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Health selection into neighborhoodsmay contribute to geographic health disparities.Wedemonstrate the poten-
tial for clinical trial data to help clarify the causal role of health on locational attainment. We used data from the
20-year United Kingdom Prospective Diabetes Study (UKPDS) to explore whether random assignment to inten-
sive blood-glucose control therapy,which improved long-termhealth outcomes aftermedian 10 years follow-up,
subsequently affectedwhat neighborhoods patients lived in.We extracted postcode-level deprivation indices for
the 2710 surviving participants of UKPDS living in England at study end in 1996/1997.We observed small neigh-
borhood advantages in the intensive versus conventional therapy group, although these differences were not
statistically significant. This analysis failed to show conclusive evidence of health selection into neighborhoods,
but data suggest the hypothesis may be worthy of exploration in other clinical trials or in a meta-analysis.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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Geographic disparities are among the most glaring type of social
inequalities in health that epidemiologists observe. For example, life ex-
pectancy at birth differs by up to a decade across neighborhoods within
New York City, and by up to 20 years in Richmond, Virginia (The Robert
Wood Johnson Foundation, 2015). For context, male life expectancy at
age 40 differs by 14 years between the richest 1% and poorest 1% of
Americans, after accounting for race (Chetty et al., 2016). On average
nationwide, nearly seven years separates the highest (Hispanic) and
lowest (Black) racial/ethnic group life expectancies that CDC reports
(Arias et al., 2017). Geographic disparities are similarly important in
the United Kingdom where life expectancy at birth differs by up to
10 years across Local Authority Districts (Office for National Statistics,
2014a), but only by roughly six years between the healthiest and least
healthy occupational classes (Office for National Statistics, 2015).

Explanations for striking differences in health across place fall into
three broad categories. The first is compositional; income-based, racial/
ethnic, and other forms of residential segregation tend to concentrate
non-geographic health risks into neighborhoods. In other words, some
degree of the association between health and place reflects confounding
by prior common causes of both health and residential outcomes. The
other two categories refer to causal processes: a) neighborhood effects
on health, and b) reverse causation, or “health selection” into neighbor-
hoods. Epidemiologists still struggle to characterize these causal
-426 Cambridge, MA, USA.
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relationships despite the fact that neighborhood differences in health
have been studied extensively over the past 20 years (Arcaya et al.,
2016; Oakes et al., 2015). Claims of neighborhood effects on health are
supported by ample observational research suggesting that place mat-
ters for health (Diez Roux, 2007), and, crucially, by theMoving to Oppor-
tunity experiment, which provides casual evidence of neighborhood
effects on at least some health outcomes (Ludwig et al., 2011). Health se-
lection into neighborhoods, by contrast, is a poorly understood, but sub-
stantively important process, that might reinforce links among poor
places, poor people, and poor health (Arcaya et al., 2014).Mechanistical-
ly, poor health could sap individuals of the energy required to seek better
environments, or it might depress intentions to move among those
whose health makes them dependent on place-based resources such
as transit systems or local health care facilities. Further, previous work
has shown that health status affects future income, educational attain-
ment, employment, and wealth (Case et al., 2005; Smith, 2004), any or
all of which could serve as mediators on the causal pathway from health
to neighborhood outcomes. While a nascent body of literature suggests
that health is predictive of subsequent neighborhood characteristics
(Arcaya et al., 2015, 2014; Grafova et al., 2014; Green et al., 2015;
Jokela, 2014), understanding the causal role of health as a determinant
of neighborhood outcomes will require stronger experimental designs.
We are not aware of any efforts to exploit random variation in health
to test for health selection into neighborhoods.

In this Short Communication, we demonstrate the potential for clin-
ical trial data to help clarify the causal role of health on locational attain-
ment. We used data from the 20-year United Kingdom Prospective
Diabetes Study (UKPDS) to explore whether random assignment to
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Neighborhood-level income deprivation in conventional versus intensive therapy
patients for the 2710 surviving participants of UKPDS living in England at study end in
1996/1997.

Fig. 2.Multidimensional neighborhood-level deprivation in conventional versus intensive
therapy patients for the 2710 surviving participants of UKPDS living in England at study
end in 1996/1997.
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intensive blood-glucose control therapy, which improved long-term
health outcomes, subsequently affected what neighborhoods patients
lived in.

1. Methods

The UKPDS was a randomized, prospective, multicenter trial, that
demonstrated for the first time the health benefits of intensive glucose
therapy in patients with newly-diagnosed type 2 diabetes mellitus. Be-
tween 1977 and 1991, 3867 patients, aged 25–65 years, were random-
ized to conventional therapy (primarily with diet), or to an intensive
glucose control strategy with sulfonylurea or insulin therapy. At base-
line, participants in the conventional and intensive treatment groups
were well matched with respect to age, sex, ethnicity, and clinical and
biochemical profiles (UK Prospective Diabetes Study (UKPDS) Group,
1998). Information on participants' neighborhoods were not available
at baseline, nor were data on number of moves during the course of
the study. After median 10 years follow-up, which ranged from 5 to
18 years across patients, the intensive therapy group had experienced
fewer diabetes related end-points, particularly a 25% risk reduction in
microvascular complications, with a borderline non-significant de-
creased risk of macrovascular disease, and a longer complication-free
interval, as measured by time until the development of at least one dia-
betes-related endpoint (UK Prospective Diabetes Study (UKPDS) Group,
1998). Loss to follow-up was low and non-differential across the con-
ventional and intensive treatment groups, and there was no evidence
of differences in all-cause mortality between the two groups at the
end of the study (UK Prospective Diabetes Study (UKPDS) Group,
1998). We hypothesized that the health advantage conferred to the
intensive therapy group might have translated into a neighborhood
quality advantage.

To test this, we used data on English UKPDS patients who had been
randomized to conventional or intensive glucose control therapy (n =
3339), and extracted postcode information from addresses for the
2710 surviving participants living in England at study end in 1996/
1997. Over the course of the study, 526 patients died (15.8%), 47
moved abroad (1.4%), and56were lost to follow-up (1.7%).We assigned
each postcode to its corresponding Lower Layer Super Output Area, the
smallest geography at which the Office of National Statistics computes
English Indices of Deprivation (Office of the Deputy Prime Minister,
Neighbourhood Renewal Unit, 2004). Postcodes, which typically con-
tain 15 addresses, identify neighborhoods on a very fine geographic
scale, while Lower Layer Super Output Areas contain between 400 and
1200households (Office for National Statistics, 2014b).Weused two in-
dices to compare neighborhood deprivation between the conventional
and intensive therapy groups. First, we used the Index of Multiple
Deprivation, which is based on measures of income, employment,
health and disability, education and skills, crime, housing, and environ-
mental deprivation at the neighborhood level. Secondly, we used the in-
come deprivation index alone, which measures the percent of an area's
population that is low-income. Higher scores indicate higher levels of
deprivation.

Mean levels of deprivation were computed for both treatment
groups and compared using t-test statistics.

2. Results

We observed small neighborhood advantages in the intensive
therapy group compared to the conventional therapy group, although
these differences were not statistically significant. Patients assigned to
conventional therapy were, numerically, living in more deprived areas
(0.006 ± 0.012, p = 0.30) in terms of income at the end of the study
as comparedwith the intensive therapy group (Fig. 1). Those in the con-
ventional therapy group were also, numerically, living in neighbor-
hoods that faced a higher degree (0.775 ± 1.466, p = 0.29) of
multiple forms of deprivation (Fig. 2).

Image of Fig. 1
Image of Fig. 2
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3. Discussion

Randomized trials have beenused to study the causal effect of neigh-
borhood conditions on health (Ludwig et al., 2011), but no clinical trials
have explored how randomly distributed health gains affect neighbor-
hood outcomes despite the fact that patient addresses are routinely
stored as administrative data. While this study demonstrates the feasi-
bility of using clinical trial data to investigate health selection into
neighborhoods, a limitation of the analysis is our inability to test for
differences in neighborhood quality between randomization groups at
baseline. However, we note that groups were well-balanced at baseline
according to correlates of neighborhood deprivation, including ethnicity
(Jivraj and Simpson, 2015). Because all-cause mortality and loss to fol-
low-up affected both treatment arms equally at the study's end when
neighborhoods were compared, it is unlikely that attrition biased our
results.

This exploratory analysis did not show conclusive evidence of health
selection into neighborhoods during the trial. In addition to the possibil-
ity that improved health confers no neighborhood advantage in general,
other explanations for the null finding include an insufficient sample
size to detect what may be a weak effect of improved health on neigh-
borhood outcomes. Alternatively, it is possible that more extreme
gains in health would be needed to produce differences in neighbor-
hood quality. If health-related neighborhood advantages were to stem
from advances in educational levels or occupational categories rather
than from incremental costs savings or income growth, for example,
there could be important threshold effects in the relationship between
health and neighborhood gains. If educational level or occupational
class are indeed important mechanisms, a younger cohort may have
experienced statistically different neighborhood outcomes across treat-
ment groups when the UKPDS cohort did not. On a related note, these
and other individual-level socioeconomic measures should be explored
in their own right using clinical trial data where possible.

Another factor that may have limited our ability to detect health se-
lection into neighborhoodswas a relative short follow-up period. Larger
differences in health emerged in post-trial monitoring than were
evident during the course of follow-up, with the protective effect of in-
tensive therapy against risk of myocardial infarction and against all-
cause mortality becoming apparent only after the trial ended (Holman
et al., 2008). It is possible that statistically detectable differences in
neighborhood quality also developed after the trial ended, although
we do not have the neighborhood data available at later dates that
would be required to test for post-trial differences.

Despite the fact that observed differences are statistically non-signif-
icant, neighborhood quality differences do run in the hypothesized
direction. A larger sample, which could be obtained by using other clin-
ical outcome trials or a meta-analysis, may be needed to rigorously test
the hypothesis that better health predicts subsequent residence inmore
affluent neighborhoods. Pooling data across trials would also provide
more variability in the timing of interventions across the life course
and in the types of health endpoints affected, both of which could
increase power to detect associations if they truly exist.

Understanding the causal effect of better health on neighborhood
outcomes is critical for multiple fields of research, and for designing in-
terventions to promote social and health equity. First, understanding
neighborhood selection processes will help researchers better assess
the extent towhich “reverse causation”may explain observational asso-
ciations between neighborhood characteristics and health. Second,
policymakers must understand the extent to which poor health affects
neighborhood outcomes in order to design housing policy and pro-
grams that aim to improve the lives of socially vulnerable, and often
sicker, populations. Finally, investigating the long-term social impacts
of clinical interventions that have been shown to improve health may
change the value we place on effective medical treatment. The aim of
this Short Communicationwas to demonstrate that administrative clin-
ical trial data may be an important and untapped resource for exploring
health selection into neighborhoods, and to urge additional study of
neighborhood outcomes within and across such trials.
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