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Abstract

In this thesis, I focus upon application of natural language processing to clinical di-
agnostics and treatment within the palliative care and serious illness field. I explore a
variety of natural language processing methods, including deep learning, rule-based,
and classic machine learning, and applied to the identification of documentation re-
flecting advanced care planning measures, serious illnesses, and serious illness symp-
toms. I introduce two tools that can be used to analyze clinical notes from electronic
health records: ClinicalRegex, a regular expression interface, and PyCCI, an a clinical
text annotation tool. Additionally, I discuss a palliative care-focused research project
in which I apply machine learning natural language processing methods to identifying
clinical documentation in the palliative care and serious illness field. Advance care
planning, which includes clarifying and documenting goals of care and preferences for
future care, is essential for achieving end-of-life care that is consistent with the prefer-
ences of dying patients and their families. Physicians document their communication
about these preferences as unstructured free text in clinical notes; as a result, routine
assessment of this quality indicator is time consuming and costly. Integrating goals of
care conversations and advance care planning into decision-making about palliative
surgery have been shown to result in less invasive care near the time of death and
improve clinical outcomes for both the patient and surviving family members. Nat-
ural language processing methods offer an efficient and scalable way to improve the
visibility of documented serious illness conversations within electronic health record
data, helping to better quality of care.

Thesis Supervisor: Manolis Kellis
Title: Professor
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Chapter 1

Introduction and overview

This thesis focuses upon application of natural language processing to clinical diag-

nostics and treatment within the palliative care and serious illness field. A variety

of natural language processing methods are explored, including deep learning, rule-

based, and classic machine learning, and applied to the identification of documenta-

tion reflecting advanced care planning measures, serious illnesses, and serious illness

symptoms.

To ensure that patients receive care that is consistent with their goals, clinicians

must communicate with seriously ill patients about their treatment preferences. More

than 80% of Americans say they would prefer to die at home, if possible. Despite

this, 60% of Americans die in acute care hospitals and 20% die in an Intensive Care

Unit (ICU)[8]. Advance care planning, which includes clarifying and documenting

goals of care and preferences for future care, is essential for achieving end-of-life care

that is consistent with the preferences of seriously ill patients and their families. In-

adequate communication is associated with more aggressive care near the the time

of death, decreased use of hospice and increased anxiety and depression in surviving

family members[51, 41, 47, 13]. Several studies have demonstrated the potential of ad-

vanced care planning to improve end-of-life outcomes (e.g., reducing unintended ICU

admissions and increasing hospice enrollment). In the absence of explicit goals of care

decisions, clinicians may provide clinical care[21] that does not provide a meaningful

benefit to the patient[22] and, in the worse case, interferes with the treatment of other
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patients[21]. For these reasons, it is recommended that care preferences are discussed

and documented in the EHR within the first 48 hours of an ICU admission[16, 25].

In recent years a consensus has emerged that such conversations are an essential

component of practice and must be monitored to improve care quality. However, the

difficulty of retrieving documentation about these conversations from the electronic

health record has limited rigorous research on the prevalence and quality of clinical

communication. For example, the National Quality Forum (NQF) recommends that

goals of care be discussed and documented in the EHR within the first 48 hours of an

ICU admission, especially among frail and seriously ill patients. This was one of only

two Centers for Medicare and Medicaid Services recommended palliative care quality

measures for the Medicare Hospital Inpatient Quality Reporting program[43]. Yet,

despite widespread support, routine assessment of this and similar quality measures

have proven nearly impossible because the information is embedded as non-discrete

free-text within clinical notes. Manual chart review is time-consuming and expen-

sive to scale [50, 14, 1]. Consequently, many end-of-life quality metrics are simply

not assessed, and their impact on distal and important patient outcomes have been

insufficiently evaluated.

Additionally, palliative surgical procedures, which are performed to reduce symp-

toms or improve quality of life, are common in patients with advanced cancer. Pallia-

tive surgery has been shown to represent 6-20% of all operations performed by surgical

oncologists and over 1,000 procedures per year at tertiary cancer centers[36, 26, 39],

and national trends point to an increase in the proportion of patients with cancer who

receive palliative surgery in their last months or weeks of life[28]. Despite considerable

achievements, including contributions from the National Quality Forum (NQF) Pal-

liative and End-of-Life Care Project, healthcare measurement for surgical palliation

remains an important gap area.

There is a lack of high-quality evidence or consensus surrounding the appropriate

application of palliative surgery. While the risks of mortality and major complications

have been described in the literature, there is a paucity of evidence regarding other im-

portant patient outcomes after palliative surgery, including symptom relief or reduced

16



treatment burdens (e.g., prolonged hospitalization). Integrating goals of care conver-

sations and advance care planning into decision-making about palliative surgery have

been shown to result in less invasive care near the time of death and improve clini-

cal outcomes for both the patient and surviving family members[51, 41, 47, 13, 38].

However, the extent to which these discussions are implemented and documented has

not been quantified.

Over the past twenty years, health services research has undergone a period of

explosive growth[45]. These gains have been made possible through improvements in

computer processing and accessibility to high-quality national databases. However,

the field remains dependent on extraction specialists to facilitate analysis. Trained

nurses sift through charts isolating relevant information, which is then compiled and

uploaded into the appropriate database[6, 17]. Use of structured data such as ad-

ministrative claims codes can obviate this process, but at the cost of a reduction in

granularity and specificity. The vast majority of relevant patient information (70-

80%), resides in unstructured free-text notes[40]. With the widespread adoption of

electronic health records (EHR), it is possible to analyze clinical notes using power-

ful computational methods such as natural language processing (NLP) and machine

learning[27, 5]. These methods are particularly relevant in fields such as palliative

medicine, where standard administrative data poorly captures the relevant patients

population[24].

With the increasing amount of medical data becoming available, as well as com-

putational techniques becoming more widespread, it is important for clinicians to be

empowered to take on computationally-driven research. Clinicians come into con-

tact with huge magnitudes of data on a daily basis, yet much of it is indecipherably

complex. Methods to process large amounts of data are often inaccessible to the

typical clinician and require more advanced computational knowledge. With easy-to-

use software tools, clinicians could begin to contribute more readily to data-driven

computational research and also perform some of that research themselves.

In this thesis I introduce two tools, which I have developed, that can be used

to analyze clinical notes from electronic health records. Additionally, I discuss a
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palliative care-focused research project in which I apply machine learning natural

language processing methods to identifying clinical documentation in the palliative

care and serious illness field.

Chapter 2 discusses ClinicalRegex, a natural language processing interface that

allows the user to easily run regular expression on clinical notes. Chapter 3 discusses

PyCCI, a clinical notes annotation tool. There are two versions: one for symptoms

annotation, and one for general annotations. PyCCI is designed to be used by clin-

icians without the need of technical intervention. Chapter 4 discusses a study in

which I trained and validated a deep neural network, in comparison with rule-based

methods, to detect documentation of advanced care planning conversations in clinical

notes from electronic health records.
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Chapter 2

ClinicalRegex: A Regular

Expression Program

2.1 Introduction

Unstructured clinical notes represent 70-80% of all data in electronic health records.

They are typically embedded in such data, and manual review of such notes take

intensive time and labor [47]. However, important data is still captured in these

notes, though buried by volume and lack of organization. With the use of natural

language processing, clinical notes can be rapidly scanned to detect pre-specified

indicators[40].

Regular expressions are a simple but powerful method of extracting information

from text. Many entity extraction tasks can be fulfilled through the usage of a well-

validated set of regular expression rules [30]. Regular expressions identify patterns of

characters exactly as they are specified in a set of rules. Often, regular expressions

are used during initial forays into natural language processing. They are simple,

easy-to-understand, and behave exactly as specified. Not only that, but they are still

effective in identifying a variety of defined concepts. However, the creation of regular

expressions involves a non-trivial amount of technical computer science knowledge

and are often inaccessible to most clinicians.

ClinicalRegex is a user interface designed to be easily accessible and intuitive to
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navigate. It is able to process regular expressions on input text, with user-specified

keywords. With this interface, clinicians can determine keywords to extract and eas-

ily perform regular expression extractions with those keywords, without additional

technical intervention. In this chapter, I discuss the architecture, features, and func-

tionality of ClinicalRegex, and also describe two research projects in which this soft-

ware was used. It has been used to identify seriously ill patients with understudied

disease processes as well as to assess end-of-life quality indicators in cancer patients

receiving palliative surgery.

2.2 Architecture

ClinicalRegex is implemented using Python 3.5 and leverages Tkinter, a graphical

user interface Python package. It is implemented using a Model View Controller ar-

chitecture, which is common to graphical user interface programs. Figure 2-1 displays

architecture of this program. The program is compiled into an executable file using

PyInstaller, which allows it to be easily utilized by someone unfamiliar with computer

programming.

Figure 2-1: Software Architecture of ClinicalRegex

The MainApplication class is the “view” class, which is responsible for defining

the user interface of ClinicalRegex. Because this is a Tkinter application, the entire

program is written in Python. The entire user interface is defined in Python. Due to

this, the MainApplication class also acts as the “controller” class, which manipulates
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the user interface and determines what the display will be. These actions include

file selection, user options, and display of the clinical notes. Additionally, a separate

file, extract values.py, contains the classes and logic responsible for the regular

expression functionality. This code is kept separate for modularity and ease of test-

ing. Finally, the DataModel class acts as the “model” class, where data, including

file names, dataframes, and indices are stored and modified. ClinicalRegex allows

annotation of the notes displayed; the logic to write these annotations to file is also

included in the DataModel class.

2.3 Features and Functionality

ClinicalRegex can be used entirely through the user interface. Figure 2-2 displays

the different elements of the user interface in detail. In order to perform the regular

expression information extraction, a file must be selected by the user via a button

press and file selection window. It is compatible with RPDR (Research Patient Data

Registry), the file format used by Partners HealthCare to deliver data. It also ac-

cepts custom files in CSV formats, needing only a note column key and a patient ID

column key so that it can recognize the columns that contain the note text and an

ID respectively.

There is a text box on the right hand panel where a list of comma-separated key-

words can be typed. These are the keywords that the regular expressions identify

within the notes. The regular expression rules take into consideration possible varia-

tions in punctuation and text cases, which them more effective than a simple keyword

search. The text box next to the “Run Regex” button, which performs the regular

expression extraction, allows for modification of the output file name. The output

file is saved in the same directory as the original file selected.

This software also allows for human review of the extracted keywords. As soon as

the regular expression information extraction is complete, the notes are displayed in

the left hand panel. Users are able to look through all notes in the original file and see

the relevant keywords highlighted in yellow. A checkbox above the text display panel
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Figure 2-2: ClinicalRegex user interface elements. 1: File selection button. Can
accept RPDR text files or any CSV file with note and ID columns. Displays file
name here. 2: Output file selection button. The user can elect to view already
created output files. When the user runs the regular expression on a selected file, the
output file automatically appears here. 3: Clinical text box, where the clinical note
is displayed with identified text highlighted in yellow. 4: Patient ID displayed here,
or whatever column value is specified in the Patient ID column key. 5: Previous and
Next buttons navigate to the previous or next note. 6: Text boxes where you can
specific the column name where the clinical note and patient IDs reside. Must be
correctly specified if the input file is not an RPDR file. Is hidden when RPDR format
is selected. 7: Regular expression functionality occurs here. The user can specify any
output file name they would like, the default is “output.csv.” They can enter comma-
separated texts into the textbox. These are the keywords the regular expressions will
extract. To run the regular expression on the input file, the user pressses the “Run
Regex” button. 8: Annotation text box. When the regular expression is complete,
or if the user opens an output file, they can annotate each note with a value. When
they press “Save” this value is written to file.
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can be checked if the user only wishes to view notes that have a keyword identified.

There is also functionality for rudimentary user annotation of the clinical notes.

A text box for “Annotated Value” accepts any character as an annotation, which is

saved in the output file. If an annotated value is currently saved in the file, it is

displayed in the text box. The “Save” button must be pressed in order for the value

to be saved. Additionally, output files can be selected, viewed, and edited using the

“Select Output” button.

2.4 Application to identifying seriously ill patients

ClincalRegex was used in a study to identify seriously ill patients with understudied

disease processes using a combination of administrative data and NLP.

Serious illness is defined as proposed by Kelley et al.: a health condition that

carries a high risk of mortality and negatively impacts quality of life, or excessively

strains caregivers[24]. Using a combination of administrative codes and NLP, we

identified two cohorts of patients with serious illness that could not be isolated by

standard methods alone. We chose to focus on one medical and one surgical diagno-

sis: pneumoperitoneum and leptomeningeal metastases secondary to stage IV breast

cancer. Both disease processes are associated with high short-term mortality and

often require a reevaluation of treatment priorities[2, 42, 46]. Since it is difficult to

identify these patient populations, we have little understanding of who may bene-

fit from an intensive, interventional approach and who may benefit from a comfort

focused approach.

2.4.1 Data

Our primary data source was the Partners HealthCare Research Patient Data Reg-

istry. This registry gathers data from multiple EHRs at Partners HealthCare. Admin-

istrative data is available for encounters across all hospital and clinic settings within

the Partners HealthCare system. Data are linked to EHR notes, including admission

notes, consultation notes, progress notes, procedure notes, and discharge summaries.
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Initial population screening was performed using ICD-9 diagnosis codes which are

compiled for every patient encounter in Partners HealthCare. We used ICD-9 diagno-

sis codes for unspecified peritoneal disorder (568.89) and visceral perforation (596.83)

to identify patients with possible pneumoperitoneum between 2010 and 2015. We

used ICD9 codes for breast cancer (174.0-174.9, 175.0, and 175.9) and leptomeningeal

disease (198.4) to identify patients with possible leptomeningeal metastases between

2010 and 2016.

2.4.2 Approach

Despite their high mortality and morbidity, the administrative codes associated lep-

tomeningeal metastasis and pneumoperitoneum have a low specificity. This has lim-

ited prior studies to small single institution case series[2, 42, 46]. In order to perform

larger studies using multi-institutional data without the aid of dedicated registries we

used a three-step approach. This process is illustrated in Figure 2-3.

Figure 2-3: Three step process of patient identification

Step 1: We identified a large group of potential patients. For example, we used

International Classification of Diseases, 9th Revision (ICD-9) diagnostic codes for

unspecified peritoneal disorder and visceral perforation to screen for pneumoperi-

toneum. While the majority of patients who have these diagnoses code will not

have pneumoperitoneum, it is likely that any patient that does have clinical relevant

pneumoperitoneum will have one of these codes.

Step 2: From this pool of potential patients, ClinicalRegex allows for accurate

and efficient isolation of the relevant population. We are able to scan through free-
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text patient data (clinician notes, radiology reports, etc.) to identify keywords or

phrases associated with a particular diagnosis. ClinicalRegex is used to identify pa-

tients with a specific disease. For pneumoperitoneum, we used the phrases free air,

extra-luminal air, extra-luminal gas, and pneumoperitoneum to review radiology re-

ports. For leptomeningeal disease, we reviewed radiology reports using the keyword

leptomeningeal.

Step 3: The charts of patients identified through Step 2 are audited to ensure

accuracy. The review process is performed in a semi-automated fashion in which the

positive note are listed with the positive phrase or word highlighted in order to facil-

itate identification. Using ClinicalRegex reduces the time required to review charts

by 1,000 fold compared to manual chart review by physicians[33]. Semi-automated

review ensures that the positive search terms have not been taken out of context.

For example, regular expressions may erroneously identify a note in which the phrase

no evidence of precedes the desired search term. Through machine learning the sys-

tem can learn to distinguish between positive and negative indicators and eventually

obviate the need for any review.

2.4.3 Results

Initial population screening using ICD-9 diagnosis codes yielded 6,438 patients in

the with pneumoperitoneum and 557 with metastatic leptomeningeal disease. These

patients hospitalization was associated with 299,449 and 32,519 radiology reports,

respectively. Using regular expressions, we reduced the number of reports by approx-

imately 95%. The reports were reviewed by trained physicians in a semi-automated

fashion as described in Section 2.4.2. Through this process, we were able to rapidly,

within hours, identify 869 patients with pneumoperitoneum and 187 patients with

leptomeningeal metastasis. Use of administrative codes alone was associated with

a positive predictive value (PPV) of 13% for pneumoperitoneum and 25% for lep-

tomeningeal metastasis from breast cancer as compared against the human-validated

notes. Those identified through the three step process utilizing administrative codes

and regular expressions achieved a PPV of 100% in both cases, as compared to the
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human-validated notes.

2.5 Application to assessment of palliative care pro-

cesses

Several methodological barriers impede the development and implementation of qual-

ity measures in palliative surgery[40]. Prospectively gathering patient-reported out-

comes after palliative surgery is costly, time-consuming, and hindered by high at-

trition due to serious illness and early mortality[31, 35]. As a result, the current

literature on palliative surgery outcomes is largely limited to single-institution ret-

rospective studies, which may not be generalizable and are influenced by regional

variations in end-of-life care intensity[32]. Moreover, data extraction from chart re-

view is laborious, subject to interpreter bias, and the use of diverse methodologies

impedes extrapolation of findings across studies[3, 4, 29]. Multi-site and population-

based data are needed, but the use of large databases is hindered by the limitations

of administrative claims codes, which do not distinguish palliative vs. curative pro-

cedure indications, are not sensitive to post-operative changes in symptom burden,

and do not describe palliative care processes, such as documentation of code status

discussions before surgery.

The use of electronic health record (EHR) combined with natural language pro-

cessing has the potential to overcome the challenges associated with assessing quality

indicators. To address this major gap, we developed and tested NLP using existing

data from EHR to: (1) retrospectively identify patients with malignant bowel ob-

struction who received palliative venting gastrostomy tube for refractory nausea and

vomiting and, (2) develop and refine quality benchmarks for processes of care, such

as documentation of pre-operative advance care planning.
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2.5.1 Data source and study population

The primary data source was the Partners HealthCare Research Patient Data Reg-

istry. This data is linked to the EHR and include admission notes, consultation notes,

progress notes, procedure notes, operative reports, and discharge summaries.

We used International Classification of Diseases, Ninth Revision, Clinical Modifi-

cation (ICD9-CM) and Current Procedural Terminology (CPT) administrative codes

to identify cancer patients (ICD9-CM 140-209) who received a gastrostomy tube

(ICD9-CM 43.11, 43.19, 44.32 or CPT 49440) from January 1, 2012, to March 31,

2016. All clinical notes for these patients were obtained from the Research Patient

Data Registry.

2.5.2 Methods

Administrative codes do not accurately identify whether the gastrostomy procedure

was indicated for feeding or palliative venting; therefore, we used NLP to process

textual data from the clinical notes. Specifically, we utilized regular expressions,

which can identify patterns of characters exactly as they are specified, in the form

of the ClinicalRegex software. ClinicalRegex identified patients who had the key

word venting documented within one week of their procedure. Our final denominator

was cancer patients who were treated with venting gastrostomy tube placement as

identified by administrative code and NLP methods.

Additionally, ClinicalRegex was used to identify documentation of the following

validated process measures: goals of care discussions, clarifying code status, palliative

care consultation, and assessment for hospice. Our keyword library was then used

to enumerate the instances of process documentation at three distinct time points

in the procedural timeline: two months before gastrostomy tube placement, during

admission for gastrostomy tube placement, and after the procedure admission. The

percentage of patients with documentation at each of these three time points was

then calculated to determine a process measure score.

Methodology for determining the indication for the gastrostomy procedure through
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manual chart review has been previously described[31]. In short, a single researcher

noted whether the gastrostomy was indicated for venting a malignant obstruction

(palliative indication). A second researcher reviewed a 20% random sample of charts.

Inter-rater agreement was excellent (kappa = 0.97)[50].

To determine each end-of-life quality metric, the EHR of 20 randomly selected

patients were manually reviewed by two human coders, providing a gold standard for

NLP performance. We developed a code book to ensure gold-standard manual chart

review, shown in Table 2.1. This rule book included definitions and keywords for each

process measure. Each human coder identified clinical text that included one of the

specified keywords, and annotated the clinical text to indicate which process measure

it was associated with.

The human coders annotated all 1,710 clinical notes for 21 patients, 5 were coded

by both. In the case of disagreement in the notes reviewed by both coders, a third

human coder reviewed the specific note in question, and broke the tie between the

original human coders.

2.5.3 Results

Using the keyword library (shown in Table 2.1) that we developed to assess the

quality metrics, we used ClinicalRegex on the same notes from the 68 identified

patients that were previously scored by human coders. The performance of regular

expressions for quality measures is shown in Table 2.2. We identified care preferences,

code status, palliative care and hospice discussions with high (85.7%, 90.8%, 92.9%,

89.6%, respectively) sensitivity and high (96.7%, 90.6%, 98.2%, 98.9%, respectively)

specificity compared to human coders.
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Table 2.1: Regular expression keyword library for assessment of palliative care pro-
cesses
Process Measure Key Words
Clarifying code status:
Conversations with patients or family
members about preferences for
cardiopulmonary resuscitation and
intubation. Includes limitations on
life-sustaining treatment and
confirmation, by the patient or family,
of full code status. Does not include
presumed full code status or if obtained
from other sources (i.e., review of
records, according to team).

Limitations on code status: dnr,
dnrdni, dni, do not resuscitate,
do-not-resuscitate, do not intubate,
do-not-intubate, chest compressions, no
defibrillation, no endotracheal
intubation, no mechanical intubation,
shocks, cmo, comfort measures.

Full Code Status: Full code
confirmed, full code d/w, full code
discussed, full code verified, would like
to be full code, wishes to be full code,
would like to remain full code, wishes
to remain full code, wish to be full
code, remaining full code, full code.

MOLST
Goals of care discussions:
Conversations with patients or family
members about the patients goals,
values, or priorities for treatment and
outcomes. Includes statements that
conversation occurred as well as listing
specific goals.

Goals of care, goc, goals for care, goals
of treatment, goals for treatment,
treatment goals, family meeting, family
discussion, family discussions,
debility/goals of care, goc/coping,
patient goals

Palliative care referral:
Documentation that palliative care
specialists were involved or that
consultation was considered or offered,
regardless of whether consultation
occurred.

Pallcare, palliative care, pall care,
pallcare, palliative medicine, supportive
care

Hospice assessment: Documentation
that hospice was discussed, prior
enrollment in hospice, patient
preferences regarding hospice, and
assessments the patient did not meet
hospice criteria.

Hospice
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Table 2.2: Performance of regular expression for identification of quality measures
Process Measure NLP

Library
Sensitivity
(95% CI)

Specificity
(95% CI)

Denominator
Patients with
billing codes
for cancer
AND
gastrostomy
procedure
AND key word
venting
documented
within one
week of the
procedure.

Patient with cancer
requiring placement of
venting gastrostomy.

Venting 95.8%
(88.4-97.0)

97.4%
(94.5-99.1)

Numerator
Patients in the
denominator
who have EHR
documentation
of process
measure.

ASSIST: IF a patient is
newly known to have
advanced cancer after a
surgery, diagnostic test, or
physical exam, THEN a
discussion including
prognosis and advance
care planning should be
documented within 1
month or a reason given
why such a discussion did
not occur.

Goals of
Care

Code
Status

85.7%
(84.6-87.4)

90.8%
(89.4-91.1)

96.7%
(89.6-91.3)

90.5%
(97.6-98.8)

ASSIST: IF an outpatient
with advanced cancer dies
an expected death, THEN
he or she should have been
referred for palliative care
within six months before
death (hospital-based or
community hospice) or
there should be
documentation why there
was no referral.

Palliative
Care

Hospice

92.9%
(91.8-94.2)

89.6%
(88.2-91.0)

98.2%
(97.6-98.9)

98.9%
(98.2-99.3)

30



Chapter 3

PyCCI: A Clinical Note

Annotation Tool

3.1 Introduction

Annotated clinical notes can be used for a variety of research to;ics and are especially

essential in the field of natural language processing. Annotated notes can be used for

rule-based methods as well as for deep learning and validation of both such methods.

In this chapter, I present a clinical note annotation tool that I have developed for the

purposes of natural language processing research applied to clinical subjects. PyCCI

comes in two versions: PyCCI General and PyCCI Symptoms. PyCCI General allows

for user-specified (in a configuration file) annotation domains. PyCCI Symptom is

developed specifically for annotation of documentation of symptoms, and includes a

few differences in features from PyCCI General. Both versions have been applied to

machine learning research, which are described here and in Chapter 4.

3.2 Architecture

PyCCI is implemented using Python 3.5 and leverages Tkinter, a graphical user

interface Python package. It is implemented using a modular architecture, with each

class representing a different general function in the user interface. Figure 3-1 displays
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architecture of this program. The program is compiled into an executable file using

PyInstaller, which allows it to be easily utilized by someone unfamiliar with computer

programming.

Figure 3-1: Software Architecture of PyCCI

The application is launched from main.py. In PyCCI General, main.py reads in

config.json, a configuration file that can be edited by any user to reflect the param-

eters they wish to provide. Most significantly, they can decide what categories they

would like to label text as. For example, for the advanced care planning project (de-

scribed in Chapter 4), we used the following categories: “Patient and Family Care

Preferences,” “Communication with Family,” “Full Code Status,” “Code Status Lim-

itations,” “Palliative Care Team Involvement,” “Ambiguous.” In PyCCI Symptoms,

the parameters are not configurable. Other differences in the two versions include

handling of commas in text boxes, highlighting convention, and existence of related

categories. These will be described further in Section 3.3. These required minimal

technical alterations and do not affect the general architecture of the program.

There are two main modes of the program: annotation and reviewing. These

workflows are determined based upon what button is used to open files: “Open CSV”

or “Open Results” respectively. Data is handled using Pandas DataFrames. Files

selected should be readable into Pandas DataFrames. Data remains in DataFrame

format until it is saved, at which point the current DataFrame is written to an output

csv file.

The MainApplication class is primarily responsible for defining the user inter-

face with the specified configuration parameters and also maintains the data models.

It additionally houses most of the functionality for defining and modifying what is
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displayed in the interface, including event handlers and the display of highlighted

text based on annotations. The highlighted text is clickable; clicking the highlighted

text reveals options for editing the annotation. This functionality is also housed in

MainApplication and is aided by classes TagData, AnnotatorTagData, and Review-

TagData.

The AnnotationPanel class defines the right-hand panel of the interface, where

a textbox is displayed for each defined category. The separation of the Annota-

tionPanel from MainApplication allows for convenient modularity of the annotation

functionality, which works well with the variable nature of annotation categories. An-

notationPanel creates the user interface objects for annotations: the text boxes and

checkboxes that represent each category. It is also responsible for saving annotations,

including processing and validating the text in the text boxes to ensure that it ap-

pears in the note, and then manipulating the format of the data so that it can be

saved in the specified file format (as described in Section 3.3.3). This involves adding

validated annotations to a new DataFrame, which is written to a results csv file.

The functionality for reviewing annotations from multiple annotators is unfortu-

nately not designed in a modular fashion and is instead mixed in the MainApplica-

tion class. When files are selected for review, functions in MainApplication determine

overlapping annotated elements and use that to determine how the text is then dis-

played (highlighted). The highlighted text is clickable, and the logic to determine

what options are available are also defined in MainApplication.

In reviewing, the user has the option to alter existing annotations, delete existing

annotations, or add new annotations. This functionality is fairly complex; when files

for review are selected, a new csv file is created that assigns each unique interval

of annotated text its own line. This file can be re-opened in review mode so that

a reviewer can continue working from the same data. Unique intervals are defined

as intervals that share the same labels. Let us consider the example “patient had

full code status.” If the full text is labelled as Label1 and only “patient” is labelled

as Label2, then there would be two unique intervals: “patient” and “ had full code

status.” This required development of an algorithm to quickly determine separate
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intervals of annotated text. Modifications to the existing annotations are saved to

this new file. The existing files are not modified, allowing us to preserve the integrity

of that data.

When in review mode, the user is still able to add new annotations. This function-

ality is housed in AnnotationPanel. The user is also able to alter existing annotations.

The functionality for that is in MainApplication, but the logic for saving any changes

or new annotations is still in AnnotationPanel. Annotations added while in review

mode are saved to the new file as mentioned in the previous paragraph.

3.3 Features and Functionality

PyCCI can be used entirely through the user interface. Figure 3-3 displays the dif-

ferent elements of the user interface in detail for PyCCI General, which are the same

as for PyCCI Symptoms. Figure 3-4 displays the user interface in review mode for

PyCCI Symptoms (which has the same functionality as PyCCI general reviewing).

Figure 3-2 displays a flowchart of possible workflows.

As touched upon previously, PyCCI comes in two variations: General and Symp-

toms. General allows for user-defined configurations and categories. Symptoms is

used specifically for annotation of documentation of symptoms.

PyCCI is an executable program that can be launched with a double click. It is

paired with a config.json configuration file that allows the user to define certain pa-

rameters that are then reflected in the launched program. See Table 3.3 for a detailed

description of available parameters. The program is then friendly to modification by

non-technical users.

Table 3.1: PyCCI configuration parameters

Parameter Description
PyCCI Symptoms

Configuration
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title String of title displayed at top of user

interface

Heart Failure

Symptoms

text config Dictionary of various configuration

variables

See below

keywords fname Name of the keywords file that displays

keywords in yellow highlight

keywords.txt

text key Column name of column in input file

that contains clinical note texts

TEXT

note key Column name of column in input file

that contains unique note ID

ROW ID

patient key Column name of column in input file

that contains patient ID

HADM ID

category key Column name of column in input file

that contains note category

CATEGORY

results fname suffix String that is appended the end of the

input filename. The result is the name

of the output file.

Results.csv

review fname Filename for output of annotation

mode.

reviewed.csv

textbox labels List of intended annotation categories.

Displayed in list order

[“Negative

Symptom”,

“Negation”, “Positive

Symptom”, “Positive

Modifier”, “Neutral

Symptom”,

“Ambiguous”]

35



checkbox labels List of intended checkbox categories

(annotation category that does not

contain corresponding text box).

[“None”]

commentbox labels List of intended commentbox

categories. Allows free text

[ ]

textbox label

to keypress
Dictionary of textbox label to

intended hotkey

{‘Negative Symptom’:

‘s’, ‘Negation’: ‘a’,

‘Positive Symptom’:

‘f’, ‘Positive

Modifier’: ‘d’,

‘Neutral Symptom’:

‘g’, ‘Ambiguous’: ‘e’}

textbox label

to code
Dictionary of textbox label to

intended short string that represents

that label in the output file

{‘Negative Symptom’:

‘NSY’,

‘Negation’:‘NEG’,

‘Positive Symptom’:

‘PSY’, ‘Positive

Modifier’:‘PMO’,

‘Neutral Symptom’:

‘NEU’, ‘Ambiguous’:

‘AMB’}

3.3.1 Annotating

Annotation mode is begun when the user selects a file using the “Open CSV” button.

The accepted file format is a CSV file with data added row-wise. Column keys can

be specified in the configuration file as detailed in Table 3.3. Most significant are the

text key and note key, which denote which columns contain the clinical text and a

unique identifier for each note respectively.
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Figure 3-2: PyCCI typical workflow. Files are in green, actions in orange, PyCCI-use
in blue.

If a file with a valid format is selected, the first note (row-wise) is displayed in the

clinical text box. If a keywords file is specified, all words that appear on this list in

the clinical text are highlighted in yellow. This can aid annotators in annotation, as

they can see words that are likely to be relevant to the categories they are annotating.

Annotators and annotate pieces of text by highlighting that text, copying it, and

then pasting it to the corresponding annotation category textbox on the right-hand

panel of the interface. Hotkeys can also be used, as specified in the configuration file.

If hotkeys on configured, a user can highlight text they wish to annotate and then

press the hotkey for the corresponding annotation category. The highlighted text will

then appear in the corresponding text box, eliminating the need for manual copy and

pasting. In PyCCI Symptoms, items separated by commas are considered distinct

entities and are saved in different rows of the output file.

The user can save these annotations by pressing the “Save Annotation” button

or navigating to the previous or next note. If the user stays on the same note (by

clicking “Save Annotation”), they will be able to see their annotations highlighted in

the clinical text box, in blue. Pieces of text that are annotated with multiple labels

are highlighted in a darker blue color. In PyCCI Symptoms, each category (Positive,

Negative, or Neutral) are highlighted in a different color, with overlapping labels also

being a darkened shade of the color. The user can delete their labels by clicking on

the highlighted text; a menu will pop up and display options for deletion of a label.

When annotations are saved, they are written to a new results file (the name of the
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file can be specified in the configuration file). The format of this file is described in

Section 3.3.3.

3.3.2 Reviewing

Review mode is begun with the user selects files using the “Open Results” button. The

user can select any number of files to review. These files must be in the results format

from annotation mode. All files are compared against each other to determine where

annotators agree or disagree. A new file is created in the same folder where the files

are selected from, with name as specified in the configuration file (and always named

“reviewed.csv” in the Symptoms version). All notes are displayed, with texts with

agreeing labels highlighted in green, texts with only one annotator having labelled it

in red, and texts with disagreeing labels in red. See Figure 3-4 for an image of the

review interface.

Modifications and additions can be made; the reviewer can modify existing an-

notations by clicking on the highlighted texts and choosing from a list of options (to

add a label or delete labels). The reviewer can also add completely new annotations

if they have noticed that all annotators have missed it. Everything is written to the

new “reviewed.csv” file upon save.

3.3.3 File Formats

This section provides an overview of the files that are input or output from PyCCI

and describes their formats.

• Annotation input file: Any csv file that can be read into a Pandas DataFrame

can be accepted by PyCCI, as long as column keys are correctly specified as

described in Table 3.3.

• Annotation output file: The output of annotation mode is a csv file (saved from

a Pandas DataFrame) that has each piece of annotated text in a row, with

position and label information, as well as any metadata about the note that

was present in the original file.
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• Keywords file: This file represents a list of texts that the user wants to be

highlighted in yellow during the annotation process. Typically, this is text

that is likely to belong in one of the annotation categories. The file should be

provided in txt format with each string on a new line.

• Review input files: Review mode accepts any files in the annotation output file

format. All files that the reviewer would like to compare can be selected at

once.

• Review output file: The review output file is similar in format to the annota-

tion output file. Upon launching the review software and selecting the files to

review, the program creates a new “reviewed.csv” output file with each unique

annotated interval of text on a new row. Modifications to the annotations result

in modifications to this file.

3.4 Applications

PyCCI was used for the research in Chapters 4 of this thesis. As described in Chapter

4, PyCCI General was used to annotate advanced care planning documentation. Each

note was annotated by two board-certified clinicians and finally reviewed by a third

clinician, who was responsible for validating and tie-breaking the existing annotations.

In order to ensure consistent annotation, a set of abstraction guidelines was developed

for the annotators. Each annotator identified text from clinical notes that fit specified

advanced care planning indicators. The portion of text that was deemed relevant to

the indicator was labeled in its entirety, with no restrictions on length of a single

annotation. Although the selected text was only used once for one indicator, the same

text could be used for multiple indicators if deemed appropriate by the annotator. A

similar process can be followed for annotation in completely different projects. The

final domains can be implemented in the configuration file.

PyCCI Symptoms was also utilized in a project to annotate documentation of

heart failure symptoms. Here too, each note was annotated by two board-certified
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clinicians and finally reviewed by a third clinician, who was responsible for validating

and tie-breaking the annotations. When this research was occurring, PyCCI General

had been developed. Our team discovered certain traits specific to the documentation

of symptoms that required a set of new features for convenience, eventually leading

to the development of PyCCI Symptoms.

Deciding upon annotation domains for PyCCI Symptoms was an iterative process

that involved many meetings and determining what would make sense for natural

language processing methods to interpret. Ultimately, we decided upon six categories:

negative symptoms, negative modifiers, positive symptoms, positive modifiers, and

neutral symptoms and neutral modifiers. This provided needed granularity to our

algorithms in development. Positive symptoms are symptoms that the patient has

affirmed to have. Negative symptoms are those the patient denies having. Neutral

symptoms are those such as “appetite,” which do not have a clear negative/positive

dichotomy. Modifiers exist to provide more detail to the symptom. For example, a

patient could indicate they have “more fatigue” with “more” being a positive modifier.

While currently PyCCI Symptoms has only been applied to the identification of

heart failure symptoms, the possibilities of research into symptoms documentation are

immense. This software can be extensible into any sort of symptoms documentation

research, not just to heart failure symptoms.
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Figure 3-3: PyCCI General user interface elements. 1: File selection buttons. “Open
CSV” opens a file for annotating, “Open Results” allows the user to select any number
of files for review and comparison of completed annotations. 2: Back and Next
buttons allows the user to navigate through notes. 3: Clinical notes text box, displays
the current note. 4: Indicators are of the configured annotation categories. The
user pastes text they wish to label into the corresponding box. The check box is
automatically filled. 5: The “None” checkbox is used to indicate that a note has been
reviewed and contains no labelled text. 6: Highlighted text. This is text that has been
labelled and saved. The darker blue portion is text that has been labelled in multiple
categories. 7: Popup menu on clicked highlighted text. Displays what category the
text is labelled as and provides delete commands. 8. Save button. Pressed to save
the annotations currently in the indicator text boxes.
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Figure 3-4: PyCCI Symptoms review mode user interface elements. 1: Popup menu
on clicked highlighted text. Displays the corresponding text snippet, the labels as-
signed by annotators, and options to add or delete labels. You can see that labelled
texts with agreeing labels from annotators are in green, while conflicting labels are
in red. 2: Save button. This button saves the annotations to file.
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Chapter 4

Natural Language Processing for

Advanced Care Planning

4.1 Introduction and related work

As discussed in Chapter 1, advanced care planning, which includes clarifying and

documenting goals of care and preferences for future care, is essential for achieving

end-of-life care that is consistent with the preferences of dying patients and their

families. Physicians document their communication about these preferences as un-

structured free text in clinical notes; as a result, routine assessment of this quality

indicator is time consuming and costly.

The emergence of omnipresent EHRs and powerful computers present novel oppor-

tunities to apply advanced computational methods such as natural language process-

ing (NLP)[37] to assess end-of-life quality metrics including documentation of ACP.

NLP enables machines to process or “understand” natural language in order to per-

form tasks like extracting communication quality embedded as non-discrete free-text

within clinical notes[20].

Two main approaches to NLP information extraction exist. Rule-based extraction

uses a pre-designed set of rules[37], which involves computing curated rules specified

by experts, resulting in algorithms that detect specific words or phrases. This ap-

proach works well for smaller defined sets of data such as when searching for all the
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brand names of a generic medication (e.g., if X is present, then Y=1). However,

rule-based approaches fail when the desired information appears in a large variety of

contexts within the free text[7].

Recent advances in machine learning coupled with increasingly powerful comput-

ers have created an opportunity to apply advanced computational methods, such as

deep learning, to assess the content of free-text documentation within clinical notes.

Such approaches possess the potential to broaden the scope of research on serious ill-

ness communication, and when implemented in real-time, to change clinical practice.

In contrast to rule-based methods, deep learning does not depend upon predefined

set of rules. Instead, these algorithms learn patterns from a labeled set of free-text

notes and apply them to future datasets[7]. A deep learning-based approach works

well for tasks for which the set of extraction rules is very large, unknown, or both.

In deep learning, algorithms can learn feature representations that aid in interpreting

varied language.

In this study, we used deep learning[44] to train models to detect documentation

of serious illness conversations, and we assess the performance of these deep learning

models against manual chart review and rule based regular expression.

4.2 Data

4.2.1 Data Source

We derived our sample from the publicly available ICU database, Multi Parameter In-

telligent Monitoring of Intensive Care (MIMIC) III, developed by the Massachusetts

Institute of Technology (MIT) Lab for Computational Physiology and Beth Israel

Deaconess Medical Center (BIDMC)[23]. It is a repository of de-identified adminis-

trative, clinical, and survival outcome data from more than 58,000 ICU admissions at

BIDMC from 2001 through 2012. Between 2008 and 2012, the dataset also included

clinical notes associated with each ICU admission. The Institutional Review Board

of the BIDMC and MIT have approved the use of the MIMIC-III database by any
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Table 4.1: Sample characteristics
General Note Statistics Training Data Set Validation Data Set
Number of notes 449 192
Number of tokens 612450 282788
Word count, mean (interquartile
range), words

1362.2 (987.0 -
1664.0)

1472.9 (1045.0 -
1819.0)

Patient Demographics
Number of unique patients 279 123
Age, mean (SD) 71.5 (14.4) 69.9 (15.9)
Female, Number (%) 136/279 (48.8) 52/123 (42.3)
Type of ICU at admission,
Number (%) of notes
Coronary Care Unit (CCU) 50/448 (11.2) 13/192 (6.8)
Cardiac Surgery Recovery Unit
(CSRU)

14/448 (3.1) 6/192 (3.1)

Medical ICU (MICU) 313/448 (69.9) 127/192 (66.2)
Surgical ICU (SICU) 38/448 (8.5) 30/192 (15.6)
Trauma Surgical ICU (TSICU) 33 /448 (7.4) 16/192 (8.3)
Note-level Statistic by Domain,
Number (%) of notes
Patient care preferences 187/449 (41.6) 92/192 (47.9)
Goals of care conversations 129/449 (28.7) 74/192 (38.5)
Code status limitations 138/449 (30.7) 59/192 (30.7)
Communication with Family 171/449 (38.1) 86/192 (44.8)
Full code status 292/449 (65.0) 130/192 (67.7)

investigator who fulfills data-user requirements. The study was deemed exempt by

the Partners Institutional Review Board.

4.2.2 Cohort

The study population included adult patients (age ≥18) who were admitted to the

medical, surgical, coronary care, or cardiac surgery ICU. The training and validation

set included physician notes from patients who died during the hospital admission to

ensure that we would have sufficient examples of documentation of care preferences.

We excluded patients who did not have physician notes within the first 48 hours

because these patients either died shortly after admission or transferred out of the

ICU. The study population is described in Table 4.1.
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Table 4.2: Clinical domain specifications.
Domain Definition

Patient care
preferences

Fulfills criteria for goals of care conversations and/or code
status limitations

Goals of care
conversations

Explicitly shown preferences about the patients goals,
values, or priorities for treatment and outcomes. Does
NOT include presumed full code status or if obtained

from other sources.

Code status
limitations

Explicitly shown preference of patients care restricting
the invasive care. Includes taken over preference from

previous admission.

Communication with
family

Explicit conversations held during ICU stay period with
patients or family members about the patients goals,

values, or priorities for treatment and outcomes.

Full code status

Explicitly or implicitly shown preference for full set of
invasive care including intubation and resuscitation.

Includes presumed full code status or if obtained from
other sources.

4.2.3 Clinical domains

Our main outcome was to identify documentation of care preferences within 48 hours

of an ICU admission in seriously ill patients. We aimed to detect the binary absence

or presence of any clinical text that fit specified documentation of domains: patient

care preferences (goals of care conversations or code status limitations), goals of care

conversations, code status limitations, family communication (which included com-

munication or attempt to communicate with family that did not result in documented

care preferences), and full code status. The specifications of each domain are outlined

(Table 4.2).

4.2.4 Annotation

We developed a set of abstraction guidelines to ensure reliable abstraction between

annotators. Each annotator identified clinical text that fit specified communication

domains and labeled the portions of text identified for a domain, with no restrictions

on length of a single annotation.

A gold standard dataset, considered to contain true positives and true negatives,
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was developed through manual annotation by a panel of four clinicians. Annota-

tion was done using PyCCI, a clinical text annotation software developed by our

team. Each note was annotated by at least two clinicians and annotations were then

validated by a third clinician. Similar to previously published chart abstraction stud-

ies performed for this measure, the abstraction team had real-time access to a US

board certified hospice and palliative medicine attending physician-expert reviewer,

met weekly, and used a log to document common questions and answers to facilitate

consistency[50, 49].

The clinician coders manually annotated an average of 239 notes each (SD, 196),

for a total of 641 notes. Each note contained an average of 1397 tokens (IQR, 1004-

1710). The inter-rater reliability among the four clinician annotators was kappa >

0.65 at the note level for each domain. The performance of each clinician coder

was varied–for example, they identified documentation of care preferences with a

sensitivity ranging from 77-92% (in comparison to the final gold standard).

4.3 Methods

4.3.1 Pre-processing

Annotated notes were pre-processed for both rule-based regular expression and neural

network methods. First, texts were cleaned to remove any extraneous spaces, lines, or

characters. Each cleaned note was tokenized, which means it was split into identifiable

elements–in this case, words and punctuation. We used the Python module spaCy

in order to tokenize intelligently, based on the structure of the English language[?].

Labels were associated with individual tokens and datasets were split out by domain,

as each method was run separately.

4.3.2 Regular expression

Our baseline model is a simple regular expression based on pre-curated rules for each

domain. Appendix A.1 shows the rules used for each domain. To create the regex
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library, we identified tokens that were sensitive and specific for each prediction task.

We calculated sensitivity by evaluating the proportion of a token’s total number of

occurrences that were labeled for each domain. We evaluated specificity by evaluating

what proportion of a token’s total number of occurrences were in a note that was in an

unlabeled note for each domain. A board-certified clinician used these data points–

sensitivity, specificity, frequency that each token appeared on the labeled text and

frequency in texts outside of the domain–and their clinical knowledge to generate a

list of terms that would likely be generalizable.

Regular expressions identify patterns of characters exactly as they are specified in

a set of rules. If text in the note matches a keyword in the regex library for the domain,

it is labelled as positive for that concept. This method acts as a baseline to compare

our algorithm against. We used a regular expression program, ClinicalRegex, also

developed by our lab[34]. ClinicalRegex is easily accessible and intuitive to navigate,

which makes it an efficient choice for groups that are not able to employ computer

scientists[34].

4.3.3 Artificial neural network

Deep learning involves training a neural network to learn data representation and

fulfill a specified task. We trained algorithms to identify clinical text documentation

of serious illness communication. During the training process, the neural network

learns to identify and categorize tokens (individual words and symbols) as belonging

to each of the pre-specified domains and maximizes probability across predicted token

labels[12]. Figure 4-1 shows the pipeline used in training and validating the neural

network.

The specific neural network used, NeuroNER, was developed by Dernoncourt et al.

for the purpose of named-entity recognition[11]. NeuroNER has been evaluated for

use in the de-identification of patient notes[12]. It allows for each token to be labelled

only with a single label. However, tokens in our study were often associated with

multiple labels. For example, a sentence could indicate that both communication

with family occurred and that goals of care were discussed. In order to allow for
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Figure 4-1: Pipeline used to train and validate neural networks to identify ACP
documentation

multi-class labelling, a separate, independent model was trained per domain. For

each domain, the data set was split up into randomized training and validation sets,

with 70% (449 notes) of the set in training, and 30% (192 notes) in validation.

With the parameters derived from this training process, the model is run on the

validation data set to examine its performance on a data set it was not specifically

tuned to fit. Performance on the validation set also determines when training con-

verges, indicating that the model is optimally trained. Training converges when there

has been no improvement on the validation set performance in ten epochs. The neu-

ral network ultimately determines domain labels for each token. From the predicted

token-level results, a note-level classification is determined by the presence or ab-

sence of labelled tokens by domain in each note. We used Tensorflow version 1.4.1

and trained our models on a NVIDIA Titan X Pascal GPU. Below are the hyperpa-

rameters selected for our use:

• character embedding dimension: 25

• character-based token embedding LSTM dimension: 25

• token embedding dimension: 100

• label prediction LSTM dimension: 100

• dropout probability: 0.5

For our experiments, we were able to compare our gold standard labels, derived

from manual annotation by clinicians as described in Section 2.4, to the predicted

output to evaluate the performance of the neural network and the regular expression

method.
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4.4 Results

4.4.1 Evaluation metrics

Algorithm performance was determined at two levels: token-level and note-level,

referring to the binary absence or presence of a label at these levels. Token-level

results are more specific and allow accurate identification of relevant text within

clinical notes. Note-level results allow determination of whether documentation of

communication occurred. At both of these levels, we calculated the following metrics:

sensitivity, specificity, positive predictive value, accuracy, and F1-score. The F1-score

is the harmonic average of positive predictive value and sensitivity. It allows us to

determine the success of our algorithm both in identifying true positives as well as

true negatives.

The 95% confidence intervals for all metrics were determined via bootstrapping[15];

each trained network model was validated for 1,000 trials in addition to the reported

performance point. During each trial, a validation set of 192 notes was created by

random sampling with replacement of the original validation set of 192 unique notes.

This creates an approximate distribution of performance for the model. In basic boot-

strap technique, the 2.5th and 97.5th percentiles of the distributions for each metric

are taken as the 95% confidence interval[9].

4.4.2 Performance

Table 4.3 summarizes the performance of the regular expression method and Table

4.4 summarizes the performance of the neural networks in identifying documentation

of serious illness communication at the note level, for each clinical domain, on the

validation set. Figure 4-2 displays a comparison in the F1-scores for each domain. For

identification of documentation of patient care preferences, the algorithm achieved an

F1-score of 92.0 (95% CI, 89.1-95.1), with 93.5% (95% CI, 90.0%-98.0%) sensitivity,

90.5% (95% CI, 86.4%-95.1%) positive predictive value and 91.0% (95% CI, 86.4%-

95.3%) specificity. For identification of family communication without documentation
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of preferences, the algorithm achieved an F1-score of 0.91 (95% CI, 0.87-0.94), with

90.7% (95% CI, 86.0%-95.9%) sensitivity, 90.7% (95% CI, 86.5%-94.8%) positive pre-

dictive value and 92.5% (95% CI, 89.2%-97.8%) specificity. Token-level performance

is displayed in Appendix A.2.

At the note-level, we have been able to achieve high accuracy for all domains and

see that in the validation set, the neural network outperforms the regular expression

method in every domain for F1-score, significantly so in identifying patient care pref-

erences, goals of care conversations, and communication with family. These domains

contain more complex and diverse language, which are successfully identified by the

neural network. A static library is not able to capture the diversity in these domains,

necessitating the use of machine learning.

Table 4.3: Performance (%) of the regular expression method on the validation data
set.

Domain F1-score Accuracy Sensitivity
Positive

Predictive
Value

Specificity

Patient care
preferences

76.0 78.6 70.7 82.3 86.0

Goals of care
conversations

37.2 57.8 26.1 64.9 87.0

Code status
limitations

94.3 96.4 98.3 90.6 95.5

Communication
with family

43.6 67.7 27.9 100.0 100.0

Full code status 90.9 88.5 84.6 98.2 96.8

4.4.3 Error analysis

A review of documentation that the neural networks identified as serious illness con-

versations that was not labeled serious illness conversations the gold standard (false

positives) showed that the algorithm identified documentation that clinician coders

missed. Though our gold standard was rigorously validated, there still remains room

for human error. Comparing the identified text from the neural network and regu-

lar expression methods, we found that as expected, the neural network was able to
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Table 4.4: Performance (%) of the neural networks on the validation data set. Values
in parentheses are 95% confidence intervals.

Domain F1-score Accuracy Sensitivity
Positive

Predictive
Value

Specificity

Patient care
preferences

92.0
(89.1-95.1)

92.2
(89.6-95.1)

93.5
(90.0-98.0)

90.5
(86.4-95.1)

91.0
(86.4-95.3)

Goals of care
conversations

85.7
(80.4-90.3)

89.1
(85.6-92.4)

85.1
(78.4-91.5)

86.3
(80.0-93.0)

91.5
(87.7-95.7)

Code status
limitations

95.9
(93.0-98.7)

97.4
(95.8-99.2)

98.3
(96.9-100.0)

93.5
(89.2-97.7)

97.0
(95.0-98.9)

Communication
with family

90.7
(87.4-93.9)

91.7
(89.1-94.4)

90.7
(86.0-95.9)

90.7
(86.5-94.8)

92.5
(89.1-95.9)

Full code status
98.5

(97.5-99.4)
97.9

(96.6-99.2)
100.0

(100.0-100.0)
97.0

(95.1-98.9)
93.5

(89.2-97.7)

identify complex and unique language that the regular expression method was not.

Doctors employ diverse and unstandardized language in clinical notes; we require

more flexible and extensible methods in order to efficiently process this information.

Static libraries cannot capture the full complexity of language without sacrificing sen-

sitivity or specificity–they must be curated such that library terms are not too broad

and they are not able to utilize context. All note-level identification can be traced

to the detection of specific words with examples of text for each method provided in

Appendix A.3.

4.4.4 Effect of training set size

In order to determine how smaller training sets related to the performance of the

trained algorithms, we trained multiple networks with varying number of notes. We

plotted training dataset size against algorithm performance for 8 sample sizes (Figure

4-3). The performance seemed to plateau at around 200 notes (around 250,000 to-

kens), which suggests that annotation efforts can be efficiently leveraged to generalize

the models to varied health systems.
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Figure 4-2: Comparison between the F1-score of the regular expression method and
neural networks by domain.

Figure 4-3: Neural network performance on validation set for detection of note-level
documentation of patient care preferences by number of notes used for training.

4.5 Conclusions and future work

We describe a novel use of deep learning algorithms to rapidly and accurately identify

documentation of serious illness conversations within clinical notes. When applied to

identifying documentation of patient care preferences, our algorithm demonstrated

high sensitivity (93.5%), positive predictive value (90.5%) and specificity (91.0%),

with a F1-score of 92.0. In fact, we found that deep learning outperformed individual

clinician coders both in terms of identifying the documentation and in terms of its

many-thousands-time-faster speed.
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Existing work has shown that machine learning can extract structured entities like

medical problems, tests and treatments from clinical notes[10, 52], and unstructured

image-based information in radiology, pathology and opthamology[18, 19, 48]. Our

study extends this line of work and demonstrates that deep learning can also perform

accurate automated text-based information classification.

Up until now, extracting goals of care documentation nested within free-text clin-

ical notes has relied on labor-intensive and imperfect manual coding[50]. Using the

capabilities of deep learning as demonstrated in this paper would allow for rapid au-

dit and feedback regarding documentation at the system and individual practitioner

level. This would result in significant opportunities for quality improvement that are

currently not being met. Deep learning models could also improve patient care in

real-time by broadening what is available at the point of care in the EHR. For exam-

ple, clinicians could view displays of all documented goals of care conversations, or

be prompted to complete documentation that was not yet available.

Important limitations must be noted. Deep learning algorithms only detect what

is documented. It is not fully understood to what extent documentation reflects

the actual content of a patient-clinician conversation surrounding serious illness care

goals. However, documentation is the best proxy we have to understand and to

track these conversations. This is also a single institution study, which may limit its

generalizability. Future work will involve the investigation of how extensible models

are to clinical notes from different health system. Variations in EHR software and the

structure of clinical notes in different institutions makes it essential to further train

and validate our methods using data from multiple healthcare systems. This should be

imminently possible, as our learning curve suggested that the neural network needed

to train on as few as 200 clinician coded notes to perform well. Future research should

also focus on optimizing deep neural networks to further improve performance, and

on determining the feasibility of operationalizing this algorithm across institutions.

This is the first known report of employing deep learning, to our knowledge, to

identify serious illness conversations. The potential of this technology to improve the

visibility of documented goals of care conversations within the EHR and for quality

54



improvement has far reaching implications. We hope such methods will become an

important tool for evaluating and improving the quality of serious illness care from a

population health perspective.
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Appendix A

Tables

A.1 Regular expression library

Domain Keywords

Patient care
preferences

goc, goals of care, goals for care, goals of treatment, goals for
treatment, treatment goals, family meeting, family
discussion, family discussions, patient goals, dnr, dni,
dnrdni, dnr/dni, DNI/R, do not resuscitate,
do-not-resuscitate, do not intubate, do-not-intubate, chest
compressions, no defibrillation, no endotracheal intubation,
no mechanical intubation, shocks, cmo, comfort measures

Goals of care
conversations

goc, goals of care, goals for care, goals of treatment, goals for
treatment, treatment goals, family meeting, family
discussion, family discussions, patient goals

Code status
limitations

dnr, dni, dnrdni, dnrdni, DNIR, do not resuscitate,
do-not-resuscitate, do not intubate, do-not-intubate, chest
compressions, no defibrillation, no endotracheal intubation,
no mechanical intubation, shocks, cmo, comfort measures

Communication
with family

Explicit conversations held during ICU stay period with
patients or family members about the patients goals, values,
or priorities for treatment and outcomes.

Full code status full code

A.2 Token-level performance

Performance (%) of the neural network on the validation data set at the token-level.
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Domain F1-score Accuracy Sensitivity
Positive

Predictive
Value

Specificity

Patient care
preferences

76.0 99.6 75.8 75.2 99.8

Goals of care
conversations

70.4 99.6 70.0 69.9 99.8

Code status
limitations

76.3 99.8 72.7 80.5 99.9

Communication
with family

68.2 99.7 62.0 76.4 99.9

Full code status 90.9 99.8 88.3 93.6 99.8

A.3 Examples of identified text

Below are examples of correctly identified serious illness documentation by the neural

network and regular expression methods in the validation dataset. Correctly identified

tokens are bolded. Typographical errors are from the original text. Each cell includes

an example of identified tokens in the same text and an example of documentation

identified by the neural network that was missed by the regular expression method,

if relevant.

Domain Neural Network Regular Expression
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Goals of care

conversations
Hypercarbic resp failure: family

meeting was held with

son/HCP and in keeping

with patients goals of care,

there was no plan for

intubation.Family was

brought in and we explained

the graveness of her ABG and

her worsened mental status

which had failed to improve

with BiPAP. Family was

comfortable with removing

Bipap and providing

comfort care including

morphine prn.

family open to cmo but pt

wants full code but also

doesn’t want treatment or

to be disturbed.

Hypercarbic resp failure:

family meeting was held with

son/HCP and in keeping with

patients goals of care, there

was no plan for

intubation.Family was brought

in and we explained the

graveness of her ABG and her

worsened mental status which

had failed to improve with

BiPAP. Family was comfortable

with removing Bipap and

providing comfort care

including morphine prn.

family open to cmo but pt

wants full code but also doesn’t

want treatment or to be

disturbed.

Code status

limitations
CODE: DNR/DNI,

confirmed with healthcare

manager who will be

discussing with official HCP

CODE: DNR/DNI, confirmed

with healthcare manager who

will be discussing with official

HCP
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Communication

with family
Dr. [**First Name (STitle) **]

from neurosurgery held

family meeting and

explained grave prognosis

to the family.

lengthy discussion with the

son who is health care

proxy he wishes to pursue

comfort measures due to

severe and

unrevascularizable cad

daughter is not in

agreement at this time but

is not the proxy due to

underlying psychiatric

illness

Dr. [**First Name (STitle) **]

from neurosurgery held family

meeting and explained grave

prognosis to the family.

lengthy discussion with the son

who is health care proxy he

wishes to pursue comfort

measures due to severe and

unrevascularizable cad daughter

is not in agreement at this time

but is not the proxy due to

underlying psychiatric illness

Full code

status
Code: FULL; Discussed

with daughter and HCP

who says that patient is in

a Hospice program with a

”bridge” to

DNR/DNI/CMO, but

despite multiple

conversations, the patient

insists on being full code

CODE: Presumed full

Code: FULL; Discussed with

daughter and HCP who says

that patient is in a Hospice

program with a ”bridge” to

DNR/DNI/CMO, but despite

multiple conversations, the

patient insists on being full

code

CODE: Presumed full
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