
A Deep Learning Approach to State Estimation

from Videos

by

Chandani Doshi

S.B. E.E.C.S., Massachusetts Institute of Technology, 2017

Submitted to the
Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

June 2018

c© Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 11, 2018

Certified by. .
Rebecca L. Russell

Senior Member of Technical Staff, Draper
Thesis Supervisor

May 11, 2018

Certified by. .
Leslie P. Kaelbling

Professor of Computer Science and Engineering, MIT
Thesis Co-Supervisor

May 11, 2018

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

A Deep Learning Approach to State Estimation from Videos

by

Chandani Doshi

Submitted to the Department of Electrical Engineering and Computer Science
on May 11, 2018, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Kalman filters have been commonly used for estimating the state of a vehicle from a
video. Multi-State Constraint Kalman Filter (MSCKF) is an EKF-based state esti-
mator that uses feature measurements for pose estimation of a vehicle. These models
require a lot of hands-on engineering time to define the measurement functions. We
propose a data-driven approach by training deep neural networks on high-dimensional
navigation image data generated from a simulation. We describe a CNN model that
robustly learns reliable features from the input and gives promising results to model
temporal data. We show that a deep learning approach can be a replacement for the
MSCKF model for estimating the velocity of a moving vehicle.

Thesis Supervisor: Rebecca L. Russell
Title: Senior Member of Technical Staff, Draper

Thesis Supervisor: Leslie P. Kaelbling
Title: Professor of Computer Science and Engineering, MIT

3

4

Acknowledgments

I would like to thank Rebecca L. Russell and Abraham R. Schneider, my supervisors

at Draper for their continued support. Their guidance helped me throughout the

research and writing of this thesis.

I would like to acknowledge Professor Leslie P. Kaelbling at MIT as my thesis

co-supervisor. I am grateful for her comments on this thesis. Working with each of

my supervisors was a great learning experience.

I would also like to thank my family for their unwavering support.

5

6

Contents

1 Introduction 13

2 Prior Work 17

2.1 Kalman Filter . 17

2.1.1 Deep Kalman Filter . 18

2.2 Neural Networks . 18

3 Model 21

3.1 Background . 21

3.1.1 Feedforward neural networks 21

3.1.2 CNN . 22

3.1.3 RNN . 23

3.2 3D Convolutional Neural Network . 24

3.3 RNN Model . 26

3.4 Learning . 26

4 Data Collection 29

5 Experimentation 33

5.1 Preliminary Training . 33

5.2 New Validation Set . 37

5.3 Data Augmentation . 37

5.4 Reducing size of CNN . 39

5.5 Hyperparameter Tuning . 39

7

6 Conclusion 43

8

List of Figures

2-1 Graphical representations of Kalman filter and RNN model 19

3-1 Architecture of a feedforward neural network 22

3-2 A typical CNN architecture. Source [2] 22

3-3 RNN architectures . 24

3-4 CNN architecture . 25

3-5 RNN architecture . 27

4-1 Aerial view of the environment developed in Unreal Engine 30

4-2 Different datasets generated from Unreal Engine simulation 31

5-1 Plot of true and predicted speeds over time 34

5-2 Graph of predicted speed vs true speed 35

5-3 Visualization of features learnt using the CNN model on the dataset

containing dashed lines . 36

5-4 Visualization of features learned using the CNN model on the dataset

containing solid line . 38

5-5 Modified CNN architecture . 40

5-6 Plot of true and predicted speeds over time 41

5-7 Graph of predicted speed vs true speed 42

9

10

List of Tables

5.1 CNN Performance . 34

5.2 RNN Performance . 39

11

12

Chapter 1

Introduction

State estimation of a moving object has received considerable attention in the research

community. Vision-aided inertial navigation uses data from a camera and an Inertial

Measurement Unit (IMU) to track the position and orientation of a moving vehicle

and estimate its motion. Kalman filters have been commonly used to estimate an

object’s location based on multiple observations over time. A Kalman filter provides

a recursive solution to estimate the current state of an object based on its previous

state and the new input data.

In classical Kalman filters [13], the latent state evolution as well as the emission

distribution and action effects are modeled as linear functions perturbed by Gaussian

noise. The Extended Kalman Filter (EKF) [30] [25] and the Unscented Kalman

Filter [33] are extensions to the classical Kalman filter that can be used for nonlinear

estimation. Using Kalman filters and traditional computer vision approaches, we can

build a model that learns the state of a moving vehicle from a contiguous sequence

of images.

Traditional computer vision techniques can extract multiple features such as edges,

corners, etc. from images, which are high-dimensional, information-rich measure-

ments. When using navigation data, some challenges to Kalman filters and tradi-

tional computer vision approaches are lighting, traffic, homogeneous environments

(long stretches of fields), etc. Accounting for each of the challenges requires modifi-

cation of the system, adding and removing different types of sensors, thus, having a

13

high cost to change. Being able to handle a large rate of high-dimensional data limits

the algorithmic complexity.

The Multi-State Constraint Kalman Filter (MSCKF) was introduced by Mourikis

and Roumeliotis [21] for real-time vision-aided inertial navigation. This method is

able to optimally utilize the localization information provided by multiple measure-

ments of visual features. The authors introduce a measurement model that expresses

geometric constraints between camera poses, allowing it to estimate the pose and

motion of a vehicle. However, feature measurement for this model requires hands-on

engineering time to update and define the measurement functions.

We seek to model a state estimator that can learn from a time sequence of images

generated from a video to estimate motion of a vehicle, and is comparable to the

MSCKF model. We propose to model the change of pose of a vehicle over time using

deep neural networks. Neural networks approximate a mapping function from input

variables to output variables. They are robust to noise in the input data, and can

support learning and prediction in the presence of missing values. Neural networks

can approximate nonlinear functions making them valuable in time series processing

[3].

Convolutional neural networks (CNNs) have led to impressive results in object

recognition [17], face verification [24], and audio classification [19]. A CNN consists

of a sequence of convolutional layers that produce an output by sliding a filter (a

matrix of weights) over the input, and computing the dot product between the two.

The convolutional layer allows the model to learn filters that can extract features

or patterns from the input data. Bikowski et al. describe an autoregressive-like

weighting system for time series forecasting, where the weights are data-dependent

functions learnt through the network [1]. The idea behind using a CNN to model a

moving vehicle would be to learn filters representing patterns in the series of images

that can be used to predict the velocity of the vehicle.

Recurrent neural networks (RNNs) are being used to model time sequences [5]

[8]. RNNs and long short term memory (LSTM) networks, a variant of RNN, can

be used for time series predictions [20] [7]. This network architecture has shown

14

improved performance over Hidden Markov Models in long-term context tasks such

as speech recognition [26]. The success of the recurrent network model lies in its

recurrent connections that allow the network to use the entire history of time series

values while predicting the value of the next time step.

In this paper, we describe two models involving a convolutional neural network

and a recurrent neural network to model the contiguous sequence of frames generated

from a video. We show that these networks are able to learn to estimate the motion

of a vehicle and that to do so, the networks learn reliable features that are useful for

decoding the state of an object.

15

16

Chapter 2

Prior Work

2.1 Kalman Filter

The Kalman filter provides a recursive solution to the linear optimal filter problem.

The solution is recursive as each updated estimate of the state is computed from the

previous estimate and the new input data.

Assume we have a set of unknown state vectors x1, . . . , xT . For each unobserved

variable xt, we have a corresponding observation zt. The Kalman filter model assumes

that the true state at time t evolves from the state at t− 1 according to:

xt = Ftxt−1 + wk

where Ft is the state transition matrix and wt ∼ N (0,Qt) is the process noise, which

is a zero-mean Gaussian distribution with covariance Qt. At time t, the filter models

an observation zt as follows:

zt = Htxt + vt

where Ht is the observation matrix, which maps the true state space into the observed

space, and vt ∼ N (0,Rt) is the observation noise, which is a zero mean Gaussian

white noise with covariance Rt.

Figure 2-1a shows a simplified graphical representation of the Kalman filter model

17

architecture that includes a gain function and a recursive step. While modeling object

tracking for a moving vehicle, the gain function has to be modified to capture different

conditions. This can prove to be tedious. For example, if we only the front sensors to

capture the state of a car while driving through a tunnel, there will be a sudden change

in the lighting contrast on reaching the end of the tunnel. In such a case, additional

sensors placed at other places on the car would provide better state data. So we would

have to model our gain function to be able to adapt to these changes. Similarly, when

moving through traffic, it is difficult to predict all the different situations that can be

faced. This is why there is a high cost to change when using Kalman filters.

2.1.1 Deep Kalman Filter

Krishnan et al. describe a method to learn Kalman filters using neural networks in

[16]. The authors propose a method for learning causal generative temporal models

from high-dimensional data, using deep neural networks as a building block. The

model fits a generative model to a sequence of observations and actions. The obser-

vations come from a latent state which evolves over time, and the authors assume the

observations to be a noisy, nonlinear function of this latent state. The latent states

are nonlinear functions of the previous latent state and the previous actions. These

nonlinear functions are parameterized using MultiLayer Perceptrons and Recurrent

Neural Networks, allowing the model to learn a broad range of Kalman filters. Using

this model, the authors get promising results to show that the parametric posterior

learnt can be used to approximate the latent state of unseen data.

2.2 Neural Networks

Deep neural networks allow us to build data-driven models that learn features and

a gain function. Multilayer feedforward networks can be used for universal function

approximation [11]. They can learn linear and nonlinear relationships when learning

a mapping function using the inputs. As shown in Figure 2-1b, a recurrent neural

network has a loop that allows information to persist. The ability of recurrent neural

18

(a) Simplified Kalman filter model (b) RNN model

Figure 2-1: Graphical representations of Kalman filter and RNN model

networks to learn the temporal dependence in the input data can be used to capture

state in a time series.

The success of the convolutional neural network in image analysis tasks lies in

its ability to learn complex feature representations through the convolutional layers.

As mentioned before, the authors of [1] propose to use a convolutional network in-

volving an autoregressive-type weighting system to forecast time series. Gregor et

al. introduce an autoregressive network that is a deep, generative autoencoder [9].

This network is a universal distribution approximator, capable of capturing high-

level structure in data. The autoregressive structure captures dependence among

units within the same layer and from the previous layer. Using autoencoders, the

model learns to encode and decode observations according to a compression metric

yielding concise, meaningful representations.

PixelCNN [32] proposed by Oord et al. builds on the idea of autoregressive net-

works. It consists of stacked masked convolutional layers that allow the predictions

for all pixels to be made in parallel during training. During sampling, every time

a pixel is predicted, it is fed back into the network to predict the next pixel. The

masking forces the model to learn to predict each pixel based on previous inputs.

Oord et al. introduce WaveNet [31], a model based on the PixelCNN. WaveNet is

a generative model that operates on the raw audio waveform. Similar to PixelCNN,

this network models conditional probability using a stack of convolutional layers. The

19

combination of causal filters with dilated convolutions allows the receptive fields to

grow exponentially with depth, thus allowing the network to model long-range tempo-

ral dependencies in audio signals. WaveNets have shown promising results in speech

recognition tasks.

FlowNet proposed by Fischer et al. [6] uses convolutional networks to learn pre-

dicting the optical flow field from a pair of images. Optical flow is the pattern of

apparent motion of objects in a visual scene caused by the relative motion between

an observer and a scene. Optical flow estimation needs precise per-pixel localization,

and requires finding correspondences between two input images. The authors show

that it is possible to use CNNs to learn image feature representations and match them

at different locations in the two input images.

20

Chapter 3

Model

In this section, we start with a review of neural networks and then discuss the par-

ticular deep learning model architectures developed for state estimation. We focused

on two neural network models: convolutional neural networks and recurrent neural

networks. As discussed in the previous chapter, both of these models have shown

significant results in time series predictions. We define two models that learn mean-

ingful features from the continuous stream of frames of a navigation video generated

using a simulator which is further discussed in Chapter 4. The first model is based on

a CNN and the second model uses a combination of convolutional layers and a RNN.

The ability to learn a gain function from the data gives this deep learning approach

an advantage over Kalman filters, where we would have to manually modify the gain

function.

3.1 Background

3.1.1 Feedforward neural networks

A feedforward neural network receives an input and transforms it through a series of

hidden layers. Each hidden layer consists of a set of nodes or neurons, where each

node is fully connected to all nodes in the previous layers. Each node is a weighted

sum of the nodes of the previous layer followed by a bias offset. We use nonlinear

21

activation functions to model nonlinearity in the data.

Figure 3-1: Architecture of a feedforward neural network

3.1.2 CNN

In a simple convolutional neural network, the input is passed through a series of

convolutional layers, nonlinear layers such as Rectified Linear Units (ReLU), pooling

layers, and fully-connected layers. Figure 3-2 shows the architecture of a standard

CNN.

Figure 3-2: A typical CNN architecture. Source [2]

CNNs are built on the idea of local connectivity. Instead of connecting each input

22

neuron to each output neuron in the next layer, as is done in a feedforward neural

network, we use convolutions over the input layer to compute the output in a CNN.

This means that a neuron in the output layer is only connected to a set of neurons in

the input layer, resulting in local connections. The convolution layer extracts specific

patterns from the input data using a filter, which is a matrix of weights. The filter

slides over the input, computing element-wise multiplications. The multiplications

are then summed up and the process is repeated by moving the filter to the right on

the input, creating a feature map. The stride and filter size determine the overlap

in the regions connecting to the output nodes. Having multiple layers of convolution

allows the network to learn high-level filters with relatively fewer parameters. The

feature map produced by the convolution layer is passed through ReLU, a commonly

used nonlinear activation function which replaces all negative value in the feature

map by zero. The pooling layer reduces the spatial size of the representation and

controls overfitting by reducing the amount of parameters and computation in the

network. The fully connected layers are the same as a feedforward network and

perform classification on the feature map extracted by the convolutional layer and

down-sampled by the pooling layer.

3.1.3 RNN

The simple RNN architecture proposed by Elman [5] can only retain short term con-

text due to the vanishing gradients problem. The weights of the neural network are

updated proportional to the gradient of the error function with respect to the current

weight in each iteration of training. The gradients decay exponentially, preventing

the weights from changing. This means that, over time, the influence of the past in-

puts decays quickly. The architecture of the Elman RNN can be seen in Figure 3-3a.

To overcome the problem of vanishing gradients, we use a variation of RNN architec-

ture called LSTM, Long Short Term Memory. LSTM networks were introduced by

Hochreiter and Schmidhuber [10] and are capable of learning long-term dependencies.

An LSTM block (Figure 3-3b) is composed of four main components: a cell state,

an input gate, an output gate, and a forget gate. The gates act as regulators of the

23

flow of information that goes through the connections of the LSTM and can, thus,

control the cell state. These gates allow the cell state to remember information over

arbitrary time intervals.

(a) Elman RNN architecture (b) LSTM block [22]

Figure 3-3: RNN architectures

3.2 3D Convolutional Neural Network

Networks built for image recognition applications generally use 2-dimensional CNNs

[18] [27]. In 2D CNNs, convolutions are applied on the 2D feature maps to compute

features from the spatial dimensions only. When analyzing videos, we want the

network to capture motion information encoded in multiple contiguous frames. To

fuse information across the temporal dimension, we use 3D convolutions to compute

features from both the spatial and temporal dimensions. This approach of using 3-

dimensional spatiotemporal convolutions has been used for human action recognition

from videos in [12] and for large-scale video classification in [14] and [28]. For a 3D

convolution, we stack the contiguous sequence of frames together and convolve a 3D

kernel across this stack. Since the feature maps in the convolution layer are connected

to multiple contiguous frames in the previous layer, this method can capture motion

information.

Using a combination of 2D and 3D convolutions, we devised a CNN architecture,

shown in Figure 3-4 to estimate the state of a moving vehicle from videos. The

network consists of a series of convolution modules to learn feature representations

24

Figure 3-4: CNN architecture

from the input, followed by fully-connected modules for estimation. Each convolution

module consists of a convolution layer with 64 filters, a batch normalization layer, and

a nonlinear ReLU activation layer. The fully-connected modules consist of a linear

layer and a ReLU layer. The first two layers apply 3D convolutions with a kernel size

of 1 × 3 × 3, with 1 in the temporal dimension and 3 × 3 in the spatial dimensions,

so these are essentially 2D convolutions. We use max pooling with a kernel size of

1× 3× 3 and stride 2. The initial convolutional layers extract features such as edges

from the input images. We modify the last layer of convolutional filters to extend in

time by using a 3D spatiotemporal convolution with a kernel size of 3× 3× 3 (with 3

in the temporal dimension and 3×3 in the spatial dimension) and apply max pooling

25

with kernel size 3 × 3 × 3 and stride 2. This layer maps features that are reliable

to capture motion over time. The output of the final convolution module is passed

through the fully-connected layers. Figure 3-4 uses linear(n) to represent a linear

layer with n nodes.

We use a sliding window approach when passing in multiple contiguous frames to

the network and return the estimated velocity for the middle value of the window.

3.3 RNN Model

The RNN model is diagrammed in Figure 3-5. We use a series of 2D convolution

modules consisting of 2D covolution layers, batch normalization, ReLU activations

and max pooling, followed by fully-connected modules consisting of linear layers and

ReLU activations. We start by applying 2D convolutions with 64 filters and kernel

size of 3 to process the contiguous sequence of frames and extract features. We stack

the color channels for all frames in the sequence at each time step and perform the

convolution over this stack, thus, convolving the filter only over the spatial dimensions.

We use max pooling with a kernel size of 2 and stride 2. The feature map produced

is passed into a RNN with 200 features in the hidden state. The output of the RNN

is fed into the fully-connected layers. The output of the final linear layer returns the

predicted velocity between each pair of contiguous frames in the sequence. So, for a

given sequence of s contiguous frames, the final output will contain s − 1 values of

estimated velocities.

3.4 Learning

We use the Adam [15] optimizer with a learning rate of 0.001 to train our CNN model.

We use the Adamax algorithm [15] with a learning rate of 0.01 to optimize our RNN

model. Both models use a batch size of 64 and the mean squared error loss function.

26

Figure 3-5: RNN architecture

27

28

Chapter 4

Data Collection

To gain an understanding of the representations learned in the proposed frameworks,

we trained our models on synthetic data. We wanted data that captures all scenarios

that pose a challenge to object tracking. The model has to be robust to handle varied

lighting conditions and homogeneous features such as long stretches of fields. Using

real vehicles to obtain this data would be expensive. There is a high cost to change

such as adding new sensors. To overcome this challenge, we built a simulation for

which we have access to the underlying generative model and all latent parameters,

thus, making our dataset easily modifiable. One example of such a simulation is

CARLA [4], an open-source simulator for autonomous driving research. Using a

simulation allows us to examine whether our models can be used for the defined

purpose, without incurring the high cost of gathering data in the real world.

We developed a simulator that mimics real-world driving scenarios. The simulator

is built using Unreal Engine, a game development environment. Using the Urban

City [23] package, we have built the layout of a city. Figure 4-1 shows an aerial

view of the system. Unreal Engine allows for easy modification, thus, reducing the

cost of making changes. The simulation has a car moving forward with randomly-

varying smooth acceleration, allowing the simulation to capture a large variety of

speed changes throughout the course. The environment is easily modifiable to account

for lighting conditions at different times of a day. We use a Python plugin for Unreal

Engine [29] to simulate the motion of a car and capture frames. For each frame, we

29

store the time, and the position and orientation of the vehicle. This allows us to

calculate the velocity between subsequent frames.

Some examples of the types of images captured from this simulation can be seen

in Figure 4-2. We generated datasets by developing an initial environment, modifying

the order and type of buildings from the initial environment, driving in the opposite

direction on the other side of the road, and changing the time of day to change the

position of the sun. As the generated images have a high resolution, we train the

networks with images of lower resolution.

Figure 4-1: Aerial view of the environment developed in Unreal Engine

30

(a) Different types of lane separators

(b) Driving on other side of the road

(c) Data obtained by changing position of the sun

Figure 4-2: Different datasets generated from Unreal Engine simulation

31

32

Chapter 5

Experimentation

We compare the performance of our models to an implementation of MSCKF [21].

As mentioned in Chapter 1, MSCKF is an EKF-based vision-aided inertial navigation

system that can estimate pose from video and IMU data. The IMU measurements

received are processed for propagating the EKF state and covariance. For each new

image that is recorded, the current camera pose estimate is augmented to a state

vector. While updating the EKF, the measurements of each tracked feature are

employed for imposing constraints between all camera poses from which the feature

was seen. So state augmentation is necessary for processing feature measurements.

The EKF vector, thus, comprises of the changing IMU state and a history of the

past poses of the camera, allowing this measurement model to estimate the pose and

motion of a vehicle.

The MSCKF model used for comparison was developed for real-world data and

was not heavily tuned on the simulation. We report prediction error as the average

of the absolute difference between the predicted and true speeds. The accuracy is

calculated using the relative error between the predicted and true speeds.

5.1 Preliminary Training

First, we trained the CNN model described in Section 3.2 with the dataset containing

dashed lane separators 4-2a. As can be seen in Table 5.1, the average error of the

33

Figure 5-1: Plot of true and predicted speeds over time

CNN model is much lower than that of the MSCKF model. Figure 5-1 shows the true

and predicted speeds in one run of the validation set. As can be seen in the figure,

the network is able to predict the speeds of the vehicle in a pattern which is similar

to that of the true speeds, but is less noisy. This shows that the network is learning

reliable feature representations for state estimation and is robust to noise. Figure 5-2

is graphed using a subset of speeds in the dataset, and shows that during prediction

at higher speeds, the network underestimates the speed.

MSCKF
CNN CNN CNN Small CNN

(dashed line) (solid line) (data aug) (data aug)
Error (m/s) 0.9301 0.15 1.64 1.19 1.04

Table 5.1: CNN Performance

Figure 5-3 shows a sequence of images passed to the model as input and the

features learnt by the model obtained by performing guided backpropagation. Visu-

34

Figure 5-2: Graph of predicted speed vs true speed

alizing the part of an image that most activates a given neuron using backpropagation

is a method using a backward pass of the activation of a single neuron after a forward

pass through the network and, computing the gradient of the activation with respect

to the image. While propagating the gradient through the nonlinear layer ReLU dur-

ing guided backpropagation [27], we clip the negative gradients to zero, preventing

the backward flow of negative gradients corresponding to neurons that decrease the

activation of the higher layer unit we aim to visualize. Doing so allows us to see the

image features the model detects and not the stuff it does not detect.

As can be seen in Figure 5-3b, the main feature learnt in this experiment is the

dashed line on the road. This makes sense because the dashed lines are present at

regularly spaced intervals and are a good indicator of the speed of the car. We want

to see whether our network is robust to different environments where such easily

identifiable, periodic features are not present. So, for the subsequent experiments, we

35

(a) Input (b) Guided backpropagation

Figure 5-3: Visualization of features learnt using the CNN model on the dataset
containing dashed lines

36

modified the environment by replacing the dashed lane separators with a solid line.

5.2 New Validation Set

For the preliminary evaluation, we generated the training and validation sets from

the same dataset. This can lead to the network overfitting to the input dataset. To

prevent overfitting, we developed a different environment that is used as a validation

set. We wanted to ensure that the network does not learn the order of the buildings

in the environment, so we changed the order and type of buildings used.

Table 5.1 shows the validation performance of the CNN model using the new

validation and training sets. The highest accuracy achieved by the CNN model is

around 84.27% with an average error of 1.64 m/s which is much higher than the

error obtained by training the model on the old dataset. This makes sense because

the network can no longer learn the regularly spaced dashed lines and the validation

dataset is different from the training dataset, so the network does not overfit to a

particular environment. As can be seen in Figure 5-4, the network learns a set of

features that are present in the given set of contiguous frames. In this example, one

of the features learnt is the base of the streetlight. This feature is present in each

frame, and the change in position of this feature provides an estimate for the motion

of the vehicle. Therefore, the network robustly adapts to learn different features for

each frame and for a given set of contiguous frames, using the common features of

the set, the network can accumulate motion information for state estimation.

5.3 Data Augmentation

We take advantage of data augmentation to reduce the effects of overfitting by training

the CNN on the original dataset along with multiple variations of the simulation as

shown in Figure 4-2b and Figure 4-2c. The best performing model has an accuracy

of 87.06% with an average error of 1.19 m/s as mentioned in Table 5.1.

We also trained the RNN model on the augmented dataset and the results can

37

(a) Input (b) Guided backpropagation

Figure 5-4: Visualization of features learned using the CNN model on the dataset
containing solid line

38

be seen in Table 5.2. We obtained an average error of 2.63 m/s and an accuracy of

72.1% using the RNN architecture. We require extensive hyperparameter tuning of

this model to evaluate its performance.

MSCKF
RNN

(data augmentation)
Error (m/s) 0.9301 2.63

Table 5.2: RNN Performance

5.4 Reducing size of CNN

To speed up and tune the performance of the network, we reduce the number of layers

and the number of neurons in each layer. The new architecture can be seen in Figure

5-5. We found that reducing the size of the network and training it on the augmented

dataset improved the performance. As seen in Table 5.1, the best performing model

using this architecture has an average error of 1.04 m/s with an accuracy of 89%.

This error is comparable to that of the MSCKF model (0.903 m/s), showing that

it is possible to use the CNN as a replacement for the MSCKF approach to predict

velocity.

Figure 5-6 shows that the network still captures the pattern of speeds observed

during one run through the course. Figure 5-7 represents the error obtained for a

sample of speeds in the dataset, and as can be seen in the plot, there is much higher

error at a higher speed.

5.5 Hyperparameter Tuning

We performed some hyperparameter tuning for both network architectures by training

multiple models and choosing the model with the best performance. The tuned

hyperparameters include the learning rate, the batch size, and the size of the kernels

in the convolutional layers. The optimal hyperparameters found are mentioned in the

39

Figure 5-5: Modified CNN architecture

network architectures shown in Figure 5-5 and Figure 3-5.

It would be useful to perform a more extensive search across more of the net-

works’ hyperparameters especially for the RNN model. Some of the hyperparameters

that can be tuned are the weight decay, dropout probabilities, number of filters in

convolutional layers, and number of filters in the hidden state of the RNN.

40

Figure 5-6: Plot of true and predicted speeds over time

41

Figure 5-7: Graph of predicted speed vs true speed

42

Chapter 6

Conclusion

The convolutional neural network developed shows promising results to model tempo-

ral data generated from videos. When the data contained dashed lane separators, the

network outperformed the MSCKF. But, when the data contained a solid lane sepa-

rators, the model achieved results comparable to those estimated from the MSCKF.

The feature visualizations show that the network is able to robustly learn internal rep-

resentations that are reliable for estimating the pose of the vehicle. This shows that

this convolutional neural network model can be used as a replacement for Kalman

filters to calculate the velocity of a moving object when there are large amounts of

high-dimensional data. Using a model that can learn from data has an advantage

over Kalman filters in requiring less hands-on time to engineer the gain functions.

Having a comparable deep learning solution that only requires video data is advan-

tageous because MSCKF requires both video and IMU data to model camera poses

and estimate velocity.

Future work involves extensively tuning the RNN architecture, and augmenting

the RNN model with 3-dimensional convolutions. Due to its ability to retain long-

term dependencies in data, we can examine the possibility of the RNN model being

a replacement for Kalman filters in terms of being able to learn the pose, orientation,

and velocity of a moving vehicle. We will also develop a simulation that permits

lateral motion of the vehicle to evaluate whether our networks can estimate velocities

in different directions and will add complexity to the simulation by adding features

43

such as fields, curving roads, other vehicles, pedestrians, and traffic rules.

44

Bibliography

[1] Mikolaj Binkowski, Gautier Marti, and Philippe Donnat. Autoregressive convo-
lutional neural networks for asynchronous time series. CoRR, abs/1703.04122,
2017.

[2] Denny Britz. Understanding convolutional neural networks for NLP. WILDML.

[3] Georg Dorffner. Neural networks for time series processing. Neural Network
World, 6:447–468, 1996.

[4] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. pages 1–16, 2017.

[5] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14:179–211,
1990.

[6] Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip Häusser, Caner Hazir-
bas, Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas
Brox. FlowNet: Learning optical flow with convolutional networks. CoRR,
abs/1504.06852, 2015.

[7] Felix A. Gers, Douglas Eck, and Jürgen Schmidhuber. Applying LSTM to time
series predictable through time-window approaches. pages 193–200, 2002.

[8] C. Lee Giles, Steve Lawrence, and Ah Chung Tsoi. Noisy time series prediction
using recurrent neural networks and grammatical inference. Machine Learning,
44(1):161–183, Jul 2001.

[9] Karol Gregor, Andriy Mnih, and Daan Wierstra. Deep autoregressive networks.
CoRR, abs/1310.8499, 2013.

[10] Sepp Hochreiter and Jrgen Schmidhuber. Long Short-Term Memory. 9:1735–80,
12 1997.

[11] Kurt Hornik, Maxwell Stinchcombe, and Halber White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2:359–366, 1989.

[12] S. Ji, W. Xu, M. Yang, and K. Yu. 3D convolutional neural networks for hu-
man action recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(1):221–231, Jan 2013.

45

[13] Rudolph Emil. Kalman. A new approach to linear filtering and prediction prob-
lems. Journal of Fluids Engineering, 82(1):35–45, 1960.

[14] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei.
Large-scale video classification with convolutional neural networks. In 2014 IEEE
Conference on Computer Vision and Pattern Recognition, pages 1725–1732, June
2014.

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980, 2014.

[16] Rahul G. Krishnan, Uri Shalit, and David Sontag. Deep Kalman filters. 2015.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification
with deep convolutional neural networks. Commun. ACM, 60(6):84–90, May
2017.

[18] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, R. E.
Howard, Wayne E. Hubbard, and Lawrence D. Jackel. Handwritten digit recog-
nition with a back-propagation network. In D. S. Touretzky, editor, Advances
in Neural Information Processing Systems 2, pages 396–404. Morgan-Kaufmann,
1990.

[19] Honglak Lee, Yan Largman, Peter Pham, and Andrew Y. Ng. Unsupervised
feature learning for audio classification using convolutional deep belief networks.
In Proceedings of the 22nd International Conference on Neural Information Pro-
cessing Systems, NIPS’09, pages 1096–1104, USA, 2009. Curran Associates Inc.

[20] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. Long
short term memory networks for anomaly detection in time series. 04 2015.

[21] Anastasios I. Mourikis and Stergios I. Roumeliotis. A multi-state constraint
Kalman filter for vision-aided inertial navigation. Proceedings of IEEE Interna-
tional Conference on Robotics and Automation, pages 3565–3572, 2007.

[22] Christopher Olah. Understanding LSTM networks, 2015.

[23] PolyPixel. Urban city.

[24] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified
embedding for face recognition and clustering. CoRR, abs/1503.03832, 2015.

[25] D. Simon. Kalman filtering with state constraints: A survey of linear and non-
linear algorithms. IET Control Theory Applications, 4(8):1303–1318, August
2010.

[26] Hagen Soltau, Hank Liao, and Hasim Sak. Neural speech recognizer:
Acoustic-to-word LSTM model for large vocabulary speech recognition. CoRR,
abs/1610.09975, 2016.

46

[27] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A.
Riedmiller. Striving for simplicity: The all convolutional net. CoRR,
abs/1412.6806, 2014.

[28] Du Tran, Lubomir D. Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar
Paluri. C3D: Generic features for video analysis. CoRR, abs/1412.0767, 2014.

[29] twentytab. UnrealEnginePython.

[30] J. K. Uhlmann. Algorithms for multiple target tracking. American Scientist,
80(2):128–141, 1992.

[31] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio. CoRR,
abs/1609.03499, 2016.

[32] Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex
Graves, and Koray Kavukcuoglu. Conditional image generation with PixelCNN
decoders. CoRR, abs/1606.05328, 2016.

[33] Eric A. Wan and Rudolph van der Merwe. The unscented Kalman filter for
nonlinear estimation.

47

	Introduction
	Prior Work
	Kalman Filter
	Deep Kalman Filter

	Neural Networks

	Model
	Background
	Feedforward neural networks
	CNN
	RNN

	3D Convolutional Neural Network
	RNN Model
	Learning

	Data Collection
	Experimentation
	Preliminary Training
	New Validation Set
	Data Augmentation
	Reducing size of CNN
	Hyperparameter Tuning

	Conclusion

