The Loudest One Wins:
Efficient Communication in Theoretical Wireless Networks

by
Evangelia Anna Markatou

Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Engineering in Computer Science and Electrical Engineering at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

© Massachusetts Institute of Technology 2018. All rights reserved.
The Loudest One Wins:
Efficient Communication in Theoretical Wireless Networks

by
Evangelia Anna Markatou

Submitted to the Department of Electrical Engineering and Computer Science on May 23, 2018, in partial fulfillment of the requirements for the degree of Master of Engineering in Computer Science and Electrical Engineering

Abstract
In order to develop the most efficient algorithms for wireless networks, first one must understand their theoretical limitations. To this end, we study the leader election and broadcast problems in wireless networks, modeling them using the Signal-to-Interference-plus-Noise-Ratio (SINR) model.

Our main result is an algorithm that solves the leader election problem in two communication rounds using power control, with high probability. Previously, it was known that $\Omega(\log n)$ rounds were sufficient and necessary when using uniform power, where n is the number of nodes in the network. We explore tradeoffs between communication complexity and power used, and show that to elect a leader in t rounds, a power range $\exp(n^{1/\Theta(t)})$ is sufficient and necessary.

In addition, we present an efficient algorithm for the broadcast problem. Using power control, it is possible to achieve a broadcast algorithm that terminates successfully in $2n$ rounds, w.h.p..

Thesis Supervisor: Nancy Lynch
Title: Professor
Acknowledgments

First, I would like to thank my advisor Nancy Lynch for her help and support during my Masters. Without her diligence and attentive reading, my Masters Thesis could never have been what it is.

I would like to thank my supervisors Stephan Holzer and Hsin-Hao Su for cultivating my ideas and supporting my desire to research and publish.

I would like to thank Magnús Halldórsson for being a great collaborator and mentor.

Finally, I would like to thank Mira Radeva, Evangelos Markatos, Catherine Chronaki, Gwendolyn Edgar, Barbara Duckworth and Haben Zaid for helpful comments and discussions.
Contents

1 Introduction 8

1.1 Why Now? 8

1.2 Contributions 11

1.3 Publications 12

1.4 Organization of the Thesis 12

2 Models and Related Work 14

2.1 Preliminaries 14

2.2 Models 14

2.2.1 Radio Network Model 15

2.2.2 SINR Model 15

2.3 Leader Election Problem 17

2.3.1 Prior Work on the Leader Election Problem 17

2.3.2 Contributions on the Leader Election Problem 18

2.4 Broadcast Problem 19

2.4.1 Prior Work on the Broadcast Problem 19

2.4.2 Contributions on the Broadcast Problem 21
7.1.2 Analysis of Algorithm $2-LEp$.. 56

7.2 All-to-All Broadcast Algorithm .. 58

7.2.1 The LeCirio Algorithm ... 58

7.2.2 Analysis of LeCirio ... 61

8 Contributions ... 66

8.1 Future Work .. 66
List of Figures

1-1 Demonstrating the capture effect. Nodes A and B are broadcasting using the same power, and nodes D, E and C are listening. Due to the network topology, the proximity between A and D allows D to receives A’s message. Similarly, E receives B’s message. However, because C is approximately the same distance away from A and B, C receives no message. 9

1-2 Demonstrating power control. Nodes A and B are broadcasting, and node C is listening. Even though C is approximately the same distance away from A and B, because A is broadcasting with a much higher power, C receives A’s message. 10

1-3 Generalizing power control. All the red nodes are broadcasting, and node C is listening. Even though C is approximately the same distance away from A and the cluster of nodes, because A is broadcasting with a much higher power, C receives A’s message. 11
Chapter 1

Introduction

Wireless networks are everywhere around us; wireless devices, from satellites in the sky to Internet of Things components, need to communicate efficiently. In this thesis, we use the Signal-to-Interference-plus-Noise-Ratio (SINR) model to realistically model wireless networks and develop efficient algorithms.

1.1 Why Now?

Originally, wireless networks were modeled using the radio network model, as for example in work by Chlamtac and Kutten [7]. In this model, there are \(n \) nodes in the network, and in every communication round, each one of them has the option to broadcast a message, or listen. A message is successfully received by a listening node if exactly one of its neighboring nodes is broadcasting. We define the model more formally in Chapter 2.

This model fails to capture interference in wireless networks realistically. This is where the fading radio network model, and more specifically, the SINR model comes
Figure 1-1: Demonstrating the capture effect. Nodes A and B are broadcasting using the same power, and nodes D, E and C are listening. Due to the network topology, the proximity between A and D allows D to receive A’s message. Similarly, E receives B’s message. However, because C is approximately the same distance away from A and B, C receives no message.

In this model, there are n nodes in the network, and in every communication round, each one of them has the option to broadcast a message, or listen. A message is successfully received by a listening node if the signal of the broadcasting node is louder than the interference, which consists of ambient noise and other broadcasting nodes’ signals. The larger the distance between the sender and the receiver, the smaller the received signal is.

The SINR model allows for more efficient algorithms for certain problems [20], as it has two significant capabilities, the **capture effect** and **power control**. The capture effect describes the capability of wireless networks to have multiple nodes broadcasting at the same time, with some of the messages received. Figure 1-1 demonstrates the capture effect. Nodes A and B are broadcasting using the same power, and nodes D, E and C are listening. Due to the network topology, the proximity between A and D allows D to receive A’s message. Similarly, E receives
Figure 1-2: Demonstrating power control. Nodes A and B are broadcasting, and node C is listening. Even though C is approximately the same distance away from A and B, because A is broadcasting with a much higher power, C receives A’s message.

B’s message. However, because C is approximately the same distance away from A and B, it receives no message. Note that if we didn’t take interference into account, none of these messages could have been received.

The other important capability is power control. This allows the nodes to change their transmission power. Figures 1-2 and 1-3 demonstrate power control. In Figure 1-2, nodes A and B are broadcasting, and node C is listening. Even though C is approximately the same distance away from A and B, because A is broadcasting with a much higher power, C receives A’s message.
Figure 1-3: Generalizing power control. All the red nodes are broadcasting, and node C is listening. Even though C is approximately the same distance away from A and the cluster of nodes, because A is broadcasting with a much higher power, C receives A’s message.

In Figure 1-3, we generalize the above concept. All the red nodes are broadcasting, and node C is listening. Even though C is approximately the same distance away from A and the cluster of nodes, because A is broadcasting with a much higher power, C receives A’s message.

Note that again because we took interference into account by using the SINR model, and not the radio network model, communication occurred. Power control and the capture effect allow us to develop more efficient algorithms for the leader election problem in wireless networks.

1.2 Contributions

We worked on the leader election and the broadcast problems in single-hop wireless networks in the SINR model. Leader election is the problem of choosing one node out of n, with all nodes knowing if they are the chosen one. All-to-All Broadcast is the problem of each node communicating its message to every other node.
This thesis includes the following contributions:

1. We developed a 2-round leader election protocol. The previously best result was $O(\log n)$ rounds.

2. We explored trade-offs between transmission power and communication complexity for the leader election problem. We showed that in order to elect a leader in t rounds, a power range $\exp(n^{1/\Theta(t)})$ is sufficient and necessary.

3. We developed an all-to-all broadcast algorithm that uses power control, and solves the broadcast problem in $2n$ rounds.

1.3 Publications

The work on the leader election problem first appeared as a brief announcement in the Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC) in 2017 [15]. The full paper on leader election appeared at SIROCCO 2017 [16], where it was awarded the Best Paper Award. The full paper was also invited to appear in a special issue of the Theoretical Computer Science journal dedicated to SIROCCO 2017.

1.4 Organization of the Thesis

Chapter 2 includes the model and related work. Chapter 3 presents the two round leader election protocol, and Chapter 4 presents upper bounds on the required power for a two round leader election protocol. In Chapter 5, we explore the trade-offs between transmission power and communication complexity for the leader election problem. In Chapter 6, we explore how much power is really necessary for leader
election. The broadcast algorithm can be found in Chapter 7. In Chapter 8, we summarize our contributions and suggest possible future work.
Chapter 2

Models and Related Work

In this chapter, we present the some preliminaries, and then the model and problem statements along with related work in this area.

2.1 Preliminaries

All networks contain n nodes. We define that an event happens with high probability (w.h.p.) if it happens with probability greater than $1 - 1/n$. The \tilde{O}-notation omits logarithmic factors. All logs are base 2.

2.2 Models

We present two models, the radio network model and the SINR model. Originally, the radio network model was used to describe wireless networks. The SINR model describes wireless networks more realistically, and allows for more efficient communication in certain cases, as proved by [20].
2.2.1 Radio Network Model

The radio network model was studied in the 1980s [2] in order to model and analyze algorithms in wireless networks.

Let V be a set of n nodes that represent wireless devices. Define an undirected graph $G(V, E)$, where an edge $e \in E$ between nodes u and v denotes that if node u broadcasts a message, it will reach v. Time is divided into synchronous rounds. In each round, a node $v \in V$ can either transmit a message of size $O(\log n)$, or listen. Node $v \in V$ receives a message transmitted by neighboring node $u \in V$, iff v is listening and none of the neighbors of v are broadcasting (other than u), that is if only the message from u reaches v.

2.2.2 SINR Model

In the early 2000s came a renewed interest in the radio networks, along with the development of the SINR model in an effort to create more realistic models [14].

Let V be a set of n nodes, that represent wireless devices, deployed in a single-hop network located on a metric space, as in work by Magnús M. Halldórsson and Pradipta Mitra [17].

Time is divided into synchronous rounds. In each round, a node v can either transmit a message of size $O(\log n)$ with some power P_v, or listen. Node $v \in V$ receives a message transmitted by node $u \in V$, iff v is listening and

$$SINR(u, v, I) = \frac{\frac{P_u}{d(u,v)^\alpha}}{N + \sum_{w \in I} \frac{P_w}{d(w,v)^\alpha}} \geq \beta,$$

(2.1)

where I is the set of other nodes transmitting simultaneously, $d(u, v)$ is the directed
distance from node u to node v, and $\alpha \in \mathbb{R}_{\geq 1}, \beta \in \mathbb{R}_{>0}, N \in \mathbb{R}_{>0}$ are constants. Specifically, α is the path-loss exponent, N is the non-zero ambient noise, and β is a hardware-dependent minimum SINR threshold required for a successful message reception.

The algorithms work for any $\beta > 0$, while the leader election lower bounds use $\beta > 2$.

We define $d_{\text{max}} = \max_{(u,v)}(d(u,v))$, and $d_{\text{min}} = \min_{(u,v)}(d(u,v))$. We define transmission power P_{min} as the minimum transmission power required such that any node u can communicate with any other node v, in absence of interference from other nodes, that is

$$P_{\text{min}} = \beta N (d_{\text{max}})^{\alpha}.$$

Denote by $R = \frac{d_{\text{max}}}{d_{\text{min}}}$ the ratio of the longest to shortest distance between any two nodes in the network. Similarly to Fineman et al. [10], assume that R is bounded by a polynomial in n, $R \leq n^c$, for some $c \in \mathbb{N}$.

Let γ be a constant such that

$$\gamma \geq \max(1, c\alpha + 1 + \log \beta).$$

Note that the max is required as β might be smaller than 1. We assume that the nodes know γ.

An algorithm uses uniform power if all nodes transmit messages with the same transmission power. If power control is used, nodes can transmit messages with varying transmission powers.
2.3 Leader Election Problem

The leader election problem is defined as:

Problem 2.1 (Leader Election Problem). *Eventually elect exactly one node (called the leader), with all nodes knowing whether or not they are the leader.*

2.3.1 Prior Work on the Leader Election Problem

The leader election problem was first studied in the 1970s, when the ALOHA radio network system was built [1], and plenty of work considering this problem was published in the following decade. Gallager’s paper [11] contains a good survey of early work on leader election. Starting in the 1990s there was an increased interest in the radio network model [7]. In this model, the general leader election problem, where the nodes don’t have collision detection or know an upper bound for n, can be solved in $O(\log^2 n)$ rounds w.h.p. [21] where n is the number of nodes in the network. This bound can be improved to $O(\log n)$ w.h.p. assuming that nodes can detect collisions [21], and to $O(\log n_u)$ expected rounds assuming that the nodes know an upper bound n_u on n [3].

In the beginning of the new millennium came a renewed interest in fading radio networks, captured with the SINR model, which is claimed to capture the real behavior of systems better than previous models, as they take interference into account in a more realistic way. Moscibroda and Wattenhofer [20] showed that algorithms on the fading radio networks model can achieve better runtimes than algorithms for the original radio networks model on certain problems, as SINR allows for better spatial reuse.
In the SINR model the most efficient currently published contention resolution protocol is by Fineman et al. [10]. Contention resolution is a similar problem to leader election as they both deal with breaking the symmetry in a wireless network. Contention resolution is solved in the first round when exactly one node transmits.

Fineman et al. present an algorithm that achieves a solution to the contention resolution problem in $O(\log n + \log R)$ rounds w.h.p. in a single-hop network using uniform transmission power, where n is the number of nodes and $R = O(poly(n))$ is the ratio between the longest and shortest link. Fineman et al. suggest that it may be possible to achieve better performance using power control.

Indeed, for problems like link scheduling and connectivity, power control has been shown to give much better performance [20]. Power control has also been used in the SINR setting to solve the link scheduling problem while conserving energy, e.g. [6], [9].

2.3.2 Contributions on the Leader Election Problem

We have two contributions on the leader election problem.

1. We have developed a 2-round leader election protocol (Thm. 3.5). The previously best result by Fineman et al. [10] was $O(\log n)$ rounds.

2. We have explored trade-offs between transmission power and communication complexity for the leader election problem. Specifically, we have shown that in order to elect a leader in t rounds, a power range $exp(n^{1/\Theta(t)})$ is sufficient and necessary (Thm. 5.3).
2.4 Broadcast Problem

In this thesis, we focus on the All-to-All Broadcast problem in a single-hop network. We define a set \mathcal{M}_v to be the set of all possible messages for each node $v \in V$. For any two nodes u, v, $\mathcal{M}_u \cap \mathcal{M}_v = \emptyset$. We define $\mathcal{M} = \bigcup_v \mathcal{M}_v$ to be the set of all possible messages.

Problem 2.2 (All-to-All Broadcast). Given that each node v in the network starts with some arbitrary message in \mathcal{M}_v, each node v is to output a set that contains the messages of all nodes in V.

2.4.1 Prior Work on the Broadcast Problem

There have been plenty of papers on the broadcast problem concerning both (i) global broadcast [4],[23] and (ii) local broadcast [12],[13],[19],[22].

Note that a key difference between the problem we are solving and these problems is that both global and local broadcast assume a multi-hop network, where nodes are not able to reach every other node in absence of interference.

The global broadcast problem, as defined by [23] is the following:

Problem 2.3 (Global Broadcast). Given k distinct messages stored at k arbitrary nodes, one message stored in each node, disseminate all messages to the entire network.

An early paper on global broadcast on radio networks was by Bar-Yehuda et al. [4]. They described an algorithm that works in $O(k \log n \log \Delta + (D+n/ \log n) \log n \log \Delta)$ rounds in expectation, where k is the number of messages to be delivered to all n nodes, D is the network diameter and Δ is the maximum node degree. In the
SINR model, Yu et al. [23] describe the best result known that achieves the dissemination of k messages, stored in k arbitrary nodes to the entire network in $O((D + k) \log n + \log^2 n)$ rounds w.h.p., where D is the network diameter.

The local broadcast problem, as defined by [12] is the following:

Problem 2.4 (Local Broadcast). Given n distinct messages stored in n different nodes in a network, ensure that every node v has successfully received a message by all nodes in B_v.

Note that in multi-hop networks, the broadcasting range B_v of node v is the maximum distance from which v can receive a clear transmission, assuming no other transmission occurs.

Local broadcast in the SINR model was first studied by Goussevskaia et al. in [12]. The paper presents a randomized asynchronous algorithm that achieves local broadcast in $O(\Delta \log^3 n)$ rounds. More recently, in the SINR model, local broadcast was achieved in $O(\Delta \log n)$ [13] with knowledge of Δ and in $O(\Delta \log n + \log^2 n)$ rounds without it [18]. Halldórsson et al. [19] present a randomized algorithm that achieves local broadcast within $O(\Delta + \log n)$ rounds w.h.p. using collision detection and acknowledgments. Yu et al. [22] present a lower bound for local broadcast of $\Omega(\Delta + \log n)$ w.h.p..

The All-to-All Broadcast problem in a single-hop network is similar to the above two problems. When $k = n$ and the network is single-hop, the Global Broadcast problem is essentially the All-to-All Broadcast problem. In a single-hop network, Local Broadcast is essentially All-to-All Broadcast, because the broadcasting range
of a node contains the whole network.

\section*{2.4.2 Contributions on the Broadcast Problem}

The currently best result in the area is by Halldórsson et al. [19], which achieves local broadcast within $O(\Delta + \log n)$ rounds w.h.p. using collision detection and acknowledgments. We developed an all-to-all broadcast algorithm that achieves the same asymptotical complexity in a single-hop network using weaker assumptions:

We developed an all-to-all broadcast algorithm that uses power control, and terminates in $2n$ rounds (Thm. 7.9).
Chapter 3

Achieving Leader Election in Two Rounds

In this Chapter, we present a 2-round leader election algorithm, Algorithm 2-LE, that uses power control and requires no knowledge of n. First, we give some key ideas behind the algorithm. Then, we present a 2-round leader election algorithm followed by the analysis.

3.1 The Essence of the Algorithm

Below we present a high level description of the key ideas behind 2-LE.

(i) **Breaking symmetry**: Each node v computes a geometric random variable k. Then, v picks an ID uniformly at random from a range that depends on k. With high enough probability the largest ID is picked by exactly one node.

(ii) **The loudest node wins**: Each broadcasting node v determines its trans-
mission power by evaluating power function \(f(ID) := P_{\text{min}} \cdot ID^{\gamma ID} \) using its identification number, \(ID_v \). Any listening nodes receive the message sent by the node with the highest ID, with a high enough probability.

(iii) **Feedback:** The set of nodes \(V \) is split into listeners and competitors. The competitors compete for the leader position during the first round of the two-round protocol. The listeners inform the competitors of the winner during the second round.

3.2 Leader Election Algorithm, 2-LE

Initially, node \(v \) flips a coin (a Bernoulli random variable) to determine its role, which is a competitor if heads are flipped, and listener if tails. It then computes a geometric random variable (r.v.) \(k_v \), which counts the tails flipped in a sequence of coin flips before the first heads is flipped. The ID of the node, \(ID_v \), is an integer selected uniformly at random from the range \([J, 2 \cdot J]\), where \(J = g(k_v) := 2^{k_v} \cdot k_v^4 \).

The power \(P_v \) that \(v \) uses for broadcast is given by \(f(ID_v) := P_{\text{min}} \cdot ID_v^{\gamma ID_v} \), where \(P_{\text{min}} \) is the minimum power needed to reach all nodes in the network (overcoming the ambient noise). As defined in Chapter 2, \(\gamma \) is a constant that the nodes know, and \(\gamma \geq \max(1, c_\alpha + 1 + \log \beta) \).

During round 1, each competitor \(v \) transmits its ID using power \(P_v \), which is intended to be received by the listeners. In round 2, the roles are reversed, as each listener reports back the ID of the purported leader that it received.

We shall argue that, with high probability, a unique competitor succeeds in transmitting to all the listeners, and a unique listener succeeds in reporting back to all
the competitors. The leader is then that successful competitor.

3.2.1 Pseudocode for Algorithm 2-LE$_v$

Algorithm 1 - 2-LE$_v$: 2-Round Leader Election Algorithm for node v

1: Preprocessing:
2: $Role$: a boolean $Bernoulli(\frac{1}{2})$ random variable {‘competitor’ if heads, ‘listener’ if tails}
3: k: a $Geometric(\frac{1}{2})$ random variable, $k \in \mathbb{Z}_{\geq 0}$
4: ID: chosen uniformly at random from $[J, 2 \cdot J]$, where $J = g(k) := 2^k k^4$, $ID \in \mathbb{Z}_{\geq 0}$
5: P: the transmission power, $P = f(ID) := P_{min} \cdot (ID)^{\gamma ID}$, $P \in \mathbb{Z}_{\geq 0}$
6: $Leader$: a string denoting the identity of the leader, initially empty
7:
8: Round 1:
9: if $Role = competitor$ then
10: Broadcast ID using power P
11: else
12: Listen
13: if v receives message m then
14: Set $Leader = m$
15:
16: Round 2:
17: if $Role = competitor$ then
18: Listen
19: if v receives message m then
20: Set $Leader = m$
21: else
22: Broadcast $Leader$ using power P
3.3 Analysis of Algorithm 2-LE

We show that the highest power used by a competitor is sufficient to overpower all the other competitors, ensuring that this competitor is heard by all the listeners. Identical arguments hold for the reporting back in round 2.

To this end, we first show that there is a competitor whose geometric r.v. is nearly $\log n$, and at most a logarithmic number of competitors have that large value. We then show that all the $O(\log n)$ IDs at the high end of the spectrum are unique, i.e., selected by a single node. The difference in power used by nodes with different ID ensures that the competitor with highest ID will overpower all the other competitors and be heard by all the listeners.

The following version of Chernoff bounds is needed.

Theorem 3.1 (Chernoff Bound). Let X_1, X_2, \ldots, X_n be independent Bernoulli random variables and $X = \sum_{i=1}^{n} X_i$. For $R \geq 4\mathbb{E}[X]$,

$$\Pr[X \geq R] \leq 2^{-0.55R}.$$

Proof. The standard Chernoff bound is that for any $\delta > 0$,

$$\Pr[X \geq (1 + \delta)\mathbb{E}[X]] \leq \left(\frac{e^\delta}{(1 + \delta)^{1+\delta}}\right)^{\mathbb{E}[X]}.$$

Set δ be such that $R = (1 + \delta)\mathbb{E}[X]$, so $\delta \geq 3$. Thus,

$$\Pr[X \geq R] \leq \left(\frac{e^\delta}{(1 + \delta)^{1+\delta}}\right)^{\mathbb{E}[X]} \leq \left(\frac{e}{1 + \delta}\right)^{(1+\delta)\mathbb{E}[X]} = 2^{-\lg((1+\delta)/e)R},$$

25
which is maximized when δ is minimized. Finally, observe that $\lg(4/e) \geq 0.55$.

We can now begin the analysis of Algorithm 2-LE.

Lemma 3.2. Let $k^* := \log n - \log \log n - 2$. With probability greater than $1 - \frac{1}{n^3}$, for at least one and at most $32 \log n$ competitors v in Algorithm 2-LE, it holds that $k_v \geq k^*$.

Proof. Let $t = \lceil k^* \rceil = \lceil \log n - \log \log n - 2 \rceil$.

Let A_v be the event that a given node v is a competitor and has $k_v \geq t$. In order for v to have $k_v \geq t$, it must have flipped heads more than t times, that is $\Pr[A_v] = \sum_{i=t}^{\infty} \frac{1}{2^i}$. Let $s = \sum_{i=t}^{\infty} \frac{1}{2^i}$.

\[
2s = \frac{2}{2^t} + \frac{2}{2^{t+1}} + \frac{2}{2^{t+2}} \ldots
\]
\[
2s = \frac{1}{2^{t-1}} + s + 0
\]
\[
s = 2^{1-t}
\]

The probability of A_v is $\Pr[A_v] = 2^{1-t}$. As $k^* \leq t \leq k^* + 1$, $2^{-k^*} \leq 2^{1-t} \leq 2^{1-k^*}$.

Thus,

\[
2^{-\log n + \log \log n + 2} \leq 2^{-k^*} \leq \Pr[A_v] \leq 2^{1-k^*} \leq 2^{1-\log n + \log \log n + 2}
\]
\[
\frac{4 \log n}{n} \leq \Pr[A_v] \leq \frac{8 \log n}{n}.
\]
The probability that no node satisfies A_v is then at most

$$\Pr \left(\bigwedge_v \overline{A_v} \right) \leq \left(1 - \frac{4 \log n}{n} \right)^n \leq e^{-4 \log n} \leq n^{-5.7},$$

for n sufficiently large, establishing the first part of the claim.

Let X be the number of nodes v for which A_v holds. Then $\mathbb{E}[X] \leq 8 \log n$ and by Chernoff bound (Thm. 3.1) with $R = 32 \log n$,

$$\Pr[X \geq 32 \log n] \leq 2^{-0.55 \cdot 32 \log n} = n^{-17.6},$$

for n large enough. I.e., at most $32 \log n$ nodes satisfy A_v, with probability greater than $1 - \frac{1}{n^{17.6}}$.

Combined, with probability at least $1 - \frac{1}{n^3}$, both of these claimed events hold.

We can now show that if some competitor v picked $k_v > k^*$, a sole competitor receives the highest ID with probability greater than $1 - \frac{1}{8n}$.

Lemma 3.3. In the first round of Algorithm 2-LE, a sole competitor receives the highest ID with probability greater than $1 - \frac{1}{8n}$, given that at least one node calculated $k_v \geq k^*$.

Proof. The ranges of IDs assigned to nodes of different k values are disjoint. The competitor receiving the highest ID will therefore necessarily be one with a highest k value, denoted by K. Let Z be the set of competitors with

$$k = K \geq k^* (= \log n - \log \log n - 2).$$

By Lemma 3.2, Z is non-empty and contains at most $32 \log n$ nodes.
The range from which competitors in Z pick their IDs is $[J, 2J]$, for $J \geq g(k^*) = 2^{k^*}(k^*)^4 \geq \frac{n \log^3 n}{8}$.

The probability that a given pair of nodes in Z receive the same ID is inversely proportional to the range of IDs sampled from, or

$$\frac{1}{J} \leq \frac{1}{g(k^*)} \leq \frac{8}{n \cdot \log^3 n}.$$

The probability that some pair of nodes in Z are assigned the same ID is then, by the union bound, at most

$$\frac{\binom{|Z|}{2}}{J} \leq \frac{(32 \log n)^2}{n \cdot \log^3 n} = \frac{32^2}{n \log n} < \frac{1}{8n},$$

for large enough n. In particular, all nodes in Z receive different IDs with probability greater than $1 - \frac{1}{8n}$.

Lemma 3.4. In the first round of Algorithm 2-LE, if a sole competitor receives the highest ID ($ID > n$), its transmission is received by all the listeners.

Proof. Let w be the sole competitor with the highest ID. For any other competitor v it then holds that

$$\frac{P_w}{P_v} \geq \frac{f(ID_w)}{f(ID_w - 1)} \geq ID_w^\gamma \geq n^\gamma \geq \beta n^{\alpha + 1}. \quad (3.1)$$
Let \(u \) be a listener. The noise and interference received by \(u \) can be bound in terms of the signal

\[
S_u := \frac{P_w}{d(w,u)^\alpha}
\]

it receives from \(w \). Recall that \(d(w,u) \leq R \cdot d(v,u) \leq n^\epsilon \cdot d(v,u) \), and thus

\[
d(w,u)^\alpha \leq n^{\alpha \epsilon} \cdot d(v,u)^\alpha,
\]

for any competitor \(v \). Hence, applying (3.1), the interference received from a competitor \(v \) is bounded by

\[
I_v := \frac{P_v}{d(v,u)^\alpha} \leq \frac{P_w \cdot n^{\alpha \epsilon}}{\beta n^{\alpha \epsilon + 1} \cdot d(w,u)^\alpha} = \frac{S_u}{\beta n}.
\]

(3.2)

The definition of minimum power \(P_{\text{min}} \) ensures that \(\frac{P_{\text{min}}}{N^{\alpha \epsilon}} \geq \beta \). Thus, inequality (3.1) can be used to bound the noise term by

\[
N \leq \frac{P_{\text{min}}}{d(w,u)^\alpha \cdot \beta} \leq \frac{P_w}{d(w,u)^\alpha \cdot n \gamma \cdot \beta} = \frac{S_u}{\beta n} \leq \frac{S_u}{\beta n}.
\]

(3.3)

Combining (3.2) and (3.3), the SINR of \(w \)'s signal at receiver \(u \) is bounded below by

\[
\frac{S_u}{N + \sum_{v \in X} I_v} \geq \frac{\beta n}{1 + |X|} \geq \beta,
\]

where \(X \) is the set of competitors other than \(w \). Thus, \(w \) overpowers all other competitors at all the listeners.

\[\square\]

Theorem 3.5. Algorithm 2-LE terminates with all nodes agreeing on a common leader, w.h.p.

Proof. Using a union bound, we add up the error probabilities of Lemmas 3.2 and
3.3, and find that a sole competitor w receives the highest ID, with probability at least $1 - \frac{1}{4n}$. By Lemma 3.4, w then successfully informs all the receivers.

All three lemmas work identically for the reporting process in round 2. Hence, with probability at least $1 - \frac{1}{2n}$, the algorithm succeeds.

We conclude that Algorithm 2-LE terminates successfully in 2 rounds with probability at least $1 - \frac{1}{n}$, and thus Algorithm 2-LE terminates with high probability.

\[\square \]

Remark 3.6. Leader election can be achieved in a single round if simultaneous transmission and reception is possible. Such full-duplex radios operate by subtracting the transmitted signal from the received one. While they are still rare, being hard to implement, such technology has been progressing significantly in recent years ([5], [8]) and may well become a commodity feature. With full-duplex, the arguments apply unchanged to the success of reception by the other competitors, thus succeeding after only a single round.
Chapter 4

Upper Bound on the Power Needed for a 2-Round Leader Election Algorithm

In this Chapter, we present upper bounds on the power needed for a 2-round leader election algorithm when the nodes don’t know \(n \), and when the nodes do.

We define \(P_{\text{max}} \in \mathbb{R}_{\geq 1} \) to be a power bound for an algorithm \(A \) provided that in all executions of \(A \), the power with which any node transmits is at most \(P_{\text{max}} \).

When the nodes don’t know \(n \), leader election can be achieved w.h.p. using

\[
P_{\text{max}} \geq 2^{\tilde{O}(n^2)} P_{\text{min}}.
\]

When the nodes do know \(n \), leader election can be achieved w.h.p. using

\[
P_{\text{max}} \geq 2^{\tilde{O}(n)} P_{\text{min}}.
\]
4.1 Upper Bound on the Power Needed with no knowledge of n

Note that Algorithm 2-LE does not have a finite power bound. In order to answer how the power bound must grow as a function of n for leader election to work correctly, we define algorithm 2-LE(P_{max}) which has a power bound P_{max}. We will show that algorithm 2-LE(P_{max}) works w.h.p. for

$$P_{max} \geq 2^{\tilde{O}(n^2)} P_{min}.$$

4.1.1 Algorithm 2-LE(P_{max})

Below we present algorithm 2-LE(P_{max})$_v$. The only difference between algorithms 2-LE$_v$ and 2-LE(P_{max})$_v$ is that in 2-LE(P_{max})$_v$ node v automatically truncates its assigned power to at most P_{max}.

32
Algorithm 2 - 2-\textit{LE}(P_{\text{max}})_v : 2-Round Leader Election Algorithm for node v given P_{max}

1: Preprocessing:
2: \textit{Role}: a boolean $Bernoulli(\frac{1}{2})$ random variable \{'competitor' if heads, 'listener' if tails\}
3: k: a $Geometric(\frac{1}{2})$ random variable, $k \in \mathbb{Z}_{\geq 0}$
4: ID: chosen uniformly at random from $[J, 2 \cdot J]$, where $J = g(k) := 2^k k^4$, $ID \in \mathbb{Z}_{\geq 0}$
5: P: the transmission power, $P = f(ID) := \min(P_{\text{max}}, P_{\text{min}} \cdot (ID)^{\gamma ID})$, $P \in \mathbb{Z}_{\geq 0}$
6: \textit{Leader}: a string denoting the identity of the leader, initially empty

7: Round 1:
9: if $\textit{Role} = \text{competitor}$ then
10: Broadcast ID using power P
11: else
12: Listen
13: if v receives message m then
14: Set $\textit{Leader} = m$
15:
16: Round 2:
17: if $\textit{Role} = \text{competitor}$ then
18: Listen
19: if v receives message m then
20: Set $\textit{Leader} = m$
21: else
22: Broadcast \textit{Leader} using power P
4.1.2 Analysis of Algorithm 2-LE(P_{max})

Theorem 4.1. Assume power bound $P_{max} \geq 2^{10n^2(\log n)^2} P_{min}$. Then, Algorithm 2-LE($P_{max}$) elects a leader w.h.p.

Proof. Fix $P_{max} \geq 2^{10n^2(\log n)^2} P_{min}$.

The probability p that Algorithm 2-LE(P_{max}) elects a leader is greater that the probability p' that the Algorithm 2-LE(P_{max}) elects a leader and no node truncates its transmission power. Now, p' is essentially the probability that the non-truncating Algorithm 2-LE from Section 3.2 elects a leader and no node picks a transmission power that exceeds P_{max}.

The probability that Algorithm 2-LE(P_{max}) elects a leader, p, is then greater or equal to the probability that Algorithm 2-LE elects a leader, p_{LE}, minus the probability that some node picks a transmission power that exceeds P_{max}, p_P:

$$p \geq p_{LE} - p_P$$

By the proof of Theorem 3.5, we know that Algorithm 2-LE terminates with all nodes agreeing on a common leader with probability greater than $1 - 1/2n$. Thus,

$$p_{LE} \geq 1 - 1/2n.$$

It remains to determine p_P. A node v can only pick a transmission power greater than P_{max} if it picks $k_v \geq 2 \log n + 2$. The probability that v picks such a transmission power is $2^{1 - 2\log n - 2} = \frac{1}{2n^2}$. The probability that no node picks $k \geq 2 \log n + 2$ is $(1 - \frac{1}{2n^2})^n$. By Bernoulli’s inequality, $(1 - \frac{1}{2n^2})^n \geq 1 + \frac{1}{2n}$. Thus, $p_P \leq \frac{1}{2n}$.

Thus,
\[p \geq p_{LE} - pp \geq 1 - \frac{1}{2n} - \frac{1}{2n} \geq 1 - \frac{1}{n} \]

We conclude that Algorithm 2-\(LE(\max)\) elects a leader w.h.p.

\[\square \]

4.2 Assuming \(n\), a Smaller Power Bound is Achievable

Assuming the nodes know \(n\), leader election can be achieved with a smaller power bound,

\[P_{\max} \geq 2^{O(n)} P_{\min}. \]

4.2.1 Algorithm 2-\(LEn\)

Below we present a leader election algorithm, 2-\(LEn_v\), that achieves leader election in two rounds w.h.p. using \(P_{\max} \geq 2^{O(n)} P_{\min}\).

The algorithm begins with each node \(v\) flipping an unfair coin to determine if it will participate in the election. Specifically, node \(v\) participates in the election with probability \(4 \log n/n\). Then, each participating node flips a fair coin to determine if it will be a competitor or a listener, and then selects an \(ID\) uniformly at random from the range \([J,2J]\), where \(J = n \log^2 n\). The power used is \(f(ID_v)\) as in Algorithm 2-\(LE\), and the algorithm rounds are the same as well.

The highest possible ID is \(2n \log^2 n\). This results in \(P_{\max} \geq (2n \log^2 n)^{2n \log^2 n} P_{\min} \geq 2^{O(n)} P_{\min}.\)
Algorithm 3 - 2-LEN\textsubscript{v} 2-Round Leader Election Algorithm for node v with knowledge of n

1: $Role$: a string
2: ID: an identification number, $ID \in \mathbb{Z}_{\geq 0}$
3: P: the transmission power, $P \in \mathbb{Z}_{\geq 0}$
4: $Leader$: a positive integer number denoting the identity of the leader, initially 0
5: $Participating$: a boolean $Bernoulli\left(\frac{4\log n}{n}\right)$ random variable

7: if $Participating = 1$ then
8: $Role$ = a boolean $Bernoulli\left(\frac{1}{2}\right)$ random variable $\{\text{‘competitor’ if heads, ‘listener’ if tails}\}$
9: ID: choose uniformly at random from $[J, 2 \cdot J]$, where $J = n \log^2 n$
10: $P = f(ID) = P_{\min} \cdot (ID)^{\gamma ID}$
12: Round 1:
14: if $Role = \text{competitor}$ then
15: Broadcast ID using power P
16: else
17: Listen
18: if v receives message m then
19: Set $Leader = m$
20: Round 2:
22: if $Role = \text{competitor}$ then
23: Listen
24: if v receives message m then
25: Set $Leader = m$
26: else
27: Broadcast $Leader$ using power P
4.2.2 Analysis of Algorithm 2-LEn

Theorem 4.2. Algorithm 2-LEn elects a leader w.h.p..

Proof. The probability that two nodes participate in the algorithm and they pick the same ID is

\[
\left(\frac{4 \log n}{n} \cdot \frac{1}{J} \right)^2 = \left(\frac{4 \log n}{n} \cdot \frac{1}{n \log^2 n} \right)^2 = \left(\frac{4}{n^2 \log n} \right)^2.
\]

The probability that any two nodes participate in the algorithm and they pick the same ID is

\[
\binom{n}{2} \left(\frac{4}{n^2 \log n} \right)^2 \leq \frac{16}{n^2 \log^2 n}.
\]

We need to show that there will be at least one competitor and at least one listener with a high enough probability. The probability that there are no competitors is

\[
\left(1 - \frac{4 \log n}{2n} \right)^n \leq e^{-2 \log n} \leq \frac{1}{n^2}.
\]

Similarly, the probability that there are no listeners is at most \(\frac{1}{n^2} \).

We can now use arguments similar to Lemma 3.4, to show that in the first round of Algorithm 2-LEn, when a sole competitor has the highest ID, its transmission is received by all the listeners.

Similarly for the second round of Algorithm 2-LEn, when a sole listener has the highest ID, its transmission is received by all the competitors.
Thus, Algorithm 2-LEn elects a leader with probability greater than

\[1 - \frac{16}{n^2 \log^2 n} - \frac{1}{n^2} - \frac{1}{n^2} \geq 1 - \frac{1}{n}. \]
Chapter 5

Leader Election: Trading Time for Power

In this chapter, we explore how much the power can be reduced by increasing the round complexity, while still achieving a successful leader election protocol. When only a smaller power bound $P_{\text{max}} < 2^{\tilde{O}(n^2)} P_{\text{min}}$ is available, we can still elect a leader using a larger number of rounds with Algorithm $2t$-$\text{LE}(P_{\text{max}})$.

5.1 Algorithm $2t$-$\text{LE}(P_{\text{max}})$

Our multi-round algorithm $2t$-$\text{LE}(P_{\text{max}})$ simply repeats the 2-round algorithm t times, for a given $t \geq 1$, but uses a slower-growing power function. Namely, node v changes its ID-selection function to $g_t(k_v) = 2^{k_v} k_v^{3t+1}$, and its power function to $f_t(ID_v) = \min(P_{\text{max}}, P_{\text{min}} \cdot ID_v^{(ID_v)^{1/t}})$. After each round-pair, each competitor v updates its leader_v value to the largest among those heard so far. After some round-pair when all nodes have the same leader value, leader will remain the same.
Algorithm 4 - $2t$-LE(P_{max})$_v$: $2t$-Round Leader Election Algorithm for node v

1: $Role$: a string
2: $k \in \mathbb{Z}_{\geq 0}$
3: ID: an identification number, $ID \in \mathbb{Z}_{\geq 0}$
4: P: the transmission power, $P \in \mathbb{Z}_{\geq 0}$
5: $leader$: a positive integer number denoting the identity of the leader, initially 0
6:
7: for r in range $[1, \ldots, t]$ do
8: $Role$ = a boolean Bernoulli($\frac{1}{2}$) random variable {‘competitor’ if heads, ‘listener’ if tails}
9: k = a Geometric($\frac{1}{2}$) random variable
10: Choose ID uniformly at random from $[J, 2 \cdot J]$, where $J = g_t(k) = 2^k k^{3t+1}$
11: $P = f_t(ID) = \min(P_{\text{max}}, P_{\text{min}} \cdot ID^{\gamma(ID)^{1/4}})$
12:
13: **Round 1:**
14: if $Role = \text{competitor}$ then
15: if $leader$ is 0 then
16: Broadcast ID using power P
17: else
18: Broadcast $leader$ using power P
19: else
20: Listen
21: if v receives message m then
22: Set $leader = m$
23:
24: **Round 2:**
25: if $Role = \text{competitor}$ then
26: Listen
27: if v receives message m then
28: Set $leader = \max(m, leader)$
29: else
30: Broadcast $leader$ using power P
5.2 Analysis of Algorithm $2t\text{-}LE(P_{\text{max}})$

First, observe that it suffices to succeed in one of the round-pairs. A round-pair is successful if by the end of it all nodes have the same value in the leader variable.

Lemma 5.1. Algorithm $2t\text{-}LE(P_{\text{max}})$ elects a leader, if, after some round-pair, all nodes have the same value in the leader variable.

Proof. Suppose that after some round-pair, all nodes have leader’s value set as w.

In any future round-pairs, all broadcasts use w for the value of leader. Thus, there can’t be any inconsistencies in any future round-pairs that lead to different nodes having different values in leader. The algorithm will conclude will all nodes having leader’s value set as w, and thus w will be the leader.

For a single round-pair to be successful, it is required that the highest transmission power is unique and sufficiently larger than the second highest. In Algorithm 2-LE it sufficed to show that the highest ID was unique to satisfy this condition. Because here we use a slower growing power function, we need to show that the t^{th} root of the highest ID is larger than the t^{th} root of the second highest ID + 1 with a high enough probability.

Lemma 5.2. In a given round of Algorithm $2t\text{-}LE(P_{\text{max}})$, with probability at least $1 - \frac{1}{3n^{1/t}}$, some unique node w has an ID such that $(ID_w)^{1/t} - (ID_v)^{1/t} > 1$, for all other nodes v.

Proof. Let Z be the set of broadcasting nodes with the largest k value. The node v with the highest transmission power will be in Z. Using a similar argument to
Lemma 3.2, we can show that $k_v \geq k^* = \log n - \log \log n - 2$, and that Z has at least one and at most $32 \log n$ nodes with probability greater than $1 - 1/n^3$.

Recall that IDs are allocated uniformly at random, and for nodes in Z, the range is of size at least

$$g_t(k^*) = 2^{2^{\log n - \log \log n - 2}(\log n - \log \log n - 2)3t + 1} \geq \frac{n}{8 \log n} \left(\frac{\log n}{2}\right)^{3t + 1}$$

for large enough n. Thus, $g_t(k^*) \geq \frac{1}{2^{n/3}} n \log^{3t} n$.

The probability that a given pair of nodes u, v in Z receive nearly equivalent IDs, with $|((ID_u)^{1/t} - (ID_v)^{1/t}| \leq 1$, is at most

$$g_t(k^*)^{-1/t} \leq \frac{2}{n^{1/t} \log^{3} n}.$$

Thus, the probability that some two nodes in Z receive nearly equivalent IDs ($|ID_u^{1/t} - (ID_v)^{1/t}| \leq 1$) is at most

$$\frac{\binom{|Z|}{2}}{g_t(k^*)^{1/t}} \leq \frac{2 \cdot 32^2 \log^2 n}{n^{1/t} \log^3 n} < \frac{1}{3n^{1/t}},$$

for sufficiently large n.

Thus, with probability at least $1 - \frac{1}{3n^{1/t}}$, some unique node w has an ID such that $(ID_w)^{1/t} - (ID_v)^{1/t} > 1$, for all other nodes v.

We can now show that Algorithm $2t$-LE(P_{\max}) elects a leader w.h.p.

Theorem 5.3. Algorithm $2t$-LE(P_{\max}), with $P_{\max} \geq 2^{109 \log n^2} P_{\min}$, elects a leader w.h.p., for each number $t = O(\log n / \log \log n)$.

42
Proof. \(P_{\text{max}} \geq 2^{10n^2/\log n^2} P_{\text{min}} \).

It suffices to show that at least one round-pair is successful w.h.p. (Lemma 5.1).

Let’s focus on one round-pair \(r \).

First, we can show that no truncation occurs with probability greater than \(1 - \frac{1}{4n} \).

In order for a node \(v \) to pick \(P_{\text{max}} \), it needs to pick some \(k_v \geq 2 \log n + 3 \). This occurs with probability \(\frac{1}{4n^2} \). The probability that no node picks \(k \geq 2 \log n + 3 \) is

\[
\left(1 - \frac{1}{4n^2} \right)^n \geq 1 - \frac{1}{4n}.
\]

Now, we can calculate the probability that round pair \(r \) is successful.

Let’s look at the first round of \(r \). In Lemma 5.2 we showed that in a given round, with probability at least \(1 - \frac{1}{3n^{1/t}} \), some unique node \(w \) has an ID such that

\[
(ID_w)^{1/t} > (ID_v)^{1/t} + 1,
\]

for all other nodes \(v \).

As a unique node \(w \) has an ID such that \((ID_w)^{1/t} > (ID_v)^{1/t} + 1 \), this node also has the highest transmission power and using similar arguments to Lemma 3.4, we can show that with probability at least \(1 - \frac{1}{3n^{1/t}} \), node \(w \)’s message is received by all listening nodes.

A similar argument holds for the second round of \(r \). We can use Lemmas 5.2 and 3.4 to show that in this round with probability at least \(1 - \frac{1}{3n^{1/t}} \), some node \(w \)’s
message is received by all listening nodes.

Thus, round-pair \(r \) is successful with probability greater than
\[
1 - \frac{1}{3n^{1/t}} - \frac{1}{3n^{1/t}} - \frac{1}{4n} \geq 1 - \frac{1}{n^{1/t}}.
\]

We conclude that the probability that all \(t \) round-pairs are unsuccessful is

\[
\left(\frac{1}{n^{1/t}} \right)^t = 1/n,
\]

as desired. \(\square \)
Chapter 6

Lower Bound on the Power Needed for a t-Round Leader Election Algorithm

In this chapter we show that an exponential-size power bound is necessary for any leader election protocol running in t rounds. More specifically, any t-round leader election algorithm in the SINR model running correctly w.h.p. requires

$$P_{\text{max}} \geq 2^{\sqrt{\pi/(12e)}}P_{\text{min}},$$

$t \geq 1$. Our proofs holds for $\beta > 2$.

First, we determine how much power is needed to break the symmetry of the network, and then we prove a lower bound on the power needed by any t-round leader election algorithm.
6.1 Power Needed to Break the Symmetry of a Network

First, we need the definition of a uniform metric space.

Definition 6.1 (Uniform Metric Space). A uniform metric space is a metric space, where for all nodes \((u, v) \in V\), \(d(u, v) = d\), for some \(d \in \mathbb{R}_{>0}\).

Uniform metric spaces have the following convenient property:

Lemma 6.2. Assume an SINR network is located in a uniform metric space. In a given round either a single message is received by all the listeners or none of them hear anything.

Proof. Define \(T\) as the set of all transmitting nodes. If \(T\) is empty, the lemma is clearly true. Otherwise, we can define \(w\) to be the transmitting node with the highest transmission power.

Let \(L = T \cap V\) be the set of listeners. Suppose that node \(v \in L\). Let \(I = T - \{w\}\). The SINR equation for \(v\) given a signal from \(w\) is

\[
SINR(w, v, I) = \frac{\frac{P_w}{d(w,v)^a}}{N + \sum_{u \in I} \frac{P_u}{d(u,v)^a}} = \frac{\frac{P_w}{d^a}}{N + \sum_{u \in I} \frac{P_u}{d^a}}.
\]

As no node in \(L\) can be in \(I\), the SINR equation \(SINR(w, v, I)\) is the same for all nodes \(v \in L\). Thus, if one listener receives a message, all listeners receive a message.

We can now prove the following claim.
Lemma 6.3. Let A be an algorithm with a power bound $P_{\text{max}} = 2^q P_{\text{min}}$, running on n nodes located in a uniform metric space in a single-hop SINR network, where q is a nonnegative integer. Given a round when all nodes are in identical states at the start of the round, the nodes will remain in identical states with probability at least $\frac{1}{24e^q}$, for integer $q \geq 1$, and with at least constant probability for $q = 0$.

Proof. By Lemma 6.2, in a given round of A either a single message is received by all the listeners or none of them hear anything.

In order to break the symmetry of the network, a message has to be successfully received.

We divide the available range of power into subranges, each within factor 2. Specifically, the i-th highest subrange is

$$(P_{\text{max}}/2^i, P_{\text{max}}/2^{i-1}],$$

where $i \in [1, ..., q]$.

Let $X_{i,v}$ be the event that node v transmits using the i-th highest subrange. For example, $X_{2,v}$ is the event that node v transmits using the second highest subrange, that is node v transmits with some power in $(P_{\text{max}}/4, P_{\text{max}}/2]$.

Since the nodes are identical, the same probability holds for them all, so let $p_i = \Pr[X_{i,v}]$. Let $q \geq 0$ be the largest number such that

$$\sum_{i=1}^{q} p_i \leq \frac{1}{2n}.$$ \hspace{1cm} (6.1)

Now, we have two cases to consider, either $q = 0$, or $q \geq 1$.

47
Case 1: $q = 0$

Suppose that $q = 0$. Then, $p_1 > \frac{1}{2n}$. That is, any node u chooses to transmit using a transmission power in the highest subrange with probability greater than $\frac{1}{2n}$.

Thus, the probability that any two particular nodes u, w choose to transmit using a transmission power in the highest subrange $[P_{max}/2, P_{max}]$ is

\[
\binom{n}{2} p_1^2 \binom{n}{2} \frac{1}{4n^2} = \frac{n(n-1)}{8n^2} \approx \frac{1}{8}.
\]

Suppose node v is listening and nodes u, w are transmitting with some power from the highest subrange. Let $P_w > P_u$. Note that $P_u > P_w/2$. Then,

\[
SINR(w, v, I) = \frac{P_w}{N + \sum_{u \in I} P_u} \frac{d(w, v)^\alpha}{d(u, v)^\alpha} < \frac{P_w}{P_u} P_u < 2 < \beta.
\]

As $SINR(w, v, I) < \beta$, no message is received. Thus, with at least constant probability, no message is received, which results in the nodes remaining in identical states.

Case 2: $q \geq 1$

Now, let’s look at the case when $q \geq 1$.

Let A_i be the event that at least two nodes use the i-th highest subrange $[P_{max}/2^i, P_{max}/2^{i-1}]$, B_i be the event that no node transmits at subranges $1, 2, \ldots, i-1$, and $C_i = A_i \cap B_i$ be the event that both A_i and B_i occur, for $i = 1, 2, \ldots$.
A subrange i is in use if at least one node broadcasts with transmission $P \in (P_{\text{max}}/2^i, P_{\text{max}}/2^{i-1}]$. The subrange i is highest subrange in use if no subrange j is in use, for $j \in 1, 2, \ldots, i - 1$.

Then, $C = \bigcup_i C_i$ is the event that at least two nodes use the highest subrange in use.

Observe that $\Pr[A_i|B_i] \geq \Pr[A_i]$, since the non-use of the $i - 1$ highest subranges only makes the event A_i more likely. Then,

$$\Pr[C_i] = \Pr[A_i \cap B_i] = \Pr[A_i|B_i] \Pr[B_i] \geq \Pr[A_i] \Pr[B_i] .$$

The probability of A_i, $i \leq q$, can be bounded by the first term of the binomial expansion:

$$\Pr[A_i] > \left(\frac{n}{2}\right) p_i^2 (1 - p_i)^{n-2} > \frac{n^2}{3} p_i^2 \left(1 - \frac{1}{2n}\right)^{n-2} > \frac{n^2}{3} p_i^2 .$$

Also, applying (6.1),

$$\Pr[B_i] \geq 1 - n \sum_{j=1}^{i-1} p_i \geq \frac{1}{2} .$$

Observe that the C_i’s are mutually exclusive and apply the Cauchy-Schwarz inequality followed by (6.1) to obtain:

$$\Pr[C] \geq \sum_{i=1}^{q} \Pr[C_i] \geq \frac{n^2}{3e} \sum_{i=1}^{q} p_i^2 \cdot \frac{1}{2} \geq \frac{n^2}{6e} \frac{(\sum_{i=1}^{q} p_i)^2}{q} \geq \frac{1}{24e \cdot q} .$$

When C holds, at least two nodes pick a transmission from the highest subrange in use. Using a similar argument to case 1, we can show that in this case the symmetry of the network does not break.
We conclude that with probability at least \(\frac{1}{24e \cdot q} \), the nodes remain in identical states.

\[\Box \]

6.2 Lower Bound on Power Needed for a t-Round Leader Election Algorithm

We can now show a lower bound on the power using Lemma 6.3.

Theorem 6.4. Any t-round leader election algorithm in the SINR model running correctly w.h.p. requires \(P_{\text{max}} \geq 2^{\sqrt{n}/(24e)} P_{\text{min}}, \ t \geq 1 \).

Proof. For the sake of contradiction, let \(A \) be a t-round leader election algorithm in the SINR model that runs correctly with probability greater than \(1 - 1/n \) with a power bound strictly smaller than \(2^{\sqrt{n}/(24e)} P_{\text{min}} \).

We first argue by induction on the number of rounds \(r, 1 \leq r \leq t \), that the probability that all nodes are in identical states at the end of round \(r \), is at least

\[
\frac{1}{(24e \cdot q)^r},
\]

for \(q < \sqrt{n}/(24e) \).

1. **Base Case:**

 We're in the first round of the algorithm, where all nodes are initialized in identical states. By Lemma 6.3, the probability that the nodes are in identical states at the end of round 1 is at least \(\frac{1}{24e \cdot q} \).

2. **Inductive Step:** \(r \geq 2 \):
Suppose that the nodes remain in identical states for the first $r - 1$ rounds with probability at least
\[
\frac{1}{(24e \cdot q)^{r-1}}.
\]
We must prove that the nodes remain in identical states for r rounds with probability at least
\[
\frac{1}{(24e \cdot q)^r}.
\]
Given that the nodes are in identical states in the beginning of round r, by Lemma 6.3, the nodes remain in identical states at the end of round r with probability at least $\frac{1}{24e \cdot q}$. Thus, the nodes are in identical states after the first r rounds with probability $\frac{1}{(24e \cdot q)^r}$.

This concludes the induction. For $r = t$, all nodes remain in identical states for t rounds with probability at least
\[
\frac{1}{(24e \cdot q)^t}.
\]
Algorithm A elects a leader with probability at least $1 - 1/n$. For Algorithm A to work correctly, it’s required that the nodes are not in identical states by the end of round t.

Thus, it’s necessary that $\frac{1}{n} \geq \frac{1}{(24e \cdot q)^t}$. However, as $q < \sqrt{n}/(24e)$, we reach a contradiction:

\[
\frac{1}{n} \geq \frac{1}{(24e \cdot q)^t} > \left(\frac{1}{24e \cdot \frac{\sqrt{n}}{24e}}\right)^t > \frac{1}{n}
\]
Thus, we have shown that such an algorithm \(A \) cannot exist. It follows that any algorithm that solves the leader election problem in \(t \) rounds must have a power bound of at least \(2^{\sqrt{\pi/(24e)}} P_{\min} \).

\[\square \]

Corollary 6.5. Any 2-round leader election algorithm in the SINR model running correctly w.h.p. requires \(P_{\max} \geq 2^{\sqrt{\pi/(24e)}} P_{\min} \).
Chapter 7

All-to-All Broadcast with Power Control

Here we present an All-to-All Broadcast algorithm, Algorithm LeCirio1, that works with power control and takes $2n$ rounds.

This chapter consists of two Sections. In Section 7.1, we present a variant of leader election algorithm 2-LE, from Chapter 3, that works with probability greater than $1 - \frac{2^{2048}}{n^2 \log n} - \frac{2}{n^3}$, Algorithm 2-$LEp$.

In Section 7.2, we present an All-to-All broadcast algorithm, Algorithm LeCirio, that uses it as a subroutine.

7.1 Augmented Leader Election

Algorithm 2-LE works with probability greater than $1 - \frac{1}{n}$. We need an algorithm that works with higher probability to use as a subroutine in Algorithm LeCirio.

1This algorithm gets its name from a restaurant in Brussels that has a wonderful orange cat.
In addition, the broadcasting algorithm, Algorithm LeCirio, requires a high-probability upper bound for \(n \). We need an algorithm that returns some value that can be used to calculate an upper bound of \(n \).

To this end, we define the following problem.

Problem 7.1 (Augmented Leader Election Problem). Eventually elect exactly one node (called the leader), with all nodes knowing (i) whether or not they are the leader and (ii) some value \(k \), such that \(k \geq \log n - \log \log n - 3 \).

We now present Algorithm 2-LEp that solves Problem 7.1 with probability greater than \(1 - \frac{2048}{n^2 \log n} - \frac{2}{n^3} \).

Algorithm 2-LEp differs from 2-LE in only two places, the ID selection helper function \(g \), and the transmission of \(k \). The nodes pick IDs uniformly at random from \([J, 2 \cdot J]\), where \(J = g(k) := 2^{k^3} k^5 \). We will show that this change ensures that Algorithm 2-LEp elects a leader with a much higher probability than 2-LE.

In the first round, the competing nodes broadcast their estimate of \(k \), along with their ID, and in the second round, the listeners repeat the received estimate for \(k \), along with the ID of the leader. This change ensures that the nodes will be able to calculate an upper bound for \(n \) during LeCirio with a high enough probability.

7.1.1 Pseudocode for Algorithm 2-LEp

54
Algorithm 5 $2-\text{LE}_{pq}$: 2-Round Leader Election Algorithm with higher success rate

1: **Preprocessing:**
2: \textit{Role}: a boolean Bernoulli($\frac{1}{2}$) random variable \{‘\textit{competitor}’ if heads, ‘\textit{listener}’ if tails\}
3: \textit{k}: a Geometric($\frac{1}{2}$) random variable, $k \in \mathbb{Z}_{\geq 0}$
4: \textit{kl}: the leader’s k value, initially 0, $k_l \in \mathbb{Z}_{\geq 0}$
5: \textit{ID}: chosen uniformly at random from $[J, 2 \cdot J]$, where $J = g(k) := 2^k k^5$, $ID \in \mathbb{Z}_{\geq 0}$
6: \textit{P}: the transmission power, $P = f(ID) := P_{\text{min}} \cdot (ID)^{\gamma\text{ID}}$, $P \in \mathbb{Z}_{\geq 0}$
7: \textit{Leader}: a string denoting the identity of the leader, initially empty
8:
9: **Round 1:**
10: if \textit{Role} = \textit{competitor} then
11: Broadcast \textit{ID}, and \textit{k} using power P
12: else
13: If \textit{v} receives message \textit{m}, set \textit{Leader} to the received \textit{ID}, set \textit{k_l} to the received \textit{k}
14:
15: **Round 2:**
16: if \textit{Role} = \textit{competitor} then
17: If \textit{v} receives message \textit{m}, set \textit{Leader} to the received \textit{ID}, set \textit{k_l} to the received \textit{k}
18: else
19: Broadcast \textit{Leader}, and the received \textit{k} using power P
7.1.2 Analysis of Algorithm 2-LEp

Let \(k^* := \log n - \log \log n - 2 \). Using a similar argument to Lemma 3.2, we can show that for at least one and at most \(32 \log n \) competitors \(v \), it holds that \(k_v \geq k^* \) with a high enough probability.

Lemma 7.2. Let \(k^* := \log n - \log \log n - 2 \). With probability greater than \(1 - \frac{1}{n^4} \), for at least one and at most \(32 \log n \) competitors \(v \) in Algorithm 2-LEp, it holds that \(k_v \geq k^* \).

The proof of Lemma 7.2 is the same as the proof of Lemma 3.2, as a node \(v \) calculates \(k_v \) the in the exact same way whether it is running Algorithm 2-LEp or 2-LE.

We show that exactly one node receives the highest ID with probability greater than \(1 - \frac{1024}{n^4 \log n} \) (similarly to Lemma 3.3).

Lemma 7.3. In the first round of Algorithm 2-LEp, a sole competitor receives the highest ID with probability greater than \(1 - \frac{1024}{n^4 \log n} \), given that at least one node calculated \(k_v \geq k^* \).

Proof. The ranges of IDs assigned to nodes of different \(k_v \) values are disjoint. The competitor receiving the highest ID will therefore necessarily be one with a highest \(k_v \) value, which we denote by \(K \).

Let \(Z \) be the set of competitors with

\[k_v = K \geq k^* (= \log n - \log \log n - 2). \]
By Lemma 7.2, \(Z \) is non-empty and contains at most \(32 \log n \) nodes. The probability that a given pair of nodes in \(Z \) receive the same ID is inversely proportional to the range of IDs sampled from, or \(1/J \). The probability that some pair of nodes in \(Z \) are assigned the same ID is then, by the union bound, at most

\[
\frac{\binom{|Z|}{2}}{J} \leq \frac{(32 \log n)^2}{(2 \log n)^2 \log^3 n} = \frac{1024}{n^2 \log n},
\]

for large enough \(n \).

In particular, all nodes in \(Z \) receive different IDs with probability greater than

\[
1 - \frac{1024}{n^2 \log n}.
\]

Given that a sole competitor \(v \) received the highest ID, we can show that if \(v \) broadcasts, all listeners will receive its message.

Lemma 7.4. In the first round of Algorithm 2-LEp, if a sole competitor receives the highest ID (\(ID > n \)), its transmission is received by all the listeners.

We can prove Lemma 7.4 using similar arguments to the ones in the proof of Lemma 3.4.

All that is left to show is that the whole algorithm works with probability greater than

\[
1 - \frac{2048}{n^2 \log n} - \frac{2}{n^3}.
\]

Theorem 7.5. Algorithm 2-LEp terminates with all nodes agreeing on a common leader and knowing some value \(k \geq \log n - \log \log n - 2 \), with probability greater than

\[
1 - \frac{2048}{n^2 \log n} - \frac{2}{n^3}.
\]
Proof. Using a union bound, we add up the error probabilities of Lemmas 7.2 and 7.3, and find that a sole competitor \(w \), calculates \(k_w \geq \log n - \log \log n - 2 \) and receives the highest ID, with probability at least \(1 - \frac{1024}{n^2 \log n} - \frac{1}{n^2} \). Then, by Lemma 7.4, \(w \) successfully informs all the receivers of its ID and \(k_w \). All three lemmas work identically round 2. Hence, with probability at least \(1 - \frac{2048}{n^2 \log n} - \frac{2}{n^3} \), the algorithm succeeds.

\(\square \)

7.2 All-to-All Broadcast Algorithm

In this Section, we present our all-to-all broadcast algorithm LeCirio, which concludes successfully in \(2n \) rounds w.h.p., that is, with probability greater than \(1 - 1/n \).

7.2.1 The LeCirio Algorithm

Algorithm LeCirio has two phases.

The first phase consists of the two rounds needed for the nodes to run Algorithm 2-\(LEp \), which elects a leader, and to pick transmission powers. This leader acquires the Leader position and stays around for the whole algorithm.

The second phase consists of \((n-1) \) two-round timeslots, which is \(2n-2 \) rounds. In the first round of each timeslot, the leader node listens and all other competing nodes broadcast. If no message is received, the leader assumes that no one else wants to broadcast, and drops out.

In the second round, the leader broadcasts the message it received in the last round, acknowledging it. All other nodes listen. If a node receives its own message, it drops out. The messages are distinct, so a node drops out only if it receives its
own message. Each node v keeps a set out_v that contains all the messages it has received and its own message.

Note that in the above algorithm, all nodes but the leader node v have a chance to broadcast. In order to ensure that v also has a chance to broadcast, it will append its message to the message it repeats in the second round of Phase 2, so that all nodes receive it.

More specifically:

Phase 1 This phase takes two rounds.

In Phase 1, each node v runs Algorithm 2-LEp, to determine whether it is the leader node, and uses the leader’s k value, k_l, to calculate $N = 2^{2k_l - 6}$. Node v picks its ID_v uniformly at random from $[N, N^4 + N]$, and its transmission power $P = f(ID_v) = P_{\text{min}} \cdot (ID_v)^{\gamma ID_v}$.

Phase 2 The second phase takes $2n - 2$ rounds. Let $rounds$ denote how many rounds have passed in Phase 2, and msg_v be what node v wants to broadcast.

If $rounds$ is odd:

If v is the leader node, it listens. If it receives a message, it sets variable $lastmsg_v$ to the received message. Otherwise, it drops out.

If v is not the leader node, it broadcasts msg_v.

If $rounds$ is even:

If v is the leader node and $rounds = 2$, it broadcasts $lastmsg_v$ and msg_v.

Otherwise, it broadcasts just $lastmsg_v$.

If v is not the leader node, it listens. If it receives a packet that is msg_v or contains msg_v, it drops out.
Algorithm 6 \textit{LeCirio}_\textit{L}: All-to-All Broadcast Algorithm with Power Control

\begin{algorithm}
\begin{algorithmic}
\STATE 1: ID, initially 0, $ID \in \mathbb{Z}_{\geq 0}$
\STATE 2: P: the transmission power, $P = P_{\text{min}}, P \in \mathbb{Z}_{\geq 0}$
\STATE 3: $Leader$: a string denoting the identity of the leader, initially empty
\STATE 4: N, initially 1, $N \in \mathbb{Z}_{\geq 1}$
\STATE 5: k_l: the leader’s k value, initially 0, $k_l \in \mathbb{Z}_{\geq 0}$
\STATE 6: $\text{lastmsg} \in \mathcal{M} \cup \bot$, initially \bot
\STATE 7: $msg \in \mathcal{M}_v$
\STATE 8: out, a set, initially contains just msg
\STATE 9: \hspace{1cm} \textbf{Phase 1:}
\STATE 10: \hspace{1cm} Run Algorithm 2-LEp, setting the $Leader$ and k_l variables
\STATE 11: \hspace{1cm} \textbf{Choose} ID uniformly at random from $[N, N^4 + N]$, where $N = 2^{2k_l-6}$
\STATE 12: \hspace{1cm} \textbf{Set} $P = f(ID) = P_{\text{min}} \cdot (ID)^{\gamma ID}$
\STATE 13: \hspace{1cm} \textbf{Phase 2:}
\STATE 14: \hspace{1cm} \textbf{for} round in $[1, 2, ..., 2n - 2]$ \textbf{do}
\STATE 15: \hspace{1.5cm} \textbf{if} $v = Leader$ \textbf{then}
\STATE 16: \hspace{2cm} \textbf{if} round \mod 2 = 0 \textbf{then}
\STATE 17: \hspace{3cm} \textbf{if} round = 2 \textbf{then}
\STATE 18: \hspace{4cm} Broadcast a packet containing both lastmsg and msg
\STATE 19: \hspace{3cm} \textbf{else}
\STATE 20: \hspace{4cm} Broadcast lastmsg
\STATE 21: \hspace{2cm} \textbf{else}
\STATE 22: \hspace{3cm} Listen
\STATE 23: \hspace{3cm} \textbf{if} a packet is received \textbf{then}
\STATE 24: \hspace{4cm} Set lastmsg to that packet, add lastmsg to out
\STATE 25: \hspace{3cm} \textbf{else}
\STATE 26: \hspace{4cm} Drop out
\STATE 27: \hspace{1.5cm} \textbf{else}
\STATE 28: \hspace{2cm} \textbf{if} $v \neq Leader$ \textbf{then}
\STATE 29: \hspace{3cm} \textbf{if} round \mod 2 = 0 \textbf{then}
\STATE 30: \hspace{4cm} Listen, adding any received messages to out
\STATE 31: \hspace{4cm} \textbf{if} a packet is received that contains msg \textbf{then}
\STATE 32: \hspace{5cm} Drop out and keep listening, adding any received messages to out
\STATE 33: \hspace{4cm} \textbf{else}
\STATE 34: \hspace{5cm} Broadcast msg
\STATE 35: \hspace{1.5cm} \textbf{else}
\STATE 36: \hspace{2cm} \textbf{Drop out}
\end{algorithmic}
\end{algorithm}
7.2.2 Analysis of LeCirio

We show that LeCirio terminates after each node has communicated its information to everyone in $2n$ rounds w.h.p.

To this end, we first show that by the end of Phase 1 a leader is elected and all nodes have unique IDs larger than n, and then show that all nodes broadcast their messages successfully in Phase 2, with a high enough probability.

By Lemma 7.5 we know that Algorithm 2-LEp terminates with all nodes agreeing on a common leader and knowing some value $k \geq \log n - \log \log n - 2$, with probability greater than $1 - \frac{2048}{n^2 \log n} - \frac{2}{n^2}$.

We now show that by the end of Phase 1, the nodes have unique IDs greater than n with a high enough probability.

Lemma 7.6. Algorithm LeCirio’s Phase 1 terminates with all nodes having unique IDs greater than n, with probability greater than $1 - 1/n^2$, given that Algorithm 2-LEp terminated successfully.

Proof. If Algorithm 2-LEp terminated successfully, a leader l was elected, and all nodes know $k_l \geq \log n - \log \log n - 2$. Each node v calculates $N = 2^{2k_l - 6}$, which is a good upper bound for n:

$$N = 2^{2k_l - 6} > 2^{2\log n - 2 \log \log n} = \left(\frac{n}{\log n}\right)^2.$$

Given such N, there is a collision when picking IDs with probability
\[\binom{n}{2} \frac{1}{N^4} \leq \frac{n^2}{N^4} \leq \frac{1}{n^2}. \]

Thus, the nodes have unique IDs with probability greater than \(1 - 1/n^2\), and all IDs are greater than \(n\).

\[\square \]

We can now combine Lemmas 7.5 and 7.6 to show that LeCirio’s Phase 1 is successful with a high enough probability.

Lemma 7.7. By the end of Algorithm LeCirio’s Phase 1, a leader is elected and all nodes have unique IDs larger than \(n\) with probability greater than \(1 - 2/n^2\).

Proof. By Lemma 7.5 we know that Algorithm 2-LEp terminates with all nodes agreeing on a common leader and knowing some value \(k \geq \log n - \log \log n - 2\), with probability greater than \(1 - \frac{2048}{n^2 \log n} - \frac{2}{n^4}\).

By Lemma 7.6, we know that given the successful termination of Algorithm 2-LEp, all nodes pick unique IDs greater than \(n\) with probability greater than \(1 - 1/n^2\).

Using a union bound, we can conclude that by the end of Algorithm LeCirio’s Phase 1, a leader is elected and all nodes have unique IDs larger than \(n\) with probability greater than \(1 - 2/n^2\).

\[\square \]

Now, we show that in any round of Phase 2 of Algorithm LeCirio, all listeners receive the message sent by the broadcasting node with the highest ID.
Lemma 7.8. In any round of Phase 2 of Algorithm LeCirio, if a sole broadcasting node has the highest ID ($ID > n$), then its transmission is received by all the listeners.

Proof. Suppose that the nodes are executing Algorithm LeCirio, and they are on round i of Phase 2. If i is even, only the leader node is broadcasting, thus the claim holds.

It remains to show that the claim holds when i is odd. We assume that some broadcasting node has the highest ID ($ID > n$). Because the nodes calculate their transmission power using the same functions as in Algorithm 2-LEp, we can use similar arguments as the ones in the proof of Lemma 7.4 to show that all listeners receive the message sent by the node with the highest ID.

Thus, in any round of Phase 2 of Algorithm LeCirio, if a sole broadcasting node has the highest ID ($ID > n$), its transmission is received by all the listeners.

\[\Box \]

It remains to show that Algorithm LeCirio completes an all-to-all broadcast in $2n$ rounds with probability greater than $1 - 1/n$.

Theorem 7.9. Algorithm LeCirio completes an all-to-all broadcast in $2n$ rounds with probability greater than $1 - 1/n$.

Proof. According to Lemma 7.7, Phase 1 terminates with the election of a leader, and with all nodes having unique IDs greater than n, with probability greater than $1 - 2/n^2$.

63
No messages in \mathcal{M} are sent during Phase 1, so all messages are sent during Phase 2. We ensure that both the leader node and the non-leader nodes broadcast their message successfully.

Leader node

The leader node sends its message during the second round of Phase 2, and since it’s the only one broadcasting, its message is received by all nodes.

Non-leader nodes

Let’s assume that all nodes have unique IDs greater than n.

The non-leader nodes attempt to broadcast their messages in odd rounds during Phase 2. In any odd round, according to Lemma 7.8, some node v’s message is received by all listeners, which includes the leader node. In the next round the leader node repeats v’s message ensuring that all nodes receive it. After a node receives a message it sent, it drops out. The messages are distinct, and no node can drop out as a result of receiving someone else’s message.

Every two rounds of Phase 2, some node drops out as every other node has received its message. Since there are only $n - 1$ nodes, after $2n - 2$ rounds of Phase 2, each non-leader node has successfully sent its message to every other node.

We conclude that Algorithm LeCirio takes $2n$ rounds, and terminates after all nodes have sent their messages to every other node with probability greater than
1 − 2/n^2 ≥ 1 − 1/n. Thus, every node v has in its out_v set a message from every node in V w.h.p..

\[\square \]

Remark 7.10. It might be possible to achieve an even more efficient broadcast algorithm than LeCirio by piggybacking messages. In Algorithm LeCirio, every other round a message is simply acknowledged. Instead of just acknowledging a message, it might possible to send a new message as well. This is an interesting topic for future work.
Chapter 8

Contributions

In this Masters thesis, we showed how the SINR model allows for more efficient algorithms in certain problems than the traditional radio network model. This is due to the new capabilities that the SINR model gives us, power control and the capture effect.

On the leader election problem, we are able to achieve a two communication round solution, where $O(\log n)$ rounds were the previously best known result. We explored some trade-offs between communication complexity and transmission power for the leader election algorithm.

We achieved an efficient algorithm for the all-to-all broadcast problem. We developed an all-to-all broadcast algorithm that uses power control, and terminates in $2n$ rounds w.h.p..

8.1 Future Work

Some interesting directions for the future are the following:
1. It would be interesting to explore how to make efficient algorithms using power control in other problems, like coloring, or MIS.

2. The presented leader election algorithm only works in a single-hop network. It would be exciting to see what speed-up power control might be able to give in a multi-hop setting.

3. There is a gap between our upper bound on the power range (Theorem 4.1), and our lower bound (Theorem 6.4). It would be interesting to find a more efficient algorithm and/or a tighter lower bound.

4. One could explore how to make a more efficient broadcast algorithm than LeCirio by piggybacking messages.
Bibliography

