
Cache and NUMA Optimizations in A
Domain-Specific Language for Graph Processing

by

Mengjiao Yang

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 25, 2018

Certified by. .
Julian Shun

Assistant Professor
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chairman, Masters of Engineering Thesis Committee

2

Cache and NUMA Optimizations in A Domain-Specific

Language for Graph Processing

by

Mengjiao Yang

Submitted to the Department of Electrical Engineering and Computer Science
on May 25, 2018, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

High-performance graph processing is challenging because the sizes and structures of
real-world graphs can vary widely. Graph algorithms also have distinct performance
characteristics that lead to different performance bottlenecks. Even though memory
technologies such as CPU cache and non-uniform memory access (NUMA) have been
designed to improve software performance, the existing graph processing frameworks
either do not take advantage of these hardware features or overcomplicate the original
graph algorithms. In addition, these frameworks do not provide an interface for
easily composing and fine-tuning performance optimizations from various levels of
the software stack. As a result, they achieve suboptimal performance.

The work described in this thesis builds on recent research in developing a domain-
specific language (DSL) for graph processing. GraphIt is a DSL designed to provide
a comprehensive set of performance optimizations and an interface to combine the
best optimization schedules. This work extends the GraphIt DSL to support locality
optimizations on modern multisocket multicore machines, while preserving the sim-
plicity of graph algorithms. To our knowledge, this is the first work to support cache
and NUMA optimizations in a graph DSL.

We show that cache and NUMA optimizations together are able to improve the
performance of GraphIt by up to a factor of 3. Combined with all of the optimiza-
tions in GraphIt, our performance is up to 4.8x faster than the next fastest existing
framework. In addition, algorithms implemented in GraphIt use fewer lines of code
than existing frameworks.

The work in this thesis supports the design choice of a compiler approach to con-
structing graph processing systems. The high performance and simplicity of GraphIt
justify the separation of concerns (modularity) design principle in computer science,
and contribute to the larger effort of agile software systems development.

Thesis Supervisor: Julian Shun
Title: Assistant Professor

3

Acknowledgments

I would like to express my gratitude to many people without whom this thesis would
not have been possible.

First and foremost, I would like to thank my thesis advisor, Prof. Julian Shun, for
patiently guiding me through my master’s studies. Julian introduced me to parallel
computing through MIT’s performance engineering class (6.172), where my interest
in building faster software systems originated. I was fortunate enough to be a TA for
his class on graph analytics (6.886), where I drew from the breadth of his knowledge
and acquired a deeper understanding of various aspects of graphs. I am very grateful
to Julian for answering all my questions, sharing with me many of his research ideas,
encouraging me to think about theoretical graph problems, and even helping me
improve my writing skills.

I would also like to thank Yunming Zhang and Prof. Saman Amarasinghe for
mentoring me on this project. Yunming Zhang initially proposed integrating cache
and NUMA optimizations in GraphIt, and worked closely with me to turn these ideas
into reality. I thank Saman for pointing out high-level directions that my project
could take, reminding me of the bigger picture, and giving me advice on presenting
GraphIt to other people.

Next, I would like to express my appreciation for other members of the Commit
group. I am thankful to Vladimir Kiriansky for the crash courses on various topics
related to computer memories; to Fredrik Kjolstad for our discussions on the rela-
tionship between graph computation and tensor algebra; and to Charith Mendis and
Stephen Chou for tips on thesis writing and for their perspectives on being a Ph.D
student.

In addition, I want to thank Prof. Frans Kaashoek and Prof. Robert Morris
for equipping me with the systems knowledge this project required through their
Operating Systems (6.828) and Distributed Systems (6.824) courses. I thank Prof.
Martin Rinard for telling me to work hard and for the valuable life advice he has
offered. I am also grateful to my undergraduate advisor, Prof. Patrick Winston, for
reminding me of the importance of academic research and encouraging me to reach
out to other professors for research opportunities.

Finally, I want to express my utmost gratitude to my wonderful parents, Xi Yang
and Wenjuan Zhao, for always treating me as their equal and encouraging me to think
critically at a very young age. Without their endless love and support, I would not
have become the person I am today.

4

Contents

1 Introduction 15

1.1 Motivation . 15

1.1.1 Large and Irregular Graph Structures 15

1.1.2 Existing Memory Technologies 16

1.1.3 Graph Processing System Limitations 17

1.2 Contributions . 18

1.3 Thesis Organization . 19

2 Background 21

2.1 Notation . 21

2.2 Graph Traversal Algorithms and Framework 22

2.2.1 PageRank . 23

2.2.2 Breadth-First Search . 23

2.2.3 Connected Components . 24

2.2.4 Single-Source Shortest Paths 25

2.2.5 PageRank-Delta . 26

2.2.6 Collaborative Filtering . 26

2.2.7 The Edge Traversal Abstraction 27

2.3 NUMA Characteristics . 28

2.3.1 NUMA Allocation Policies . 29

2.3.2 Micro-benchmark . 30

2.4 The GraphIt Compiler . 31

2.4.1 Front-End Schedules . 32

5

2.4.2 Mid-End Lowering . 33

2.4.3 Back-End Code Generation 33

3 Cache Blocking in GraphIt 35

3.1 Implementation . 35

3.1.1 Graph Partitioning . 35

3.1.2 Subgraph Processing . 37

3.2 Compiler Integration . 38

3.2.1 Scheduling Language Interface 38

3.2.2 Schedule Lowering and Code Generation 39

4 NUMA-Awareness in GraphIt 41

4.1 Implementation . 41

4.1.1 Subgraph Allocation . 41

4.1.2 Thread Placement . 42

4.1.3 Broadcast and Merge Phases 45

4.2 Additional Optimizations . 47

4.2.1 Inter-Socket Work-Stealing . 47

4.2.2 Sequential Writes and Cache-Aware Merge 47

4.3 Compiler Integration . 49

4.3.1 Scheduling Language Interface 49

4.3.2 Merge-Reduce Lowering Pass 49

4.3.3 Code Generation . 50

5 Evaluation 51

5.1 Experimental Setup . 51

5.1.1 Datasets . 51

5.1.2 Algorithms . 52

5.1.3 Hardware Configuration . 52

5.2 Cache Blocking Performance . 52

5.2.1 Overall Speedups . 52

6

5.2.2 Read and Write Trade-offs of Cache Blocking 54

5.3 NUMA Optimizations Performance 55

5.3.1 Overall Speedups . 55

5.3.2 Locality, Work-Efficiency, and Parallelism Trade-offs 56

5.4 Comparisons with Other Frameworks 57

5.4.1 Overall Speedups . 58

5.4.2 Comparisons with Gemini . 58

5.4.3 Comparisons with Grazelle . 59

6 Conclusion 61

6.1 Summary . 61

6.2 Future Work . 61

7

8

List of Figures

1-1 A heat map showing the running time slow downs of Ligra, Gemini,

and Grazelle compared against the fastest framework among the three.

The experiments are conducted on a dual-socket system with a total of

24 cores. The 𝑥-axis shows the algorithms: PageRank (PR), breadth-

first search (BFS), and connected components (CC). The 𝑦-axis shows

the graphs: LiveJournal (LJ), Twitter (TW), WebGraph (WB), US-

Aroad (RD), and Friendster (FT). Lower number (green) is better.

The entries with number 1 are the fastest. 18

2-1 The edge traversal code for one iteration of PageRank in the pull di-

rection with frequent random memory access to ranks and out_degree

highlighted in red. 23

2-2 The edge traversal code for one iteration of breadth-first search in

the pull direction with frequent random memory access to the frontier

highlighted in red. All entries of the parent array are initialized to -1. 23

2-3 The edge traversal code for connected components using label prop-

agation in the pull direction with frequent random memory access to

the ID array highlighted in red. 24

2-4 The edge traversal code for one iteration of Bellman-Ford single-source

shortest paths in the push direction with frequent random memory

access to the shortest path (SP) array highlighted in red. All entries

of SP are initialized to infinity. 25

9

2-5 The edge traversal code for one iteration of PageRank-Delta in the pull

direction with frequent random memory access to the frontier and the

vertex data highlighted in red. 26

2-6 The error vector computation for Collaborative Filtering in the pull

direction with frequent random memory access to the latent vectors

highlighted in red. 26

2-7 An illustrative example of the NUMA memory hierarchy. The bound-

aries of the two kinds of optimizations covered in this thesis (cache

blocking and NUMA optimization) are marked in red. 28

2-8 The micro-benchmark that allocates, fills, and reads an array. Only

reads are timed. Potential random memory access is highlighted in

red. The hashInt function takes an integer and produces a hash value

in a pseudorandom manner. 30

2-9 The ratios of various algorithms’ running times using remote vs. local

memory on the Twitter graph. 31

3-1 An example of the graph-partitioning strategy that GraphIt uses. 𝐺

is partitioned in the pull direction. Subgraph 𝐺1 is assigned source

vertices 1–3, and 𝐺2 is assigned source vertices 4–6. subVertexId

represents the home vertices on each subgraph. Note that vertex 2, 3,

5, and 6 are duplicated across the two subgraphs. 36

3-2 The C++ implementation for PageRank’s EdgeSetApply function with

cache blocking where blocked reads are highlighted in red. 37

4-1 The C++ PageRank code for binding threads to sockets on-the-fly to

avoid remote memory access. 43

4-2 The C++ PageRank code for computing the start and end index for

each worker thread to avoid on-the-fly thread placement. 44

4-3 A visualization of the spread placement strategy where 4 threads are

spread among 8 places (P0,. . . ,P7) as far away from each other as

possible. 45

10

4-4 A visualization of the close placement strategy where 4 threads are

assigned to 8 places (P0,. . . ,P7) in order. 45

4-5 The C++ code for PageRank’s EdgeSetApply with NUMA optimiza-

tion using dynamic affinity control. 46

4-6 The merge phase of PageRank with NUMA optimizations. 46

4-7 The helper functions to retrieve the next unprocessed subgraph. A

socket’s local queue is checked first before stealing from another socket.

The atomic instruction on Line 20 is necessary since more than one

thread can be accessing a socket’s queue at the same time. 48

5-1 The speedups from applying cache blocking to the six algorithms.

Twitter and WebGraph are partitioned into 16 subgraphs. Friendster

is partitioned into 30 subgraphs. Netflix and Netflix2X are partitioned

into 10 subgraphs. 53

5-2 The factors by which cache misses are reduced after applying cache

blocking. 53

5-3 The speedups from applying NUMA optimizations compared to only

using cache blocking. Twitter and WebGraph are partitioned into

16 subgraphs. Friendster is partitioned into 30 subgraphs. Negative

speedups are equivalent to slowdowns. 55

5-4 A heat map of slow downs of various frameworks compare to the fastest

of all frameworks for PageRank (PR), breadth-first search (BFS), con-

nected components (CC) using label propagation, and single-source

shortest paths (SSSP) using Bellman-Ford, on five graphs with vary-

ing sizes and structures (LiveJournal (LJ), Twitter (TW), WebGraph

(WB), USAroad (RD) and Friendster (FT). A lower number (green)

is better with a value of 1 being the fastest for the specific algorithm

running on the specific graph. Gray means either an algorithm or a

graph is not supported by the framework. We use the same algorithms

across different frameworks. 58

11

12

List of Tables

2.1 The total running times in seconds of sequential and random memory

reads of a 2 GB array under local and remote allocation policy using

cores from one socket. 30

2.2 GraphIt’s Scheduling functions. The default option for an operator is

shown in bold. Optional arguments are shown in []. If the optional

direction argument is not specified, the configuration is applied to all

relevant directions. We use a default grain size of 256 for parallelization. 32

5.1 The number of vertices, edges, and average degrees of the input graphs.

M stands for millions. B stands for billions. The number of edges of

LiveJournal and Friendster are doubled as they are undirected. All

other graphs are directed. 51

5.2 The original vertex counts, the total numbers of home vertices across

subgraphs, and the duplication factors of Twitter, WebGraph, and

Friendster when partitioned into 16, 16, and 30 subgraphs. 54

5.3 Parallel running time (seconds) of GraphIt, Ligra, GraphMat, Green-

Marl, Galois, Gemini, Grazelle, and Polymer. The fastest results are

bolded. The missing numbers correspond to a framework not support-

ing an algorithm and/or not successfully running on an input graph. . 57

13

5.4 Line counts of PR, BFS, CC, and SSSP for GraphIt, Ligra, GraphMat,

Green-Marl, Galois, Gemini, Grazelle, and Polymer. Only Green-Marl

has fewer lines of code than GraphIt. GraphIt has an order of magni-

tude fewer lines of code than Grazelle (the second fastest framework

on the majority of the algorithms we measured). For Galois, we only

included the code for the specific algorithm that we used. Green-Marl

has a built in BFS. 59

5.5 LLC miss rate, QPI traffic, cycles with pending memory loads and

cache misses, and parallel running time (seconds) of PR, CC, and

PRDelta running on Twitter, and CF running on NetFlix. 59

14

Chapter 1

Introduction

1.1 Motivation

Graph analytics is widely used in solving many large-scale real-world problems. For

example, friend suggestion can be modeled as triangle enumeration on a social net-

work graph [16], traffic planning is equivalent to path finding in a road network [32],

and cancer prediction can be tackled by subgraph matching in a protein-protein in-

teraction network [7]. Many real-world graphs, however, are large in size and irreg-

ular in structure, imposing a major challenge on modern hardware with its memory

constraints. While designing programs that are aware of caching and non-uniform

memory access (NUMA) is crucial for obtaining high performance, utilizing them

in graph processing can be tedious and error-prone. A number of graph process-

ing frameworks have implemented NUMA optimizations [18, 38, 43, 46], but they

tend to trade programmability for performance and are often not flexible enough to

consistently perform well on different input graphs and algorithms.

1.1.1 Large and Irregular Graph Structures

The largest publicly available graph—the hyperlink web graph from the 2012 Common

Crawl—has 3.5 billion nodes (webpages) and 128 billion edges (hyperlinks) and takes

up 540 GB memory [27]. There are even larger proprietary graphs with trillions

15

of edges from Facebook and Yahoo [10, 36]. Since most graph algorithms perform

little computation, memory latency has been identified as the major performance

bottleneck [3]. Being able to efficiently address memory is the key to achieving high

performance on large graph datasets.

Aside from graph size, irregular graph structures introduce a significant challenge

to achieving high performance in graph algorithms. Many real-world graphs have

a power-law distribution where a small fraction of vertices are adjacent to a large

number of edges. Hence the amount of work at each vertex can be drastically different.

This makes task scheduling among threads as well as balanced graph partitioning

difficult.

1.1.2 Existing Memory Technologies

Caches refer to small memories residing on or close to the CPU and hence able to

operate much faster than the main memory. Programs with good spatial and temporal

data locality can effectively make use of this mechanism and reduce memory latency.

Graph processing, however, exhibits poor locality, as there can be an edge connecting

any two vertices; naively traversing all the neighbors of a vertex can result in a

high cache miss rate. Prior experiments show that CPUs are often stalled on high

latency DRAM (direct random access machine) accesses [3]. Methods such as graph

reordering [33, 40] and variants of cache blocking [4, 44] have been proposed to reduce

cache misses by changing graph layouts.

In addition to cache locality, node locality on NUMA machines also significantly

impacts system performance. It is widely known that the speed of modern CPUs is

much faster than the speed of memory devices. To increase the memory bandwidth

and to reduce the latency of local memory access, the non-uniform memory access

(NUMA) design of distributed shared memory (DSM) has been proposed [1, 30].

Multi-socket systems with NUMA support use separate memory in each socket, al-

lowing shared memory access to scale proportionally to the number of processors [26].

However, this scalability does not come for free. Data migration between memory

banks is expensive. Remote memory accesses, depending on the architecture, can take

16

2 to 7.5 times longer than local accesses [12]. While small graphs can be replicated

on each processor’s local memory, large graphs need to be partitioned and processed

separately on each processor to increase the ratio of local to remote memory accesses.

A handful of NUMA-aware graph processing frameworks have shown a considerable

speedup over NUMA-oblivious systems [18, 38, 43, 46].

1.1.3 Graph Processing System Limitations

Existing NUMA-aware graph frameworks generally trade programmability for per-

formance, mainly because NUMA optimizations involve low-level details of memory

management and thread placement. As a result, graph algorithms in these frame-

works are often accompanied by hardware-specific optimizations, complicating the

overall application logic. For instance, Gemini [46], a distributed graph processing

framework optimized for NUMA systems, has to manually implement NUMA-aware

work-stealing because the schedulers of existing parallel computing languages such

as Cilk [8] and OpenMP [11] are NUMA-oblivious. This kind of low-level complex-

ity generalizes to other performance optimizations as well. Grazelle, a NUMA-aware

shared-memory framework with edge list vectorization [18], includes hundreds of lines

of assembly code, which severely hurts its readability.

The impact of NUMA optimizations in existing graph processing frameworks is

not consistent across different algorithms and input graphs. Figure 1-1 shows the 24-

core performance of Gemini, Grazelle, and Ligra (the first high-level shared-memory

framework for parallel graph traversal) [34]. Despite employing many additional

optimizations, Grazelle is only the fastest on about half of the algorithm-graph com-

binations, and Gemini is only the fastest on 1/5 of the combinations. Surprised

by these low fractions, we investigated further and found that NUMA optimizations

can sometimes have a negative impact on the work-efficiency and parallelism of a

graph program, and should therefore be adjusted according to the algorithms and

input graphs. Gemini and Grazelle do not provide this flexibility, nor do they sup-

port other known graph traversal optimizations such as cache blocking and flexible

frontier data structures.

17

Figure 1-1: A heat map showing the running time slow downs of Ligra, Gemini, and Grazelle
compared against the fastest framework among the three. The experiments are conducted on a dual-
socket system with a total of 24 cores. The 𝑥-axis shows the algorithms: PageRank (PR), breadth-
first search (BFS), and connected components (CC). The 𝑦-axis shows the graphs: LiveJournal
(LJ), Twitter (TW), WebGraph (WB), USAroad (RD), and Friendster (FT). Lower number (green)
is better. The entries with number 1 are the fastest.

1.2 Contributions

In this thesis, we explore ways to improve the performance of shared-memory graph

processing using existing memory technologies. More specifically, we study the impact

of cache and NUMA optimizations on a diverse set of graph traversal algorithms and

input data. In addition, we explore various ways to carry out these optimizations and

determine the best implementation. We also analyze the trade-offs made by cache

and NUMA optimizations in terms of how they affect memory locality, work-efficiency,

and parallelism.

Although these memory optimizations have been employed in some of the existing

graph processing systems, Figure 1-1 shows that they can negatively impact perfor-

mance when generalized to a broader set of algorithms and graphs. To improve the

flexibility of these optimizations when applied across multiple algorithms and graphs,

we expand the work of Zhang et al. on building a domain-specific language (DSL)

for graph processing that separates algorithms from performance optimizations [45].

More specifically, we integrate cache and NUMA optimizations into the GraphIt com-

piler to enable flexibility in these optimizations. A compiler approach also allows

these optimizations to be easily combined with other algorithm and data structure

optimizations. To our knowledge, we are the first to enable cache and NUMA op-

timizations in a DSL. Our experiments show that cache and NUMA optimizations

18

improve the performance of GraphIt by 3 times. Combined with other optimizations,

GraphIt can be as much as 4.8 times faster than the fastest existing framework.

1.3 Thesis Organization

This thesis is organized as follows:

In Chapter 2 (Background), we first introduce common graph traversal algorithms

and the inefficiencies in their memory access patterns. We then give an overview of

the NUMA memory design and its performance implications. We also introduce the

infrastructure of the GraphIt compiler. The work in this thesis serves as an extension

to the GraphIt compiler.

In Chapter 3 (Cache Blocking in GraphIt), we present our C++ implementation of

cache blocking and explain how to automatically generate cache-optimized traversal

algorithms in GraphIt.

In Chapter 4 (NUMA-Awareness in GraphIt), we present our C++ implemen-

tation of NUMA-aware graph algorithms, the additional optimizations that we at-

tempted, and the integration of NUMA-awareness in GraphIt.

Chapter 5 analyzes the performance impact of cache blocking and NUMA-aware

graph processing with respect to the version of GraphIt without these optimizations.

In addition, it compares locality-optimized GraphIt to other graph processing frame-

works. This chapter also discusses various trade-offs made by cache and NUMA

optimizations.

Finally, Chapter 6 summarizes our work and points out potential directions for

future research.

19

20

Chapter 2

Background

2.1 Notation

We denote a directed graph by 𝐺 = (𝑉,𝐸), where 𝑉 represents the set of vertices and

𝐸 represents the set of directed edges. A single vertex in the graph is denoted by 𝑣.

|𝑉 | and |𝐸| denote the number of vertices and the number of edges. 𝐸𝑑𝑠𝑡<−𝑠𝑟𝑐 denotes

an incoming edge to the 𝑑𝑠𝑡 vertex and 𝐸𝑠𝑟𝑐−>𝑑𝑠𝑡 denotes an outgoing edge from the

𝑠𝑟𝑐 vertex. 𝑁−(𝑣) denotes the set of in-neighbors and 𝑁+(𝑣) denotes the set of out-

neighbors of vertex 𝑣. We allow 𝐺 to be divided into 𝑠 subgraphs: 𝐺0, 𝐺1, . . . , 𝐺𝑠−1,

and denote 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖) to be one of these subgraphs. 𝐸𝑖 denotes the edges in 𝐺𝑖,

and 𝑉𝑖 denotes the home vertices of 𝐺𝑖. Home vertices are the source vertices in the

compressed sparse row (CSR) format and the destination vertices in the compressed

sparse column (CSC) format. These sparse formats consist of an edge array and

an offset array. The offset array stores the start and end edge-array index for the

neighbors of each vertex [37]. The C++ code presented in Chapter 3 and Chapter 4

uses 𝑔 to denote the original CSR graph and 𝑠𝑔 to denote a subgraph.

We define writeMin(addr, val) to be an atomic instruction that updates the

memory at addr if val is less than the original value stored at that memory loca-

tion. parallel_for is a keyword for initiating a parallel construct for statically or

dynamically assigning a group of worker threads to the range specified so that each

thread is responsible for processing a certain portion of the loop.

21

2.2 Graph Traversal Algorithms and Framework

This thesis focuses on memory-bound graph traversal algorithms that perform simple

CPU computations. These algorithms often operate on a small number of vertices

(the active frontier) during each iteration. Traversals can use the top-down approach

(push), the bottom-up approach (pull), or the hybrid of the two introduced by Beamer

et al. [2]. In the push direction, vertices on the active frontier propagate data to

their neighbors and activate the neighbors accordingly. In the pull direction, inactive

vertices check to see if their neighbors are on the active frontier, pull data from the

active neighbors, and activate themselves. The hybrid approach switches traversal

direction according to the size of the active frontier. Ligra generalizes this direction

optimization to all the graph algorithms studied in this thesis.

This section first studies the memory access patterns of six such algorithms:

PageRank, breadth-first search, connected components, single-source shortest path,

PageRank-Delta, and collaborative filtering. Without special blocking or reordering,

these algorithms often incur 𝑂(|𝐸|) random memory accesses, which leads to poor

cache locality. In addition, accesses from processors in one NUMA node to memories

in another NUMA node are high in latency and low in bandwidth. This section first

briefly describes each algorithm and points out their memory inefficiencies (namely,

random accesses that incur cache misses and remote memory accesses). We then

introduce Ligra’s edge traversal abstraction, which simplifies the implementation and

optimization of these algorithms. GraphIt uses the abstraction that Ligra provides

as a foundation for various optimizations.

PageRank is an algorithm first used to compute the relative importance of web-

pages [9]. During every iteration, nodes in an input graph 𝐺(𝑉,𝐸) update their

ranks based on the ranks and outgoing degrees of their neighbors. Figure 2-1 shows

an example implementation of PageRank where nodes pull the updates from their

neighbors. Note that reading 𝑁−(𝑣) on Line 2 and writing to new_rank on Line 3

incur (potentially cross-socket) 𝑂(|𝑉 |) sequential memory access, and reading ranks

and out_degree of 𝑛𝑔ℎ on Line 3 (highlighted in red) incurs 𝑂(|𝐸|) random memory

22

1 p a r a l l e l_ f o r (𝑣 ∈ 𝑉) {
2 f o r (𝑛𝑔ℎ ∈ 𝑁−(𝑣)) {
3 new_rank [𝑣] += ranks[𝑛𝑔ℎ] / out_degree[𝑛𝑔ℎ] ;
4 }
5 }

Figure 2-1: The edge traversal code for one iteration of PageRank in the pull direction with frequent
random memory access to ranks and out_degree highlighted in red.

access, because a node can have any other node as its neighbor. Note that, as an

optimization, ranks[𝑛𝑔ℎ] / out_degree[𝑛𝑔ℎ] can be refactored into a loop that

computes the value once per vertex so that the division is performed 𝑂(|𝑉 |) instead

of 𝑂(|𝐸|) times.

2.2.1 PageRank

2.2.2 Breadth-First Search

Breadth-first search is a graph traversal algorithm that visits all vertices in a graph in

the order of their distance from the source vertex. Figure 2-2 shows the pseudocode

for breadth-first search in the pull direction where unvisited vertices iterate through

their incoming neighbors to find a parent that is on the active frontier. Reading the

frontier array on Line 4 (highlighted in read) incurs random memory accesses as

𝑛𝑔ℎ can be any vertex. Unlike other algorithms, breadth-first search does not have

to traverse all the edges in the pull mode; once a child vertex finds an active parent,

the execution breaks out of the inner loop on Line 7, resulting in much lower random

1 p a r a l l e l_ f o r (𝑣 ∈ 𝑉) {
2 i f (parent [𝑣] < 0) {
3 f o r (𝑛𝑔ℎ ∈ 𝑁−(𝑣)) {
4 i f (frontier[𝑛𝑔ℎ]) {
5 parent [𝑣] = 𝑛𝑔ℎ ;
6 next_fronter [𝑣] = 1 ;
7 break ;
8 }
9 }

10 }
11 }

Figure 2-2: The edge traversal code for one iteration of breadth-first search in the pull direction
with frequent random memory access to the frontier highlighted in red. All entries of the parent
array are initialized to -1.

23

read traffic.

2.2.3 Connected Components

Connected components finds clusters in a graph where the vertices are connected.

It can be implemented using label propagation, where unique IDs are assigned to

vertices at the start. During each iteration, a vertex sets its ID to be the smallest

of its neighbors’ IDs and its own ID. The program terminates when all vertices stop

updating their IDs. The resulting IDs array represents the components discovered;

vertices in the same component are labeled with the same ID, and vertices in different

components are labeled with different IDs. Figure 2-3 shows the edge traversal logic

of label propagation. Reading the IDs array on Line 4 leads to frequent random

memory accesses. Line 5 also reads IDs, but the corresponding entry should have

been brought into the cache from the read on Line 4. Reading frontier on Line 3

can incur random memory access when |𝑉 | is sufficiently large, but since frontier

can be represented using a bit-vector, reading frontier causes much lower memory

traffic than reading the IDs array.

The frontier array represents an active set of vertices whose IDs have changed

during the previous iteration, so that the algorithm can operate only on the active set

of vertices on each iteration. Maintaining such an active set introduces some random

memory accesses, but can effectively filter out many random reads of the IDs array.

The result of label propagation is deterministic, as vertices in the same component

will eventually converge to the same ID. However, the process of updating IDs is non-

deterministic, as a vertex could see its neighbor’s ID before or after that neighbor

1 p a r a l l e l_ f o r (𝑣 ∈ 𝑉) {
2 f o r (𝑛𝑔ℎ ∈ 𝑁−(𝑣)) {
3 i f (frontier[𝑛𝑔ℎ]) {
4 i f (IDs [𝑣] > IDs[𝑛𝑔ℎ])
5 IDs [𝑣] = IDs [𝑛𝑔ℎ] ;
6 }
7 }
8 }

Figure 2-3: The edge traversal code for connected components using label propagation in the pull
direction with frequent random memory access to the ID array highlighted in red.

24

updates its own ID for that iteration. Optimizations that affect the shared-memory

communications between vertices could have a negative impact on the convergence

rate.

Label propagation usually works well on power-law graphs with smaller diameters.

On graphs with larger diameters and more regular degree distributions (e.g., road

network graphs), parallel union-find [35] could perform much better. This thesis only

focuses on optimizing the label propagation algorithm.

2.2.4 Single-Source Shortest Paths

Single-source shortest paths computes the shortest distance from a source vertex to

each other vertex in the graph. There are two families of algorithms to solve this

problem: label-setting (e.g., Dijkstra’s algorithm [15]) and label-correcting (e.g., the

Bellman-Ford algorithm [5]). Figure 2-4 shows the main edge traversal logic of the

Bellman-Ford algorithm in the push direction. A frontier is used to keep track of the

vertices whose distance from the source vertex changed during the previous iteration.

Active vertices are examined during each iteration and their neighbors’ distances

are updated using the atomic instruction writeMin (Line 4). This operation results

in random memory accesses. The Bellman-Ford algorithm traverses each edge at

least once, causing enough memory traffic for cache and NUMA optimizations to be

effective. Traversal can happen both in the push and pull directions.

1 p a r a l l e l_ f o r (𝑣 ∈ 𝑉) {
2 i f (f r o n t i e r [𝑣]) {
3 f o r (𝑛𝑔ℎ ∈ 𝑁+(𝑣)) {
4 i f (writeMin (&SP[𝑛𝑔ℎ] , SP [𝑣] + 𝑛𝑔ℎ . weight))
5 next_f ront i e r [𝑛𝑔ℎ] = 1 ;
6 }
7 }
8 }

Figure 2-4: The edge traversal code for one iteration of Bellman-Ford single-source shortest paths in
the push direction with frequent random memory access to the shortest path (SP) array highlighted
in red. All entries of SP are initialized to infinity.

25

1 p a r a l l e l_ f o r (𝑣 ∈ 𝑉) {
2 f o r (𝑛𝑔ℎ ∈ 𝑁−(𝑣)) {
3 i f (frontier[𝑛𝑔ℎ])
4 new_rank [𝑣] += ranks[𝑛𝑔ℎ] / out_degree[𝑛𝑔ℎ] ;
5 }
6 }

Figure 2-5: The edge traversal code for one iteration of PageRank-Delta in the pull direction with
frequent random memory access to the frontier and the vertex data highlighted in red.

2.2.5 PageRank-Delta

PageRank-Delta is a variant of PageRank where only the vertices whose ranks have

changed by more than a threshold are considered active for the next iteration. Traver-

sal can happen in both the pull and push directions. Figure 2-5 shows PageRank-

Delta in the pull direction. Line 3 checks if a source vertex is active before pulling

its contribution. This check causes random memory accesses to read frontier in

addition to the random reads of ranks and out_degree. However, since this check

filters out many non-active vertices, the read traffic on Line 4 is significantly reduced.

Cache and NUMA optimizations are expected to have less impact on PageRank-Delta

compared to PageRank, as not all vertices are active during each round.

2.2.6 Collaborative Filtering

Collaborative Filtering is an algorithm widely used in recommender systems [31].

The main idea is to express each item and each user’s rating as a combination of

some latent features and then to perform Gradient Descent on these features. The

1 p a r a l l e l_ f o r (𝑣 ∈ 𝑉) {
2 f o r (𝑛𝑔ℎ ∈ 𝑁−(𝑣)) {
3 double e s t imate = 0 ;
4 i n t K = 20 ;
5 f o r (i n t i = 0 ; i < K; i++)
6 es t imate += latent_vec[𝑛𝑔ℎ][i] * latent_vec [𝑣] [i] ;
7 double e r r = ra t i ng − es t imate ;
8 f o r (i n t i = 0 ; i < K; i++)
9 error_vec [𝑣] [i] += latent_vec[𝑛𝑔ℎ][i] * e r r ;

10 }
11 }

Figure 2-6: The error vector computation for Collaborative Filtering in the pull direction with
frequent random memory access to the latent vectors highlighted in red.

26

prediction of a user’s rating on a particular item depends on the similarity between

the user’s features and the item’s features. Collaborative Filtering can be modeled

as a bipartite graph of users and items. As shown in Figure 2-6, an error vector is

computed in 𝑂(|𝐸|) work and is later used to update the latent vectors. K is the

dimension that we use for the features. Here we omit the code for updating latent

vectors which takes 𝑂(|𝑉 |) work. Random memory accesses can occur on Line 5 and

Line 8 of Figure 2-6.

2.2.7 The Edge Traversal Abstraction

Ligra is a graph processing framework for shared memory focusing on graph traversal

algorithms including the ones mentioned above. It provides a VertexSubset data

structure to represent a subset of vertices in a graph, a VertexMap abstraction to

apply vertex operations on vertices in a VertexSubset, and an EdgeMap abstraction

to apply edge traversals on edges whose either or both ends are in a VertexSubset.

These primitives simplify the implementations of many graph traversal algorithms,

as these algorithms have the common pattern of iterating through (a subset of) ver-

tices and their neighbors. The underlying implementation of a VertexSubset (i.e.,

sparse or dense) and the traversal direction (i.e., push or pull) depend on the size

of the VertexSubset [2, 34]. We use SparsePush to denote traversals that iterate

over the outgoing neighbors of each vertex on the frontier, and update the neigh-

bors’ values. DensePull iterates over the incoming neighbors of all vertices in a

graph, and updates a vertex’s own value. DensePush loops through all vertices and

checks if each one is on the frontier instead of only looping over frontier vertices as in

SparsePush. GraphIt also supports hybrid schedules such as SparsePush-DensePush

and SparsePush-DensePull.

GraphIt has an algorithm language that is used to specify the high-level logic

of graph traversal algorithms, as well as a scheduling language that is used to com-

bine and fine-tune performance optimizations. GraphIt adopts Ligra’s abstractions

and lets programmers define two functions—UpdateEdge and UpdateVertex—in the

algorithm language. The programmer can use these two functions to specify the op-

27

Figure 2-7: An illustrative example of the NUMA memory hierarchy. The boundaries of the two
kinds of optimizations covered in this thesis (cache blocking and NUMA optimization) are marked
in red.

erations on a single vertex/edge. GraphIt exposes a library function, EdgeSetApply,

to iterate through the edges to perform UpdateEdge on each edge. Optimizations

can be specified using GraphIt’s scheduling language. These optimizations will be

automatically generated as a part of EdgeSetApply, preserving any algorithmic sim-

plicity.

2.3 NUMA Characteristics

Figure 2-7 shows an example of the NUMA memory hierarchy on a two-socket system.

Each socket contains 𝑛 cores and a memory node that is local to that socket. The

link connecting the two sockets shaded in grey is the Intel QuickPath Interconnect

(QPI) link. Memory accesses going through the QPI link take longer than the ones

that can be satisfied locally [24]. While cache blocking optimizations, as highlighted

in Figure 2-7, minimize the local DRAM accesses by fitting the desired data in the

L3 cache, NUMA optimizations minimize the remote DRAM accesses by allocating

the frequently accessed data local to the requesting cores.

This section first introduces three common NUMA allocation policies, and then

28

summarizes the NUMA characteristics of our system by collecting latency measure-

ments from a micro-benchmark. We measure the running time ratios of the algorithms

described in Section 2.2 using only remote or local memory.

2.3.1 NUMA Allocation Policies

When there is no explicit NUMA-aware memory control mechanism in place, Linux

defaults to the first-touch policy where a page is allocated on the memory node local

to the process that first uses that page. Under Linux’s lazy allocation, first-touch

happens when a memory location is first read or written rather than during the

malloc call. This policy generally works fine in the absence of irregular memory

access. However, a mismatch between allocation threads and processing threads can

lead to poor performance. The first-touch policy can be especially harmful when

graph loading is single-threaded. The burden of making sure that allocation threads

and processing threads are from the same socket falls on the developers.

Alternatively, the libnuma library and the numactl control command allows in-

terleaved allocation where memory is allocated in a round-robin fashion on the set

of nodes specified. This policy balances memory access times among the cores, and

generally improves performance on NUMA-oblivious graph processing frameworks

such as Ligra [34] and Galois [28]. However, with the prior knowledge of the graph

structure and the algorithm, one can explicitly confine memory accesses to be mostly

NUMA-local.

NUMA-local processing requires allocating memory on a specific node or inter-

leaved on a specific subset of nodes, and placing threads that access a memory region

onto the same NUMA node as the memory region itself. NUMA-aware graph pro-

cessing frameworks such as Polymer, Gemini, GraphGrind, and Grazelle all use this

customized allocation strategy [18, 38, 43, 46].

29

1 int64_t * s r c = (int64_t *) mal loc (a r r_s i z e * s i z e o f (int64_t)) ;
2 p a r a l l e l_ f o r (i = 0 ; i < ar r_s i z e ; i++) {
3 s r c [i] = i ;
4 }
5 s i ze_t * i n d i c e s = (s i ze_t *) mal loc (i t e r s * s i z e o f (s i z e_t)) ;
6 p a r a l l e l_ f o r (i = 0 ; i < i t e r s ; i++) {
7 i n d i c e s [i] = (rnd ? hashInt (i) : i) ;
8 }
9 start_t imer () ;

10 p a r a l l e l_ f o r (i = 0 ; i < i t e r s ; i++) reduct i on (+:sum) {
11 s i ze_t index = i nd i c e s [i] ;
12 sum += src[index] ;
13 }
14 end_timer () ;

Figure 2-8: The micro-benchmark that allocates, fills, and reads an array. Only reads are timed.
Potential random memory access is highlighted in red. The hashInt function takes an integer and
produces a hash value in a pseudorandom manner.

2.3.2 Micro-benchmark

We implement a micro-benchmark that allocates an array much larger than the sys-

tem’s last level cache (LLC). We measure the time it takes to sequentially or ran-

domly read iters number of elements. Figure 2-8 shows the C++ code for this

micro-benchmark. An array of random indices is generated on Line 7 if the rnd flag

is set to true. Lines 10-13 sequentially read the index array and perform a random

or sequential read on the src array.

Table 2.1 shows the total running times of reading a 2 GB array locally and re-

motely with sequential and random access patterns. We use numactl -N to control

on which CPUs to execute the micro-benchmark and numactl -m to control on which

NUMA nodes to allocate the memory. Note that random accesses still require sequen-

tial reads of the index array whose time is included in the measurements. Random

memory access on average takes 5 times longer than sequential memory access, while

remote memory access takes 3 times longer than local memory access.

To verify that our observations on the micro-benchmark also apply to graph al-

Sequential Reads Random Reads
Local Access Time (s) 0.56 2.93
Remote Access Time (s) 1.86 8.71

Table 2.1: The total running times in seconds of sequential and random memory reads of a 2 GB
array under local and remote allocation policy using cores from one socket.

30

Figure 2-9: The ratios of various algorithms’ running times using remote vs. local memory on the
Twitter graph.

gorithms described in Section 2.2, we measure the running times of each algorithm

using only remote vs. local memory. Their ratios measured on the Twitter graph are

shown in Figure 2-9. Unsurprisingly, algorithms using only local memory are 1.8 to

2.8 times faster than algorithms using only remote memory.

2.4 The GraphIt Compiler

The work in this thesis contributes to GraphIt, an ongoing effort to develop a simple

and high-performing DSL for graph processing. Simplicity in GraphIt is achieved

through separating the high-level graph traversal logic from the algorithm-specific,

graph-specific, and hardware-specific optimizations. High performance is achieved

through the creation of an expressive scheduling language that allows the program-

mer to compose and fine-tune various optimizations to find the optimal schedules

for a particular algorithm running on a specific graph and hardware. The GraphIt

compiler has three major components: a front-end that scans and parses the traversal

algorithms and optimization schedules provided by the programmer, a mid-end that

interprets the schedules via multiple lowering passes, and a back-end that generates

high-performance C++ code with the specified optimizations. This section gives a

31

Apply Scheduling Functions Descriptions
program->configApplyDirection(label,
config);

Config options: SparsePush, Dense-
Push, DensePull, SparsePush-DensePull,
SparsePush-DensePush

program->configApplyParallelization(label,
config, [grainSize], [direction]);

Config options: serial, dynamic-vertex-
parallel, static-vertex-parallel, edge-aware-
dynamic-vertex-parallel, edge-parallel

program->configApplyDenseVertexSet(label,
config, [vertex set], [direction]);

Vertex set options: both, src vertex set, dst
vertex set
Config Options: bool-array, bit-vector

program->configApplyNumSSG(label, config,
numSegments, [direction]);

Config options: fixed-vertex-count or
edge-aware-vertex-count

program->configApplyNUMA(label, config,
[direction]);

Config options: serial, static-parallel,
dynamic-parallel

program->fuseFields({vect1, vect2, ...}); Fuses multiple arrays into a single array of
structs.

Table 2.2: GraphIt’s Scheduling functions. The default option for an operator is shown in bold.
Optional arguments are shown in []. If the optional direction argument is not specified, the config-
uration is applied to all relevant directions. We use a default grain size of 256 for parallelization.

brief overview of each of the three compiler components.

2.4.1 Front-End Schedules

GraphIt reuses the front-end of Simit, a DSL for physical simulation [20], to handle

parsing, tokenizing, and semantic analysis. GraphIt’s scheduling language exposes

a family of C-like function calls with the configApply prefix followed by the name

of a specific optimization and function arguments. For example, configApplyNUMA

enables NUMA optimization and configApplyDirection enables the traversal direc-

tion optimization. Table 2.2 shows the front-end scheduling API with a complete set

of optimizations that GraphIt supports, including the cache and NUMA optimizations

implemented as a part of this thesis.

The front-end reads in these C-like configApply functions and constructs a schedule

object that contains three types of information: the physical layout of the vertex data

(i.e., an array of structs or a struct of arrays), the edge traversal optimizations (e.g.,

traversal direction and cache/NUMA optimizations), and the frontier data structures

(i.e., sliding queue, boolean array, or bit-vector). The mid-end lowering passes heavily

rely on information stored in this schedule object.

32

2.4.2 Mid-End Lowering

The mid-end consists of a few optimization passes which transform the schedule ob-

ject into a mid-end intermediate representation (MIR) that is used by back-end code

generation. In particular, the ApplyExprLower pass is mainly responsible for trans-

forming edge traversal optimizations including traversal direction (push or pull), dedu-

plication (enabled or disabled), the frontier data structure (sliding queue, boolean

array, or bit-vector), and whether the traversal happens in parallel. As we will see

in Chapter 3 and 4, the work in this thesis enables the ApplyExprLower pass to

transform cache optimizations and adds an additional pass (MergeReduceLower) to

transform NUMA optimizations.

These mid-end lowering passes generally perform one or both of the following

two tasks: gathering any global information associated with this pass into the MIR

context, and modifying the local properties of existing MIR nodes. An MIR node

is an abstract structure which can represent an expression, a statement, a type, the

domain of a for loop, a function declaration, or a variable declaration. For example,

EdgeSetApplyExpr is an MIR node that stores node-local information such as whether

a traversal should enable deduplication. GraphIt borrows the idea of the visitor

design pattern, where an additional visitor class is used to implement the appropriate

specializations in each MIR node. Each of the lowering passes constructs an MIR

visitor or rewriter, gets a list of functions from the MIR context, and follows the

visitor pattern to iterate through the functions and modify the corresponding MIR

nodes according to the schedule object obtained from the front-end processing.

2.4.3 Back-End Code Generation

After the mid-end lowering passes have gathered optimization information in the MIR

context and the MIR nodes, the MIR nodes are visited again for code generation.

When the EdgeSetApplyExpr node is visited, for example, the compiler back-end

generates C++ code with OpenMP or Cilk parallel primitives if the is_parallel

flag in the EdgeSetApplyExpr node has been set to true.

33

34

Chapter 3

Cache Blocking in GraphIt

In this chapter, we present the integration of cache blocking in the GraphIt compiler.

Cache blocking [29, 41, 42] is a technique developed for sparse matrix-vector multi-

plication (SpMV) to reduce instances of DRAM access by dividing the matrix into

blocks that fit in cache. We apply this technique to graph processing by partitioning

a graph into subgraphs whose vertex data can fit in the last level cache (LLC). We

first develop hand-optimized C++ implementations with cache blocking and then en-

hance the GraphIt scheduling language and compiler to automatically generate the

code. Section 3.1 explains our C++ implementation of cache blocking in detail, and

Section 3.2 demonstrates how the cache-optimized programs are generated by the

GraphIt compiler.

3.1 Implementation

3.1.1 Graph Partitioning

As in Polymer [43], Cagra [44], and Gemini [46], we partition the graph topology

data (the offset array and the edge array in CSR format) by source or by destination,

based on the traversal direction. Vertices are first divided into 𝑠 disjoint regions

(𝑅0, 𝑅1, . . . , 𝑅𝑠−1), which correspond to the range of source vertices in the pull mode

or destination vertices in the push mode. In the pull mode, incoming edges 𝐸𝑑𝑠𝑡<−𝑠𝑟𝑐

35

Figure 3-1: An example of the graph-partitioning strategy that GraphIt uses. 𝐺 is partitioned in
the pull direction. Subgraph 𝐺1 is assigned source vertices 1–3, and 𝐺2 is assigned source vertices
4–6. subVertexId represents the home vertices on each subgraph. Note that vertex 2, 3, 5, and 6
are duplicated across the two subgraphs.

sorted by 𝑑𝑠𝑡 are assigned to subgraph 𝐺𝑖 if 𝑠𝑟𝑐 ∈ 𝑅𝑖. In the push mode, outgoing

edges 𝐸𝑠𝑟𝑐−>𝑑𝑠𝑡 sorted by 𝑠𝑟𝑐 are assigned to subgraph 𝐺𝑖 if 𝑑𝑠𝑡 ∈ 𝑅𝑖. We then allocate

three arrays for 𝐺𝑖 to store this subgraph’s topology: subOffset, subVertexId, and

subEdge. subOffset stores the offsets into subEdge, as in the traditional CSR format.

subEdge only stores edges within 𝑅𝑖. subVertexId maps the index of subOffset to

the actual vertex IDs in the original graph. Figure 3-1 visualizes this partitioning

strategy.

When processing a subgraph 𝐺𝑖, we only iterate through vertices that are present

in 𝐺𝑖. A vertex can be present in multiple subgraphs since its incident edges are

partitioned. We define the duplication factor, 𝛼, to be the ratio of the total number

of home vertices across all subgraphs over the vertex count in the original graph

(𝛼 =
∑︀𝑠

𝑖=0
|𝑉𝑖|

|𝑉 |). 𝛼 increases as the number of subgraphs 𝑠 increases. The value of

𝑠 controls the range of random memory accesses, which decreases as 𝑠 increases.

Intuitively, 𝑠 should be as small as possible while ensuring the vertex data associated

with range 𝑅𝑖 can fit into the LLC. We use 𝑠 = 16 on Twitter and WebGraph, and

𝑠 = 30 on Friendster. Note that this value depends on the cache size and can be

fine-tuned. We also eliminate zero-degree vertices when constructing the subgraphs

to reduce the total work. There is another advantage to this partitioning strategy: if

36

the edge array of the original CSR is sorted, the partitioned edge arrays will still be

sorted as we sequentially distribute the edges among the subgraphs. This preserves

any existing locality.

3.1.2 Subgraph Processing

In blocked subgraph processing, all threads process one subgraph together at a time

(no parallelism across subgraphs) to maximize parallelism. As a result, there is no

need for additional synchronization, atomic instructions, or intermediate buffering.

For example, PageRank in the pull direction performs blocked reads on the contrib

array but writes directly to the global new_rank array. Since writes happen after

all reads and each thread writes to a different location, there are no write conflicts.

However, the writes to new_rank can incur random memory access, as dst is not

continuous in each subgraph. An alternative approach would be to sequentially write

the new ranks from each subgraph into a subgraph-local buffer and merge the buffers

in a cache-aware fashion at the end of each iteration, as described in [44]. This

approach requires the start and end index of each merging block to be precomputed

and does not perform well on all graphs according to our experiments. Hence we

choose not to include this optimization in our final implementation.

Figure 3-2 shows PageRank’s EdgeSetApply function in the pull direction with

cache blocking enabled. We associate two library functions—getNumSubgraphs(label)

and getSubgraph(subgraphId)—with the original graph 𝑔, and a numVertices field

with a subgraph 𝑠𝑔 which is equivalent to |𝑉𝑖|. Lines 1-2 iterate through the subgraphs

1 f o r (i n t subgraphId = 0 ; subgraphId < g . getNumSubgraphs (" s1 ") ; subgraphId++) {
2 auto sg = g . getSubgraph (subgraphId) ;
3 p a r a l l e l_ f o r (i n t l o c a l I d = 0 ; l o c a l I d < sg . numVertices ; l o c a l I d++) {
4 i n t dst = sg . subVertexId [l o c a l I d] ;
5 f o r (i n t ngh = sg . subOf f s e t [l o c a l I d] ; ngh < sg . subOf f s e t [l o c a l I d +1] ; ngh++) {
6 i n t s r c = sg . subEdge [ngh] ;
7 new_rank [dst] += contrib[src] ;
8 }
9 }

10 }

Figure 3-2: The C++ implementation for PageRank’s EdgeSetApply function with cache blocking
where blocked reads are highlighted in red.

37

associated with the edge traversal labeled “s1”. Lines 3-7 iterate through vertices

and edges of a subgraph and update the global new_rank array. Note that reading

contrib[src] (highlighted in red) is blocked but writing to new_rank[dst] is not.

We expect the C++ compiler to create a temporary variable for new_rank[dst] to

accumulate the sum for a destination vertex and only to perform one random write

at the end rather than actually writing to new_rank[dst] during every iteration of

the inner loop. Therefore, reading contrib happens 𝑂(|𝐸|) times, whereas updating

new_rank only happens 𝑂(𝛼|𝑉 |) times. The overall running time is dominated by

the read traffic, which our approach is designed to optimize.

3.2 Compiler Integration

3.2.1 Scheduling Language Interface

We extend GraphIt’s scheduling language to support configApplyNumSSG(label,

config, numSegments, [direction]) where SSG stands for segmented subgraphs.

label identifies the EdgeSetApply function to which cache blocking is applied. config

specifies the partitioning strategy of subgraphs (e.g., edge-based or vertex-based), al-

though we currently only support vertex-based approaches. numSegments corresponds

to the number of subgraphs into which to partition the original. direction corre-

sponds to whether cache blocking is applied to the push or pull direction during graph

traversal (defaults to pull). When configApplyNumSSG is present, the number of sub-

graphs and direction information are stored in the front-end schedule object for later

use in the middle-end lowering and back-end code generation. Graph partitioning is

implemented in the runtime library in the same way as described in Section 3.1.1.

Two library functions, BuildPullSubgraphs and BuildPushSubgraphs are exported

to build the subgraphs.

38

3.2.2 Schedule Lowering and Code Generation

During the ApplyExprLower pass, we check to see if configApplyNumSSG is present

among the input schedules, and if so, store the number of subgraphs (specified by

the input numSegments) into the EdgeSetApplyExpr node (defined in Section 2.4.2)

so that it can be retrieved when the EdgeSetApplyExpr node is visited during the code

generation phase. We generate the call to BuildPullSubgraphs or BuildPushSubgraphs

in the body of the main function as a part of the setup procedure. The resulting

subgraphs are stored along with the original graph so they can be accessed dur-

ing edge traversals. The code generation phase checks the number of subgraphs

stored in the EdgeSetApplyExpr node, and generates the cache-blocking version of

the EdgeSetApply function if the number of subgraphs is greater than one.

39

40

Chapter 4

NUMA-Awareness in GraphIt

This chapter presents the integration of NUMA optimizations in GraphIt. By care-

fully partitioning an input graph into subgraphs and binding the subgraphs and their

processing threads to the same NUMA node, GraphIt significantly reduces cross-

socket memory accesses. Section 4.1 describes the steps involved in manually opti-

mizing graph algorithms to reduce remote accesses. Section 4.2 presents additional

optimizations that we attempted but did not integrate into the compiler for various

reasons. Section 4.3 explains how we enhance the GraphIt compiler to automatically

generate the hand-optimized programs presented in Section 4.1.

4.1 Implementation

4.1.1 Subgraph Allocation

After partitioning an input graph into a set of subgraphs the same way as in cache

blocking (Section 3.1.1), we want to allocate each subgraph (the subOffset, subVer-

texID, and subEdge arrays) once and avoid migrating a subgraph from one NUMA

node’s memory to another. To do so, we bind each subgraph to a specific socket us-

ing numa_alloc_onnode(size_t size, int node) provided by the libnuma library.

Here size is dependent on the number of vertices and edges of a particular subgraph,

and node is set to be subgraphId % numSockets. In this way, subgraphs are bound

41

to NUMA nodes in an interleaved fashion. The numa_alloc_onnode function is rela-

tively slow compared to the malloc family of functions; hence, we only perform these

allocations once at the beginning when we build the subgraphs. Memories allocated

using numa_alloc_onnode need to be freed by numa_free at the end of processing.

4.1.2 Thread Placement

The major implementation challenge that we faced in making graph algorithms NUMA-

aware was in explicitly placing threads onto the same NUMA node as the subgraph

that these threads are responsible for processing. Even though the taskset family

of Linux commands and the numa_run_on_node family of library calls from libnuma

provide an interface to control processor affinity at our desired level, they do not take

into account the dynamic task scheduling mechanism provided by Cilk and OpenMP.

Cilk and OpenMP, on the other hand, do not support NUMA-aware scheduling or

work stealing (i.e., stealing from workers on the same NUMA node first). Existing

NUMA-aware graph processing systems have spent a substantial amount of effort

to overcome this limitation. For example, Polymer uses pthread, a do-it-yourself

low-level concurrency platform that requires programmers to marshal arguments to

thread creation, which greatly complicates the underlying Ligra framework [43]. Gem-

ini computes the start and end index of every task, manually assigns tasks to workers,

and implements NUMA-local work-stealing [46]. GraphGrind makes changes to the

Cilk runtime system to achieve NUMA-aware task scheduling [38]. Inspired by the

systems above, we explore three ways to implement NUMA-aware thread placement

using existing concurrency platforms without making changes to the platforms them-

selves.

On-the-Fly Thread Placement. The easiest way to make sure that remote mem-

ory accesses are minimized is to bind a spawned thread on-the-fly to the same NUMA

node as the subgraph it is about to process. This only requires a one-line change (Line

5 of Figure 4-1) from the cache-optimized PageRank. get_socket_id on Line 3 is a

library function to retrieve the predetermined socket on which a subgraph should be

processed. The cost of numa_run_on_node, however, turns out to be too high when

42

1 f o r (i n t subgraphId = 0 ; subgraphId < g . getNumSubgraphs (" s1 ") ; subgraphId++) {
2 auto sg = g . getSubgraph (subgraphId) ;
3 i n t socke t Id = sg . get_socket_id () ;
4 p a r a l l e l_ f o r (i n t l o c a l I d = 0 ; l o c a l I d < sg . numVertices ; l o c a l I d++) {
5 /* Place the thread to the same socke t as the subgraph . */
6 numa_run_on_node(socke t Id) ;
7 i n t dst = sg . subVertexId [l o c a l I d] ;
8 f o r (i n t ngh = sg . subOf f s e t [l o c a l I d] ; ngh < sg . subOf f s e t [l o c a l I d +1] ; ngh++) {
9 i n t s r c = sg . subEdge [ngh] ;

10 local_new_rank [socke t Id] [dst] += cont r ib [s r c] ;
11 }
12 }
13 }

Figure 4-1: The C++ PageRank code for binding threads to sockets on-the-fly to avoid remote
memory access.

invoked every time a worker thread is spawned, outweighing the benefit of reduced

cross-socket memory access.

Static Range Assignment. One workaround to avoid on-the-fly thread placement

overhead is to statically bind threads to sockets prior to processing (the same way

that subgraphs are allocated). The downside of this approach is that the processing

range of each thread will also have to be static. Figure 4-2 shows the version of

NUMA-aware PageRank using this approach. More specifically, on our system, with

48 threads and 2 NUMA sockets, threads 0-23 are bound to socket 0 and 24-47 to

socket 1 during initialization. Lines 10-11 of Figure 4-2 compute the start and end

index of this thread’s task based on its thread ID and the total numbers of threads

and sockets in the system. This approach does not allow intra-socket work-stealing

since the start and end index are statically computed. Our experiments show that

this implementation results in a 60% speedup on synthetic graphs (i.e., uniform [17]

and kronecker graphs [22]), but there is a 50% slowdown on the Twitter graph because

each thread is doing a different amount of work, which leads to load imbalance. The

overall performance is dominated by the straggler threads.

Dynamic Affinity Control. Even though OpenMP does not provide a locality-

aware work-scheduling mechanism, it has the important PLACES abstraction: the

environment variable OMP_PLACES describes how threads are bound to hardware. Like

taskset, OMP_PLACES specifies on which CPUs the threads should be placed, with the

main differences being that OMP_PLACES can be specified using an abstract name and

43

1 threads = numa_num_configured_cpus () ;
2 s o cke t s = numa_num_configured_nodes () ;
3 threadsPerSocket = threads / so cke t s ;
4
5 #pragma omp p a r a l l e l num_threads (threads) {
6 i n t threadId = omp_get_thread_num () ;
7 i n t socke t Id = threadId / threadsPerSocket ;
8 auto sg = g . getSubgraphFromSocket (socke t Id) ;
9 i n t ver t i ce sPerThread = sg . numVertices / threadsPerSocket ;

10 i n t s t a r t Index = (threadId % threadsPerSocket) * vert i ce sPerThread ;
11 i n t endIndex = sta r t Index + vert i ce sPerThread ;
12
13 f o r (i n t l o c a l I d = s ta r t Index ; l o c a l I d < endIndex ; l o c a l I d++) {
14 i n t dst = sg . subVertexId [l o c a l I d] ;
15 f o r (i n t ngh = sg . subOf f s e t [l o c a l I d] ; ngh < sg . subOf f s e t [l o c a l I d +1] ; ngh++) {
16 i n t s r c = sg . subEdge [ngh] ;
17 local_new_rank [socke t Id] [dst] += cont r ib [s r c] ;
18 }
19 }
20 }

Figure 4-2: The C++ PageRank code for computing the start and end index for each worker thread
to avoid on-the-fly thread placement.

integrates well with other OpenMP library calls such as proc_bind. The abstract

names for the values of OMP_PLACES can be one of the following:

∙ threads: each place corresponds to a single hardware thread

∙ cores: each place corresponds to a physical core

∙ sockets: each place corresponds to a single NUMA socket

OMP_PLACES specifies the granularity of thread placement when combined with the

proc_bind directives for parallel processing. The proc_bind clause specifies the

affinity policy of a pool of worker threads and can take in one of the following values

as input:

∙ spread: spreads threads among places as far away as possible

∙ close: iterates through places and assigns one thread to one place in order

∙ master: places the child threads into the same place as the parent thread

Figure 4-3 and Figure 4-4 illustrates the spread and the close placement strategy.

To make edge traversals NUMA-aware, we set OMP_PLACES = sockets. The code for

PageRank using OMP_PLACES and proc_bind to control processor affinity is shown in

Figure 4-5. Line 1 enables nested parallelism in OpenMP. Line 3 spawns a number

of threads equal to the number of sockets using the spread or close affinity policy,

so that each thread is placed into a different socket. Each of these threads iterates

44

Figure 4-3: A visualization of the spread placement strategy where 4 threads are spread among 8
places (P0,. . . ,P7) as far away from each other as possible.

Figure 4-4: A visualization of the close placement strategy where 4 threads are assigned to 8 places
(P0,. . . ,P7) in order.

through the subgraphs on that socket (Lines 5-7), and spawns a number of threads

that is equal to the number of processors on that socket. These newly spawned threads

are bound to the same socket as their parent using the master affinity policy (Line

9). Lines 10-15 dynamically schedule the pinned threads to process subgraphs on the

same socket as the threads themselves. Note that parallel_for from Figure 3-2 is

replaced by #pragma omp for since proc_bind is an OpenMP functionality. Unlike

the on-the-fly thread placement strategy where each thread is assigned to a socket

based on its thread ID, proc_bind, using the master policy, directly confines the

affinity of processors in a socket, avoiding unnecessary thread migration. By not

having to statically assign processing ranges to workers, dynamic affinity control

allows work-stealing within a subgraph, and therefore has a better performance.

4.1.3 Broadcast and Merge Phases

Unlike with cache blocking, where only a single thread can write to a specific entry

of the global new_rank array at once, NUMA optimizations can result in two or

more threads updating a vertex’s data simultaneously because subgraphs on different

sockets are processed in parallel. If this is not a benign race, we need to either use

atomic instructions to update the global array directly, or to buffer updates locally

on each socket and merge the result at the end of each iteration. We found that the

45

1 omp_set_nested (1) ;
2 i n t numPlaces = omp_get_num_places () ;
3 #pragma omp p a r a l l e l num_threads (numPlaces) proc_bind (spread) {
4 i n t socke t Id = omp_get_place_num () ;
5 f o r (i n t i = 0 ; i < (g . getNumSubgraphs (" s1 ") + numPlaces − 1) / numPlaces ; i++) {
6 subgraphId = socke t Id + i * numPlaces ;
7 auto sg = g . getSubgraph (subgraphId) ;
8 i n t threadsPerSocket = omp_get_place_num_procs (socke t Id) ;
9 #pragma omp p a r a l l e l num_threads (threadsPerSocket) proc_bind (master) {

10 #pragma omp f o r schedu le (dynamic , 1024)
11 f o r (i n t l o c a l I d = 0 ; l o c a l I d < sg . numVertices ; l o c a l I d++) {
12 i n t dst = sg . subVertexId [l o c a l I d] ;
13 f o r (i n t ngh = sg . subOf f s e t [l o c a l I d] ; ngh < sg . subOf f s e t [l o c a l I d +1] ; ngh++) {
14 i n t s r c = sg . subEdge [ngh] ;
15 local_new_rank [socke t Id] [dst] += cont r i b [s r c] ;
16 }
17 }
18 }
19 }
20 }

Figure 4-5: The C++ code for PageRank’s EdgeSetApply with NUMA optimization using dynamic
affinity control.

overhead of atomic instructions outweighs the benefits from NUMA optimizations.

Hence, we create socket-local buffers (e.g., local_new_rank in Figure 4-5) to store the

partial updates from each subgraph and merge them in the end. The implementation

of the merge phase of PageRank is shown in Figure 4-6. Note that the inner loop

serially iterates through all the sockets. Therefore, the total amount of work from

the merge phase increases as the number of sockets increases.

Since new_rank is stateful across iterations, the entries of new_rank need to be

copied into each local_new_rank before traversing the edges. We call this the broad-

cast phase. Note that the cost of the broadcast phase is also proportional to the

number of sockets.

1 p a r a l l e l_ f o r (i n t n = 0 ; n < |𝑉 | ; n++) {
2 f o r (i n t socke t Id = 0 ; socke t Id < omp_get_num_places () ; s ocke t Id++) {
3 new_rank [n] += local_new_rank [socke t Id] [n] ;
4 local_new_rank [socke t Id] [n] = 0 ;
5 }
6 }

Figure 4-6: The merge phase of PageRank with NUMA optimizations.

46

4.2 Additional Optimizations

This section describes two additional optimizations that we implemented in an at-

tempt to further improve the performance of NUMA-aware graph algorithms. Inter-

socket work-stealing is designed to overcome workload imbalance in highly skewed

graphs. Sequential buffered writes and cache-aware merge are our attempts to fur-

ther reduce random memory access during edge traversal and the merge phase. The

benefit of these optimizations turned out to be small, and so we did not integrate

these two optimizations into the compiler. However, this could be done in future

work.

4.2.1 Inter-Socket Work-Stealing

Figure 4-5 shows that threads in one socket only process the subgraphs allocated

on that socket. In the case where one socket finishes executing all of its subgraphs,

the threads in that socket will be busy waiting rather than helping other sockets

process their subgraphs. Previous work has shown that perfect CPU load balance is

hard to achieve no matter what graph-partitioning strategy is used [38]. Our graph-

partitioning strategy described in 3.1.1 is locality-preserving, but does not provide

any guarantees on load balance.

We implement coarse-grained inter-socket work-stealing at the subgraph level

to accommodate any load imbalance from graph partitioning. We store the sub-

graphs in unprocessedSubgraphs, an array of linked lists indexed by socketId. The

getSubgraph function is modified to take in socketId as an argument, and returns

the next subgraph on that socket’s queue or steals a subgraph from the next socket

if its own queue is empty. These operations are performed using atomic instructions.

The C++ implementation of the getSubgraph function is shown in Figure 4-7.

4.2.2 Sequential Writes and Cache-Aware Merge

One other issue with NUMA optimizations using dynamic affinity control is that up-

dating local_new_rank[socketId][dst] after the inner-most loop finishes executing

47

1 SubGraph *getSubGraph (i n t socke t Id) {
2 /* Try socke t Id ’ s queue f i r s t . I f empty , t ry other s o cke t s */
3 auto sg = getHeadOrNull (socke t Id) ;
4 i f (sg)
5 re turn sg ;
6 i n t v i c t imId = (socke t Id + 1) % numSockets ;
7 whi l e (v i c t imId != socke t Id) {
8 sg = getHeadOrNull (v i c t imId) ;
9 i f (sg)

10 re turn sg ;
11 v i c t imId = (v ic t imId + 1) % numSockets ;
12 }
13 re turn NULL;
14 }
15
16 SubGraph *getHeadOrNull (i n t socke t Id) {
17 auto head = unprocessedSubgraphs [socke t Id] ;
18 whi l e (head) {
19 auto next = head−>next ;
20 i f (__sync_bool_compare_and_swap(&unprocessedSubgraphs [socke t Id] , head , next))
21 re turn head ;
22 head = unprocessedSubgraphs [socke t Id] ;
23 }
24 re turn NULL;
25 }

Figure 4-7: The helper functions to retrieve the next unprocessed subgraph. A socket’s local queue
is checked first before stealing from another socket. The atomic instruction on Line 20 is necessary
since more than one thread can be accessing a socket’s queue at the same time.

still incurs socket-local random writes, as dst is not guaranteed to be continuous in

each subgraph. One way to make sure that writes to local_new_rank are sequential

is to compress local_new_rank from size |𝑉 | to size |𝑉𝑖|. Then we can use localId

instead of dst to index into the local_new_rank array and the writes will be sequen-

tial.

The downside of having a local_new_rank whose size is different from the global

new_rank array is the increased overhead during the merge phase: the merge step

needs to iterate through each 𝑉𝑖, translate the localId to the actual destination ID,

and collect the new values in the global new_rank array. Writing to the new_rank

array incurs many (cross-socket) random memory accesses. We implement the cache-

aware merging technique introduced by Zhang et al. [44]. Instead of writing all of

𝐺𝑖’s local_new_rank entries to new_rank at once (which has a large random access

range), we write a small range of vertices from each subgraph before moving on to

writing the next range. The range is determined in a way that vertices within that

range can fit into the L1 cache. As a result, random DRAM accesses can be greatly

48

reduced.

4.3 Compiler Integration

4.3.1 Scheduling Language Interface

We extend the scheduling language interface of GraphIt to support configApplyNUMA(label,

config, [direction]) where label identifies the EdgeSetApply function to which

NUMA optimizations are applied. Config controls whether or not inter-socket work-

stealing is enabled (not fully supported yet). ConfigApplyNUMA is only valid when

configApplyNumSSG is also configured, as NUMA optimizations require graph par-

titioning. When configApplyNUMA is present, the NUMA flag in the front-end

schedule object is set to true, and the direction information is stored for later

use. As with cache blocking, direction indicates whether the subgraphs should be

built in the pull or push direction. The library functions BuildPullSubgraphs and

BuildPushSubgraphs are extended to take an additional default argument: numa_aware.

If configApplyNUMA is present in the specified schedules, numa_aware will be set to

true, and subgraphs will be bound to specific sockets as described in Section 4.1.1.

4.3.2 Merge-Reduce Lowering Pass

We add a MergeReduceLower pass in the middle-end of the GraphIt compiler to

perform the following tasks:

∙ Extract the reduction operator for the merge phase (e.g., += in PageRank and

MIN in label propagation).

∙ Add the socketId argument to the declaration and invocation of the updateEdge

function.

∙ Modify the write target in updateEdge from global vertex data array to local

buffers.

In the MergeReduceLower pass, we first create an ApplyExprVisitor following

the visitor patterns introduced in 2.4 to revisit the EdgeSetApplyExpr expression

49

node. The EdgeSetApplyExpr node stores the information related to the edge traver-

sal, such as the identifiers for the updateEdge function and the target vertex data

array. We extend the EdgeSetApplyExpr node to store an auxiliary data structure—

MergeReduceField—and we extract the type and variable name of the vertex data

array and the reduction operator into this data structure. Since the updateEdge func-

tion is available during the MergeReduceLower pass, we also modify its declaration to

take the socketId as an additional argument. While visiting the EdgeSetApplyExpr

node, we create another visitor, ReduceStmtVisitor, to visit the ReduceStmt state-

ment. We modify the field name of the left-hand-side expression (the target vertex

data array) by appending local_ to the front of the original array name when visiting

ReduceStmt, so that the updateEdge function writes to the local buffers instead of

the global vertex data array.

4.3.3 Code Generation

During code generation, we again generate the function call to build subgraphs in the

generated main function. In addition, we also generate the allocation and deallocation

for all socket-local buffers. When visiting the EdgeSetApplyExpr node, we look at

its MergeReduceField, and generate the merge phase using the stored operator. We

modify the generated C++ code to use the dynamic affinity control logic as specified

in Section 4.1.2.

50

Chapter 5

Evaluation

5.1 Experimental Setup

5.1.1 Datasets

We evaluate the effect of cache and NUMA optimizations on graphs whose vertex data

does not fit into the LLC. Table 5.1 lists our input datasets and their corresponding

sizes. LiveJournal [13], Twitter [21], and Friendster [23] are three social network

graphs with power-law degree distributions. Friendster is special because its number

of edges does not fit into a 32-bit signed integer. USAroad [14] is a mesh network

with small and undeviating degrees. The WebGraph [27] is from the 2012 Common

Crawl. The Netflix dataset and its synthesized expansion (Netflix2x) [6, 25] are only

Dataset Number of Vertices Number of Edges Average Degree
LiveJournal (LJ) [13] 5 M 69 M 14
Twitter (TW) [21] 61.6 M 1.47 B 24
WebGraph (WB) [27] 101 M 2.04 B 20
USAroad (RD) [14] 24 M 58 M 2.4
Friendster (FT) [23] 124.84 M 3.6 B 29
Netflix (NX) [6] 0.5 M 198 M 396
Netflix2x (NX2) [25] 1 M 792 M 792

Table 5.1: The number of vertices, edges, and average degrees of the input graphs. M stands for
millions. B stands for billions. The number of edges of LiveJournal and Friendster are doubled as
they are undirected. All other graphs are directed.

51

used to evaluate collaborative filtering.

5.1.2 Algorithms

We evaluate the performance of GraphIt and other frameworks on six graph traversal

algorithms: 20 iterations of PageRank (PR), breadth-first search (BFS), connected

components (CC) with synchronous label propagation, single-source shortest paths

(SSSP) with frontier-based Bellman-Ford algorithm, 10 iterations of PageRank-Delta

(PRDelta), and collaborative filtering (CF). The details of each algorithm can be

found in Section 2.2. The experiments for BFS and SSSP choose 10 starting points

and take the average. SSSP uses SparsePush-DensePush. BFS, CC, and PRDelta

use SparsePush-DensePull. PR and CF use DensePull.

5.1.3 Hardware Configuration

We use a dual-socket system with Intel Xeon E5-2695 v3 CPUs and 12 cores each

for a total of 24 cores and 48 hyper-threads. The system has 128GB of DDR3-1600

memory and 30 MB last level cache on each socket, and runs with Transparent Huge

Pages (THP) enabled.

5.2 Cache Blocking Performance

5.2.1 Overall Speedups

Figure 5-1 shows the speedups from cache blocking over the existing best schedules

for each algorithm. Figure 5-2 shows the factors by which cache misses are reduced.

Note that the performance speedup is highly correlated to the reduction of cache

misses. We apply cache blocking when the frontier is dense, and other schedules

are kept the same as before. As a result, cache optimizations help with traversals

in the DensePush direction for single-source shortest paths and in the DensePull

direction for all the other algorithms. Cache blocking improves the performance of

PageRank, connected components, single-source shortest paths, PageRank-Delta, and

52

Figure 5-1: The speedups from applying cache blocking to the six algorithms. Twitter and WebGraph
are partitioned into 16 subgraphs. Friendster is partitioned into 30 subgraphs. Netflix and Netflix2X
are partitioned into 10 subgraphs.

Figure 5-2: The factors by which cache misses are reduced after applying cache blocking.

collaborative filtering by up to 3X, but hurts the performance of breadth-first search.

Cache blocking improves the cache hit rate and the overall performance of connected

components by a larger factor than PageRank, because in addition to the random

accesses to the application data, connected components also incurs random memory

reads to the frontier, so cache blocking has a bigger impact.

53

Twitter (16) WebGraph (16) Friendster (30)
|𝑉 | 61.58M 101.72M 124.84M∑︀𝑠

𝑖=0 |𝑉𝑖| 188.16M 312.32M 602.27M
𝛼 3.06 3.07 4.82

Table 5.2: The original vertex counts, the total numbers of home vertices across subgraphs, and
the duplication factors of Twitter, WebGraph, and Friendster when partitioned into 16, 16, and 30
subgraphs.

5.2.2 Read and Write Trade-offs of Cache Blocking

Cache blocking in GraphIt makes trade-offs between memory reads and writes: the

range of random reads are controlled to fit in cache, but the random write to a vertex’s

application data is performed once per subgraph in which this vertex is present. The

total number of random writes increases as the duplication factor 𝛼 increases. Since

these random writes are bounded by 𝑂(𝛼|𝑉 |) instead of 𝑂(|𝐸|), the performance

is tolerant of these duplications to a certain degree. The 𝛼 value of a graph also

positively correlates to its density: a dense graph is more likely to duplicates its

vertices when being partitioned. As a result, partitioning a denser graph causes more

random memory writes, but a denser graph incurs more random reads, and benefits

more from cache blocking. Figure 5.2 shows the duplication factor from partitioning

Twitter, WebGraph, and Friendster. Friendster has a higher duplication factor and

a higher density than Twitter and WebGraph, as shown in Table 5.2 and Table 5.1.

Figure 5-2 shows that applying cache blocking on Friendster has a bigger improvement

in the overall cache hits compared to Twitter and WebGraph, and leads to a bigger

performance gain.

Breadth-first search is the only algorithm that we evaluate for which cache blocking

causes a slowdown due to the increased random memory writes. Breadth-first search

incurs fewer random memory reads during edge traversal for two reasons. First, in the

pull direction, breadth-first search only reads the runtime state (i.e., the frontier

array), and does not read any application data from a vertex’s neighbors (e.g., ranks

for PageRank). The frontier array can fit in cache when it is represented using a

bit-vector. Second, unlike other algorithms, breadth-first search does not traverse all

of the edges in the pull direction: the frontier array is read less than Θ(|𝐸|) times.

54

Figure 5-3: The speedups from applying NUMA optimizations compared to only using cache block-
ing. Twitter and WebGraph are partitioned into 16 subgraphs. Friendster is partitioned into 30
subgraphs. Negative speedups are equivalent to slowdowns.

As a result, cache blocking has little effect on random reads. On the other hand,

graph partitioning increases the total number of random writes; hence cache blocking

hurts the overall performance of breadth-first search.

5.3 NUMA Optimizations Performance

5.3.1 Overall Speedups

Figure 5-3 shows the speedups from NUMA optimizations over the existing best

schedules with cache blocking for PageRank, connected components, and PageRank-

Delta. Even though remote memory access is reduced from NUMA optimizations, the

overall speedups are always less than 10% (and are sometimes within the measurement

noise) because of work-efficiency and parallelism trade-offs. We have not evaluated

the performance impact of NUMA optimizations on push-based traversals, which we

consider as future work.

55

5.3.2 Locality, Work-Efficiency, and Parallelism Trade-offs

NUMA-Node Locality. NUMA optimizations improve NUMA-node locality. When

vertex data fits in cache, remote memory access is mainly caused by reading the neigh-

bors array (e.g., 𝑁−(𝑣) on Line 2 of Figure 2-1). These memory reads are sequential

and do not dominate the running time, so the effect of NUMA-node locality is minor.

When we only apply NUMA optimizations but not cache blocking (i.e., partition-

ing the graph into two subgraphs and placing one subgraph on each socket), NUMA

optimizations result in a larger speedup (e.g., 60% speedup on WebGraph running

PageRank) since now the random reads of the vertex data are local to the socket.

Work-Efficiency. NUMA optimizations can negatively affect work-efficiency in two

ways. First, an additional merge phase might be required to avoid atomic global

operations in certain algorithms such as PageRank. Second, if updates are stored

into socket-local buffers and are not immediately visible from threads running on a

different socket, certain algorithms such as connected components might converge

more slowly. Hence for connected components, instead of writing the new ID values

to socket-local buffers, we directly update them in the global IDs array, sacrificing

some locality to avoid redundant work. Breadth-first search is another example where

NUMA optimizations can result in more work if updates are stored locally: a vertex

present in both sockets needs to find an active parent on both sockets. Similarly,

we can also choose to directly write to the global parent array. The running time of

breadth-first search with NUMA optimizations is still worse than the original version

due to reasons mentioned in Section 5.2.2.

Parallelism. NUMA optimizations hurt parallelism because when different sockets

process different subgraphs simultaneously, work load imbalance can occur among

the sockets. While dynamic cross-socket work-stealing is a first step towards better

load balance, the granularity at which our work-stealing takes place (at the subgraph

level) is too coarse-grained.

We do not apply NUMA optimizations for collaborative filtering because the Net-

flix graph is highly skewed. NUMA optimizations, as a result, severely reduce par-

56

allelism. The highly skewed distribution of the Netflix graph intuitively comes from

the fact that while hundreds of thousands of users could have watched one popular

movie, few, if any, users are likely to have watched even thousands of movies.

5.4 Comparisons with Other Frameworks

As a part of the larger effort of comparing GraphIt against other state-of-the-art

frameworks including the ones that do not focus on cache or NUMA optimizations,

we evaluate the performance of seven other in-memory graph processing systems:

Ligra, GraphMat, Green-Marl, Galois, Gemini, Grazelle, and Polymer. Ligra has fast

implementations of breadth-first search and single-source shortest paths [34]. Among

prior work, GraphMat has the fastest shared-memory implementation of collaborative

filtering [39]. Green-Marl is one of the fastest DSLs for the algorithms we evaluate [19].

Galois (v2.2.1) has an efficient asynchronous engine that works particularly well on

road graphs [28]. Gemini and Grazelle are the focus of our comparisons as they

both optimize for NUMA locality [18, 46]. Polymer is the first NUMA-aware graph

Application PR BFS
Graph LJ TW WB RD FT LJ TW WB RD FT
GraphIt 0.342 8.707 16.393 0.909 32.571 0.028 0.298 0.645 0.216 0.490
Ligra 1.190 49.000 68.100 1.990 201.000 0.027 0.336 0.915 1.041 0.677
GraphMat 0.560 20.400 35.000 1.190 0.100 2.800 4.800 1.960
GreenMarl 0.516 21.039 42.482 0.931 0.049 1.798 1.830 0.529
Galois 2.788 30.751 46.270 9.607 117.468 0.038 1.339 1.183 0.220 3.440
Gemini 0.430 10.980 16.440 1.100 44.600 0.060 0.490 0.980 10.550 0.730
Grazelle 0.368 15.700 20.650 0.740 54.360 0.052 0.348 0.828 1.788 0.512
Polymer 1.420 47.500 64.800 1.400 0.654 6.080 13.200 115.000
Application CC SSSP
Graph LJ TW WB RD FT LJ TW WB RD FT
GraphIt 0.055 0.890 1.960 17.100 2.630 0.044 1.349 1.680 0.285 4.302
Ligra 0.061 2.780 5.810 25.900 13.000 0.051 1.554 1.895 1.301 11.933
GraphMat 0.365 9.8 17.9 84.5 0.095 2.200 5.000 43.000
GreenMarl 0.187 5.142 11.676 107.933 0.093 1.922 4.265 93.495
Galois 0.125 5.055 15.823 12.658 18.541 0.091 1.941 2.290 0.926 4.643
Gemini 0.150 3.850 9.660 85.000 13.772 0.080 1.360 2.800 7.420 6.147
Grazelle 0.084 1.730 3.208 12.2 5.880
Polymer 0.158 3.710 5.280 38.400 0.161 1.680 0.989
Application PRDelta CF
Graph LJ TW WB RD FT NX NX2
GraphIt 0.183 4.720 7.143 0.494 12.576 1.286 4.588
Ligra 0.239 9.190 19.300 0.691 40.800 5.350 25.500

Table 5.3: Parallel running time (seconds) of GraphIt, Ligra, GraphMat, Green-Marl, Galois, Gem-
ini, Grazelle, and Polymer. The fastest results are bolded. The missing numbers correspond to a
framework not supporting an algorithm and/or not successfully running on an input graph.

57

PR BFS CC SSSP
Ligra

FT
R

D
W

B
TW

LJ

6.17 1.38 4.94 2.77
2.69 4.81 2.16 4.57
4.15 1.42 2.96 1.13
5.63 1.13 3.12 1.14
3.48 1 1.11 1.16

PR BFS CC SSSP
GraphMat

FT
R

D
W

B
TW

LJ

1.61 9.06 7.04 151
2.14 7.44 9.13 2.98
2.34 9.4 11 1.62
1.64 3.7 6.64 2.16

PR BFS CC SSSP
GreenMarl

FT
R

D
W

B
TW

LJ

1.26 2.45 8.99 328
2.59 2.84 5.96 2.54
2.42 6.03 5.78 1.41
1.51 1.83 3.4 2.11

PR BFS CC SSSP
Galois

FT
R

D
W

B
TW

LJ

3.61 7.02 7.05 1.08
13 1.02 1.05 3.25

2.82 1.83 8.07 1.36
3.53 4.49 5.68 1.43
8.15 1.41 2.27 2.06

PR BFS CC SSSP
Gemini

FT
R

D
W

B
TW

LJ

1.37 1.49 5.24 1.43
1.49 48.8 7.08 26.1

1 1.52 4.93 1.67
1.26 1.64 4.33 1
1.26 2.22 2.73 1.82

PR BFS CC SSSP
Grazelle

FT
R

D
W

B
TW

LJ

1.67 1.04 2.24
1 8.26 1

1.26 1.28 1.64
1.8 1.17 1.94
1.08 1.93 1.53

PR BFS CC SSSP
Polymer

FT
R

D
W

B
TW

LJ

1.89 531 3.2 3.47
3.95 20.5 2.69
5.46 20.4 4.17 1.24
4.15 24.2 2.87 3.66

PR BFS CC SSSP
GraphIt

FT
R

D
W

B
TW

LJ

1 1 1 1
1.23 1 1.43 1

1 1 1 1
1 1 1 1
1 1.04 1 1

Figure 5-4: A heat map of slow downs of various frameworks compare to the fastest of all frameworks
for PageRank (PR), breadth-first search (BFS), connected components (CC) using label propagation,
and single-source shortest paths (SSSP) using Bellman-Ford, on five graphs with varying sizes and
structures (LiveJournal (LJ), Twitter (TW), WebGraph (WB), USAroad (RD) and Friendster (FT).
A lower number (green) is better with a value of 1 being the fastest for the specific algorithm running
on the specific graph. Gray means either an algorithm or a graph is not supported by the framework.
We use the same algorithms across different frameworks.

processing framework [43].

5.4.1 Overall Speedups

Table 5.3 shows the execution time of GraphIt and other systems. Figure 5-4 shows

the slowdown of each of the algorithm-input pairs compared to the fastest framework.

Table 5.4 shows the line counts of four graph algorithms for each framework. GraphIt

often uses significantly fewer lines of code compared to the other frameworks, and

outperforms the next fastest framework on 24 out of 27 experiments by up to 4.8

times. Yet GraphIt is never more than 43% slower than the fastest framework. On

the graphs and algorithms where cache and NUMA optimizations are applied, GraphIt

is strictly faster than existing frameworks.

5.4.2 Comparisons with Gemini

Table 5.5 shows that on the Twitter graph, GraphIt has the lowest LLC misses and

cycles stalled compared to Gemini and Grazelle. GraphIt also has the lowest QPI

58

GraphIt Ligra GraphMat Green-Marl Galois Gemini Grazelle Polymer
PR 34 74 140 20 114 127 388 522
BFS 22 30 137 1 58 110 471 448
CC 22 44 90 25 94 109 659 376
SSSP 25 60 124 30 88 104 373

Table 5.4: Line counts of PR, BFS, CC, and SSSP for GraphIt, Ligra, GraphMat, Green-Marl,
Galois, Gemini, Grazelle, and Polymer. Only Green-Marl has fewer lines of code than GraphIt.
GraphIt has an order of magnitude fewer lines of code than Grazelle (the second fastest framework
on the majority of the algorithms we measured). For Galois, we only included the code for the
specific algorithm that we used. Green-Marl has a built in BFS.

Algorithm PR CC PRDelta CF
Metrics GraphIt Ligra Gemini Grazelle GraphIt Ligra Gemini Grazelle GraphIt Ligra GraphIt Ligra
LLC miss rate (%) 24.59 60.97 45.09 56.68 10.27 48.92 43.46 56.24 32.96 71.16 2.82 37.86
QPI traffic (GB/s) 7.26 34.83 8.00 20.50 19.81 27.63 6.20 18.96 8.50 33.46 5.68 19.64
Cycle stalls (1012) 2.40 17.00 3.50 4.70 0.20 0.96 1.20 0.30 1.25 5.00 0.09 0.22
Running time (s) 8.71 49.00 10.98 15.70 0.89 2.78 3.85 1.73 4.72 9.19 1.29 5.35

Table 5.5: LLC miss rate, QPI traffic, cycles with pending memory loads and cache misses, and
parallel running time (seconds) of PR, CC, and PRDelta running on Twitter, and CF running on
NetFlix.

traffic on all algorithms except for connected components where NUMA optimiza-

tions affect convergence. GraphIt consistently outperforms Gemini for a few reasons.

First, GraphIt has integrated more optimizations such as different representations

of the frontier and cache blocking, whereas Gemini always uses a bit-vector for the

frontiers and does not optimize for cache locality. Second, Section 5.3.2 pointed out

that NUMA optimizations can have negative impacts on performance. Gemini al-

ways enables NUMA optimizations, which can hurt the performance of small graphs

and applications such as breadth-first search and single-source shortest paths. The

original Gemini paper also acknowledges these slowdowns [46]. Gemini’s connected

components performs poorly because NUMA optimizations negatively affect commu-

nications between threads on different sockets, as pointed out in Section 5.3.2.

5.4.3 Comparisons with Grazelle

GraphIt performs better than Grazelle on large graphs because GraphIt uses cache

blocking but Grazelle does not. Grazelle uses the Vector-Sparse edge list to improve

vectorization, which works well on graphs with low-degree vertices [18], outperforming

GraphIt by 23% on PageRank and 43% on connected components running USAroad.

GraphIt does not yet have this optimization, but we plan to integrate it in the future.

59

60

Chapter 6

Conclusion

6.1 Summary

In this thesis, we have integrated well-known techniques for improving memory locality—

cache blocking and NUMA optimizations—into the GraphIt DSL. These optimiza-

tions improve the performance of GraphIt by up to a factor of 3. Combined with other

optimizations, GraphIt can be up to 4.8 times faster than the fastest existing graph

processing system. The blocking technique and NUMA primitives used in this work

can also be applied to distributed graph processing. Overall, we show that cache and

NUMA optimizations have a significant impact on the performance of graph process-

ing, and building these optimizations in a DSL brings significant performance benefits

while preserving the simplicity of the algorithm.

6.2 Future Work

GraphIt currently supports cache and NUMA optimizations for dense traversals. We

also hope to improve locality for sparse traversals. In addition, we want to explore

fine-grained inter-socket work-stealing to achieve better load balance. We think it is

useful to support hierarchical NUMA optimizations that minimize communications

between groups of NUMA nodes, but still allow communications within a group for

better parallelism.

61

62

Bibliography

[1] Manu Awasthi, David Nellans, Kshitij Sudan, Rajeev Balasubramonian, and
Al Davis. Handling the problems and opportunities posed by multiple on-chip
memory controllers. In 2010 19th International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), pages 319–330, Sept 2010.

[2] Scott Beamer, Krste Asanović, and David Patterson. Direction-optimizing
breadth-first search. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’12, pages 12:1–
12:10, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[3] Scott Beamer, Krste Asanović, and David Patterson. Locality exists in graph
processing: Workload characterization on an ivy bridge server. In Workload
Characterization (IISWC), 2015 IEEE International Symposium on, pages 56–
65, Oct 2015.

[4] Scott Beamer, Krste Asanović, and David Patterson. Reducing pagerank com-
munication via propagation blocking. In 2017 IEEE International Parallel and
Distributed Processing Symposium, pages 820–831, May 2017.

[5] Richard Bellman. On a routing problem. Quart. Appl. Math., 16:87–90, 1958.

[6] James Bennett, Stan Lanning, and Netflix Netflix. The netflix prize. In KDD
Cup and Workshop in conjunction with KDD, 2007.

[7] Jari Björne and Tapio Salakoski. Generalizing an approximate subgraph
matching-based system to extract events in molecular biology and cancer ge-
netics. In Proceedings of BioNLP Shared Task 2011 Workshop, pages 183–191,
Portland, Oregon, USA, 2011. Association for Computational Linguistics.

[8] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded
runtime system. SIGPLAN Not., 30(8):207–216, August 1995.

[9] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. Computer Networks and ISDN Systems, 30(1):107 – 117, 1998.
Proceedings of the Seventh International World Wide Web Conference.

63

[10] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. One trillion edges: Graph processing at facebook-scale. Proc.
VLDB Endow., 8(12):1804–1815, August 2015.

[11] Leonardo Dagum and Ramesh Menon. OpenMP: an industry standard API for
shared-memory programming. IEEE Computational Science and Engineering,
5(1):46–55, Jan 1998.

[12] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Everything you always
wanted to know about synchronization but were afraid to ask. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP
’13, pages 33–48, New York, NY, USA, 2013. ACM.

[13] Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Col-
lection. ACM Trans. Math. Softw., 38(1):1:1–1:25, December 2011.

[14] Camil Demetrescu, Andrew Goldberg, and David Johnson. 9th dimacs
implementation challenge - shortest paths. http://www.dis.uniroma1.it/
challenge9/.

[15] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Num.
Math., 1:269–271, 1959.

[16] Alessandro Epasto, Silvio Lattanzi, Vahab Mirrokni, Ismail Oner Sebe, Ahmed
Taei, and Sunita Verma. Ego-net community mining applied to friend suggestion.
Proc. VLDB Endow., 9(4):324–335, December 2015.

[17] Paul Erdős. On the evolution of random graphs. Bulletin of the Institute of
International Statistics, 38:343–347, 1961.

[18] Samuel Grossman, Heiner Litz, and Christos Kozyrakis. Making pull-based graph
processing performant. In Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’18, pages 246–260,
New York, NY, USA, 2018. ACM.

[19] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. Green-Marl:
A DSL for Easy and Efficient Graph Analysis. SIGARCH Comput. Archit. News,
40(1):349–362, March 2012.

[20] Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David I. W. Levin,
Shinjiro Sueda, Desai Chen, Etienne Vouga, Danny M. Kaufman, Gurtej Kanwar,
Wojciech Matusik, and Saman Amarasinghe. Simit: A language for physical
simulation. ACM Trans. Graph., 35(2):20:1–20:21, March 2016.

[21] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is Twitter,
a social network or a news media? In Proceedings of the 19th International
Conference on World Wide Web, WWW ’10, pages 591–600, New York, NY,
USA, 2010. ACM.

64

http://www.dis.uniroma1.it/challenge9/
http://www.dis.uniroma1.it/challenge9/

[22] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, and Christos Faloutsos.
Realistic, mathematically tractable graph generation and evolution, using kro-
necker multiplication. In Proceedings of the 9th European Conference on Prin-
ciples and Practice of Knowledge Discovery in Databases, PKDD’05, pages 133–
145, Berlin, Heidelberg, 2005. Springer-Verlag.

[23] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[24] David Levinthal. Performance analysis guide for Intel core i7 processor and Intel
Xeon 5500 processors. 2010.

[25] Boduo Li, Sandeep Tata, and Yannis Sismanis. Sparkler: Supporting large-
scale matrix factorization. In Proceedings of the 16th International Conference
on Extending Database Technology, EDBT ’13, pages 625–636, New York, NY,
USA, 2013. ACM.

[26] Zoltan Majo and Thomas R. Gross. Memory System Performance in a NUMA
Multicore Multiprocessor. In Proceedings of the 4th Annual International Con-
ference on Systems and Storage, SYSTOR ’11, pages 12:1–12:10, New York, NY,
USA, 2011. ACM.

[27] Robert Meusel, Oliver Lehmberg, Christian Bizer, and Sebastiano Vigna.
Web data commons - hyperlink graphs. http://webdatacommons.org/
hyperlinkgraph, 2012.

[28] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infrastruc-
ture for graph analytics. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP ’13, pages 456–471, New York, NY, USA,
2013. ACM.

[29] Rajesh Nishtala, Richard W. Vuduc, James W. Demmel, and Katherine A.
Yelick. When cache blocking of sparse matrix vector multiply works and why.
Applicable Algebra in Engineering, Communication and Computing, 18(3):297–
311, May 2007.

[30] David A. Patterson and John L. Hennessy. Computer Architecture: A Quanti-
tative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1990.

[31] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to Recommender
Systems Handbook, pages 1–35. Springer US, Boston, MA, 2011.

[32] Peter Sanders and Dominik Schultes. Highway hierarchies hasten exact shortest
path queries. In Algorithms – ESA 2005, pages 568–579, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

65

http://snap.stanford.edu/data
http://webdatacommons.org/hyperlinkgraph
http://webdatacommons.org/hyperlinkgraph

[33] Julian Shun. Shared-Memory Parallelism Can Be Simple, Fast, and Scalable.
Association for Computing Machinery and Morgan & Claypool, New York, NY,
USA, 2017.

[34] Julian Shun and Guy E. Blelloch. Ligra: A lightweight graph processing frame-
work for shared memory. In Proceedings of the 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’13, pages 135–146,
New York, NY, USA, 2013. ACM.

[35] Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu.
Work-efficient parallel union-find. Concurrency and Computation: Practice and
Experience, 30(4):e4333, 2017. e4333 cpe.4333.

[36] Stergios Stergiou, Dipen Rughwani, and Kostas Tsioutsiouliklis. Shortcutting
label propagation for distributed connected components. In Proceedings of
the Eleventh ACM International Conference on Web Search and Data Mining,
WSDM ’18, pages 540–546, New York, NY, USA, 2018. ACM.

[37] Josef Stoer, Roland Bulirsch, Richard H. Bartels, Walter Gautschi, and
Christoph Witzgall. Introduction to Numerical Analysis. Springer, New York,
NY, USA, 2002.

[38] Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos. GraphGrind:
Addressing Load Imbalance of Graph Partitioning. In Proceedings of the Inter-
national Conference on Supercomputing, ICS ’17, pages 16:1–16:10, 2017.

[39] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Subra-
manya R. Dulloor, Michael J. Anderson, Satya Gautam Vadlamudi, Dipankar
Das, and Pradeep Dubey. GraphMat: High performance graph analytics made
productive. Proc. VLDB Endow., 8(11):1214–1225, July 2015.

[40] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. Speedup graph processing
by graph ordering. In Proceedings of the 2016 International Conference on Man-
agement of Data, SIGMOD ’16, pages 1813–1828, New York, NY, USA, 2016.
ACM.

[41] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick,
and James Demmel. Optimization of sparse matrix-vector multiplication on
emerging multicore platforms. Parallel Computing, 35(3):178 – 194, 2009. Rev-
olutionary Technologies for Acceleration of Emerging Petascale Applications.

[42] Albert-Jan Nicholas Yzelman and Dirk Roose. High-level strategies for paral-
lel shared-memory sparse matrix-vector multiplication. IEEE Transactions on
Parallel and Distributed Systems, 25(1):116–125, Jan 2014.

[43] Kaiyuan Zhang, Rong Chen, and Haibo Chen. NUMA-aware graph-structured
analytics. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2015, pages 183–193, New York,
NY, USA, 2015. ACM.

66

[44] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Amarasinghe, and
Matei Zaharia. Making caches work for graph analytics. In 2017 IEEE Interna-
tional Conference on Big Data (Big Data), pages 293–302, Dec 2017.

[45] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun,
and Saman Amarasinghe. GraphIt - A High-Performance DSL for Graph Ana-
lytics. ArXiv e-prints, May 2018.

[46] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. Gemini: A
computation-centric distributed graph processing system. In 12th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 16), pages 301–
316, GA, 2016. USENIX Association.

67

	Introduction
	Motivation
	Large and Irregular Graph Structures
	Existing Memory Technologies
	Graph Processing System Limitations

	Contributions
	Thesis Organization

	Background
	Notation
	Graph Traversal Algorithms and Framework
	PageRank
	Breadth-First Search
	Connected Components
	Single-Source Shortest Paths
	PageRank-Delta
	Collaborative Filtering
	The Edge Traversal Abstraction

	NUMA Characteristics
	NUMA Allocation Policies
	Micro-benchmark

	The GraphIt Compiler
	Front-End Schedules
	Mid-End Lowering
	Back-End Code Generation

	Cache Blocking in GraphIt
	Implementation
	Graph Partitioning
	Subgraph Processing

	Compiler Integration
	Scheduling Language Interface
	Schedule Lowering and Code Generation

	NUMA-Awareness in GraphIt
	Implementation
	Subgraph Allocation
	Thread Placement
	Broadcast and Merge Phases

	Additional Optimizations
	Inter-Socket Work-Stealing
	Sequential Writes and Cache-Aware Merge

	Compiler Integration
	Scheduling Language Interface
	Merge-Reduce Lowering Pass
	Code Generation

	Evaluation
	Experimental Setup
	Datasets
	Algorithms
	Hardware Configuration

	Cache Blocking Performance
	Overall Speedups
	Read and Write Trade-offs of Cache Blocking

	NUMA Optimizations Performance
	Overall Speedups
	Locality, Work-Efficiency, and Parallelism Trade-offs

	Comparisons with Other Frameworks
	Overall Speedups
	Comparisons with Gemini
	Comparisons with Grazelle

	Conclusion
	Summary
	Future Work

