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Abstract

The excellent electron properties of graphene, an atomically-thin material with record-
high carrier mobility and gate tunability, make it central to modern nanoscience.
However, the spin-orbit interaction (SOI) naturally present in graphene is extremely
weak and has yet to be observed experimentally. This presents an obstacle for access-
ing novel phenomena in transport and optics, in particular those related to topological
properties. This thesis seeks to address this limitation by artificially introducing SOI
in graphene sandwiched between other atomically-thin materials that can produce an
interfacial SOI in graphene. In particular, it is demonstrated that a strong SOI, natu-
rally present in the two-dimensional materials such as transition metal dichalcogenides
(TMD), can be partially transferred to graphene via the proximity effect. We predict
a range of novel phenomena arising in graphene bilayers with layer-asymmetric SOI
induced by a proximal TMD layer. These include a gate-tunable SOI, a gate-tunable
intrinsic valley-Hall conductivity, as well as a gate-tunable edge conductivity, to name
just a few. These findings will facilitate exploring previously inaccessible spin-related
phenomena in graphene and other van der Waals heterostructures.

Thesis Supervisor: Leonid S. Levitov
Title: Professor of Physics
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Chapter 1

Introduction

Heterostructures, or heterojunctions, is a concept in materials science that has revolu-

tionized the fundamental and applied physics in the 20-th century. Heterostructures

are formed by combining two (or more) distinct materials in close proximity, so that

the chemical composition changes abruptly across the materials' interface. The inter-

face, where the properties of both materials are present, can give rise to "synergetic"

behaviors which are more rich and interesting than those of the constituting materi-

als. The interplay between different material properties can in turn give rise to a wide

variety of new phenomena, many of which are hard to realize in naturally-found or

even artificially-made bulk materials. Furthermore, it was found that heterostructures

often provide the unique means to achieve new functionalities.

Creating new properties and functionalities has always been fundamental to solid

state physics. Consequently, heterostructures were central to many of the key develop-

ments in the physics of the last century. They have led to new physics and revolution-

ary technology such as two-dimensional electron gases in metal-oxide semiconductor

structures, field-effect transistors, quantum Hall effect, topological electronic states,

and so on. However, making perfect heterostructures has been a challenging task.

High concentrations of impurities and defects, as well as deficiencies in the fabrica-

tion and purification technologies, have often hindered the realization of the desired

effects as well as the observation of novel phenomena. However, gaining control over

the properties of heterostructures, while being really hard, had enormous benefits.
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The despair due to the difficulty of the problem, as well as the fascination by the

prospects, is captured in the two famous quotes,

"God made the bulk; surfaces (and interfaces) were invented by the devil"

- Wolfgang Pauli

and

"Often, it may be said that the interface is the device." - Herbert Kroemer

A big boost to the field came from the recent discovery of two-dimensional (2D)

atomically-thin materials, such as graphene and its relatives. These materials, bound

by interfacial van der Waals forces, can form atomically perfect interfaces, which are

essentially defect-free. The van der Waals heterostructures, as they are now known,

helped to address some of the issues faced by their three-dimensional counterparts.

The ability to align pristine samples of 2D materials with atomic precision has sub-

stantially reduced the concentration of defects and impurities. In addition, in these

devices, the system of interest itself has the same dimensionality (in this case, 2D) as

its interface with other materials. The "bulk" and "surface" mentioned in the above

quote by Pauli are one and the same system in this case. Furthermore, since elec-

tronic states of atomically-thin monolayers are fully exposed, they can be controlled

and probed from the out-of-plane direction.

The focus of this thesis is on controlling the spin degree of freedom in graphene.

Graphene is a material with excellent electron properties such as remarkably high

carrier mobilities (which exceed 15000 cm 2V- s- 1 at room temperature) and carrier

densities that can be electron-like or hole-like and tuned continuously over a range as

wide as 10 3 cm- 2 11, 2, 3, 4]. However, the intrinsic spin-orbit interaction (SOI) in

graphene is too weak and has yet to be observed in experiments [5]. Many interesting

phenomena predicted requires the presence of strong SOI. Because this cannot be

achieved by graphene alone, we turn to graphene-based heterostructures to design

high-mobility carriers with strong SOI. But before diving into these details, let us

take a broader view of the development of heterostructures in semiconductor physics

that pervade our life today and continue to empower our society.
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1.1 Heterostructures in Solid State Physics

1.1.1 "The whole is greater than the sum of its parts."

- Aristotle

The key notion of heterostructures can be viewed in comparison with one of the fun-

damental working principles that mankind has adopted towards problem solving -

unity makes strength. Because all of the desired features are never found all together

in what is obtainable easily, humans attempt to combine different ingredients pos-

sessing different subsets of these features. This principle is very familiar to everybody

through cooking, wherein the specific choice, quantity and process of introducing the

different ingredients need to be carefully fine-tuned to achieve the desired outcome.

But humans have also learned ways to go beyond blending different properties in

a simple mechanical fashion. Take selective breeding in agriculture as an example,

where developing new strains and varieties of plants was followed, after the discovery

of genetics, by cross-breading, which allowed to create entirely new species of plants

(including some very tasty ones, such as grapefruit, plumcot, and so on). Similarly,

in designing new materials, the old-fashioned "additive" approach to improving prop-

erties of materials turned out to be less effective than cross-breading of very different

materials. Namely, novel phenomena often emerge at the transition region or inter-

face of different materials. In such a case, in line with the adage supposedly going

back to Aristotle, the whole system can become truly greater than the sum of its

parts.

1.1.2 Semiconductor-Based Heterostructures

Turning to the subject of the thesis, I begin by surveying some of the most successful

and impactful examples of heterostructures in semiconductor physics developed over

the past few decades. These examples serve to illustrate two essential features of het-

erostructures that make them especially appealing. One is the acquisition of a new

effect at the interface of a heterostructure which leads to a new functionality. The

17



particular heterostructure can then be thought of as the building block associated to

that specific functionality. Second, each of these building blocks can then be combined

to form a more complex heterostructure that seeks to synergize the functionalities of

the building blocks to achieve a new and typically more complex functionality. These

two recurring features establishes the background for approaching the 2D heterostruc-

tures that I will be focusing on in the rest of this thesis. In particular, it provides the

context to discuss the advantages and novel aspects of the 2D heterostructures over

their three dimensional (3D) counterparts.

A semiconductor is a material which has a conductivity that is between that of a

metal and an insulator. This feature is due to the presence of a relatively small band

gap in which its chemical potential lies. Because of the narrow band gap, its chemical

potential can be tuned relatively easily into its conduction (n-doped) or valence band

(p-doped) either by doping or gating. It is therefore much easier to alter the sign

of charge carriers and vary its carrier densities compared to a metal or an insulator.

This tunability sets it apart from a metal or insulator, which has electronic properties

that are largely determined by their crystal structure.

An immediate consequence is that within the same semiconducting material, two

different regions can be oppositely doped so that carriers in the different regions have

opposite charges. The result is an interfacial region known as the p-n junction, which

is the simplest example of an interface that exhibits novel effects. Separately, p- and

n-doped semiconductors can be thought of as materials with oppositely charged free

carriers. When placed together, the I-V characteristic across the interface is modi-

fied drastically from their individual I-V characteristic (see Fig. 1-1). This modified

I-V characteristic endows the p-n junction with the new functionality of current-

rectification, whereby electrical current is allowed to pass through the junction only

in one direction. Current rectification can not be achieved simply with a p-doped or

n-doped semiconductor but is born out of the interface between the two. As we shall

see later, there exists a graphene-based heterostructure analogous to and richer than

the p-n junction. In that case, the I-V characteristic is not merely modified, but can

be done in a controlled fashion.
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Figure 1-1: Rectifying I-V characteristics of a p-n junction [6].

Combining two p-n junctions results in a p-n junction transistor [7] or what is

now known as a bipolar junction transistor (BJT). In an n-p-n BJT for instance (see

Fig. 1-2), a p-doped region is sandwiched between two n-droped regions. A contact is

formed at the p-region (base), as well as each of the n-regions (collector and emitter).

Under the correct bias configuration, it acts as a current amplifier. This allows BJTs

to be used as amplifiers or switches, which has applications in many modern electronic

devices today such as computers, telephones and radio transmitters. We thus find

a new functionality in a heterostructure formed by two simpler ones. Both of these

heterostructures can be separately treated as building blocks for even more complex

semiconducting electronic devices.

One is not restricted to considering interfaces between differently doped regions of

the same semiconducting material. A natural progression is to consider the interface

between dissimilar crystalline semiconductors with unequal band gaps. This is known

as a heterojunction. Heterojunctions allow for engineering devices with spatially

distinct band gaps, which enable applications such as semiconducting lasers, solar

cells and transistors. Going one step further, a semiconductor can be proximitized

with a metal to form a metal-semiconductor junction. The junction can either be

rectifying (Schottky barrier) or non-rectifying (ohmic contact).

Going up the complexity ladder, I now discuss the metal-oxide semiconductor

(MOS) capacitor which is a heterostructure comprising all three types of materials

19
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Figure 1-2: Structure of bipolar junction transistor and the corresponding energy
level scheme in thermal equilibrium (a,b), and when biased as an amplifier (c,d) [7].

discussed thus far. This heterostructure allows for the gate-control of the depletion

layer, the region at the oxide-semiconductor interface that is essentially devoid of

carriers. By changing the potential difference between the metal and semiconductor

layers, the depletion layer changes into an inversion layer, which hosts carriers (e.g.

electrons) with the opposite charge to those from the bulk semiconductor (e.g. p-

doped semiconductor). The MOS capacitor therefore achieves the new important

functionality of a gate-tunable carrier density.

Sandwiching the MOS capacitor between two p-n junctions gives rise to the metal-

oxide-semiconductor field-effect transistor (MOSFET). In this heterostructure, both

the current-rectifying feature of the p-n junctions and the gate-tunable carrier density

20
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Figure 1-3: Schematic of metal-oxide semiconductor capacitor biased into (a) surface
depletion and (b) inversion. Metal is labeled as 'Gate', Oxide as 'SiO 2 ' and p-type
semiconductor 'P-Si'. When gate voltage Vg is greater than the flatband voltage
Vb, a depletion layer forms at the oxide-semiconductor interface where carriers are
absent. Further increasing Vg past the threshold voltage V > Ve causes electrons to
accumulate at this interface [6]

feature of the MOS capacitor are combined to achieve the so called field-effect. The

resulting field-effect transistor is a unipolar transistor which uses only one kind of

charge carrier, in contrast to the BJT discussed earlier. For instance, an nMOSFET

is constructed from a MOS capacitor with a p-doped semiconductor layer and sand-

wiched between two n-doped semiconductors (see Fig. 1-4). In the 'off' state, this is

essentially an n-p-n junction and no current is allowed to pass through it when a po-

tential difference is applied between the two adjacent p-doped regions. By changing

the (transverse) potential difference across the MOS capacitor, an inversion layer with

excess electrons forms. This inversion layer then acts as an n-channel that connects

the two n-doped regions and current transmission is turned 'on'. As we shall see later,

there exists a different graphene-based heterostructure analogous to the MOSFET.

In that case, the carrier density as well as the bandstructure itself can be tuned by
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applying a transverse electric field.

V V> Vt

Si02 Si02

N* -000 0 0 N N+ N-Si N+

P-body P-body

(a) (b)

Figure 1-4: Schematic of n-type metal-oxide semiconductor field effect transistor
(nMOSFET), which is formed by a MOS capacitor with p-doped semiconductor layer
sandwiched between two n-doped semiconducting regions. Shown here in (a) is the
'on' state when Vg > V as in the case of Fig. 1-3(b). This can be thought of as form-
ing an n-channel which connects the two n-doped regions and thus allowing current
to flow f61.

With this new functionality, MOSFETs in turn become new building blocks which

can be combined cleverly with other heterostructures in digital integrated circuits.

Different integrated circuits are designed to perform different tasks such as basic

logic operations and data storage found in microprocessors that proliferate our society

today. Of course, there are many more examples of semiconductor-based heterostruc-

tures and our discussion thus far does not begin to even scratch its surface. The

above serves to illustrate the ongoing process of building more complex heterostruc-

tures with new functionalities out of simpler ones. Having surveyed the capabilities

of 3D heterostructures, we are now in a position to understand the novel aspects that

come with forming heterostructures out of atomically-thin 2D materials.

1.2 Graphene-Based Heterostructures

In the previous section, the examples we looked at were 3D heterostructures. The

discovery of graphene brought about the 2D revolution and with it, a new generation

of 2D heterostructures. In this case, because the 2D materials are few-atoms thick,
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the interface and bulk are one and the same. Furthermore, these 2D materials are

atomically-flat so that they can be stacked on top of one another with relative ease.

The resulting heterostructures formed in this way have interfaces that are essentially

free of the impurities or crystallographic defects which were issues often found in 3D

heterostructures.

In this section, I discuss several examples of graphene-based heterostructures,

in each case highlighting functionalities analogous to some of those achieved by

semiconductor-based heterostructures. We will also explore several novel phenom-

ena recently discovered in graphene-based heterostructures that rely specifically on

the aforementioned properties of these 2D heterostructures and therefore cannot be

realized by semiconductor-based heterostructures. Let us begin with a brief history

of how these atomically-thin materials became a reality.

Van der Waals (vdW) materials are a special class of layered crystalline materials.

In these materials, adjacent layers are held together by interlayer vdW bonds which

are much weaker (typically by an order of magnitude) than the intralayer bonds that

hold the atoms within each layer. Examples of vdW materials such as graphite and

TMDs have been studied over the past few decades with the primary goal of under-

standing the properties of their bulk (few-layer) form, which were naturally available

or could be synthesized via techniques such as chemical vapor deposition. Theoretical

attempts to describe such systems typically begin with constructing models for their

monolayer crystals' before proceeding to model multilayered crystals by introducing

interlayer coupling [8, 9, 10, 11, 12, 13]. Therefore while interesting properties of such

monolayer crystals have been discovered, they remained disconnected from reality as

no one had worked out how to consistently extract them from their bulk crystals and

whatever small quantities that existed were produced unintentionally.

It was not until in 2004 when graphene, the monolayer crystal of graphite, was

successfully isolated by Andre Geim and Konstantin Novoselov at the University of

Manchester [1]. By then, the theoretical understanding of the electronic properties of

'Note that monolayer is not synonymous with one-atom thick. Monolayer TMDs such as WSe 2
for instance are typically three atomic layers thick.
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graphene has already been well established, so that the first observation of the integer

quantum Hall effect in graphene that soon followed [3, 4, 14] confirmed the presence

of the theoretically predicted massless Dirac fermions and their corresponding Berry's

phase. The success of the mechanical exfoliation technique used to isolate graphene

prompted its application to other vdW materials. Subsequent successful isolation has

led to the discovery of 2D materials such as hBN, MoS 2, WS2 , WSe2 and MoSe 2.

Graphene

hBN

MoS2

WSe2

Fluorographene

A I 44

Figure 1-5: Depiction of 2D crystals to be analogous to Lego blocks (right panel) [15].

In fact, Geim and Novoselov's pioneering work not only produced graphene but

also the first graphene-based heterostructure. The isolated graphene was transferred

onto thin silicon dioxide on a silicon wafer so as to electrically isolate the graphene. It

follows then to consider materials other than silicon dioxide to serve as substrates for

graphene, such as the other successfully isolated 2D materials. The first novel sub-

strate was hBN [16], which demonstrated its ability to preserve high quality electronic

properties of graphene. This was followed by few-layer hBN, MoS 2 and WS 2 which

served as tunnel barriers for two graphene electrodes in vertically-stacked devices that

functioned as field-effect transistors [17, 18], resonant tunnelling diodes [19, 20], and
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photodetectors [21, 22], paving the way for more designer vdW heterostructures to

come [15].

One particular graphene-based heterostructure analogous to the p-n junction is

formed by two graphene electrodes on either side of an atomically thin hBN tunnel

barrier [19]. Like the p-n junction, this tunnel barrier has non-linear I-V characteris-

tics. A novel feature of this device is the ability to tune the I-V characteristics into

forward or reverse bias. This is achieved by gating the bottom graphene electrode and

adjusting its chemical potential relative to the top graphene electrode (see Fig. 1-6).

ab50 C

25
Bottom Top graphene

graphene 
0.E0

hBN substrate

Silion oide-25

Si gate electrode

0.5

0

-0.5

-0.5 0 0.5 -0.5 0 0.5
Vb (V) Vb (V)

Figure 1-6: Graphene-BN resonant tunnelling transistor. (a) Schematic diagram of
the heterostructure. (b) Measured I-V (Vb) characteristics of a particular device
in which the hBN barrier is four atomic layers thick. The inset shows the relative
positions of the chemical potentials of the two graphene layers at the peak of the I-V
curve in forward bias with V9 = 15 V. (c) Theoretical simulation [19].

A graphene-based heterostructure that is analogous to the MOSFET is the dual-

gated bilayer graphene [23]. Through gating, the chemical potential of the system,

and therefore its carrier density, can be tuned. This field-effect in graphene is much

more sensitive than that in the MOS setup and can be understood from basic elec-

trostatics. The electric field strength between the gates scales as the ratio of the

potential difference of the gates to the distance between them. It follows that for

atomically-thin heterostructures such as graphene, the distance between gates is now

exponentially reduced compared to 3D materials. This leads to enhanced electric

field strengths across these 2D heterostructures, which by Gauss' law, results in much

higher carrier densities.

Additionally, an interlayer bias can be introduced between the top and bottom
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layers of the dual-gated bilayer graphene. This induces a non-zero bandgap that scales

with the applied bias and in this sense, the bandstructure itself can be tuned. I will

discuss the physics behind this phenomenon in the next chapter. Here I emphasize

that this novel functionality in a gate-tunable bandstructure cannot be realized in

previous 3D semiconductor-based heterostructures.

ab c

Source Pt (top gate)

A203 D

Top gate

Drain Db

Pristine Gated e 12 Vb= -130 V f Experiment
5- Line fit

8 -
0) 0-

Vb V60V
E Vb=0 V-

E -10 -

1 0 0 10 1

-10 0 10 -40 0 40 80
V,( VbM

Figure 1-7: (a) Optical microscopy image of the bilayer device (top view). (b) Il-
lustration of a cross-sectional side view of the gated device. (c) Sketch showing how
gating of the bilayer induces top (Dt) and bottom (Db) electrical displacement fields.
(d) Left: the electronic structure of a pristine bilayer has zero bandgap. Right: upon
gating, the displacement fields induces a non-zero bandgap A and a shift of the Fermi
energy EF. (e) Graphene electrical resistance as a function of top gate voltage Vt
at different fixed bottom gate voltages Vb. The resistance peak in each curve corre-
sponds to the charge neutrality point. (f) The linear relation between top and bottom
gate voltages that results in bilayer charge neutrality point. [23].

The atomic precision of stacking these 2D materials, together with the fact that

the above materials all share the same triangular Bravais lattice (albeit with different

lattice constants) enabled yet another knob - crystallographic alignment. When the

twist angle between the crystal axes of two different 2D crystals with similar lat-
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tice constants is sufficiently small, a Moire pattern develops. The electronic states

experience a superlattice potential with a lattice constant at least two orders of mag-

nitude larger. When the alignment results in a commensurate superlattice structure,

the Brillouin zone of the system shrinks to a much smaller region in momentum

space. The electronic bands fold and separate to form minibands [24, 25] in this mini

Brillouin zone. The low-energy physics of these Moire systems, even for the incom-

mensurate cases, are adequately captured by the k-p model. Novel phenomena such

as topological bloch bands in graphene-on-hBN superlattices [26], as well as Dirac-

velocity renormalization of Moire bands in twisted bilayer graphene [27] have been

predicted from their corresponding k-p models. The associated flat Moire bands of

the magic angle (~ 1.050) twisted bilayer graphene in particular give rise to even

more exotic physics. The recent observation of Mott insulating behavior and un-

conventional superconductivity in these twisted bilayer graphene [28, 29] came as a

surprise. Nobody had thought that such exotic phenomena could exist in graphene

systems. This has in turn triggered an overwhelming response from the theoretical

community [30, 31, 32, 33] in attempts to explain its underlying physics.

K'

|- -- ' K2

KK

(a) (b)K'

Figure 1-8: (Left panel) Moire pattern formed for example in graphene-on-hBN or
bilayer graphene with small twist angle 0 (shown) between the two layers forming
a superlattice. (Right panel) Folding of the the Brillouin zone into a mini-Brillouin
zone when the superlattice is commensurate [28].

With the discovery of various novel phenomena, graphene-based heterostructures

is poised to remain as one of the hottest research areas for many years to come. In this

thesis, I will focus on a particular designer feature that was recently experimentally
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observed in graphene-on-WS 2/WSe 2 devices - interfacially-induced SOI. Although

these semiconducting TMDs have been used as substrates to preserve high electronic

quality of graphene, they have not until recently, been investigated for their ability

to induce a strong SOI in the graphene Dirac band. To see why this is desirable, I

discuss the importance of SOI in the next section and give a brief overview of how

spin control has been achieved.

1.3 Spin Manipulation

In the previous sections, we looked at how charge properties can be manipulated

through the heterostructures. In this section, we will see how heterostructures enable

the manipulation of spin-dependent properties that result in new functionalities. The

importance of SOI is emphasized in this context, which is responsible for the under-

lying spin-dependent transport properties. At the same time, the ability to generate

strong and localized magnetic fields is necessary for achieving some of these spin-

based functionalities. It also plays several different roles in spin-based phenomena

because it interacts with carriers through both their charge and spin degrees of free-

dom. In the second half of this section, I discuss the developments in magnetic field

technology in relation to the new phenomena and capabilities it has led to. Overall,

the key concepts introduced in this section set up the foundation for discussing the

novel spin-based phenomena achieved in graphene-based heterostructures in the later

chapters.

Like charge, spin is an intrinsic degree of freedom that electrons (also holes) pos-

sess. The beginnings of solid state physics focused almost entirely on charge-based

phenomena. Spin-based phenomena gradually gained interest with the incorporation

of magnetic materials into devices as well as the theoretical study and observation of

the spin-Hall effect. The former enabled the generation of spin-polarized currents

through the use of ferromagnetic contacts and led to the understanding of spin-

dependent conductivities. The latter explored various mechanisms that can affect

or be used to manipulate the spin-polarization of currents. Together, these gave birth
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to the modern subfield of solid-state physics known as spintronics.

I I I I

Figure 1-9: The Spin Hall Effect. An electrical current induces spin accumulation at
the lateral boundaries of the sample. In a cylindrical wire the spins wind around the
surface [34].

Predicted in 1971 by Dyakonov and Perel, spin Hall effect is a phenomenon in

which oppositely oriented spins are accumulated on opposite boundaries on the lat-

eral surface of a current-carrying sample. Originally, the mechanisms proposed are

extrinsic. These mechanisms showed how carriers with opposite spins scatter in op-

posite directions when colliding with impurities in the material [35, 36]. A funda-

mentally different mechanism intrinsic to the material was later proposed. In this

case, the carriers' trajectories are curved as a result of SOI arising from the broken

crystallographic symmetries of the material [37, 38].

The next big step was the arrival of major discoveries in magnetic heterostruc-

tures in 1980s. Unlike semiconductor-based heterostructures, the field of magnetic

heterostructures began from metallic multilayer studies primarily for superlattice ef-

fects [39]. In such multilayered heterostructures, physical properties due of different

length scales coexist. Properties due to combining different materials are typically

classified in increasing order of sample complexity: interface/proximity, magnetic cou-

pling across non-magnetic materials, and superlattice [40]. Despite so, it is typically

easier to observe these shorter length scale effects in superlattice structures. This is

either due to an enhancement of the effect from the increased number of layers or

because most interfaces are well protected from surface contamination.

One of the most important key discoveries first observed in a superlattice structure
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was the giant magnetoresistance (GMR). GMR refers to the large change in electrical

resistance across two ferromagnetic layers separated by a non-magnetic conductive

layer depending on whether the magnetization of the ferromagnetic layers are parallel

or anti-parallel 1-10. This trilayer effect is based on the spin-dependent scattering

experienced by electrons in ferromagnetic metals such as Fe, Ni, Co and their alloys.

Spin-dependent scattering gives rise to spin-dependent conductivities through the

interplay between the electronic band dispersion and exchange interactions. Albert

Fert [41] and Peter Griinberg 142] separately proposed a heterostructure design that

would exploit this spin-dependent conductivity to realize the GMR phenomenon.

From its functionality, this heterostructure can be thought of as the spintronics version

of the p-n junction, from which various forms of spin field effect transistors 143, 44,

45, 46] and other spin-valve based devices [47, 48, 49] have been proposed. As we

shall see in chapter 5, a different spin-based tunable conductivity can be achieved in

graphene-based heterostructures.

(a) (b)

F1 F1

M M

F2 F2

Figure 1-10: Giant magnetoresistance and the spin-valve effect. Schematic represen-
tation of the spin-valve effect in a trilayer film of two identical ferromagnetic layers
F1 and F2 sandwiching a non-magnetic conductive layer M. When the two magnetic
layers are magnetized parallel (left panel), the spin-up electrons (spin antiparallel to
the magnetization) can travel through the sandwich nearly unscattered, providing a
conductivity shortcut and a low resistance. In contrast, in the antiparallel case (right
panel) both spin-up and spin-down electrons undergo collisions in either F1 or F2,
giving rise to a higher overall resistance. [50].

At the same time, the rapid progress in other fields such as cyclotron-based

physics, electron paramagnetic resonance and nuclear magnetic resonance (NMR)
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spectroscopy provided the impetus to generate stronger and more homogeneous mag-

netic fields. Often achieved via large currents in superconducting coils, strong mag-

netic fields have thus been added as an additional knob in solid state physics. This

has enabled the study of quantum Hall physics which led to the discovery of the

celebrated fractional quantum Hall effect [51], as well as the detection and charac-

terization of SOI in 2D systems. Magnetic field strengths in the Tesla scale such as

those used in NMR have enabled magnetoconductivity and quantum oscillation ex-

periments in 2D systems. In particular, magnetoresistance measurements at the Tesla

scale allow for better resolution of beating patterns that are present in the oscillating

data. This is essential for precise characterization of the underlying SOI strength

when the subbands are weakly spin-split [52, 53]. At larger field strengths (> 10 T),

Zeeman splitting can reach the meV scale. This leads to several new developments.

One is the lifting of the otherwise spin-degenerate Landau levels [54, 55]. Strong B

fields can also be used to probe electron correlation and interaction effects in such

systems [56, 57, 58, 59, 60, 61, 62, 63, 64J.

Integrating some of these spin-related phenomena into next generation devices

necessarily demands their implementation in a form factor that is competitive to

devices already available. Fortunately, half of the work has been undergoing constant

development - the generation and control of nanoscale magnetic fields - which is of

interest for a wide range of applications [651. For example, magnetic field strengths

on the order of 1 T, length scales of less than 100 nm and switched at the GHz

bandwidth are essential for coherent control of spins at the nanoscale dimensions.

This has applications in quantum spintronics [66, 671 nanoscale resolution sensing [68,

69, 70]. Such fields can be generated by modern hard disk drive write heads which can

be traced back to the magnetic recording technology invented in 1898 by Valdemar

Poulsen. Over the past decades, these write heads have acquired smaller form factors

while achieving stronger magnetic fields with faster operational frequencies. As we

shall see in Chapter 4, this fast switching field will enable the electric-dipole spin

resonance effect in a bilayer graphene-on-TMD heterostructure.

Subsequent studies on the SOI in 2D systems eventually led to more interesting
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discoveries. Notable examples include topological insulators [71, 72, 73, 74] as well as

other valley-spin related phenomena in TMDs [75] such as valley-selective optoelec-

tronics [76, 77, 78, 79]. The theoretical and experimental developments thus far puts

us in a great position to investigate the strength and form of SOI that can be intro-

duced into graphene via heterostructures. As I will discuss in subsequent chapters,

such systems provide new ways to control not only spin, but also charge and valley

degrees of freedom. Together with the dynamic control of localized strong magnetic

fields, some of the ideas presented in this thesis may find their way into applications in

quantum spintronics or nanoscale sensing devices and may be part of key components

in solid state quantum computers.

1.4 Thesis Outline

In this thesis, I discuss how SOI can be introduced in graphene via proximity effect.

Doing so on a bilayer graphene results in a layer-specific SOI. This can be exploited in

conjunction with gate-tuneability in bilayer graphene to access novel phenomena. As

we will see, the interplay between both elements is key in realizing these phenomena

in heterostructures formed from bilayer graphene and TMDs.

I first introduce the unique electronic properties of graphene and bilayer graphene

with an emphasis on the case of gated bilayer graphene in Chapter 2. I also discuss the

different forms of SOI in graphene and bilayer graphene respectively. Unfortunately,

the type of SOI allowed by their respective crystal symmetries are very weak and has

not yet been measured directly in experiments. This provides the impetus to engineer

SOI into graphene via heterostructures.

In Chapter 3, I present an experimental collaboration which showed that the low-

energy carriers of graphene multilayers experience a substantially strong SOI which

is imprinted in the magnetoconductivity measurements. Furthermore, the observed

Shubnikov-de Haas oscillations show a beating pattern. This is a direct evidence

that the strong SOI does not merely affect the transport properties of the low-energy

carriers, but it in fact modifies the bandstructure that describes these carriers.
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In Chapter 4, I discuss in greater detail the layer-specific SOI in the context of

the strongly layer-polarized states in gated bilayer graphene. In particular, I show

how a gate-tunable SOI is achieved in the bilayer graphene-on-TMD heterostructure.

I explain how this new functionality leads to achieving electric-dipole spin resonance

with the application of an in-plane magnetic field. In addition, I show that the TMD-

bilayer graphene-TMD heterostructure can be gate-tuned into a new new topological

phase. This phase is characterized by its distinct intrinsic valley-Hall conductivity

from the valley-Hall insulator phase of gated bilayer graphene.

In Chapter 5, I discuss the same bilayer-on-TMD heterostructure but now in its

quantum Hall regime under a sufficiently strong transverse magnetic field. I explore

how the Landau level physics in bilayer graphene is modified as a result of the interplay

between the layer-specific SOI and interlayer potential. Depending on the strength

of the magnetic field, spin- and orbital- ordering inversions can occur in the zeroth

Landau level. I predict the existence of two new phases when moderately strong

magnetic fields and interlayer bias are applied. The more interesting phase hosts

a gate-tunable edge conductivity, in which switching the sign of the interlayer bias

switches on or off its edge conductivity.

Finally, in Chapter 6, the main results of this thesis are summarized and potential

extensions of the various ideas are discussed.
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Chapter 2

Bilayer Graphene Theory

This chapter serves as an introduction to the basic theoretical description that is

used to model the graphene monolayer and bilayer electronic structure. Starting

from the tight-binding description, the low-energy effective Hamiltonian for each of

them is derived, which will be the starting point for many of the subsequent chapters.

Following which, I provide a review on the intrinsic spin-orbit interaction in graphene

and explain why it is often neglected despite being allowed by symmetry. Finally, I

discuss the capacitance effects in bilayer graphene and how it modifies the description

provided by the single-particle effective Hamiltonian.

2.1 Monolayer and Bilayer Graphene Lattice

Graphene is a single layer of carbon atoms arranged in a honeycomb lattice, as is

shown in Fig. 2-1. More precisely, the structure is understood as a triangular lattice

with a basis of two atoms per unit cell that are spatially separated in the 2D plane.

They are denoted as sublattice sites A and B. The primitive lattice vectors of the

triangle lattice, a1 and a2 , may be defined as

, a 3 1 a -a
(i 2 ' 2 , a 2 2,( 2 )
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where a = jail = la2 l = 2.46A is the lattice constant. This is necessarily distinct from

the distance between nearest neighbor carbon atoms, which is the distance between

adjacent A and B sublattice sites, acc = a/V' = 1.42A. The corresponding primitive

reciprocal lattice vectors b1 and b2 are given by

ai= -, , a (2 =(, 3 , (2.2)
2' 2 2' 2

so that ai - b;= 27r6i.

(b)
b,

b
Y M

Figure 2-1: (a) Crystal structure of monolayer graphene with carbon atoms on A (B)
sublattice shown as white (black) circles. The shaded rhombus is the conventional
unit cell, a1 and a2 are primitive lattice vectors. (b) Reciprocal lattice of monolayer
and bilayer graphene with lattice points indicated as crosses, b1 and b2 are primitive
reciprocal lattice vectors. The shaded hexagon is the first Brillouin zone with F
indicating the centre, and K+ and K_ showing two non-equivalent corners [80].

There are many ways in which two graphene layers can be stacked. We will be

mostly concerned with Bernal-stacked bilayer graphene. This refers specifically to the

case when the B sublattice (Bi) on one layer is exactly aligned to the A sublattice

(A2) on the other such that the other two sublattices (Al and B2) are respectively

aligned to the center of the hexagonal unit cell of the other layer. These sublattice

alignments are clearly seen from the top view, shown in Fig. 2-2. A continuous

range of stacking configurations are achieved by introducing a shift or twist angle (or

both) between the two layers until the two layers once again return to their Bernal-

stacked configuration. In this thesis, 'bilayer graphene' by default therefore assumes
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the reference Bernal-stacked configuration, i.e. where the twisted angle and relative

shift between the two layers are both zero. Bilayer graphene therefore has the same

primitive lattice vectors, reciprocal lattice vectors and Brillouin zone as monolayer

graphene. It however has instead four atoms per unit cell, labeled Al and BI on the

lower layer and A2, B2 on the upper layer.

(a)

1 B2

y 
a

x

Figure 2-2: (a) Top and (b) side view of the crystal structure of Bernal-stacked
bilayer graphene. Atoms Al and BI on the lower layer (layer 1) are shown as white
and black circles, A2, B2 on the upper layer (layer 2) are black and grey, respectively.
The shaded rhombus in (a) indicates the conventional unit cell. Various hopping
parameters Yi=o,1,3,4 are shown in (b) [80].

2.2 Monolayer Graphene Low-Energy Effective Hamil-

tonian

The nearest-neighbor tight-binding Hamiltonian of graphene takes the form

(2.3)ftMLG = -70 E (aTbj,s + H.c.)
(i'j),S

where -yo = 2.61 eV denotes the nearest-neighbor hopping energy and ai,, (aTs) an-

nihilates (creates) an electron with spin s(s =t, 4) on sublattice A at position Ri. A

similar notation is used for sublattice B with a - b. In Fourier space, the Hamilto-
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nian 2.3 is given by,

0 f (k)
HMLG = Z ksHMLG(k)Ok,s, HMLG(k) = - (k , (2.4)

k,s f (k) 0

f(k) = + k -2ika/2V3 cos (kwa/2), (2.5)

where , =( at, bt,,) and k = (kr, ky) is the wavevector.

The energy bands given by this Hamiltonian, first derived by Wallace 18], are

described by

E (k) = 7oIf(k)1. (2.6)

The +(-) sign here labels the positive (negative) energy, electron (hole)-like, conduc-

tion (valence) band. The spectrum is symmetric about zero energy and features a

linear-dispersion near zero energy at the Dirac points K = ( g, 0) of the Brillouin

zone,

E (K + k) = tvOhkI. (2.7)

Here I introduce the valley index = which labels the Dirac point of interest. For

their resemblance in the energy dispersion to those of massless relativistic particles,

the low-energy carriers in graphene are described as massless Dirac quasiparticles but

with a velocity vo = 2, o ~ 106 ms-1, which is about 300 times less than the speedwith velcityvo =2h 'Yo-

of light. These massless Dirac quasiparticles are therefore four-fold degenerate, two

from valley and two from spin.

Alternatively, the low-energy spectrum of graphene 2.7 can be solved by first

expanding HMLG from Eq. 2.4 about the K points to obtain the low-energy effective

Hamiltonian of graphene,

HMLG(k) = vo (2.8)

= 7r 0

Ir = h( kx + iky), 7rt = h( kx - iku).
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Here, k is understood to be the wavevector taken with respect to the KC points. It

is convenient to introduce this wavevector relabeling, since the low-energy carriers

of the various graphene-based systems of interest are in the vicinity of these Dirac

points.

2.3 Bilayer Graphene Effective Hamiltonian

As we saw in Fig. 2-2, bilayer graphene comprises two layers of graphene with ad-

ditional interlayer hopping parameters Yi =1,3,4. The largest of these parameters is

-y1 = 0.361 eV, which describes the coupling between electronic orbitals on the verti-

cally aligned A2 and BI sites. For reasons that will become clear shortly, the A2 and

BI are known as 'dimer sites' and the Al and B2 the 'non-dimer' sites. The parameter

74 = 0.138 eV describes the coupling between dimer and non-dimer orbitals Al and

A2 or BI and B2, while the parameter 73 = 0.283 eV describes the coupling between

the two non-dimer sites Al and B2. Finally, the parameter A' = 0.015 eV describes

the energy difference between dimer and non-dimer sites. The values of these param-

eters are obtained from recent ab initio calculations [81], although slightly different

values have been obtained previously 180].

With these parameters, we can construct a tight-binding Hamiltonian for bilayer

graphene,

BLG , a bp,i, + H.c.) + -Y1 (ati,sb,j, + H.c.)

(i(iPj),s

+' 3 at (aib2,, 8 + H.c.) + '74E (atisa2,j,s + b1t8 b2,j,s 8  H.c.)
(i,j),s (i,j),s

-i-A 5 a3a2,j,s + bt, bi,j,5) (2.9)
i's

where I introduced a new layer index p so that for instance, a,, (ap,,s) annihilates

(creates) an electron with spin s(s =t, 4), on layer p(p = 1, 2) on sublattice A at

position Ri.
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In Fourier space, the Hamiltonian 2.9 is given by,

HLG = S ,sHBLG(k)Ok,s,
ks

0 -7of(]

LG(k) = ,-of*(k) A'
y4f *(k) 71

73f (k) - 4f*(I

(2.10)

k) 7y4f (k)

'71

-A'

--yof *(k)

7y3f *(k)

-y4f (k)

-Yof (k)

0

(2.11)

where Os at bt b2,k,, and f(k) is given in Eq. 2.5. Expanding

HOLG from Eq. 2.10 about the KC points, we get

HOLG (k)

0

v0 7r

-V47

-v 3 7rt

vo7r t

'

71

-V47r

-v 4 7F t

'71

vowr

-V37r

-v 4 7 T-t

vo7rt

0

(2.12)

where 7r and 7rt is given in Eq. 2.8 and k is understood to be the wavevector taken

with respect to the K points. The various velocity parameters are given by vi=1,3,4

2h.=134. The bandstructure of HBLG(k) is shown in Fig. 2-3.

Near the Dirac points, the k-independent -y, term dominates and separates the

system into a high- and low-energy subspace. These correspond directly to the dimer

and non-dimer orbitals respectively. The low-energy eigenstates are therefore strongly

localized in the vertically-aligned, non-dimer orbitals (A1,B2). It is possible to obtain

an effective 2 x 2 Hamiltonian of the low-energy system by projecting HBLG in Eq. 2.12

into the (Al, B2) subspace in a perturbative fashion in the limit where -yo and 7 are

much larger than other energies. There are a few different but equivalent ways to

do this [821 and I briefly discuss the application of one of these approaches in the

appendix section of chapter 4.
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It can be shown that the effective 2 x 2 Hamiltonian, H1x, is given by [83, 84]

Tx ho+h +h 4w+hA+h, (2.13)

1 u (r), W 3( r ). ( 0 (rt)2)
ho = , h V3 - V

2mn (72 0 7t 0 4v Nh (7r) 2 0

2vov4  7r7r 0 A'V2 7r t7r 0
h4 =,h = 20

'Y1 0 7rxf 1 0 7rxf

U 1 0 2 v3 2 r7r7 0
hU = 2

2 0 -1 171 0 77T

This effective Hamiltonian captures the bandstructure near the Dirac points (see

inset of Fig. 2-3). The first term ho resembles the low-energy effective Hamiltonian of

graphene (Eq. 2.8) but has instead a quadratic dependence of 7r and 7rt. This can be

understood as an effective hopping between the non-dimer sites involving a three step

process: Al - BI acquiring a v07r factor, followed by B I-+ A2 acquiring its 'mass' 1

and finally A2 -+ B2, acquiring another vo7r factor. This gives rise to an overall mass

term m = 71/2v2, so that the low-energy electrons of bilayer graphene are described as

massive chiral electrons [83, 85]. This term alone captures the essential physics of the

low-energy electrons in bilayer graphene. A simpler model obtained from setting the

other intrinsic parameters -y3 ,74 and A' to 0 is often capable of explaining qualitative

features observed by experiments and demonstrating novel phenomena as we will see

in later chapters. It gives rise to a quadratic and isotropic dispersion of the low-energy

carriers,

E(k) = k 2  (2.14)
2M

which is not only particle-hole symmetric, but also valley and spin degenerate. The

other terms break some of these symmetries which I briefly discuss.

Because of the symmetry of the lattice, at larger energies and momenta k away

from the Dirac points, the above isotropic dispersion relation acquires a triangular

distortion. This effect occurs in graphene and graphite as well because they share the

same Bravais lattice. In bilayer graphene however, an additional triangular distortion
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occurs due to the first term of h, linear in 7r and wrt. This occurs at an energy scale

JEj < 1 meV [83, 86] much smaller than what is of interest and will therefore be

neglected for most of the works in this thesis. The other effect of h" comes from

its second term, which essentially renormalizes the mass m of the low-energy carriers

and does not introduce qualitative changes to the physics.

The next two terms in H, h4 and hA, achieve the same effect of breaking the

electron-hole symmetry. When considered together with ho, the low-energy dispersion

Eq. 2.14 gets modified slightly to E(k) - 2 (1 (2 + ) ). I will be mostly

neglecting these terms and only include their effects in the chapter 5.

For completeness, I have included the last term h. here which breaks the inver-

sion symmetry of the crystal and is in this sense, an extrinsic term. The extent of

asymmetry introduced by h, depends on the energy difference u between the two

graphene layers. This is typically achieved experimentally by doping [871 or exter-

nally gating [88, 89] both layers with different potentials. As this interlayer bias will

play a pivotal role in the rest of my thesis, I devote the next section to discuss its

consequences and its effects on the low-energy spectrum.

2.4 Gated Bilayer Graphene

In monolayer graphene, applying a uniform gate potential from one side, say through

the substrate, results in an overall shift in the electronic spectrum. Doing so dopes

the system with electrons or holes depending on the sign of the potential. In bilayer

graphene however, the two layers can be gated separately so that the potential on

each layer can be written as Ui1 ,2. We can define new parameters uO = I(u + u2 ) and

u = U2 - U1 , which describes the overall spectrum shift and the interlayer potential

respectively. The former influences the carrier density of the system while the latter

breaks inversion symmetry and opens up a gap in the low-energy spectrum. As we

shall see, this gate-tuneable gap provides direct control over the layer-polarization

of low-energy carriers in bilayer graphene. It therefore serves as a knob to tune

properties that are strongly layer-polarized.
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Figure 2-3: Bilayer graphene bandstructure obtained from HOLG(k) showing the Dirac
points K and the Brillouin zone center F. The inset shows the low-energy spectrum
of interest in the vicinity of the K+ point (also K_ point). Parameters values are
70 = 3.16 eV, y1 = 0.381 eV, 73 = 0.38 eV, 74 = 0.14 eV and A' = 0.022 eV. Adapted
from Ref. [80].
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2.4.1 Low-Energy Spectrum and Eigenstates

The interlayer potential can be modeled by introducing an on-site potential term Hu

to the tight-binding Hamiltonian HBLG in Eq. 2.9 (or in Fourier space Eq. 2.10),

HBLG H LG + (2.15)

= ~ (-alj,,aijs - b bi,,b + afJ a2,j,5 + b2,,bi,2,) (2.16)
i's

-Z tbsHuV~k,S,

k,s

1 0 0 0

u 0 1 0 0
Hu= (2.17)

2 0 0 -1 0

0 0 0 -1

Projecting the full bilayer graphene Hamiltonian HBLG = HBLG + Hu to the low-

energy subspace yields HMB given in Eq. 2.13. In this subspace, the constant leading

term can be added directly by hand. The second term however is a k 2 correction term

obtained from perturbative expansion. It analogous to hA and therefore introduces

electron-hole asymmetry.

To study the leading effects of interlayer potential on the low-energy carriers, let

us consider the case where the only non-trivial parameters are -Yo, Th1 and u. In this

case, it can be shown that the spectrum of HBLG is given by [831

E(k) = a(k), (2.18)
2 2 4

Ck = + +vhk + (v ah U).2 4

The low-energy bands a = -1 has a 'Mexican hat' shape dispersion which gives

rise to a band gap ug at wavevector kg from either valleys [80],

|3|1Jul 272 + U2
U = k .U (2.19)

S 62+7 2' 9 2v 2 'y+u 2
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In this thesis, we will be mainly concerned with the small u limit for which u <
so that kg -+ 0 and ug -+ u. In this limit, the spectrum simplifies to

1 hk 4

E(k) ~ - u2 + h 2 ,2 m

which is the exact spectrum of the effective Ha

the leading term of h, to h0 ,

H 2x2 2

)2m

The corresponding bandstructure is shown in

effective Hamiltonian is given by,

E(k) - u/2 I
k)=2E _ v2k,2)2

-y1(E (k) -u/ 2)

where I use Wk

ization gl( 2)(k)

miltonian obtained from adding only

2

(2.21)

Fig. 2-4(a). The eigenstates of this

eik.r tan(pk) - L' (2.22)

to denote the azimuthal coordinate in k-space. The layer-1(2) polar-

of an eigenstate with wavevector k is given by

1 U
g1( 2)(k) = |'A1(B1)(k)1 2  = - F 4E_ k) .2 4E(k)'

(2.23)

In the vicinity of the Dirac point therefore, the eigenstates are strongly layer polarized

when u is finite. For instance, when u > 0, we find

lim 1(2)(k) - (),
k-+0 1(0),1

E > 0

E < 0
(2.24)

This implies that electrons and holes of gated bilayer graphene are strongly localized

on opposite layers. These carriers of opposite charges are therefore asymmetrically

sensitive to any layer-specific effects, e.g. due to having different materials adjacent

to the opposite layers. I will explain how this special property of bilayer graphene

leads to several novel phenomena in the later chapters.
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Figure 2-4: Layer polarization of low energy states. (a) Low energy dispersion with

non-trivial interlayer bias u > 0, opening up a gap separating the conduction band E+

in red, and valence band E_ in blue. (b) Layer-1 polarization of the corresponding

low-energy bands in (a). Near the valley p = 0, states from the conduction band

(red) are strongly polarized in layer 2 while states from the valence band (blue) are

strongly polarized in layer 1.

2.4.2 Capacitance Effects

For a finite chemical potential, integrating the layer polarization Eq. 2.23 over the

circular Fermi surface then gives the electron densities nf( 2 ) on the respective layers,

nl(2 ) = 4 (2 r)2 91(2)(k) = 2 jdk kg1( 2)(k). (2.25)

In the above expression, a factor of four has been included to account for spin and

valley degeneracies. When there is no asymmetry between the layers, an excess charge

n = n1 + n2 induced necessarily splits equally between the two layers, ni = n2 = n/2.

However, when layer asymmetry arises, this charge redistribution is no longer

symmetric, ni # n2. By treating each graphene layer as a conducting plate, we see

that bilayer graphene acts like a capacitor, so that the interlayer potential necessarily

satisfies a self-consistent equation [90J

e2nc

u(n) = uo + e ,l2CO (2.26)
Er EO

where Er is the bilayer graphene dielectric constant and uo is the bare interlayer bias,

i.e. u(n = 0) = uo. This can be understood as an electron-electron interaction effect,
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which is essentially the most significant Hartree potential for the bilayer graphene

geometry.

The self-consistent treatment of carrier density is particularly important for ac-

curately describing its dependence on the interlayer bias especially in the case when

bilayer graphene is gated only from one side. I will discuss this case in greater detail

in section 3.6 of the following chapter. When bilayer graphene is dual-gated, tak-

ing account of the capacitance effect is crucial for properly extracting the interlayer

potential and chemical potential of the system from experimental inputs of top and

bottom gate voltages. Furthermore, the capacitance effects of bilayer graphene can

be used to probe layer-specific properties that are normally out of reach in transport

measurements [911.

2.5 Intrinsic Spin-Orbit Interaction in Graphene

Spin-orbit interaction (SOI) is a relativistic effect which couples the spin and orbital

degrees of freedom of electrons. When an electron travels with a velocity orthogonal

to an external electric field, it experiences an effective magnetic field in its rest frame.

This magnetic field points in the direction orthogonal to both its velocity and the

electric field. It couples to the electron's spin, so that the coupling occurs between the

electron's spin and orbital motion in the laboratory frame. Consequently, the effect

is typically strong in crystals comprised of heavy ions where the average velocity of

electrons is high. Carbon is a light atom, so that a crystal formed by carbon atoms

alone such as graphene is expected to have weak SOI.

In the tight binding model, S0I manifest as spin-dependent and directional-

dependent hopping terms. In the absence of magnetic field, the crystal symmetries

and time-reversal symmetry are respected. This limits the types of spin-dependent

hoppings allowed. Because these SOI terms respect these symmetries, they are said

to be intrinsic.

In graphene, the operators corresponding to time reversal (T) and inversion
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(IMLG) are given by

T= iTrs 1, (2.27)

IMLG = Tox, (2.28)

where KC refers to complex conjugatiton, ay,z and sxyz are the Pauli matrices cor-

responding to the sublattiice and spin degrees of freedom respectively. The intrinsic

SOI at the K points take the form [72, 92, 93]

HLLG = AI7zTzsz, (2.29)

where A1 is the intrinsic SOI interaction strength. This interaction acts as an effective

mass that has opposite signs for opposite sublattices (oz), opposite spins (sZ) and at

opposite valleys K (-rz). It is this form of SOI that opens a topological gap at the

Dirac points so that the system at charge neutrality is quantum spin-Hall insulator.

Quantum spin-Hall insulators feature counter-propagating edge modes with opposite

spin-polarizations that are topologically protected from backscattering. This gives

rise to quantized charge and spin conductances [721.

More generally, when sz does not commute with the Hamiltonian such as in the

presence of a Rashba-type SOI,

HR = AR(TzUxSy - Ousz) (2.30)

the system is a topological insulator for sufficiently large values of A, > AR/2v3 [94j.

While the edge modes of topological insulators no longer have spin-polarizations along

the z-direction, they nonetheless enjoy the same topological protection from backscat-

tering. Topological insulators therefore also feature quantized charge conductance.

Various approaches have been used to estimate the magnitude of A1 ranging from

1 peV to 100 [eV [95, 96, 97J. This is much smaller than the characteristic SOI of 2p

electrons in carbon (~ 6 meV). The strength of the SOI diminishes when projected

onto the atomic 7r bands of a flat graphene layer [92, 93] and is shown to be weaker
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Figure 2-5: Quantum spin Hall effect. (a) Energy bands for a ribbon with "zig-zag"
edges in the quantum spin Hall phase [94]. (b) Schematic diagrams showing (upper
panel) a quantized charge current of 2-V flowing to the right in a two terminal
measurement geometry and (lower panel) quantized spin current of LV flowing to
the right. Diagrams to the right indicate the population of the edge states [72].

than curved graphene sheets or nanotubes [92, 98, 99]. Because of its small value,

it has not yet been possible to directly measure A from experiments, although an

upper bound value of ~ 100 peV has been set [5].

In bilayer graphene, the inversion operator (IBLG) is given by

'BLG = TxPxOx, (2.31)

where px,y,z are the Pauli matrices corresponding to the layer degree of freedom.

Consequently, the intrinsic SOI at the K points takes the form

HLG A1Tzozsz + A2TzPzsz + A3Pz(uYsx - TzoXsy) + )4cz(PySx + TzPxsy). (2.32)

In particular, the first term is the intrinsic SOI of graphene applied to both layers;

the second and third terms have opposite signs in the two layers and correspond to an

Ising-like valley-dependent SOI and a Rashba-type SOI respectively; the last term is a

layer-spin analogue of the Rashba-type SOI with opposite signs on different sublattice
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sites. Likewise, the magnitudes of these parameters A= 1,2,3,4 have been estimated to

be roughly in the range of 1 to 100 peV [100, 101, 102], so that just like in monolayer

graphene, SOI in bilayer graphene is essentially absent.

Applying a transverse electric field through gating breaks the inversion symmetry.

Although this generates new extrinsic SOI terms, the strengths of these terms are

strongly suppressed due to the relativistic nature of SOI. For instance, typical electric

fields strengths of 1V/nm are estimated to generate Rashba-type spin splittings of ~

10 to 50 peV in graphene [93, 102], comparable to that of the intrinsic SOI strengths.

Inversion symmetry can alternatively be broken by introducing a substrate. If the

substrate material is made up of light atoms such as hBN, any extrinsic SOI terms

generated will once again be weak. But as we shall see in the next chapter, by choosing

substrates known to have strong SOI such as WSe2 or other TMDs comprising heavy

atoms, a substantially strong SOI in the meV scale can be interfacially induced in

graphene. Although these terms are different from the intrinsic SOI that is necessary

to realize the topological insulating phase [72, 103, 104, 105], I will show that the SOI

induced from TMD-substrates gives rise to interesting topological properties that are

gate-tunable in the case of bilayer graphene (see chapters 4 and 5).
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Chapter 3

Origin and Magnitude of Spin-Orbit

Interaction in Graphene on

Semiconducting Transition Metal

Dichalcogenides

In this chapter, I describe a collaborative work with the University of Geneva in which

a combination of experimental techniques were used to demonstrate a general occur-

rence of spin-orbit interaction (SOI) in graphene on transition metal dichalcogenide

(TMD) substrates '. Their measurements indicate that SOI is ultra-strong and ex-

tremely robust, despite it being merely interfacially-induced, with neither graphene

nor the TMD substrates changing their structure. This is found to be the case ir-

respective of the TMD material used, of the transport regime, of the carrier type

in the graphene band, and of the thickness of the graphene multilayer. Specifically,

they performed weak antilocalization (WAL) measurements as the simplest and most

general diagnostic of SOI, and show that the spin relaxation time is very short (ap-

proximately 0.2 ps or less) in all cases regardless of the elastic scattering time, whose

'This chapter is reproduced in part with permission from Z. Wang, et al., Origin and magnitude
of 'designer' spin-orbit interaction in graphene on semiconducting transition metal dichalcogenides,
Phys. Rev. X 6, 041020 Copyright (2016) by the American Physical Society.
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value varies over nearly two orders of magnitude. Such a short spin-relaxation time

strongly suggests that the SOI originates from a modification of graphene band struc-

ture. This expectation was confirmed through the observation of a gate-dependent

beating, and a corresponding frequency splitting, in the low-field Shubnikov-de Haas

magneto-resistance oscillations in high quality bilayer graphene devices on WSe2.

These measurements provide an unambiguous diagnostic of a SOI-induced splitting

in the electronic band structure, and their analysis allows us to determine the SOI

coupling constants for the Rashba term and the so-called spin-valley coupling term,

i.e., the terms that were recently predicted theoretically for interface-induced SOI

in graphene. The magnitude of the SOI splitting is found to be on the order of 10

meV, more than 100 times greater than the SOI intrinsic to graphene. Both the band

character of the interfacially induced SOI, as well as its robustness and large magni-

tude make graphene-on-TMD a promising system to realize and explore a variety of

spin-dependent transport phenomena, such as, in particular, spin-Hall and valley-Hall

topological insulating states.

3.1 Interfacial Interactions in vdW Heterostructures

Van der Waals (vdW) heterostructures formed by vertical stacks of different two-

dimensional (2D) materials have emerged recently as designer systems, providing

a new paradigm for engineering novel electronic media with widely tunable parame-

ters [151. Stacked vdW heterostructures nicely combine the ability to tailor interfacial

interactions at the atomic scale, while at the same time preserving the integrity of

individual layers. This 'designer' aproach is epitomized by recent work on graphene

paired with hexagonal boron-nitride (hBN) 1106, 107, 1081. In this system, a dramatic

change in the graphene band structure occurs when the crystal axes of graphene and

hBN layers are nearly aligned, in the total absence of any reorganization of chemical

bonding or any change in the atomic order of individual layers. The transformed band

structure manifests itself in striking and robust transport phenomena -such as the ap-

pearance of so-called satellite Dirac points- that are readily observable experimentally.
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These unexpected findings are opening up a wide avenue of research exploring vdW

heterostructures based on many different 2D materials [22, 21, 109, 110, 111, 112]. A

key goal at this stage is to identify the interfacial interactions that can alter specific

electronic properties of interest, and to understand the microscopic physical processes

responsible for their origin.

One fascinating question in this vein is whether vdW heterostructures can be

used to control not only the orbital dynamics of electrons in graphene, but also

their spin, i.e., whether vdW heterostructures can be employed to generate a strong

spin-orbit interaction (SOI) in the graphene Dirac band. To this end, combining

graphene with large-gap semiconducting transition metal dichalcogenides (TMDs)

appears to be a promising route [113], because semiconducting TMDs exhibit an

extremely strong SOI [114, 75, 115, 116], and because they are known to preserve the

high electronic quality of graphene when used as substrates [117]. Recent magneto-

transport measurements performed on graphene-on-WS 2 [118, 119]- and in particular

the observation of a pronounced weak antilocalization (WAL) contribution to the

conductivity of graphene [119]- confirm these expectations. Indeed, the analysis of

the experimental results indicated that the spin relaxation time T,, in graphene-on-

WS2 is between 100 and 1000 times shorter than in graphene on SiO 2 [120] or on

hBN [121]. This is broadly consistent with ab-initio calculations, which predict the

strength of SOI in graphene-on-WS 2 to be at least 100 times larger than the SOI

intrinsic to graphene [119, 92, 93, 122].

These results pose a number of interesting and challenging questions, which are

central for our understanding of the new phenomenon of 'designer' SOI. In particu-

lar, the physical process by which strong SOI can be imprinted by one layer on an

adjacent layer without any changes in their structure remains puzzling. So far, the

experiments were unable to elucidate the microscopic mechanism responsible for the

strong SOI in graphene, nor did they provide any reliable insight into the functional

form of the induced SOI as well as its strength. They also did not establish whether a

strong interfacially-induced SOI is unique to graphene-on-WS 2 or whether it is a ro-

bust, generic property of all graphene-on-TMD heterostructures. Last but not least,
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perhaps the most tantalizing question of all is whether SOI is dominated by disorder

scattering or by a band structure modification. If the latter happens to be the case,

the strong SOI present in graphene-on-TMD system can be employed to create and

explore a variety of electronic media with novel properties [94, 72, 1231.

A variety of graphene-on-TMD heterostructures were exploited to tackle these

questions in a comprehensive way. Large part of the work focuses on the study of

WAL in heterostructures formed by graphene and one of the semiconducting TMDs:

WSe2 , MoS 2 , and WS2 . For all TMDs used, irrespective of carrier mobility (A),

position of the Fermi level in graphene, and thickness of the graphene layer (up to

trilayer), a pronounced WAL signal is observed. This finding shows that interfacially

induced SOI in graphene-on-TMDs is an extremely robust phenomenon, insensitive

to virtually all details of the vdW heterostructure considered. A quantitative anal-

ysis of the WAL data allows us to establish an upper bound of approximately 0.2

ps for the spin-relaxation time Tso, irrespective of the carrier mobility (which was

varied by nearly two orders of magnitude). Such a short Tso value appears to be

physically compatible only with SOI originating from a modification of the graphene

band structure. This conclusion was validated from measurements of Shubnikov-de

Haas (SdH) conductance oscillations, which exhibited a beating due to a splitting in

their frequency [124, 125, 531. The size of the splitting and its dependence on carrier

density show that the beating originates from SOI, and its quantitative analysis al-

lows us to establish the SOI magnitude. We find that the dominant SOI term is of

the Rashba type, and that its characteristic energy is approximately AR ~ 10 - 15

meV; the strength of the other SOI term expected to be induced by interfacial inter-

actions [119] -i.e., the one that couples spin and valley- ranges between A = 0 and

A ~ 5-6 meV (i.e., experimental data are compatible with AR = 15 meV and A = 0

meV or with AR = 10 meV and A = 5 - 6 meV, as well as different choices in these

intervals).

Besides elucidating most aspects of interfacially induced SOI in graphene, the

results presented here clearly illustrate the experimental flexibility of graphene-on-

TMDs heterostrcutures. These heterostructures allow comparative studies by vary-
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ing the specific TMD material used, the thickness of the graphene layer, the position

of the Fermi level, and the scattering time (T). Even more flexibility could be in-

troduced using double gated devices, to tune the graphene band structure (e.g., in

bilayers) [88, 58, 126, 1271 and further extend the range of carrier densities acces-

sible experimentally. We anticipate that this unrivaled experimental flexibility will

prove useful in future experiments aiming at exploring other aspects of interfacial

interactions in vdW heterostructures.

3.2 Device Fabrication and Characterization

Van der Waals heterostructures were assembled by transferring graphene layers of dif-

ferent thickness (mono, bi, or tri layers) onto thin exfoliated flakes of TMDs (WSe2 ,

WS 2 , and MoS 2), resulting in devices whose cross section is schematically shown

in Fig. 3-1(a). For the assembly, a commonly used dry transfer technique was em-

ployed [16, 128]. Conventional electron-beam lithography, lift-off, and oxygen plasma

etching techniques were employed to pattern and contact multi-terminal Hall-bar

devices. The contacts consist of an evaporated Ti/Au thin film (10/70 nm). All

structures were realized on substrates consisting of degenerately doped Silicon cov-

ered with a 285 nm thick layer of thermally grown SiO 2 . The charge density (n) of

graphene is tuned by operating the doped Silicon substrate as a gate electrode. In

this configuration, for sufficiently large gate voltage (M), carriers are accumulated at

the surface of the TMD flake at the interface with the SiO 2 layer [119, 129]. When

that happens, the carrier density in graphene cannot be tuned anymore by Vg, and

the conductivity (-) of graphene saturates.
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Figure 3-1: Basic characterization of graphene on TMD substrates. (a) Schematic
cross section of the devices. The graphene layer (green) is transferred onto a TMD
crystal (pink) that has been previously exfoliated on a substrate consisting of highly
doped Silicon (gray) covered by 285-nm-thick SiO 2 (light blue). The silicon substrate
is operated as a back-gate. (b-c) AFM images of a graphene Hall-bar device before
and after the AFM-ironing process (scale bar is 2 pm long). (d-f) Gate-voltage (V)
dependence of the resistance (R; red curves) and the conductivity (-; blue curves) of
monolayer graphene on WSe2 (d), MoS 2 (e) and WS 2 (f), measured at 4.2 K. The car-
rier mobility in the three cases is 110,000, 33,000, and 23,400 cm2 /Vs, respectively. In
all devices, the conductance saturates at large enough V away from charge neutrality
point, when charges start to be accumulated at the SiO2-TMD interface. The black
line in (f) represents the V-dependent conductivity -(V) before AFM-ironing (the
corresponding mobility is approximately two times smaller than for the blue curve).
(g-h) Integer quantum-Hall effect (QHE) observed in high-quality graphene-on-WSe 2
at T = 250 mK whose basic characterization is shown in (d). The color map of
the longitudinal resistance (R_-) versus V and B (g) and the V,-dependence of R,.

(red curves) and the Hall conductance (o-2,; blue curves) measured at B = 12 T
(h) clearly confirm the occurrence of the vanishing R., and concomitantly quantized
U-V = V x e2 /h at integer values of filling factor (v -- nh/eB). In panel (h), the
QH plateaus at v = 1, -3, -4, -5 due to the full degeneracy lifting of the N = 0, 1
Landau levels in monolayer are clearly visible.
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The device quality -i.e., the carrier mobility and the inhomogeneity in carrier

density- depends on the details of the assembly process, and on the procedure to

"clean" the device structure at the end of the fabrication. Two key elements intro-

duce disorder: structural defects resulting from the transfer process, such as "bubbles"

and "wrinkles" in the graphene layer [130], and adsorbates adhering onto graphene

(mostly polymer residues remaining at the end of the fabrication process). The in-

fluence of both elements can be controlled in different ways. Structural defects can

be eliminated by defining the graphene Hall-bar in regions in which these defects are

absent. Selecting these areas, which typically have linear dimensions of the order of

5-6 pm, usually results in very high carrier mobility: low-temperature mobility values

as large as 160,000 cm 2/Vs have been observed, which are comparable to (or possibly

even slightly better than) the best values observed in graphene-on-hBN structures as-

sembled by the same dry-transfer technique [106, 107, 108, 131, 132]. Selecting larger

areas is also possible, but this unavoidably prevents the full exclusion of structural

defects, resulting in lower mobility.

Adsorbates can be eliminated in a rather controlled way by a so-called atomic force

microscope (AFM) "ironing" process 1133], essential to realize high mobility devices.

AFM ironing consists of scanning the graphene flake with an AFM tip in contact

mode, applying only a moderate force, in such a way to pile up all the adsorbates just

outside the edges of the graphene flake. The effectiveness of the process is illustrated

in Figs. 1(b-c). Fig. 3-1(b) shows an AFM image of a device at the end of fabrication

and Fig. 3-1(c) another image of the same device taken after the "ironing" step. The

difference -the extremely small corrugation that is measured on graphene after the

"ironing" process- is clear. In this study 16 different devices were measured, in which

-depending on their area, cleaning procedure adopted, density of "bubbles", etc.- the

carrier mobility extracted from measurements of the conductivity and of Hall effect

ranged between 3,000 and 160,000 cm2/Vs.

Figs. 3-1(d-f) shows the gate voltage dependence of the resistance (red curves)

and of the corresponding conductivity (blue curves) measured on three representative

devices, respectively on WSe 2, MoS 2, and WS2. As compared to an earlier work on
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graphene-on-WS 2, in which no AFM ironing was done [1191, in the current generation

of higher-quality devices the charge neutrality point is "exposed" in all cases: it is

possible to shift the Fermi level (EF) both in the valence and in the conduction band

by acting on the back gate. Whereas for graphene on WS2 and MoS 2 only a small

range of energies in the conduction band can be accessed, for WSe 2, EF can be shifted

over a rather large interval in both the valence and the conduction band. Hence, WSe2

allows the systematic investigation of SOI in the conduction band without the need to

use a top gate electrode, something that could not be done in previous work. Finally,

Figs. 1(g-h) show that all integer quantum Hall effect (QHE) states are visible,

including the symmetry broken states caused by the presence of electron-electron

interactions [1311, which is indicative of the high quality of the devices (in the best

cases, symmetry broken states become already visible for applied magnetic fields as

low as approximately 1 Tesla).

3.3 Extracting SOI from Weak Antilocalization (WAL)

in Monolayer Graphene on Different TMDs

Weak antilocalization is a striking quantum interference effect originating from spin-

orbit coupling that has long served as a direct probe of SOI in conductors [134, 1351.

Also for graphene-on-TMD heterostructures, the observation of the WAL correction

to the low-temperature magneto-conductivity provides the simplest and most general

diagnostic of the presence of SOI [119]. Extracting the WAL contribution requires

suppressing the effect of the so-called phase-coherent universal conductance fluctua-

tions (UCF) originating from random interference of electronic waves f136j. Indeed,

since the dimensions of the graphene-on-TMD devices studied are typically compara-

ble to (or even smaller than) the phase coherence length LO, the WAL contribution

in any individual measurement is normally eclipsed by the presence of UCF. To make

the WAL contribution stand out, the magnitude of the UCF was suppressed by look-

ing at the ensemble averaged conductivity, obtained by averaging many (typically 50)

58



On WSe
2

20K -

1.6 K..

'0.25 K
( . ' . 0 .

-10 -5 0
B(mT)

-5 0
B (mT)

5 10

5 1

a)
b

0.1

0

On MoS
2

30 K

1.6

0.25 K-
(b)

-8 -4 0 4 8
B (mT)

0-
(e)

-0.05 -

< -0.10 -

-0.15-

0 -8 -4 0 4
B(mT)

0.

0)

b

-c
0)

b

b

8

-0.

-0.

On WS2

2- 30 K

0 1.6K

2-

4 0.25 K
(C) 0

-30 -20 -10 0 10 20 30
B (mT)

(f)

-30 -20 -10 0 10 20 30
B (mT)

Figure 3-2: Negative magneto-conductivity due to WAL in monolayer graphene on
TMD substrates. (a-c) Ensemble-averaged magneto-conductivity measured on mono-
layer graphene on WSe2, MoS 2 and WS 2 , for T = 250 mK (black curve), T = 1.6
K (red curves), and T = 20 or 30 K (blue curves), with the Fermi level gate-tuned
to be in the graphene valence band. The data are measured on the same devices
whose V-dependent transport curves are shown Figs. 1(d-f). The characteristic
peak due to WAL around B = 0 T is clearly visible at low temperature and disap-
pears at higher temperature. (d-f) Quantum corrections to magneto-conductivity of
monolayer graphene on WSe2, MoS 2, and WS 2, obtained by subtracting the classical
contribution (corresponding to the magneto-conductivity measured at T = 20 or 30
K) from the magneto-conductivity measured at T = 250 mK. Note that up to the
highest magnetic field investigated, no signatures of weak-localization are visible.

magneto-conductance traces measured at slightly different values of V (the procedure

is identical to that described in Ref. [119]).

The procedure described above, performed at different temperatures, leads to the

results shown in Figs. 2(a-c) for graphene on WSe 2, MoS 2, and WS 2 respectively.

In all cases, a negative magneto-conductivity of order e2 /h is clearly apparent at the

lowest temperature investigated, T = 250 mK, upon the application of a magnetic

field (B) of a few milliTesla. The magnitude of the negative magneto-conductivity

decreases upon warming up the devices and the effect disappears entirely at T ~ 20 -

30 K, as expected for quantum interference effects [135]. It is clear that, irrespective
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Figure 3-3: Interfacially induced SOI in graphene-on-TMD is a robust phenomenon.
(a) Magneto-conductivity of graphene-on-WSe 2 measured with the Fermi energy gate-
tuned to be in the graphene conduction band. (b) Magneto-conductivity due to
WAL measured on a larger-area graphene-on-WSe 2 device with a carrier mobility of
only 3,000 cm 2/Vs. (c) Magneto-conductivity of graphene-on-WS 2 measured on a
same device before (red) and after (black) the AFM-ironing process needed to clear
graphene from adsorbates. As the carrier mobility increases, the WAL peak becomes
sharper as expected. All data in this figure have been measured at T = 250 mK.

of the TMD used to realize the heterostrcutures, the presence of a pronounced WAL

signal in magneto-transport demonstrates that in all cases SOI is induced in graphene.

In extracting the strength of SOI from magnetotransport measurements a spe-

cial care should be taken in accounting for the interplay between WAL and weak

localization, since the two effects contribute to magnetoconductivity with opposite

signs [1371. Weak localization gives rise to a positive magneto-conductivity, which

becomes visible when during the phase-coherent progapation of electrons their spins

do not rotate-or rotate by a small enough angle [134]. Despite the presence of SOI, a

small positive magneto-conductivity due to weak localization may still be observed,

because at sufficiently high magnetic field only the shortest trajectories give a non-

negligible contribution to the interference effects probed by the ensemble-averaged

conductivity. Unless SOI is extremely strong, the electron spin may not have time to

rotate by a sufficient amount along these short trajectories, and signatures of weak

localization may then become visible at large B.

The issue is relevant because -as it is clear from Figs. 2(a-c)- a positive magneto-

conductivity is visible in the measurements, and it is important to establish whether
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this is a manifestation of weak localization. To this end, we recall that WAL and

weak localization are quantum corrections to the conductivity, i.e. they correspond

to the difference between the total magneto-conductivity that is actually measured

and the classical contribution. The classical contribution is straightforward to de-

termine, since it corresponds to the magneto-conductivity measured at sufficiently

high temperatures, where phase coherent effects have been suppressed because of the

thermally induced shortening of LO. Since at 20-30 K the effect of WAL has entirely

disappeared and the remaining low-field (positive) magneto-conductivity does not ex-

hibit any significant temperature dependence, we can take the magneto-conductivity

measured at these temperatures to be a good approximation of the classical con-

tribution (see Section 3.11 for more details on the classical magneto-conductivity

background). The resulting quantum correction to the magneto-conductivity for the

different devices is shown in Figs. 2(d-f). Within the precision of the measurements,

determined by the remnant amplitude of UCF fluctuations, no positive magneto-

conductivity is visible in Figs. 2(d-f). We conclude that irrespective of the TMD

material used in the heterostructure, a clear WAL signal is always present with no

detectable weak localization contribution. This observation provides a first clear in-

dication that in all heterostructures investigated, the SOI induced in graphene has a

very strong intensity.

Data measured on other monolayer graphene devices confirm that WAL always

occurs with no detectable weak localization signal, irrespective of whether carriers

are electrons or holes, and of their mobility (or, equivalently, scattering time r),

which was varied over a range of nearly two orders of magnitude. Both aspects

had not been addressed in a previous work on WS2 , in which the Fermi level could

not be shifted into the conduction band and the scattering time was only varied

by a limited amount [1191. The occurrence of WAL for electron transport is best

illustrated with data measured on graphene-on-WSe 2, shown in Fig. 3-3(a), in which

a fully developed WAL signal is clearly visible. The effect of the mobility can be

appreciated by looking at Figs. 3-3(b) and 3-3(c). Fig. 3-3(b) shows the quantum

correction to the magneto-conductivity measured on a large-area graphene-on-WSe 2
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device, in which a high-density of "bubbles" led to a low-temperature mobility of 3,000

cm2 /Vs (whereas all devices shown in Figs. 2(a-c) had mobility larger than 25,000

cm 2/Vs). We find that the magnitude of the WAL correction is comparable in all

cases, but in the lower mobility devices the magnetic field required to observe the

negative magneto-conductivity is larger. This is expected, since when the mobility is

lower a larger magnetic field is needed to pierce a flux of <lo = h/e through the area

in which the electronic waves propagate phase coherently and interfere. The same

conclusions can be drawn by looking at Fig. 3-3(c), which shows the WAL magneto-

conductivity in a same graphene-on-WS 2 device measured before (red curve) and after

(black curve) performing an AFM "ironing" step, resulting in a mobility increase. It

is apparent that in this case as well, a higher mobility leads to a decrease of the

magnetic field scale needed to suppress the effect of WAL.
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Figure 3-4: Interfacially-induced SOI in graphene multilayers on TMDs. Panels (a-

c) and (d-f) refer respectively to a bilayer and a trilayer device, both realized on

WSe2 . Panels (a) and (d) show that the resistance peak around charge neutrality

is very narrow, indicative of a high uniformity of carrier density (in the trilayer, the

magnitude of inhomogeneity is smaller than 2x1010 cm- 2 , comparable to the best
devices on hBN). High quality integer quantum Hall effect is observed in both devices,
as shown by data in panels (b) and (e) measured at T = 4.2 K. In panel (b), in which

the characteristic quantization sequence of graphene bilayer is observed, the applied

magnetic field is B = 4 T. Panel (e) shows a color plot of the longitudinal resistance of

trilayer graphene as a function of filling factor and magnetic field. Full breaking of the

degeneracy of Landau levels due to electron-electron interactions start to be clearly

visible already at B = 1 T. Panels (c) and (f) show the ensemble averaged magneto-

conductivity measured at T = 250 mK, exhibiting the characteristic signature of

WAL, with no positive magneto-conductivity due to weak localization (in panel (c)

the different curves show data at different gate voltages, corresponding to shifting the

Fermi level from the bilayer graphene valence band to the conduction band).
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3.4 SOI in Bilayer Graphene and Thicker Multi-Layers

When monolayer graphene is substituted by thicker multilayers, a strong SOI remains

present in all devices (irrespective of the TMD used for the device realization). Fig. 3-

4 illustrates this conclusion with data measured on two different graphene-on-WSe 2

devices: Figs. 3-4(a-c) refer to a bilayer graphene device with low-temperature mo-

bility t = 33, 000 cm 2 /Vs and Figs. 4(d-f) to a trilayer having mobility p ~ 110, 000

cm2/Vs. Basic transport characterization show that -as for monolayer devices- het-

erostructures based on thicker multilayers exhibit an excellent electronic quality. The

resistance peak around the charge neutrality point is extremely sharp in both cases

(see Figs. 4(a) and 4(d)); in the trilayer device the measured width corresponds

to a charge inhomogeneity as low as 1.8x1010 cm- 2 , comparable to the best ever

reported for non-suspended graphene devices. In the presence of a perpendicular

magnetic field B = 4 T the expected Hall effect quantization sequence is observed in

the bilayer device, with plateaus in the Hall conductance occurring at ug = 4Ne2/h
(N = t1, +2, ... ) [85, 831, concomitantly with the vanishing of the longitudinal resis-

tance. In the thicker multilayer, the plot of the longitudinal resistance versus filling

factor v -= nh/eB and B (Fig. 3-4(e)) shows the appearance of broken symmetry

quantum Hall states already at B as low as approximately 1 T. In short, excellent

quality bi and tri-layer graphene devices can be realized on TMD substrates, compa-

rable to the very best devices realized on hBN by means of the same technique.

Figs. 4(c) and 4(f) show that a pronounced low temperature negative magneto-

conductivity due to WAL is clearly visible in both the bilayer and the trilayer device.

In these devices as well, no background due to weak localization is observed, indicative

of the large SOI strength. This is remarkable, because interfacial interactions are

expected to modify only the properties of the bottom graphene layer, the one in

direct contact with the TMD crystal [1191. Under normal conditions, the eigen-

functions in the different bands of the multilayer are such that electrons have a finite

amplitude of probability to be in that layer. As a result, all bands are affected

and that is why thicker multilayers exhibit a pronounced WAL. Nevertheless, it is
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clear that the effect of interfacially induced SOI should decrease in intensity as the

thickness of the multilayer increases, since the probability for electrons to enter in

contact with the TMD crystal decreases upon increasing thickness (or, equivalently,

the amplitude of the electron wavefunctions in the bottom layer -the one in contact

with the the TMD- decreases for thicker multilayers). The data shown in Fig. 3-4(c)

-and especially those shown in Fig. 3-4(f)- indicates that despite the larger thickness,

at least up to trilayer graphene the observed behavior of the WAL correction is the

one typical of very strong SOI. Significantly thicker multilayers are needed to "dilute"

the effect of SOI induced by interfacial interactions.

The observation of WAL in graphene bilayers (Fig. 3-4(c)) is worth an additional

comment. In monolayers, WAL can occur due only to the Dirac nature of electrons

(i.e., in the absence of SOI), as a consequence of the 7r Berry phase picked up by the

electron wave functions that undergo backscattering processes while staying in a same

valley. WAL due to this effect has been seen experimentally, albeit only at elevated

temperatures (typically T > 10 K) [138], since only then LO is sufficiently short (such

a dependence on temperature allow the phenomenon to be discriminated from WAL

due to SOI, which increases in amplitude upon cooling). The effect is absent in bilayer

graphene, since in bilayers a 27r Berry phase is acquired by the electron wavefunction

upon back-scattering, which does not lead to WAL [139]. As such, the occurrence of

WAL in bilayers illustrated by the data shown in Fig. 3-4(c) provides unambiguous

and more direct evidence of the presence of interfacially induced SOI.

In concluding this Section, I emphasize that the possibility of using interfacial

interactions with a TMD substrate to induce strong SOI in different graphene multi-

layers -and not only in monolayers- adds to the flexibility of this experimental system.

As I will discuss in Section 3.6, this flexibility was exploited in the present work to

determine quantitatively the type and magnitude of the interfacially induced SOI.
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Figure 3-5: Comparison of WAL data measured on monolayer graphene on different
TMDs with the theoretical predictions of Eq. (1). In panels (a-d), the black dots
represent the data; the continuous lines of different colors represent the predictions
of Eq. (1) for different values of spin-relaxation time To. In panel (a), data from
a low-mobility device (p = 3, 000 cm2/Vs) on WSe2 are shown; Panels (b-d) show
data on higher mobility devices (respectively, 23,400, 33,000, and 110,000 cm2 /Vs) on

WS 2 (b), MoS 2 (c), and WSe2 (d). Note in all cases, inserting values of rs0 > 0.5 ps
in Eq. (1) leads to the appearance of a positive magneto-conductivity due to weak
localization at higher B, which is not seen in the experiments. This allows us to
determine an upper bound for Tso for all the devices investigated. All data in this
figure have been measured at T = 250 mK.
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for WS 2 ). For each different symbol, data points represented with the same color refer
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3.5 Quantitative Analysis of the WAL Data

The pronounced WAL observed in the measurements presented in the previous sec-

tions, together with the absence of any signature of weak localization, illustrate

that strong SOI is a general property of graphene-TMD heterostructures. For a

quantitative analysis, we confine ourselves to devices realized on monolayers, for

which an explicit theoretical expression for the magneto-conductivity due to WAL

is available 11401. The expression, which takes into account the effect of all possible

symmetry-allowed SOI terms, reads:

2 - -1 ( -1
Aa-(B) = 2 F -T- - F _-B -2F TB1

7rh r + 2TZ ;TO 1 + TS;;1

where F(x) = ln(x) + 0(1/2 + 1/x) with O(x) the digamma function. Here Tj =

4DeB/h (D is the carrier diffusion constant), T. 1 is the dephasing rate, Tas represents

the spin relaxation rate due to the SOI terms that break z -+ -z symmetry (z is

the direction normal to the graphene plane) and -1 is the total spin-relaxation rate,

including the effect of all SOI terms.

Since weak (anti)localization theory is developed having the fully diffusive trans-

port regime in mind [140], we started with the analysis of the magneto-conductivity

measured in the lowest mobility device, i.e. the graphene-on-WSe 2 device whose

data are shown in Fig. 3-3(b) (carrier mobility p !- 3, 000 cm2 /Vs; elastic scattering

time T - 0.04 ps). Fig. 3-5(a) shows that Eq. (1) reproduces the data well with

rso - 0.2 ps, with all other parameters satisfying the conditions of validity of the

theory: TO > rasy > To > T 2. Some more considerations are however needed to

understand physically the meaning of the good agreement between Eq. (1) and the

experimental data.

2When fitting the data from different devices, we found that -in agreement with the assumptions
made by theory- the condition, T4 > ry > -r,, is always satisfied. However, whereas the data
analysis gives an upper bound for r, ~ 0.2 - 0.4 ps for all devices, the spread in the values extracted
for 7-asy is larger. For different devices rasy was found to vary between 2 and 10 ps. Such a spread
is likely to be caused -at least in part- by uncertainties in extracting the magneto-conductivity
(Ao-) from the measured magneto-resistance, due to the limited precisions in determining the device
geometry (indeed, the value of rasy extracted from the fit is particularly sensitive to the absolute
magnitude of the negative magneto-conductivity)
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To this end, we note that, for Tsc, values longer than 0.2 ps, theory predicts that

weak localization should become visible in the magnetic field range explored in the

measurements (see, for instance, the green curve in Fig. 3-5(a), which represents

Eq. (1) with Tso = 0.78 ps), contrary to what is observed experimentally (no positive

magneto-conductivity is observed up to the largest magnetic field B = 40 mT applied

in the experiments). TrsO values significantly larger than 0.2 ps are therefore not

compatible with these observations and can be excluded. Tso values shorter than 0.2

ps, however, are compatible with the measurements. This is illustrated by the red

curve in Fig. 3-5(a), which is a plot of Eq. (1) with -F0 = 0.04 ps (and with all other

parameters to be the same). This choice for TrO also perfectly reproduces the data

and leads to a magneto-conductivity that is indistinguishable from the case rs = 0.2

ps. We therefore conclude that our analysis of WAL can only provide an upper value

for Ts0 ~ 0.2 ps.

These considerations make it clear that measuring WAL up to sufficiently high

magnetic field is important, because the absence of a positive magneto-conductivity

due to weak localization is what allows a more precise quantitative determination of

the upper bound for Ts,. In an earlier work on graphene-on-WS 2 [1191, in which the

analysis of WAL was also used to obtain rs0, the magnetic field range had not been

extended sufficiently in the measurements. As a result, the estimates of Ts0 reported

there are approximately one order of magnitude larger than what was found here. In

other words, from the analysis reported in a previous work [1191, the intensity of SOI

-albeit already very strong- appeared to be weaker than what it actually is.

For devices with higher mobility, in which the electron mean free path I = VFr

becomes longer, the analysis of WAL requires more critical thinking. For instance,

the use of Eq. (1) is meaningful only up to magnetic field values B ~ lio/12 (where

Po = h/e is the quantum of flux), because in the diffusive regime described by Eq.

(1) the minimum area of a time reversed trajectory giving rise to WAL or weak

localization is of the order of 12 [137]. For devices in which A ~ 100, 000 cm 2 /Vs, the

corresponding value of B is only approximately 5 mT. This does not pose problems

to observe the characteristic peak in WAL, which for such high p values becomes
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extremely narrow (see, e.g., Fig. 3-5(c)), but limits the range of magnetic field that

can be meaningfully used in the quantitative analysis of the data. Nevertheless, in

practice, Eq. (1) does reproduce satisfactorily the measured magneto-conductivity in

all cases, as illustrated in Figs. 3-5(b-d). Therefore, as per the low mobility case,

the upper bound for -r, for each of the devices analyzed was determined. This upper

bound is such that for larger Trs values the predictions of Eq. (1) shows the presence

of a positive magneto-conductivity at higher magnetic field and are incompatible

with the experimental observations, whereas for smaller values of rF, the magneto-

conductivity predicted by Eq. (1) does not change significantly and reproduces the

behavior of the experimental data.

The result of this analysis is summarized in Fig. 3-6, in which the upper bound for

Tso extracted for all monolayer devices analyzed is plotted as a function of the elastic

scattering time T. For each device, the result of the analysis performed for different

applied gate voltage is also shown. The upper bounds for -rT determined from WAL

cluster between 0.1 and 0.4 ps, and in most cases they are close to 0.2 ps. This is

a remarkably systematic behavior, especially considering the large range in carrier

mobility investigated (from 3,000 to 110,000 cm 2 /Vs).

Care is needed in interpreting this result, because for sufficiently high mobility

devices (e.g., in all cases in which r > 0.5 ps in Fig. 3-6) T80 < T, which appears to

be beyond the regime of validity of Eq. (1) (the assumption that motion is diffusive

implies that T is the shortest time scale). This situation is not new. It has already been

encountered in the analysis of WAL in different two-dimensional systems in which SOI

is known to be extremely strong, such as 2D hole gases in GaAs-heterostructures [141,

53]. As discussed in detail in Ref. [53], also in these systems a pronounced signal

due to WAL is observed without any positive magneto-conductivity due to weak

localization. The quantitative analysis of the magneto-conductivity gives an upper

limit for -r (r-1 ~ 3 ps in that case), such that T > Ts. (T ~ 25 ps for those systems),

in complete analogy to what was found in previous high mobility graphene-on-TMD

devices. For 2D holes in GaAs-heterostructures, the very short -r, values extracted

from the analysis of WAL were taken as a signature of a strong SOI originating from
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the band structure (i.e., not from impurity scattering) [53]. This conclusion was

validated through a study of Shubnikov-de Haas (SdH) resistance oscillations, that

exhibit a gate-voltage dependent beating. The beating is due to SOI that splits the

hole Fermi surface, causing SdH oscillations to occur with two distinct frequencies.

By analyzing the frequency splitting as a function of carrier density, the precise nature

of the SOI term present in the Hamiltonian could be established.

In view of the similarity in the behavior of WAL in graphene-on-TMDs and in

GaAs-based 2D hole gases it is tempting to draw analogous conclusions. Namely, the

observed behavior of WAL appears to indicate a band origin of SOI in graphene-on-

TMD. Indeed, the SOI-induced splitting in the electronic band structure can generate

WAL which is at most weakly dependent on the amount of disorder in the system.

This is consistent with the observation of WAL which is strong and robust for a wide

range of carrier mobilities in a variety of different samples. To confirm the band origin

of interfacially induced SOI, a search for the occurrence of a beating in the low-field

Shubnikov-de Haas (SdH) resistance oscillations was performed.

3.6 Spin-Orbit Band Structure Splitting and SdH

Oscillations in High-Mobility Graphene-on-TMD

Devices

The SdH oscillations of transport coefficients in non-quantizing magnetic fields arise

due to cyclotron motion of carrier states at the Fermi level. The periodic dependence

on the inverse field 1/B provides a convenient way to measure the Fermi surface size.

In the presence of spin-orbital splitting, the electronic band structure gives rise to split

Fermi surfaces with different spin polarization. In this regime, the SdH oscillations

exhibit a characteristic beating pattern that provides an unambiguous diagnostic of

the split Fermi surface, allowing to directly measure the spin splitting value.

Measurement of the beating patterns in SdH oscillations relies on resolving a large

number of Landau levels at moderate-to-low magnetic fields. Achieving this regime
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requires devices of exceptional quality. One constraint arises from carrier mobility

which must be high enough to prevent the washing out of Landau levels of high

order. Another constraint, which is equally important, is the absence of significant

inhomogeneity in carrier density across the device. Indeed, an inhomogeneous density

would result in washing out of the SdH oscillations due to different parts of the device

contributing to the SdH oscillations with different frequencies. If the spread in fre-

quencies originating from the carrier inhomogeneity is comparable to (or larger than)

the SOI-induced frequency splitting, no splitting can be detected experimentally.

The high mobility values that can be achieved in these graphene-on-TMD devices

are comfortably in the range needed for detecting a S0I-induced beating in the SdH

oscillations. Charge inhomogeneity, on the contrary, poses certain challenges. Pre-

vious work indicates that, in the density range of the experiments in this study, the

inhomogeneity effects are less prominent in graphene bilayer (BLG) as compared to

graphene monolayer [142]. This is so because the density of quasiparticle states is

higher in the bilayer, where quasiparticle dispersion is quadratic, and lower in the

monolayer, where the dispersion is linear [1431. High-mobility BLG devices were

therefore employed for this part of the experiments.

As shown in Fig. 3-7(a), magneto-resistance measurements performed on high-

quality BLG-on-WSe 2 indeed exhibit beating in the SdH oscillations. The node of the

beating pattern, marked by arrows, shifts towards higher magnetic field values when

a more negative gate voltage is applied. Accordingly, the SdH oscillations Fourier

spectrum (Fig. 3-7(b)) exhibits a pair of peaks with the splitting that increases upon

shifting V further away from charge neutrality. The full behavior is illustrated in

Fig. 3-7(c) which shows the Fourier spectrum as a function of V and oscillation

frequency f. The frequencies corresponding to the maxima of the split peaks in the

Fourier spectrum are plotted in Fig. 3-7(d) as a function of V. The observed splitting

in the SdH oscillation frequency is a direct manifestation of the SOI splitting of the

Fermi surface of BLG-on-WSe 2.
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Figure 3-7: Extracting SOI from the SdH resistance oscillations observed in BLG-on-
WSe 2 devices. (a) SdH resistance oscillations exhibit a beating pattern whose node
position shifts with the applied gate voltage V (curves are vertically offset for clarity;
the charge neutrality point in this device is at V = -2 V). (b) Peak splitting in
the Fourier spectra of the data shown in (a) is used to determine the SdH frequency
splitting. (c) Color-coded Fourier spectrum plotted vs. frequency f and gate voltage
Vg. (d) The position of the two peaks in the Fourier spectra shown in (c) plotted vs. V
(black and red circles represent the lower and higher frequency peaks, respectively).
The dependence on V, indicates that the SdH frequency splitting increases as the
carrier density increases.
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Figure 3-8: (a) Low energy band structure of bilayer graphene on TMD, obtained from
the Hamiltonian in Eq. (3), with U = -6 meV, AR = 13 meV, A = 5 meV. See the inset
of panel (b) for a numerically accurate band cross section, with the red line indicating
the position of the Fermi energy calculated self-consistently as described in text. (b)
The circles represent the measured splitting 6f of the frequency of the SdH resistance
oscillations plotted versus the average frequency peak f. The values of 6f and 7 are
obtained from the data shown in Fig. 3-7(d) as the Fermi energy is swept through the
valence band (V < -2 V). The colored lines correspond to theoretical predictions
calculated using the band structure obtained with the Hamiltonian in Eq.(3) for
different values of AR and A. Three possible best-fit plots with (AR, A) = (15, 0) meV

(red solid line), (AR, A) = (13, -5) meV (green, dashed line), and (AR, A) = (13, 5)
meV (blue, dashed-dotted line)) are shown.

These findings indicate that the effect of the interfacially induced SOI is dominated

by a modification of the band structure of graphene rather than a spin-dependent

disorder potential. For each value of Vg, the two peak frequencies are proportional to

the areas of the two split Fermi surfaces. The measured dependence of these areas on

V9 can be used to reconstruct the band structure as described below.
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However, before getting into the details of this discussion, it is useful to note that

the general properties of the interfacial SOI, such as its magnitude and momentum

dependence, can be inferred directly from the observed SdH beating patterns without

invoking detailed modeling. Indeed, since for parabolic bands the Fermi energy is

proportional to carrier density, the observed 10-15% splitting in density translates into

a 10-15% splitting in the Fermi energy. This predicts the SOI splitting on the order of

10 meV or higher. Second, the monotonic increase of the splitting vs. density indicates

that the SOI has a strong momentum dependence. This behavior is consistent with

the dominant SOI of a Rashba type. Both conclusions are confirmed below by a

detailed modeling.

The general Hamiltonian for BLG-on-TMD takes on the form of a low-energy BLG

Hamiltonian with an SOI term added to describe interfacial coupling to TMD. Litera-

ture describes BLG in terms of two Dirac Hamiltonians of the two constituent mono-

layers coupled by the -yi term describing inter-layer nearest neighbor hopping [143,

83, 80]. The effect of interfacially induced SOI can be modeled by an effective Hamil-

tonian which was determined through ab-initio calculations in a previous study of

monolayer graphene on WS 2 [119]. The expression for the spin-orbit Hamiltonian

obtained in Ref. [119] is

A +AR Ta. (32Hso, = 2 Tzszl + 2(T sY - UYsX), (3.2)

where Pauli matrices sx,y,z and ax,y,z represent electron spin-1/2 and pseudo-spin

(sublattice A-B wavefunction components), respectively. The parameters A and AR

represent the strengths of the two types of SOI induced by TMD substrate, hereafter

referred to as "spin-valley SOI" and Rashba SOI, respectively 1119] 3.

Here the Hamiltonian given in Eq. (3.2) was incorporated in the part of the full

BLG-on-TMD Hamiltonian describing the graphene layer in direct contact with the

WSe2 substrate. The minimal single-valley Hamiltonian describing BLG-on-WSe 2
3 Note that in Ref. [119] the Hamiltonian in Eq.(3.2) was discussed as part of a larger Hamiltonian

that contained a potential term describing sublattice A-B modulation, H' = $ ,. Under realistic
experimental conditions the value A was estimated to be very small, which makes the term H'
entirely negligible.
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reads:

H = v(Tu.k. +uyky )l1,1,,+ 1s(xpx+o-ypy) + Ulspz+ ( +Pz Hso 1,

(3.3)

where Px,y,z are Pauli matrices corresponding to the BLG layer index, the quantites

ax,y,z and sxy,, were defined above, the quantities l,,,, denote the corresponding 2x2

identity matrices, and Tz = 1 is the valley index (valley degeneracy persists in the

presence of SOI). The Hamiltonian H includes the inter-layer potential difference U.

In the single-gated configuration of the devices used in this study, the value U is finite

in the presence of an applied gate voltage V [80].

The Hamiltonian given in Eq. (3.3) was used for the quantitative estimate of the

SOI parameters A and AR. This is done by determining the SdH oscillation frequency

f of each spin-split band from the area of the corresponding Fermi surface and com-

paring the resulting values with the experimental data. To this end, I employed the

approach of Ref. [90] for obtaining EF self-consistently. For a given A, Af and U, the

band structure can be easily computed, see Fig. 3-8(a) as an example. Due to the

layer asymmetry, eigenstates of the Hamiltonian Eq. (3.3) are not equally partitioned

between the two graphene layers of the BLG. Thus, just as in the case of the spin-

degenerate gapped BLG, the total carrier density n = n, + 2 fixed by a given EF is

unequally split between the two layers. The unequal layer carrier densities give rise

to interlayer potential difference U(n) that depends on the total carrier density n 4.

By varying EF (or n), the self-consistent value for which U(n) = U can be found.

The self-consistent solution corresponds to the experimental situation in which the

gate voltage V is given by C(IK(V - go) = en, where Vgo corresponds to the charge

neutrality point and CE is the capacitance per unit area between the device and gate

4 More specifically, for a given EF, we compute the total excess (i.e. relative to the background
density of positive charges) electron density on each layer, including those from the completely filled
bands. Due to the layer asymmetry of the system, eigenstates from the completely filled bands are
also partitioned unequally between the two layers and thus also contribute (albeit independent of
EF), to the inter-layer potential U,. U, is then given by CBLGUU = eontotal,2, where CBLG is
the capacitance per unit area of the bilayer graphene (assuming vacuum dielectric constant 6O) and
Jntotal,2 is the total excess electron density on the layer further away from the substrate.

76



electrode. As an illustration, the red line in inset of Fig. 3-8(b) indicates the position

of the self-consistent value of EF for U = -6 meV, AR =13 meV, and A = 5 meV.

Knowing the self-consistent EF for a given U, the Fermi momenta kF+ and kF-

of the two spin-split bands can then be determined, or -equivalently- the areas of

the corresponding Fermi surfaces and the density of carriers n+ and n_ in these two

bands (note that n = n+ + n). For instance in the inset of Fig. 3-8(b), kF+ and kF-

correspond to the intersection of the red line with the two blue lines. This procedure

is then repeated so that the self-consistent solutions of n+ and n- is obtained as U

(and hence EF) is swept through the valence band, just as is done in experiments. The

values of the frequency peaks are related to the carrier densities through re-scaling

by a factor of }.

Having determined self-consistently the relation between n and U, we proceed

to compare theory with experimental results. This is done by plotting the frequency

splitting 6f as a function of the average frequency 7. Here both quantities can be

extracted directly and independently from the measured data in Fig. 3-7(d) (note

that f cx V). In Fig. 3-8(b), the empty circles correspond to the experimental data

measured as EF is swept through the valence band while the colored lines represent

three possible theoretical best-fit plots obtained for different combinations of SOI

values (AR, A) = (15, 0) meV (red solid line), (AR, A) = (13, -5) meV (green, dashed

line), and (AR, A) = (13, 5) (blue, dashed-dotted line). In this way a very satisfactory

fit to the data can be obtained. Upon varying AR and A over a broad interval, the

range of values for which a good agreement is found is AR ~ 10-15 meV and A ~ 0-6

meV (larger values of AR constrain A to smaller values to fit the data).

Theory can also reproduce the data obtained when EF is swept through the con-

duction band, but in that case the range of carrier density for which a beating is

observed experimentally is smaller (see Fig. 3-7(d)), and thus only a few data points

are present in the 6f-vs-f plot (again f oc V). In the conduction band, the best-fit

values of AR and A are in the range between 5 and 8 meV. Although in this case SOI

appears to be slightly weaker than in the valence band, the smaller amount of data

makes it more difficult to determine the two parameters accurately.
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The above analysis of the beating patterns observed in the SdH measurements

therefore indicates that the strong SOI induced in graphene by proximity with TMD

is of a band origin. The SOI strength extracted from the comparison between theory

and experiments is in the same ballpark, although somewhat larger than the values

estimated in Ref. 11191 from ab-initio calculations. The similarity of the SOI strength

estimated from the data and that found from ab-initio calculations supports the

consistency of our analysis. We therefore conclude that the characteristic magnitude

of the interfacially-induced SOI in graphene is about 10 meV. This value is more than

a hundred times larger than the SOI intrinsically present in pristine graphene [92, 93,

122].

This is also in line with the conclusion drawn from the behavior of the spin-

relaxation time TsO obtained from the analysis of WAL. In this regard we note that a

~ 10 meV spin splitting in the band structure, such as the one found here, would give

rise to a characteristic "Rabi" spin precession frequency of AR/h ~ 10 THz, which is

compatible with values of the spin relaxation time ,*, ~ 0.2 ps inferred from WAL.

Indeed, it would have been difficult to reconcile this fast spin relaxation time with

a much smaller SOI strength -say, a spin splitting of 1 meV or less. Specifically, a

1 meV spin-splitting corresponds to a 1 THz Rabi frequency, which is insufficient to

randomize the spin direction over a time of 0.1-0.2 ps. These considerations indicate

that two very different phenomena -the quantum correction to the conductivity due to

electron interference and the splitting in the frequency of the SdH oscillations- lead

to conclusions on the estimated strength of the SOI that are internally consistent,

providing an independent confirmation of the validity of our analysis.

3.7 Chapter Summary

The main conclusion that can be drawn from the measurements presented above

is that the interfacially induced SOI is dominated by spin-orbital splitting in the

graphene band structure. This generalizes to spin-dependent phenomena the results

obtained in graphene-on-hBN moire superlattices, where interfacial interactions alter

78



the graphene band structure by producing secondary Dirac points and creating a

gap at the main Dirac point. Our second conclusion is that the interfacially induced

SOI is extremely robust. A strong SOI is induced irrespective of the specific TMD

material used, of the graphene and TMD lattice alignment angle, of the thickness

of the graphene multilayer (up to three layers were tested in this study), or of the

position of the Fermi level in the graphene band.

Most tellingly, a pronounced magneto-conductivity due to weak antilocalization

was observed in all devices that were measured at low temperatures, where the trans-

port regime varied from fully diffusive up to nearly ballistic. None of the devices

exhibited a positive magneto-conductivity due to weak-localization. This indicates

that SOI in graphene was -in all regimes investigated- sufficiently strong to cause a

full precession of the electron spin even for the shortest trajectories that contribute to

electron interference. These observations appear to be only compatible with a band

origin of strong SOI, a conclusion that is confirmed by the experimental observation

of beating patterns and a splitting in the frequency of the Shubnikov-de-Hass oscilla-

tions in high-quality bilayer devices. The evolution in the magnitude of the splitting

that is observed upon varying carrier density indicates that the dominant contribu-

tion to the interfacially induced SOI is of the Rashba type. A quantitative analysis

of the data indicates that the interaction coupling constant for the Rashba term is as

large as 10-15 meV, whereas the strength of the other SOI term that couples spin and

valley degrees of freedom is about 5-6 meV or smaller. These values correspond to a

remarkably strong SOI, especially in comparison to the minute values of the intrinsic

SOI in graphene which are only 20-40 peV [92, 93, 122J.

It is remarkable that such a large interfacial SOI can be induced without causing

any damage to the electronic properties of graphene. The highest quality devices

studied here exhibited carrier mobility reaching up to 160,000 cm2/Vs and carrier

density inhomogeneity of only ~ 2 x 100 cm- 2, which is comparable to best graphene-

on-hBN devices [106, 107, 108, 131, 1321. The possibility to achieve such a high quality

both in terms of carrier mobility and density homogeneity will be crucial for probing

the predicted topologically insulating states that may be realized in graphene-based
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systems [94, 72, 1191.

In that regard we also note that, since Rashba turns out to be the dominant

SOI coupling, a gap opening between valence and conduction bands in charge neu-

tral graphene-on-TMD (leading to a topologically insulating state) is not expected to

occur [119]. However, diverse strategies are available to change the situation. For in-

stance, encapsulating graphene in between two TMD crystals may result in a smaller

asymmetry of the device structure, causing a decrease in the intensity of the Rashba

term, with other spin-valley SOI contribution becoming stronger. Under these condi-

tions, a topological insulating state may be engineered in graphene with a band gap

of several meV [1191 and, if so, the ability to achieve very high carrier mobility and

small density inhomogeneity demonstrated in this work will be essential for probing

the occurrence of edge transport in the presence of an insulating bulk.

Another interesting possibility opened up by the results presented here is achieving

gate control of SOI in graphene based system. A simple strategy in this regard is to

employ dual-gated BLG devices, using a TMD layer as gate insulator on one side and

a hBN layer on the other side. The application of a perpendicular electric field in such

a structure will lead to a band gap opening at the charge neutrality point [88, 58, 126].

In this regime, electronic states at the top of the valence band and at the bottom of

the conduction band have their wave-functions localized on one of the two BLG layers

(depending on the sign of the perpendicular electric field) [911. Since the interfacially

induced SOI is present only in the BLG layer which is in direct contact with the

TMD, such a configuration will allow switching SOI on and off by tuning the position

of the Fermi level and the polarity of the electric field responsible for the gap opening.

Finally, strong interfacially induced SOI in graphene-on-TMDs opens countless op-

portunities for investigating novel physical phenomena under controlled conditions.

For instance, devices can be realized by employing ferromagnetic electrical contacts

that enable injection and detection of spins in graphene [120, 1441. In these systems

the dynamics of spin polarized carriers will be controlled, and altered in an interesting

way, by the interfacially induced SOI. These systems will also help to gain new insight

into the subtle phenomena originating from spin-Hall effect and inverse spin-Hall ef-
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fect [1451. These examples illustrate that the ability to engineer the properties of

electronic systems in van der Waals heterostructures through a layer-by-layer assem-

bly -demonstrated here for the case of SOI in graphene- opens up a wide range of

exciting opportunities for realizing and exploring new physical phenomena.

3.8 Appendix: Classical Magneto-Conductivity Back-

ground

As discussed in Section 3.5, for the quantitative analysis of the WAL data, the quan-

tum correction to the magneto-conductivity is obtained by subtracting the classical

contribution from the total measured magneto-conductivity. The classical contribu-

tion is determined by taking the magneto-conductivity measured at a temperature

that is sufficiently high to reduce significantly the phase coherence time TO. In the

case of the devices in this study, this happens at 20-30 K, above which quantum cor-

rections become negligible (as indicated, for instance, by the complete disappearance

of the negative magneto-conductivity due to WAL).

Here we briefly discuss the behavior of the classical contribution that was sub-

tracted, which is shown in Fig. 3-9 for three devices with different mobility and mean

free path (1). It is seen that the classical magneto-conductivity is small and negative

for the low-mobility device (green line in Fig.3-9, p ~ 3, 000 cm2/Vs) as expected from

diffusive Drude transport. For these low-mobility devices, the background is so small

that has virtually no effect on the quantitative analysis of the data, i.e., removing it

or not leads to virtually identical estimates of T,. For devices with larger mobility,

it was systematically found that the classical magneto-conductivity tends to become

positive, growing in magnitude with increasing mean free path. This behavior can

be understood by recalling that, while the classical magnetoconductivity is negative

in the diffusive regime, it changes sign and becomes positive in a narrow channel in

which the mean free path is larger than the channel width. In the crossover regime,

occurring when the mean free path increases and approaches the channel width, the
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Figure 3-9: Magneto-conductivity measured at high temperatures (20-30 K depending
on the device) in the devices with different mean free path (1, in pm). The width (W,
in ytm) of the device is also indicated.

magnetconductivity is positive but small, growing larger for larger mean free path

values. Although the devices studied here are never fully in this regime, in some

cases the mean free path is as large as half the channel width (black line in Fig. 3-9).

It might appear that the positive background magneto-conductivity that was sub-

tracted is in fact due to weak localization. The data, however, show that this is not the

case. Not only is there an absence of temperature dependence in the background (see

Figs. 2a-c), but also the magnitude of the measured positive magneto-conductivity

typically far exceeds e2 /h (see for instance, the black curve in Fig. 3-9). Both of these

features are incompatible with the weak localization interpretation. Additionally, in

high-mobility devices with a long mean free path the weak localization signal should

appear only in at low magnetic fields (within a few mT) when the magnetic length
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is longer than (or at most comparable to) the mean free path, whereas the observed

positive magneto-conductivity continues to increase up to much higher magnetic field

values.
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Chapter 4

On-demand Spin-Orbit Interaction

from Which-Layer Tunability in

Bilayer Graphene

Spin-orbit interaction (SOI) that is gate-tunable over a broad range is essential to

exploiting novel spin phenomena. Achieving this regime has remained elusive because

of the weakness of the underlying relativistic coupling and lack of its tunability in

solids. In this chapter 1, I outline a general strategy that enables exceptionally high

tunability of SOI through creating a which-layer spin-orbit field inhomogeneity in

graphene multilayers. An external transverse electric field is applied to shift carriers

between the layers with strong and weak SOI. Because graphene layers are separated

by sub-nm scales, exceptionally high tunability of SOI can be achieved through a

minute carrier displacement. A detailed analysis of the experimentally relevant case

of bilayer graphene on a semiconducting transition metal dichalchogenide substrate

is presented. In this system, a complete tunability of SOI amounting to its ON/OFF

switching can be achieved. New opportunities for spin control are exemplified with

electrically driven spin resonance and topological phases with different quantized

'This chapter is reproduced in part with permission from J. Y. Khoo, L. S. Levitov, On-demand
Spin-Orbit Interaction from Which-Layer Tunability in Bilayer Graphene, NanoLetters 17, 7003-
7008 Copyright (2017) by the American Chemical Society.
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intrinsic valley Hall conductivities.

4.1 Tuning Spin-Orbit Interaction in Bilayer Graphene

Spin-orbit interaction (SOI), tunable on demand over a wide range of values can

provide access to a wide variety of interesting spin transport phenomena. One popular

strategy of achieving tunable SOI relies on directly tuning the SOI using an applied

electric field. This approach proved successful in various instances such as tuning

Rashba-type SOI in two-dimensional semiconducting systems[146, 147, 148, 149] and

Ising-type SOI in transition metal dichalcogenides (TMDs)[761. However, in all these

cases the range of values in which SOI could be tuned has been relatively small

because of the relativistic nature of SOI.

I propose graphene multilayers as a vehicle to achieve an on-demand SOI that is

free from these limitations. The first step involves engineering an environment with

a spatially inhomogeneous spin-orbit field[150, 151], which is e.g. high on one layer

and low on the adjacent layer. In such a system, through applying transverse electric

field, carriers can be shifted between layers with strong and weak SOI. This renders

the SOI strength felt by these carriers strongly dependent on the which-layer charge

polarization. Some aspects of this scheme resemble gate-tunable Zeeman coupling

demonstrated in Ref. 152. The advantage of such an indirect approach to tuning

SOI is that it disassociates the applied electric field from the spin-orbit field. The

atomic scale separation between graphene layers then ensures an exceptionally high

tunability that is achieved through a minute carrier displacement.

I illustrate this idea in the specific context of bilayer graphene (BLG) on a TMD

substrate such as WS2 . Implementing a strongly tunable SOI in such graphene-based

systems is highly desirable due to the high mobility of carriers in graphene that

is preserved by these atomically flat and chemically inert substrates [153]. In this

configuration, the spatially inhomogeneous spin-orbit field simplifies to an ON/OFF

which-layer field - only the layer adjacent to the TMD acquires from it an interfacially-

induced Rashba SOI and Ising SOI. Our proposal builds on previous work, which
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established that strong interfacial SOI in the meV range can be induced in individual

graphene layers[119, 154, 118, 155, 113]. As I will show, the low-energy carriers

experience an effective SOI that has an enhanced gate-tunability to the extent of

complete gate-tunability, i.e. it can be switched on and off by applying a transverse

electric field of moderate strength (~ mV/A).

Furthermore, the robust high-frequency response of graphene extending up to

100 GHz[1561 can enable a range of novel time-dependent spin phenomena. In-

deed, because applying a transverse field in BLG directly alters the wavefunctions of

its carriers, gate-tunable SOI possesses full quantum coherence. Quantum-coherent

tunability enables coherent manipulation of carrier spin degrees of freedom, becoming

particularly interesting if the SOI Hamiltonian can be modulated on the carrier trans-

port time scales. As an illustration of this new capability, I discuss the electric-dipole

spin resonance (EDSR) that can be driven though an application of a transverse AC

electric field[1571. Quantum-coherent tunability also enables direct control of the elec-

tron Bloch Hamiltonian and Bloch bands, giving access to gate-tunable Berry phase

and band topology of Bloch electrons. I illustrate these new opportunities by consid-

ering BLG sandwiched between TMD layers, a system that provides gate-switching

between topologically distinct phases with different values of the intrinsic valley Hall

conductivity.

4.2 Which-Layer Tunability in Bilayer Graphene

The essential aspects of the which-layer approach can be illustrated by a model of

a Bernal-stacked BLG in a transverse electric field, which for the sake of simplicity

only accounts for the low-energy subspace of electronic states. Microscopically, the

interlayer bias potential U introduces an asymmetry between the A sublattice of layer

1 and B sublattice of layer 2, denoted below as Al and B2. Crucially, the interlayer

bias breaks the layer-occupation symmetry[91]. This behavior is captured by the

88



two-band (spin-degenerate) Hamiltonian describing the low-energy subspace,

1U I 7t2
HT = ( 2 2m , = TzPx + ipy. (4.1)

"BLG -172 lU

Here p is the momentum measured relative to the K and K' points of the Brillouin

zone, which I will henceforth refer to as K+ and K (?- = 1) respectively, and -U

and U are the potentials on layers 1 and 2. The spectrum of H] is given by

cp) = U 2 + . (4.2)E(( 2 W2

Here = 1 refers to the conduction or valence band respectively, and the interlayer

bias U incorporates the capacitance corrections[9 11. When U # 0, the wavefunctions

of electronic states are asymmetric in the layer occupancy:

M = ioA1,B2,2 2 1 U
2 E4e(p)(

where the minus and plus signs correspond to the layers 1 and 2, respectively. The

extent of layer polarization for each of these states is therefore directly controlled by

U. The carriers with specific layer polarization can be accessed in an energy-resolved

manner through doping[158].

4.3 Interfacially-Induced Layer-Dependent SOI

Next, I discuss how a layer-dependent SOI is engineered using a proximal TMD layer,

e.g. a TMD multilayer with strong SOI such as WS 2 which serves as the substrate for

the BLG. We expect carriers in layer 1 (blue) that is adjacent to the TMD substrate

to acquire an interfacially-induced SOI (see Fig.4-1). Carriers in non-adjacent layer

2 (red) are coupled to substrate only indirectly, through interlayer hopping. This

phenomenology of interfacially-induced SOI is supported by recent studies[119, 1131

on monolayer graphene (MLG) on TMD substrates with strong SOI. A simple model
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of MLG experiencing an enhanced SOI due to the TMD substrate can be described

by a low-energy Hamiltonian

6 HMLG = z + 6 Hsing + 6HR, (4.4)
2

treated as a perturbation to the MLG Hamiltonian near the K points. Here 6 Hising =

$Tzsz and 6 HR = -(Ts - s), where I use oa and si to denote the Pauli

matrices corresponding to the A and B sublattices, and to spin degrees of freedom,

respectively. The term 6Hising has the form of Ising SOI and originates from the

Ising SOI inherently present in the TMD substrate. The term 6 HR has the form of

Rashba SOI in graphene. The term o-ua originates from sublattice asymmetry; it is

comparatively small in practice and can be ignored in most cases.

The consequence of introducing layer-dependent SOI in BLG can be illustrated

by considering a simple model in which the interfacial SOI described by 6 HMLG only

affects the carriers localized in layer 1 and is negligible for carriers localized in layer 2.

To see how this modification allows for a switchable SOI, consider the limit of weak

Ising SOI, JUI > JA, and with A = AR = 0. To first order in perturbation theory,

I neglect the influence of 6 HMLG on the electronic states and find the spin-split low-

energy bands

6E(1=T4 = A 91g1 (4.5)

where the energy shifts of sign plus and minus correspond to the s =T and s =1

states respectively. The spin splitting in Eq. 4.5 is of opposite sign for different

valleys, iz = +1, as required by time reversal symmetry.

Bands with different spin splitting can be accessed in a dual-gated system in which

there is independent control over interlayer bias and doping: the induced SOI is turned

on by hole doping and turned off by electron doping. Indeed, at small dopings, since

the Fermi momentum is small, there is a correlation between which band a carrier is

from and which layer of the BLG the carrier predominantly occupies. For positive

interlayer bias U > 0, carriers from the conduction band are fully localized on layer

2, g ~ 0, while carriers from the valence band are fully localized on layer 1,
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(- 1)
91 1. It follows from Eq. 4.5 that in this case the Ising SOI is only present for

holes ( 6 e-1,s~t,t ~ +A'rz) and is absent for electrons (6 E+1,, - 0), as illustrated in

Fig.4-1; the situation is reversed when U < 0 so that the Ising SOI is only present for

electrons and is absent for holes (see Fig.4-2(a) and (c)). The contrast between the

ON and OFF states fades away quickly as doping increases, since at large momenta

the electron wavefunctions are split nearly equally between both layers (see Fig.4-2

right panel).

One interesting consequence of which-layer tunability is that the spin splitting

(Eq. 4.5) acquires a dependence on the interlayer bias U. Crucially, the states in

Eq. 4.5, while having opposite spin projections, have identical orbital structure. It

is therefore possible to view the spin splitting in Eq. 4.5 as being due to an effective

magnetic field applied transverse to the BLG plane. Because of the dependence of the

layer occupancy on the interlayer bias U (Eq. 4.3), this effective B field is gate-tunable

and therefore defines a new form of spin-electric coupling.

4.4 Electric-Dipole Spin Resonance

As an illustration of the new capabilities endowed on the system by such spin-electric

coupling, I discuss spin resonance of an electric-dipole spin resonance (EDSR) type

driven by a time-dependent gate voltage U(t). I consider an external static magnetic

field of strength such that the Zeeman energy exceeds the interfacially induced spin

splitting, Eq. 4.3, for the sake of simplicity taking the field to be applied parallel to the

BLG plane. The carrier spin dynamics is then governed by an effective Hamiltonian

1 1-
HEDSR = Z6 zsx + A(t)Tzsz, (4-6)

where the time-dependence A(t) = Ag (t) originates from gate-tunable Ising SOI.

Here Ez = 9BB is the Zeeman energy, AB is Bohr's magneton and, without loss of

generality I consider the static magnetic field applied along the x direction, B = B'.

To achieve EDSR, the interlayer bias U(t) should not at any point in time close
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the gap between the valence and conduction bands so that the carrier orbital wave-

functions remain unchanged. Without loss of generality, I consider the case for which

A > 0 and U(t) = Uo + U1 cos wt with Uo > A and U, < Uo. The resulting time-

dependent Ising SOI experienced by the conduction band carriers with momentum p

varies with time as \(t) ~ Ap 4  This time-dependent Ising SOI will thus act as an

oscillating field which induces transitions between the Zeeman states s = <-) and

s = I -). Consequently, EDSR is achieved by matching the frequency of the time-

dependent Ising SOI to the Zeeman energy, hw = cz. Note that while the Ising SOI

has opposite signs at the K valleys, both SOI couplings cause the spin projection

on the x-axis to evolve with the same time dependence. In the absence of intervalley

coupling, the effects of EDSR originating from both valleys add up constructively,

resulting in doubling of the spin polarization signal.

4.5 Low-Energy Spectrum of Bilayer Graphene with

Layer-Specific SOI

While the simple analysis of interfacially induced SOI presented above qualitatively

captures the essential physics, it is instructive to develop a more precise and complete

description of the system near the K points. That can be done by directly adding

6 HMLG, Eq. 4.4, to the layer-1 subspace of the BLG tight-binding Hamiltonian,

Heff = HBLG 0 1(s) + P16 HMLGP1- (4.7)

Here Pi=i,2 is the operator that projects onto the layer-i subspace and 1(s) is the 2 x 2

identity matrix of the spin degrees of freedom. The Hamiltonian HBLG describes

Bernal-stacked BLG, in which two MLG layers are stacked such that the B sublattice

in one layer (BI) is vertically aligned with the A sublattice on the other (A2). As is

well known, the strongest interlayer coupling 71 in this stacking configuration occurs

between the B1 and A2 sites. As a result the low-energy states near the K points

are strongly localized over the Al and B2 sublattices, as described by the low-energy
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Hamiltonian considered above, Eq. 4.1. The Hamiltonian Heff can be numerically

solved to obtain the band structure. The four low-energy bands obtained in this way

are shown in Fig.4-2 for three different values of interlayer bias U corresponding to

three different phases discussed below.

To gain insight in the different regimes accessible though varying U, I derive the

low-energy Hamiltonian in the A1/B2 subspace perturbatively in g(see Supporting

Information). Since [Heff, s,] = 0 at p = 0, the quantity s, is a good quantum number

and can be used to label states and associated bands. To order --, the energy levels
71

at p = 0 are

U
E(=+1,s 1P- - 2 (doubly degenerate, s t), 1-)),

U A A \ A2E(=-1,Slp o- + _+ A* ( -6A* A (U - - + ). (4.8)
2 2 \2 J 2 2 2

Here, the sign in front of the U/2 term matches the value of = 1 introduced

in Eq. 4.2. In Eq. 4.8 the plus and minus sign corresponds to the s = I t) and

s = | 4) states respectively. This result extends Eq. 4.5 by including the effects of

sublattice asymmetry A and the leading correction at order - given by 6A*. We see
1

that the effect of A is to uniformly shift both E_1 ,s bands and renormalize the bias

U. The quantity 5A* produces a similar effect, and can also generate a spin splitting

between the E_1 ,s bands. However, so long as the values A and AR are comparable,

the quantity 6A*, which is suppressed by a large factor '2 compared to A, only matters
1

as a constant energy shift to the E_1,, bands but not a source of spin splitting.

In this case, upon tuning interlayer bias U, the E+1 ,s bands (red) shift across the

E_1,, bands (blue) so that the system undergoes transitions from an insulator to a

semi-metal and then again to an insulator state. The corresponding phase diagram

is shown in Fig.4-3. At large U (Fig.4-2(a, c)), the system is insulating at charge

neutrality and allows for gate-switching of Ising SOI as discussed above. The sign

of U determines which charge carriers, electrons or holes, experience the effective

Ising SOI. At not-too-large U values such that A - A < 2U $ A + A, the system

is semi-metallic at charge neutrality. As shown in Fig.4-2(b), in this case the E+1 ,s
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bands lie between the E_1,, bands so that the Ising S0I gap is partitioned between

the electrons and holes: A ~ AEe + ZAEh. This partitioning can be tuned from 0% to

100% by varying U, and thus in this regime both the electron and hole spin splittings

are gate-tunable, albeit in a correlated fashion.

As A decreases to zero, its effects at p = 0 eventually become subleading compared

to that of 6A* when AR y > A At A = 0, we find from Eq. 4.8 that E-1,sjPO
- + 4 + 6A*(1 ~F Tz). The term 6A*(1 F 7z) introduces a spin splitting which varies

linearly with U. In practice, which contribution dominates depends on the actual

values of A and AR; so far, experiments in BLG-on-WS 2 indicate that 6A* is indeed

dominant with AR ~ 10 meV[154].

The j suppression in 6A* is a consequence of the specific form of 6 HR OC Tz0-xsy -

-YSX. It couples the A1/B2 polarized low-energy states to the high-energy states

which are strongly A2-B1 mixed by the interlayer coupling 'y1. At p = 0, the wave-

functions of the low-energy states remain layer-polarized such that the SOI is com-

pletely tunable. However, because 6HR introduces a substantial interlayer mixing in

the low-energy subspace that increases with p, the which-layer tunability of the SOI

becomes increasingly suppressed away from the valleys as is evident in Fig.4-1.

4.6 Gate-Thneable Topological Phase Transition

An even more interesting behavior is found when BLG is encapsulated between two

TMD layers. In this case, carriers in each of the two graphene layers experience an

interfacially-induced SOI from the TMD layers above and below, respectively. The

low-energy effective Hamiltonian near the K points now reads

Heff = HBLG 91 + E Pi6HMLG,i i, (4.9)
i=1,2

in which a layer index i is introduced to allow for distinct phenomenological param-

eters for the different layers: Aj, Ai, AR,i-

A consequence of adding 6 HMLG,2 is to open up a gap at p = 0 between the

95



3.0

2.5

2.0

1.5

1.0

0.5

0.0r
-3 -2 -1 0 1 2 3

U/A
Figure 4-3: Phase diagram of the BLG-on-TMD system described by Eq. 4.7 at charge
neutrality when A > AR. Phases (a)-(c) have band structures with corresponding
labels in Fig.4-2.

E+i,, bands. It follows that for arbitrary values of Aj, AX, AR,i, the system at charge

neutrality has up to five different insulating phases with phase transitions occurring at

values of U for which the band gap at p = 0 closes. While the overall Chern number

for any of these bands is guaranteed to vanish because of time reversal symmetry,

the valley Chern number is unconstrained and can take non-zero values. In fact,

the valley Chern numbers for some of the bands changes across a phase transition,

such that these insulating phases are topologically distinct. This suggests that the

intrinsic valley Hall conductivity at charge neutrality, a (0),is a suitable quantity

to distinguish these phases.

To compute a VH(0), I first obtain the Berry curvature of each energy band near

either valley, Sk)(p). Here I introduced a generalized index n that labels bands,

including both the four low-energy bands (previously labeled by {(, s}) as well as

the other four high-energy bands that I have excluded from our discussion thus far.

Because the Berry curvature is strongly peaked at the valleys, the corresponding

valley Chern number N( can be obtained by numerically integrating ,O (p) over
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an individual valley[159]. The intrinsic valley Hall conductivity at charge neutrality

is then obtained from adding up the contributions from all the filled bands, OuH(0)

., (Nin) - N_)) - = 2 E N " Here I used the relation N") = , valid

because of time reversal symmetry.

A detailed characterization of the various phases for arbitrary values of Aj, Ai, AR,i

lies outside the scope of this work. Here I highlight a generic aspect which can be

illustrated by considering the simplest case of A1 = A2 = 0 (this choice of values is

consistent with ab initio studies[119]), jAjj = A, and JAR,i = AR- In this case, the

system hosts two topologically distinct phases at charge neutrality - the ordinary

valley Hall phase, in which orK(0) = -4sgn(U)L, and the anomalous valley Hall

phase, in which o( 0 ) 4 -4sgn(U)L. I will denote these phases as VHO and VH1

respectively.

A simple way to understand the VHO-VH1 phase transition is as follows. The

well-studied case of dual-gated BLG in the absence of SOI, which has a VH (0)

-4sgn(U)f[160, 88, 161, 162, 163, 164], is in fact a specific example of the VHO

phase for which A = AR = 0. The system remains in the same topological phase

VH0 in the presence of relatively weak SOI, i.e. when A ,< IU1, since the SOI-induced

splitting of the low-energy bands is insufficient to cause the band gap to close at

either valley. In agreement with the above picture, independent of the relative signs

of Ai and AR,i, it can be shown that o HO (0) = -4sgn(U)e.

Upon tuning down the interlayer-bias U such that JUI < A, the SOI starts to

dominate and band inversion occurs between the low-energy bands at both valleys.

The system undergoes a topological phase transition into the VH1 phase through

the closing and re-opening of the band gap analogous to phase transitions in Chern

and topological insulators. We therefore expect the valley Chern numbers of the low-

energy bands to change across the VH0-VH1 phase transition such that av0(o) #
avH1(0) = 2M , where possible values of M equal 0, 1, 3,...; the results from our

preliminary studies are consistent with this expectation. Unlike oH(0), the value

of 0 H1 (0) depends on the relative signs of Ai and AR,i. This dependence is, however,

not yet well understood. This interplay between the induced SOI and the interlayer
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bias resembles the behavior for the quantum spin Hall effect in graphene[72] and the

electrically tunable topological insulator[165].

In fact, this sharp change in oVH(0) is independent of the specifics of the induced

SOI and occurs in the generic case when A1 # IA 2 1 and IAR,1I = IAR,21 as well

despite there potentially being a more elaborate phase characterization scheme. This

change in a VH (0) no longer happens at JUI ~ A but at a different critical value

Uc < }( A1 + A 2 j). As the experimental study of valley-based transport is still in its

infancy, these predictions therefore serve as robust experimental signatures that could

be used to advance our understanding of the valley Hall effect. We find ourselves with

a system whose topological nature is not completely determined by the material itself,

but can instead be gate-controlled, in situ.

4.7 Chapter Summary

In summary, graphene-based heterostructures with on-demand SOI grant access to

tunable topological properties. In particular, gate-controlled intrinsic valley Hall

conductivity can be achieved in these systems through combining interlayer coupling,

gating and various types of interfacially-induced SOI. Further, the robust broad-band

response of graphene[156] turns graphene-on-TMD heterostructures into a unique

platform to realize and explore novel time-dependent spin phenomena such as the

electrically driven spin resonance. It can also help to extend the optoelectronics and

valleytronics phenomena of current interest[77, 78, 79, 166, 167] into the time domain.

4.8 Appendix: Derivation of Low-Energy Effective

Hamiltonian and Band Structure

Here I present the details of our derivation of the low-energy effective Hamiltonian of

the BLG-on-TMD system. Let us first consider the tight-binding Hamiltonian of the
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(spin-degenerate) bernal-stacked BLG near the K points. This is given by [80]

CA1 Vxt -V 4 t V37F

VT CB1 'T1 -V 47r
HBLG 7 , (4.10)

-V4Wr 1 EA2 V1Tt

V3 7t -V 47T V7T CB2

where -y1 is the interlayer (A2-B1) hopping, v is the MLG band velocity, V3 is the

velocity associated with trigonal warping and v 4 the velocity associated with skew

interlayer coupling. cai is the on-site energy for sublattice a = A, B and on layer

i = 1, 2. Note that HBLG is expressed in the (Al, B1, A2, B2) basis. For simplicity,

I have neglected the terms associated with v3 and v 4 and consider the case with no

intrinsic sublattice asymmetry so that c,, = ci with U = E2 - E1. I use this simplified

form of HBLG in Heff defined by Eq. 4.7.

Since we are only interested in the 4 low-energy bands which have energy scales

much smaller than -y1, i.e. 1711 > EL) A AR , JUt, Al, we can project Heff to the

low-energy subspace and obtain a low-energy effective Hamiltonian for our system.

To proceed, we first rewrite it as Heff = H, + H', with

0 0 0 0

H = ® / (4.11)
0 1 0 0

0 0 0 0

and re-express it in the basis that diagonalizes Hy,:

0 0 0 0

0 0 0 0
Heff = H, + H', Hy1 = ( 12. (4.12)

0 0 -1Y 0

0 0 0 -Y

In this basis, we can label each eigenstate by a quantum number m = 0, 1 such
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that H Inm) = m-yi i m). The low-energy subspace that we are interested in is spanned

by the m = 0 eigenstates. We can then decompose f' as

H' =TO +T1 +T-1 +T2 +T- 2, (4.13)

where the operators (Unitary but not necessarily Hermitian) T

stood as ladder operators - T Im) oc Im + i) - and are given by

ToEE -
2

T1
T1 --

_u1~s) + 2w+

0

0

0

0

0

0

vr1S) +-aR

0

U1 s)

0

0

0

0

W_

0

0

0

0

-0v7rt S)

0

0
,

0

W_

v7rt1 (8)+ ai

-v7r (S)

0

1
T2- 2

0

0

0

0

- Ti can be under-

0

0

0

0

0

0

0

-Uis) + W_

0

0

0

0

where w = ( A1ls) + ATZ s,), aR = R(TZsy - is ).

With this framework in place, let us proceed with the Brillouin-Wigner method

outlined in Section IV of Ref. 82 to obtain the effective Hamiltonian to arbitrary

orders in -, where A refers to any energy scale set by the other parameters (including

vp). In this expansion scheme, at second order, I recover the usual spin degenerate

effective 2-band BLG Hamiltonian H2 ,. The correction due to SOI at the same

order (Hs 4
1 ) is off-diagonal, the energy corrections of which only enter at the next

order. To consistently account for the energy corrections to the H)x spectrum, I

therefore go to third order in the expansion scheme and obtain

100

0

0

0

0

(4.14)



+ 710 -- , with
71

-IY (vrt)2)
UVr

- 1 (V7r) 2

W+ 0

0 0

A IA(1(s) - )
2 R 2 7S)(U-A+A

1
2s 2~y ( A

0

+ (2U - A)vAR(PXS - pys,) + 2(U143 - +$2 2

B 2(-U12 )+w_)v2p2

Here, I have explicitly separated the resulting effective Hamiltonian to the usual

spin degenerate effective 2-band BLG Hamiltonian H)J and the corrections due

to substrate induced SOI Hj012. These corrections are further organized into

powers of -- , so that the (j - I)th order correction H 4 0c 71j+1

Solving for the eigenvalues of H4f perturbatively, I obtain the low-energy band

structure to

E+11t)

order 0 2 for Tz = 1:

U v 2P 2

- + 2
2 171
U v 2P 2

= + 2
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(U -U
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Chapter 5

Tunable Quantum Hall Edge

Conduction in Bilayer Graphene

through Spin-Orbit Interaction

In this chapter 1, I solve for the single-particle Landau levels of bilayer graphene

with layer-specific spin-orbit interaction (SOI) to highlight its deviation from the

established Landau level spectrum of bilayer graphene. Bilayer graphene, in the

presence of a one-sided spin-orbit interaction (SOI) induced by a suitably chosen

substrate, is predicted to exhibit unconventional Quantum Hall states. The new

states arise because the one-sided SOI creates a strong splitting of the eight zeroth

Landau levels, which are strongly layer-polarized, residing fully or partially on one

of the two graphene layers. In particular, an Ising SOI in the meV scale is sufficient

to invert the Landau level order between the n = 0 and n = 1 orbital levels under

moderately weak magnetic fields B < 10 T. Furthermore, when the Ising field opposes

the B field, the order of the spin-polarized levels can also be inverted. We show that,

under these conditions, three different compensated electron-hole phases can occur at

v = 0 filling, in which equal concentrations of electrons and holes are present. The

'This chapter is reproduced with permission from J. Y. Khoo, L. S. Levitov, Tunable Quantum
Hall Edge Conduction in Graphene Bilayer through Spin-Orbit Interaction, submitted for publication
in Physical Review B.
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three phases have distinct edge conductivity values. One of the phases is especially

interesting, since its edge conduction can be turned on and off by switching the sign

of the interlayer bias.

5.1 Absence of Spin-Orbit Interaction (SOI) in Graphene

Landau Levels (LLs)

The effect of spin-orbit interaction (SOI) on the Landau levels (LLs) in graphene

has been largely unexplored experimentally. The main obstacle has been the extreme

weakness of the intrinsic SOI, corresponding to spin splittings as small as 1 to 100 peV

in graphene monolayer [92, 5, 97] and bilayer [100, 101, 102]. Consequently, the SOI

splitting is smaller than the Zeeman splitting Ez ~ 0. 1B(T) meV even when magnetic

fields B are relatively weak. However, the situation has changed with the advent

of graphene-based heterostructures. An SOI of 1 to 10 meV has been interfacially-

induced in graphene by transition-metal dichalcogenide substrates with strong SOI

such as MoS2 , MoSe2 , WS2 and WSe2 [154, 119, 118, 168, 169, 170, 1711 while an

SOI of < 100 meV was achieved at the graphene-Ni interface by introducing Au

intercalation [172]. These developments have therefore opened the door to realizing

SOI-based phenomena in graphene.

It is particularly interesting to study how the LLs of (Bernal-stacked) bilayer

graphene are modified by interfacially-induced SOI. Apart from having spin and valley

degrees of freedom, the low-energy carriers in bilayer graphene are sensitive to the

potential difference between the two graphene layers. These properties collectively

give rise to a gate-tunable single-particle LL spectrum [173, 174]. By including the

effects of electron-electron interactions, we obtain a very rich phase diagram which

hosts gate-tunable phase transitions [175, 176, 177] and can be directly probed by

experiments [63, 56, 64]. This gate-tunability is therefore expected to provide a

means to probe the effects of interfacially-induced SOI on the LLs.
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5.2 Zeroth LLs of Bilayer Graphene with Layer-Specific

So'

In our discussion, special attention will be given to the zeroth LLs of bilayer graphene,

the set of eight-fold nearly degenerate lowest energy bands. The states of the zeroth

LLs belonging to different valleys are strongly localized on different layers. This

has two consequences. First, the valley degeneracy can be lifted by introducing layer-

asymmetry to the system [174]. This can be achieved by applying an interlayer bias or

by constructing an inversion-asymmetric heterostructure. Second, layer asymmetric

effects will be most noticeable in the zeroth LLs. Motivated by these observations,

and in departure from previous treatments which considered SOI of equal strength

for both layers [178, 179], we shall focus on the case of bilayer graphene with a

layer-specific SOL Recent experimental progress has led to a better understanding of

the bilayer graphene zeroth LLs at various integer [59, 55, 61, 64, 56] and fractional

fillings [62, 63, 64], as well as to the recently demonstrated artificial SOI enhancement

in graphene [154, 119, 118, 168, 169, 170, 171, 172]. We thus find ourselves in the

opportune moment to investigate the novel valley-asymmetric effects on the zeroth

LLs due to substrate-induced SOL

To this end, here we analyze the single-particle LL spectrum of bilayer graphene

with a layer-specific SOI of both the Ising and Rashba types. We highlight several

interesting features that arise already at the non-interacting level. Some of these

features are expected to remain robust in the presence of interactions. In particular,

an Ising SOI A at the meV scale is strong enough to significantly change the zeroth LL

spectrum. In contrast, Rashba SOI is of an off-diagonal character, and thus its effect

is small even at values as large as AR - 15 meV. As a result, the energy ordering of

the zeroth LL states is essentially determined by the competition between the layer-

asymmetric Ising splitting and the Zeeman as well as orbital splittings. In particular,

the orbital and spin order inversions occur at relatively weak and moderate B field

values, respectively, as we discuss in detail below.

We predict three compensated electron-hole phases in this system, one of which is
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a) Para-phase b) Ortho/para-phase c) Ortho-phase

u>O u>O ------ -- , u>- ------------
G=2e2/h G=O = --G=O

< 4 -- - - 4- --

uJ<O u<O u<O ,----+------7

G=2e2/h G=2e2/h G=

Figure 5-1: Edge state configurations for a) para-phase, b) ortho/para-phase and c)
ortho-phase. Edge conduction is reduced due to backscattering between the counter-
propagating modes with equal spin polarization. Backscattering between the modes
with opposite spins cannot occur because of the orthogonality of the spin wavefunc-
tions, leading to quantized edge conduction. In the phase b), spin polarization of
one of the edge modes can be reversed by a transverse electric field, giving rise to a
switchable edge conduction.

a conventional phase, whereas the other two phases arise due to the layer-asymmetric

nature of the Ising SOI. These three phases occur at the v = 0 filling and when the

interlayer bias u is moderately large so that one layer becomes electron-doped while

the other becomes hole-doped by the same amount. In the absence of SOI, there is

only one compensated electron-hole phase at v = 0, which is expected to host helical

edge modes with opposite chiralities and spin polarizations in each layer [56]. Spin

wavefunctions of these edge modes are orthogonal, forbidding interlayer tunneling

processes, and thereby protecting the edge states from backscattering. The expected

edge conductance in this phase is therefore 2e2 /h [1801.

Introducing a layer-specific Ising SOI can invert the energy ordering of the spin-

polarized zeroth LLs set by the Zeeman splitting. This inversion occurs only within

the zeroth LLs of the corresponding valley, and therefore requires that the Ising

splitting at that valley be opposite in sign to the Zeeman splitting, and dominate

over it. In this case, the corresponding compensated electron-hole phase will have

helical edge modes with the same spin polarization. Backscattering processes are

now allowed, so that the edge conductivity of this new compensated electron-hole

phase is expected to be suppressed compared to the 2e 2/h value.

Increasing B eventually restores the energy ordering so that we recover the com-
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pensated electron-hole phase equivalent to that in the system without SOI. How-

ever, the magnitude of Ising splitting is somewhat larger for the more strongly layer-

polarized n = 0 LLs as compared to the n= 1 LLs. As a result, in the presence of

moderately large B fields only the ordering between the n = 1 spin-polarized levels is

restored while that of the n = 0 remains inverted. Therefore, the transition between

the two phases, which are dominated by the spin-orbital and Zeeman interactions, oc-

curs via a third intermediate phase. This intermediate phase has edge modes with the

same spin polarization for positive interlayer bias, but with opposite spin polarization

for negative interlayer bias.

There are therefore a total of three different compensated electron-hole phases dis-

tinguished by whether their edge modes have the same or opposite spin polarizations

for the cases of positive and negative interlayer bias, as illustrated in Fig.5-1. The

intermediate phase is particularly interesting because it hosts an edge conductivity

that can be turned on or off by switching the sign of the interlayer bias.

5.3 Low-Energy Effective Hamiltonian

The low-energy states of bilayer graphene near the Dirac points (the K+ and K_

valleys) can be modeled by an effective Hamiltonian, expressed in the (Al, B1, A2, B2)

basis as [80, 56?

V07 -V47 0

TB=O 077 + 71 -- 47t
A = 0 (5.1)

-V47T 71 ~-2iS 07

0 -V47r V 0 7r 2

T = h( kx + ikY), 7rt = h( kx - iky), VO,4 = 2h ,4.
2h

Here, a = 2.46 A is the monolayer graphene lattice constant, the sign factor = 1

serves as the valley index corresponding to the valley wavevectors K = ( , 0).

The wavevector k = (kx, ky) is measured relative to K . The hopping parameters are
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denoted by: 'yo = 2.61 eV for the intralayer nearest neighbor hopping, 71 = 0.361 eV

for the interlayer coupling between orbitals on the dimer sites BI and A2, and 74 =

0.138 eV for the interlayer coupling between dimer and non-dimer orbitals Al and A2

or B1 and B2. The parameter A' = 0.015eV describes the energy difference between

dimer and non-dimer sites. The interlayer bias is given by u = V2 - V where Vi is

the potential on layer i = 1, 2.

We model the interfacially-induced SOI by introducing a layer-specific spin-orbit

Hamiltonian to the monolayer subspace of the system [181], described by the compo-

nents Al and B1 of Eq.(5.1):

6 HQ = 6 H1sing + 6 HR, (5.2)
AR6 Hsing = -H s, R = ( Uxs - crYsX),2 2

where si and au are the Pauli matrices corresponding to the spin and A/B sublattice

degrees of freedom respectively. Under time reversal, the spin variables si, as well as

the valley index , change sign, whereas the sublattices A and B are not interchanged.

The SOI Hamiltonian, Eq.(5.2), is therefore invariant under time reversal. However,

it is not invariant under inversion.

Indeed, our interfacial SOI interaction is distinct in its symmetry properties from

the intrinsic SOI for graphene monolayer analyzed by Kane and Mele [? ]. Both

of the SOI terms in Eq.(5.2) are extrinsic, i.e. they are allowed by symmetry only

because of the presence of the transition metal dichalcogenide substrate 1182]. In

particular, the Ising term 6 Hising is of the same form as the intrinsic Ising SOI of

transition metal dichalcogenides with broken inversion symmetry [? ? ]. Thus, the

interfacial SOI induced in the graphene monolayer (and hence in the bilayer) also

breaks the inversion symmetry. Likewise, the term 6 HR, which has the standard low-

energy form of Rashba SOI in graphene subject to a transverse electric field at the

substrate/graphene interface I? ], also breaks the inversion symmetry.

We neglect the small intrinsic SOI terms of bilayer graphene, as well as Rashba SOI

terms generated by the transverse electric field due to the interlayer potential between
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the graphene layers. Spin splittings due to these effects have been estimated to be in

the range of 1 to 100 peV [100, 101, 102], which are much smaller than those arising

from the interfacially-induced SOI in the meV range [154, 119, 118, 168, 169, 170, 171].

We introduce a perpendicular magnetic field B = Bz via the usual replacement of

ki with qj = ki- fA (i = x, y) where A = (Ax, Ay) is the vector potential, B = V x A.

We construct the magnetic ladder operators,

1 = BB (q y -q), (5.3)

which satisfy [a, -t] = 1, where lB = is the magnetic length. Substituting

these quantities into the full Hamiltonian H Ho + 6H() of the system, we perform

matrix diagonalization to solve for the LLs (see Section 5.11 for detailed derivation of

the zero Landau levels of bilayer graphene with layer-specific spin-orbit interaction).

In particular, the eigenstates of H corresponding to the zeroth LLs are well pa-

rameterized by jns,),

Hrinsz) = E ,,,z,|nsz) (5.4)

Here = 1 is the valley index, n = 0, 1 is the orbital LL index, and sz = 1 is the

out-of-plane spin polarization. To leading order in u/hwc, where w, is the cyclotron

frequency, the corresponding single-particle energies are

u A
E ,n,sz ~ -Ezsz + niZ/io + -agln,s2 + (1 (5.5)

22

(10 70 212 2~,
71 To B71

where Ez = IBB is the Zeeman splitting, Ce,,,z is the layer polarization, (1, ,n is the

spin polarization on layer 1 and ZXo is the orbital splitting. These leading order energy

corrections already account for most of the features given by the exact solutions, which

are shown in Fig. 5-2 and Fig. 5-5 for typical values of A, AR and selected values of

B. The effects of the layer-specific SOI can be understood by contrasting Fig. 5-2

and Fig. 5-5(b) to Fig. 5-5(a), which shows the zeroth LL spectrum in the absence
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Figure 5-2: Single-particle zeroth LL spectrum (including Zeeman splitting) as a
function of interlayer bias u for A = AR = 5 meV at a) B = 5 T, b) B = 10 T,
c) B = 20 T, d) B = 31 T. Different colors and linestyles are used to differentiate
different LLs in each panel. The levels are labeled in a) by I(nsz), the notation
defined in Eq. (5.4). A reversal of the order of the levels | + 0 t) (black solid line)
and I + 1 4) (blue solid line) occurs with increasing magnetic field, with the transition
taking place at B ~ 10 T shown in b).

of SOI (A = AR = 0). In what follows, we discuss some of these effects and their

implications.

5.4 Effects of Layer-Specific Ising SOI

As we will see, the SOI-induced changes to the zeroth LL spectrum arise mainly due

to the Ising SOI A. This is illustrated by comparing the zeroth LL spectrum for

A = AR = 5meV and B = 5T, shown in Fig. 5-2(a), to Fig. 5-5(b), which shows the

changes in the spectrum solely due to the AR coupling for the same B field strength

as in Fig. 5-2(a). In comparison to the Ising SOI, the effect of the Rashba SOI AR
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on the zeroth LLs is negligible and will not play a significant role in our analysis. A

more detailed discussion of the reasons that effects due to AR are small can be found

below (see the penultimate paragraph).

The Ising term A generates a valley-antisymmetric Zeeman-like splitting with op-

posite signs at the two valleys. Depending on the relative sign between A and B at

a given valley, this Ising field induces a splitting that either assists or counteracts

the Zeeman splitting for a given valley. Importantly, because this Ising field is layer-

specific, its splitting is directly proportional to the layer-i polarisation of the state.

For the zeroth LL states, the valley polarization is essentially in one-to-one corre-

spondence with the layer polarization of the state. Consequently, the layer-specific

Ising field influences the zeroth LLs in a valley-asymmetric fashion, whereby it only

modifies the spectrum of the LL states in the K+ valley (in our convention) and not

those in the K_ valley.

5.5 Inverted Orbital Ordering

The most noticeable feature seen in Fig. 5-2 is the evolution of the I+ 0 t) (black

solid line) and I + 1 4) (blue solid line) energy levels with increasing B field from

5 T in Fig. 5-2(a) to 31 T in Fig. 5-2(d). From Eq. (5.5), we see that this is a

direct consequence of the competition between the orbital splitting Ajo and the Ising

splitting A. When the Ising splitting dominates in relatively weak B fields, it changes

the ordering between the more energetic n = 0 and less energetic n = 1 states in the

K+ valley. Consequently, at filling level v = 2, one of the n = 0 and n = 1 states are

filled instead of both n = 0 states.

The onset of this inverted orbital ordering depends on the relative orientation

between the Ising field and the external B field. This inversion occurs when 6E < 0,

6E+A = E+1; - E+ot, A > 0, (5.6)

6 E -A= E+It - E+o0 , A < 0. (5.7)
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which at u = 0 is approximately given by,

JAl > Ao + sgn(A)2Ez (5.8)

(0.381 + 0.116)B(T) meV, A > 0

(0.381 - 0.116)B(T) meV, A < 0

so that it occurs over a larger range of B when the Ising and magnetic fields are

aligned (A < 0) than when they are anti-aligned (A > 0).

In Fig. 5-3, we include the effects of the interlayer bias u and map out the phase

diagrams for several values of A = +1, 3, 5 meV. This serves to assist visualizing the

region in the three-dimensional (u, B, A) phase space in which orbital inversion occurs,

i.e. when 6E' < 0 is satisfied. For A > 0, the ordering inversion occurs between

I + 1 4) and I + 0 t) while for A < 0, ordering inversion occurs between I + 1 T) and

|+ 0 4). The occurrence of inverted orbital ordering at the non-interacting level will

likely lead to novel phases near the v = 2 filling when interaction effects are included.

In particular, two observations can be made from Fig.5-3. First, the region in the

B - u phase space with orbital ordering inversion increases with the magnitude of

A. Second, these inversion regions are larger for A < 0 than for A > 0 of the same

magnitude. These observations are consistent with what we have discussed above and

are accounted for by Eq. (5.8).

5.6 Novel Compensated Electron-Hole Phases

Another interesting feature occurs at larger B fields when orbital ordering of energy

levels is restored. The occurrence of this feature also requires that the Ising splitting

opposes the Zeeman splitting. Applying a moderately large interlayer potential lul

dopes one layer into the electron band and the other into the hole band [180]. Three

different compensated electron-hole phases exist as a result of the competition between

the Ising splitting and Zeeman splitting, which we denote as para-phase, ortho-phase

and ortho/para-phase. They are characterized by the alignment between the spin-

polarization of their respective edge modes under positive and negative interlayer bias
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Figure 5-3: Phase diagrams in the B-u plane showing how the regions of normal and
inverted orbital ordering change with the Ising SOI A magnitude and sign. The panels
a), b) and c) correspond to A > 0 and normal/inverted ordering refers to the ordering
between the levels I+ 1 4) and + 0 t): a) A = 5meV, b) A = 3meV, c) A = 1meV.
The panels d), e) and f) correspond to A < 0 and normal/inverted ordering refers
to the ordering between the levels I+ 1 t) and I+ 0 4) (see Eq.(5.4) for notation):
d) A = -5meV, e) A = -3meV, f) A -1meV. Dashed lines indicate the phase
boundary along which 6E,(, = 0 [panels a)-c)], and 6E - = 0 [panels d)-f)]. The
energy difference 6E,+ (in meV) is indicated in Fig. 5-2(c).

u (see Fig. 5-1):

Para-phase:

Ortho-phase:

Ortho/para-phase:

{
{
{

electron,t) 0 hole, 4),

electron,t) 0 hole, 4),

electron,t) D hole, t),

electron, 4) 0 hole, 4),

electron, t) 0 hole, t),

electron, t) 0 hole, 4),

When the Ising field is absent or when the Zeeman splitting dominates, the com-
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pensated electron-hole phase is in the para-phase, which corresponds to 'phase III'

in Ref. [56]. In this phase, the filled hole and electron bands residing on opposite

layers have opposite spin-polarization. When the substrate-induced Ising splitting

dominates (A > 2Ez ~ 0.116B(T) meV), the ordering of the spin-polarized states

localized on the layer nearer to the substrate is now reversed. The corresponding

compensated electron-hole phase is in the ortho-phase, in which case the filled elec-

tron band has the same spin-orientation as the filled hole band.

Unlike the para-phase, the ortho-phase is overall spin-neutral. In addition, having

filled electron and hole bands with the same spin polarization means that their corre-

sponding helical edge modes do not have protection from backscattering, unlike those

of the para-phase. The edge conductivity of the ortho-phase is therefore expected to

be strongly suppressed compared to that of the para-phase.

The mixed ortho/para-phase occurs at moderate B fields when the Ising and

Zeeman splittings are comparable. Because the I + Os,) states are more strongly

polarized on layer 1, they experience a stronger substrate-induced Ising field compared

to the I+-1s,) states. The Ising splitting between the I+Os,) states is therefore slightly

larger than that between the + 1s,) states, so that they do not necessarily have the

same spin ordering for a given value of B. This can be seen from the larger spin

splitting between the I+ Os) states compared to that between the + 1sz) states in

Fig. 5-2(d). Consequently, the para-phase to ortho-phase transition occurs at different

values of B when u > 0 and when u < 0. To describe this ordering, we define the

following parameters

6E+B = E+% - E+oT, u > 0, (5.10)

6 E B = E+1 4- E+It, u < 0.
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The conditions for the different phases are then given by

Para-phase: E+ > 0, 6E- > 0,

Ortho-phase: 6E+B < 0, 6E- < 0,

Ortho/para-phase: 6ElB < 0, 6E- > 0. (5.11)

The orbital splitting gives rise to a mixed ortho/para-phase in the A - B plane

(see Fig. 5-4), in which the system can be thought of as being in the ortho-phase

for u > 0 and being in the para-phase for u < 0. This mixed phase is particularly

interesting because its edge conductivity can be switched on or off via switching the

sign of the interlayer bias u.
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Figure 5-4: Phase diagram in the A - B plane, showing the different regions in which
the system is found in one of the three different compensated electron-hole phases:
the para-phase, the ortho-phase, and the ortho/para-phase. The notation for the
energy differences 6EgB is given in Eq. (5.10).
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5.7 Effects of Electron-Electron Interactions

While interaction effects are not included in this work, we expect the above discus-

sion to remain qualitatively unchanged for B > 15 T. To understand why it is so,

let us consider the A = 0 case, in which the compensated electron-hole phase only

exists in the para-phase (phase III in Ref. [56]). The v = 0 phase diagram mapped

out in Ref. [56] suggests that the net effect of electron-electron interactions is to re-

duce the single-particle orbital splitting Aio oc B which stabilizes the compensated

electron-hole phase. In weak B fields, orbital splitting is unable to overcome the

interaction energy between the filled LLs on the same layer. In this case, the total

energy of the system is minimized by one of two phases depending on the potential

difference between the two layers. The ground state is in the layer-unpolarized canted

antiferromagnetic phase (phase I in Ref. [56]) when the potential on both layers are

comparable. Otherwise, when the potential on one layer is much larger than the other,

the ground state is in the completely layer-polarized, spin-neutral phase (phase II in

Ref. [56]). The compensated electron-hole phase does not exist as a ground state of

the system in weak B fields. On the other hand, when B > 15 T, Aio is sufficiently

large and can exceed the interaction energy between the filled LLs on the same layer.

In this case, the physics is qualitatively captured by the single-particle picture. At

moderately large values of u, the energy of the I - 1 t) state becomes lower than

that of the I + 0 4) state (see Fig.5-5(a)). The total energy of the system is there-

fore minimized by filling three LLs on one layer and one LL on the other - i.e. the

compensated electron-hole phase.

The novel phases, ortho and ortho/para, predicted in this work, arise due to the

competition between the Zeeman splitting and the layer-specific Ising SOI splitting.

This competition gives rise to the normal and inverted spin-ordering between LLs

of the same orbital number n and is therefore independent of the orbital splitting.

We therefore do not expect the electron-electron interactions to have a big effect on

the spin ordering, since they mainly affect the orbital splitting and, through that,

may alter the effective interlayer potential. This effect, however, will have no direct
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impact on the competition between the SOI and Zeeman interactions that govern spin

ordering. Therefore, so long as B > 15 T, the v = 0 ground state of the interacting

system will be found in one of the three compensated electron-hole phases. This

means that for an Ising field strength of A > 2 meV, all three phases are expected

to be accessible even when the interaction effects are included, since the transitions

between the different phases occur at B > 15 (see Fig. 5-4).

Following this reasoning, we expect that for these moderately large values of B,

the v = 0 layer-unpolarized canted antiferromagnetic phase discussed in Ref. [56] is

likely to remain unchanged in the presence of a strong SOI substrate. However, this

also means that the v = 0 phase diagram may change at weaker B fields because of the

inverted orbital ordering (see Fig. 5-3). A more detailed study including interaction

effects is required to map out the phase diagram in this regime.

5.8 Conductances of Novel Phases

An immediate consequence of these three different phases is the difference between

their two-terminal conductances G. The para-phase conductance, as discussed earlier,

is expected to take a quantized value Gpara = 2e2 /h for both positive and negative val-

ues of u (each edge contributes e2/h in parallel). For the ortho-phase, backscattering

between the counterpropagating edge states is allowed. This causes the two terminal

conductance to decay exponentially from 2e2 /h to 0 as the sample dimension increases.

Therefore, for sufficiently large samples, we expect Gortho ~ 0 for both positive and

negative values of u. Finally, we expect the mixed ortho/para-phase to have a con-

ductance that is gate-tunable - Gortho/para(U > 0) ~ 0 and Gortho/para(U < 0)= 2e2 /h.

5.9 Effects of Layer-Specific Rashba SOI

Finally, we comment on the effects of Rashba SOI AR, which are important at high

LLs but are negligible at the zeroth LL. The smallness of the Rashba SOI XR for

the zeroth LL is illustrated in Fig.5-5. Indeed, by comparing the zeroth LL spectra
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Figure 5-5: Illustration of the extreme smallness of the level shifts induced by the
Rashba SOI AR in the zeroth LL, as compared to those induced by the Ising SOI A
illustrated in Fig. 5-2. The spectrum found in the absence of SOI interaction remains
essentially unchanged after adding a relatively large Rashba SOI: a) A = AR = 0 meV
and b) A = 0, AR = 15 meV. Magnetic field is B = 5 T in both cases. Labeling of
Landau levels (color and linestyle) is the same as that in Fig. 5-2.

shown in Fig. 5-5(a) to those in Fig. 5-5(b)(A = 0, AR = 15meV), it is evident that

the effects of the Rashba SOI are strongly suppressed even at values of AR as large as

15 meV. It gives rise to an energy correction ~ 10-2 meV, which is comparable to the

Zeeman energy at B = 1 T, but quickly becomes negligible at larger field strengths

(B > 5 T). It is therefore justified to ignore the correction due to AR at leading order,

which was done in Eq. (5.5). The physical reason for this smallness is as follows. The

matrices or in the Rashba term generate Al-B1 couplings, which mix the zeroth LL

state J+, 0, 4) = JAl 4, 0) with the dimer states at relatively high energies Y1. As a

result, the AR-dependent corrections scale as 6 o AR - Furthermore, because the

high-energy states yi are particle-hole symmetric, their contributions cancel out at

the lowest order. The AR-dependent corrections survive only at the next order, giving

a small contribution to the level shifts of the order 6 oi AR 7 -

5.10 Chapter Summary

In summary, the layer-specific SOI adds some unique features to the bilayer graphene

single-particle zeroth LL spectrum. Those include the occurrence of an interesting

pattern of orbital and spin inversions in the LL energy ordering. In contrast to the
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SOI-induced splittings of higher LLs, which are dominated by the Rashba SOI, the ze-

roth LL splittings are dominated by the Ising SOI. Furthermore, the states with spin

inversion give rise to novel compensated electron-hole ortho- and ortho/para-phases

with a unique set of edge modes and gate-tunable edge conduction. While we an-

ticipate the discovery of other novel phases when electron-electron interaction effects

are taken into account, the compensated electron-hole ortho-phase and ortho/para-

phase predicted here are expected to be robust to electron-electron interactions when

B > 15 T. The ortho/para-phase in particular provides a new knob that controls the

edge-conductivity of quantum Hall systems. The gate tunability enables a field-effect

transistor-like behavior of the edge states, a property that can lead to interesting

applications of graphene-on-transition metal dichalcogenide heterostructures.

5.11 Appendix: Derivation of Zeroth LL Spectrum

In this section, I provide a more detailed derivation of the zeroth LL spectrum of

BLG with layer-specific SOI. I follow the convention given in Ref. [80] to describe the

spin-degenerate, low-energy effective Hamiltonian of bernal-stacked bilayer graphene

including the hopping parameters 'Yo, y1, -y4, ' as per Ref. [561. The effective Hamil-

tonian is given in the main text Eq. 5.1. The monolayer SOI Hamiltonian Eq. 5.2 can

be written explicitly as

(sz ( s +is.) 0 0

H - ( s - is,) sz 0 0 512so - 2 -
0 0 0 0

0 0 0 0

and will be added to the layer-1 subspace of the Hamiltonian. Following the main

text, I then introduce a perpendicular magnetic field and construct Landau level

creation and annihilation operators a and at. Defining these operators as in Eq. 5.3

gives rise to the following valley-specific transformations,
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(5.14)

which we can substitute directly into the full Hamiltonian of the system H

H0 + 6HQJ, and write the following valley-specific Hamiltonians in the (Al t, Al 4

I BI t, BI 4, A2 t, A2 4, B2 t, B2 4) basis,
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For brevity, I introduce hwo = h/v'2o - 30 and various barred quantities which
1B 

2 1
B

are related to their unbarred counterparts via x = hwOo.

The creation and annihilation operators act on the site-specific Landau level wave-

functions In) in the usual sense, 'In) = V/'nn - 1) and atln) = /n + 1I n + 1) so that

by considering the following valley-specific ansatz for n > 3,

1+, n, i) = (C cAftn),Cn )n-1),ccn2n-1),ccin-2B,cjB2tin-2),c2(B2 In- 3 )),

|-, n, i) = (c;Alpn-2 ,C f-3),;, Blin-1),cTB1,in-2),cTA2t In-1),cA2 2) - ,cTB2tIn),C2 32l1),

the Landau levels are given by the eigenvalues and eigenstates of the valley-specific

matrices,
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By setting to zero all other energy parameters in Eq. 5.1 except ^Yo and 'Y1, we

recover the eight-fold degenerate (2 spin, 2 valley, 2 orbital) zeroth LLs states with

zero energy, I , 0, s2) and I , 1, s). - By considering H ,,=0 ,1,2 in this limit, we can

understand how the zeroth LL degeneracy is lifted (i.e. how these states mix with

the higher Landau levels and the terms responsible for the mixing).

At n = 0, the solutions are immediately given,

1
2

eigenstate:J+, 0,t) = JAl t, 0)

eigenstate: I-,1 0, T) = I B2 t, 0).

(5.19)

(5.20)
1

The eigenstates and energies are exact. At n = 1, we have

= hoo
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0

-1 0

-- u 02

0 j2

basis: (JB1 t, 0),|A2 t, 0), B2 t, 1), JB2 ,j 0)).

(5.22)

Keeping only 'Yo and 'y1 non-trivial and setting the other parameters to 0, we find
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that the zeroth LL eigenstates are

1
I+, 1,It)o = y (JAI t, 1) + |A2 t, 0)), (5.23)

1+, 0,14)o = JAl 4,0), (5.24)
1

,1,t)o = (|Bl t, 0) + w1|B2 t, 1)) , (5.25)

|-,0, )o = JB2 4, 0), (5.26)

With the above information, we can now discuss the effects due to the various pa-

rameters in the Hamiltonian as corrections which are justified in the strong field limit

hwo ~ 31 meV VB(T) > g, A', u, A, AR but constrained to hwo < -y1 or equivalently

, 1. The effects from SOI are already discussed in the main text and here I include

a short discussion on the effects of the non-SOI parameters for completeness. The

interlayer bias u shifts the energies by an amount that measures the layer polariza-

tion of the state as is expected, + if the state is completely polarized in layer 1 and

-u if it is completely polarized in layer 2. Similarly, the A' term gives rise to an

energy shift proportional to the state's polarization on the A2 or B1 sites. Finally,

-y4 introduces mixing between the different sublattice components of the -+, 1, t)o

and |-, 1, t)o respectively and shifts the state's energy by the difference between the

amount of symmetric and anti-symmetric superposition of the sublattice components.
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At n = 2, we have
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Once again, turning off all parameters except -yo and -y1 allows us to recover the

remaining 2 zeroth LL states:

1
S+1, 4)1 (--y1 JA1 4, 1) + 1A2 4, 0)), (5.29)

V/A-+ 1

-- ,1, )0= (IB1 , 0) + wy1|B2 , 1)) ,(5.30)
-2 + 1
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The qualitative nature of how the various parameters affect these two zeroth LL states

is similar to that of the n = 1 case discussed earlier.

Consistent with the above discussion, the single-particle energies of the zeroth LL

to leading order in u/hwc is given by main text Eq. 5.5, and here I give the explicit

expressions for the layer and spin polarizations that were omitted in the main text,

a',fn,sz = ICA1,s, 2 + ICB1,sz 2 - CA2,SZ 12 - ICB2,s. 2 (5.31)

(1,,,, = sz (IcA1,s, 2 + ICB1,sz 2) . (5.32)
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Chapter 6
1

Conclusions

A wide range of interesting phenomena have been discovered in graphene. The vdW

heterostructures certainly add a lot of excitement to graphene research by introducing

novel interfacial physics. In this thesis, I have discussed how heterostructures help

to introduce interfacial SOI in graphene. This opens up a plethora of new phenom-

ena that are awaiting to be discovered. I explored some interesting effects that arise

when SOI is interfacially-induced in bilayer graphene via a TMD substrate. Spe-

cial emphasis was given to gate-tunable properties of the bilayer graphene-on-TMD

heterostructure.

The experimental verification of the change to the graphene bandstructure as a

result of interfacially-induced SOI from a TMD substrate was reviewed in chapter 3.

It is especially important that TMD substrates are able to directly modify the band

structure of graphene and give rise to carriers that are spin-split in energy. Analogous

to the intrinsic spin-Hall effect, a spin-split band structure enables robust control over

the spin degree of freedom (chapter 4). It can also modify the system's topological

properties (chapter 4) and lead to novel phases (chapter 5). Several extensions to the

ideas presented in this thesis are discussed below.

The Magnitude of Induced SOL The experiments performed at relatively high

doping clearly confirm the presence of spin-split bands (chapter 3). However, at

present there is insufficient data at low carrier densities and thus it is impossible to

accurately determine the relative strength of the Rashba and Ising-type SOI. These
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values can be precisely determined by measurements at the energies near the Dirac

point, in which case the spin-splitting (if present) will be completely due to the

Ising SOI. An alternative approach is to directly probe the zeroth LLs and look for

effects due to a layer-specific SOI. As shown in chapter 5, the effects of Rashba SOI

is strongly suppressed in the zeroth LL compared to the Ising SOI. In particular,

the Zeeman splitting competes against the Ising SOI responsible for spin-ordering

inversion within the zeroth LLs. An observable that is sensitive to the spin-ordering

will therefore show a dependence on the strength of the applied transverse magnetic

field. This effect is expected to be suppressed by applying a strong in-plane magnetic

field in conjunction with a relatively weaker transverse magnetic field. The strong in-

plane field acts to overwhelm the system's spin-ordering while not introducing other

field dependent energy splittings in the LL spectrum. At the time of writing this

thesis, an ongoing collaboration with the University of Santa Barbara, where these

measurements are being made, indicates that the interfacially induced Ising SOI can

have strength of up to 1.5 to 2 meV.

Realizing topological materials. Achieving a sufficiently strong Ising SOI is de-

sirable as it can produce band inversion and give rise to topologically non-trivial

states. With this in mind, a few interesting heterostructure configurations can be

immediately proposed. The Ising SOI breaks inversion symmetry, with the symmetry

breaking occurring due to the TMD layer on one side of the system. The symmetry

can be restored by introducing TMD layers on both sides of the system. The oppos-

ing Ising SOI induced by the different TMD layers will likely cancel each other out

in the case of monolayer graphene when the heterostructure is inversion symmetric.

However, in the bilayer or trilayer graphene, for example, these interfacially induced

SOI act on different layers and, therefore, on different low-energy states of the sys-

tem. The resulting heterostructures are expected to exhibit a rich topological phase

diagrams. A more thorough investigation, which goes beyond what was presented in

chapter 4, is required for a complete characterization of the various phases in the case

of TMD-bilayer-graphene-TMD heterostructures.

Interfacially-induced SOI on twisted bilayer graphene. Another interesting plat-

128



form to introduce interfacially-induced SOI is the twisted bilayer graphene, which has

electron properties very different from those of the Bernal-stacked bilayer graphene

considered in this thesis. Likewise, the cases in which SOI is introduced on one or

both graphene layers can be separately investigated. In light of the Mott-insulating

and superconducting phases that were recently discovered in magic angle twisted bi-

layer graphene, introducing SOI can give rise to novel phases. These include novel

classes of Mott-insulating phases or topological superconductors.

Gate-tuning other layer-specific effects. Besides the interfacially-induced SOI con-

sidered above, it is interesting to consider introducing other layer-specific effects.

Such effects can modify the bandstructure of bilayer graphene in a variety of differ-

ent ways. Analogous to our findings for interfacially-induced SOI, such modifications

of the bilayer graphene bandstructure will be gate-tunable. Examples of such gate-

tunable effects include superconductivity, disorder physics, as well as superlattice po-

tentials/Moire physics. Alternatively, tunability beyond electrostatic gating or based

on different underlying physics can also be explored. With the improved ability to

construct layered 2D heterostructures, we find ourselves in the perfect moment to

pursue these questions not only theoretically, but experimentally as well.

The work undertaken in this thesis has barely scratched the surface of the rapidly

growing field of 2D van der Waals heterostructures. It follows the notion 'design and

build' in an attempt to extend the success of the semiconducting heterostructures.

The ultimate goal therefore is to have a comprehensive set of tools at our disposal to

create heterostructures with any desired functionality. As we are in the stage of dis-

covering and building up our toolbox, collaborations between theory and experiment

are ever more so important. I am therefore grateful to have had the opportunity to

experience this firsthand and be a part of this grand endeavor.
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