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Abstract

In this report we investigate the nonparametric optimization of Bayesian decentral-
ized binary hypothesis testing (detection) networks. We first adopt a linear threshold
parameterization of the decision rules, and study the properties of the cost function
which results. We then present several nonparametric training algorithms, and estab-
lish sufficient conditions under which they asymptotically achieve the minimum error
rate over networks of linear threshold classifiers. The algorithms are implemented
in distributed fashion, with the parameters of the decision rules controlled locally at
each network node. The methods may be grouped broadly into two classes: model-
dependent approaches which comprise sets of coupled and communicating stochastic
approximations and model-free approaches requiring only observability of the network
output from each node. We interpret all of the algorithms as generalized stochastic
descent methods, and investigate their convergence. Finally, we demonstrate that
several of the algorithms admit asynchronous implementations.

We suggest that the mathematical models in this study provide a useful paradigm
for the study of adaptation in uncertain distributed environments such as those char-
acteristic of human decision making organizations, sensor networks, and even biolog-
ical neural networks.
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Chapter 1

Introduction

1.1 Preliminary Discussion

We begin this report with a discussion of the main components of the title: hypothesis
testing, networks, nonparametric training algorithms and distributed. Although the
primary purpose of the discussion is to clarify the specific context in which each term
is intended, we also wish to overview the setting in which the contributions of this
report are made. At present the discussion is kept at a high level; presentation of the
mathematical formalism required to make the statements precise begins in Chapter

2.

Hypothesis Testing: A hypothesis test is a particular type of statistical decision test
in which the objective is to decide which of a set of mutually exclusive hypotheses
was active in the production of some random observable quantity. In this report,
we restrict ourselves to the simplest case, in which there are only two competing
hypotheses. This is referred to as binary hypothesis testing, or binary detection. The
problem setting is as follows. A decision agent or decision maker (DM)! observes an
environmental random variable for which the statistics are available to the DM. In

the binary case, the environment assumes one of only two possible values, for example

! Decision makers may also be referred to as network nodes, sensors, or classifiers depending on
context, although we generally adhere to the terminology DM throughout this report.
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as the result of the flip of a biased coin. The DM attempts to decide between the
two competing hypotheses on the true value, each corresponding to one of the two
possible states of the environment. The information to which the DM has access for
making the decision is a noise-corrupted scalar observation of the environment, the
statistics of which are also known to the DM. These statistics are typically provided
in the form of conditional probability density functions? describing the distribution
of the observation under each hypothesis. Using this noise-corrupted observation, as
well as prior knowledge of the statistics involved, the DM makes a decision regarding
which of the two possibilities was the true state of the environment. This decision is
made according to some prespecified criterion. The function which maps the DM’s
observation to its decision is known as a decision rule. The exact form of the decision

rule which is optimal will depend on the particular decision criterion.

Networks: Assume that a collection of DMs is assembled in this setting, each of
which receives a different observation of the same environment. In general we allow
the quality of each DM’s observation to vary, i.e., the noise on each DM’s observation
can be different.

Suppose that a new decentralized® version of the above decision problem is formu-
lated in which the set of DMs jointly endeavors to make an overall team* decision,
for example through a specified primary DM, in order to optimize a given measure of
team performance. A reasonable choice is to have the team attempt to minimize the
probability that the primary DM makes an incorrect decision on the true hypothesis.
In the absence of any further constraints, the provably optimal action of the collection
of DMs is to relay all of the raw observations to the primary DM and let it decide

for the team. This centralized solution is both mathematically and intuitively the

>The existence of the conditional density functions is a fundamental assumption of hypothesis
testing.

3Throughout this report we will refer to information as being decentralized and algorithms being -
distributed. This choice is merely a convention which suits our point of view, and is not intended
to imply a fundamental difference in meaning between the terms. :

“The term team is intended to convey the notion that the collection of DMs possesses a common
goal.

22



Ya YB

Yc e

¥’} up
Yo

YE
uc

Up

|

ug (Team Decision)

Figure 1-1: Decentralized Decision Network

best since a single DM is permitted to have access to all the available unprocessed
information with which to make a decision.

Now consider a modification to this problem setting in which the team of DMs is
assembled into an organization or network with prespecified communication protocols.
In particular, suppose each DM is allowed to communicate information to some subset
of the group’s members through unidirectional communication links. This scenario is
depicted graphically in Figure 1-1 for a tree-configured network, where each node of
the graph represents a DM, the directed arcs between nodes represent communication
links between DMs, and the external input to each node represents a local observation
of the environment. There exists a preimposed order to the sequence of communica-
tions between DMs which is imposed by the topology of the network. Each DM will
take into account what was communicated to it by its immediate predecessors as well
as its own observation when it decides what it should communicate to its immediate
successors. The decision rule of each DM is now a function from its observation, and

any communicated messages it has received, to the message it will communicate to its
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successors. For a tree-type topology such as that shown, the primary DM is normally
taken to be the root node. The primary DM then maps its observation and incoming
messages to the overall team decision on the true hypothesis.

We now make a final modification to the problem setup. Suppose that rather
than allowing the DMs to transmit an arbitrary amount of information on the com-
munication links, which would permit the centralized solution to be implemented by
the primary DM, communication is restricted, so that each DM is only allowed to
transmit to its successors a message out of some finite message set. For example,
each DM might be allowed only a single bit with which to communicate with its
neighbors. Then the problem of deciding what each DM should transmit, le., the
form of each DM’s decision rule, in order to optimize some measure of organizational
performance is what is commonly referred to as the decentralized binary hypothesis
testing (detection) problem®. The problem is a specific brand of team decision prob-
lem [26]. Throughout this report we will refer to this problem as an organizational
or team decision problem, with the context of decentralized binary hypothesis testing
understood.

Note that in this setting, information about the environment is distributed through-
out the organization and is not allowed to be transmitted freely from DM to DM. As
a result, the information of each DM is partial or incomplete. In addition, only pre-
scribed communication pathways are allowed as a result of the fact that, in general,
each DM is connected to only a subset of the team’s members. These restrictions,
in combination with the quantization of the messages, eflectively preclude the or-
ganization from achieving the same performance as the centralized solution. Thus,
for a given decentralized hypothesis testing problem, the corresponding centralized

problem always provides an unattainable lower bound on performance.

Nonparametric Training Algorithms: In a broad sense, the term training refers
to the dual processes of acquiring information and acting on that information to

make favorable adjustments jn the execution of some action. In the problem of this

5In the sequel we will frequently abbreviate decentralized binary hypothesis testing as DBHT

24



report, information is acquired through examination of correctly classified sample
observations. Performance on these samples is then used to evaluate and subsequently
improve the action of team decision making, i.e., to adapt the team decision rules.

In the mathematical formulation of the problem, the quality of the team decision
process for a given network topology® is quantified by an associated cost functional or
scalar-valued performance measure. The quality of the decision process is evaluated
on the basis of the corresponding values attained by this functional. If good decision
making corresponds to low values of cost, then the best possible decision making pro-
cess is one which incurs minimum cost. Thus, determining the best decision process
requires optimization of the cost functional with respect to the network decision rules.
The cost we focus on in this report is the Bayes risk, with the majority of attention
paid to the special case of the probability of team error.

The difficulty is that optimization of the cost functional in a hypothesis testing
environment requires complete knowledge of the underlying statistics of the test. In
many instances this information may not be available. The problem discussed in this
report assumes that the probability structure of the hypothesis test is unknown to
every DM in the team. In some cases it is also assumed that the network topology
is unknown. In either case, there is insufficient information available regarding the
probability structure of the problem to enable the DMs to analytically compute the
value of the criterion function or any of its derivatives. The probability structure
of the problem must be inferred through repeated examination of correctly classified
observations.

The training problem we have posed is a stochastic optimization. Techniques for
performing this optimization in the face of unknown statistics are termed nonpara-
metric optimization techniques. Thus, our training algorithms are nonparametric
stochastic optimization techniques, frequently referred to as stochastic approxima-
tion. In this report we focus exclusively on gradient-based techniques, in which the

algorithms all use the data to construct estimates of the gradient. We argue that all

8In this report we do not consider optimizing the network topology. For more on this see Papas-
tavrou [43]
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of our algorithms possess a generalized stochastic descent property.

In order to apply stochastic approximation to DBHT networks, we must first settle
on a suitable parameterization of the decision rules. In this report we choose the
simplest such parameterization possible; we parameterize the decision rules as linear
threshold rules, or hard-limiting thresholds in observation space. Thus, our training
problem could equivalently be described as “threshold learning”. Although concerning
ourselves exclusively with this parameterization may be viewed as restrictive, it has
the advantages of being easily visualized, containing the optimal set of rules for the
important case of Gaussian distributions, and being more than rich enough with

respect to the goals of this report.

Distributed: The final piece of the title requiring clarification is the term distributed.
It refers to the fact that the training algorithms we investigate involve local adjust-
ment of the decision rules of each DM. In particular, the decision rule of a given DM is
known only to that DM, unless it is communicated through the network to other DMs
which may require knowledge of it to perform their updates. Distributed algorithms
thus possess added complexity in the form of communication and timing issues. Fur-
thermore, as the training algorithms we consider are of the stochastic approximation
variety, our training algorithms consist of collections of coupled, communicating and
locally-executing stochastic approximations.

Our primary purpose in considering distributed rather than centralized algorithms
.is to improve the modeling capabilities of DBHT networks with respect to several
areas of application discussed in the following section. In this regard, it is useful to
associate each DM with a distinct entity which must communicate to resolve coupling
with other DMs and which performs its own computations on locally held parameters.
The distributed setting also introduces interesting issues such as how information is
distributed throughout the network during training, and timing issues, including the

possibility of asynchronous behavior.

In summary, the title of this report indicates that its subject is the problem of
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determining, in distributed fashion, the minimum probability of error set of decision
rules in a decentralized binary hypothesis testing network of known structure, using

only a sequence of correctly classified training examples.

1.2 Motivation

Broadly stated, our interest in this topic is to model and analyze adaptation in coupled
organized systems. Toward this goal, we seek to provide in this report a mathematical
framework which is rich enough to explore a variety of issues, yet remains mathemat-
ically tractable, and which is also qualitatively different from what has been done
previously.

The subject matter of this report would seem to be of interest for researchers in
many disciplines, including decentralized detection, distributed computation, pattern
classification, neural networks, mathematical economics and psychology. It repre-
sents a study of DBHT models from a completely novel angle. The problem setting
provides a venue for studying the behavior of distributed implementations of clas-
sical stochastic approximation algorithms. From the more general point of view of
distributed computation, it provides an interesting testbed for examining a variety
of fundamental issues such as communication and synchronization. On the Al side,
it explores the fundamental limitations of learning in uncertain distributed environ-
ments. For obvious reasons this is also pertinent for psychologists who study decision
making in organizations, and economists attempting to model optimal strategies in
decentralized markets, etc. From the point of view of pattern classification and train-
able machines, the work might be said to represent a study of “distributed trainable
pattern classifiers”. Finally, this work represents a study of training algorithms for
a type of network which is qualitatively different from the standard feedforward per-
ceptron neural network, and so would be of interest to researchers in this area as
well.

We have chosen decentralized binary hypothesis testing networks as our paradigm

because the model is applicable in several areas of interest to us. To impart some
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appreciation of the utility of the model, we describe in the following sections several
of these applications. Review of the literature concerning these applications appears

subsequently in Section 1.4.

1.2.1 Organizational Decision Theory

A setting of particular interest to us is the modeling of human decision making or-
ganizations, for example those which arise in command and control environments, or
in economic market systems. Both types of organizations often comprise collectives
of dispersed rational” decision makers that make and share local decisions on the
basis of incomplete information, but which are ultimately interested in the satisfac-
tion of some overall team objective. Some of the common elements shared by DBHT
networks and structured organizations are already clear in Figure 1-1. The DBHT
models possess hierarchical structure, as well as restricted communication and partial
information.

Of course, any mathematical model claiming to represent a human decision making
process, particularly one concerned with decisions of the yes/no or zero/one variety,
is doomed to be inadequate, and will always be subject to criticism on grounds that
it represents very few of the factors which ultimately influence a human decision.
However, simple mathematical models often prove useful media for studying com-
plex systems, particularly when they are are able to represent what are deemed to be
some of the fundamental and defining properties these systems. It is in this sense that
DBHT networks provide an especially suitable paradigm for the study of decentral-
ized decision making. These models are mathematically clean and simple to describe,
yet despite this simplicity there exists a surprisingly rich class of examples which
exhibit interesting behavior. More importantly, the models display behavior, such as
hedging, which conforms to intuition about how the members of human organizations

actually behave. The decision rules of decision makers in a trained hypothesis testing

"Our formulation of decentralized decision making requires that the behavior of each member of
the collective be rational when viewed in the context of optimizing a common goal. Issues such as
competition are usually addressed by alternative frameworks such as game theory.
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team are generally in marked contrast to those of DMs solving the same problem in
isolation. This effect results from the coupling between DMs in the team setting. In
addition, the centralized counterpart to a given decentralized binary hypothesis test-
ing problem is trivially solved and the solution has a very simple structure. Although
the decentralized problem is clearly more difficult to solve, under certain assumptions
the mathematical form of the optimal decision rule at each DM is remarkably similar
to that of the centralized problem. Hence, in contrast to decentralized versions of
many other problems, decentralization in the DBHT problem does not necessarily
preclude the problem from having exploitable structure. Indeed, the complexity in
solving the DBHT problem is attributable in large part to the decentralization itself,
and is not purely a result of combinatorics. As we will see, even very small structures,
such as two or three member networks, exhibit complexity of this non-combinatorial
variety.

Because of these properties, a sizable body of literature has developed in which
DBHT models are used to model organizational decision making. To the present, this
modeling effort has focused on the static aspects of the problem, such as parametric
studies which investigate the behavior of optimal solutions under various conditions.
We believe the present study adds learning dynamics to the modeling effort, making
it a suitable framework to develop a normative theory of team training. It is because
of the lack of a normative theory which addresses the inherent difficulties and fun-
damental limitations of learning in distributed unknown and uncertain environments
that an understanding of the processes by which organizations adapt to improve per-
formance has been slow in coming. We believe the study undertaken in this report

may provide a framework in which such a theory may be developed.

1.2.2 Decentralized Detection and Surveillance Systems

One of the original motivations of the DBHT problem was in the area of multisensor
detection problems in which there are a collection of sensors, perhaps geographically
distributed, each receiving observations regarding the presence or absence of some

target. It may be desired to place some of the computational burden at each sensor’s
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locale, rather than have all the sensors communicate their raw data to a central loca-
tion for processing. Reasons for this may be to avoid inundating the central processor
with information, or to refrain from producing an abundance of easily detectable com-
munication in a battlefield setting.

To date, the vast majority of work in the field of decentralized detection has cen-
tered around formulating specific problems and then deriving optimal solutions to
those problems. Certainly, deriving the form of the optimal solution for a particular
network topology is a nontrivial exercise. As is presented in detail in Chapter 2, the
optimal decision rule at each DM in the organization is coupled with the decision rule
being used by every other DM. This results in the optimality criteria of these problems
typically being expressed in the form of person-by-person optimality conditions, which
specify necessary conditions for optimality of each decision rule given that the remain-
ing decision rules are held fixed. No closed-form analytic expression for decision rules
satisfying the necessary conditions for optimality exists. Furthermore, deriving the
sufficient conditions for optimality is analytically extremely difficult. Computation of
person-by-person optimal decision rules must be done numerically, and may require
a slowly converging iterative procedure, solution of a difficult constrained nonlinear
optimization problem, or equivalently, solution of a spatial dynamic programming
problem. Furthermore, the complete statistics of the problem must be known to each
DM in order for the team to collectively compute the optimal set of decision rules.
If there is prior bias in the data, that bias must be accounted for explicitly in order
to compute the optimal solution. The statistics of the measurement noise at each
DM must be accounted for as well. Aside from presupposing that the environmental
statistics have been accurately modeled, it is clear that should any of these statistics
change, the solution would no longer remain optimal.

One motivation for the study of this training problem is to overcome some of the

inherent difficulties involved with computing the optimal solution. If a large body of

representative data is available®, the techniques described in this report may be used

to adapt the sensor thresholds to their optimal values without any modeling of the

8The data must satisfy certain technical assumptions described in Chapter 5.
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statistics required. Adaptations of the methodology may be able to provide adaptive

solutions in changing (nonstationary) environments.

1.2.3 Trainable Pattern Classifiers

The ideas of learning and adaptation have historically played a central role in the de-
velopment of trainable pattern classifiers. Animportant problem in statistical pattern
classification is the problem of optimizing an adaptive pattern classifier to minimize
the probability of classification error for two nonseparable pattern classes. When the
classifier is parameterized by a linear threshold rule, this problem corresponds to a
special case of our team problem for a team of one, i.e., a single decision maker. Our
problem can be viewed as a collection of communicating classifiers viewing different
realizations of some common underlying pattern, and communicating in an attempt
to resolve the pattern. Thus, the training problem of this report could be said to
correspond to the nonparametric optimization of a set of coupled binary pattern
classifiers.

To our knowledge, no work on the distributed training of decentralized classifiers,
or classifiers in which the observation space has been parsed by geography and the

computation is performed locally, has appeared.

1.2.4 Biological Neural Systems

An argument can be made that DBHT networks provide a more biologically plausible
representation of real biological neural networks than many alternative mathematical
models, particularly perceptron neural networks.

We associate each node of the graph depicting a DBHT network with a neuron, and
each communication link as a synapse between the neurons. As discussed below, the
models are able to represent some of the key properties of biological neural networks,
such as all-or-nothing firing {0-1 output) and the ability of each ncuron to excite or

inhibit other neurons. In addition, the models are probabilistic in nature, a property

that is widely thought to be essential in this modeling effort.
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Relations to Neural Networks

Our initial effort on this problem was prompted by the striking structural similarity
of DBHT networks to perceptron neural networks (PNNs). We set out to investigate
whether training algorithms similar to back-propagation could be derived which could
train a DBHT network to the optimal decision rules. With respect to this endeavor,
we must address a reasonable question: What do we hope to learn from developing
training algorithms for DBHT networks that cannot already be learned from the
study of feedforward perceptron neural networks?

To answer this, we briefly consider some of the similarities and differences between
DBHTNs and PNNs. With regard to the similarities, both types of network consist
of coupled collections of interconnected nonlinear computational “units”. However,
there are some qualitative differences in the operations performed by each type of
unit.

Figure 1-2 illustrates a single unit of a perceptron network [35]. The output u of

a perceptron unit with real-valued inputs z;,...,zyN is given by

u=f (gwiwi—ﬂ) | (1.1)

where the w; are scalar weights multiplying the inputs z;, 6 is a scalar threshold, and

f is a nonlinear scalar-valued activation function, also referred to as a gain, transfer,
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Figure 1-4: DBHT unit

or squashing function®. Some typical activation functions are shown in Figure 1-3.
The operation performed by the unit is deterministic once the inputs to the node are
specified.

In contrast, Figure 1-4 illustrates the operation performed by a unit for the special
case of DBHTNs we study in this report. It is derived in Chapter 2. The output u
of the DBHT unit (DM) derives from the test

8, fu=0,Vii=1,...,N
. u=1 02 if u, = ]., U; = 0,1 - 2,_...,N
y 2 (1.2)
u=0
L 02N if u;, = ]., Vi= ]., ...,N

®Note that the scalar parameter § may be incorporated into the sum directly by adding a dummy
input 2o = —1 and taking wo = 6.

33



Figure 1-5: DBHT Unit Operation. The bold indicates that observation threshold 6
has been selected to generate the output. Other possible choices of the threshold are
indicated by the dotted curves.

where y is the random observation, u is the binary-valued decision output, and {6;;i =
1,...,2"} is the set of observation thresholds. The output u of a DBHT unit is the
result of one of a collection of possible statistical threshold tests on y where the
appropriate test is selected by the particular ‘combination of the NV incoming binary-
valued messages from upstream DMs. The operation of the test is depicted in Figure
1-5.

The particular test or mode of operation is selected from the total of 2% possibil-
ities. The output of the unit is therefore random given the inputs from other nodes,
and is deterministic only once the exogenous input y is specified as well.

In the case of PNNs, the influence of one unit on another is quantified by adapt-
able multiplicative weights on the interconnections. Specifically, consider the typical
topology for a (3-layered) PNN shown in Figure 1-6. The only units receiving exter-
nal inputs (observations) are the input layer neurons which output to a hidden layer.
The output neurons produce the final network output. Internal to the network, the
outputs of the first layer nodes are multiplied by scalar weights, and then used as
inputs to the hidden layer.

In the case of DBHTNS, the coupling is of a different nature. Units in DBHTNs
are coupled with one another through the selection of modes of operation (decision
thresholds or operating points). This makes the influence of one unit on another
apparent in a way that allows interpretations to be made, whereas interpreting the

meaning of the Weights in a PNN appears difficult. Specifically, it is not clear that

34



Figure 1-6: Typical 3-Layer Perceptron Network

the weights in a PNN are capturing information about the function the network is
approximating in a way that is meaningful from the point of view of drawing behav-
ioral interpretations. However, while it may not be intuitively clear what it means for
a weight in a PNN to increase from one training iteration to the next, it certainly is
clear what it means for an observation threshold in a local hypothesis test to shift up
or down. The ability to interpret behavioral shifts in the network as the parameters
are adapted is critical if the network is to be used for organizational modeling. In
DBHTNSs, all units receive external input in the form of noisy observations. Thus, all
the units are affected by the external environment, a property which seems reasonable
for massively parallel learning structuresv, and this allows for the units to be inter-
preted as having varying degrees of competence. Finally, as we will see in Chapter
2, it 1s possible in the context of DBHTNs to study arbitrary tree-type topologies
which allow for a more flexible study of the relationship between network topologies
and training algorithms. On the negative side, we cannot investigate networks with
feedback using the techniques of this report, and hence we leave this extension for
future work.

As a final point of comparison, both types of networks are trained with labeled
training data to optimize some organizational measure of performance. As we will

see, while training algorithms for DBHTNs often resemble training algorithms for
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Figure 1-7: Learning System; Global Feedback from Network Output. The teacher
provides ground truth to the team by indicating the true acting hypothesis for each
set of network observations.

PNNs, there are some pronounced differences.

To summarize, we believe that there is sufficient reason to study DBHTNs due
to their interpretive value, and we suggest that the DBHT models of this report, or
some variation thereof, might be a source of simple mathematical models which better

capture the essential components of biological processes of learning and adaptation.

1.3 Model and Problem Statement

We investigate two models of training in this report. The first model may be rep-
resented by the systems diagram in Figure 1-7. The diagram depicts the DBHT
network (team) interacting with a so-called “teacher” or “expert” which provides the
team with a set of observations along with the true acting hypothesis for the obser-
vation set. In other words, the role of the teacher is to make available ground truth
to the team. Notice that the niodel also indicates that the team decision output is
fed back to each member of the team as well.

Because of the binary nature of the hypothesis test, the model may be equiva-
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Figure 1-8: Equivalent Representation as a Performance Feedback Loop. Teacher
labels as correct or incorrect each decision output of the team.

lently represented as a feedback loop as shown in Figure 1-8, in which the teacher
observes the output of the team, and then provides “performance feedback” in the
form of labeling as correct or incorrect each decision output of the team. The equiv-
alence of correct/incorrect and ground truth comes from the fact that knowledge of
correct/incorrect and the team decision is sufficient to infer the acting hypothesis in
the binary problem. Again it is assumed that both the decision of the primary DM
and the label are made available to every network DM.

The net effect of the equivalent schemes shown in Figures 1-7 and 1-8 is to provide
the team with a set of training examples at each instant of time!?, where each training
example consists of a complete set of observations for the network DMs along with the
desired network output, i.e., the acting hypothesis for the set of sensor observations
obtained at that time instant. In addition, each member of the team is assumed to
observe the corresponding team decision. Due to the existence of the teacher/expert,
the model is referred to as a supervised learning model, or learning with a teacher.

An interesting property of the training algorithms which are derived based on this

10We assume time evolves discretely
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model is that they are model-free. No DM requires a representation of the rest of
the network to update its decision rules. In particular, each DM may be oblivious
to the overall topology of the network to which it is connected. Furthermore, these
algorithms require no communication between the DMs to optimize the team decision
rules. These properties result from the fact that, under the assumption of feedback
from the team output to each DM, each DM is capable of observing the effect of
perturbations of its parameter(s) on the output directly. For those readers familiar
with stochastic approximation, these training algorithms are of the Kiefer-Wolfowitz
variety, and these assumptions are necessary so that each DM may sample the team
cost. Notice that at each instant of time, it is necessary that an entire team decision
process be executed. During the training phase, the DMs use each training example
to execute a decision process which results in an overall team decision, and are then
informed as to the true hypothesis active for that set of data. Using this informa-
tion, the DMs attempt to adapt their decision rules so that the organization will
have continually improved performance with respect to a prespecified performance
criterion.

A alternative model of training is also possible, in which each DM makes ad-
justments to its parameter(s) based only on the correctness of its own local output
stream. The process is illustrated in Figure 1-9. This type of training process is
necessarily model-dependent, because a team decision process does not intercede be-
tween the execution of an adjustment by a DM and the observation of the effect of
that adjustment. In particular, team decision processes are not executed for these
schemes, and therefore no team decision output of the network is observed. Each
DM must maintain a representation of the current state of the rest of the network
DMs which is sufficiently informative for it to perform the proper updates of its
parameter(s). Furthermore, communication is required to continually update these
representations as the overall state of the network evolves. Again, for those readers
familiar with stochastic approximation, these methods explicitly model the partial
derivatives locally, and update based on Robbins-Monro type iterations.

The global problem which this report addresses has several components:
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e Choose a parameterization of the decision rules which is suitable for nonpara-

metric optimization (linear threshold rules).

o Demonstrate that the team Bayes criterion is sufficiently well-behaved under

this parameterization to admit optimization by gradient-based methods.

e Develop nonparametric gradient-based training algorithms, to be implemented
in distributed fashion throughout the network, which allow the optimal decision

rules to be determined.

o Identify sufficient conditions under which the algorithms yield asymptotic con-

vergence of the decision rules to their optimal values.

e Relax timing restrictions on the distributed training algorithms and identify

sufficient conditions for asymptotic convergence of their asynchronous versions.

e Suggest how the modeling framework we have validated can be used to make

interpretations in the areas of application already discussed.

We should point out several topics which we do not address in this report. While

we suggest a variety of training algorithms, and establish sufficient conditions for
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asymptotic convergence for all of them, we do not attempt to compare the algorithms,
or provide extensive parametric studies of their performance. In particular, we do not
attempt to identify a “best” approach. Our goal was to suggest and validate a variety
of approaches. We believe that comparison and parametric studies are better handled
in conjunction with rate of convergence analysis, which was beyond the scope of the

present study.

1.3.1 Key Issues

We briefly mention some of the questions which are successfully addressed by the
methods in this report.

Each distributed training algorithm has associated with it specific information
requirements for each DM, (possible) inter-DM communication requirements, and
timing specifications according to which the network-wide training must occur, all of
which affect the performance of the algorithm.

With respect to information, the key question is: What local information set is
required by each DM during training? Specifically, for distributed gradient-based
techniques, what information must be made locally available to each DM so that it
may compute estimates of its partial derivatives. How accurately must this infor-
mation be known? How exactly is it obtained in the context of the two models just
described?

For algorithms requiring communication, the key issues are summarized by the
question “who should communicate to whom, what, when, etc.” [66]. In other words,
what communication protocol must be established which meets the needs of a partic-
ular algorithm? It is of interest to determine how interconnected the communications
must be; are there methods for reducing the number of DMs which must communi-
cate?

The issue of how restrictive a timing mechanism is required to ensure convergence
of the algorithm is also of interest: Ilust the DMs make synchronous adjustments to
their decision rules? What is the impact if updates are made asynchronously? Do

the other DMs have to be informed immediately whenever a particular DM makes
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a change to its decision rule? If not, how does the resulting “outdated information”
affect the algorithm? How outdated can the information be allowed to become?

In a broader sense, we will focus on whether the intersensor coupling may be ef-
fectively resolved through performance feedback, and attempt to distinguish between
those difficulties with training which arise as a direct result of the decentralization
and those which would arise in a centralized scenario as well. Long term goals, not
completely addressed in this report, involve determining the relationship between the
effectiv-eness of certain training schemes and factors such as the network topology,
the degree of coupling between the DMs, and the placement of expertise within the
network. For example, we would like to determine whether or not some network
topologies lend themselves to being more effectively trained than others. Of course,
these issues must usually be explored within the context of a specific training algo-

rithm.

1.4 Background Literature

The problem on which this report focuses is multidisciplinary in nature. As a result,

the pertinent literature falls into several categories.

Decentralized Detection The decentralized detection problem was first introduced
by Tenney and Sandell in 1981 [64], where the optimality of constant thresh-
old strategies for a two-member parallel team was established. Ekchian [19]
subsequently derived the optimal decision rules for a variety of small detection
networks, as well as a spatial dynamic programming approach for numerically
computing the optimal decision rules. Tsitsiklis and Athans [68] established the
NP-completeness for a broad class of these problems. Tsitsiklis [65] provides
an extensive review of the literature through 1989, so we refer to the inter-
ested reader to this work; in addition several results are generalized. Several
difficult problems in decentralized detection, such as dependent chservations,
are addressed by Irving in [27]. A study of the two-member tandem team, on

which a significant portion of this report will focus, was undertaken by Poth-
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iawala in [52]. A change of perspective was presented by Papastavrou in [43],
[44] in which various small topologies were compared to determine whether the
performance of some topologies dominates others. Tang [59], and Tang, Pat-
tipati, and Kleinman [61], [62], apply a variety of numerical techniques to the
optimization of the team decision rules in the presence of complete statistical
information, and suggest an interpretation of the optimization as a determin-
istic optimal control problem. DBHT networks are investigated as normative
models of team decision making in the references by Boettcher and Tenney [12],

and Pete, Pattipati, and Kleinman [47], [46], [48].

Stochastic Approximation There is a long history of study on learning problems
of the variety we have posed, both Western and Russian, although little of it

investigates decentralized problems.

The field of stochastic approximation, which forms the basis of many of our
algorithms, has been well-studied since the 50’s. Classical stochastic approx-
imation was initiated by Robbins and Monro in 1951 [53] with their seminal
paper demonstrating that stochastic (noisy) versions of successive approxima-
tion problems could be successfully solved. The method was subsequently shown
to satisfy a stronger notion of convergence By Blum in [10]. In 1952 Kiefer and
Wolfowitz [30] presented a method for determining the extremum of a function
of which only noisy measurements are available. The results of Robbins and
Monro, as well as Kiefer and Wolfowitz, were extended to the multidimensional
case by Blum [11]. In an important paper by Dvoretzky [18], it was demon-
strated that all the previous methods could be interpreted as noisy contraction
mappings. Ljung provides an analysis of recursive stochastic algorithms as ap-
proximating the solution of an ODE [36]. In this report we also use a result
of Kushaer {31] regarding the convergence of KW technigues for functions with

nonunique stationary points, and discuss in some detail an algorithm suggested

by Spall [58].
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The Russian school, which was investigating stochastic approximation for mod-
eling learning and adaptation, was led by Tsypkin [69], [70] and Polyak [49],
[50]. They provide an interpretation of many iterative stochastic optimization
techniques as stochastic descent algorithms, and provide the unifying notion of
a “pseudogradient”. Further details concerning the approach may be found in

the text by Polyak [51].

There are many good expositions on stochastic approximation available. Some
of the more classical presentations include the books by Wasan [72], Nevel’son
and Has’minskii [40], and Wilde [75] and the survey articles by Sakrison [56],
and Kashyap, Blaydon and Fu [29]. More modern presentations include Kushner
and Clark [32], and Benveniste et al. [4].

Pattern Classification The literature on adaptive pattern classification and train-
able machines contains a good deal of material which is relevant to our training
problem. The classical work of Nilsson [41] introduces the issues which arise
in trainable pattern classification schemes. The text by Duda and Hart [17]
provides an accessible introduction to adaptive pattern classification. Stochas-
tic approximation as a paradigm for more general types of learning has been
suggested by Tsypkin in [69],[70], Fu in [21], [22], and Kashyap, Blaydon, and
Fu in [29]. Kac [28] analyzes a simple adaptive binary detection scheme. Based
on the work of Wassel in [74], Wassel and Sklansky [73] present a stochastic
approximation algorithm for the nonparametric training of a one-dimensional
binary classifier to minimize the probability of error. In the text by Sklansky
and Wassel [57], supervised training algorithms for centralized binary classifiers
are analyzed at length. A more general look at the use of stochastic approxima-
tion techniques for the nonparametric training of minimum probability of error

binary classifiers is presented by Fritz and Gyorfi in [20], and Do-Tu, Installe in
[14].

Distributed Computation The textbook by Bertsekas and Tsitsiklis [6] provides a

comprehensive introduction to distributed algorithms, particularly distributed
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implementations of iterative schemes and the notion of asynchronism. This
material is also discussed in Baudet [3] and Bertsekas, Tsitsiklis, and Athans
(8].

Distributed asynchronous implementations of stochastic gradient algorithms in
particular are covered by Tsitsiklis [66], Tsitsiklis, Bertsekas, and Athans [67],
where convergence of a stochastic pseudogradient algorithm is analyzed using
martingale arguments, and by Kushner and Yin [33], [34] who attack a similar

problem using the ODE approach.

Neural Networks Neural networks are covered in some generality in the textbook
by Hertz, Krogh, and Palmer [25], and the survey article by Lippmann [35]. The
paper by Rumelhart, Hinton, and Williams {55] introduces the well-known back-
propagation algorithm. A learning algorithm similar to those discussed in this
report was suggested for use in perceptron neural networks by Nedeljkvic’ [39],
while philosophically, our approach is similar to that of Dembo and Kailath in
(13]. Barnard and Casasent [2] compare various criterion functions for pattern

classification in neural networks, and this discussion is pertinent to our work.

1.5 Outline of Report

Our guiding philosophy in organizing the presentation in this report was to introduce
additional complexity into the analysis gradually. For instance, discussion of the sin-
gle DM problem always precedes discussion of the team problem. In a more compact
presentation the two would be presented simultaneously. Similarly, discussion of the
deterministic optimization precedes discussion of the stochastic optimization, and dis-
cussion of the synchronous network training problem precedes the asynchronous case.
This organization corresponds to the order in which we researched the problem, and
is the order in which we are most comfortable conveying our understanding. With
hindsight, the presentation could certainly hiave been compressed, but we believe it
would be less accessible in this form. The resulting effect is that this report reads

more like a comprehensive tutorial than a collection of results. In the end, we surren-
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dered to this urge completely, and made the document self-contained by including in
Appendices virtually all adjunct material necessary for a complete understanding of
our research effort.

We frequently opt to convey concepts through specific examples. While this makes
for a less abstract presentation, it may also make certain results appear less general
than they really are. We try to indicate this where appropriate.

Numerical experiments in this report are intended to be illustrative in nature, and
are cerfainly inadequate as complete characterizations of each algorithm’s behavior.
The number of algorithms we present, in addition to the number of possible choices
of topology, the number of tunable parameters of each algorithm, and the number
of combinations of parameters to be chosen for the hypothesis tests, made thorough
numerical studies of the algorithms impossible in this presentation. We accordingly
focus on a few simple examples which we carry throughout the report.

Because of the multidisciplinary nature of the work in this report, the terminology
best suited to describe a concept may differ with context. An example of this would
be the terms “team, organization, and network” which, for our purposes are entirely
equivalent. However, we feel that one of these words sometimes fits a specific context
better than another. We apologize in advance for the drifts in terminology which may

result, and have made every effort to be clear in spite of this.

Chapter 2: The Binary Hypothesis Testing Model We mathematically char-
acterize the DBHT model and compare it with its centralized counterpart. We
present and discuss the necessary restrictions on the general problem which
must be made to guarantee tractable well-structured network problems. We
then illustrate the restricted model by way of several examples of small (2-4
member) teams. These small topologies are adequate to illustrate the main
features of the model. The coupling of the network decision rules is a central

focus of the discussion.

Chapter 3: Optimization using Complete Statistics In this chapter, the un-

derlying structure of the DBHT decision rule optimization problem is revealed,
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and methods for exploiting this structure in numerical methods are discussed.
We then study a useful parameterization of the network decision rules by lin-
ear thresholds, which is particularly well-suited to nonparametric optimization.
The differentiability and smoothness properties of the Bayes cost function which
result from this parameterization are investigated, and its suitability for opti-

mization by iterative gradient techniques is examined.

Chapter 4: The Single DM Training Problem In this chapter, we formulate
the training problem for the single DM case and highlight the relevant issues,
all of which are certain to arise for the team training problem as well. Several
stochastic approximation-type training algorithms are presented, along with

simulations illustrating typical sample paths.

Chapter 5: Synchronous Network Training Algorithms Chapter 5 focuses on
the network training problem, under the assumption that activities among the
network DMs may be coordinated with respect to a global clock. Several train-
ing algorithms are presented which fall into two broad classes, those which re-
quire that the network be modeled at each node (model-dependent) and those
which do not (model-free). The data processing required by the algorithms in
each class, as well as their communication and timing requirements, are dis-

cussed.

Chapter 6: Convergence Analysis The asymptotic convergence of most!! of the
algorithms presented in Chapters 4 and 5 is established, using results from
martingale convergence theory. The algorithms are all shown to possess a gen-
eralized stochastic descent property. The term generalized refers to the fact that
the gradient estimates employed by all of the algorithms contain bias which de-
cays asymptotically to zero. It is argued that this bias does not act to destroy

convergence.

Chapter 7: Asynchronous Network Training Algorithms This chapter inves-

11The remainder are covered in Chapter 7.
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tigates asynchronous versions of the previous algorithms, where such versions
may be meaningful formulated. Convergence of these asynchronous versions is

demonstrated by suitable modification of the martingale methods of Chapter 6.

Chapter 8: Final Remarks We present concluding remarks and suggest several

directions for future research.

1.6 Contributions of Report

We indicate here the major contributions of this report, which we break down by

chapter.
Chapter 2

o The results of this chapter were known previously, and no novel material
is contributed, except possibly the optimal decision rules for the 4-Asym
network.

Chapter 3

o Several new interpretations of the optimization of the decision rules are
provided.

e A novel methodology is described for deriving the cost for an arbitrary
tree structured network with conditionally independent observations, from
which the form of the optimal network decision rules immediately follows.

e New results are presented concerning the properties of the Bayes cost and
its derivatives which result from a parameterization of the network decision
rules by linear threshold rules.

Chapter 4

e Material is assembled concerning the application of stochastic approxi-
mation techniques to centralized Bayesian classification problems. This

material was sufficient for our needs, and no new results were developed.
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Chapter 5

e Seven alternative distributed training algorithms are derived for the DBHT
network problem. All seven algorithms represent the novel application of
stochastic approximation (SA) ideas in the DBHT setting. Development of
the algorithms required the identification and exploitation of some specific
properties of DBHT networks. Because the training algorithms are imple-
mented in distributed fashion, many issues applicable to the distributed

implementation of SA techniques in general were addressed.
Chapter 6

e A common property is identified which is possessed by all of the previous
algorithms, namely a generalized stochastic gradient property, and then
a single proof of convergence is provided which encompasses all of the

previous algorithms.

o New proofs of convergence are provided for the stochastic approximation

methods of references [73],[58].
Chapter 7

e A novel result is provided which indicates that the convergence properties
of several of the training algorithms of Chapter 5 are preserved under
partial asynchronism. In the process, the class of stochastic approximation
techniques known to admit asynchronous implementations is extended to

include window and Kiefer-Wolfowitz type algorithms.

Broadly stated, we believe the major contribution of this report to be the creation
and subsequent validation of a novel modeling paradigm for exploring the effects of
training and adaptation in a decentralized setting. The paradigm is based on the
application of the mechanisms of distributed computation to the optimization of the
decision rules in a particular class of team decision problem, decentralized binary

hypothesis testing.
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Chapter 2

The Binary Hypothesis Testing
Model

In this chapter, the discussion of Chapter 1 is mathematically formalized. We be-
gin with a brief discussion of the centralized version of the binary hypothesis testing
problem at the level of Van Trees [71]. This is primarily for those readers who are
unfamiliar with hypothesis testing, although it is also useful for establishing notion
and context for the central training problem of this report. We then introduce the
decentralized hypothesis testing model and devote significant time to several exam-
ples of small networks. These examples are representative of the major topological
variations in the class of networks we consider, and evidence the noncombinatorial'
type complexity that is typical of these problems. We note that more detail can be
found in the excellent survey by Tsitsiklis [65], while several of the small teams which

concern us here were first examined by Ekchian [19].

2.1 Notational Conventions

We adhere to the following notational conventions throughout this report. Random

variables are denoted by upper case letters, while realizations of those variables appear

1Meaning the complexity does not arise as a result of large numbers of DMs in the network, but
rather from the way they are coupled.
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in lower case. For example, if X is a random variable, then its realization is denoted
by z, so we would write Pr(X = z). Notable exceptions to this rule are the use of
H;,1 = 0,1 to denote the hypotheses, Pr, Pp which refer to the probabilities of false
alarm and detection, respectively, and the criterion functions Jg and P, which refer
to the Bayes risk and probability of error, respectively. These exceptions have been
made to correspond to standard usage. Other exceptions include constants, which we
also denote with capital letters, as in N for representing the dimension of a vector,
M as the number of DMs in a team, and L as the Lipschitz constant. Context will
eliminate any confusion in these cases. However, occasionally it will be necessary to
use lower case letters for random variables, and in these cases we will indicate the
change in notation with a footnote.

Vectors and vector-valued functions?, both random and deterministic, will be de-
noted with an underbar, as in X and f: RM — RV, This convention is chosen so as
not to interfere with symbols which frequently have to be placed overhead, such as
tilde or hat. Vectors are understood to be columns. Components of a vector will be
denoted by subscripts, so that for X € ¥ we would write

X = [Xl,Xz,...,XN]T (21)

Time will also be indexed using the subscript k, so that the vector X at time k will

be written

X = [Xiny, Xagrys - - - X)) T (2.2)

with the time index shown in parenthesis. The only exception to this will be the use
of the random variable H* to denote the hypothesis at time k. Here, a superscript is
adopted so as not to confuse H, with the standard notation Ho, H;. In addition, the
notation (| - || will be used to indicate the Euclidean norm throughout this report.
Sets are always denoted with calligraphic letters, for example G,7,Y,and F.
The conditional probability density function of the random variable Y, given event

H;, is indicated by py g, (y|H;). Probability mass functions of discrete random vari-

2 A notable exception to this is the gradient of a function J, which is written VJ.
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ables are also denoted with small p; for example the prior probabilities Pr(H,), Pr(H;)
are denoted py and p,, respectively.

The notation W ~ N(u,o?) indicates that the random variable W is distributed

normally (Gaussian) with mean g and variance o?, i.e.,
1 —weup?
pw(w) = e 2t (2.3)

N

We also use the error function ® to express the cumulative distribution of a Gaussian

random variable. For example, for the random variable W above we write

Pr(W <§) = /_—_E \/%6_22/2 dz (2.4)
= P4(u,0) (2.5)

The expected value of a random variable X is written E{X}. When taking the
expected value of a function of several random variables, we subscript the random
variable over which the expectation is taken. For example, if F is a function of
two random variables X and Y, the expected value of F' taken with respect to X
is written Ex{F(X,Y)}. The conditional expectation of F with respect to X, con-
ditioned on the random variable Y, is the random variable Ex{F(X,Y)|Y}. The
expected value of F' with respect to X, conditioned on the realization ¥ = vy is the
number Ex{F(X,Y)|Y = y}. Additional discussion on the properties of conditional

expectation may be found in Appendix A.

2.2 The Single DM Problem

We first consider binary hypothesis testing (detection) with a single scalar observa-
tion, such as occurs for a single DM. The purpose is to introduce notation as well as
give an appreciation for the relationship between the form of the solution for a single
DM and the form of solution for the team problem presented in Section 2.4. To avoid
being overly pedantic, only the aspects of the theory relevant for subsequent material

are presented. Additional information may be found in [71].
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ENVIRONMENT H; true, w.p. p;

NOISE

DECISION MAKER

;

u (decision)

Figure 2-1: Single DM

The basic elements of the binary hypothesis testing problem are as follows (Figure
2-1). There are two distinct and mutually exclusive hypotheses on the state of the
environment, Hy and H;, each of which occurs with positive prior probability p, and
P1 = 1 —po, respectively. The environment may be viewed as a binary-valued random

variable H where

H .D.
H— 0o W.D. po (2.6)

H, wp.p

The DM attempts to decide on the true state of the environment using a noisy scalar®
observation of the environment. The hypothesis testing framework assumes the ex-
istence of conditional probability density functions py g, (y|H;), i = 0,1 according to
which realizations of the observations are generated. The noisy observation is then
modeled as a random variable Y € ) whose realization y is generated according to the
corresponding conditional density py|m,(y|H;), ¢ = 0,1. These densities completely
describe the statistical relationship between the observation and the underlying hy-
potheses, and along with the prior probabilities are assumed known to the DM.

It is assumed throughout this report that Y is a continuous real-valued random

3Vector-valued observations are avoided throughout this report for simplicity.
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variable. Discrete observation spaces are avoided entirely, due to resulting compli-
cations of the optimal decision rules which may result (we will be more specific mo-
mentarily). Thus, we take Y = R. Furthermore, we assume that the densities are
nonseparable, i.e., there is no parsing of the real axis for which all realizations of
the observations corresponding to one class are in one region, and all observations
corresponding to the other in another.

Let u be a realization of the random variable U denoting the decision of the DM
which t>akes values in the set v € {0,1}, where v = 0 and u = 1 indicate the decisions
Hy and H,, respectively. The function which maps the observation of the DM into its
decision is known as a decision rule, and is to be denoted y. Thus we write u = y(y)
where v is a function such that vy : Y — {0,1}. The decision is made in order to

minimize some cost criterion.

2.2.1 The Optimal Solution

The form of the optimal decision rule 4 depends on the particular decision criterion
which has been specified. In this report, we are concerned exclusively with minimizing
the Bayes risk?. This criterion assigns fixed nonnegative costs to each of the four
possible decision-event outcomes, and measures the performance of the rule by its
expected cost. The cost is a bounded function C defined from decision-event space
to the real numbers, i.e., C(U, H) : {0,1} x {Ho, H;} — R. The most general Bayes

formulation quantifies the performance of a decision rule v by the quantity

JBayes(7) = EU.H{C(U’H)}
= Evmg{C((Y), H)}

— Y p B {C((Y), H)|H = Hy)

=0

= 21:21:0((] =14, H = H;)p;Pr(7(Y) = 1|H;)

1=0 7=0

= C(O, Ho) + C(l,Hl)

4The primary alternative is the Neyman-Pearson criterion [71].
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+[C(1, Ho) — C(0, Ho)lpoPr(+(Y) = 1|H = Hy)
+[C(0, Hy) — C(1, Hy)|pPr(v(Y) = 0|H = H,) (2.7)

Note that a decision rule ¥ minimizes Jpgye,(7) if and only if it minimizes the

related performance Jg(v) given by
JB(7) = AopoPr(1(Y) = L|H = Ho) + hip1Pr(7(Y) = 0|H = H,) (2.8)

where Ao = [C(1, Hy) — C(0,Ho)] and A, = [C(0,H;) — C(1,H,)]. This form also
arises when there are costs on each type of error, and no penalty for correct decisions.
Consequently, in the remainder of this report we use Jp rather than Jpay., to represent
the Bayes criterion, despite it not being the most general formulation. It is generally
assumed that the cost of making an error is strictly higher than the cost of not making

an error, namely that

C(l, Ho) > C(O, Ho)
C(0, Hy) > C(1, Hy) (2.9)

so that Ag and )A; are positive quantities.
We are frequently concerned with a special case of the Bayes criterion resulting
from the particular choice of decision-event costs
1 ifze+#7
C(i,H;) = # (2.10)
0 else
This special case is known as the minimum probability of error criterion, since cor-
rect decisions are unpenalized and both types of errors receive unit penalty. This
assignment of cost corresponds to the indicator function for an error. We denote this

criterion with the special symbol P.. From (2.8) it follows that

P. = Js (2.11)

Ao=A1=1
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and the probability of error corresponding to v is expressible as

P.(7) = poPr(+(Y) = 1|Hy) + p:Pr(+(Y) = 0} Fy) (2.12)

The problem of determining the optimal Bayesian decision rule can then be stated

precisely as follows.

Problem 2.1 (Minimum Bayes Risk Binary Hypothesis Testing)
Given the conditional probability density functions py m,(y|Ho), pyu,(y|H1), posi-
tive prior probabilities pg,p1, and the positive (bounded) costs Ao, A1, determine the

decision rule v : Y € R — {0,1} which satisfies

v* = arg min Jp(7y) (2.13)
Y€EG

where G denotes the set of all possible decision rules.

This optimization implies a search over the large set of functions G. However, we
find that the optimal rule actually lies in a very structured set, making the optimiza-
tion (2.13) tractable.

For the Bayes Risk criterion, it is a well-known fact [71], [76] that the globally

optimal® decision rule takes the following special form. If we define the quantities

Definition 2.1 (Likelihood ratio)

AQy) 2 pyn, (y|Hy)

2.14
Py 8, (y|Ho) (214
and
Definition 2.2 (Likelihood ratio threshold)
A AoPo
= 2.15
Ap1 ( )

5Satisfying both necessary and sufficient conditions for optimality.
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then the optimal solution is given by the so-called likelihood ratio test (LRT):

u=1

Ay) 2 (2.16)

u=0

Decision rules of this form, where the likelihood ratio is compared with a constant
threshold, are known as threshold rules [65]. Thus, we find that the optimal decision
rule v* for Problem 2.1 is actually contained in the class of threshold rules, which,
under the assumption that the statistics are given, admits parameterization by the
single scalar parameter 7.

There are several points to emphasize concerning rule (2.16). Since y is the re-
alization of a random variable Y, the likelihood ratio defined in (2.14) is a function
of a random variable, and is therefore also a random variable. However, once the
observation y has been specified, the test becomes deterministic. Also note that the
threshold 7 is a constant with value specified by the prior probabilities and costs.
Equation (2.16) may be interpreted as parsing the observation space ) into disjoint
regions, so that to each possible value of the observation y a corresponding assignment
of decision is made.

There is a special case of hypothesis test for which the optimal test (2.16) is in

fact equivalent to a linear threshold test of the form

8
Il
-

(2.17)

<
AV
S

3
]
=3

where § is a constant observation threshold. Notice that the conditional densities no
longer appear explicitly in this decision rule, and the class is parameterized by the
single scalar parameter §. This is the class of decision rules to which we would like to
a priori restrict our search in the training problem. A special case for which a linear
threshold test is optimal is the so-called Gaussian detection problem, which concerns
deciding which of two known constant signals, uo or i, is present in zero-mean
additive Gaussian noise. For the special case of po = 0, this problem corresponds to

the problem of deciding whether or not a target is present or absent in a radar signal,
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or the problem of detecting the presence or absence of a known signal in noise in a
communications context. Hence the term detection. For this case, the observation Y
is a continuous real-valued random variable of the form

o+ W if H=H,

Y = (2.18)
p+W i H=H,

where W ~ N(0,0?). In other words, for this problem the observations are distributed

according to the conditional distributions

(y|H;) = 202 2.19
PY|H.(y| ) 0'\/2_7're ( )

fori=0,1.°

To derive test (2.17), note that since the decision regions specified by the LRT
(2.16) are unaffected by the application of a strictly monotonically increasing function
to both sides of the inequality, and both sides are nonnegative, the natural log function

In(-) may be used to reduce (2.16) to the equivalent test

u=1

y 2 6 (2.21)
w=0
where the observation threshold 4 is given by the closed form expression
6 = —02— Innp + it po
K1 — Ho 2
- mn () o

For this value to be finite it is of course necessary that 0 < py < 1, Ao, A; # 0, and

8The Gaussian detection problem is not the only problem for which linear threshold rules are
optimal. For example, linear threshold rules are also optimal for the case

—Toy 3 —_
Y ~ { Toe”™Yu(y) if H = Hy (2.20)

e "Vu(y) if H=H,

where u(y) is the unit step, and 7o, 71 > 0, so that the hypotheses are on exponential distributions
with different parameters.
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u=20 0 u=1

Figure 2-2: Gaussian Binary Detection Problem

po # p1. The observation threshold 6 partitions the observation axis into two disjoint
connected regions as depicted in Figure 2-2. For all realizations of Y lying above the
observation threshold 6, the decision U = 1 is made, and for all decisions lying below
6, decision U = 0 is made.

For this class of binary hypothesis testing problem, we see that the optimal deci-
sion rule is linear in the data, and in fact is the simplest such function possible. The
only data processing required is a direct comparison of the observation with a fixed
‘threshold. We will refer to this class of decision rules as linear threshold rules and
denote the class of all linear thréshold rules as 7. This class of decision rules is also
parameterized by a single scalar parameter, with the difference that the statistics are
implicit in #. Thus, for the Gaussian detection problem there is no loss of optimality

in restricting the search for the optimal decision rule to the set 7T, so that
= in J = in J, 2.23
7" = arg min Jp(7) = arg min Jp(7) (2.23)

where the problem is equivalent to determining the optimal partition of the observa-
tion axis.

It should be emphasized that all binary hypothesis testing problems are not re-
ducible to this form, even those involving Gaussian conditional density functions.

Consider the problem of deciding between two possible mean-square values for a
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Gaussian distribution [76]. For this problem, the observation is of the form

Wo lf H == Ho
Y = (2.24)
W1 lf H = H1
where Wy ~ N(0,02), Wi ~ N(0,0?), and 0? > ¢ > 0. In this case the LRT (2.16)

is of the form

2
1 e_'zy;g' u=1
oivem ;2"_1_22- z i (2.25)
- 1 2‘"_6 208 u=0

which is reducible to the test

u=1
20202 o

2 > 0“1 1 _1
0T —o3) n(n UO)

<
u=0 (0-]2. - 0-0

(2.26)

This reduced optimal test requires quadratic data processing.

Even for cases where a threshold rule makes better geometric sense, i.e., when the
hypotheses are on the means of the conditional densities as in the Gaussian detection
problem, the analytic form of the conditional densities usually makes it impossible
to reduce the test to a linear one. Examples of alternative densities are Rayleigh,
Erlang, Maxwell, or Cauchy, all of which are discussed in [45]. Thus, it is important
to keep in mind when discussing linear threshold rules in this report, that obtaining
the minimum probability of error linear threshold rule is not the same as determining

the best possible minimum error decision rule.

2.2.2 Performance

Two extremely important conditional proba.bilities may be defined in terms of the
likelihood ratio. If we let py g, (A|H;) denote the probability density of the likelihood

ratio A when hypothesis H; is true, then we may define:

Definition 2.3 (Probability of False Alarm)
A oo
Pe(n) 2 [ paio(MHo) dX = Pr(U = 1|Ho) (2:27)

59



Definition 2.4 (Probability of Detection)
Po(n) £ [ p, (N Hy) d\ = Pr(U = 1|H,) (2.28)
n

Typically the dependence of these probabilities on the LRT threshold 7 is not shown.
In terms of these probabilities, we may also define the following useful comple-

mentary conditional probability.

Definition 2.5 (Probability of Miss)
Py 2 Pr(U=0H,)=1-Pp (2.29)
Then the Bayes Risk of a decision rule v, may be expressed as

JB(7) = XoPr(y(Y) =1,Ho) + MPr(y(Y) = 0, H;)
= AopoPr(7(Y) = 1|Ho) + A1p:1 Pr(y(Y) = 0|H,)

= AOPOPF + /\1P1PM (2.30)

where Ay and A; represent the costs of a false alarm and a miss, respectively. The

probability of error is therefore simply
P. = poPr + p1 Py (231)

For a linear threshold rule of the form (2.21), we can express the probabilities of

false alarm (2.27) and detection (2.28) as

Pr(6) = /:o Py |H,(y|Ho) dy (2.32)

Pp(0) = /:o pym, (y|Hy) dy (2.33)
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so that
o) [}
JB(0) = Aopo/‘; py 8, (y|Ho) dy + Aip1 /_ pya, (y|Hy) dy (2.34)

For the Gaussian detection problem, the probabilities of false alarm and detection

are expressible in terms of the error function

S—pg
1

®4(k) :/ ’ Fe‘zz/zdz k=0,1 (2.35)
. T

Pe(8) = [ prim (v Ho)dy = 1 — @o(0) (2.36)

Po(8) = [ prim, (ylHr) dy = 1 - Bo(1) (2:37)

Then the Bayes Risk is given by
JB = /\OPO(]- — QO(O)) + A]_pl@g(l) (238)

ROC Curve

A particularly useful way of characterizing the quality of a DM is through a so-called
receiver-operating characteristic (ROC) curve. A sample ROC is shown in Figure 2-3.
This curve is a parametric plot of Pp(n) vs. Pr(n) as the LRT threshold 7 is varied

from 0 to +oo. It may be conveniently defined as:
ROC = {(Pr, Pp); Pr = Pr(n),Pp = Pp(n),0 < 7 < oo} (2.39)

For a given value of 7, the point (Pr(7), Pp(n)) is referred to as the operating point
of the DM. The ROC indicates the locus of achievable operating points of the DM, as
dictated by the DMs conditional densities. For the binary hypothesis testing problem,
the ROC can be likened to a “sufficient statistic” for the DM’s observation space.
That is, the ROC conveys the same information as the likelihood ratio in (2.14).

It captures all the information about the conditional densities which is necessary to
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Figure 2-3: ROC curve

make a decision.

The ROC has several important properties of relevance in this report [71],[76]. It is
continuous if the underlying conditional densities are continuous, and Pp > Pr, V1.
It is also concave, i.e., given 0 < a < 1, and two operating points (P}, P}) and

Pl'fi,Pz , and denoting the ROC function by g : Pr — Pp, it holds that
D g
9(0‘1117" + (1 - a)] 1?“) 2> ag(l 13“) (1 3 a)g(l 1«2*) (2-40)

so that the chord connecting two points (values of Pp) always lies below the ROC
itself. Another important property is that a tangent line to the ROC at the operating
point has slope equal to 7, the threshold of the LRT, as indicated in Figure 2-3. In

particular

%(n) =1 (2-41)

The primary usefulness of the ROC in the decision making context is that it
provides a concise characterization of a DM’s expertise. For example, if one ROC lies
strictly above another, in the sense that for every value of Pr it achieves a higher

value of Pp, that DM can be considered superior.
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2.3 The Centralized Problem

We now consider the setting in which a collection of scalar-valued observations Y7,Y>,
..., Yy. are obtained of the same environment, and are available for use in a single
decision rule 4. Such a case would occur if a single DM made repeated observations
of the same environment, or if each of a collection of M DMs received an observation
and then all the observations were communicated to one DM to make the decision.

The Bayes Risk in this setting is given by

JBayes(7) = Euu{C(U, H)}
= EY1 ----- YM.H{C(‘Y(YI,---)YM))H)}

1=1
= Y piEv,, .y, {C(y(Y1,...,Yu), H)|H = H;}
j=0 .
1 1
= ZZ C(U=14H-= Hi)ijr(7(Yila .- 9YM) = z|HJ)
1=0 57=0

= C(0,H,) + C(1,H,)
+[C(1, Ho) — C(0, Ho)|poPr(v(Y1,...,Yn) = 1|H = Ho)
HO0, ) — O(L H)pPr(y(Ya, .., Yor) = OLH = Hy) (2.42)

which we again simplify to

Je(y) = dopoPr(v(Y1,...,Yn) = 1|H = Ho) + Mip1Pr(v(Y1,...,Yn) = 0|H = Hy)
(2.43)
where A¢ and ); are positive costs.
It is well-known ([71]) that the optimal decision rule is still an LRT, with the joint

statistics forming the likelihood ratio. In particular, the optimal rule is given by

u=1
Aly) 2 7 (2.44)
©=0
where now
A(y) g PYI,...,YMIHl(ylr"vyMl-Hl) (245)

le)"'vYMlHO(yl’ ety yMlHO)
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and 7 is still as in (2.15).
If the observations are conditionally independent, given each hypothesis, then the
joint densities in (2.45) factor into the marginal densities, and the likelihood ratio

becomes

A A lelHl(yl,Hl)"'pYM|H1(yM|H1)

= 2.46
Py o (Y1 Ho) - - - Pyay 1, (ynr | Ho) (2:46)
For the Gaussian Detection Problem in this setting, the sth observation is of the

form -

W, if H=H
v, = " 1 ° (2.47)

with W; ~ N(0,0?) and the {W,} statistically independent. Then each observation
Y, is conditionally independent from the set {Y;|j # i}. Again, application of In(-) to
both sides of (2.44) reduces the test to the equivalent decision rule

M y u=1
Za—; zZ 0 (2.48)
i=1 71 u=0

1 g+ po o5 1
0 = Inn + —
H1 — Mo 7 2 ; o?
M {2
_ 1 In (/\opo) + H1+ o l (2.49)
K1 — fo AP 2 o

Note that this decision rule requires joint processing of the observations. The rule
(2.48) can be seen to form a hyperplane in M dimensional observation space. For the

case M = 2, the decision rule is a line in y; — y, space as shown in Figure 2-4.

2.4 The General Decentralized (Team) Problem

The essential components of the decentralized problem are much the same as for the
centralized problem. Each of a collection of DMs receives an observation, but now
this observation is available only locally because communication between the DMs is

restricted. The observations cannot be centralized, so that the limited communication
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Figure 2-4: Centralized Decision Rule, M = 2
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Figure 2-5: Typical DBHT Network

available must be used by each DM to convey as much information about its obser-
vation as possible. Information in this sense is measured with respect to optimizing
overall team performance. One can think of this operation as an optimal quantization
problem, where each DM endeavors to provide the “hest” possible “measurement”,
based on local processing of its own observation and any messages it has received, to
those DMs which receive its message. The necessary mathematical formalism needed
to make this discussion precise may be established as follows.

Consider a collection of M DMs such as depicted in Figure 2-5 for a case with
M = 7. Throughout this report we will indicate particular topologies using this
giaphical representation, where each ncde in the graph represents a DM, wnd allowed
communication pathways between DMs are indicated graphically by directed arcs. A

single decision cycle begins with every DMi,i=1,..M, receiving a noisy observa-
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tion Y of the environment, where Y; takes values in a set };. Assumed known to each
DM, i =1,..., M are the topology of the network, the prior probabilities po, p;, the
costs Ao, A1, and the conditional probability density functions py, g, (v:|H;), 7 = 0,1,
which completely capture the statistical relationship between each DM’s observation
and the underlying hypotheses”. DM i makes decision u; € M;, where M; is a fi-
nite message set containing allowable messages. Each DM’s messages are then made
available to the other DMs according to the prespecified communication protocol in-
dicated in the graph. The function which maps DM ¢’s inputs, i.e., its observation
and any decisions it receives from upstream DMs, to its output decision is still known
as a decision rule, and will be denoted ;. Note that if DM 17 receives k messages from
upstream DMs, +; is a function such that v, : V; x ]'[;?:1 M; — M,;. We will refer to
the collection of decision rules for the entire network ¥ = (71,...,7nm) as a strategy.

Messages are chosen from the sets M;, + = 1,..., M in order to optimize some
measure of organizational performance. For simplicity, in this report we restrict to
the case of binary-valued message sets, i.e., M; = {0,1}, « = 1,..., M, so that
local decisions u; € {0,1} are binary-valued as well. One caveat with this notational
scheme - by this choice of message labels we do notintend to indicate that the message
chosen by a DM corresponds to a local decision on the true hypothesis. Rather, the
message should be interpreted as a signal, which is chosen in order to optimize team
performance. The performance measure we adopt is the team Bayes cost, which in

the most general case is defined to be
M 1 1
TBayes(Ur, - Unt, H) = D23 > Cilk, Hj)Pr(U; = k, H = H;) (2.50)
1=1 =0 k=0

where C;(k, H;) is the cost of DM ¢ choosing message k when hypothesis H; is true,
and where the cost assigned depends directly on the decisions of all DMs in the
network. Frequently, however, a so-called primary DM is specified to make the overall

team decision. If we assume DM M to be the primary DM, then this version of the

It should be noted that, in general, the conditional densities may be different at different sensors,
meaning that the sensors may have differently distributed noise (varying degrees of “expertise”) for
a given team decision problem.
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team problem is formulated with cost
11
JBayes(Ur, ... Up, H) = ZZ Cu(k, H;)Pr(Upy = k, H = H;) (2.51)
j: :
which for the simplified version of the Bayes cost we express as

JB(Ul,...,UM,H) = )\OPI‘(UM:1,H=Ho)+/\1P1‘(UM=0,H=H1)
‘ = /\QPUPI‘(UM = ].l.H = Ho)
+A1P1PI‘(UM = 0|H = Hl) (2.52)

Although the cost depends explicitly only on the decision of the primary DM, the
decision rules of all of the other DMs which are intermediate to the process affect
the cost implicitly. This dependence can be made apparent by expanding out the
dependence of Uy on the other team decisions in (2.52), but this must be done on a
case by case basis since the exact functional form of the cost depends on the particular
topology being considered.

The primary DM is typically taken to be the last DM in the information pathway?®.
For example, in the tree-type topology depicted in Figure 2-5, the primary DM would
correspond to the root node, which in this case is DM 7. We should point out
that many formulations in the decentralized detection literature replace the primary
DM with a “fusion center”, which only receives decision input from the other DMs
and receives no observation of its own. We avoid such formulations in this report
in the interest of maintaining homogeneity of the nodes in the network which is
desirable from our modeling perspective. Thus, in our formulation every DM receives
an observation, and the primary DM can be interpreted as a type of “generalized
fusion center” which receives an observation of its own.

We are now prepared to pose the decentralized Bayesian hypothesis testing prob-

lem, which involves choice of the team strategy in order to optimize the organizational

8Strictly speaking this is not necessary, but there is no point in including DMs in the network
which have no measurable impact on the outcome.
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Bayes cost.

Problem 2.2 Minimum Bayes Risk Decentralized Binary Hypothesis Test-
ing

Given a network topology Team comprising M DMs, the joint conditional density
functions py, . vy, m,(v1,. - -, ym|H;),7 = 0,1, the positive prior probabilities po, p1, and
the positive (bounded) costs Ao, A1, determine a decision strategy v* = (V{,.-.,7i)

which satisfies

* = arg min Jp(v) (2.53)
X Jeg 0B\

where G denotes the set of all possible decision strategies and Jg(7) is the Bayes risk

incurred by the team under strategy 7.

Again, the statement of this problem implies optimization over a large set. How-
ever, by making several technical assumptions, as described in the following section,
we can again force optimal strategies in the team problem to lie in a very structured

and tractable set.

2.4.1 Restrictions

We now make several assumptions which restrict the classes of DBHT models with
which we will be concerned in this report.

For the following, assume we have a network comprised of M DMs.

Assumption 2.1 (Network Topology)
Networks of DMs are arranged in trees, that is the networks are representable as

singly-connected directed acyclic graphs with nodes connected by directed arcs.

The assumption of tree structure indicates that acceptable netwerk structures
are of the form indicated previously in Figures 1-1 and 2-5, where the directed arcs

represent unidirectional communication links. What is specifically not permitted are
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(a) (b)

Figure 2-6: Network Structures which are Not Permitted. (a) feedforward; not singly
connected, (b) feedback; contains cycle

the feedforward and feedback structures of Figure 2-6. In the case of the feedforward
structure, the graph is not singly connected, meaning that there exist two different
paths connecting nodes i and k, path 7 — j — k and path 7 — k. For the feedback
structure, a cycle 1 — j — k — 17 is created. The mathematical difficulties which
arise in conjunction with these topological variations will be addressed momentarily

in Section 2.4.2.

Assumption 2.2 (Observations)
(a) The observations Y1,...,Yay are conditionally independent given either hypothe-

s1s, t.e.,

PYs, Yar B (Y15 - YM Hj) = pyiym (1| H) - - pypgim (yme | Hy), 5 =0,1 (2.54)

(b) Y; is a continuous real-valued random variable, i.e., Y; = R,Vi=1,..., M.

Assumption 2.2 (a) is the most critical and restrictive of our assumptions, and
without it it is difficult to make progress. In particular, without the assumption of

conditional independence, the problem has been shown by Tsitsiklis and Athans [68]
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to be NP-complete. Its other critical implications are discussed in Section 2.4.2.
Assumption 2.2 (b) states that the observations at each DM are real-valued scalar
random variables. We do not consider discrete observation spaces because of compli-
cations in the decision rules which often arise in discrete problems. For example, it is
well known [71], [76], [65], [43], that the optimal decision rules for hypothesis testing
problems with discrete observation spaces often involve some form of randomization.
The choice of scalar observations enables the decision spaces to be more easily visu-
alized (Section 3.2.1), results in simpler simulations, and does not result in any loss

of generality with respect to the goals of this report.

Assumption 2.3 (Message Set)

The message set of each DM is binary-valued, i.e.,

M; ={0,1},Vi=1,.... M (2.55)

Thus, we restrict each DM to use the simplest nontrivial message set possible.
Each DM is allowed only one bit of communication capacity. Allowing more messages
clearly improves the performance of the team since, in the limit, each DM is able to
transmit its entire observation [52]. In this case, the centralized solution, which

provides a lower bound on the performance of the team, would be attainable.

Assumption 2.4 (Cost Function)
The cost is taken to be the probability of error of the primary DM (root node of tree),
50 that if DM M is the primary DM, the team cost is given by

PI™ = po Pp! + py P (2.56)
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Rather than consider the general Bayes criterion, we restrict to the minimum
probability of error performance metric for all the team hypothesis testing problems
in this report. We do not do this so much for simplicity as for the fact that it is the
natural performance metric for the modeling effort discussed in Chapter 1, as well as
for many problems in decision making and pattern classification. This restriction in
no way limits the applicability of our results, all of which are easily adapted to handle

unequal costs on the team errors.

2.4.2 Significance of these Restrictions

The significance of Assumptions 2.1 and 2.2(a) to the results of this report cannot
be overstated. These assumptions combine to give Problem 2.2 sufficient structure so
that the problem of determining the optimal team decision rules becomes tractable.
First, we must quantify what we mean by optimal. Necessary and sufficient conditions
for optimality of strategies in team hypothesis testing problems do not exist. Rather,
one has to settle for determining strategies that satisfy only the necessary conditions,
and these are not expressible in closed-form. They are typically specified by coupled
systems of equations referred to as person-by-person optimality conditions, since they
specify the necessary conditions for optimality for each decision rule, given that the
other decision rules in the network are held fixed. A person-by-person optimal strat-
egy, or a strategy in which each component decision rule is person-by-person optimal,
is a strategy whose performance cannot be improved by perturbing any single decision
rule. Thus, a person-by-person optimal strategy is not even guaranteed to be locally
optimal, since it is not clear that the strategy cannot be improved by perturbing sev-
eral decision rules simultaneously. It is also clear that all globally optimal strategies
are necessarily person-by-person optimal, but the converse is not true.

It has been shown by Tsitsiklis [65] that conditionally independent observations
and tree-type topologies ensure that the person-by-person optimality conditions for
decentralized binary hypothesis testing networks are expressible in the form of coupled
likelihood ratio tests. In particular, the optimal decision rule of a DM i receiving

messages from k upstream DMs indexed 1-k, is expressible in the general form
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For DM :, given fixed v;,7 = 1,...,M,j # 1

n: ifu;=0,Y5,7=1,...,k
w=1 n fu =1,u;=0,Vy5,5=2,...,k
Ay( -)éPYilHl(yi|H1) 2 ’ ! ’ ,
py; 1, (VilHo) . %
i ifu;=1,Vj5,7=1,...,k

(2.57)
where the 7} — 7%, are a set of 2% possible LRT thresholds, one of which is selected by
the particular combination of messages received from upstream DMs. As discussed
in the next section, the numerical values of the LRT thresholds normally depend on
the current decision rules being employed by the other network DMs, resulting in a
coupled set of necessary conditions for optimality.

Decision rules of this form result from the fact that, under Assumptions 2.1 and
2.2(a), the local observation Y; of a given DM ¢ is guaranteed to be statistically
independent from all other incoming information received from upstream DMs. This
allows each local decision rule to be structured as an LRT over the local information
set. This property may fail to hold if the observations are statistically dependent,
since this introduces correlation between the local observation and incoming messages.
In the absence of this restriction, the decision rules can become very messy, no longer
necessarily being threshold rules. Furthermore, it has been shown by Tsitsiklis and
Athans [68] that the problem of determining the optimal strategy in a decentralized
hypothesis testing problem without the conditional independence assumption is an
inherently intractable combinatorial problem. In the same vein, if we do not restrict to
tree-type topologies, similar problems may arise, since dependence is then introduced
through the communication scheme.

In summary, Assumptions 2.1 and 2.2(a) combine to guarantee that the search
for optimal team strategies may be restricted to rules of the form (2.57), i.e., coupled

LRTs, with no loss of optimality. This places optimal network strategies in a very
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structured set, and suggests a parameterization of the decision rules which describes
the optimum for the Gaussian detection problem and is suitable for optimization as

discussed in Chapter 3.

2.5 Examples of Small Teams

The best way to clarify the previous description of the restricted DBHT model is
by presenting examples. In this section, we present four examples of small teams
that are fairly representative of the major topological variations that can arise in
tree-structured networks. We illustrate the form of the optimal decision rules (LRTs)
for each network. We then demonstrate that for the Gaussian detection problem
the optimal decision rules admit parameterization by linear threshold tests, where
the values of the optimal thresholds are expressed as a system of coupled nonlinear
equations. We hope that illustrating the form of the decision rules which arise for
these small teams will enhance the intuition behind the properties we later claim
to hold true for general tree-structures with conditionally independent observations.
We also feel that the inherent complexity of the DBHT problem is made evident by

writing out the optimal decision rules for each of these rather simple-looking examples.

2.5.1 Example 1: Two-Member Tandem (2-Tand)

Ya YB

A B uB

A (team decision)

Figure 2-7: 2-Tand

A topology of particular importance to us is illustrated in Figure 2-7. This type of

structure is referred to as series or tandem, and the two member tandem team will
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hereafter be denoted 2-Tand. 2-Tand is of special interest because it is the smallest
team in which all of the fascinating properties of decentralized detection problems
arise.? The operation of 2-Tand may be described as follows: DM A receives an
observation y, which it uses to choose a message us € {0,1} to send to DM B. DM
B takes into account the message u4 from DM A as well as its own observation yp
to compute the overall team decision ug € {0,1}. Thus, DM B is the primary DM
for this team. The decision rules employed by DM A and DM B are of the form
Ya:Var— uy € {0,1} and vp : Vg x {0,1} — up € {0,1}, respectively. It remains
to determine just what 44 and yp should be in view of the minimum probability of
error criterion.

The necessary conditions for optimality of the decision rules v4 and vg, under
Assumptions 2.2(a), 2.3, and 2.4 were derived in [19]. Perhaps surprisingly, as in the
centralized case, they are again likelihood ratio tests (LRTs).

For DM B, given v,4:

poPr(Us = 0|Hy)

ifuy =0
ug=1 IPI'(UA = 0 H ) l
i B P 1
An(op) & 1% > (2.58)
Pyg|Ho\YBl|4lo) g -0 poPr(Us = 1|Hyp) fus=1
p1P1‘(UA =1 Hl) 4

For DM A, given ~p:

u =1

Aa(ya) & pyam(yalHi) S po[Pr(Up = 1|Us =1, Ho) — Pr(Up = 1|U4 = 0, Hy))
Prao(YalHo) .=y pi[Pr(Up = 1|Ux = 1, H;) — Pr(Up = 1{U4 = 0, Hy)]

A

(2.59)
In the derivation of these rules, it is normally assumed that
Pr(Up =1|Us =1,Ho) > Pr(Up = 1|U4 = 0, Hy)
PI(UB=1|UA=1,H1)ZPI(UB=1|UA=0,H1) (260)

®The two-member parallel topology involves a “fusion center” for combining the two decisions
which we wish to avoid.
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so that
0< po[PI‘(UB = 1‘UA = 1,H0) - PI‘(UB = 1|UA = O,Ho)]
o pl[Pl'(UB = 1|UA = l,Hl) - PI‘(UB = 1|UA = O,H]_)]

(2.61)

If this is not the case, the opposite assignment of message U4 may be made.

As discussed previously, these conditions are also referred to as the person-by-
person optimality conditions since they give the conditions for optimality of each
DM’s decision rule, given that the decision rule of the other DM is held fixed. The
rules specify the optimal action of each DM as a function of the other DM’s rule. The
rules are coupled, and cannot be expressed in closed-form.

The form of the rules is somewhat intuitive. The decision rule of the downstream

DM B is simply the centralized rule over the new “measurement” set {U,, Yg}. This is
Py

made obvious by flipping the probability mass ratio g%((g—j—:—::%,z = 0,1 to the other
side. The threshold used by DM A can be interpreted as the cost to be incurred
downstream by the primary DM B as a result of its decision [19].

Notice that the impact of each DM on the other appears as bias in the LRT
thresholds. This bias enters in the same fashion that unequal costs on each type of
error enter the general Bayes problem. However, these costs depend directly on the
operating point of the other DM.

It should be emphasized that U, is not to be interpreted as a best local decision
by DM A as to the true acting hypothesis. Rather, the message sent by A is a signal
to DM B, with which A attempts to provide B with the best possible information
with which to make a decision.

We may rewrite these LRTs in more compact form by introducing the following
notation. Let P#,P# denote the probabilities of false alarm and detection of A4
and PE‘, PE' the probabilities of false alarm and detection of B when A transmits

message ¢ = 0,1. Then if we define 5 2 5—‘:, these LRTs can be expressed in terms of

the network operating points as:
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For DM B, given fixed v4:

1-P# .
Pyy i (yBlH1) S
— oy <
pYB'-HO(yB‘HO) ug=0 pa
Npg =M ifug=1
For DM A, given fixed vp:
pyom,(yalHi) L PE' - PE°

< N"5B1  pBo — 14
Py, H, (YalHo) PE' — PE°

A=0

(2.62)

(2.63)

Each DM’s LRT threshold(s) correspond to so-called operating points on its re-

ceiver operating characteristic (ROC) curve as illustrated in Figure 2-8. Since DM

B employs two thresholds, it has two associated operating points, one of which is

selected by the upstream decision uy4.

1 ROC 4 1 ROC B
na PE'Y(m) n
o
Ph(na)---- o \

\ P5%(no)

OPERATING POINT

N\

|
|
|
t
I
|
|
I
|
|
|
|

OPERATING POINT 1

OPE:RATING POINT 0

(0,0) (0,0

PA(na) ! PE°(no) PE'(m)

Figure 2-8: 2-Tand ROCs

Performance

The probability of error associated with this optimal solution may be parameterized
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by the probabilities of false alarm and detection of A and B and expressed as

2—Tand
PF

Pt = (1= PAPE+ PR

A - ) o (2.64)
71 [(1 - PH)(1 - PB°) + PA(1 ~ PEY)]
szu—’l"und
where by analogy to (2.31) we may define a team operating point by
prTet = [(1- PA)PEO + PAPB!| (2.65)
Pi™ = [(1— PA)(1— PE% + PA(1 — PBY)] |

This result was derived in [19], but we will see how it may be easily rederived in
Section 3.2.2.

A significant reduction in the decision rules of equations (2.62) - (2.63) can be
effected if we work with a particular class of decision problems, namely those in
which the network’s objective is to decide which of two constant signals occurred
with each DM’s measurement corrupted by zero-mean Gaussian noise (team Gaussian

detection). For this case the observations at DMs A and B are of the form

po + Wy : Hy
Ya = (2.66)
w1+ Wa +Hy
+Ws : H
ur+Wp  Hy

where W, and Wp are conditionally statistically independent and W4 ~ N(0,03),
WB ~ N(U, 0'%)

Under the assumption that the ratios

1 - P4 P PP pEO

£ £ F 2.68
]'_Pi)“ pbcl’ PDBI_PBO ( )

are all positive, we can use the In(-) function to reduce (2.62) - (2.63) to simpler tests
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as before. The only questionable term is the third one. However, it is easily verified
that the numerator and denominator are either both positive or both negative so long
as PE° # PE' and PE® # PE'. Then application of In(-) yields the following set of

equivalent tests, which are now linear in the observations.

For DM B, given fixed v4:

ug=1 ﬂo if Uy = 0

ug=0
,Bl if Uy = 1

For DM A, given fixed vg:

uy=1

Yya 2 « (2.70)

uy =0
where the fixed observation axis thresholds «, 8¢, 1 must satisfy the system of coupled

nonlinear equations

o=tk (3) + s (3) +

K1 =Ko H1—Ho P1

B = % ]y (1:2“@) + 25 In (P—°) + todin (2.71)

K1 —Ho a(1) H1—Ho P1

a = oh In (‘Pﬁo(o)_q’ﬂl(o)) + i In (P_O) + “D';‘ﬂl

H1—Ho ®p,(1)—2p, (1) 11 —Ho P1

which specify the necessary conditions for optimality, where the functions ®,(k),

®4,(k), and P4, (k) are given by

a—p;
1

&, (k) = / 4 72_;(3—3’/24.@ (2.72)

— 0o

&5, (k) = / 7B e~/ dg (2.73)

e /2 dz (2.74)

@ (k)= [
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for K =10,1.

Comparison of the functional form of these equations with (2.22) indicates that
each team threshold is specified by an equation of the same form as the single DM
case, except for the additional cost through which the equations are coupled. There
1s no closed form solution to this system; it must be solved numerically using an
iterative technique such as successive approximation.

DM A employs one observation axis threshold a, while DM B requires two (for
the binary message case, a DM employs 2% where k is the number of immediate
predecessors). DM B will use threshold 3y if it receives message u4 = 0 and threshold
B if it receives message us = 1. Figures (2-9)-(2-11) illustrate the relative positions
of DM A’s threshold a and the two thresholds 8y and B; of DM B for some sample
operating conditions. The Xx’s denote the locations of the optimal thresholds for each
DM in isolation. In Figure 2-9, both DMs have ¢4 = 04 = 100. With reference to the
modeling of human decision makers, we say that DM A and DM B have equal decision
making capability or are equally “smart”. Part (a) illustrates the symmetry of the
equal prior case, while (b) and (c) illustrate how the thresholds shift right or left in
response to prior bias in the data. A particularly interesting effect is the development
of a “lying region” along the observation axis, corresponding to those values of the
observation for which DM A sends the opposite message to DM B than it would
select in isolation. This portion of the axis is highlighted between the position of a
and the x denoting the optimal isolated threshold position. It is clear evidence of the
coupling that exists between DM A and DM B. In Figure 2-10, DM A is “smarter”
than DM B, i.e., it has smaller noise variance. The optimal positions of DM B’s
thresholds have now spread apart to reflect the increased confidence in the decision
of DM A. In the limit, these thresholds would spread to +oo and —oo, indicating
that DM B would choose to always agree with DM A. In Figure 2-11 the opposite
effect may be observed. Now it may be seen that the thresholds of DM B have moved
together, indicating reduced confidence on DM B’s part, and a tendency to ignore
what DM A says. In the limit, DM B would perform as it would in isolation. More

discussion along these lines is presented in [52].
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O'i :a')zg =100

p0:0.5
5.0
| l } * } 1
-20 -10 0 10 20 Ya
[0 4
-3.0697 5.0 13.0697
+ 4 l | N l | 1
| [ [ '
-20 -10 0 10 20 YB
B Bo
16.1390
(a)
p0=0.7
8.4124 13.4730
+ ! ' - > ;
-20 110 0 I 10 20 ya
a
3.1274 13.4730 19.5200
} " N —X¢ [,
-20 10 o ! 10 120 4
B Bo
16.3926
(b)
po:0.3
-3.4730 1.5876
! y x n — |
-20 -10 0 10 20 Ya
a
-9.5200 -3.4730 6.8726
' 1 /\( | I 1 4
20 -10l 0 I 10 20 yp
B Bo
16.3926
(c)

Figure 2-9: 2-Tand thresholds: Equally smart (equal variance) case, po = 0, p; = 10,
0% =04 =100. (a) po = p1 = 0.5, (b) po = 0.7, p = 0.3, (c) po = 0.3, p, = 0.7
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a'i:SO

0123 =100
Po = 05
5.0
| | ! * 1 1
-20 -10 0 10 20 Ya
x
6.5405 5.0 16.5405
+ . ] l N 1 I 1
| N [ | y
-20 -10 0 10 20 YB
el Bo
23.0810
(a)
Po = 0.7
7.5825 9.2365
-20 -10 0 | 10 20 Y4
a
-1.5009 13.4730 21.9892
4 + l } — >\/ f I
-20 -10 l'o 10 200 45
B Bo
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(b)
Po = 0.3
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-20 -10 0 I 10 20 Ya
a
-11.9892 -3.4730 11.5009
' I Il X | l I }
220 l.10 0 10! 20  yp
B Bo
23.4901

()

Figure 2-10: 2-Tand threshholds: DM A smarter (¢% = 50), DM B dumber (¢} =
100), po = 0, p1 = 10. (a)po = p; = 0.5, (b) po = 0.7, p; = 0.3, (c) po = 0.3, p; = 0.7
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5.0
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Figure 2-11: 2-Tand threshholds: DM A dumber (¢} = 100), DM B smarter (¢} =
50), po = 0, p1 = 10. (a) po = p1 = 0.5, (b) po = 0.7, p1 = 0.3, (c) po = 0.3, p; = 0.7
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2.5.2 Example 2: Three-Member Vee (3-Vee)

Ya YB

Ye

Ua up

uc (team decision)

Figure 2-12: 3-Vee

The three-member Vee structure is illustrated in Figure 2-12. In contrast to the
previous tandem structure, this structure represents a parallel structure. Since our
formulation requires that a DM which receives an observation of its own act as the
fusion center, this is the smallest parallel structure we can consider. The decision rules
employed by DM A and DM B are of the form y4 : V4 — {0,1} and 75 : Y5 — {0,1},
while the decision rule of DM C is of the form v¢ : Yo x {0,1} x {0,1} — {0,1}.
DM C is the primary DM in the topology.

The necessary conditions for cptimality of the decision rules v, 78, and v,
under Assumptions 2.2(a), 2.3, and 2.4 were first derived in [19], and are expressed

as person-by-person optimality conditions of the form:
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For DM C, given fixed v4,v5:

po PT(U4=0|Ho)P1(Up=0|H,)
p1 PT(Us=01H,)Pr(Up=0/H,)

iqu =0,'U,B =0

PogﬂUA=°|H0)gr(UB=1|H0)
H zc=1 P1 I‘(UA=0|H1) I(UBZI'Hl)
AC(yC) _ chlHl(ycl 1) >

: z
Py H, (Yo |Ho) .

c=0

ifug =0,up =1

poPr(UAzllHo)Pr(UB=0lHo)
p1P1'(UA=1|H1 )P].'(U5=0|H1 )

ifug=1Lug=0

po PT(U 4 =1|Ho)Pr(Up=1|H,)
p Pr(Us=11H,)Pr(Us=1/H))

if Uy = l,uB =1
(2.75)
For DM A, given fixed v and 7¢:

An(ya) = Pt (yalth) U0 poPr(Ug = 1|U4 = 1, Hy) — Pr(Uc = 1|U4 = 0, Ho)
Py (WalHo) .~y pPr(Uc = 1Us = 1, Hy) — Pr(Uc = 1|U, = 0, Hy)
(2.76)

For DM B, given fixed v4 and v¢:

Ap(yp)PXetin (vs ) " poPr(Uc = 1{Up =1, Hy) — Pr(Ug = 1|Us = 0, Hy)
PYsim(ys|Ho) .o miPr(Uc = 1|Us = 1, H;) — Pr(Uc = 1|Up = 0, Hy)
(2.77)

As before, we can give an equivalent representation of these decision rules in terms

of the network operating points as:

For DM C, given fixed v4,75:

(1-PA)(1-PE)

(1=P2)(1-FB) fug =0,up =0
~-PA\PE .
wp=1 7’8——._?2_;13% if Uy = O,UB =1

PYe i (yolH1) S

2.78
Preim(yclHo) ., (2:75)

PA(1-PB .
777,?;8—_},‘;}?—; ifuyg =1,up=0

ApB
P Pg

fug=1ug=1
T’pﬁtpg A yWB
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For DM A, given fixed v and ~¢:

promualf) 5 (1= PRPECY - pEOY) 4 pp[PSOY _ pgo)

TaiAJAI L) 2.79

pram(valBo) = (1~ PE)PST _ PS4 pp(pgty — pgeny BT
For DM B, given fixed v4 and ~v¢:

prnnl) L' (= PP PRy BAPED pge)

N
Prom (ys1Ho) oy (1 - PA)PS®) — PS4 pA[PSE) — pSE9)

where P#, Pf} denote the probabilities of false alarm and detection of DM A, pPE. pPE
denote the probabilities of false alarm and detection of DM B, and PS(?), pStd)
denote the probabilities of false alarm and detection of DM C' when receiving messages
ug =1,up = 7 with ¢,57 € {0,1}.

For the Gaussian problem, the optimal decision rules of equations (2.78) - (2.80)
may be reduced, under the appropriate positivity conditions, to the following equiv-

alent linear threshold rules.

For DM C, given fixed 7,4 and vp:

€oo ifugy =0,up =0
ug=1 601 if Uy = O,UB =1
yo 2 (2.81)
o= 610 if Ug = 1,uB =0
€n ifug=1lup=1

For DM A, given fixed v and ~¢:
uy=1

ya 2 o (2.82)

u, =0
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For DM B, given fixed 74 and 7¢:

ug=1

yp 2 B (2.83)

ug=0

where the fixed observation axis thresholds «, 3, £oo, é01, £10, 11 satisfy the nonlinear

system of equations

— ol ®,(0)®5(0) o2 i
foo = =-In (‘ba(l)ég(l)) + o= In (f)—‘:) + ot

_ ot &, (0)(1—-84(0)) o2 "
601 - m—cuo In (éu(l)u_‘p’g(l))) + “l_c#o In (%) + #OTI-‘

_ o2 (1-%4(0))25(0) o2 . o
b0 = i (FRERm) +ass In () + g

_ % (1-%4(0))(1~®4(0)) 2 .
fn = =-In ((1_%(1))(1_@2(1))) +=-In (z—‘l’) + ot (2.84)
a = oA $5(0)[® o, (0)— B¢, (0)]+(1—25(0))[ B¢y, (0)— ¢y, (0)]

~  mi—mo Ba(1) B gy (1)—Feyo (DIF(1-25(1) [y, (1)- By, (1)]

’724 Po Bot
+—%hn () 4 st
H1—Ho P1 2

/B _ 0'23 éa(o)[ﬁfoo(o)_‘tfol (0)]+(1_§ﬂ(0))[§£10(0)_4)511 (0)]
H1—Ho Ba(1)[Pegp (1)—Beoy (DIH(1-2a(1))[Pgy, (1) B¢y, (1)]

2
] (@) Hotp
+ H1 —Ho In P1 + 2

where the functions ® are defined analogously to those in equations (2.72)-(2.74)

2.5.3 Example 3: Three-Member Tandem (3-Tand)

Ya YB Ye

4 Gi\ c

uc
(team decision)

Figure 2-13: 3-Tand
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The three-member tandem topology is illustrated in Figure 2-13. Our interest in this
structure is that it is the first topology we have seen that contains a DM which is not
in direct contact with the primary DM. In particular, DM A affects the primary DM
C only through B. It also represents an alternative arrangement of 3 DMs which can
be compared to 3-Vee. The decision rule employed by DM A is of the form Y4 : Va4
{0,1}, while the rules of DM B and DM C are of the forms 75 : Vg x {0,1} — {0,1}
and y¢ : Yo x{0,1} — {0,1}, respectively. DM C is the primary DM in the topology.

The necessary conditions for optimality of the decision rules ~4,78B, and v¢, under

Assumptions 2.2(a), 2.3, and 2.4, are given by

For DM C, given fixed v4, v5:

poPI' Up=0|H, If up = 0
o=t p PT(Ug=0|H,) B

H
Ae(ye) 2 pycm,(yclHl) > (2.85)
pYCIHo(yC[ 0) uc =0 P U
po L' T(Up=1|Hyp) ifug =1
1 r(UB=1]H1)

For DM B, given fixed v4, 7c:
PYs | (yB|H1)
Ap(yp) & ZBEIBIL >
( pYB|Ho (yBIHO) uB<=0

poPr(UA:mHo)[Pr(Uc:1|UB=1,H0)_Pr(Uc=1|UB=o,Ho)]
p1PI'(U_4:O,H1 )[PI‘(UC:HUB:LHl)—PI‘(Uczl[UBZO,Hl)]

iqu:0

(2.86)
poPr(Us=1(H,)[Pr(Uc=1(Us=1,H, )-Pr(Uc:uUB:o,Ho)]
P PT(Ua=11H)[Pr(Uc=1|Us=1,H,)-Pr(Ug=1{Ug=0,H, )]

ifugs =1

For DM A, given fixed vp, vc¢:

uy=1

Aa(ya) 2 Praim (Yaly) S po[Pr(Uc = 1|U4 = 1, Ho) — Pr(Uc = 1{U4 = 0, Hy)]
T by, (valHo) e mPr(Uc = 1[Us = 1, Hy) — Pr(Ug = 1|U, = 0, Hy)|
(2.87)

Note that the decision rules of DM C and DM A are of the same form as they

were for DMs B and A in 2-Tand. To express these rules in operating point form,

let P#, Pj denote the probabilities of false alarm and detection of DM A, PE, PE
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denote the probabilities of false alarm and detection of DM B given that it receives
message uy = i; 1 € {0,1}, and P§?, P§* the probabilities of false alarm and detection
of DM C when DM B selects message ug = 7; ¢ € {0,1}. Then the decision rules are

expressible as follows.

For DM C, given fixed v4, v5:

(1 —Pg,‘)(l—PI?°)+PI§(1—PEBl)

) g =1 ’7(1-1:3)(1—Pg°)+pg(1_pgl) if ug =0
) .
pYCIHO(ycl 0) uc =0 (1—PFA)PP§°+P£P1?1 .f B 1

(=P8 PE + P4 PE" nue =
For DM B, given fixed v4, 7c:
(I—PA)[PCI—PCO] . B
up=t =PA)PgT—PE0] if ug =0
Pyy i (Y| H1)
— Z (2.89)
pYBIHO(yB‘HO) ug=0 PA[PC"—PCO] .
TBAPST-PS) ifug=1
For DM A, given fixed v, 7¢:
pram(yalH) L (PE' - PRO)(PE' - PF°)
higai7-1) (2.90)

< 7
pYA|Ho(yA|H0) uy=0 (Pgl - PEO)(PSI - PB‘O)

For the linear Gaussian problem, these rules can be reduced, under the appropriate

positivity conditions, to the following equivalent set of rules.

For DM C, given fixed 74 and 7vp:

et | & ifup=0
yo 2 (2.91)

ueo =0
51 if up = 1
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For DM B, given fixed v4 and v¢:

Bo ifug =0

ug=1
ys 2 (2.92)
Tl s ius=1
For DM A, given fixed v5 and v¢:
uyg=1
ya 2 «a (2.93)
uy4=0

where the fixed observation aris thresholds a, B, 81, &0, €1 satisfy the system of non-

linear equations

a ¢50 a

bo = In

)2, (0) o2 1
20) + g in (2) + g

(0)
a(1)¢ao(1)+ ¢a(1))®g, (1) M1 —Ho p1

_ «(0)(1-@ +(1-%4(0))(1-2p,(1)) 2
GO ln< B ey G = 951(1))) i n () + g

_ a(O)(‘I’c ~%¢,(0)) o} po pho + 4

Bo = ;ZoIn (FaNGeldgall) 4 chon (2] 4 g (2.94)
— (1-2a(0))(®¢, (0)—%¢, (0)) o} Po o +u

’61 T om uo (1-2a (1))(‘1’52(1) ‘I’ci(l))) ' Hl—BI-to In (P:) + 02 *
_ () (0)=%5, (0))(®¢(0)— %, (9)) 7% +u

a = A ((‘pﬁj(1)—<1>;l(1))(@£(1)—<1>$(1))) oy n (Be) + e

specifying the necessary conditions for optimality, where the functions & are defined

analogously to those in equations (2.72)-(2.74).

90



2.5.4 Example 4: Four-Member Asymmetric (4-Asym)

up (team decision)

Figure 2-14: 4-Asym

The four-member asymmetric topology is illustrated in Figure 2-14. This last team
is included so that at least one asymmetric topology is examined, and so that the
explosion of complexity in the decision rules as DMs are added may be illustrated.
The decision rule employed by DMs A and C are of the form v4 : Y4 — {0,1} and
vc : Yo — {0,1}, while the decision rule of DM B is of the form v5 : Vg x {0,1} —
{0,1}, and the decision rule for DM D is of the form vp : Yp x {0,1} x {0,1} — {0, 1}.
DM D is the primary DM in the topology.

For this team it is easiest to express the decision rules directly in operating point
form at the outset!®. Let PA, P/ denote the probabilities of false alarm and detection
of DM A, PE, PS denote the probabilities of false alarm and detection of DM C,
PEi, PE* denote the probabilities of false alarm and detection of DM B given that it

10The reason for this is that the rules are more easily derived in this form as discussed in Chapter
3.
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receives message us = ¢; 1 € {0,1}, and Pl?(ij),'Pg(ij) the probabilities of false alarm

and detection of DM D when it receives the incoming messages ug = ,u¢c = j, 1,7 €

{0,1}. Then the necessary conditions for optimality of the decision rules YAsYBy VO

and vp, under Assumptions 2.2(a), 2.3, and 2.4, are given by

For DM D, given fixed 7,4, 75, and ~¢:

up=1

’ Py |H1(yD|H1) >
AD(yD £ <
) PypH,(yp|Ho)

(A=PA)(1-PP°)(1-PE)+PRA(1-PE )(1-Pf)
(1-P4)(1-PE°)(1-PS)+PA(1-PE)(1-PY)

(1-PA)(1-PE°)PE+PA(1-PE)PE
(1-P#)(1-PE°)P§ +PA(1-PE)PS

(1-PA)PE°(1-PE)+PAPEI(1-PS)
(—PA)PEY(1-PS)+PAPET(1-PS)

(1-PR)PEOPE + Pt P! P
(1=P§)PE°PS P4 PETPS

For DM B, given fixed v4, v¢, Vp:
& Proum (yslHy) "L
AB yB =2 YB|H1 B 1 >
( ) pYBIHO (yB|H0) uB<=O

(=PA)[(1-PE)(PF) PPy PG (PPN _pR(O1)))

ifuB=0,uc=0

ifuB:[),uczl

ifug=1,uc =0

fug=1uc =1

PP PP +PS (PRI P Hus=0
PA(1-PE) (PR —PR))4 PE(PR () pR(V))) Fue=1
PA[(1-PS) (P - PP 1 g (PR — PP Hua=
For DM C, given fixed v4, 7B, 7p:
A ( ) A chlHl(yC|H1) uc>=1
c\Yc) = ———F—————~
Proiti(yolHo) o o
77(1 — PA)(1 — PEO) (PR — PP + PEYPFCY — PRUYY))
(1= PA)(1 = PEOY(PF®) — PR + PEo(PFOY — PPy
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PR PEY(PED = PR + PR (PPN — PEY))

+PA((1 - PE(PE"™ — Pp™) + PRN(PE) — P57

For DM A, given fixed vg, v¢, 7p:

uyq=1

Pram(yalHy) S
Ag(ya) & Balf v 1)
wva) = ) S

—(1 - PE)((1 — PE)PF® + PEPRY)
(1 — PBO)(1 - PS)(1 — PE®) + P§(1 — PR
—PBO((1 - PPQ)pI{?(lo) i P}gPIE(n)) |
+(1 — PEVY((1 — P§)PR™ + pgPR™)

(1= PEY(PS(1- PR+ (1- PEY1 - PE®))

 +PEY( - PE)PRY + PEPRY)

(2.97)

(2.98)

For the linear Gaussian problem, these rules can be reduced, under the appropriate

positivity assumptions, to the following equivalent set of rules.

For DM D, given fixed v4, 78, and ¢:

p

epet Co1 fug =0, uc=1
yp 2
up=0
Cm ifu3=1,uc=0
\Cn fup=1,uc=1

For DM B, given fixed 74, ¢, 7p:

up=1 ,Bo if Ug = 0
yp 2
upg=0
,31 lf Ug = 1
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For DM C, given fixed v4, 78, 7p:

wo=1
o T e (2101)
o =0
For DM A, given fixed vg, 7¢, vp:
uyq=1
Ya 2 « (2.102)
uy4=0

where the fixed observation azis thresholds a,B80,81,¢, (oo, Co1, (10 and (1; satisfy the

system of nonlinear equations

o = oI (2B (OF(01+(1-2a(0) 15, (0)2(0)
© = i "\ B2 (VE()F(I-2a(1)Bs, (DFe()

2
b (p_o) po+m
+m—uo In j 21 + 2

(on = b $a(0)%g,(0)(1-2¢(0))+(1-2a(0))8p, (0)(1-2¢(0))
0 = e T\ BaDa, (D=8 (1) F(1-Fal1)85, (D(1=5¢(1)0
"22 0 ot
iy In () + g

(2.103)

(o = —%b I ((2a0)0-2a (0)26(0)+(1-2a(0))(1-Es, (0))%(0)
007 e T D2 (D) F(DF (- 2a(D)) (%6, (1)% (1)

2
D (ﬂ) Mo+
+ 11— Mo In P1 + 2

G = b 2a(0)(1- 25, (0))(1—¢(0))+(1—a(0))(1— B, (0))(1-E¢(0))
U= w086, (1) (1) HI=Fa(1) (1=Fp, (D)1= F¢(1))

2
_°D (m) botpr
+ 11 —Ho In P1 + 2

é — ozc Q“(O)(Qﬁo(o)(q’(ou (0)_§Co1 (0))+(1_q>ﬁo (0))(‘1)(10(0)_@(11 (0))) A
H1—Ho Qa(l)(Qﬁl (1)(‘1’(00 (1)_{’(01 (1))+(1_Qﬁo (1))(§C10(1)_@C11 (1)))
. +(1—@d(0))(§[31 (0)(§Coo (0)_@%1 (0))+(1_§ﬁ1 (0))(‘1’(10 (0)—‘1)(11 (0)))) (2.104)
(l_Qﬂ(l))(Qﬁl (QCoo (1)—§C01 (1))+(1—§ﬁ1 (1))(4’(10 (1)_§C11 (1)))

2
% (&) Hotm
+#1—uo In P1 + 2
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o2 84(0)[®¢(0)(B ¢y, (0) =By (0)+(1—2e(0))(Bgo, (0)—2¢yy (9))]
Fo = pial (%(1)[@5(1)(43400(1)—5210(1))+(1—<1>e(1))(133m-%film)
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specifying the necessary conditions for optimality, where the functions ® are defined

analogously to those in equations (2.72)-(2.74).

2.6 Chapter Conclusions

In this chapter we examined in detail the optimal decision rules for the single DM
problem, and a special class of network problem in which each node receives a con-
ditionally independent observation, is allowed to transmit a binary-valued message,
and where the network topology is a tree configuration with the root node making
the overall team decision in order to minimize the probability of team error. This
class was found to possess several interesting properties.

The necessary conditions for optimality for such networks were not expressible
in closed form, but instead had to be expressed in the form of person-by-person op-
timality conditions, which specified the necessary condition for optimality for each
decision rule, given “hat the rest of the network decision rules were heid fixed. The
decision rules were found to comprise coupled likelihood ratio tests. Each DM uses

one of a set of LRTs, where the test used is selected by the particular combination
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of incoming messages from upstream DMs. The coupling enters in the form of cost
coefficients which affect the LRT in the same way as costs enter the LRT for general
Bayes hypothesis testing. If the LRT(s) being used by a given DM are viewed from
a local point of view, then all the information regarding the rest of the network that
is necessary for the DM to make an optimal decision, in the context of team perfor-
mance, is captured by these costs. The specific information required was found to be
the conditional operating points .of all of the other network DMs. We will see in the
next chapter that the analytic form of these coupling costs is completely determined
by the topology of the network, while the actual values of the costs require knowledge
of the current set of conditional operating points of the rest of the network DMs.
The operating point information can be thought of as capturing “state” information
regarding the current performance of the rest of the teams members, while the ex-
act way the members are interconnected determines how that information is fused
together in computing a particular DM’s cost. It was clearly evident that the compu-
tations become complicated, even for the small examples we considered, thus giving
evidence of the noncombinatorial-type complexity that characterizes the underlying
optimization of the decision rules.

From a broader perspective, what the DBHT framework provides is a class of
stochastic team decision problem with particularly nice mathematical structure. The
optimal action of each member of the team is to perform a local statistical decision
test on a local observation, where the local test is appropriately biased to take into
consideration how the DM fits into the overall topology of the team, as well as the
current state of the rest of the team’s members. The framework also has a notion
of capability or expertise which is mathematically quantifiable by the ROC curve.
This makes it easy to separate the notions of a DM’s capability from its current
performance. Coupling in the form of local cost changes manifests as adjustments of
operating point along the ROC, i.e., adjustments of performance within a DMs range
of capability. Furthermore, the restricted message set of each DM in our particular
DBHT setting forces each DM to opérate under conditions of partial or incomplete

information.
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Even more favorable is the fact that, for the Gaussian detection problem, the
optimal team decision rules take an extremely simple form. In particular, they are
given by linear threshold tests in which each DM’s observation is compared with an
observation axis threshold. Necessary conditions for optimality of the network obser-
vation thresholds were not compu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>