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Abstract

In this thesis, we present Plutus, an efficient and game-theoretically proven incen-
tive mechanism for Algorand, a proof-of-stake cryptocurrency. In order to operate,
Algorand requires users to constantly propagate messages but has no mechanism
to incentivize users to do so. Plutus solves this problem by keeping track of each
message propagation path and rewarding the users who propagated messages us-
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We implemented a prototype of Plutus on top of Algorand to measure the per-
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gorand’s block confirmation time increases by only 7% and that there is no penalty
on Algorand’s scalability.
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Chapter 1

Introduction

Cryptocurencies act as decentralized public ledgers and can enable new appli-

cations such as smart contracts, efficient supply chain control, and reduced cost

cross border transactions. However, cryptocurrencies, like most decentralized ap-

plications, use peer-to-peer networks to transfer messages and therefore need to

incentivize their users to participate and operate the network.

In Proof-of-Work based cryptocurrencies, such as Bitcoin [19], the main task

needed to maintain the network is block mining, where users need to repeatedly

compute hashes. These cryptocurrencies incentivize their users to do so by provid-

ing them with a reward for every block they mine. However, the amount of energy

required for these mining operations is expensive. Proof-of-Stake (PoS) cryptocur-

rencies offer an alternative solution: They are based on the amount of money users

have in the network, avoiding wasteful computation. Algroand [10] is one such

cryptocurrency.

Algorand has modest computational requirements compared to other cryp-

tocurrencies as it does not require users to perform proof of work. The main cost

of operating Algorand is in communication: It requires users to contribute a por-

tion of their Internet connection bandwidth and electricity. Despite this need, at

present, Algorand has no built-in incentive mechanism for incentivizing the users

to do so.

This thesis presents Plutus, a novel and efficient incentive mechanism for Algo-
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rand. Plutus takes advantage of Algorands’ consensus protocol by making it agree

not only on users’ transactions but also on the reward each user receives. These

rewards are given to users who participated in the propagation of those messages,

thereby incetivizing those users to propagate messages.

In designing Plutus, we had to navigate three primary challenges. First, Al-

gorand is decentralized and as a result, there is no central entity that can record

which user propagated which message. This makes it difficult to know which user

to reward. Second, Algorand is a permissionless system where everyone can join

and participate in the P2P network. Thus, the messages that users send go through

the hands of the adversary. Therefore, Plutus must ensure that messages cannot

be modified. Third, Plutus has to avoid Sybil attacks where an attacker creates

multiple pseudonyms to “inflate” the number of messages it propagated.

Plutus addresses these challenges using the following techniques:

Message chaining - Every message, before arriving at a node, goes through sev-

eral nodes in the peer-to-peer (P2P) network. In Plutus, each user “stamps” each

message it propagates by using its private key to sign the message and the des-

tination user’s public key. As a result, every message contains an immutable and

cryptographically secure path of users who participated in its propagation.

Weighted lottery - To discourage users from adding extra signatures to the mes-

sage’s path using different public keys, Plutus uses a technique inspired by Algo-

rand. Plutus rewards users proportionally to their stake in the system. Using this

technique, the expected user’s reward will stay the same regardless of the number

of signatures added.

We implemented a prototype of Plutus on top of Algorand and evaluated its

design and performance. The experimental results show that Plutus increases Al-

gorand’s block confirmation time by 7% and can run the lottery with 20,000 public

keys in 45ms.

We also analyze Plutus using techniques from game theory, showing that every

user connected to the network will receive each message with high probability.
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1.1 Algorand

Plutus is built on top of Algorand [10], which we briefly review here.

Algorand is a permissionless proof-of-stake blockchain. In Algorand, like in other

cryptocurrencies, users communicate to agree on a sequential log of transactions.

Like most cryptocurrencies, Algorand uses a P2P network to communicate. On av-

erage, each node is connected to 8 random peers where 4 are incoming connection

and 4 are outgoing connections. Every time a node gets a message from one of the

connections, it sends it through the other ones.

Every user, identified by its Public Key, can cryptographically sign and send

transactions in the system. Users constantly aggregate these transactions into

blocks and are selected from time to time to append these blocks to the ledger.

Each block contains a list of transactions with their corresponding signature, a

psuedorandom number Q (also called round seed, as described below) and a cryp-

tographic hash of the previous block in the chain.

To append blocks to the ledger, Algorand works in rounds and the goal of each

round is to propose and agree on the next block in the blockchain. Every round,

one user1 is selected as a block proposer, responsible for proposing the next block,

and a few thousand users are selected to be committee members, responsible for ver-

ifying the proposed block so that it can be appended to the blockchain. If the block

is invalid, committee members agree on a default, empty block, using a byzantine

agreement scheme.

The frequency in which users are selected to be block proposers or committee

members is directly proportional to their stake in the system. Every round, each

user computes a psuedorandom value Q, which is unpredictable. Then, the user

uses the Q value to seed and compute a Verifiable Random Function (VRF) [18]

that is used to implement cryptographic sortition. A cryptographic sortition is a

process that produces a sample of the users in the network, weighted by their

stake. Running the cryptographic sorition privately, the user is the only one who

1In fact, a few tens are selected to be block proposers but only one eventually appends its block
to the ledger. For simplicity, we describe it as if there is just one block proposer.
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knows that it was selected. Weighing the users by their stake prevents an adversary

from knowing which user to attack. To let the rest of the network know about the

selection, the user sends a message with a proof of correctness produced by the

VRF. To prevent adversarial manipulation, users in the round use the Q value from

the previous round and are weighed by their stakes from the previous kth block.

1.2 Plutus’s Overview

Plutus extends Algorand in order to encourage users to relay messages. Plutus

achieves this by rewarding users for propagating messages using two mechanisms

- Message logging and Lottery.

Message logging. In Algorand, when a user issues a transaction message (for ex-

ample) and sends it through a node to the network, the message reaches other

nodes via intermediate nodes which act as relayers. A node can act as a relayer if

it sends messages it gets to its peers in the network. Plutus requires the relayers

to “stamp” every message they relay by signing it using their private key. This

attaches to every message a list, also called propagation path, of relayers who prop-

agated it.

Lottery. As mentioned above, every user in Algorand can be selected to be a block

proposer and propose the next block. For this case, users aggregate transaction

messages. Once a user is selected to be a block proposer, it composes the transac-

tion messages into a proposed block. To reward the relayers for their contribution,

the block proposer runs a lottery among the relayers of each message that was

included in the proposed block.

1.3 Goals and Threat Model

Suppose that Alice is a user in Algorand and is running an Algorand node that is

connected to Algorand’s P2P network. Alice wishes to send a message to Bob, who

is another user who runs a node (or a set of users who run multiple nodes). In this
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case, Plutus should achieve the following goals

• Network Availability - If Alice send a message to Bob, Bob should be able to

receive the message with high probability.

• Communication Efficiency - Alice should be able to send the message to Bob

with low cost in terms of latency and bandwidth.

Threat Model - Plutus is built on top of Algorand and as a result, we inherit

Algorand’s assumptions. Moreover, we assume that users are rational and would

only make decisions that maximize their profit.

• Honest Money Majority - A fraction h > 2
3 of the money in the system is held

by honest users.

• Cryptographic security - An adversary has very high but bounded computa-

tional power. Specifically, an adversary cannot break standard cryptographic

assumptions.

• Adaptive corruptions - An adversary can corrupt any user in the system at any

given time. Although, even in this case our Honest Money Majority still has

to hold.

1.4 Contributions

This thesis makes the following contributions:

• Design of a method to track a message’s propagation path in peer-to-peer

networks

• Design of Plutus, an incentive mechanism for Algorand

• Game theoretical analysis which shows that at Nash equilibrium each user

receives a transaction with high probability

• An evaluation of Plutus’s design on top of Algorand that demonstrates its

performance

17



1.5 Outline

This thesis starts with a review of related work (§2) and continues with the design

of Plutus (§3) followed by the details about the prototype implementation (§4).

Then, it evaluates the performance (§5) and shows the theoretical analysis (§6).

Finally, it discusses future work (§7) and concludes (§8).
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Chapter 2

Related Work

This chapter discusses various attempts to develop incentive mechanisms for prop-

agating messages in P2P networks in general and some attempts to develop in-

centive mechanism for cryptocurrencies in particular. The solutions are divided

into three main approaches: First, direct incentives, similar to Plutus’s approach,

where the solution incentivizes the message propagation directly. Second, indirect

approach, where the mechanism incentivizes a specific task at the blockchain layer

and, as a side effect, encourages the user to propagate messages. Third, solutions

that do not incentivize specific tasks but solve the problem by introducing special

nodes for that purpose. We provide a brief description of each solution and ana-

lyze its limitations as compared to Plutus.

Direct incentives. Li el at [15] provides a general and theoretical technique for

incentivizing message propagation in P2P networks. Their idea is similar to Plu-

tus. The solution keeps track of the message’s propagation path and reward the

all the users along the path. Yet, this solution doubles the bandwidth requirement

as it requires each relayer to reward the previews node downstream. If U0 sends a

message to Un through some intermediate nodes, UN should reward Un−1 and so

forth. Plutus doesn’t require the users to handle the reward themselves.

Yu et al [21] provide another general approach where each user connects to

another user just by referrals. This way, the number of “free riders”, users who
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consume resources but don’t contribute, is reduced. This system is not resilient

to Sybil attacks and also imposes a burden on new users who want to join the

network.

Some other solutions [9, 13] analyze the classic P2P model and suggest opti-

mization but not specific mechanisms.

Indirect incentives. Solida [3] provides incentives to their committee members

and block proposers. Plutus relies on a similar idea but rewards every participant

who helped create the block. Furthermore, although Solida makes use of Byzan-

tine Agreement instead of Nakamoto consensus [19], it still employs PoW which

requires significant computation.

SmartCast [14] is another incentive compatible cryptocurrency that creates a

layer on top of the blockchain to reward and punish participants using smart con-

tracts. Plutus doesn’t require the support of smart contracts and employs basic

cryptography.

SpaceMint [12] presents another approach, using Proof-of-Space as its consen-

sus protocol. Similar to Plutus, this approach makes a use of game theory to prove

the soundness of their scheme. However, using Proof-of-Space requires allocation

of a non-trivial amount of memory from the user which limits the usability of such

consensus protocol; Plutus does not have such issues.

Special purpose. Other cryptocurrencies [4, 7] do not try to incentivize specific

tasks, but instead try to solve the problem specifically by introducing special nodes.

This solution works but makes the network centralized and vulnerable to DOS at-

tacks. For example, Dash [7] separates the network into two different sets of users -

master nodes, and regular nodes. Furthermore, another limitation of this approach

is feasibility. At this time, in order to be able run a master node, one must buy 1000

DASH coins (at the time of this writing worth approximately 450,000USD [1]). As

a final example, Neo [6] creates another parallel coin to the main one to incentivize

a special type of “Consensus Nodes” that run the network.
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Chapter 3

Design

Plutus is composed of two main components: a message logging and a lottery. In

the message logging component, each relayer, upon receiving a message from the

network, verifies, signs and propagates the message to its network peers. In the

lottery component, every time a user is selected to be the next block proposer, it

runs a lottery among the relayers’ public keys and creates new transactions that

reward the relayers for their work.

Plutus also ensures some level of immutability of the paths in order to prevent

a potential adversary from manipulating the paths in their favor and is resilient to

Sybil attacks, an attack where an adversary creates a large number of pseudony-

mous identities.

This chapter discusses Plutus’s design in further details and specifically ad-

dresses the following questions -

1. How does Plutus log message propagation paths?

2. How does Plutus prevent adversaries from changing message propagation

paths?

3. How does Plutus provide the relayers with rewards?

4. How does Plutus prevent Sybil behavior?
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3.1 Algorand’s Messages

Algorand has three type of messages which need to be propagated:

• Transaction - a message that describes a transaction in the system.

• Block proposal - a message that contains the block that was proposed by the

block proposer.

• Byzantine agreement - a message that contains the vote of a specific commit-

tee member.

For simplicity, we focus in this thesis only on transaction messages. Developing

techniques for the other messages is left for future work and discussed in chap-

ter 7.

3.2 Message logging

Plutus’s message logging process logs messages’ propagation paths and comprises

two steps. In the first step, message processing, users sign the message that they re-

layed. In the second step, path verification, users verify that the path they received

is valid.

3.2.1 Message processing

Message processing is the fundamental procedure in Plutus as it provides the

framework through which Plutus incentivizes users. Every user in the network

is required to relay messages in order to receive rewards. Because peer-to-peer

networks are distributed, there is no simple way to globally keep track of what

messages each user sent and to whom. To address this problem, each user, upon

receiving a message m, signs the message with their own private key, and then
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sends it to their peers. See algorithm 1 and figure 3-1.

procedure ProcessMessage(sk, neighbors, m)

for neighbor in neighbors do
m’← m + neighbor.pk

SendMessage(neighbor, pk, Signedsk(m’))

end

Algorithm 1: Psudocode for processing and gossiping an incoming mes-

sage. The procedure receives the sender’s secret key sk, the list of neighbors

neighbors, and the message m. Then, for each one of the user’s neighbors, the

sender adds the neighbor’s public key and sends the message signed by its

own private key.

This allows every user to know a “path”1 (or sequence of users) that each mes-

sage went through before arriving to her/him, allowing the block proposer to run

the lottery and to distribute rewards to the message’s relayers.

Figure 3-1: Message gossiping illustration. User M0 issues a message, adds the
destination public key P K1 and signs the message. User M1 repeats the process by
adding the neighbors’ PK, signing it and relaying it the next user.

Keeping track of a message’s propagation path is challenging because it goes

through an adversary’s nodes who can try to manipulate it in multiple ways. For

example, one possible attack on this procedure consists of deleting the signatures

of previous relayers. In order to mitigate this attack and to make the path par-

1By the nature of P2P networks, every message arrives to every user from multiple peers. Each
user in Plutus uses just the first copy of a messages it receives and ignores the rest. This may
create an “unfair” situation where users with faster connections are rewarded more than users
with slower ones. This situation is acceptable because Plutus favors the network performance over
a single user’s benefit.
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tially 2 immutable to changes by an adversary, we modify the standard P2P gossip

procedure. Instead of sending the same message to all of its peers, the relayer

signs not only the message but also the message destination’s public key. This cre-

ates a partially immutable path and prevents an adversary from creating arbitrary

changes.

Another potential vector of attack by adversaries is adding an arbitrary number

of signatures to the path. Plutus discourages this behavior by running the lottery

proportionally to the relayer’s stake in the network. With the proportional lottery,

the user gets on expectation the same reward – regardless of the how the user’s

stake is distributed among its keys. (For detailed explanation, see section 3.3.1)

3.2.2 Path verification

Before proposing a block, the block proposer receives a set of different messages

with their corresponding relayers’ public keys and their signatures from the mes-

sage issuer to block proposer. In order to keep only valid messages, the block

proposer needs to verify the path of each message. To do so, the block proposer

invokes the procedure VerifyPath (as shown in Algorithm 2). This procedure takes

the path of signatures p, and verifies each signature against its signer’s public key.

In addition, the procedure checks that the last public key belongs to the block

proposer.

2An attacker can still cut paths in the middle by creating a cycle. However, this cannot increase
the expected reward of the attacker and therefore by our rationality assumption, a rational attacker
has no incentive to do so.
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procedure VerifyPath(p)

m, sig, pk← p;

while p.next , NULL do

if VerifySig(m, sig, pk) , OK then
return False

end

p← p.next;

m, sig, pk← p;

end

return True
Algorithm 2: Psudocode for verifying signatures in a chain. Each signature

on the Message path is verified against its public key.

3.3 Lottery

To provide relayers with rewards for their work, the block proposers run a lottery.

In the lottery, Plutus randomly draws a subset of public keys from the set of all re-

layers’ public keys that participated in propagating the messages that compose the

block. In order to allow secure verification of the computation done by the block

proposer, the random draw uses Verifiable Random Functions (VRF). The lottery

is thus composed of two main components: lottery selection and lottery verification.

3.3.1 Lottery selection

The main procedure performing lottery selection, as invoked by the block pro-

poser, is shown in Algorithm 3. The procedure takes a context ctx, which captures

the current state of the ledger, the block proposer’s secret and public keys sk, pk,

the lookback parameter k, the current round seed, and total stake in the network

W . The lottery selection process extracts the relayers’ public keys from the kth pre-

vious block set of transactions into pks. Then, to enable verification of the lottery,

the process employs the VRF and computes its hash with the block proposer pub-

lic key pk concatenated with the seed. To get a new random number for every key,
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the process hashes each public key form pks with the previous hash and checks if

the user was selected for a reward by comparing the the normalized hash value to

the user’s weight in the network.

procedure LotterySelection(ctx, sk, pk, k, seed, W)
// Getting the public keys from the set of transacctions

pks← getPublicKeysFromBlockByIndex(ctx.lastBlockIndex - k);

// Computing the public key VRF using the current seed

〈hash, π〉 ← VRFSK(pk||seed);

winners← {};

for pk ∈ pks do

hash← H(hash||pk);

pr← hash
2hashlen−1

;

w← ctx.GetMoneyByPublicKey(pk) ;

if pr < w
W then

winners.add(pk) ;

end

end

return winners, π
Algorithm 3: Psudocode for Lottery Selection. The procedure extracts the

set of public keys from the kth previous block and computes the hash and

proof using the VRF. Then, it checks which of the public keys were selected

by normalizing the hash and comparing it to the fraction of the user’s money

in the network.
Mitigating Sybil attacks In order to discourage Sybil attacks, we set the prob-

ability of a user receiving the reward to be proportional to the user’s stake in the

network. This way, the user has no incentive to split their money to different keys

and add additional signatures to the path. For example, let u be a user in the net-

work with stake wu . The expected profit once the user signature ends in the block

is

Profit = Reward · wu
W

where wu is the stake of the user and W is the total money in the system. Now,
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assume the user decides to create n new public keys. The user will need to split

their stake among the new public keys wu = w1 +w2 + . . .+wn. Thus, their expected

profit stays the same.

Profit =
n∑
i=1

Reward · wi
W

= Reward · wu
W

3.3.2 Lottery verification

After a new block is proposed together with the winning keys, the verifiers ver-

ify the block. To verify that the winning public keys were properly selected, they

invoke the LotteryVerification procedure as shown in Algorithm 4. This procedure

takes context ctx, the block proposer’s pk together with its VRF proof π, the look-

back parameter k, the list of winners public keys, the current round’s seed, and

total money in the systemW . Then, the procedure verifies that the LotterySelection

process was computed properly.
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procedure LotteryVerification(ctx, pkbp, k, winners, seed,π, W)
// Getting the public keys from the set of winning transactions

pks← getPublicKeysFromBlockByIndex(ctx.ProposedBlock);

// Verifying the VRF proof and hash

if ¬VerifyVRFpkbp(π,seed) then
return False

end

hash←H(π) ;

index← 0 ;

for pk ∈ pks do

hash←H(hash||pk) ;

if pk = winners[index] then

w← ctx.GetMoneyByPublicKey(winners[index]) ;

pr← hash
2hashlen−1

;

// Verifying the lottery selection

if (pr ≥ w
W ) then

return False ;

end

index← index + 1;

end

end

return True;

Algorithm 4: Psudocode for verifying the Lottery Selection. We first verify

the VRF’s proof and its hash. Given the first test passes, we check that the

normalized hash was, indeed, lower than the fraction of the user’s money in

the network.
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Chapter 4

Implementation

We implemented a prototype of Plutus on top of Algorand’s [10] implementation

using C++ 11. We kept Algorand’s SHA-256 as the hash function and the VRF

implementation as outlined in Goldberg et al [11]. In total, we added and mod-

ified nearly 800 lines of code (see table 4.1). In particular, we added the lottery

component and refactored multiple parts of the code in order to integrate Plutus.

The parts include the blockchain, message format, message handling, and the most

significantly - the network.

Component Lines of Code

Lottery 201
Signature handling 53
Network code refactoring 532

Total 786

Table 4.1: Approximate distribution of lines of code per Plutus’s module

In Algorand’s original implementation, there are two main modules that han-

dle the message sending: a P2P node module and a network module. These two

modules are separate and do not exchange data besides requests to send and to

receive messages. Furthermore, the P2P node module is not “aware” of the node’s

network peers because these are handled by the network module. Since Plutus re-

quires each message to include the public key of its destination, we refactored the
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P2P module to have an API request that would allow the network to retrieve the

information needed to add the target’s public key and sign the message.

In addition, since Plutus adds the target’s public key, we had to modify the

gossip method to be a “multi-unicast”. In particular, we modified the gossip method

to be able to wrap each message sent with the destination’s public key, sign it and

send it to a specific peer.
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Chapter 5

Evaluation

In order to understand Plutus’s performance, we evaluate Plutus to answer the

following questions -

1. How does Plutus perform in comparison to the vanilla Algorand system?

2. Does the lottery mechanism impose a large overhead on the block proposer

and verifiers?

3. What effect does Plutus have on message size?

5.1 Method

To answer these questions, we measure Plutus’ overhead and performance in two

configurations. First, we evaluate Plutus’ different sub-components using micro-

benchmarks on a single machine on MOC cloud service [2] using a single 24

Intel(R) Xeon E3-12 v2 (Ivy Bridge, IBRS) 2.4Ghz cores and 128GB RAM ma-

chine. Second, we evaluate the performance and latency of Plutus in a distributed

manner. We deploy our prototype of Plutus on Amazon’s EC2 using 100 AWS

m4.xlarge Virtual Machines(VMs), each of which has 8 cores, 16GB RAM, and up

to 1Gbps network throughput. To measure the performance with a large number

of users, we run multiple users, where each user is a process, on the same VM. By
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default, we run 50 users per VM and users propose 1MByte block. To simulate

commodity links, we cap the bandwidth of each user to 20Mbps.

For the micro-benchmarks, we model our network and currency to have 105

users with 109 coins in supply. To simulate the world’s wealth distribution [20], we

assume that the money is distributed according to the power law distribution with

α = 0.015. (See figure 5-1). For the distributed case, we assign equal share of coins

to each user; the equal distribution of coins maximizes the number of messages

each user needs to process. The graphs in the distributed simulations show the

time it takes to agree on a block, including the minimum, median, maximum, 25th,

and 75th percentile times across all users. To measure the overhead of Plutus, we

use Algorand’s original results as a baseline.
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Figure 5-1: Money distribution in our simulations. We assume 105 users with 109

coins in supply, distributed among the users using the power law distribution with
α = 0.015 (To simulate world’s wealth distribution [20]).
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5.2 Algorand as a baseline

To answer our first question regarding Plutus’s performance in comparison to the

vanilla Algorand system, we compare our implementation of Plutus with Algo-

rand vanilla’s implementation. For accuracy of results, we match the original im-

plementation to ours by removing one optimization—sending batched messages.

This change results in higher latency compared to the results demonstrated in the

paper originally describing Algorand. Our analysis shows that Plutus incurs ap-

proximately 7% increase in latency over Algorand’s vanilla implementation.

From our first experiment, Figure 5-2 shows results with number of users vary-

ing from 500 to 5000 (by varying the number of VMs from 20 to 100). The results

show that Plutus keeps the results of Algorand and incurs a small overhead in

terms of latency.
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(b) Algorand with Plutus

Figure 5-2: Latency for one round of Algorand as a function of number of users

In a second experiment, we deployed 1,000 users on our VMs (50 per machine).

Figure 5-3 shows results with varying block size, including a side by side compar-

ison of the two implementations. The figures show that the overhead of Plutus is

small and constant, unaffected by block size.
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Figure 5-3: Comparison between Algorand’s vanilla implementation and Plutus’s
latency for one round of Algorand as a function of the block size

5.3 Message signing and path verification

Every relayer must sign and verify message paths. We measure the time it takes to

sign the hash of the message paths with varying message sizes. Figure 5-4 shows

the time it takes to sign the message as a function of the number of hops (i.e. the

number of previous relayers) it passed before arriving at the current node. As

expected, because we sign the hash of the message, the time of the signature is

approximately constant and negligible.

Figure 5-5 shows the time it takes to verify every message path as a function

of its length and the original message size. With a P2P network size of 10,000

nodes (as in the Bitcoin network, for example), we expect the number of hops to

be log8(10,000) = 4.4 1. In this case, figure 5-5 shows that the time it takes is about

200µs.

1In a graph with degree d, we expect the average path to contain logd(Nodes) hops [8]
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Figure 5-4: Message path signing time as a function of the number of hops. Since
we sign the hash of the path, the time is relatively constant.
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Figure 5-5: Message path verification time as a function of the number of hops.
The three different lines show the time it takes for different message size as issued
by the original sender. As shown, the message size does not impact the verification
time.
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5.4 Lottery running and verification

Plutus imposes one additional task on the block proposer: running the lottery and

rewarding the winners. In order to measure the time it takes to run the lottery, we

uniformly sample a number of keys from all the keys in the system and run the

lottery among them. Figure 5-6 shows the amount of time it takes to run the lottery

and to create the list of winning transaction as a function of the number of public

keys. In the average block of size 1MB and average transaction size of 800Bytes

(with a path comprised of 8 relayers), the expected number of transactions in a

block is approximately 1200. With that many transactions, the lottery is expected

to run among 4800 different keys. The figure shows that this takes an additional

10ms of computation time from the block proposer node. Even with large block

size, of 4MB for example, the lottery runs in just 40ms.
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Figure 5-6: Lottery time as a function of the number of public keys. We sample a
set of N public keys and select the winning keys with respect to their weight.

The committee members who verify the blocks in Algorand need to verify that

the lottery was done properly by the block proposer. Figure 5-7 shows the time

it takes to verify the block proposer computation as a function of the number of
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public keys. As shown, Plutus can verify the lottery in just a few milliseconds.
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Figure 5-7: Lottery verification time as a function of the number of public keys.
The verifier takes the set of winning keys and verifies that the lottery computation
was done correctly.
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5.5 Message Size

The main impact of Plutus on performance is that Plutus incurs a large overhead

on message size. Because the relayer adds a public key and a signature to each

message, the message size is expected to grow by Signature size + Public Key size

= 64 + 32 = 96 Bytes at every hop. Figure 5-8 shows that this is indeed the case.

Furthermore, we expect the number of hops to grow logarithmically with respect

to the number of nodes in the network. For example, as mentioned above, in a

network of 10,000 nodes, we expect to have about 4 hops. Therefore, each message

is expected to have an additional 300 bytes.
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Figure 5-8: Message size as a function of hops. The initial message size is 200Bytes.
At every hop, the user adds its public key and signature to the message which
increases the size of the message by roughly 96 bytes.
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Chapter 6

Game Theoretical Analysis

To study whether Plutus encourages users to relay messages, we use game theory

and model the scheme as a static game to analyze the behavior of the nodes. We

use the Nash equilibrium results of the game to show that for every transaction,

each user receives it with probability > 1
2 .

The model of the game is described as follows.

Notations

Table 6.1: Notations

W Total money in the system

f
The minimum fraction of money in the system that each user needs to
have in order to be a user in the game

N The number of users who have at least f W coins
P = P1, . . . , PN The set of users in the game

wi User’s Pi stake in the system
R The maximum reward paid per transaction
c The cost for relating a single message

Simplifying assumptions

1. The connection graph is fixed.

2. The cost of relaying a single message for user Pi is c.

Users. The game has a set of N users P , where each user has sufficient stake wi

and the total stake in the system is W . There exist another user Ps, which might
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not belong to P , that issues a transaction t and sends it to User Pt ∈ P .

Strategies. The transaction t, along with its propagation path, is sent to a user Pi

for the first time. Pi can choose its action Sj ∈ {Relay,Drop} for each of its neigh-

bors Pj .

Utilities. User Pi gets its utility by subtracting the cost of relaying c from the

expected reward R. The expected reward is computed by the product of the prob-

ability of Pj being selected to be a block proposer, the probability of the Pi to win

the lottery, the probability of Pj putting Pi ’s transaction in the proposed block, and

the reward R.

ui =

 pi,j
wi
W
wj
W R− c, for 0 ≤ i, j < N and Si = Relay

0, for Si = Drop


where pi,j is the probability that user Pj puts Pi ’s transaction in its proposed block,

upon receiving.

Definition 1. An incentive scheme is cooperative if, at Nash equilibrium, each user

receives a transaction t with probability p > 1
2

Theorem 1. Let the parameters R,c and f be such that 1
2f

2R− c > 0. At Nash equilib-

rium, each user receives t with probability > 1
2

Proof. At Nash equilibrium, let A be the set of users who receive t with probability

> 1
2 and B the set of users who receive t with probability ≤ 1

2 .

Assume by contradiction that at Nash equilibrium, at least one user receives t with

probability ≤ 1
2 , so B is non-empty. User Pt receives t with probability 1, so A is

also non-empty.

Let PA and PB be two users in A and B that are connected to each other (such users

exist because the graph is connected). PA does not always relay t to PB, otherwise

PB would also receive t with probability ≥ 1
2 .

We will show that User Pi has an incentive to change its strategy to always

S = Relay, therefore the game cannot be in equilibrium and we’re done.
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We’ve shown above that PA relays to PB with probability pA < 1. Let us compute

his additional utility from always propagating.

um = (1− pA) ·
(
pA,B ·

wA
W

wB
W
R− c

)
(1−pA) is clearly positive so it is enough to show that

(
pA,B ·

wA
W

wB
W R− c

)
is positive.

pA,B >
1
2 because PB receives the transaction t only from PA for at least half the time,

and wA
W

wB
W ≥ f

2 by definition.

Therefore,

um = (1− pA) ·
(
pA,B ·

wA
W

wB
W
R− c

)
≥ (1− pA)

(1
2
f 2R− c

)
> 0
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Chapter 7

Future work

This thesis focused on designing an incentive mechanism for Algorand which en-

courages the propagation of transaction messages. Yet, there is more work to be

done to improve Plutus as described below.

7.1 Performance

Plutus’s main bottleneck is the overhead it imposes on the message size, stemming

from the addition of the sender’s public key and additional signature. In order to

reduce the message size substantially, one can make a use of Cryptographic aggre-

gators and Key Mapping.

7.1.1 Cryptographic aggregators

Boneh et al [5] introduced the notion of cryptographic aggregators. Cryptographic

aggregators are cryptographic primitives that allow the aggregation of multiple

signatures into one. Given n signatures, signed by n distinct users, it is possible

to compress all of these signatures into one short signature. This single signature

will be sufficient to convince the verifier that these n distinct user indeed signed

the n distinct messages.

A survey by Malina et al [17] of several such constructions shows that efficient
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constructions, such as LOSSW by Lu et al [16], allow for sequential aggregation,

reducing the size of the signatures to only 2kp where kp is the size of one element.

7.1.2 Key Mapping

In order to reduce the size of public keys in the messages, one can introduce a

sequential numbering to the public keys on the blockchain to create a 1-1 mapping

between a public key and its sequential number. Formally, f (pk)→ i s.t. i ∈ [1,N ]

whereN is the number of keys in the system. That way, only the sequential number

of the key and not the key itself can be store in a message. Assuming 64bit integers,

introducing the sequential numbering will cause an improvement of 4X in size.

7.2 Additional Messages

In this thesis, we describe only how to encourage the propagation of transactions

messages but these are not the only messages in Algorand. For completeness,

there is also a need to encourage the propagation of Block proposal and Byzan-

tine Agreement messages.
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Chapter 8

Conclusion

This thesis introduces Plutus, an efficient, game theoretically proved, and Sybil

resilient mechanism to measure work of nodes in P2P networks and to provide in-

centives in Algorand to encourage users to propagate messages. Plutus keeps track

of messages’ propagation history paths and provides relayers with incentives using

a verifiable lottery. Plutus also has low overhead and doesn’t affect the scalability

of Algorand’s consensus protocol. We implemented and evaluated Plutus on top

of Algorand. Experimental results showed that Plutus increases Algorand’s block

confirmation time by only 7%.
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