b) is accurate up to O(e 4).

VII.3 RESULTS AND CONCLUSIONS

Representative shapes of compound drops correct up to O(c ) are

shown for the sloshing mode with c=0.2 on figure VII.3.1 and for the

bubble mode with e=0.1 on figure VII.3.2. In both cases the ratio of

the inner to the outer radius is set to be equal to 0.7 and time is dimension-

alized with the inverse frequency of the corresponding primary mode.

A lower value of the perturbation parameter e is used in the representations

of the bubble mode since the deformation of the inner interface is signific-
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antly larger than that of the outer and may lead to failure of the expansion

series. In both cases the representation of the outer surface up to

this order of approximation involves only the zeroth, second and fourth

Legendre polynomials, whereas the representation of the inner involves

also the first and third polynomials, as required by the orthogonality

properties of the spherical harmonics.

In order to satisfy the initial conditions (equations (VII.1.8)

- (VII.I.1.10)) to this order, the homogeneous solution had to be included

in the interface representation resulting in a periodic motion with a

period equal to the least common multiplier of the frequncies involved

and not 27. The sloshing mode is shown at the initial form after a quarter

of a period and also after one and two periods of the primary mode.

THe bubble mode is shown at the initial disturbance after a quarter and

half a period and after two periods of the promary mode.

The experiments by Lee et al. (1981) and by Saffren et al. (1981)

where mostly qualitative and do not report initial eccentricities or

approximate time intervals in which the centering mechanism occured.

They simply verify the linear frequencies of oscillation and give the

two experimental points shown in figure VII.2.2 for the ratio of the

disturbance on the inner versus that of the outer interface. In an ex-

perimental situation the breakup of the annular jet leads into a compound

drop the external surface of which has a prolate shape, and the inner

surface is rather undetermined. The ensuing oscillations could then

be expanded in Fourier series that include both the sloshing and bubble

mode. The nonlinear dynamic interactions in the sloshing mode result

in a concentric shell. Finally, harmonic resonance (see chapter V) may
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occur between higher harmonics and the oscillating fundamental for specific

values of R, but energy cannot be transmitted to the centering mode in

this fashion in order to accelerate the uncovered centering mechanism.
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VIII. POSTSCRIPT

A rigorous mathematical framework has been developed for studying

the nonlinear dynamics of simple and compound drops and bubbles and has

been applied to several of the outstanding problems in drop dynamics.

A combination of domain perturbation and multiple timescales methods

have been used to systematically compute the evolution of axisymmetric

and inviscid simple and compound drops. The complexity of the nonlinear

equations is reduced by using the symbolic manipulator MACSYMA.

Moderate-amplitude oscillations of simple and compound drops display

an array of nonlinear dynamic phenomena. Figure VIII.1 summarizes the

nonlinear effects for a single drop with elecrtical charge. The results

of Rayleigh's linear theory and the quadratic decrease of the frequency

of the oscillation as the net charge increases appear in the plane e=0.

The frequency becomes zero according to linear theory at the Rayleigh

limit (Q=Qc=4/Tr), where the capillary force is exactly balanced by the

electrostatic repulsion. The decrease of the eigenfrequencies is proportional

to the square of the amplitude as shown in any plane of constant charge

Q (05Q:Qc). This last result is caused by the fluid inertia and has

been verified experimentally for uncharged drops (Trinh and Wang 1982).

At specific values of the dimensionless charge, Q=Qr, harmonic resonance

is induced by the nonlinear interaction between the primary oscillation

mode and one of its harmonics. For purely four-lobed initial oscillations

with Qr=/(321T/3)<Qc the drop assumes an almost six-lobed shape within

two periods of the primary oscillation. Initial disturbances with combinat-

ions of four- and six-lobed shapes lead to a continuous exchange of energy
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Figure VIII.1 Dependence of dynamics and statics of a charged drop on
amplitude of disturbance and net charge.
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between these two modes. In general, the shape evolution in these cases

is highly dependent on the initial shape perturbation. This effect is

shown in figure VIII.1 as a deviation from the quadratic decrease of

the frequency for high enough values of the initial disturbance.

The evolution of the drop shape for charge values close to the Rayleigh

stability limit is shown in the plane of static shapes (w=O) as a trans-

critical bifurcation point between the families of static spherical shapes

and oblate (e<O) and prolate (>0) axisymmetric forms. Prolate forms

exist for lower values of charge and are unstable to small amplitude

perturbations. Finite amplitude oscillations destabilize the spherical

drops at values of charge below Qc, with a decrease proportional to the

amplitude of the initial disturbance. Oblate static shapes exist for

Q > Qc and are stable to small axisymmetric perturbations, but unstable

to disturbancies large enough to move the dynamics outside the separatrix

of the motion.

The dynamics of the compound drop are also characterized by the

quadratic decrease of the oscillation frequency with the amplitude of

the initial disturbance. In addition, an initially eccentric compound

drop becomes concentric if excited to oscillate in the sloshing mode,

where the motion of the bubble and drop are out of phase. This is a

direct effect of the nonlinear dynamics of the compound drop and has

been observed experimentally (Saffren et al. 1981).

An important extension to the present studies is to determine the

effects of viscous forces on the nonlinear interactions described above.

For gas/liquid interfaces the effect of viscosity on the frequency of

oscillation and the shape of the drop is small when the product (aR/v2p) 11 2
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is large, where v is the kinematic viscosity. Then the timescale for

viscous dissipation, or equivalently of vorticity diffusion from the

interface, is much longer than the characteristic time for the inviscid

oscillation. This condition is satisfied for water drops, but not for

higher viscosity fluids of interest in materials processing. For two

fluids of comparable density the inviscid analysis leads to a discontinuity

between the components of tangential velocity on the two phases, which

is avoided by introducing a viscous boundary layer on both sides of the

interface.

Finally, the stability of the oblate shapes to non-axisymmetric

disturbances close to the Rayleigh limit is an interesting but extremely

difficult problem because of the complexity of the perturbation equations

when azimuthal variation is allowed.
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X.1 APPENDIX A

The mean curvature 2H and the normal, n and tangent, t vectors are

expanded in e as follows
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X.2 APPENDIX B

The equations that govern the second-order corrections are
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The coefficients in the second-order correction (equation (V.2.21))

the drop shape are
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L = - cos(TO) + 680 cos(2P ) + I82
28 7 - 8 1287 L81 4

The coefficients in the second-order correction to the velocity potential

are

m S 20
M220 = sin(2T 2220 2

G w

224 12

S2 2sin(w2T0 ) sin(2Y2 )

sin(w 4T0 ) + S24 w 2 sin(2T 2)

m23S3= sin(273S30

H 

32 22 2 "i~

M 4 - sin(2w TO)Hw

234 2 sin( T

231 12 sw in(w14T0
H6 6

236 30 sin(w6T )

m2404= sin(2T
4

m242 2 2 s in(w2T)

+s 3 2 w3 sin(2T 3

+ S314 w3 sin(2 
3

+ S36 w3 sin(2T 3

+ S 42 w 4 sin(2T 4 )

(B13)
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I4 4
M = 12 sin(w T ) + S
2144 124 0 44w

m 6 w6 i O
M24 6 = 30 sin(w6T0) + S4 6 4

M 8 w8 in TO)
248 - 56 S1(8 + 4 8 4

sin(2T 4 )

sin(2T 4 )

sin(2T 4 )

The coefficients in the second-order correction to the electric potential

are

N2 2 0
= 0

N = Q (L -- L2
222 222 7 220

N2 2 4

N 2 3 0

N 2 3 2

N2 3 4

N 2 3 6

N2 4 0

Q (L 36L
224 7 220

-0

- Q (L2 3 2 -14 L2 3 0

-Q (L -- L )
2314 11 230

236 11 230

-0

N =Q (L -- 0L )
242 242 77 240

N Q (L 5832L
244 244 1001 240

N =Q (L 8 0 L )
246 = 246 11 240

N2 = Q (L2 1960 LN2 48 =QL 2148 143- L2 40)

(B1 4)
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where

G = 23Q - 116
21 2

S2

- 9Q 54Q + 648
2 2 2

239Q2 380Q + 896
21 (W2 _ 2)2

2 3 2

H =28Q - 470Q + 1812
41 2 2 2

(-4  ) 4

H - 552 + 420Q + 160
61= 2_4w 2 W

6 ~ 3 6

331Q 2 _ 3518Q + 8776
'21 

161~

T

(W 2 _ 4w 2 
2 4 2

65Q - 602
2

W 
4

- 15Q2 2510Q + 21040
(W2 - 2 2
(6 Q +4 6

203Q2 + 2254Q - 2240
81 2 2 2

(8
1 4 w8

and

S = - 3Q + 13
20 10

S - 20Q + 85
30 14

G = - 15Q + 132
22 2

"2-

15Q2 - 258Q + 1080
42 ( 2 2

I4 - 2 44

- 332 + 652Q - 2464
22 (2 42) 2

2 3 2

- 82 + 234Q - 808
42 2 2 2

(o14 - 334 ) 4

H 9Q 2 - 284Q + 2080
62= 2_ 2 ) W

I6 3 4 6

-29 9A2 +
22" 2_

2

_42 3Q + 618
42 2

(14

- 33^2 +
62= 2

(W6 
-

8398Q - 40040
2 2
4 2

1918Q - 4880
14w 2) W624 26

13Q2 - 662Q + 7480
82= 2 2

= 4(- 5Q + 26)
22 21

G = (G +G )
2 21 21 22

G 144(G +G
14 35 141 42

8
H2 (H2+ H22 21 21 22

4432
6 77 (H 1  H42

H 3000 (
6= 77 (61+ H62

50 + I
2= 693 21 22

162 (
4 1001 41 42

200i + I
4 33 61 62

18= 109760
8 1287 81+ 82

S 36(- 2Q + 9)
24 2 2

35(w 4 - 4 w2)

= 16(Q - 6)
32 3(w$ - 4w )
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s 60(4Q - 35)
34 77 (w2_434 2

S - 72Q + 378
40 36

s 10(2Q - 35)
46

36 1600(- Q + 6)
36 231(wo 2- 4w))

s 50(12Q - 83)
142 92 242 77(w 2 4w 2

2 4

8 =980(- 2Q + 15)

48 143(2 - 4w 2

- 54(-37Q + 328)
44 1001W2

4

h 2
where Q m4wf
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X.3 APPENDIX C

The equations that govern the third-order problem are

V2 (3)

(3)

= 0 (0 n:51, 6:x),

(1=0, 0;56:51),

(Cl)

(C2)= 0

(3) F(3)
n T

3F(2)T 1
+ 3F(

T 2
- 3F(2) (1) - 3F 0$(2)

n1fn n T1 - 3(F 1))2 (1)
nnn T

+ 3F(2) 1)
+ %

+ 3F(2) (1) +
T0

+ 30(1) (0 (2)n n1

+ 3F (1) ( (2)0 0

(2) + (1
T T2

+ 2F ( )
r) n

+ 2F

+ 3F (1) (2)

+ ( 2)

- 4F (

+ F ( 1)
TF

+ 2F ) - 6F )2

3 ( (1)+ F ( ) (
41T n n n

F ) 2 (0)
nn n

+ F(2) (0)
nn

+ 2F V 1 - (F )2 V(0)
nn 6 n

+ V(2)
n1

- 2F ]e e

1- V (0) (3V (0)[2F (F ) 2
4nn n a

+ (F 1 ) )2 [3V(1)
nnnTi

- F F(2) -3V (F )2
6 6 n 6

+ F OV I + 3F [V(2)'nnn1Tn nn T

- V(0) (F 1)2 + F v(0)
T1n 6 T1 T

+ 12F F V - 3F (e e 0

+ V(
n

V (2) + 2
0

+ F(2) (0)
nnn1 T

+ 3F (2) - 3V F(2)

F 0V )} = (2H)( 3 )
on

(3)
T 0

+ 2$
T
1

)

) ( n=1,0: e5w) ,(C3)



{2(F(1))3 + F + 6F F (2) sin(6) dO = 0,

= 0 (1;5n5w, 0:5eO r),

+ 3F(2) (1)
nn

+ F V + (F )2(3V
Tn nnn

+ F 1 V )
0 annf

- 3F (V 2)
0 0

+ 2F V ) + 3V0  ( )4F F1
On 0I6

+ 3V (0)F (2F F
I 6 6

+ 3F V
~~3F [V

- ( 2 )
-Fa

- F(2) 3(F )2 (1)
6 6 n

+ F (2)v - (F )2 ( sin(6) dn -l (F0 ) VI I n )d

+ F (2) v(0)
+nr + F( 1 (2V (1

fInT
+ F ( 1) )

nfI TIf

- F (2V0 + F v(0))] sin(e) dO

+ F () ( )[2F(2) + 2(F )2
fn r(VO + (F (1)2 sin(6) d6) 6i()d

- Q (0) ji [2F (3

0
+ 6F F(2)

+ 3F (V (2)
6 (

+ 3F F(2)0 0

+F(1) v(1))+ OF V )-0 rjn

sin(e) dO = 0 (n=1),(C8 )

3F (V(2) + 2F(l V )
0 On

- 3v(1) F(2)
a

- 2(F )2 + (F 0  )2 + 3F (F(2) V(0)
6 'nfn

+ V(O)[3F (2F F - F(2)) - 3F 1)(F (2)
0

+ (F(1))2 + F(3)0 0

195

0
[V(

ni

(C5)

(C6)

(C7)

+ 6 J
0

F [V(2)
F [

+ 3

V3) + 3F(2) ()
a en

+ V(2))
fi

0

(n + W, 0:56: ),



3(1) (F(2)+3V (Fn 0

3F (1)F (2)v (0)e3 (F n

- 2F (1) F (1) + 3(F (1) )2F 1 (V(0) - 2V (0 )
6 6 nrn 'In

+ 2F v ) = 0

F ~(o,0,0,0) =

3F (1)+ 3F(2) +
T2 T1

,1 (n=2)

0 , (n=3)

36
1001

F(3FT0 = 0

(n= 4 )

(T = T = T2 = 0) ,

196

(C9)

(C10)

(Cl 1)

( n=1 , 0:56:7) ,

,f
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X.4 APPENDIX D

Integrals of products of Legendre polynomials and their derivatives

are conveniently written in terms of the 3j and 6 j symbols (Rotenberg

et al. 1959; Brink & Satcher 1968). Several integrals used in the analysis

presented here are

I j, Pn(e) Pm(O) Pl(6) sin(e) d6 = 2 [ n m ] 2  (Dl)
0

I2 f=r PA(e) P'(6) P'(8) sin(O) d6 =-2[n(n+1)m(m+1)]1/2E m jn m J

(D2)

13 f Pn(e) Pm(O) Pl(6) Pk(O) sin(6) dO =

0

2 (2j+1) 2 1 2 
, (D3)

i=In-mI

14 P'(6) P (6) P1 (6) Pk(O) sin(O) d6 = -2[n(n+1)m(m+1)] 1/2
0

(2j+1) 0 0 0 n0 j 1k (D4) 1 1 00 0 0

Properties of the symbol cause it to be zero whenever the triangle

inequality (Cl-m5n:51+m) is not satisfied between the integers of the

first row. It is this property that terminates the expansions (e.g. (IV.2.4)

and (IV.2.23) for the drop shapes and potentials. This symbol is also

identically zero when a+b+c*0, or when a=b=c=0 and simultaneously n+m+1=2x+1,

where A=0,1,2,.. . It is this last property that eliminates the odd-order

Legendre polynomials from the second-order approximation.
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X.5 APPENDIX E

The equations that govern the second-order corrections are

V2 (2) = 0

(2) - 2F

(2) 2F (1)
ni 2T 1

()2F (1)-2 1
4 T r

+ 2F 1) 2F 

1 F $ - 2
" F2 nn 20 0e

- 2$ - [(4( )2 +
ii r

(n = R, 0;0Orr),

(n = 1 , 0:0rf),

) 2

(m+2)F(2)/R 2 - 4F [F + F (n-1 (n+2) /R3

(n=R, 0:0;r),

- ( ) ( )
= 2 2 cT 0 n ( 1 - [((1 )2 +

fl r

(m-1)(m+2)F (2)
m=2

(12 + F }2
1,92

+ 4F [F + F (n-1)(n+2)]

(n=1, 9 O:S ),

sin(6) dO = 0,

F (2)(,0,0,0) =
1

F2) (60090) =

2F T

2 F 0

+ F (2)

+ F (2)

2

2
-5

B 2 - A(t=0)2

(T0 = T1 = T2-0

-0

= 0)

(T0 = T1 = T2 = 0)

F (2)

F (2)
2T

(2)

(El )

(E2)

(E3)

+ I (M-1
m=2

(2)
cT0

(E4)

0 2

If
0

(E5)

(E6a,b)

(E7)

(E8)

(E9)

(E10)

( R; j; 1 , % 8 Tr) ,
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the second-order correction to the coefficients a. (2)
13

are

(2) 2
a1 0  =D 10

(2) (2
a20  (D 20

( (D2 R3 0

(2) 2
40= D 40

2wT0
e + c.c.) + HR1 0

e + c.c.) + HR2 0

2wT
e 0 + c.c.) + HR3 0

2T0
e + c.c.) + HR)40

(2)
a1 1 = A(D R

(2) (2)
a2 1 a 11

a31

(2)
41

wT 0
e + c.c.) + HR11

= A(D R 2 1 e T0 + c.c.) + HR 2 1

-0

(2) ( 2 R
a12 =( R12

(2) 2
a2 2  =(D R22

a ) (D2 R32

(2)
a4 2

a (2)a13

= (D
2

= A(D R13

e + c.c.) + (HR1 2

e + c.c.) + (HR2 2

2wT.

e

e

e + c.c.) + (HR32 e

2 oT0
e + c.c.) + (HR 42 e

oT 0 w

e

(E11)

(E12)

+ c.c.)

+ c.c.)

+ c.c.)

+ c.c.)

oT
0

oT
0

oT0

wT 0

3T

(E13)

+

I

I

V a 0 j k nn13 t U
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(2) (2)

2 3 1 3 (El 14)

(2)
a33

a(2)
4 3

wT
=-A(D R2 e

W3T
+ c.c.) + (HR33 e 3 + c.c.) ,

= 0 ,

a (2)= (D2a14  1

(2) 2
a2 4 = (D 24

2 wT

2wT
0

e

+ c.c.) +

+ c.c.) +

(HR14 e ' %'

(R 4 T0
(HR214 e

+ c.c.)

+ c.c.)

(2)
a3 4

(2)a 4 4

= (D2

= (D 2

2wT0 + C.C.) +

2 wT
R e + c.c.) +

(E15)
w4 T + c.c.)(HR3 4 e

(HR4 4 e + c.c.)

where wow2, AmA(T2 ), DmD(T2 ) and the coefficients R are given below

R10 = - {[60R5 (R2 + X2) + 45x 2(1 - R ) + 30R 7 X (R3 - 1)] / (2w)

+ 3R (3x2 - 2x ) + 3R (2X1R _ 3x 2 )x3 ] / [15R (R - 1)] ,

HR10 = [5(4 - 2X - 3x ) + 2w(3x2 - 2X1 )1 / 10

R2 = {[60OR5 (R3 + X ) + 45x (1 - R8) + 30R 8X 2(R2 - 1)1 / (2w)

(E16)

+ 3R (3x2 - 2x1 ) + 3R (2X1 R - 3X2 )x3] / [15R (R - 1)]

HR20 = - [ 5(2R10X + 3x2 + 4R5X ) + 2w(2R9 - 3R X2 31 / (1R 6

2 5 2 5 )3

R = - [6(R2 -
2 )X + 2R 5(3R _ x11x3 / (5wR 5)

HR2 22 R
30 3 3 2

44T0



R = 2 (3x2 - 2 X1 ) / (5w)

HR -2 
R40

40 5 2

R1  = - 4[12RX3 /w + (-3x2 + 2X1R
5 )] / [5R(R 3 - 1)1

HR l= [24RX3 - 2w(3x 2 - 2R5 x)] / 15R 3

R 21= - 4[3R2 - 12 )X2 + R5(3R - 2 )Xl] / (5wR )

HR
2 1

R12 = - [[60R 5(1 + X )

+ 6R 5 (3x
2

+ 21R5 (R

- 2 X 1 ) + 6R 4(2R5

- ) 2 + 36(1l~1

- 3x2)x 3 1

5

/ [21R5 R5

HR = {20R (1 + RX )
12 3

+ 12X 2 (1 - R ) + 6x X2R (1 - R) + 7x R (R6

+ 2wR [2X 1 (R 5X 3
- 1) + 3x2 ( 1 - X3 )I / (124R 4(R 5 _ 1)1

R2 = {[60R 5(R 5+ x ) + 18R 5(5 _ 1)X X2 + 36(1 R1 0  2)2]

+ 6R 1 0 (3x2 - 2X 1 ) + 6R 4(2R5 - 3X2)X3} / [21R
5(R 5

HR22 = {40(X + R5 ) + 24X 2(1 - R ) + 12X 2 5 R 4 _ 1) + 14X R 9 (R

+ 4w[2X 1 R 9(X 3 - 1) + 3x2 (R9 - X3 R )]1} / [42R(R5 _ 1)]

= - [6(R2 _ 4)X2 + 2R 5(3R2 - 2 )x11x3 / (7wR 5)

HR
3 2

R32
~ 4

R42 = 2 (9X 2 - xi ) / (7w)

201

(E17)

- 1)]

- 1)

- 1)]
(E18)

- 1)

= - 21 '

I
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HR4HR42 14

R13 = - 6[12R2 X3/W +

HR = [36Rx - 3w(3133

(-3RX 2 + 2R6 X)] / [5(R 7

X2 - 2X )] / (35R ) ,

R2= 12[(R2 + 6 )x2 + R5(R2 + 1)x] /

HR
2 3

(5wR )

- 1)]

(E19)

R23
~2

= - {[180R 3 (l + R 2 X ) + 45(1

+ 18R 3 (3x 2 - 2X1 ) + 18R (2XR5

- R )x + 180R3 (1

- 3x2)x 31

/ )35C X2

/ 35R3 (R9 -

HR = {180(R 5 x2 + R 2  + 45x2(114 3 1 x2C - R 2) + 180X 1 X2 2

18w[(3x2 - 2X1 )R2 + (2R 9x - 3x 2R4 )x3]

R24 = {[180R 5(R + X + 45(1

+ 12
+ 18R 12(3x 2 2X 1 ) +

5 6 + X ) + 4 5x

/ [140R2 R9

- R12 )x 2 + 180R 5 (R 7 1)Xx2  /

18R 4(2X 1 R - 3x2 )x3} / [35R 3(R9

2(1 - R 5) + 180X, 2 5 R6 _ 1) +

1)]1

-1)]

(E20)

18w[3x 2 - 2X )R + (2R - 3x2 )RX3 } / [175R6 R9

R = [72(R2 + 3X2 + 36R 5(22 + 1)X1 ] / (35wR 5

HR = - 3
34 = 4

R = 
6 ~ 2 + 3x)/ (35w)1414 3682 1

HR 2 -4414

"3

1)]

3 +

HR24

- 1 ) I


