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Abstract

This thesis explores a variety of techniques for large-scale stochastic control. These
range from simple heuristics that are motivated by the problem structure and are
amenable to analysis, to more general deep reinforcement learning (RL) which applies
to broader classes of problems but is trickier to reason about.

In the first part of this thesis, we explore a less known application of stochastic
control in Multi-armed bandits. By assuming a Bayesian statistical model, we get
enough problem structure so that we can formulate an MDP to maximize total re-
wards. If the objective involved total discounted rewards over an infinite horizon,
then the celebrated Gittins index policy would be optimal. Unfortunately, the anal-
ysis there does not carry over to the non-discounted, finite-horizon problem. In this
work, we propose a tightening sequence of ‘optimistic’ approximations to the Gittins
index. We show that the use of these approximations together with the use of an
increasing discount factor appears to offer a compelling alternative to state-of-the-
art algorithms. We prove that these optimistic indices constitute a regret optimal
algorithm, in the sense of meeting the Lai-Robbins lower bound, including matching
constants.

The second part of the thesis focuses on the collateral management problem
(CMP). In this work, we study the CMP, faced by a prime brokerage, through the
lens of multi-period stochastic optimization. We find that, for a large class of CMP
instances, algorithms that select collateral based on appropriately computed asset
prices are near-optimal. In addition, we back-test the method on data from a prime
brokerage and find substantial increases in revenue.

Finally, in the third part, we propose novel deep reinforcement learning (DRL)
methods for option pricing and portfolio optimization problems. Our work on option
pricing enables one to compute tighter confidence bounds on the price, using the
same number of Monte Carlo samples, than existing techniques. We also examine
constrained portfolio optimization problems and test out policy gradient algorithms
that work with somewhat different objective functions. These new objectives measure
the performance of a projected version of the policy and penalize constraint violation.
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Chapter 1

Introduction

A wide range of optimization problems in business, engineering and operations man-

agement can be formulated as stochastic dynamic control problems in discrete time.

What all these problems have in common are two primary features: first is the need

to control some system dynamically over time, and the second is the fact that the

system’s environment is affected by randomness. The stochastic dynamic control

framework simultaneously models both these features. Unfortunately, what prevents

the framework from being used more often in practice is that solving the resulting

optimization problems is practically impossible given their computational cost. In

particular, the solution runtimes and memory requirements would be exponential

in the number of problems variables. This fundamental and pervasive challenge is

infamously known as Bellman’s ‘curse of dimensionality’.

Usually, the most practical way to tackle a given real-world dynamic problem is

to assume all the relevant data for it is certain and known a priori. If we also assume

the problem’s mathematical formulation is convex and/or linear, then one can find

a globally optimal solution efficiently. Moreover, with the technology and solvers

available nowadays, it might be possible to scale algorithms to enormous instances

involving millions of variables and constraints. Despite this benefit from tractability,

using static, deterministic formulations leaves a several, vital things on the table.

To start with the most obvious disadvantage, ignoring randomness means we are

sacrificing optimality at least to some extent. Second of all, dynamic formulations

15



capture the controller’s ability to take recourse decisions after some of the uncertainty

is resolved, while with static formulations this is impossible. Finally, if we rigidly

stick to the solution prescribed by a static algorithm, then we may end up violating

constraints so that our implemented controls are ultimately infeasible.

One way to deal with the aforementioned issues is to use a different approach

from the one just discussed. Specifically, during the course of controlling a system,

one would repeatedly re-solve a new deterministic problem in every period that ap-

proximates the remaining optimization model – this is usually referred to as Model

Predictive Control (MPC) Garcia et al. [1989]. By using the MPC approach, the

implemented controls are guaranteed to satisfy any problem constraints and the so-

lution obtained is usually better than what would have been achieved by a static

policy. However, there is the additional overhead of needing to solve a new optimiza-

tion problem in every period, and some of the optimality gap remains.

Another approach to solving stochastic problems is robust optimization [Bertsimas

and Sim, 2004, Ben-Tal et al., 2009, Bertsimas et al., 2011], wherein one optimizes over

worst case realizations of the uncertain data within some prescribed uncertainty set of

plausible realizations. Extending the robust optimization idea to dynamic problems

often requires searching over a space of affine policies [Bemporad et al., 2003] by

formulating a global, convex robust optimization problem over the policy parameters.

The general issue with robust optimization is that it gains computational tractability

by providing conservative solutions. Sometimes this is acceptable, however if one

specifically aims for optimal solutions, in the truest sense, while relying on a specific

stochastic model, then robust optimization might be settling for overly conservative

and hence poor solutions. To our knowledge, these three aforementioned frameworks

(determinstic approximation, MPC and robust optimization) are applied most often

and our main goal will be to explore alternatives.

In this thesis, we aim to further the understanding of how large-scale stochastic

control could be approached directly and in a principled way. We tackle this broad

goal on two fronts. First, we examine the question from the lens of a specific complex

application of collateral management, which is high-dimensional and involves complex
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interactions with the environment. This will be the focus of Chapter 3. Secondly,

we study and make contributions to deep reinforcement learning. Certain deep RL

methods constitute potential, general-purpose techniques for addressing swathes of

control problems with similar characteristics, such as those involving discrete time and

partially linear-dynamics (Chapter 4). Advances in hardware, the fields of machine

learning and neural networks in recent years, have uncovered new possibilities for

these deep RL techniques and their practical applications. Chapter 4 specifically

focuses on the application of certain deep RL methods to finance, since this area

offers a host of crucial and interesting problems. We also study the problem of option

pricing that falls under the class of control problems known as optimal stopping.

Finally, in this thesis we focus on a less-known and unconventional use of stochastic

control for the case of multi-armed bandits in Chapter 2. Most algorithms designed

for the multi-armed bandit problem are ad-hoc heuristics, which did not emerge from

a principled analysis of the underlying problem. On the other hand, by framing the

problem as one about Bayesian learning and thereby giving it enough structure, the

decision problem behind pulling an arm becomes a stochastic control one, and hence

one that we need to address via clever, efficient algorithms.

We will now motivate and formulate the general, finite-horizon stochastic control

problem, and then see, via a few salient example, its broad applicability to a myriad

of problems1.

1.1 Optimal stochastic control

We consider here a dynamical system, which we will control over a sequence discrete

time periods 𝒯 = {0, 1, . . . , 𝑇}. The system’s state in period 𝑡 is written as 𝑥𝑡 ∈ 𝒳

where 𝒳 is the space of all possible states. An agent observes the current state 𝑥𝑡

and then decides on a control to apply, 𝑢𝑡 ∈ 𝒰 , from the set of admissible controls 𝒰𝑡
at that time. Given the state and control applied, the agent both observes and earns

a real-valued reward 𝑟𝑡(𝑥𝑡, 𝑢𝑡). State evolves according to dynamics defined through

1To keep things simple we won’t delve into the infinite horizon problem here.
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Figure 1-1: Stochastic control problem involving an agent (right) and its environment
(left).

to the following equations:

𝑥𝑡+1 = 𝑓𝑡(𝑥𝑡, 𝑢𝑡, 𝑒𝑡), 0 ≤ 𝑡 < 𝑇

where 𝑓𝑡 is a sequence of functions describing state transitions. The inputs to these

functions are the current current state 𝑥𝑡, the control 𝑢𝑡 ∈ 𝒰𝑡 and disturbance 𝑒𝑡 ∈ ℰ .

We model the disturbance as some random variable. A condensed illustration of the

interplay between states, controls and disturbances is given in Figure 1-1.

To define the information available to the agent, we let

ℱ𝑡 = 𝜎(𝑥0, 𝑢0, 𝑒0, . . . , 𝑥𝑡−1, 𝑢𝑡−1, 𝑒𝑡−1, 𝑥𝑡)

be the 𝜎-algebra generated by past controls, disturbances and both current and previ-

ous states observed in period 𝑡. The control at every time 𝑡 must be measurable with

respect to the 𝜎-algebra ℱ𝑡, i.e. the control can only be made based on the current

state and the agent’s history of observations. We refer to the sequence of random

controls as a policy (or what is sometimes called a decision rule), and we denote this

policy by u = (𝑢0, 𝑢1, . . . , 𝑢𝑇 ).
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Since our general problem fundamentally contains uncertainty, we need to formu-

late its objection function in terms of some deterministic quantity. We could optimize

for the expected total rewards, variance in the total rewards, or some such metric,

but we opt for the former since it’s the most common and can handle (to some extent

via utility functions) the notion of risk. The full optimization problem is given as

maximize
u

Eu

[︃
𝑇∑︁
𝑡=0

𝑟𝑡(𝑥𝑡, 𝑢𝑡)

⃒⃒⃒⃒
⃒ 𝑥0 = 𝑥

]︃
subject to 𝑥𝑡+1 = 𝑓𝑡(𝑥𝑡, 𝑢𝑡, 𝑒𝑡), 𝑡 = 0, 1, . . . , 𝑇 − 1

(1.1)

where the expectation is defined with respect to sample paths generated by the policy

u, the initial state is given as deterministic value 𝑥 ∈ 𝒳 , and the constraints must

be satisfied in an almost sure sense. In general we denote the optimal value of such

problems as 𝐽⋆
0 (𝑥), since the initial state is 𝑥 and we are controlling the system from

period 0 onward.

In its nominal form, this problem is simply too hard to solve in high dimensions,

and we illustrate why this is so in the following special case where we make a couple

of assumptions. The first assumption we’re going to make is that 𝑒𝑡 is statistically

independent of any the previous realizations 𝑒0, . . . , 𝑒𝑡−1 before it. One can show that

this results in the problem being Markovian. We’ll also assume that 𝒰𝑡 is a finite

set. In that case, we are dealing with what’s otherwise known as a Markov Decision

Problem (MDP). One can show that the optimal control at every state is only a

function of the current time period 𝑡 and the present state 𝑥𝑡. In fact, a way to find

an optimal policy is to solve Bellman’s equations, i.e. to find a sequence of value

functions 𝐽⋆
𝑡 that satisfy

𝐽⋆
𝑡 (𝑥) =

⎧⎪⎨⎪⎩max𝑢∈𝒰𝑡

{︀
𝑟𝑡(𝑥, 𝑢) + E

[︀
𝐽⋆
𝑡+1(𝑓𝑡(𝑥, 𝑢, 𝑒𝑡))

]︀}︀
, 𝑡 ≤ 𝑇

0, 𝑡 = 𝑇 + 1

,∀𝑡 ∈ [𝑇+1], 𝑥 ∈ 𝒳 .

One algorithm that finds these value functions is called value iteration, or backwards

induction. Having found such a sequence of value functions, a greedy policy defined
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as

𝑢⋆𝑡 (𝑥) =

⎧⎪⎨⎪⎩argmax𝑢∈𝒰𝑡

{︀
𝑟𝑡(𝑥, 𝑢) + E

[︀
𝐽⋆
𝑡+1(𝑓𝑡(𝑥, 𝑢, 𝑒𝑡))

]︀}︀
, 𝑡 < 𝑇

argmax𝑢∈𝒰𝑡
𝑟𝑡(𝑥, 𝑢), 𝑡 = 𝑇

can then be shown to be optimal for (1.1). If we closely inspect these equations, we

can see that to find the value functions, we need to at the very least enumerate all

possible states in 𝒳 . If this state space has more than, say 3 or 4 dimensions, then

its size quickly explodes. This is the intuitive explanation of why dynamic control

problems are intractable. Moreover, even if state-space explosion was not the main

difficulty, we’d still need to compute expectations over 𝐽⋆
𝑡+1(𝑓𝑡(𝑥, 𝑢, 𝑒𝑡)) as shown

above, which is also onerous if ℰ the space of possible disturbances is large.

1.2 Motivating examples

The simple-enough looking framework given in Problem (1.1), can capture a myriad

of useful problem formulations. We outline some examples of concrete applications

in this section.

1.2.1 Rocket control

We start with a somewhat two-dimensional, toy problem whose purpose is to illustrate

the main ideas of stochastic control theory. It is a variation on an example from

Chapter 1 in Bertsimas and Tsitsiklis [1997]. This example also lets us touch on the

Linear Quadratic Regulator (LQR), which appears several times in the thesis.

Consider a rocket positioned on the ground that needs to travel a vertical distance

of 𝐷 kilometers in the air, within a certain window of time. Our job is to control

the rocket’s thrust throughout its ascent. At time 𝑡, we let 𝑦𝑡 be the rocket’s vertical

position, 𝑣𝑡 its velocity and 𝑎𝑡 its acceleration. To keep the notation simple, we take

𝑎𝑡 to be the ‘control’. This could be justified since acceleration is proportional to the

rocket’s thrust, which produces the force necessary to counteract gravity and drag
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(see Figure 1-2)2. The other components, 𝑦𝑡 and 𝑣𝑡, both represent state components.

By using a discretized model of time with a unit increments, we suppose the state

dynamics are linear according to

𝑦𝑡+1 = 𝑦𝑡 + 𝑣𝑡 + 𝑒1,𝑡 𝑡 = 0, . . . , 𝑇 − 1

𝑣𝑡+1 = 𝑣𝑡 + 𝑎𝑡 + 𝑒2,𝑡 𝑡 = 0, . . . , 𝑇 − 1

where 𝑒1,𝑡 and 𝑒2,𝑡 are Gaussian error terms with unit variance. We also assume that

𝑦0 = 𝑣0 = 0. The error terms might represent systematic uncertainty in our model, or

just noise in the physical environment. We assume that the terminal period is 𝑇 , and

that rocket should be at (or close to) the desired position by then. Thus keeping in

line with our framework, we can rewrite some notation in terms of the general setup,

as 𝑥𝑡 , (𝑦𝑡, 𝑣𝑡) and 𝑒𝑡 , (𝑒1,𝑡, 𝑒2,𝑡), 𝑢𝑡 , 𝑎𝑡, and then we have that the state transition

function is

𝑓𝑡(𝑥𝑡, 𝑢𝑡, 𝑒𝑡) =

⎛⎝1 1

1 0

⎞⎠𝑥𝑡 +

⎛⎝0

1

⎞⎠𝑢𝑡 + 𝑒𝑡.

Suppose that our goal is to minimize total fuel consumption plus some measure of

the rocket’s distance from its desired position at time 𝑇 . To do so, we need to

formulate a good reward function 𝑟𝑡(𝑥𝑡, 𝑢𝑡). In some rough model, we could say that

fuel consumption is proportional to the absolute acceleration −|𝑢𝑡|, so that a sensible

candidate reward function might be

𝑟𝑡(𝑥𝑡, 𝑢𝑡) =

⎧⎪⎨⎪⎩−|𝑢𝑡| 𝑡 < 𝑇

−𝛼 |𝑥1,𝑡 −𝐷| 𝑡 = 𝑇

where 𝛼 is some scalar that trades off the two objectives of fuel consumption and

final distance away from 𝐷. What is special about this problem however is that if we

2This is based on Newtonian law that states 𝐹 = 𝑚𝑎
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Figure 1-2: Rocket control problem

were to replace the modulus above with the squared value, i.e. define 𝑟𝑡 as

𝑟𝑡(𝑥𝑡, 𝑢𝑡) =

⎧⎪⎨⎪⎩−𝑢
2
𝑡 𝑡 < 𝑇

−𝛼 (𝑥1,𝑡 −𝐷)2 𝑡 = 𝑇

then this problem would admit a closed form solution. This is a basic example of an

LQR problem, which we will revisit later. Interestingly enough, this is very similar

in nature to a portfolio optimization problem given in Gârleanu and Pedersen [2013].

1.2.2 Option pricing

Optimal control has famously been applied to option pricing. In general, financial

derivatives are contracts whose payoff depends on the price of one more underlying

assets: these could be stocks, bonds, commodities, among others. The simplest

example is that of European call option on a stock, which gives the holder the right

(but not the obligation) to buy the stock at a specific expiry date in the future at

a pre-agreed strike price. There are different types of option contracts, which confer

different rights: for example, American options include more flexibility in that the

holder is allowed buy/sell the stock once at any time before the contract expires.
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These derivatives are financial products that are traded daily in a variety of markets

and on exchanges. Financial institutions typically hold billions of dollars worth of

positions in option contracts, making it especially critical to accurately value them,

and do so in a way that’s computationally efficient.

If we are to model the simplest option pricing problem with our framework, in

discrete-time, we would form the state as a vector 𝑥𝑡 = (𝑝𝑡, 𝑦𝑡) whose first component

is the price of the underlying stock, and the second component 𝑦𝑡 is binary variable

indicating whether the option has yet to be exercised still. That is, 𝑦𝑡 = 0 if the

option has been exercised and 1 otherwise. Our control will be binary valued, so

that 𝑢𝑡 = 1 if the option is exercised at time 𝑡 and 0 otherwise. The reward is then

𝑟𝑡(𝑥𝑡, 𝑢𝑡) = 𝑟𝑡(𝑝𝑡, 𝑦𝑡, 𝑢𝑡) = 𝑦𝑡𝑢𝑡(𝑝𝑡 −𝐾)+ where 𝐾 is the strike price. We are going to

define the dynamics in such a way that once the option is exercised, 𝑦𝑡+1, 𝑦𝑡+2, . . . gets

set to zero, meaning there is no more payoff to be earned. In particular, the state

transition equation is

𝑝𝑡+1 = 𝑔(𝑝𝑡, 𝑒𝑡)

𝑦𝑡+1 = (1− 𝑢𝑡)𝑦𝑡,

where 𝑔(., .) is some function that defines price dynamics and the initial state is

𝑥0 = (𝑝0, 1). Calculating the option price then boils down to finding 𝐽⋆
0 (𝑥) for this

problem. In fact, the type of problem discussed just now is much more general and

often referred to as optimal stopping.

For the simplest options involving only a few underlying assets, and where it’s

assumed that asset prices follow a Geometric brownian motion, it becomes compu-

tationally easy to calculate the option price, via, say, the Binomial lattice method

or the Black-Scholes formula. As soon as more assets are introduced and the prob-

lem becomes high-dimensional, we need to consider different techniques such as those

appearing later in the thesis.
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1.2.3 Multi-armed bandits

Multi-armed bandits, as described here, is a control problem with a special structure3.

Consider 𝑁 bandits, which one can think of as 𝑁 projects that an agent can invest in

over 𝑇 periods. Each bandit is associated with a discrete state space 𝑆𝑖. At time 𝑡, the

𝑖th bandit is in the state 𝑥𝑖,𝑡 ∈ 𝑆𝑖, which one can think of as the state for that project.

Let us denote the state of all of the bandits at time 𝑡 by the tuple 𝑥𝑡 = (𝑥1,𝑡, . . . , 𝑥𝑁,𝑡),

which is the overall state in our problem. For this reason, the overall state space is

𝒳 =
∏︀𝑁

𝑖=1 𝑆𝑖, and we assume that the initial state is given by a known value 𝑥 ∈ 𝒳 .

At any given time, the control is an integer 𝑢𝑡 ∈ [𝑁 ] = {1, . . . , 𝑁} for which of the

bandits the agent ‘pulls’ or activates, or equivalently which of the 𝑁 projects the

agent invests in.

If the agent pulls the 𝑖th bandit at time 𝑡, then it earns a reward 𝑟𝑡(𝑥𝑡, 𝑖) = 𝑟𝑖(𝑥𝑖,𝑡),

where 𝑟𝑖(.) is some reward specific to the 𝑖th bandit, which is a function of its state.

Subsequently, upon pulling the 𝑖th arm, the system’s state evolves in the next period

according to the equation

𝑥𝑡+1 = 𝑓𝑡(𝑥𝑡, 𝑢𝑡, 𝑒𝑡) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1,𝑡
...

𝑓𝑖(𝑥𝑖,𝑡, 𝑒𝑖,𝑡)
...

𝑥𝑁,𝑡,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
meaning the states of all the bandits, except for the 𝑖th one, stay the same (are frozen).

Meanwhile the 𝑖th bandit’s state changes according to the transition function 𝑓𝑖(., .).

As usual, our goal is to maximize the total sum of expected rewards.

As we might expect, the problem in this form is intractable. However, if we

assume that we’re dealing with an infinite horizon, 𝑇 = ∞, and that rewards are

3This example describes the MDP formulation of the multi-armed bandit problem, which is
somewhat different to the one tackled in Chapter 2.
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geometrically discounted over time, such that the objective is

Eu

[︃
∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡(𝑥𝑡, 𝑢𝑡)
⃒⃒⃒
𝑥0 = 𝑥

]︃
,

then the optimal policy is substantially easier to compute. In fact, the optimal policy

is given by the Gittins index rule, and this will be one of the main themes in Chapter 2.

This fact means that the multi-armed bandit problem can be solved to optimality by

addressing, essentially, a sequence of easier 1-dimensional problems, as opposed to a

single 𝑁 -dimensional one. Ultimately, this alternative algorithm with Gittins indices

enjoys computational costs that are exponentially lower than a brute force method

that solves Bellman’s equations.

1.3 Organization of This Thesis

Below we summarize briefly the contents of each chapter in the thesis:

∙ Chapter 2. In this chapter, we develop a novel algorithm for the Bayesian

multi-armed bandit (MAB) problem. At every step 𝑡, our policy approximately

solves an infinite horizon discounted variant of the multi-armed bandit problem,

equivalently the Gittins Index problem, where the arms’ initial states take on

their present values and the discount factor is 1− 1/𝑡, and plays the arm with

the highest current index. We prove that our policy’s regret is 𝒪(log 𝑛) where

𝑛 is the time horizon. Moreover, in the case where rewards are binary, we prove

that our policy is asymptotically optimal, in the sense of meeting the lower

bound of Lai and Robbins [1985]. Numerical experiments demonstrate that the

Bayesian regret from this approach outperforms state of the art algorithms.

∙ Chapter 3. In this chapter, we consider the stochastic control problem faced

by a Prime Broker, a key agent in the securities lending market. We start

by analyzing common decisions a Prime Broker needs to make, which consist

of selecting collateral to hypothecate from clients and determining, in general,

25



what pool of assets to hold in its inventory in order to maximize revenues and

improve operational efficiency. To address these questions, we model the Prime

Broker’s asset allocation decisions as a multi-period stochastic problem. We

propose a simple framework for designing algorithms that are provably near-

optimal and overcome the ‘curse of dimensionality’ inherent to such a problem.

The framework we propose hinges on the computation of asset prices as collat-

eral. We find our methods are practical, efficient to implement, offer substantial

performance gains over existing ad-hoc approaches currently used in industry.

Furthermore, we provide numerical experiments by firstly backtesting our algo-

rithms on data from Credit Suisse and, secondly, running them on simulations.

By benchmarking our policy against existing ones, we see increases in profit of

5-10% at the same computational cost.

∙ Chapter 4. The focus in this chapter is applying deep learning techniques

to stochastic control, also sometimes as deep reinforcement learning (RL). We

explore model-based RL in the context of problems with clearly defined and

special structures (such as minimally small action spaces like on optimal stop-

ping or linear dynamics). The aim is to see if we can gain any insight from

certain classes of problems that can inform the design of RL algorithms. Here

we will focus on two problem types:

– Optimal stopping: We explore two heuristics for deriving confidence in-

tervals on option price, both of which use deep learning. The first of these,

involves adapting the Longstaff-Schwartz algorithm by fitting a deep neu-

ral network at every iteration, as opposed to solving a linear regression

problem. We see relative improvements in the lower bound of around of

around 400 bps compared to the usual Longstaff-Schwartz algorithm, and

200 bps compared to the best-known lower bound from Pathwise Opti-

mization method Desai et al. [2012].

The second of these techniques is for deriving upper bounds based on the

martingale duality technique [Rogers, 2002]. We propose an alternative
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continuous representation, which is more efficient to work with, yields a 30

bps improvement in the upper bound and avoids the need to provide basis

functions to the algorithm (as is otherwise common in ADP).

– Quasi-linear, convex control: We develop policy gradient algorithms

that work on constrained problems with partially linear state dynamics

and convex rewards. Through realistic, large-scale benchmark problems,

we demonstrate that the policies trained using our methods outperform,

by a huge margin, existing heuristics – sometimes as much as 50% or more.

Moreover, in some non-trivial example problem we see that our method

achieves within 1% of the optimal value. These impressive results motivate

us to analyze some aspects of these problems and provide open research

problems.

∙ Chapter 5. In this final chapter, we conclude with the main messages of this

thesis and motivate some open research problems and future challenges.
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Chapter 2

Optimistic Gittins Indices

2.1 Introduction

The Multi-Armed Bandit (MAB) problem is perhaps the simplest example of a learn-

ing problem that exposes the tension between exploration and exploitation. In its

simplest form, we are given a collection of random variables or ‘arms’. By adaptively

sampling these random variables, we seek to eventually sample consistently from the

random variable with the highest mean. This is typically formalized by asking that

we minimize cumulative ‘regret’; a notion we make precise in a later section.

Recent years have seen a resurgence of interest in Bayesian algorithms for the

MAB problem. In this variant of the MAB problem, we are endowed with a prior on

arm means, and a number of algorithms that exploit this prior have been proposed

and analyzed. These include Thompson Sampling [Thompson, 1933], Bayes-UCB

[Kaufmann et al., 2012], KL-UCB [Garivier, 2011], and Information Directed Sam-

pling [Russo and Van Roy, 2014]. The ultimate motivation for these algorithms

appears to be the empirical performance they offer. Specifically, these Bayesian al-

gorithms appear to incur smaller regret than their frequentist counterparts such as

the UCB algorithm proposed by Auer et al. [2002], even when regret is measured

in a frequentist sense. This empirical evidence has, very recently, been reinforced

by theoretical performance guarantees. For instance, it has been shown that both

Thompson sampling and Bayes-UCB enjoy upper bounds on frequentist regret that
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match the Lai-Robbins lower bound [Lai and Robbins, 1985]. Interestingly, even

amongst the various Bayesian algorithm proposed there appears to be a wide range

in empirical performance. For instance, empirical evidence presented in Russo and

Van Roy [2014] suggests that the IDS algorithm offer a substantial improvement in

frequentist regret over Thompson sampling and the Bayes-UCB algorithm, among

others. The former algorithm does not however enjoy the optimal data dependent

frequentist regret bounds that the latter two do. Perhaps more importantly, these

algorithms also vary substantially in their design (as opposed to being variations on

a theme).

Now a prior on arm means endows us with the structure of a Markov Decision

Process (MDP) and none of the Bayesian algorithms alluded to above exploit this

structure. This is especially surprising in light of the celebrated Gittins Index Theo-

rem. That breakthrough result proved the optimality of a certain index policy for a

horizon dependent variant of the Bayesian MAB. Specifically, imagine that we cared

about the expected (Bayes) regret incurred over an exponentially distributed horizon,

where the mean horizon length is known to the algorithm designer. This problem is

nominally a high dimensional MDP. Gittins, however, proved that a simple to com-

pute index rule was optimal for this task resolving a problem that had remained open

for several decades [Gittins, 1979]. Why does the Gittins Index Theorem not imme-

diately help resolve the design of an optimal algorithm for the variant of the Bayesian

MAB problem that is the subject of the approaches discussed in the preceding para-

graph? As we will discus more carefully in our literature review, this is certainly not

from lack of research effort [Lattimore, 2016]. In fact, one must deal with several

substantial challenges:

1. Dependence on Horizon: The notion of regret optimality as popularized by

Lai and Robbins [1985] is ‘anytime’. Colloquially, this can be thought of as

follows: we desire an algorithm that performs well for any time horizon. This

fact is fundamentally at odds with Gittins’ variant of the MAB problem that

(via a discount factor) effectively specifies a (exponentially distributed) horizon.

Gittins’ result is intimately connected to this choice of horizon; even seemingly
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minor changes appear to render the problem intractable. For instance, it is

known that a Gittins-like index strategy is sub-optimal for a fixed, finite-horizon

[Berry and Fristedt, 1985]. Algorithms for other notions of optimality that one

may reasonably conjecture are better aligned with ‘anytime’ regret optimality

(such as, say, Cesaro-overtaking optimality) are similarly elusive [Katehakis

et al., 1996].

2. Computation: Separate from the issues made in the previous point, consider

the task of computing a Gittins index at every point in time. The computation

of a Gittins index can be reduced to the solution of a certain infinite horizon

stopping problem. For the Bayesian MAB, the state space for this problem

must describe all possible posteriors one may encounter on a given arm. As-

suming conjugate priors, one may hope for a finite dimensional state space, but

tractable computation will typically call for some form of state-space trunca-

tion. This computation is far more onerous than any of the aforementioned

indices. Furthermore, it is reasonable to conjecture that as time progresses one

may require increasingly more accurate estimates of the Gittins index, which

further complicates computation, and calls into question the correctness of a

naive state-space truncation scheme.

Against this backdrop, in this chapter we make the following contribution:

We show that picking arms according to a certain tractable approximation to their

Gittins index, computed for a time dependent discount factor we characterize pre-

cisely, constitutes a regret optimal bandit policy. The resulting index rule is both

simple to compute and in computational experiments appears to outperform state-of-

the-art bandit algorithms by a material margin.

In greater detail, we outline our contributions as follows:

1. Optimistic Approximations: We propose a sequence of ‘optimistic’ approxima-

tions to the Gittins index. These optimistic approximations can be interpreted
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as providing a tightening sequence of upper bounds on the optimal stopping

problem defining a Gittins index, yielding the index itself in the limit. The

computation associated with the simplest of these approximations is no more

burdensome than the computation of indices for the Bayes UCB algorithm, and

several orders of magnitude faster than the best performing alternative from an

empirical perspective (the IDS algorithm).

2. Regret Optimality: We establish that an arm selection rule that is greedy with

respect to any optimistic approximation to the Gittins index achieves optimal

regret in the sense of meeting the Lai-Robbins lower bound (including matching

constants) for the canonical case of Beta-Bernoulli bandits. A crucial ingredient

required for this scheme to work is that as time progresses, the discount factor

employed in computing the index must be increased at a certain rate which we

characterize precisely. This implicitly resolves the challenge of horizon depen-

dence.

3. Empirical Performance: We show empirically that even the simplest optimistic

approximation to the Gittins index outperforms the state-of-the-art incumbent

schemes discussed in this introduction by a non-trivial margin. Our empirical

study is careful to recreate several ensembles of problem instances considered by

previous authors (including a particularly computationally intensive study by

Chapelle and Li [2011] that prompted the reexamination of the Thompson sam-

pling algorithm in recent years). The margin of improvement we demonstrate

increases further as one employs successfully tighter optimistic approximations,

at the cost of computational effort.

In summary, we propose a new index rule for the Baysian MAB problem that em-

ploys Gittins indices in a novel way. This new index rule enjoys the strongest possible

data-dependent regret guarantees while also offering excellent empirical performance.
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2.1.1 Relevant Literature

We organize our literature review around the primary topics that this chapter touches

on. The study of exploration-exploitation problems is vast, even if it is restricted to

a problem with a finite number of arms. Consequently, our review will be focused on

stochastic, non-contextual, versions of the MAB problem. Even with this restriction,

the literature remains vast, and so we focus on papers that are either seminal in nature

or particularly relevant to our own work; this review is by no means comprehensive

with respect to the MAB problem.

Regret optimality and the bandit problem: Robbins [1952] motivated the study

of the MAB problem and left open questions on how to design effective policies.

Since then Lai and Robbins [1985] proved a cornerstone result, namely an asymptotic

lower bound on regret that any consistent strategy incurs. The same paper proposes

an upper-confidence bound (UCB) algorithm that asymptotically achieves the lower

bound. Computationally efficient UCB algorithms were developed by Agrawal [1995]

and Katehakis and Robbins [1995]. Later, Auer et al. [2002] and Audibert and Bubeck

[2010] proved finite time regret bounds for UCB algorithms and demonstrated ways

to tune them in order to improve performance. Garivier [2011] and Maillard et al.

[2011] have proposed other UCB-type algorithms where the confidence bounds are

calculated using the KL-divergence function. Those authors provide a finite-time

analysis and their algorithms are shown to achieve the Lai-Robbins bound.

Bayesian bandit algorithms: Another powerful approach to bandit problems is

to work with a Bayesian prior to model one’s uncertainty about an arm’s expected

reward. Lai [1987] proves an asymptotic lower bound on Bayes’ risk and develops

a horizon-dependent algorithm that achieves it. Thompson Sampling [Thompson,

1933], one of the earliest algorithms proposed for the MAB problem, is in fact a

Bayesian one. Empirical studies by Chapelle and Li [2011] and Scott [2010] highlight

Thompson Sampling’s hugely superior performance over some UCB algorithms even

when the prior is mismatched. A series of tight regret bounds for Thompson Sampling

have been established by Agrawal and Goyal [2012, 2013] and Kaufmann et al. [2012].
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These authors have shown Thompson sampling to be regret optimal for the canonical

Beta-Bernoulli bandit. Recently, Korda et al. [2013] generalized the aforementioned

results to bandit problems where the arm distributions belong to a one dimensional

exponential family. Interestingly enough, Robbins [1952] seems to have been unaware

of Thompson Sampling and its effectiveness in the non-Bayesian setting.

Several other Bayesian algorithms exist. Kaufmann et al. [2012] propose Bayes

UCB, which they show is competitive with Thompson Sampling. The main idea be-

hind Bayes UCB is to treat quantiles of the arm’s prior as an upper confidence bound

and let the quantile grows at some pre-specified rate. Russo and Van Roy [2014] pro-

pose Information Directed Sampling (IDS), an algorithm that exploits information

theoretic quantities arising from the prior distributions over the arms. In simula-

tions, IDS is shown to dominate many of the aforementioned algorithms, including

Thompson Sampling, Bayes UCB and KL-UCB. In our empirical investigation, we will

see that IDS is the closest competitor to the approach we propose here (we recreate

the experiments from Russo and Van Roy [2014]).

Gittins index and its approximations: There is another stream of literature that

models the MAB problem as an MDP. For the case of two arms, where one arm’s

reward is deterministic, Bradt et al. [1956] showed that for this one-dimensional DP,

an index rule is an optimal strategy. When the objective is to maximize the infinite

sum of expected discounted rewards Gittins [1979] famously showed the optimality of

an index policy. The Gittins index is similar to that proposed by Bradt et al. [1956]

but takes discounting into account. Several alternative proofs of Gittins’ result are

available; see for example [Tsitsiklis, 1994, Weber et al., 1992, Whittle, 1980] and

[Bertsimas and Niño-Mora, 1996]. These alternative proofs also provide illuminating

alternative interpretations of the Gittins index.

Computing the Gittins index can be an onerous task, especially when the state

space corresponding to posterior sufficient statistics is large or high dimensional. As

such, approximations to the index have been proposed by Yao et al. [2006], Katehakis

and Veinott Jr [1987] and Varaiya et al. [1985]; see [Chakravorty and Mahajan, 2013]

for a survey. This chapter also relies on Gittins index approximations and we develop
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simple, general ones that enable our algorithm to be regret optimal.

Finally, we note that others have contemporaneously attempted to leverage the

Gittins index in the construction of a Bayesian MAB algorithm. For instance, Kauf-

mann [2016] considers a variety of heuristics based on a finite horizon version of

the Gittins index (essentially, the index proposed by Bradt et al. [1956]), and shows

promising empirical results. Lattimore [2016] analyzes the regret under a similar index

and shows it to be logarithmic for a fixed horizon. Unfortunately, the index policies

studied in both [Kaufmann, 2016] and [Lattimore, 2016] require a-priori knowledge of

a horizon. As such this does not yield an index rule that works for any sufficiently

large horizon, but rather one that only works for a fixed pre-specified horizon. In

fact, such schemes cannot be expected to work well for time horizons other than the

pre-specified horizon determining the index. In contrast, we seek to provide a com-

pelling alternative to the host of state-of-the-art ‘anytime’ regret optimal index rules

discussed heretofore.

2.2 The Optimistic Gittins Index Algorithm

This section introduces the notion of an optimistic Gittins index, and presents an

algorithm for the MAB problem that we will subsequently show is optimal in that it

achieves the Lai-Robbins lower bound. We will begin with reviewing the Gittins index

theorem for the discounted infinite horizon bandit problem and show that one cannot

expect the use of the index from that well known result to yield a regret optimal

policy for the MAB problem. We then show that the use of the Gittins index in con-

cert with an increasing discount factor yields poly-logarithmic Bayesian regret. This

coarse result motivates the discount factor schedule we eventually propose. Finally,

we present a series of ‘optimistic’ approximations to the Gittins index with the view

of minimizing the computational burden of index computation. Putting these ingre-

dients together yields the optimistic Gittins index algorithm that is the subject of

this chapter. The regret optimality of the optimistic Gitiins index, for Beta-Bernoulli

bandits, is proved in Section 2.3 (Theorem 1). That is our main theoretical result.
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2.2.1 The Gittins Index and Regret

The Gittins index theorem presents a surprisingly simple solution to the problem

of computing an optimal policy for the discounted infinite horizon bandit problem.

Specifically, the theorem defines for each arm state 𝑦 ∈ 𝒴 , an index we denote 𝑣𝛾(𝑦);

we define this index shortly. The theorem shows that an arm selection rule which at

every time selects the arm with the highest index is optimal. The result is powerful

in that the computation of the index for a given arm requires the solution of an MDP

on the state space 𝒴 , as opposed to solving an MDP on the considerably larger state

space 𝒴𝐴.

One way to compute the Gittins Index 𝑣𝛾(𝑦) for an arm in state 𝑦 is via the so-

called retirement value formulation [Whittle, 1980]. Specifically, 𝑣𝛾(𝑦) is defined as

the value of 𝜆 that solves

𝜆

1− 𝛾
= sup

𝜏>0
E𝑦

[︃
𝜏∑︁

𝑡=1

𝛾𝑡−1𝑋𝑖,𝑡 + 𝛾𝜏
𝜆

1− 𝛾

]︃
, (2.1)

where the subscript on the expectation indicates that the prior on the (say, 𝑖th)

arm’s mean at time 𝑡 = 1, 𝑦𝑖,0, equals 𝑦. If one thought of the notion of retiring as

receiving a deterministic reward 𝜆 in every period, then the value of 𝜆 that solves the

above equation could be interpreted as the per-period retirement reward that makes

us indifferent between retiring immediately, and the option of continuing to play arm

𝑖 with the potential of retiring at some future time. The Gittins index policy itself,

which we denote by 𝜋𝐺,𝛾, can succinctly be stated as follows:

At time 𝑡, play an arm in the set argmax𝑖 𝑣𝛾
(︀
𝑦𝑖,𝑁𝑖(𝑡−1)

)︀
,

where 𝑁𝑖(0) ≡ 0 and 𝑦𝑖,0 is understood to be the sufficient statistic corresponding to

the prior on that arm. Ignoring computational considerations, we cannot hope for

the policy 𝜋𝐺,𝛾 to be regret optimal. In fact, as the result below indicates, one cannot

even hope for such a policy to be consistent (i.e. have sub-linear regret) in the sense

of Lai and Robbins [1985]:
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Lemma 1. For any 𝛾 > 0, there exists an instance of the multi armed bandit problem

for which

Regret
(︀
𝜋𝐺,𝛾, 𝑇

)︀
= Ω(𝑇 ).

The proof, given in Appendix A.1, rests on the simple fact that for any fixed

discount factor, if the posterior means on the two arms are sufficiently apart, the

Gittins index policy will pick the arm with the larger posterior mean. The threshold

beyond which the Gittins policy ‘exploits’ depends on the discount factor and with

a fixed discount factor there is a positive probability that the superior arm is never

explored sufficiently so as to establish that it is, in fact, the superior arm.

2.2.2 Increasing Discount Factors yield sub-linear Bayesian

Regret

Lemma 1 tells us that we cannot hope for sub-linear regret by applying the Gittins

index policy with a constant discount factor. One may naturally wonder whether

an increasing discount factor might fix this issue. Now observe that any schedule

of increasing discount factors effectively implies a change in the trade-off between

exploration and exploitation. With a fixed discount factor, we have already seen that

once the priors between two arms are sufficiently far apart, the Gittins policy will

not explore, thereby leading to the possibility of linear regret. As the discount factor

increases, the ‘gap’ between priors above which exploration is not justified goes up

over time. If we increase this ‘gap’ too fast, we might incur too much exploration.

Too slow, and we might incur too little exploration. As such, the schedule at which

we increase the discount factor is likely to play a significant role in determining the

regret of the resulting policy.

Now notice that the Gittins index policy for a discount factor 𝛾 can be viewed as

optimal for a random finite horizon, distributed geometrically with parameter 1− 𝛾.

As 𝛾 approaches one, this may be thought of as a near optimal policy for the fixed

finite horizon 1/(1 − 𝛾). Now consider for a moment that we had access to a policy

that has optimal 𝑇 period expected regret (assuming 𝑇 is known in advance). One
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way to convert such a policy into a policy that has ‘low’ regret for any 𝑇 is to employ

the so-called doubling trick: Apply the optimal policy for the horizon 𝑇 for 𝑇 steps,

then the optimal policy for horizon 2𝑇 for the following 2𝑇 steps, followed by the

optimal policy for 4𝑇 for the next 4𝑇 steps, and so-forth. Such a policy will be

‘near’-optimal for any horizon, in a manner we now make precise.

Consider employing discount factors that increase at roughly the rate 1 − 1/𝑡;

specifically, consider setting

𝛾𝑡 = 1− 1

2⌊log2 𝑡⌋

and consider using the policy that at time 𝑡 picks an arm from the set argmax𝑖 𝜈𝛾𝑡(𝑦𝑖,𝑁𝑖(𝑡−1)).

Denote this policy by 𝜋D. The following proposition shows that this ‘doubling’ pol-

icy achieves Bayes risk that is within a factor of log 𝑇 of the optimal Bayes risk.

Specifically, we have:

Proposition 1.

Regret(𝜋D, 𝑇 ) = 𝑂
(︀
log3 𝑇

)︀
.

where the constant in the big-Oh term depends on the prior 𝑞 and 𝐴.

The proof of this result (Appendix A.2) relies on showing that the finite horizon

regret achieved by using a Gittins index with an appropriate fixed discount factor is

within a constant factor of the optimal finite horizon regret. The second ingredient

is the doubling trick described above. The coarse analysis above illustrates that

the use of the Gittins index policy together with an increasing discount factor does

indeed yield an algorithm with sub-linear Bayesian regret. It is worth noting that

the result above does not show that such a policy achieves optimal Bayesian regret

(the achievable lower bound being log2 𝑇 [Lai, 1987]). The analysis does however

suggest a candidate discount rate schedule that we will eventually show to yield a

regret optimal policy.
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2.2.3 Optimistic Approximations to The Gittins Index

The retirement value formulation makes clear that computing a Gittins index is equiv-

alent to solving a discounted, infinite horizon stopping problem. Solving this problem

requires substantially more computational effort than, say, Thompson Sampling or the

Bayes UCB algorithm. In fact, this computation can even be rendered intractable

in practice. Specifically, the set 𝒴 can be high dimensional; see [Chapelle and Li,

2011] for one such example that arises in the context of contextual news recommen-

dations. This motivates an approximation to the Gittins index that is the subject of

this section. Specifically, we introduce a sequence of ‘optimistic’ approximations to

the Gittins index that will alleviate computational burden.

Consider the following alternative stopping problem that requires as input the

parameters 𝜆 (which has the same interpretation as it did before), and 𝐾, an integer

limiting the number of steps that we need to look ahead. For an arm in state 𝑦 (recall

that the state specifies sufficient statistics for the current prior on the arm reward), let

𝑅(𝑦) be a random variable distributed as the prior on expected arm reward specified

by 𝑦. Define the retirement value 𝑅𝜆,𝐾(𝑠, 𝑦) according to

𝑅𝜆,𝐾(𝑠, 𝑦) =

⎧⎪⎨⎪⎩𝜆, if 𝑠 < 𝐾

max (𝜆,𝑅(𝑦)) , otherwise

For a given 𝐾, the Optimistic Gittins Index for arm 𝑖 in state 𝑦 is now defined as the

value for 𝜆 that solves

𝜆

1− 𝛾
= sup

1≤𝜏≤𝐾
E𝑦

[︃
𝜏∑︁

𝑠=1

𝛾𝑠−1𝑋𝑖,𝑠 + 𝛾𝜏
𝑅𝜆,𝐾(𝜏, 𝑦𝑖,𝜏−1)

1− 𝛾

]︃
, (2.2)

where we recall that the subscript on the expectation indicates that 𝑦𝑖,0 = 𝑦. We

denote the solution to this equation by 𝑣𝐾𝛾 (𝑦).

Let us interpret the stopping problem above. Assume we choose to retire after 𝜏

pulls of the arm. If 𝜏 were less than 𝐾, we then receive a reward 𝜆 per period, over the

rest of time, discounted at the rate 𝛾. This is no different from what happens in the
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stopping problem defining the usual Gittins index, (2.1). On the other hand, unlike

that formulation we are forced to retire after the 𝐾th arm pull if we have not done so

already. Should we retire at that time, nature reveals the ‘true’ mean reward of the

arm, and we receive the greater of that quantity and 𝜆 as our per period retirement

payoff. In this manner one is better off than in the stopping problem inherent to the

definition of the Gittins index, (2.1), so that we use the moniker ‘optimistic’. The

following Lemma formalizes this intuition

Lemma 2. 𝑣𝐾𝛾 (𝑦) is non-increasing in 𝐾 for all discount factors 𝛾 and states 𝑦 ∈ 𝒴.

Moreover, 𝑣𝐾𝛾 (𝑦)→ 𝑣𝛾(𝑦) as 𝐾 →∞.

Proof. See Appendix A.3.1

Now, since we need to look ahead at most 𝐾 steps in solving the stopping problem

implicit in the definition above, the computational burden in index computation is

limited. In fact, we will see in a subsequent section that even the choice of 𝐾 = 1

will make for a compelling policy.

2.2.4 The Optimistic Gittins Index Algorithm

The discussion thus far suggests a simple class of bandit algorithms we dub the

Optimistic Gittins Index (OGI) algorithm. The algorithm itself requires as input a

prior on arm means (as does any Bayesian algorithm for the MAB), and a parameter

𝐾.

The OGI algorithm may be summarized succinctly as follows:

At time 𝑡 play an arm in the set argmax𝑖 𝑣
𝐾
𝛾𝑡 (𝑦𝑖,𝑁𝑖(𝑡−1))

where 𝛾𝑡 = 1− 1
𝑡
.

The following Section will establish that the algorithm above achieves the Lai-

Robbins lower bound (and thus is regret optimal), for any finite 𝐾. We will establish

this result for Beta priors and Bernoulli rewards. While we do not state this result

formally until the next Section (see Theorem 1), it is worth pausing to reflect on the

implications of such a result:
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1. As 𝐾 grows large the optimistic Gittins index approaches the Gittins index.

The result thus establishes that the use of a set of arbitrarily close approxi-

mations to the Gittins index with the discount factor schedule 𝛾𝑡 = 1 − 1/𝑡

is a regret optimal algorithm. This is a simple, surprising result that bridges

two very different flavors of the multi-armed bandit problem. It also suggest

the natural conjecture that the use of the Gittins index itself with the discount

factor schedule 𝛾𝑡 = 1− 1/𝑡 is a regret optimal algorithm.

2. At the other end, since the result establishes regret optimality for any finite 𝐾,

we have regret optimality for 𝐾 = 1. Computing the optimistic Gittins index in

this case is a particularly trivial task, and offers the spectre of a computationally

practical algorithm. In fact, in Section 3.4 we shall see precisely this – the choice

of 𝐾 = 1 yields an index that materially outperforms a host of state-of-the-art

alternatives, while requiring little to no computational overhead relative to even

the simplest schemes.

We end this section, with some brief commentary on computation. For concrete-

ness, let us focus on the case of a Beta-Bernoulli bandit. First, we note that solving

the stopping problem implicit in the definition of 𝑣𝐾𝛾 (𝑦) for any given value of the re-

tirement subsidy 𝜆 requires the solution of a relatively simple dynamic program with

just 𝑂(𝐾) states. This dynamic program can be solved exactly in 𝑂(𝐾2) time. The

optimal value of 𝜆 can be found by bisection. For small values of 𝐾 this is substan-

tially less effort than computing a Gittins index. The case of 𝐾 = 1 is particularly

appealing. There, we note that equation (2.2) simplifies to

𝜆 = E[𝑅(𝑦)] + 𝛾E[(𝜆−𝑅(𝑦))+]. (2.3)

This equation is easily solved via a method such as Newton-Raphson. In fact, the

gradients required for the use of the Newton-Raphson approach are often readily

available in closed form. To wit, in the case of a Beta prior with sufficient statistics
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(𝑎, 𝑏), (2.3) reduces to

𝜆 =
𝑎

𝑎+ 𝑏

(︁
1− 𝛾𝐹 𝛽

𝑎+1,𝑏(𝜆)
)︁

+ 𝛾𝜆
(︁

1− 𝐹 𝛽
𝑎,𝑏(𝜆)

)︁
, 𝑔𝑎,𝑏(𝜆)

wherein we see that 𝜕
𝜕𝜆
𝑔𝑎,𝑏(𝜆) can be computed in closed form. This makes the use of

the Newton-Raphson method for the solution of the equation 𝜆 = 𝑔𝑎,𝑏(𝜆) particularly

simple. In our computational experiments, we will see that the choice of 𝐾 = 1

already provides a material improvement in empirical performance over state-of-the-

art alternatives.

2.3 Analysis and Regret bounds

We establish a regret bound for the OGI algorithm that applies when the prior dis-

tribution 𝑞 is uniform and arm rewards are Bernoulli. The result shows that the al-

gorithm, in that case, meets the Lai-Robbins lower bound and is thus asymptotically

optimal in both a frequentist and Bayesian sense. After stating the main theorem,

we briefly discuss a generalization to the algorithm.

In the sequel, we will simplify notation and let 𝑑(𝑥, 𝑦) := 𝑑KL(Ber(𝑥),Ber(𝑦))

denote the KL divergence between Bernoulli random variables with parameters 𝑥

and 𝑦. We will also refer to the OGI policy, which uses a look-ahead parameter of

𝐾, as 𝜋OG,𝐾 and will write the Optimistic Gittins index of the 𝑖th arm at time 𝑡 as

𝑣𝐾𝑖,𝑡 , 𝑣𝐾1−1/𝑡(𝑦𝑖,𝑁𝑖(𝑡−1)). That way, for the sake of brevity, we will suppress the index’s

dependence on 𝑦𝑖,𝑁𝑖(𝑡−1). We are ready to state the main result below.

Theorem 1. Let 𝜖 > 0 and consider an OGI policy configured with a parameter

𝐾 ∈ N and that assumes Beta(1, 1) priors. For the multi-armed bandit problem with

Bernoulli rewards and any parameter vector 𝜃 ⊂ [0, 1]𝐴, there exists 𝑇 * = 𝑇 *(𝜖, 𝜃,𝐾)

and 𝐶 = 𝐶(𝜖, 𝜃,𝐾) such that for all 𝑇 ≥ 𝑇 *,

Regret
(︀
𝜋OG,𝐾 , 𝑇, 𝜃

)︀
≤

∑︁
𝑖=1,...,𝐴
𝑖 ̸=𝑖*

(1 + 𝜖)2(𝜃* − 𝜃𝑖)
𝑑(𝜃𝑖, 𝜃*)

log 𝑇 + 𝐶(𝜖, 𝜃,𝐾) (2.4)

42



where 𝐶(𝜖, 𝜃,𝐾) is a constant that is determined by 𝜖, the parameter 𝜃 and 𝐾.

Proof. Assume, without loss of generality, that the first arm is uniquely optimal so

that 𝜃* = 𝜃1. Fix an arbitrary sub-optimal arm, which for convenience we will say

is the second arm. We will strategically fix three constants in between the expected

rewards of the first and second arms, namely 𝜃1 and 𝜃2. In particular, we let 𝜂1, 𝜂2, 𝜂3 ∈

(𝜃2, 𝜃1) be chosen such that 𝜂1 < 𝜂2 < 𝜂3, 𝑑(𝜂1, 𝜂3) = 𝑑(𝜃2,𝜃1)
1+𝜖

and 𝑑(𝜂2, 𝜂3) = 𝑑(𝜂1,𝜂3)
1+𝜖

.

Next, we define the constant 𝐿(𝑇 ) := log 𝑇
𝑑(𝜂2,𝜂3)

to be, intuitively, the optimal length of

the exploration period.

The main step in this proof will be to upper bound the expected number of pulls

of the second arm, as follows,

E[𝑁2(𝑇 )] ≤ 𝐿(𝑇 ) +
𝑇∑︁

𝑡=⌊𝐿(𝑇 )⌋+1

P
(︁
𝜋OG,𝐾
𝑡 = 2, 𝑁2(𝑡− 1) ≥ 𝐿(𝑇 )

)︁

≤ 𝐿(𝑇 ) +
𝑇∑︁
𝑡=1

P
(︀
𝑣𝐾1,𝑡 < 𝜂3

)︀
+

𝑇∑︁
𝑡=1

P
(︁
𝜋OG,𝐾
𝑡 = 2, 𝑣𝐾1,𝑡 ≥ 𝜂3, 𝑁2(𝑡− 1) ≥ 𝐿(𝑇 )

)︁
≤ 𝐿(𝑇 ) +

𝑇∑︁
𝑡=1

P
(︀
𝑣𝐾1,𝑡 < 𝜂3

)︀
+

𝑇∑︁
𝑡=1

P
(︁
𝜋OG,𝐾
𝑡 = 2, 𝑣𝐾2,𝑡 ≥ 𝜂3, 𝑁2(𝑡− 1) ≥ 𝐿(𝑇 )

)︁
≤ (1 + 𝜖)2 log 𝑇

𝑑(𝜃2, 𝜃1)
+

∞∑︁
𝑡=1

P
(︀
𝑣𝐾1,𝑡 < 𝜂3

)︀
⏟  ⏞  

𝐴

+
𝑇∑︁
𝑡=1

P
(︁
𝜋OG,𝐾
𝑡 = 2, 𝑣𝐾2,𝑡 ≥ 𝜂3, 𝑁2(𝑡− 1) ≥ 𝐿(𝑇 )

)︁
⏟  ⏞  

𝐵

,

(2.5)

where the first step is the same as in the analysis of Auer et al. [2002] and applies

to any bandit policy. All that remains is to show that terms 𝐴 and 𝐵 are bounded

by constants. These bounds are given in Lemmas 3 and 4 whose proofs we will now

describe at a high-level and defer the full details to the Appendix.

Lemma 3 (Bound on term A). For any 𝜂 < 𝜃1, the following bounds holds for some

constant 𝐶1 = 𝐶1(𝜖, 𝜃1, 𝐾)
∞∑︁
𝑡=1

P
(︀
𝑣𝐾1,𝑡 < 𝜂

)︀
≤ 𝐶1.
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Proof outline. The goal is to bound P
(︀
𝑣𝐾1,𝑡 < 𝜂

)︀
by an expression that decays fast

enough in 𝑡 so that the series converges. This demonstrates that the algorithm en-

courages enough exploration such that the optimal arm is never underestimated for

too long, in expectation. Specifically, we show that there exists a positive constant ℎ

so that P
(︀
𝑣𝐾1,𝑡 < 𝜂

)︀
= 𝑂

(︀
1

𝑡1+ℎ

)︀
using an induction argument. Proving the base case

requires using properties specific to Beta and Bernoulli random variables, while the

inductive step is more general. The full proof is contained in Appendix A.4.2.

We remark that the core steps in the proof of Lemma 3, at least in the base case of

the induction, rely on properties of the Beta and Bernoulli variables. Because of this,

we suspect our analysis can strengthen a similar theoretical result for the Bayes UCB

algorithm. In particular, the main theorem of Kaufmann et al. [2012] states that the

quantile parameter in the Bayes UCB algorithm should be 1 − 1/(𝑡 log𝑐 𝑇 ) for some

constant 𝑐 ≥ 5. However, what is perplexing is that their simulation experiments

suggest that using a simpler sequence of quantiles, namely 1−1/𝑡, results empirically

in a lower mean regret. By utilizing techniques in our analysis, it is possible to prove

that the use of the quantiles 1 − 1/𝑡 would lead to the same optimal regret bound.

Therefore the ‘scaling’ by log𝑐 𝑇 is unnecessary.

Lemma 4 (Bound on term B). There exists 𝑇 * = 𝑇 *(𝜖, 𝜃) sufficiently large and a

constant 𝐶2 = 𝐶2(𝜖, 𝜃1, 𝜃2) so that for any 𝑇 ≥ 𝑇 *, we have

𝑇∑︁
𝑡=1

P
(︁
𝜋OG,𝐾
𝑡 = 2, 𝑣𝐾2,𝑡 ≥ 𝜂3, 𝑁2(𝑡− 1) ≥ 𝐿(𝑇 )

)︁
≤ 𝐶2.

Proof outline. This relies on a concentration of measure result and the assumption

that the 2nd arm was sampled at least 𝐿(𝑇 ) times. Because our index is non-increasing

in 𝐾, from Lemma 2, it is enough to only consider the simplest case when 𝐾 = 1.

The full proof is given in Appendix A.4.3.

Lemma 3 and 4, together with (2.5), imply that

E[𝑁2(𝑇 )] ≤ (1 + 𝜖)2 log 𝑇

𝑑(𝜃2, 𝜃1)
+ 𝐶1 + 𝐶2,
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and from this the regret bound follows.

2.3.1 Generalizations and a tuning parameter

As we have shown, the OGI algorithm is regret optimal for the Bernoulli bandit

problem. Morever, it is possible to generalize our algorithm to problems with any

bounded reward distribution and prove a weaker 𝑂(log 𝑇 ) regret bound. We see this

immediately from the discussion in Agrawal and Goyal [2012], where it is shown that

any bandit algorithm that is regret optimal for the Bernoulli bandit problem can

be modified to yield an algorithm that has 𝑂(log 𝑇 ) regret in a general setting with

(bounded) stochastic rewards. Informally, this would require ‘emulating ’ a Bernoulli

bandit problem and assuming Beta(1, 1) priors as before.

Yet another key observation is that the discount factor for Optimistic Gittins

Indices does not need to be exactly 1 − 1/𝑡. In fact, a tuning parameter can be

included to make the discount factor 𝛾𝑡+𝛼 = 1 − 1/(𝑡 + 𝛼) instead. Intuitively, this

would encourage a greater degree of ‘exploration’ over the arms. An inspection of the

proofs of Lemmas 3 and 4 shows that the result in Theorem 1 would still hold were

one to use such a tuning parameter. In practice, performance is remarkably robust

to our choice of 𝐾 and 𝛼.

2.4 Computational Experiments

Our goal is to benchmark Optimistic Gittins Indices (OGI) against state-of-the-art

Bayesian algorithms. Specifically, we compare ourselves against Thomson Sampling,

Bayes UCB and IDS. Each of these algorithms has in turn been shown to substan-

tially dominate other extant schemes. Our experimental setup closely follows that of

Russo and Van Roy [2014], Kaufmann et al. [2012] and Chapelle and Li [2011]. The

experiment from Kaufmann et al. [2012] is deferred to Appendix A.5.1 because it is

brief and sends a similar message to the rest of this section. We conclude with a novel

experiment to test the problem with multiple simultaneous arm pulls.

For the majority of experiments, we configure the OGI algorithm with 𝐾 = 1
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to keep the computational burden under control. In one experiment, included for

completeness, we test OGI with 𝐾 = 3 and 𝐾 = ∞, where the latter is equivalent

to using Gittins indices. The purpose of those experiments is to show the (limited)

value of a higher lookahead in the OGI algorithm.

We use a common discount factor schedule in all experiments setting 𝛾𝑡 = 1 −

1/(100+𝑡). The choice of 𝛼 = 100 is second order; our conclusions remain unchanged,

and actually appear to improve in an absolute sense with other choices of 𝛼. In

addition, in one experiment we examine the regret of OGI relative to its competitors

up to a horizon of 106 epochs, so that this choice of 𝛼 does not represent an attempt

to tune the performance of OGI for a specific time horizon.

2.4.1 Smaller scale experiments with IDS

This section considers a series of smaller scale experiments (10 arms, 1000 time peri-

ods) drawn from the paper introducing the IDS algorithm, [Russo and Van Roy, 2014].

A major consideration in running these experiments is that the CPU time required to

execute IDS, the closest competitor, based on the current suggested implementation is

orders of magnitudes greater than that of the index schemes or Thompson Sampling.

The main bottleneck is that IDS uses numerical integration, requiring the calculation

of a CDF over, at least, hundreds of iterations. By contrast, the version of OGI with

𝐾 = 1 uses 10 iterations of the Newton-Raphson method.

Gaussian We replicate the Gaussian experiments from Russo and Van Roy [2014].

In the first experiment (Table 2.1), the arms generate Gaussian rewards 𝑋𝑖,𝑡 ∼

𝒩 (𝜃𝑖, 1) where each 𝜃𝑖 is independently drawn from a standard Gaussian distribu-

tion. We simulate 1,000 independent trials with 10 arms and 1,000 time periods. The

implementation of OGI in this experiment uses 𝐾 = 1. It is difficult to compute ex-

act Gittins indices in this setting, but a classical approximation for Gaussian bandits

does exist; see Powell and Ryzhov [2012], Chapter 6.1.3. We term the use of that

approximation ‘OGI(∞) Approx’. In addition to regret, we show the average CPU

time taken, in seconds, to execute each trial.
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Algorithm OGI(1) OGI(∞) Approx. IDS TS Bayes UCB

Mean 49.19 47.64 55.83 67.40 60.30
Standard error 1.61 1.6 2.08 1.5 1.43

25% 17.49 16.88 18.61 37.46 31.41
50% 41.72 40.99 40.79 63.06 57.71
75% 73.24 72.26 78.76 94.52 86.40

CPU time (s) 0.02 0.01 11.18 0.01 0.02

Table 2.1: Gaussian experiment. OGI(1) denotes OGI with 𝐾 = 1, while OGI
Approx. uses the approximation to the Gaussian Gittins Index.

The key feature of the results here is that OGI offers an approximately 10%

improvement in regret over its nearest competitor IDS, and larger improvements

(20 and 40 % respectively) over Bayes UCB and Thompson Sampling. The best

performing policy is OGI with the specialized Gaussian approximation since it gives

a closer approximation to the Gittins Index. At the same time, OGI is essentially

as fast as Thompson sampling, and three orders of magnitude faster than its nearest

competitor (in terms of regret).

Bernoulli We next replicate the Beta-Bernoulli experiments from Russo and Van Roy

[2014]. In this experiment regret is simulated over 1,000 periods, with 10 arms each

having a uniformly distributed Bernoulli parameter. We simulate 1,000 independent

trials and Table 2.2 summarizes the results.

Algorithm OGI(1) OGI(3) OGI(∞) IDS TS Bayes UCB

Mean 18.12 18.00 17.52 19.03 27.39 22.71
Standard error 0.65 0.64 0.68 0.67 0.57 0.56

25% 6.26 5.60 4.45 5.85 14.62 10.09
50% 15.08 14.84 12.06 14.06 23.53 18.52
75% 27.63 27.74 24.93 26.48 36.11 30.58

CPU time (s) 0.19 0.89 (?) hours 8.11 0.01 0.05

Table 2.2: Bernoulli experiment. OGI(𝐾) denotes the OGI algorithm with a 𝐾 step
approximation and tuning parameter 𝛼 = 100. OGI(∞) is the algorithm that uses
Gittins Indices.

Each version of OGI outperforms other algorithms and the one that uses exact

Gittins Indices shows the lowest mean regret. Perhaps, unsurprisingly, when OGI
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looks ahead 3 steps (or when the lookahead is not limited), it performs better than

with a single step. It is however apparent that in each of these cases the improvement

over simply setting 𝐾 = 1 is marginal. Indeed, looking ahead 1 step is a reasonably

close approximation to the Gittins Index in the Bernoulli problem. In the Appendix,

we report the approximation error in approximating the Gittins index for various

choice of 𝐾. When using an optimistic 1 step approximation, the error is around 15%

and if 𝐾 is increased to 3, the error drops to around 4% (see Tables A.1 and A.2 in

the Appendix).

As an aside, we note that the regret we computed for the IDS algorithm is slightly

different from that reported by Russo and Van Roy [2014]. Specifically, we obtain

slightly lower regret for IDS than they report in the Gaussian experiments, and slightly

higher values for the Beta-Bernoulli case; we include a link to the code we used to

implement the algorithms1 as a reference.

2.4.2 Large scale experiment

This experiment replicates a large scale synthetic experiment in Chapelle and Li

[2011]. The key feature here is that we simulate a longer horizon of 𝑇 = 106 and

include a large number of arms, particularly we let 𝐴 = 100. This is an order of

magnitude greater than in the majority of synthetic bandit experiments we are aware

of. Our goal is to see how the algorithms scale both computationally and in terms

of performance. Such a setup is practically relevant because in applications such as

e-commerce or online advertising, the problems of interest are typically modeled with

many arms relative to the horizon, where each arm could represent a product or ad.

Because all the methods we test in our numerical experiments are regret optimal,

any relative difference in regret must shrink after a sufficiently large number of time

periods. The length of time for this ‘burn in’ period intuitively depends on the

number of arms in the problem. In particular, we can think of the horizon as giving

us a rough budget on the number of trials per arm via the ratio 𝑇/𝐴. The idea is

that with more trials per arm we should expect a smaller relative difference between
1https://github.com/gutin/FastGittins
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the algorithms (and indeed the theoretical guarantees for the algorithms require this

happen). We will see that even when the ratio 𝑇/𝐴 and 𝐴 itself are large, there is a

substantial difference between OGI and the competing benchmarks in both a relative

and absolute sense.

As this experiment requires an order of magnitude more iterations than the earlier

ones, we are only able to simulate the fastest algorithms, which are OGI with 𝐾 = 1,

Thompson Sampling and Bayes UCB. It was not possible to include IDS because its

performance is hindered by the fact that each arm pull decision requires time that is

quadratic in the number of arms to compute. Again, this is a Bernoulli experiment

where arm means are independently sampled from a uniform prior and each algorithm

assumes this same prior over the unknown mean rewards from the arms. We show

the algorithms’ regret averaged over 5,000 trials in Figure 2-1 and Table 2.3.
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Figure 2-1: Cumulative regret in the large-scale problem of this section averaged over
5,000 independent trials. We plot the number of periods, 𝑇 on a logarithmic scale.

As before, the OGI scheme consistently dominates the other two. What is par-

ticularly interesting is that despite going out to a horizon of 106 time periods, the

relative improvement in regret over these algorithms remains substantial. For in-

stance, going from a horizon length of 2 × 105 (corresponding to a heuristic budget

of 𝑇/𝐴 = 200 pulls per arm) to a horizon length of 106 (corresponding to a heuristic
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𝑇/𝐴 OGI Thompson IDS Rel. improvement (%) Abs. improvement

20,000 230.5 284.4 297.9 18.9 53.9
40,000 254.7 311.6 333.5 18.3 57.0
60,000 268.6 327.4 354.5 18.0 58.8
80,000 279.1 339.2 369.6 17.7 60.1
100,000 287.1 347.7 380.7 17.4 60.6

Table 2.3: Regret in the large scale experiment from OGI, Thompson Sampling and
Bayes UCB. The last two columns show the relative and absolute difference from
Thompson Sampling, which is the closest competitor to OGI.

budget of 𝑇/𝐴 = 1000 pulls per arm) resulted in the relative improvement offered by

OGI shrining only marginally, from 18.9% to 17.4%.

2.4.3 Bandits with multiple arm pulls

In this section, we consider a somewhat exploratory experiment; we seek to adapt

OGI to a more complex bandit problem (here, we allow for multiple simultaneous

arm pulls). Again, in the discounted infinite horizon setting, a number of heuristic

approaches have been proposed to adapt the Gittins index to more complex settings;

a good example is the so-called Whittle relaxation for restless bandits. One might

consider applying those same heuristic strategies to the optimistic gittins index.

For this experiment, we consider a more general MAB problem, where the agent

is able to pull up to a certain number (say 𝑚 < 𝐴) of the arms simultaneously. In

order to describe the problem, we recall that 𝐴 is the total number of arms and

define 𝒟𝑚 := {𝑑 ∈ {0, 1}𝐴 :
∑︀

𝑖 𝑑𝑖 ≤ 𝑚} to be the set of all 𝐴-dimensional binary

vectors with up to 𝑚 ones in them, which we take to be the action space. Let

𝑋𝑡 = (𝑋1,𝑡, . . . , 𝑋1,𝐴) be a tuple of (potential) rewards from the 𝐴 arms at time 𝑡,

where the definition of 𝑋𝑖,𝑡 for any arm 𝑖 is the same as in Section ??. Given a

decision 𝑑 ∈ 𝒟𝑚, which encodes the subset of arms pulled, the reward 𝑑⊤𝑋𝑡 is earned

and an arm 𝑗’s reward 𝑋𝑗,𝑡 is observed if and only if that arm is pulled, i.e. 𝑑𝑗 = 1.

We can then define a policy (𝜋𝑡, 𝑡 ∈ N) to be a 𝒟𝑚-valued stochastic process adapted

to an information set generated by past actions and observed feedback. A policy 𝜋’s
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regret is given by the equation

Regret (𝜋, 𝑇 ) = max
𝑑∈𝒟𝑚

𝑇 · E
[︀
𝑑⊤𝑋𝑡

]︀
−

𝑇∑︁
𝑡=1

E[𝜋⊤
𝑡 𝑋𝑡]

where the expectation is over both the randomness in the rewards, the prior and the

policy’s actions.

We propose a heuristic to this problem using our scheme, which is to compute the

Optimistic Gittins Index of every arm, at time 𝑡, using a discount factor of 1 − 1/𝑡

(just as before). However, for this problem, we pick 𝑚 arms with the largest indices.

This is essentially Whittle’s heuristic [Whittle, 1988], which was originally given for

the restless bandit problem but can be described as picking several arms with the

largest Gittins indices.

To test our policy, we simulate 𝐴 = 6 binary arms with uniformly distributed

biases and fix 𝑚 = 3. We benchmark our heuristic against Thompson Sampling and

IDS. Because the arms give independent Bernoulli rewards, we will use a flat Beta

prior for all of the algorithms. We implement the version of IDS designed for the

linear bandit problem because this experiment is a special case of a linear bandit.

Our implementation of IDS also uses 100 Monte Carlo samples per iteration.

The results, produced from 1,000 independent trials, are summarized in Figure 2-2

and Table 2.4. We notice a significant spread in the performance between OGI and

both Thompson Sampling and IDS. Just like for our main algorithm, the primary

computational bottleneck in using OGI comes from solving the stopping problem and

this can be onerous if 𝐾 is large. However, as the results suggest, the policy works

well even for low to moderate look-ahead parameters. The experiment here sets the

stage for an exploration of the appropriate extensions to the OGI algorithm for more

complex bandit problems (such as contextual bandits) which we leave for future work.

The results, produced from 2,000 independent trials, are summarized in Figure 2-2

and Table 2.4. The horizon is limited to 250 time periods because of the increased

computational effort required to execute a single trial of both the IDS algorithm and

Whittle’s heuristic, when 𝐾 > 1. This extra time is on the order of minutes for these
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Figure 2-2: Regret for bandits with multiple simultaneous arm pulls

IDS Thompson Whittle(1) Whittle(3) Whittle(4)

Mean 15.12 15.23 11.09 11.00 11.11
Standard error 0.21 0.13 0.14 0.15 0.15
25% 1.18 6.60 1.66 1.20 1.39
50% 10.84 14.75 10.34 9.91 9.74
75% 24.60 23.52 19.62 19.27 19.13
CPU time (s) 349.25 2.07 14.20 2196.83 4106.89

Table 2.4: Regret from the multiple arm pulls experiment. “Whittle(𝐾)" refers to
the Whittle heuristic policy, where 𝐾 look-ahead steps are used in computing the
Optimistic Gittins index.

algorithms. For the sake of simplicity, we dub this algorithm as exactly ‘Whittle’s

heuristic’ for the remainder of this section.

We notice a significant spread in performance between Whittle’s heuristic and

both Thompson Sampling and IDS. Just like for our main algorithm, the primary

computational bottleneck in using Whittle’s heuristic comes from solving the stopping

problem and this can be onerous if 𝐾 is large. However, as the results suggest, the

policy works well even for low to moderate look-ahead parameters but nonetheless

improves slightly when 𝐾 increases. By contrast, IDS is one of the slowest algorithm

because it needs to generate a hundred Monte Carlo samples in every iteration.
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Chapter 3

Collateral Management

3.1 Introduction

Collateralized borrowing has become increasingly prevalent in the financial markets

after the housing bubble and subsequent crisis between 2007-2009. Major regulatory

changes, in addition to market participants’ greater preferences for secured borrowing,

have reinforced this trend. Driven by the need to mitigate systemic market risks, reg-

ulators around the world are pushing for centralized management of collateral-based

transactions and demanding more transparency on allocation of assets as collateral.

Such changes are putting pressure on investors to manage their collateral more ef-

ficiently and have contributed to a significant growth in centralized collateral man-

agement services. The increased demand for collateral has also presented itself with

new investment opportunities for various types of corporations such as broker-dealers,

investment banks and other sell-side firms.

In this chapter, we study the collateral management problem (CMP) faced by a

Prime Broker, which provides bespoke securities lending and leveraged trade execu-

tion services to buy-side investors. By subscribing to the Prime Broker’s bundle of

services, its customers, which are typically hedge funds, delegate their day-to-day op-

erational responsibilities around securities clearing and, most importantly, collateral

allocation to the Prime Broker. By better understanding the Prime Broker’s problem,

we seek to draw insights on how a more general centralized collateral management
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provider could operate more efficiently.

In addition to focusing on a Prime Broker’s business alone, we could also regard

the Prime Broker as an individual agent in a multi-agent bilateral securities lending

market, specifically an agent who acts as as a lender of assets, or taker of collateral. We

will see that even a single lender’s problem is a complex, extremely high-dimensional

one, which involves a plethora of “moving parts”. These include fluctuating asset

prices, customer demands and even, as we will discover later, the internal states for

each individual customer that the lender interacts with. Arguably the amount of

variables (considering we are also taking into account a multi-period version of a

problem) involved is greater than traditional financial engineering problems such as

portfolio optimization, derivatives pricing, which makes this problem a particularly

salient one. By having a grasp on this problem, getting a handle on a game-theoretic

version, by conceptually stitching together several single agents’ problems, becomes

more plausible.

At its core, among other responsibilities, a Prime Broker’s main job is to satisfy its

clients’ borrowing demands. Therefore, we can speak of it as though the Prime Broker

maintains an inventory of assets. This inventory depletes with new client demands

and gets replenished when the Prime Broker procures securities either by borrowing

or purchasing them from external sources in the market. The Prime Broker’s revenue

is derived from charging fees on the assets lent out, based on a small percentage

of their current market price, typically expressed in basis points. This amount also

depends on the duration of the loan. In exchange for this, the customer is required

to post collateral to cover the economic exposure (i.e. the additional risk to the

Prime Broker from counter-party default) from the activity. The notional value of

the collateral pledged needs to exceed the value of the loan by a small margin, which is

determined usually in terms of a discount applied to each asset pledged as collateral,

also known as a haircut. The size of the haircut reflects the perceived economic risk in

holding a particular asset; a riskier asset (such as a stock) would have a greater haircut

than safer, stable securities (e.g. treasury bonds). It is also via the hypothecation

of collateral that a Prime Broker is able to refill its inventory and “cross-off” the
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flow of assets from different clients, without having to go to the market and pay out

fees to other lenders. This practice is known as internalization in the industry and is

essential for a Prime Broker to remain competitive and improve its business efficiency.

We will devote considerable attention to optimizing this process.

One of the questions we consider is how to appropriately set the fees that the

Prime Broker charges for lending out assets. If the fees are too low, clearly the Prime

Broker will make a loss, otherwise if the fees are too high, or more specifically are

above the market rate, the Prime Broker will quickly lose its customers’ business. In

order to offer the most competitive pricing, we will attempt to both minimize and

estimate the costs of satisfying future demand from the Prime Broker’s inventory by

formulating a multi-period (stochastic) optimization problem. By focusing on the

cost-minimization aspect of the problem, and deriving the crucial information of how

much it costs to be lacking in a certain security, a prime broker can then gauge what

borrowing fees it should charge to its clients a priori. We delve into this fundamental

idea later on in the chapter.

In contrast to our observations, from what we are aware of, current industry

practices use ad-hoc and short-sighted (although somewhat principled) methods of

not only setting the Prime Broker’s borrowing fees but also managing its day-to-day

operations. These are based on an estimate of the external value of a given asset,

or intuitively the amount of money that can be made if that asset were lent out in

future based on its market price and expected future demand. We, on the other

hand, formulate a mathematical optimization model that captures the problem a

Prime Broker faces. Based on that model, we use an approximate optimal shadow

price, as a proxy to estimate an asset’s true value to the Prime Broker. This can

be seen as the internal value of an asset (as inventory) to the Prime Broker and can

be cheaper than an external borrowing fee that a customer might pay out to street

lenders. Its lower value would come from the fact that the Prime Broker has access

to liquidity from other clients and can take advantage of this, i.e. the internalization

it’s able to perform as part of its daily operations.

Ultimately, we propose a practical and efficient dual-price based algorithm for
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solving the CMP. On top of that, we provide a theoretical guarantee for the algorithm,

that is stronger than the guarantees that exist for other dual-price based algorithms

applied to inventory-focused revenue-maximization problems that exist in the broader

revenue management literature. Moreover, we provide empirical evidence for our

algorithm’s efficacy by backtesting it on historical data from a Prime Broker and find

material cost reductions from borrowing that would lead also to increased annual

profits (on the order of millions of dollars) for the Prime Broker. In summary, the

main contributions we make from this work are:

∙ We introduce a novel formulation of a collateral management problem (CMP)

of interest to a Prime Broker, and potentially similar securities lenders. The

model is based on solving an intractable multi-period, stochastic optimization

problem.

∙ We propose a simple dual-price based algorithm for the CMP and show that

is not only asymptotically optimal but also has, in several useful settings, a

constant additive loss relative to an optimal policy.

∙ We introduce a new set of simulation benchmarks for the CMP that are both

purely data-driven and based on synthetic data. From these benchmarks, we

demonstrate empirically that our dual-price based algorithm offers substantially

improved revenues for a securities lender than the incumbent approaches that

are popular today.

We now proceed to discuss existing ways the collateral management problem has been

approached, as well as discussing similar problems from the revenue management

literature, in the following review.

3.2 Model

This section describes a multi-period model for a securities lender who needs to loan

assets to multiple clients and hypothecate collateral back from them. We refer to this

as the Collateral Management Problem (CMP).
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Setup We consider a universe of𝐾 financial assets indexed by 𝑘 ∈ {1, . . . , 𝐾} = [𝐾]

where we say that the first asset is cash. There is a single securities lender and 𝑁

borrowers. Throughout this chapter we let 𝑖 ∈ {1, . . . , 𝑁} = [𝑁 ] index the borrowers.

Initially, the lender is endowed with an inventory 𝑥𝑘 ∈ R+ for each asset 𝑘 ∈ [𝐾], and

we denote by 𝑥 , (𝑥1, . . . , 𝑥𝐾) the tuple of the 𝐾 inventories. Each of the assets is

assigned a ‘haircut’ ℎ𝑘 ∈ [0, 1] that gives the fraction of its market value accepted as

collateral. Denote by ℎ , (ℎ1, . . . , 𝑘𝐾) ∈ [0, 1]𝐾 the tuple of haircuts. We will now

describe the (random) dynamics of the model.

Let 𝑇 be a given integer horizon and let us index time periods by 𝑡 ∈ {1, . . . , 𝑇} =

[𝑇 ]. With each client 𝑖, we associate a non-negative real-valued (discrete-time)

stochastic process (𝛿𝑖𝑘,𝑡(𝜔))𝑡∈[𝑇 ] where 𝛿𝑖𝑘,𝑡(𝜔) denotes the quantity of the 𝑘th asset

that client 𝑖 requests to borrow at time 𝑡. We will refer to this random variable as the

demand from 𝑖 at 𝑡 and we call the sequence of such demands as a demand process

from client 𝑖. If we omit the subscript 𝑘, 𝛿𝑖𝑡(𝜔) denotes the vector of client demands

for different assets. Each client also possesses their own inventory of assets that can

be utilized for taking collateral. For client 𝑖, we model its inventory of asset 𝑘 as an-

other non-negative stochastic process (𝑏𝑖𝑘,𝑡(𝜔))𝑡∈[𝑇 ]; the vector of these values for the

different assets is then written as 𝑏𝑖𝑡(𝜔). The final primitives in our model are asset

prices, which are given as R𝐾
+ -valued stochastic processes (𝑝𝑡(𝜔))𝑡∈[𝑇 ]. All random

variables are defined on a common probability space (Ω,ℱ ,P) and we will suppress

dependence on 𝜔 whenever it’s otherwise clear.

Problem Firstly, we denote by ℱ𝑡 the 𝜎-algebra generated by sample paths of the

price, demand and inventory processes from all clients up to time 𝑡, i.e.

ℱ𝑡 , 𝜎
(︀{︀

(𝑝𝑠(𝜔), 𝛿𝑖𝑠(𝜔), 𝑏𝑖𝑠(𝜔)) : 𝑠 = 1, . . . , 𝑡, 𝑖 ∈ [𝑁 ]
}︀
, 𝜔 ∈ Ω

)︀
.

The lender is obligated to always satisfy a client’s demands for an asset by lending it

out when requested. We state this notion precisely by defining a policy as

𝑣𝑡(𝜔) , (𝑢1𝑡 (𝜔), . . . , 𝑢𝑁𝑡 (𝜔), 𝑧𝑡(𝜔)),
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namely, a tuple of 𝑁 + 1 non-negative 𝐾-dimensional processes, each one being

adapted to the filtration ℱ𝑡. A policy 𝑣𝑡 is called feasible if it almost surely sat-

isfies all of the constraints,

𝑡∑︁
𝑠=1

𝑧𝑠 +
𝑡∑︁

𝑠=1

𝑁∑︁
𝑖=1

𝑢𝑖𝑠 ≥
𝑡∑︁

𝑠=1

𝑁∑︁
𝑖=1

𝛿𝑖𝑡 − 𝑥, ∀ 𝑡 ∈ [𝑇 ] (3.1)

(ℎ · 𝑝𝑡)⊤𝑢𝑖𝑡 = 𝑝⊤𝑡 𝛿
𝑖
𝑡, ∀ 𝑡 ∈ [𝑇 ], 𝑖 ∈ [𝑁 ] (3.2)

𝑢𝑖𝑡 ≤ 𝑏𝑖𝑡, ∀ 𝑡 ∈ [𝑇 ], 𝑖 ∈ [𝑁 ]. (3.3)

where ‘·’ is a binary operator for the component-wise product of two vectors. We de-

note the set of feasible policies by Π𝑇 . As a technical assumption to ensure feasibility,

we shall also assume that 𝑏𝑖1,𝑡(𝜔), namely the supply of cash, is set to an large enough

constant and 𝑝1,𝑡 = 1, ℎ1 = 1. This constant could then be the maximum possible

exposure, or equivalently the maximum conceivable value for the expression 𝑝⊤𝑡 𝛿𝑖𝑡.

Note that (3.1) is a ‘covering’ constraint which states that all cumulative demands

for assets, in excess of 𝑥, must be covered by assets borrowed externally or re-used

from previously taken collateral. Constraints (3.2) and (3.3) state that the market

value of collateral cannot be more than that of the demand (loan) and that it can only

be taken from the client’s inventory. Finally, we emphasize that due to assumption

on the supply of cash, it holds that for any realization of 𝜔, there always exists a

feasible policy.

We will assume that re-using assets from collateral incurs no cost to the lender

but procuring an asset 𝑘 from the external marketplace costs 𝑐𝑘 for every unit taken

in this way. Thus, letting 𝑐 , (𝑐1, . . . , 𝑐𝐾) be a cost vector, we aim to solve the

stochastic problem for minimizing the lender’s expected costs:

minimize
(𝑧,𝑢1,...,𝑢𝑁 )∈Π𝑇

𝑇∑︁
𝑡=1

E𝑐⊤𝑧𝑡 (3.4)

whose optimal value is denoted by 𝐽*
𝑇 (𝑥). For values of 𝐾 larger than, say, 3 or

4, the problem suffers from the ‘curse of dimensionality’. One of the main goals
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in this chapter is to show, how in some general problem settings, we can break the

curse of dimensionality by finding provably near-optimal and computationally efficient

algorithms.

3.3 Problem Analysis and Collateral Prices

In this section we focus on Problem 3.7, by considering several settings, where it is

possible to derive a near-optimal policy in polynomial time. As a conclusion of this

work, we derive a key insight about valuation of assets as collateral.

We begin by making some immediate observations from Section 3.2. First of all

note that while constraints (3.3) and (3.2) are specific to the main problem in this

chapter, we can actually analyze a more general setup, which has dual benefits of

simplifying the subsequent analysis and demonstrating that different kinds of con-

straints could be incorporated to model the lender’s requirements on collateral. In

particular, if we take the process 𝜉𝑡(𝜔) ∈ R𝑑 to represent exogenous random data and

𝛿𝑡 = 𝛿𝑡(𝜔) to be a single demand process, we can consider sets parameterized by 𝜉𝑡.

Particularly, we can let 𝑈 : R𝑑 ↦→ 𝒦 be a mapping from parameters 𝜉 to the family

of closed, convex sets 𝒦, defined according to

𝑈(𝜉𝑡) ,
{︀
𝑢𝑡 ∈ R𝐾

+ : 𝑔𝑙(𝑢𝑡; 𝜉𝑡) ≤ 0, 𝑙 = 1, . . . , 𝐿
}︀

where the functions 𝑔𝑙 are convex and 𝑈(𝜉𝑡) ̸= ∅ for any choices of 𝑡 and 𝜉𝑡. Therefore

if we redefine the filtration ℱ𝑡 in terms of the random variables 𝛿𝑡, 𝜉𝑡 and consider

ℱ𝑡-measurable functions, 𝑢𝑡, 𝑧𝑡 : Ω ↦→ R𝐾
+ that satisfy, almost surely, the constraints

𝑡∑︁
𝑠=1

𝑧𝑠 +
𝑡∑︁

𝑠=1

𝑢𝑠 ≥
𝑡∑︁

𝑠=1

𝛿𝑡 − 𝑥, ∀ 𝑡 ∈ [𝑇 ] (3.5)

𝑢𝑡 ∈ 𝑈(𝜉𝑡) ∀ 𝑡 ∈ [𝑇 ] (3.6)

this represents a new kind of feasible policy belonging to a class Π𝐺
𝑇 . Now consider
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the following problem

minimize
(𝑧,𝑢)∈Π𝐺

𝑇∑︁
𝑡=1

E𝑐⊤𝑧𝑡. (3.7)

We redefine 𝐽*
𝑇 (𝑥) to be the optimal value of (3.7) and make the following claim in

order to relate it back to Section 3.2.

Lemma 5. Problem (3.7) subsumes Problem (3.4)

Proof. First, we can see this by re-writing
∑︀

𝑖 𝛿
𝑖
𝑡 for every 𝑡 as 𝛿𝑡 in Problem (3.4).

Then we take 𝜉𝑡 = (𝑏1𝑡 , . . . , 𝑏
𝑁
𝑡 , 𝛿

1
𝑡 , . . . , 𝛿

𝑁
𝑡 , 𝑝𝑡) to be the concatenation of the original

data and then let

𝑈(𝑏1𝑡 , . . . , 𝑏
𝑁
𝑡 , 𝛿

1
𝑡 , . . . , 𝛿

𝑁
𝑡 , 𝑝𝑡)

=

{︃
𝑢𝑡 ∈ R𝐾

+ : 𝑢𝑡 =
∑︁
𝑖

𝑢𝑖𝑡, (ℎ · 𝑝𝑡)⊤𝑢𝑖𝑡 = 𝑝⊤𝑡 𝛿
𝑖
𝑡, 0 ≤ 𝑢𝑖 ≤ 𝑏𝑖𝑡

}︃
. (3.8)

We have successfully abstracted away, from the original problem, details of clients,

prices, haircuts and borrower inventories, which yielded the general formulation of

Problem (3.7).

3.3.1 Lower bound on cost

We begin the main body of our analysis by computing a lower bound on 𝐽*
𝑇 (𝑥) given

in the Lemma below. This will be useful as it will allow us to approximate the optimal

value. Throughout, we will use the shorthand 𝛿𝑡 = E [𝛿𝑡] to denote expected demand.

Lemma 6. Let (𝜆𝑡 ∈ R𝐾
+ , 𝑡 = 1, . . . , 𝑇 ) be any sequence of vectors such that 𝜆𝑡+1 ≤

𝜆𝑡 ≤ 𝑐 for all 𝑡 = 1, . . . , 𝑇 − 1. Consider the function

𝐿(𝜆1, . . . , 𝜆𝑇 ;𝑥) ,
𝑇∑︁
𝑡=1

𝜆⊤𝑡 𝛿𝑡 −
𝑇∑︁
𝑡=1

E

[︃
sup

𝑢𝑡∈𝑈(𝜉𝑡)

𝜆⊤𝑡 𝑢𝑡

]︃
− 𝜆⊤1 𝑥 (3.9)
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where the expectation is understood to be over 𝜉𝑡. Then we have that

𝐿(𝜆1, . . . , 𝜆𝑇 ;𝑥) ≤ 𝐽*
𝑇 (𝑥).

Proof. We will derive the lower bound 𝐿 by performing a sequence of relaxations on

(3.7). First we start by relaxing the first set of constraints to hold in expectation.

This gives the following lower bound to 𝐽𝑇 (𝑥)

minimize
((𝑢𝑡,𝑧𝑡))𝑇𝑡=1∈Π𝐺

𝑇

𝑇∑︁
𝑡=1

E
[︀
𝑐⊤𝑧𝑡

]︀
subject to E

[︃
𝑡∑︁

𝑠=1

𝑧𝑠 +
𝑡∑︁

𝑠=1

𝑢𝑠 + 𝑥

]︃
≥

𝑡∑︁
𝑠=1

𝛿𝑡, ∀𝑡 ∈ [𝑇 ]

𝑢𝑡 ∈ 𝑈(𝜉𝑡) ∀𝑡 ∈ [𝑇 ], P− 𝑎.𝑠.

(3.10)

Since 𝜆𝑡+1 ≤ 𝜆𝑡 for all 𝑡, we may consider the defining auxiliary variables 𝜈𝑡 , 𝜆𝑡−𝜆𝑡+1

for 𝑡 ≤ 𝑇 − 1 and 𝜈𝑇 , 𝜆𝑇 . Now because, by construction, 𝜈𝑡 ≥ 0, the following

Lagrangian relaxation is a a lower bound to (3.10)

minimize
((𝑢𝑡,𝑧𝑡))𝑇𝑡=1∈Π𝐺

𝑇

𝑇∑︁
𝑡=1

E
[︀
𝑐⊤𝑧𝑡

]︀
−

𝑇∑︁
𝑡=1

𝜈⊤𝑡 E

[︃
𝑡∑︁

𝑠=1

𝑧𝑠 +
𝑡∑︁

𝑠=1

𝑢𝑠 + 𝑥−
𝑡∑︁

𝑠=1

𝛿𝑡

]︃
subject to 𝑢𝑡 ∈ 𝑈(𝜉𝑡) ∀𝑡 ∈ [𝑇 ]

(3.11)

Intuitively, a shortfall in the supply of assets will penalize the objective function,

while a surplus improves it. Now we let (𝑧*𝑡 , 𝑢
*
𝑡 )

𝑇
𝑡=1 ∈ Π𝐺

𝑇 denote an optimal policy

to Problem (3.11) and we re-arrange terms in the optimal objective function of the
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relaxed problem as follows:

𝑇∑︁
𝑡=1

E
[︀
𝑐⊤𝑧*𝑡

]︀
−

𝑇∑︁
𝑡=1

𝜈⊤𝑡 E

[︃
𝑡∑︁

𝑠=1

𝑧*𝑠 +
𝑡∑︁

𝑠=1

𝑢*𝑠 + 𝑥−
𝑡∑︁

𝑠=1

𝛿𝑠

]︃

=
𝑇∑︁
𝑡=1

E

⎡⎣(︃𝑐− 𝑇∑︁
𝑠=𝑡

𝜈𝑠

)︃⊤

𝑧*𝑡

⎤⎦− E

[︃
𝑇∑︁
𝑡=1

𝜈⊤𝑡

𝑡∑︁
𝑠=1

(𝑢*𝑠 − 𝛿𝑠)

]︃
−

𝑇∑︁
𝑡=1

𝜈⊤𝑡 𝑥 (3.12)

=
𝑇∑︁
𝑡=1

E
[︁
(𝑐− 𝜆𝑡)⊤ 𝑧*𝑡

]︁
− E

⎡⎣ 𝑇∑︁
𝑡=1

(︃
𝑇∑︁
𝑠=𝑡

𝜈𝑡

)︃⊤

(𝑢*𝑡 − 𝛿𝑡)

⎤⎦− 𝜆⊤1 𝑥 (3.13)

=
𝑇∑︁
𝑡=1

E
[︁
(𝑐− 𝜆𝑡)⊤ 𝑧*𝑡

]︁
− E

[︃
𝑇∑︁
𝑡=1

𝜆⊤𝑡 (𝑢*𝑡 − 𝛿𝑡)

]︃
− 𝜆⊤1 𝑥 (3.14)

= E

[︃
𝑇∑︁
𝑡=1

𝜆⊤𝑡 (𝛿𝑡 − 𝑢*𝑡 )

]︃
− 𝜆⊤1 𝑥 (3.15)

=
𝑇∑︁
𝑡=1

𝜆⊤𝑡 𝛿𝑡 −
𝑇∑︁
𝑡=1

E
[︀
𝜆⊤𝑡 𝑢

*
𝑡

]︀
− 𝜆⊤1 𝑥

=
𝑇∑︁
𝑡=1

𝜆⊤𝑡 𝛿𝑡 −
𝑇∑︁
𝑡=1

E

[︃
sup

𝑢𝑡∈𝑈(𝜉𝑡)

𝜆⊤𝑡 𝑢𝑡

]︃
− 𝜆⊤1 𝑥 (3.16)

= 𝐿(𝜆1, . . . , 𝜆𝑇 ;𝑥).

Equations (3.12), (3.13) follow from changing the order of summation and linearity

of expectation, (3.13) also follows from the way the variables 𝜈𝑡 were constructed in

the first place [so that 𝜆𝑡 =
∑︀𝑇

𝑠=𝑡 𝜈𝑠]. Equation (3.15) is due to 𝑧*𝑡 being an optimal

control and 𝑐 − 𝜆𝑡 ≥ 0 for all 𝑡. Finally (3.16) holds since it is optimal, by the

exogeneity of 𝜉𝑡, for the 𝑢*𝑡 to be chosen in a myopic fashion.

Since 𝐿(𝜆1, . . . , 𝜆𝑇 ;𝑥) is a lower bound on the optimal objective function 𝐽*
𝑇 (𝑥),

it is fruitful to consider maximizing the aforementioned function, which gives the the

dual problem

𝐽𝜆(𝑥) , sup
𝜆1,...,𝜆𝑇∈R𝐾

+

{𝐿(𝜆1, . . . , 𝜆𝑇 ;𝑥) : 0 ≤ 𝜆1 ≤ . . . ≤ 𝜆𝑇 ≤ 𝑐} . (3.17)

As we will demonstrate later, the possibly different values of variables 𝜆𝑡 are not

that crucial, so we may consider a (slightly) weaker lower bound, which is easier to
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compute and analyze, given as follows. First of all, let us define for 0 ≤ 𝜆 ≤ 𝑐, the

function 𝐿𝑇 (𝜆;𝑥) , 𝐿(𝜆, . . . , 𝜆;𝑥), that is, it’s the objective function value of the

dual problem when its arguments satisfy 𝜆1 = . . . = 𝜆𝑇 = 𝜆. Now we introduce the

problem

𝐽𝜆
𝑇 (𝑥) , sup

𝜆∈R𝐾
+

{𝐿𝑇 (𝜆;𝑥) : 𝜆 ≤ 𝑐} (3.18)

which gives the tightest lower bound to (3.11) among the possible bounds from

𝐿𝑇 (𝜆;𝑥). Then we record the following relationships between the optimal value to

Problem (3.11) and the bounds considered so far.

Lemma 7. We have for any initial inventory 𝑥 ∈ R𝐾
+ that

𝐽𝜆
𝑇 (𝑥) ≤ 𝐽𝜆

𝑇 (𝑥) ≤ 𝐽*
𝑇 (𝑥)

Proof. The right bound is immediate from Lemma 6 in that for any 0 ≤ 𝜆1 ≤ . . . ≤

𝜆𝑇 ≤ 𝑐 we have 𝐿(𝜆1, . . . , 𝜆𝑇 ;𝑥) ≤ 𝐽*
𝑇 (𝑥), so this is also true for the supremum over

the 𝜆𝑡.

For the left bound notice that

𝐽𝜆(𝑥) , sup
𝜆1,...,𝜆𝑇∈R𝐾

+

{𝐿(𝜆1, . . . , 𝜆𝑇 ;𝑥) : 0 ≤ 𝜆1 ≤ . . . ≤ 𝜆𝑇 ≤ 𝑐, 𝜆1 = . . . = 𝜆𝑇} .

(3.19)

which looks identical to problem (3.17) except that the feasible set of (3.19) is a

subset of that for (3.17).

To conclude this preliminary analysis, we are going to derive some properties of the

optimal solution 𝜆* for 𝐽𝜆(𝑥) that will lead us to develop a simple but asymptotically

optimal algorithm. We state these properties in the below Lemma.

Lemma 8. Firstly, the optimization problem (3.18) is convex.

Secondly, let us denote by 𝜕𝜆𝑓(𝜆) the sub-differential of a function 𝑓 at a point

𝜆. Suppose 𝜆* is an optimal solution to (3.18), then there exist vectors 𝑢̄𝑡 ∈ R𝐾 such

that 𝑢̄𝑡 ∈ 𝜕𝜆*E
[︀
sup𝑢𝑡∈𝑈(𝜉𝑡)(𝜆

*)⊤𝑢𝑡
]︀

for all 𝑡, and such that for all assets 𝑘 ∈ [𝐾], the
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following statements hold

𝜆*𝑘 < 𝑐𝑘 =⇒
𝑇∑︁
𝑡=1

𝛿𝑘,𝑡 ≤
𝑇∑︁
𝑡=1

𝑢̄𝑘,𝑡 + 𝑥𝑘

𝑇∑︁
𝑡=1

𝛿𝑘,𝑡 <

𝑇∑︁
𝑡=1

𝑢̄𝑘,𝑡 + 𝑥𝑘 =⇒ 𝜆*𝑘 = 0.

Proof. The first property follows from showing that 𝐿(𝜆;𝑥) is concave in 𝜆 and

the second property from finding the relevant KKT conditions. The full proof is in

Appendix B.1.1.

3.3.2 Near-optimal selection policies

For this part of the analysis, we will introduce (collateral) selection rules, which are a

key ingredient to developing policies for the main problem in this chapter. These are

a class of functions that in each period pick a vector 𝑢𝑡 ∈ 𝑈(𝜉𝑡) from the admissible

sets. Since we derived, in some sense, optimal dual variables for the assets denoted

by 𝜆*, we will use them in designing selection rules. In fact, the class of functions we

consider is specific enough that we make the following definition:

Definition 1 ((𝜆-)selection rule). For any 𝜆 ∈ R𝐾
+ , a function 𝑢* : R𝑑 ↦→ R𝐾,

parameterized by 𝜆, so that for any 𝜉

𝜆⊤𝑢*(𝜉;𝜆) = sup
𝑢∈𝑈(𝜉)

𝜆⊤𝑢

and 𝑢*(𝜉;𝜆) ∈ 𝑈(𝜉) is called a selection rule, or a 𝜆-selection rule to make clear its

parameter.

We relate back selection rules to the original problem (3.7) by constructing policies

from them. In fact, we define a class of policies as follows:

Definition 2 (𝜆-selection policy). Fix 𝜆 ∈ R𝐾 as a parameter. Let 𝑢𝑆,𝜆𝑡 := 𝑢*𝑡 (𝜉𝑡;𝜆)

and

𝑧𝑆,𝜆𝑡 :=

(︃
𝑡∑︁

𝑠=1

𝛿𝑠 −
𝑡−1∑︁
𝑠=1

𝑧𝑆,𝜆𝑠 −
𝑡∑︁

𝑠=1

𝑢𝑆,𝜆𝑠 − 𝑥

)︃+
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Then the sequence of pairs ((𝑢𝑆,𝜆𝑡 , 𝑧𝑆,𝜆𝑡 ))𝑇𝑡=1 is called a 𝜆-selection policy.

The next proposition verifies that this does indeed define a feasible policy for our

problem.

Proposition 2. Consider the sequence ((𝑢𝑆,𝜆𝑡 , 𝑧𝑆,𝜆𝑡 ))𝑇𝑡=1 in Definition 2. Then this se-

quence almost surely satisfies the constraints of Problem 3.7 and is therefore a feasible

policy.

Proof. We show claim as follows. We have for any 𝑡 that

𝑡∑︁
𝑠=1

𝑧𝑆,𝜆𝑠 +
𝑡∑︁

𝑠=1

𝑢𝑆,𝜆𝑠 + 𝑥 =

(︃
𝑡∑︁

𝑠=1

𝛿𝑠 −
𝑡−1∑︁
𝑠=1

𝑧𝑆,𝜆𝑠 −
𝑡∑︁

𝑠=1

𝑢𝑆,𝜆𝑠 − 𝑥

)︃+

+
𝑡−1∑︁
𝑠=1

𝑧𝑆,𝜆𝑠 +
𝑡∑︁

𝑠=1

𝑢𝑆,𝜆𝑠 + 𝑥

≥
𝑡∑︁

𝑠=1

𝛿𝑠

and finally 𝑢𝑆,𝜆𝑡 = 𝑢*𝑡 (𝜉;𝜆) ∈ 𝑈(𝜉𝑡), which completes the proof.

Since the 𝜆-selection policy is feasible, it will be helpful to define its expected cost

so that we can compare it to the optimal one. Therefore, we write

𝐽𝑆,𝜆(𝑥) ,
𝑇∑︁
𝑡=1

E
[︁
𝑧𝑆,𝜆𝑡

]︁
.

The main result of this section will be that the 𝜆*-selection policy, that is the 𝜆-

selection policy parameterized by 𝜆 = 𝜆*, is under fairly mild assumptions asymptot-

ically optimal for Problem 3.7. Furthermore, in several important cases, the optimal-

ity gap is bounded by a constant that does not grow at all with 𝑇 . We now make the

first of the assumptions used for the result.

Assumption 1. The mapping 𝑈 : R𝑑 ↦→ 𝒦 is such that for all 𝜉 ∈ R𝑑, there exists a

unique selection rule 𝑢*(𝜉;𝜆*). That is, 𝑢*(𝜉;𝜆*) is the unique maximizer of (𝜆*)⊤𝑢𝑡

over all 𝑢𝑡 ∈ 𝑈(𝜉𝑡), which is guaranteed to exist.

With this assumption in place, we can uniquely identify a selection policy that

‘satisfies’ the optimality conditions given by 𝜆* in Lemma 8. The following Proposi-

tion states this observation.
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Proposition 3. Let 𝜆* be an optimal solution to Problem (3.18) and suppose that 𝑈

satisfies Assumption 1. We then have, for every time 𝑡, that

𝜕𝜆E

[︃
sup

𝑢𝑡∈𝑈(𝜉𝑡)

(𝜆)⊤𝑢𝑡

]︃
= {E [𝑢*𝑡 (𝜉𝑡;𝜆)]} (3.20)

and therefore for every asset 𝑘, the following statements hold

𝜆*𝑘 < 𝑐𝑘 =⇒
𝑇∑︁
𝑡=1

𝛿𝑘,𝑡 ≤
𝑇∑︁
𝑡=1

E
[︀
𝑢*𝑘,𝑡(𝜉𝑡)

]︀
+ 𝑥𝑘 (3.21)

𝑇∑︁
𝑡=1

𝛿𝑘,𝑡 ≤
𝑇∑︁
𝑡=1

E
[︀
𝑢*𝑘,𝑡(𝜉𝑡)

]︀
+ 𝑥𝑘 =⇒ 𝜆*𝑘 = 0 (3.22)

where 𝑢*𝑡 (𝜉𝑡) , 𝑢*𝑡 (𝜉;𝜆
*).

Proof. The proof essentially shows that if the selection rule is unique, then the sub-

differential can be “replaced” with a regular gradient. In that case, we would use

Lemma 8 and the fact that 𝑢̄𝑡 = E [𝑢*𝑡 (𝜉𝑡;𝜆)] always. The full proof is deferred to

Appendix B.1.1.

Before stating our main results, we state key definitions and Lemmas used to

describe the state of the system, namely the lender’s inventory, which until now we

essentially avoided.

Definition 3 (Inventory process). Let us define the shorthand ∆𝑡 , 𝛿𝑡 − 𝑢𝑆,𝜆
*

𝑡 . For

every asset 𝑘, consider the discrete time process given recursively as

𝑥𝑘,𝑡 =

⎧⎪⎨⎪⎩𝑥𝑘 𝑡 = 1

(𝑥𝑘,𝑡−1 −∆𝑘,𝑡−1)
+ 𝑡 > 1

which we will refer to as an inventory process for asset 𝑘. The tuple of inventory

processes for all 𝐾 assets is denoted by 𝑥𝑡.

Using this definition, we state two Lemmas used in the proofs of the subsequent

main results.
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Lemma 9.

𝐽𝑆,𝜆*

𝑇 (𝑥) =
𝑇∑︁
𝑡=1

E
[︀
𝑐⊤(∆𝑡 − 𝑥𝑡)+

]︀
.

Proof. The proof relies on induction and appears in Appendix B.1.1.

Lemma 10. For any asset 𝑘, we have

𝑇∑︁
𝑡=1

E
[︀
(∆𝑘,𝑡 − 𝑥𝑘,𝑡)+

]︀
=

𝑇∑︁
𝑡=1

E [∆𝑘,𝑡]− 𝑥𝑘 + E [𝑥𝑘,𝑇+1] .

The proof of this Lemma also appears in the Appendix, in Section B.1.1. We are

now ready to state the following general result, which provides a method of bounding

the optimality gap for the 𝜆*-selection policy. The purpose of the following Lemma is

to help us bound the gap in different problem settings, and it will be apparent shortly

under which conditions the loss against an optimal policy is in fact just a constant.

Lemma 11. Consider the 𝜆*-selection policy and the resulting inventory processes

{𝑥𝑘,𝑡}∞𝑡=1 of every asset 𝑘 ∈ [𝐾] induced by the policy. Let ℎ(𝑇 ) be a non-negative,

non-decreasing function of the horizon. Provided every asset 𝑘 satisfies at least one

of the following two conditions:

1. sup𝑡≥1 E [𝑥𝑘,𝑡] <∞

2.
∑︀𝑇

𝑡=1 E [(∆𝑘,𝑡 − 𝑥𝑘,𝑡)+] ≤ ℎ(𝑇 )

and Assumption 1 holds, we have that

𝐽*
𝑇 (𝑥) ≤ 𝐽𝑆,𝜆*

𝑇 (𝑥) ≤ 𝐽*
𝑇 (𝑥) + 𝐶(𝐾) +𝐾ℎ(𝑇 )

for any 𝑇 ≥ 1, where 𝐶 is a constant that does not depend on the horizon 𝑇 , but does

on 𝐾.

Proof. Suppose, without loss of generality, that only the first 𝐵 ≤ 𝐾 assets satisfy

condition (1), while the remaining assets indexed by 𝑘′ = 𝐵+ 1, . . . , 𝐾 do not satisfy

condition (1) but do satisfy (2).
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We begin by breaking up the costs from the two sets of assets

𝐽𝑆,𝜆*

𝑇 (𝑥) =
𝑇∑︁
𝑡=1

E
[︀
𝑐⊤(∆𝑡 − 𝑥𝑡)+

]︀
(3.23)

=
𝐵∑︁

𝑘=1

𝑇∑︁
𝑡=1

E
[︀
𝑐𝑘(∆𝑘,𝑡 − 𝑥𝑘,𝑡)+

]︀
+

𝐾∑︁
𝑘′=𝐵+1

𝑇∑︁
𝑡=1

E
[︀
𝑐𝑘′(∆𝑘′,𝑡 − 𝑥𝑘′,𝑡)+

]︀
≤

𝐵∑︁
𝑘=1

𝑇∑︁
𝑡=1

E
[︀
𝑐𝑘(∆𝑘,𝑡 − 𝑥𝑘,𝑡)+

]︀
+𝐾ℎ(𝑇 ) (3.24)

where (3.23) follows Lemma 9 and above the inequality is implied by the assumptions

made on the last 𝐾 −𝐵 assets. All that remains is to bound the second term.

To that end, for each asset 𝑘 ≤ 𝐵 we will define the constant𝑀𝑘 , sup𝑡≥1 E [𝑥𝑘,𝑡] <

∞ and bound the left hand term of (3.24) as follows:

𝐵∑︁
𝑘=1

𝑇∑︁
𝑡=1

E
[︀
𝑐𝑘(∆𝑘,𝑡 − 𝑥𝑘,𝑡)+

]︀
=

𝐵∑︁
𝑘=1

𝑐𝑘

(︃
𝑇∑︁
𝑡=1

E [∆𝑘,𝑡] + E [𝑥𝑘,𝑇+1]− 𝑥𝑘

)︃
(3.25)

≤
𝐵∑︁

𝑘=1

(︃
𝑐𝑘E

[︃
𝑇∑︁
𝑡=1

(︀
𝛿𝑘,𝑡 − 𝑢*𝑘,𝑡(𝜉𝑡;𝜆*)

)︀
− 𝑥𝑘

]︃
+ 𝑐𝑘𝑀𝑘

)︃

≤
𝐵∑︁

𝑘=1

(︃
𝜆*𝑘E

[︃
𝑇∑︁
𝑡=1

(︀
𝛿𝑘,𝑡 − 𝑢*𝑘,𝑡(𝜉𝑡;𝜆*)

)︀
− 𝑥𝑘

]︃)︃
+

𝐵∑︁
𝑘=1

𝑐𝑘𝑀𝑘

(3.26)

≤
𝐾∑︁
𝑘=1

(︃
𝜆*𝑘E

[︃
𝑇∑︁
𝑡=1

(︀
𝛿𝑘,𝑡 − 𝑢*𝑘,𝑡(𝜉𝑡;𝜆*)

)︀
− 𝑥𝑘

]︃)︃
+

𝐵∑︁
𝑘=1

𝑐𝑘𝑀𝑘

(3.27)

= 𝐿𝑇 (𝜆*;𝑥) +
𝐵∑︁

𝑘=1

𝑐𝑘𝑀𝑘

≤ 𝐽*
𝑇 (𝑥) +

𝐵∑︁
𝑘=1

𝑐𝑘𝑀𝑘 (3.28)

where Equation (3.25) uses Lemma 10. The second last inequality, (3.26), is due to

Proposition 3 and the fact that 𝜆* is non negative. The inequality in (3.27) follows

from Proposition 3 and, in particular from statement (3.22). Finally, (3.28) follows

from the result in Lemma 6.
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It’s immediately clear from the above Lemma that, as long as the function ℎ(𝑇 )

that we find is bounded from above as 𝑇 →∞, the policy suffers a constant additive

loss.

Theorem 2. Suppose that Assumption 1 holds and the demand process {𝛿𝑡}∞𝑡=1 is an

irreducible finite-state Markov chain in steady state (the distribution of the starting

state is the same as the steady state). Suppose also that 𝛿𝑡 and the control 𝑢*𝑡 (𝜉𝑡;𝜆*)

are almost surely bounded at every time 𝑡. That is, there exists a constant 𝐷 ∈ R+

such that

|𝛿𝑡 − 𝑢| ≤ 𝐷, ∀𝑢 ∈ 𝑈(𝜉𝑡) 𝑎.𝑠.

for all 𝑡 = 1, 2, . . ..

Suppose further that the exogenous process, 𝜉𝑡, is drawn from an i.i.d sequence.

Under these assumptions, the 𝜆* selection policy is asymptotically optimal up to a

constant, in the sense that

𝐽*
𝑇 (𝑥) ≤ 𝐽𝑆,𝜆*

𝑇 (𝑥) ≤ 𝐽*
𝑇 (𝑥) + 𝐶(𝐾),

for all integers 𝑇 ≥ 1 and some constant 𝐶(𝐾) that depends on 𝐾.

Proof. We prove properties about the inventory processes {𝑥𝑘,𝑡}∞𝑡=1 corresponding

to every asset, which will allow us to apply Lemma 11 and conclude the result.

Specifically, we will show that each asset 𝑘 satisfies at least one of conditions (1) or

(2) in Lemma 11.

It is simple to see that for every asset, the process {∆𝑘,𝑡}∞𝑡=1 satisfies the Markov

property. This is because the random variable 𝜉𝑡, which determines the feasible set

𝑈(𝜉𝑡), is drawn from i.i.d process. Moreover, 𝛿𝑘,𝑡 was assumed to be a Markov chain.

So let us suppose condition (1) does not hold for an arbitrary asset 𝑘 and we will

show that (2) must then hold. The proof consists of two parts.

Part 1: Showing that 𝜇𝑘 , E [∆𝑘,𝑡] < 0. We will assume for contradiction that

𝜇𝑘 ≥ 0. Then we will prove by induction that, under this assumption, E [𝑋𝑘,𝑡] ≤ 𝑅 ,

𝑥𝑘 + 3𝐷 for all times 𝑡 (which would exactly give us the contradiction).
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Proving the base case for the first time period is trivial. Now let us fix an arbitrary

time 𝑠 > 1, and assume the induction hypothesis that E [𝑥𝑘,𝑠] ≤ 𝑥𝑘 + 3𝐷. First of all,

we note that

𝑥𝑘,𝑠+1 = 1 (𝑥𝑘,𝑠 ≥ ∆𝑘,𝑠)𝑥𝑘,𝑠+1 + 1 (𝑥𝑘,𝑠 < ∆𝑘,𝑠)𝑥𝑘,𝑠+1

= 1 (𝑥𝑘,𝑠 ≥ ∆𝑘,𝑠)𝑥𝑘,𝑠+1

= 1 (𝑥𝑘,𝑠 ≥ ∆𝑘,𝑠) (𝑥𝑘,𝑠 −∆𝑘,𝑠)

= 1 (𝑥𝑘,𝑠 ≥ ∆𝑘,𝑠)𝑥𝑘,𝑠 − 1 (𝑥𝑘,𝑠 ≥ ∆𝑘,𝑠) ∆𝑘,𝑠

= 1 (𝑥𝑘,𝑠 ≥ ∆𝑘,𝑠)𝑥𝑘,𝑠 − (1− 1 (𝑥𝑘,𝑠 < ∆𝑘,𝑠))∆𝑘,𝑠

= 1 (𝑥𝑘,𝑠 ≥ ∆𝑘,𝑠)𝑥𝑘,𝑠 −∆𝑘,𝑠 + 1 (𝑥𝑘,𝑠 < ∆𝑘,𝑠) ∆𝑘,𝑠.

Then, using the above equation, multiplying both sides by the indicator random

variable 1 (𝑥𝑘,𝑠−1 > 𝑥𝑘 +𝐷) and taking expectations, we find that

E [𝑥𝑘,𝑠+11 (𝑥𝑘,𝑠−1 > 𝑥𝑘 +𝐷)] = E [1 (𝑥𝑘,𝑠−1 > 𝑥𝑘 +𝐷)𝑥𝑘,𝑠]

− E [1 (𝑥𝑘,𝑠−1 > 𝑥𝑘 +𝐷) ∆𝑘,𝑠] (3.29)

≤ E [𝑥𝑘,𝑠]− E [1 (𝑥𝑘,𝑠−1 > 𝑥𝑘 +𝐷) ∆𝑘,𝑠]

= E [𝑥𝑘,𝑠]− E [1 (𝑥𝑘,𝑠−1 > 𝑥𝑘 +𝐷)]E [∆𝑘,𝑠] (3.30)

= E [𝑥𝑘,𝑠]− P (𝑥𝑘,𝑠−1 > 𝑥𝑘 +𝐷)𝜇

≤ 𝑅 (3.31)

where equation (3.29) follows from the fact that the events {𝑥𝑘,𝑠−1 > 𝑥𝑘 + 𝐷} and

{𝑥𝑘,𝑠 ≤ ∆𝑘,𝑠} ⊂ {𝑥𝑘,𝑠 ≤ 𝐷} are mutually exclusive. Equation (3.30) follows from the

fact that {∆𝑘,𝑡}∞𝑡=1 satisfies the Markov property, thereby making ∆𝑘,𝑠 independent

of the random variable 𝑥𝑘,𝑠−1, which is ℱ𝑠−2-measurable. In addition to the above, it

also clearly holds that

E [𝑥𝑘,𝑠+11 (𝑥𝑘,𝑠−1 ≤ 𝑥𝑘 +𝐷)] ≤ 𝑥𝑘 +𝐷 + E
[︀
∆+

𝑘,𝑠−1

]︀
+ E

[︀
∆+

𝑘,𝑠

]︀
≤ 𝑥𝑘 + 3𝐷 = 𝑅. (3.32)
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Thus using bounds (3.31), (3.32) and linearity of expectation, it follows that

E [𝑥𝑘,𝑠+1] ≤ 𝑅,

and therefore we get the contradiction from having just shown that sup𝑡≥1 E [𝑥𝑘,𝑡] ≤

𝑅 <∞. From this, it follows that 𝜇𝑘 < 0.

Part 2: Concluding that
∑︀∞

𝑡=1 E [(∆𝑘,𝑡 − 𝑥𝑘,𝑡)+] < ∞. This part of the proof

relies on the first part and the use of concentration inequalities. First, we observe the

following trivial lower bound on the inventory 𝑥𝑘,𝑡:

𝑥𝑘,𝑡 ≥ −
𝑡−1∑︁
𝑠=1

∆𝑘,𝑠 + 𝑥𝑘.

We also note that for any constant 𝛼 > 0 and because {𝛿𝑘,𝑡}∞𝑡=1 is a Markov chain in

steady state that

P

(︃
1

𝑡

𝑡∑︁
𝑠=1

(𝛿𝑘,𝑠 − 𝛿𝑘) > 𝛼

)︃
≤ 𝐶1𝑒

−𝐶2𝑡 (3.33)

where 𝐶1 and 𝐶2 refer to constants and 𝛿𝑘 , E [𝛿𝑘,1] = E [𝛿𝑘,2] = . . .. The above bound

follows from the main result in [?] that proves concentration inequalities for finite-

state Markov chains. By using the above inequalities, we can bound the expression
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of interest as follows. Letting 𝑢̄𝑘 = E
[︀
𝑢*𝑘,1(𝜉𝑡;𝜆

*)
]︀
, we find that

∞∑︁
𝑡=1

E
[︀
(∆𝑘,𝑡 − 𝑥𝑘,𝑡)+

]︀
≤

∞∑︁
𝑡=1

E

⎡⎣(︃∆𝑘,𝑡 +
𝑡−1∑︁
𝑠=1

∆𝑘,𝑠

)︃+
⎤⎦

=
∞∑︁
𝑡=1

E

[︃(︃
𝑡∑︁

𝑠=1

∆𝑘,𝑠

)︃+]︃

=
∞∑︁
𝑡=1

E

[︃
𝑡𝐷1

(︃
𝑡∑︁

𝑠=1

∆𝑘,𝑠 > 0

)︃]︃

= 𝐷

∞∑︁
𝑡=1

𝑡P

(︃
𝑡∑︁

𝑠=1

∆𝑘,𝑠 > 0

)︃

= 𝐷
∞∑︁
𝑡=1

𝑡P

(︃
1

𝑡

𝑡∑︁
𝑠=1

∆𝑘,𝑠 − 𝜇𝑘 > −𝜇𝑘

)︃

≤ 𝐷
∞∑︁
𝑡=1

𝑡

[︃
P

(︃
1

𝑡

𝑡∑︁
𝑠=1

(𝛿𝑘,𝑠 − 𝛿𝑘) > −𝜇𝑘

2

)︃
+

P

(︃
1

𝑡

𝑡∑︁
𝑠=1

(−𝑢*𝑘,𝑠(𝜉𝑠;𝜆*) + 𝑢̄𝑘) > −𝜇𝑘

2

)︃]︃

≤ 𝐷
∞∑︁
𝑡=1

𝑡
(︁
𝐶1𝑒

−𝐶2𝑡𝜇2
𝑘/4 + 𝐶3𝑒

−𝐶4𝑡𝜇2
𝑘/4
)︁

(3.34)

<∞,

where (??) is due to 𝜇𝑘 = 𝛿𝑘 − 𝑢̄𝑘 and (3.34) follows from (3.33), the Chernoff-

Hoeffding bound, and the 𝜇𝑘 < 0 as was shown in Part 1.

The previous Theorem was somewhat restrictive in that it only applies when the

demand process is a finite-state Markov chain (so that any given 𝛿𝑡 can only take on a

finite number of possible values) but it demonstrated that achieving the constant loss

is possible in a non-i.i.d regime. The next Theorem allows an arbitrary support for the

random variables {𝛿𝑡}∞𝑡=1 but imposes the i.i.d assumption on both the demand process

and the {𝜉𝑡}∞𝑡=1 process. It turns out that in this setting, the dual price algorithm

also achieves, in some sense, the best possible asymptotic rate of optimality.

Theorem 3. Suppose that Assumption 1 holds and the demand process {𝛿𝑡}∞𝑡=1 is

bounded, that is |𝛿𝑡| ≤ 𝐷, 𝑎.𝑠. for all 𝑡 = 1, 2, . . .. Suppose further that the random
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vectors in the sequence {(𝛿𝑡, 𝜉𝑡)}∞𝑡=1 are i.i.d (however, each vector 𝛿𝑡 may depend on

𝜉𝑡 in the same time period). Under such a setting, the 𝜆* selection policy is also

asymptotically optimal up to a constant, in the sense that

𝐽*
𝑇 (𝑥) ≤ 𝐽𝑆,𝜆*

𝑇 (𝑥) ≤ 𝐽*
𝑇 (𝑥) + 𝐶(𝐾),

for all integers 𝑇 ≥ 1 and some constant 𝐶(𝐾) that depends on 𝐾.

The proof of this result is similar to Theorem 2 but arguably simpler and, for this

reason, is deferred to the Appendix.

3.3.3 Computational methods and interpretation

Up until now, in this section of the chapter, we (implicitly) proposed an algorithm

for solving the CMP that is often asymptotically or nearly optimal. We now state a

concrete computational method for the problem given in Section 3.2, which we recall

is a special case of the general model just analyzed.

First, we will assume that it’s possible to simulate sample paths of 𝛿𝑖𝑡, 𝑏𝑖𝑡 and 𝑝𝑡

either through knowing the distributions in question, or being able to find enough

relevant historical sample paths. For fixed horizon 𝑇 , we will say we are given a

finite set of 𝑆 samples whose elements we index by 𝑞 ∈ {1, . . . , 𝑆} = [𝑆]. We write

with (𝛿𝑖𝑘,𝑡,𝑞)
𝑇
𝑡=1, (𝑏𝑖𝑘,𝑡,𝑞)

𝑇
𝑡=1 and (𝑝𝑘,𝑡,𝑞)

𝑇
𝑡=1 the 𝑞th set of sample paths of the stochastic

processes in the CMP. With this notation in hand, we formulate the SAA (sample-

average approximation) version of (3.18),

maximize
1

𝑆

𝑆∑︁
𝑞=1

∑︁
𝑡,𝑘

(︃∑︁
𝑖

𝜆𝑘𝛿
𝑖
𝑘,𝑡,𝑞 − sup

𝑢𝑞,𝑡∈𝑈𝑞,𝑡

𝜆⊤𝑢𝑡,𝑞

)︃
− 𝜆⊤𝑥

subject to 0 ≤ 𝜆𝑘 ≤ 𝑐𝑘 𝑘 ∈ [𝐾]

(3.35)
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where 𝑈𝑡,𝑞 is the 𝑞th sample of an admissible collateral set at time 𝑡, that is

𝑈𝑡,𝑞 ,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑢𝑡,𝑞 ∈ R𝐾

+ :

𝑢𝑡,𝑞 =
𝑛∑︁

𝑖=1

𝑢𝑖𝑡,𝑞

(ℎ · 𝑝𝑞,𝑡)⊤𝑢𝑖𝑡,𝑞 ≤ 𝑝⊤𝑞,𝑡𝛿
𝑖
𝑡,𝑞, 𝑖 ∈ [𝑁 ]

𝑢𝑖𝑡,𝑞 ≤ 𝑏𝑖𝑡,𝑞, 𝑖 ∈ [𝑁 ]

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

Using the next trick, it is possible to re-formulate (3.35) as a single linear program

(LP) whose number of variables and constraints scales polynomially in 𝑆. Now, using

strong duality and substituting 𝑢𝑡,𝑞 =
∑︀𝑛

𝑖=1 𝑢
𝑖
𝑡,𝑞, we notice that

sup
𝑢𝑡,𝑞∈𝑈𝑡,𝑞

𝜆⊤𝑢𝑡,𝑞

= inf
𝜇,𝜈

⎧⎨⎩∑︁
𝑖

(︀
𝑝⊤𝑞,𝑡𝛿

𝑖
𝑡,𝑞𝜇

𝑖
𝑡,𝑞 + (𝑏𝑖𝑡,𝑞)

⊤𝜈𝑖𝑡,𝑞
)︀

:
𝜇𝑖
𝑡,𝑞 ∈ R+, 𝜈𝑖𝑡,𝑞 ∈ R𝐾

+ , 𝑖 ∈ [𝑁 ]

𝜇𝑖
𝑡,𝑞(ℎ · 𝑝𝑞,𝑡)⊤ + (𝜈𝑖𝑡,𝑞)

⊤ ≥ 𝜆⊤, 𝑖 ∈ [𝑁 ]

⎫⎬⎭
(3.36)

where we used 𝜇𝑖
𝑡,𝑞 and 𝜈𝑖𝑡,𝑞 to denote the dual variables. Thus substituting the above

equation into (3.35), we obtain the LP

max
𝜆,𝜇,𝜈

1

𝑆

𝑆∑︁
𝑞=1

∑︁
𝑡,𝑖

(︀
𝜆⊤𝛿𝑖𝑡,𝑞 − 𝑝⊤𝑞,𝑡𝛿𝑖𝑡,𝑞𝜇𝑖

𝑡,𝑞 − (𝑏𝑖𝑡,𝑞)
⊤𝜈𝑖𝑡,𝑞

)︀
− 𝜆⊤𝑥

s.t. 0 ≤ 𝜆𝑘 ≤ 𝑐𝑘 𝑘 ∈ [𝐾]

𝜇𝑖
𝑡,𝑞 ∈ R+, 𝜈𝑖𝑡,𝑞 ∈ R𝐾

+ , 𝑖 ∈ [𝑁 ], 𝑡 ∈ [𝑇 ], 𝑞 ∈ [𝑆]

𝜇𝑖
𝑡,𝑞(ℎ · 𝑝𝑞,𝑡)⊤ + (𝜈𝑖𝑡,𝑞)

⊤ ≥ 𝜆⊤, 𝑖 ∈ [𝑁 ], 𝑡 ∈ [𝑇 ], 𝑞 ∈ [𝑆].

(3.37)

We write the optimal solution of (3.37) as 𝜆̂(𝑥;𝑆). If we assume the random samples

are drawn from their true distribution, then we can show that 𝜆̂ is a consistent

estimator for 𝜆*.

Proposition 4. Suppose 𝜆̂(𝑆) is an optimal solution to (3.37) and 𝜆* is the unique

optimal solution to (3.18) (assumed to exist), then for any 𝜖 > 0 there exists a large
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enough 𝑆 such that almost surely,

⃦⃦⃦
𝜆̂(𝑆)− 𝜆*

⃦⃦⃦
2
≤ 𝜖

The proof of this omitted but can be shown using, for example, the law of large

numbers. We have just developed a numerical approach for estimating 𝜆*, we conclude

this section by giving a complete algorithm. First we start with a general but technical

definition.

Definition 4 (𝑣-greedy algorithm). Let 𝑣 ∈ R𝐾
+ be a vector of ‘asset values’ and 𝑀

a large constant. Any algorithm which at time 𝑡 selects a control from the set

𝑈*
𝑡 (𝑣) = argmax

𝑢𝑖
𝑡

⎧⎨⎩∑︁
𝑖

𝑣⊤𝑢𝑖𝑡 −𝑀
∑︁
𝑖,𝑘

𝑐𝑘(𝛿𝑖𝑘,𝑡 − 𝑢𝑖𝑘,𝑡)+ :
(ℎ · 𝑝𝑡)⊤𝑢𝑖𝑡 ≤ 𝑝⊤𝑡 𝛿

𝑖
𝑡 𝑖 ∈ [𝑁 ]

0 ≤ 𝑢𝑖𝑡 ≤ 𝑏𝑖𝑡 𝑖 ∈ [𝑁 ]

⎫⎬⎭
is called 𝑣-greedy.

The 𝑀 term in Definition 4 ensures that the policy, as far as possible, matches

current demand with available collateral. In other words, the greedy policy prioritizes

assets, which reduce costs in the current period with certainty, over those which are

forecast to be valuable by the vector 𝑣.

There are two distinct phases to the main algorithm we present:

1. Offline phase: Using 𝑆 Monte Carlo (or historical) samples solve (3.37) and

store an optimal solution 𝜆̂ := 𝜆̂(𝑆).

2. Online phase: at each period 𝑡 ∈ [𝑇 ], employ a 𝜆̂-greedy policy by solving

sup
(𝑢1

𝑡 ,...,𝑢
𝑁
𝑡 )∈𝑈*

𝑡 (𝜆̂)

∑︁
𝑖

𝑣⊤final𝑢
𝑖
𝑡 (3.38)

where 𝑣final is a tie-breaker between elements of 𝑈*
𝑡 (𝜆̂).

The need for a tie-breaker in (3.38) arises due to the fact that there might be more

than one optimal solution, and that 𝜆̂ is merely an approximation. One choice for
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Algorithm Internal prices Description

Vol (Volume) 1 Assigns the same value to all assets
DD (Demand-driven) 𝑐 · 𝛿 Prefers larger expected costs
DPP (Dual-price policy) 𝜆̂ Uses approximate dual prices

Table 3.1: Summary of heuristic algorithms in numerical experiment where 𝛿 denotes
a sample average estimate for demand

𝑣final could be the vector of ones 1, i.e. we choose the collateral with maximal value

and total volume.

We give our algorithm, which mimics a 𝜆̂-selection policy, the moniker Dual Price

Policy (DPP) and the next section evaluates it on real and synthetic data. In prac-

tice, we would run the offline phase every so often to update 𝜆̂ in case the demand

distributions are non-stationary, and this could occur once a few days or weeks. The

online phase would occur on a frequent, e.g. daily basis.

3.4 Experiments

We present numerical experiments that benchmark the Dual Price Policy (DPP)

against either the optimal offline solution, which can be found ‘in hindsight’, or similar

competing algorithms. The heuristics are all 𝑣-greedy policies that differ in their

choices of the parameter 𝑣. Table 3.1 presents a summary of the algorithms we test.

As an example, there is one algorithm, which we call “Vol", that assigns equal weight

to all assets by having 𝑣 = 1. In effect, “Vol” is a heuristic that at every time step

maximizes the total volume of collateral that is taken subject to constraints given by

availability, prices and haircuts in each period.

Our experiment consists of backtesting our algorithm on real-world data from a

Prime Broker. We also produce at the end, a set of examples demonstrating the

sensitivity of dual prices to changes in certain parameters such as the Prime Broker’s

inventory. By doing this, we gain some intuitive understanding of what determines

dual prices and makes them differ from the current collateral pricing methods used

in industry.
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3.4.1 Empirical Analysis

We gauge the practical value of our algorithm by backtesting it on historical data

from Credit Suisse over the sample period February 2nd 2016 to June 1st 2017. This

comprises a total of 300 business days and records the growth of a new business for

the firm. For this reason, the data contains a dynamic set of clients and securities,

which grows in size from the beginning of the sample period to the end. For any

algorithm to perform well on this data, it needs to frequently update its valuation of

asset prices as collateral.

The data we are given to simulate the problem is a daily log of investment positions

belonging to different trading desks. Along with this log, we are also provided with

relevant historical market prices, borrowing fees and haircuts of all the securities that

appear in the data. On aggregate, the data contains information about 201 clients

of Credit Suisse who trade in 5896 securities1. In the simulation that follows, we will

compare our algorithm’s performance against the set of benchmark policies given in

Table 3.1 but before doing so, we will describe how we processed the data in order to

simulate the problem.

Fitting the data to the model

The raw data is given to us as a time series of positions for 𝑁 + 1 trading desks. For

convenience in explaining the setup, we will index them with 𝑖 = 0, 1, . . . , 𝑁 where

the zeroth index refers to the Prime Broker’s desk and the remaining indices 1, . . . , 𝑁

correspond to the clients’ desks. As before we index securities with 𝑘 = 1, . . . , 𝐾 and

each day in the data with 𝑡 = 1, . . . , 𝑇 (where obviously 𝐾 = 5896 and 𝑇 = 300).

With this familiar notation in hand, we will denote with 𝑤𝑖
𝑘,𝑡 ∈ R the position of the

𝑖th trading desk in security 𝑘 on day 𝑡. If this value is positive, that means that the

desk has a long position, conversely, a negative value indicates a short position.

For the purposes of simulating the real problem, we will assume that Credit Su-

isse’s desk always lends securities to cover 100% of client shorts and finances (with

1For confidentiality reasons, both the identity of clients and securities have been obscured in the
data-set
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cash) 30% of a client’s purchases. As a result of this, the sample borrowing demand

from the 𝑖th desk, on day 𝑡 in a security 𝑘 (that is an asset with 𝑘 > 1) is succinctly

given by the following equation:

𝛿𝑖𝑘,𝑡 := ((𝑤𝑖
𝑘,𝑡)

− − (𝑤𝑖
𝑘,𝑡−1)

−)+

The above simply means that demand for borrowing either equals the increase, if any,

in the client’s short position and is zero otherwise.

Cash is treated differently and its demand is given by 30% of the total notional

value of client purchases on any given day:

𝛿𝑖1,𝑡 :=
3

10

∑︁
𝑘>1

𝑝𝑘,𝑡((𝑤
𝑖
𝑘,𝑡)

+ − (𝑤𝑖
𝑘,𝑡−1)

+)+.

Next, we assume the client’s inventory on any given day is simply equal to their

long position. For this reason, we set 𝑏̂𝑖𝑘,𝑡 = (𝑤𝑖
𝑘,𝑡)

+ to be the simulated client inven-

tory, which we will assume is exogenous to our model. For the sake of consistency,

in all simulation runs we will set the Prime Broker’s initial inventory in asset 𝑘 to be

(𝑤0
𝑘,1)

+, which means that we always take the broker’s initial inventory to be their

long position on the first day in the raw data (one may think of this as a random

snapshot in time of the broker’s inventory). We assume the borrowing costs are given

by the notional value of the loan, on the day it was borrowed, multiplied by an in-

terest rate that varies between 1 and 3%. The haircuts on individual securities range

from 90% to 97.5%.

Data-driven simulation results

Given the procedure described above, we produced a particular instance of the prob-

lem that resembles what happens in reality, especially in this case of a new and

growing business. In line with the theoretical prescriptions of this chapter and as

described earlier, each algorithm in the simulation maintains a set of internal security

prices, 𝑣, which is periodically updated (this is the offline phase of an algorithm) and
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DPP cost ($M) DD cost ($M) Volume cost ($M)
Data Update delay

20 5 467,608,285.65 468,546,680.08 556,423,670.60
10 470,111,119.00 471,251,487.79 556,423,670.60

30 5 472,852,176.49 473,705,227.91 556,423,670.60
10 472,142,653.04 473,095,290.01 556,423,670.60

40 5 474,524,923.12 473,141,339.98 556,423,670.60
10 474,524,923.12 475,807,040.23 556,423,670.60

Table 3.2: Final costs to the Prime Broker after 300 days.

DPP cost ($M) DD cost ($M) Vol cost ($M)
Data Update delay

20 5 82,511,407.21 82,897,541.31 85,279,283.95
10 82,773,949.82 83,089,246.13 85,279,283.95

30 5 82,598,667.55 83,007,101.17 85,279,283.95
10 82,882,992.23 83,253,324.74 85,279,283.95

40 5 83,140,234.28 83,284,857.92 85,279,283.95
10 83,140,234.28 83,551,965.06 85,279,283.95

Table 3.3: Costs to the Prime Broker after 150 days.

is precisely the cost vector in Definition 4. For running the experiment, we make it

so that the internal prices of each algorithm are updated either every 5 or 10 days.

We also vary the amount of historical ‘training’ data used in the offline phase. We

remark that this experiment serves a secondary purpose, besides simply being a way

evaluating algorithms, which is to figure out practical recommendations on how of-

ten to run the offline phase of an algorithm, and how much of the historical data at

any given time is relevant, because it may be unnecessarily inefficient, and perhaps

even detrimental for performance, to run it every day and use as much past data as

possible. It is worth stressing and keeping in mind that some historical data could

become outdated due to regime changes or variations in trading patterns. Finally,

in implementing the DPP, we treat the entire sequence of historical data as a single

scenario so that 𝑆 = 1 in Problem (3.35). The final costs to the Prime Broker after

𝑇 or 𝑇/2 days, generated by each algorithm, are shown in Tables 3.2 and 3.3. We

also present a plot of how the differences in cost from the current heuristics and our

algorithm change over time in Figure 3-1.
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Figure 3-1: The difference in cost between the demand-driven policy and the dual
price policy under different algorithm configurations. In the legend, UD is the update
delay and HD is the amount of historical data used.

We first observe that the costs generated by the DPP, after 300 days, are con-

sistently lower than the demand-driven policy by up to 1.3M USD, after 1.5 years,

in just one (newly established) market for the Prime Broker. Secondly, the spread

between the two policies grows nearly linearly over time as noted by the fact that

the difference in cost after 150 days was up to 0.5M USD but that figure roughly

doubles after 300 days. What Figure 3-1 also shows is that the spread in cost is

robust to the configuration of the UD and HD parameters. This suggests that the

DD policy increasingly deteriorates relative to the DPP one and it would be fruitful

to find out what the difference would be after several years. In any case, this experi-

ment shows that there is enormous practical value to hypothecating collateral based

on appropriately chosen internal prices. In fact, the Volume policy which disregards

any meaningful pricing scheme, by simply taking the maximum volume of collateral,

suffered costs that were on the order of 100M USD higher than the others over the

300 day period.

Finally, another phenomenon we observe is that with more data, the performance
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Figure 3-2: Final cost difference between algorithms and Volume-driven baseline after
300 days, as a function of the historical data size used to update internal prices. The
update delay used to generate this was 10 days, while the amount of historical days’
worth of data was fixed at 20 days.

of both heuristic policies drops slightly (obviously this does not apply to the volume-

based policy), as shown in Figure 3-2. What this suggests is that data older than

about 15-20 days becomes irrelevant at any given point in time. This is a feature of

the dataset, as the market represented by the data is quickly evolving over time given

that it was new. However, what this confirms to us is that our policy is robust to the

changing conditions in the Prime Broker’s ‘environment’.

3.4.2 Examining Collateral Prices

Finally to conclude our numerical experiments, we will look at specific examples

of 𝜆̂ under different problem settings and conditions in order to understand what

influences collateral prices and how they differ from estimates used in current industry

practice. To make the examples more interpret-able, we will assume that all data

is deterministic, i.e. that decision maker will keep on seeing a constant stream of

demand, exposures and so on for an arbitrary length of time. We identified two main

areas where we see a notable difference between our valuation method and others

and these are: (i) interdependence between assets and (ii) sensitivity to the Prime
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Broker’s state. These will now be discussed individually in the following two concrete

examples.
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Figure 3-3: Interdependence between two assets’ market prices and their resulting
values in the 𝜆̂ vector.

Example 1. (Market prices of two assets) This example illustrates how data for

one asset can affect the internal price of another asset. For this we assume that there

are three assets, and we will refer to them as 𝐴,𝐵 and 𝐶. To keep this as simple as

possible, we will make it so that the haircut on all assets is 100%, i.e. no haircut,

while their borrowing fees are 10, 20, and 30 basis points, respectively, of their market

price. We assume that in the future there is a single client who presents herself with

a constant exposure of 13k USD. Moreover, there is a constant supply, in the form of

client inventory of the three assets of 100, 1000 and 5000 units. We vary the market

price of only assets 𝐴 and 𝐵 between 0 and 20 USD, while keeping 𝐶’s market price

fixed at 10, and see what the resulting values for 𝜆̂ are of those assets.

The values of the resulting internal price for assets 𝐴 and 𝐵, plotted in Figure 3-3,

show that merely changing the market price of one asset while holding the other one

fixed does perturb the fixed asset’s internal price. In the region where both assets

have a low market price (roughly 𝑝𝐴 < 10, 𝑝𝐵 < 15) both their internal prices get set
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to zero. This is because there is additional slack in the exposure constraint when the

two assets have a low market price, which makes it easier to re-hypothecate them in

future time periods, and reduces their current value. In essence, this reflects the low

perceived urgency of re-hypothecating them now.

Of course, what this example highlights are fundamental differences between our

pricing scheme and incumbent ones. With the latter approaches, an asset’s internal

value would be independent of other assets. Current methods only predict the value of

an asset in terms of the individual future profit it is expected to bring. This is merely

a function of expected borrowing demand for that asset alone, its specific future price

and the borrowing fee and is independent of information about other assets. Also,

when the market price of both assets are low, our algorithm would prefer to only

re-hypothecate asset 𝐶, rather than a mixture of it and the other two assets. By

contrast, incumbent schemes would pick a mixture of all the three assets.

Example 2. (Inventory and haircut of a single asset) The second example also

points out a difference between our method of pricing collateral and current ones. For

this we picked a random day from Credit Suisse’s data and “re-played" the pricing

algorithm on that day taking the previous 20 days as historical data. We focused

on one random asset and had its inventory varied between 0 and 4,000 units and its

haircut varied between 90% and 100%. The resulting internal price for that asset, from

training the DPP algorithm, is plotted in Figure 3-4. A smaller haircut meant that

more of that asset could be claimed as collateral in any given period, while a larger

inventory also reduced the likelihood of depleting the asset in future periods, thus

making it less valuable as collateral. As we see in the plot, the influence of inventory

on the asset’s internal price’s is much greater compared to the haircut. Finally what

we learn from this example, is that our pricing scheme crucially accounts for current

inventory levels, which is a part of the Prime Broker’s state. Incumbent pricing

methods ignore this element of the decision and this explains why they demonstrate

worse performance.
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Chapter 4

Deep Reinforcement Learning in

Financial Engineering

4.1 Introduction

Reinforcement Learning (RL) is a general methodology for addressing intractable

sequential decision problems that has gained much attention in recent years due to

the big data revolution. RL has been extensively applied to domains such as robotics,

engineering, business and artificial intelligence [Mao et al., 2016, Evans and Gao,

2016]. One of the greatest successes of RL was demonstrated in the game of Go

[Silver et al., 2016], where an AI Go player trained with deep neural networks beat

Lee Sedol, the then world champion four games to one in 2016. This groundbreaking

and world-famous event brought RL technology to mainstream attention.

Not too long before AlphaGo was developed, researchers demonstrated that a

generic reinforcement learning algorithm, called Deep Q-Learning, could be applied

to a diverse set of Atari arcade games [Mnih et al., 2013]. The algorithm was so general

that it could learn to play seven completely different games well, from scratch, using

only screen pixels as input and no other prior knowledge about any of the games,

except for the available actions and what the score is in every frame. The remarkable

aspect to all this was the complete generality of the Deep Q-learning algorithm, which

raised the question if we were truly on our way to genuine AI wherein agents can learn
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how to perform tasks by themselves by purely learning from experience.

What enabled the advent of Deep Reinforcement Learning was recent advances in

the area of deep neural networks [LeCun et al., 1995, Goodfellow et al., 2016]. In fact,

a core component of the Deep Q-learning algorithm is a convolutional neural network,

not radically different from those used in computer vision problems, except for being

somewhat smaller. The fundamental idea is that, instead of running machine learning

on state inputs directly, a deep neural network is utilized as a feature extractor, where

the intermediate (usually referred to as ‘hidden’) layers produce a set of summary

features that can be used to better explain raw input data. In the case of Atari

games, the hidden layers learn relevant features of frames during gameplay.

Of course, the study optimal control goes back decades. There is an especially rich

literature on the general question of how to approximately solve MDPs, unsurprisingly

called Approximate Dynamic Programming (ADP). The terms ADP and RL are

basically synonymous, but the former term captures methods within the OR and

decision science community (see for example [Bertsekas and Tsitsiklis, 1995, Bertsekas

and Ioffe, 1996, De Farias and Van Roy, 2003, 2004]).

There is an interesting connection between current, state-of-the-art RL algorithms

and its ADP forefathers. With the latter, a common approach to solve intractable

MDPs is to approximate the value function using a weighted, linear combination

of basis functions. Perhaps an oversimplified way of looking at these algorithms

is they perform a type of linear regression to tune the weights so that the value

function approximation is close to the optimal value function. The key differences

between ADP methods lie in how exactly they perform this, roughly-speaking, “linear

regression" and in how they collect the data for training (i.e. which states and

rewards are sampled to reduce correlation in the training data). In the case of TD

Learning [Bertsekas and Ioffe, 1996], and Q-learning [Watkins and Dayan, 1992], this

regression is performed more or less directly. That is, we update the current estimate

of the value function using the outcome observed of taking a certain action in a

state. More precisely, we perform a type of gradient update on the basis functions

weights to minimize the TD error. It is natural to see how one could then extend
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such an approach to more complex approximation architectures represented by deep

convolutional networks via backpropagation.

One immediate question that arises is how easily we can avoid the need to use

hand-crafted basis functions, and opt instead for deep architectures that learn rep-

resentations, essentially, by themselves. This would address a key drawback with

ADP methods that the practitioner needs to design, in a an ad-hoc fashion, a good

set of basis functions a priori without knowing if they can potentially even capture

the optimal value function. What’s missing though when we try to combine ADP

methods work with Deep Learning is that sometimes the implementation becomes

less clear cut. For example, with ALP (Approximate Linear Programming, De Farias

and Van Roy [2003]), we rely on having a linear architecture so as to be able to solve

a LP. In this chapter we will find ways to address this issue in the special problem

class of optimal stopping.

In spite of the promising progress seen in RL and ADP, it is still not completely

understood why some algorithms work well and others don’t. Moreover, it is generally

hard to derive useful theoretical results. For example, Gu et al. [2016] show that the

vanilla DQN algorithm can be beaten by a simpler Monte Carlo tree search. In

practice, applying RL technology is a tricky business since every practitioner would

need a good understanding of both statistics and optimal control, and have a reliable

set of benchmark results from which to know what methods work well and when. In

practice it’s hard to ensure even the last point [Henderson et al., 2017].

In the this chapter, we have in mind the following two goals to address several

difficulties encountered in RL. We wish to import some state of the art algorithms in

ADP and combine them with deep architectures, to see how effective such an approach

could be and whether we can really do away with hand-crafted basis functions, while

achieving improved performance. Secondly, we focus on model-based reinforcement

learning algorithms (where we know the MDP dynamics) in the context of problems

with special structure. We want to see how popular approaches such as Policy Gra-

dient can be tailored to problems with partly linear dynamics or where the reward

function is known to satisfy special properties such as convexity.
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Applications The applications considered in this chapter are in financial engineer-

ing because, for those types of problems, MDP dynamics are usually specified ahead

of time and are known. We will study the problem of option pricing, which is a type

of optimal stopping problem. By leveraging the special structure inherent in stop-

ping problems, we are able to design neural network architectures to approximate

the option’s price, as well as tailor other RL algorithms for the task. We will also

study a new framework for portfolio optimization problems (which can also work in

other domains such as inventory management) and see that, in that case, specially

designed RL algorithms can achieve state of the art performance. We provide a few

early theoretical results to support the encouraging experiments.

In greater detail, we make the following contributions

1. New Option Pricing Method: we demonstrate a practical method for comput-

ing a tight dual upper bound on an option’s price. In order to make the method

scalable, we find alternative martingale representations that are cheaper to com-

pute, and can thus handle a deep neural network as a core component.

2. Portfolio Optimization with RL: we analyze the application of Policy Gradient

methods to a general class of portfolio and inventory problems. We show that

for this class of problems, neural nets can both in theory and practice learn

near-optimal policies and outperform other heuristics, including those based on

convex optimization.

3. Application to Optimal Execution and Algorithmic Trading: we demon-

strate the applicability of our RL framework to a few real, practical applications

in optimal execution and automated trading.

In the following two main sections, we will describe each of the two problem classes,

the methodology we develop/analyze to them and results from numerical experiments.
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4.2 Option Pricing

In this section, we study option pricing, or more generally optimal stopping prob-

lems. These problems exhibit a special structure in that they rely almost entirely

on exogenous state. In other words, our decision in every period is either to stop

observing the process and collect a terminal reward, or to continue waiting and defer

the opportunity to stop to a later time. In this way, there is a rather simple trade-off

inherent to the decisions, and thus this type of problem represents one of the most

basic multi-period, stochastic control problems. As such, this forms a natural starting

point for us to attempt to combine Deep Learning with existing ADP methods, and

see what is possible achieve. For ease of exposition, we will refer to ‘option pricing’

and ‘optimal stopping’ interchangeably, as well as the phrases ‘exercising the option’

and ‘stopping the process’.

We will focus on two famous classes of ADP methods for solving stopping problems

for this research. These are:

1. Approximate Value Iteration: Famous algorithms for this include ones in Longstaff

and Schwartz [2001], Tsitsiklis and Van Roy [1999]. The fundamental idea

is we carry out a backward induction to estimate the ‘value-to-go’ from not

stopping based on the current state at every point in time. After fitting such

“continuation-value" functions, a lower bound on option’s price can be estimated

by simulating a greedy algorithm that stops as soon as the current payoff exceeds

estimated value from continuing.

2. Dual Martingale Methods: By contrast these methods approximate the option’s

price by computing an unbiased estimate of an upper bound. The bound is

gotten through information relaxation, i.e. allowing the policy to look ahead

when it should not be able to do so, but penalize for these violations in expec-

tation (much like a duality approach). This method has widely been discussed

in Haugh and Kogan [2004], Rogers [2002].

Of course, our goal will be to make progress on both these fronts, so that practically

speaking we will end up with tighter confidence intervals on an option’s price. This
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would have significant practical value in the financial markets given that an accuracy

improvement in valuing an option, even of a few basis points, can make a big difference

to the bottom line considering that large financial institutions trade millions of dollars’

worth of options in a day.

4.2.1 Introduction and problem setup

We present here a general formulation of the optimal stopping problem, under a

Markov process, over a finite time horizon 𝑇 . Let {𝑥𝑡 : 0 ≤ 𝑡 ≤ 𝑇} be an R𝑛-valued

continuous-time Markov process, representing for example a vector of asset prices.

We denote with F = {ℱ𝑡 : 0 ≤ 𝑡 ≤ 𝑇} the natural filtration generated by the process,

that is ℱ𝑡 = 𝜎 (𝑥𝑠 : 0 ≤ 𝑠 ≤ 𝑡) and is the 𝜎-field generated by the process’s trajectory

up to time 𝑡. We are given a payoff function 𝑔 : R𝑚 ↦→ R that maps each state to a

reward. That is, if we were to stop the process at time 𝑡 in the state 𝑥𝑡, we would

earn an undiscounted reward of 𝑔(𝑥𝑡).

Our goal is to stop the process at the most profitable time, that is to solve the

optimization problem

𝐽⋆
0 (𝑥) , sup

𝜏∈𝒯
E
[︀
𝑒−𝑟𝜏𝑔(𝑥𝜏 ) | 𝑥0 = 𝑥

]︀
,

where the optimization is over ℱ𝑡-stopping times 𝜏 , taking values in the set 𝒯 ⊂ [0, 𝑇 ]

and 𝑟 is a continuous discount rate. For simplicity, we’ll assume that 𝑇 ∈ 𝒯 always.

In studying this problem it will be useful to define a general value function of time

and state, namely,

𝐽⋆
𝑡 (𝑥𝑡) , sup

𝜏∈[𝑡,𝑇 ]∩𝒯
E
[︀
𝑒−𝑟(𝜏−𝑡)𝑔(𝑥𝜏 ) | 𝑥𝑡

]︀
.

Intuitively, this measurable function gives the remaining optimal expected value to

an agent given that she has not stopped prior to time 𝑡 and the current state is 𝑥𝑡.

We refer to the sequence 𝐽⋆
𝑡 as the optimal value function. It can be shown that the

optimal value function is a supermartingale and, moreover, is the Snell envelope of

the payoff process 𝑒−𝑟𝑡𝑔(𝑥𝑡).
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If 𝒯 = [0, 𝑇 ], namely the set of possible times to stop is a continuous interval, the

option is called American, whereas if 𝒯 is finite, the option is called Bermudan – we

will focus mainly on the latter type.

For Bermudan options, we will now introduce some additional notation. Since

we are working with discrete time periods, we can see that the stopping time 𝜏 in

our optimization problem can be expressed as a policy 𝜋 , (𝜋𝑡 : 𝑡 ∈ 𝒯 ), namely

a sequence of ℱ𝑡-measurable functions. Each function 𝜋𝑡 : R𝑛 ↦→ {0, 1} determines

an action at time 𝑡, which is either to stop (1) or continue (0). Without loss of

generality, we will require that 𝜋𝑇 (𝑥) = 1 for all 𝑥 ∈ R𝑛. We define the class of all

such admissable policies as Π.

For a given policy 𝜋, if we were to start in a state 𝑥 ∈ R𝑛 at time 𝑡, the expected

reward we would earn is

𝐽𝜋
𝑡 (𝑥) , E

[︀
𝑒−𝑟(𝜏𝜋(𝑡)−𝑡)𝑔(𝑥𝜏𝜋(𝑡)) | 𝑥𝑡 = 𝑥

]︀
,

where 𝜏𝜋(𝑡) , min{𝑠 ∈ 𝒯 : 𝑠 ≥ 𝑡, 𝜋𝑠(𝑥𝑠) = 1}. Our goal will be to find a policy

which maximizes 𝐽𝜋
𝑡 (𝑥) for all periods 𝑡 and states 𝑥, denoted by 𝜋⋆. The maximum

value achieved by the optimal policy is then precisely 𝐽⋆
𝑡 (𝑥) defined earlier.

Since 𝒯 is assumed to be finite for a Bermudan option, we can express it as

the sequence 𝒯 = {𝑡1, 𝑡2, . . . , 𝑡𝐾} for some 𝐾 ∈ N (corresponding to the number of

exercise opportunities) where 𝑡𝐾 = 𝑇 . Because the optimal policy solves Bellman’s

equation, we know that it has a simple characterization, for every 𝑘 ∈ [𝐾 − 1] in

terms of the equation:

𝜋⋆
𝑡𝑘

(𝑥) =

⎧⎪⎨⎪⎩1, 𝑔(𝑥𝑡𝑘) ≥ 𝑒−𝑟(𝑡𝑘+1−𝑡𝑘)E
[︁
𝐽⋆
𝑡𝑘+1

(𝑥𝑡𝑘+1
) | 𝑥𝑡𝑘 = 𝑥

]︁
0, otherwise,

most of the heuristic policies we consider in this chapter are also greedy, but only

with respect to an estimate of 𝐽⋆. This leads us naturally to the following section on

finding lower bounds.
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4.2.2 Lower Bounds via Approximate Value Iteration

We start by illustrating one of the most basic examples of ADP, as well as the most

widely applied in practice. We will find a sub-optimal exercise policy for Bermudan

options by approximating the optimal value function at every time period. The idea

for this is proposed in [Tsitsiklis and Van Roy, 1999, Longstaff and Schwartz, 2001].

The main purpose of this section is to demonstrate the value that Deep Learning can

bring, if we are ready to accept longer computation times.

Generally speaking, the advantage that optimal stopping buys us over other prob-

lems, in the context of RL, is that the distribution of states visited at a any time is

independent of the policy. In other words, the state observed is from an exogenous

process. From a machine learning standpoint, it is therefore easy enough to obtain

i.i.d samples of states with which to fit a value function approximation. As such we

can rely on having better estimates of the value function compared to what we might

achieve in other problems, which makes this method particularly attractive.

We will first assume a parameterization for a family of continuation value function

approximations

𝒞 = {𝐶𝜃 : [𝐾 − 1]× R𝑛 ↦→ R : 𝜃 ∈ R𝑑},

where we recall that 𝐾 is the number of exercise opportunities, so that we have a

continuation value estimate at every possible exercise time. The actual continuation

value is defined to be 𝐶(𝑘, 𝑥) = E
[︁
𝐽⋆
𝑡𝑘+1

(𝑥𝑡𝑘+1
) | 𝑥𝑡𝑘 = 𝑥

]︁
, which is what we aim to

approximate.

In the existing work, the following architecture is used: 𝐶𝜃(𝑘, 𝑥) =
∑︀𝐵

𝑖=1 𝜃𝑖,𝑘𝜙𝑖(𝑥)

where 𝜙1(.), . . . , 𝜙𝐵() are a finite set of basis functions. In other words, the approx-

imation is given as a linear combination of basis functions. In general, the basis

functions are chosen manually and arguably in an ad-hoc manner. For example, if

the state is a vector of real numbers, 𝑥, a possible choice of basis functions would be

all possible monomials 𝑥𝑞11 . . . 𝑥𝑞𝑛𝑛 up to a certain degree 𝑝, so that 0 ≤ 𝑞𝑖 ≤ 𝑝 for all

𝑖. For this section we will focus specifically on the following 𝑛 + 2 basis functions:

𝜙𝑛+1(𝑥) = 𝑔(𝑥), 𝜙𝑛+2(𝑥) = 1 and then 𝜙𝑖(𝑥) = 𝑥𝑖 for 𝑖 = 1, . . . , 𝑛. In other words, we
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approximate the continuation value using a linear combination of the current payoff,

the prices of underlying assets and a constant.

Simulate 𝑀 independent paths {𝑥𝑗𝑡1 , . . . , 𝑥
𝑗
𝑡𝐾
} for 𝑗 = 1, . . . , 𝐵 of the Markov

process ;

Set the terminal value function estimate 𝐽𝐾(𝑥𝑗𝑡𝐾 )← 𝑔(𝑥𝑗𝑡𝐾 ) for 𝑗 = 1, . . . , 𝐵 ;

for each exercise opportunity 𝑘 = 𝐾 − 1 down to 1 do
Fit parameters 𝜃𝑘 by solving

𝜃𝑘 ← argmin
𝜃∈R𝑀

1

𝐵

𝐵∑︁
𝑗=1

(︁
𝐶𝜃(𝑘, 𝑥𝑗𝑡)− 𝐽𝑘+1(𝑥

𝑗
𝑡𝑘+1

)
)︁2
. (4.1)

for each sample path 𝑗 = 1, . . . , 𝐵 do

if 𝑔(𝑥𝑗𝑡𝑘) ≥ 𝑒−𝑟(𝑡𝑘+1−𝑡𝑘)𝐶𝜃𝑘(𝑘, 𝑥𝑗𝑡𝑘) then
𝐽𝑘(𝑥𝑗𝑡𝑘)← 𝑔(𝑥𝑗𝑡𝑘)

else
𝐽𝑘(𝑥𝑗𝑡𝑘)← 𝐽𝑘+1(𝑥

𝑗
𝑡𝑘+1

)

end

end

end

Output the continuation value approximations 𝐶𝜃𝑘(𝑘, .), that will be employed

by a greedy algorithm.
Algorithm 1: Approximate value iteration for optimal stopping via backward

induction.

Now that we have defined the basis functions, it is possible to tune the weights

𝜃𝑖,𝑘 to fit the continue value function approximations. Algorithm 1 shows how this

done exactly using backward induction. The output of the algorithm is a sequence

of approximations 𝐶𝜃1(1, .), . . . , 𝐶𝜃𝐾 (𝐾, .), which are then queried by a simple greedy

policy defined according to:

𝜋̂𝑡𝑘(𝑥) =

⎧⎪⎨⎪⎩1, 𝑔(𝑥𝑡𝑘) ≥ 𝑒−𝑟(𝑡𝑘+1−𝑡𝑘)𝐶(𝑘, 𝑥𝑡𝑘)

0, otherwise.
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Simulating the above sub-optimal policy, and calculating its average payoff, would

then give an unbiased estimate for a lower bound on the option’s price. In essence,

Algorithm 1 solves a sequence of regression problems, where we regress the current

state (or features of the state) against an estimate of the continuation value. If we use

the linear architecture, described at the beginning, namely 𝐶𝜃(𝑘, 𝑥) =
∑︀𝐵

𝑖=1 𝜃𝑖,𝑘𝜙𝑖(𝑥)

then these regression problems can be solved efficiently with OLS.

A natural question at this point is if we can move beyond OLS and consider more

complex architectures using neural networks. In the following numerical experiment,

we are going to compare the standard least-squares value iteration (LSVI) approach

from Longstaff and Schwartz [2001] with a neural network extension. Simply put, in

the second method we will take 𝐶𝜃(𝑘, 𝑥) to be a neural network whose input layer is

precisely the tuple of basis functions used in LSVI, and where the output layer is a

scalar value representing the continuation value. We then minimize the loss function

in Problem 4.1 via some form of stochastic gradient descent and backpropagation.

The full details will be given shortly.

Clearly an advantage with the new approach is that we can potentially fit the

value function more closely, and thus we should achieve tighter lower bounds on the

option price. The potential downsides are that we now are faced with a non-convex

problem and thus might reach ‘bad’ local minima when solving (4.1), among other

issues during optimization. Finally, if we don’t use enough sample trajectories in

Algorithm 1 there is a potential for overfitting, which is less of an issue with simpler

models such as least squares. In the experiment that follows, we will see that in

practice there is a tangible benefit to using a neural network if we are willing to

accept longer computation times for Algorithm 1.

Numerical Experiment

For the remainder of this chapter, we will study the following canonical option pricing

problem and compute bounds on its value. This particular optimal stopping problem

will reappear in later sections. We consider a Bermudan option over a calendar time

horizon of 𝑇 = 3 years, defined on 𝑛 assets. There are a total of 𝐾 = 54 exercise
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opportunities at calendar times 𝛿, 2𝛿, . . . , 𝛿𝐾 where 𝛿 , 𝑇/𝐾. The payoff is that of

a call option on the maximum of 𝑛 non-dividend-paying assets with an up-and-out

barrier. For modeling asset prices, we will use the Black-Scholes framework. We

shall assume that the risk-neutral asset price dynamics for each asset 𝑖 are given by

a Geometric Brownian motion. That is the price process 𝑝𝑖,𝑡 of the 𝑖th asset satisfies

the stochastic differential equation,

𝑑𝑝𝑖,𝑡 = 𝑟𝑝𝑖,𝑡𝑑𝑡+ 𝜎𝑖𝑝𝑖,𝑡𝑑𝐵𝑖,𝑡

with some initial value 𝑝𝑖,0, where 𝐵𝑖,𝑡 is a standard Brownian motion and 𝑟 = 0.05

is the continuously-compounded risk-free interest rate. We let 𝜌𝑖𝑗 be the correlation

between the price movements of the 𝑖th and 𝑗th assets. To keep this experiment

simple and in line with Desai et al. [2012] we will assume that 𝜌𝑖𝑗 = 0 for 𝑖 ̸= 𝑗 and

that 𝜎𝑖 = 0.2 for all 𝑖. In other words, the volatility of every asset’s returns are 20%

and the returns are independent between assets. Furthermore, every has the same

initial price 𝑝𝑖,0 = 𝑝0.

This Bermudan option has a barrier feature, which means that if the maximum of

the asset prices exceeds some pre-specified threshold 𝐵, the option gets knocked-out

and becomes worthless thereafter. For our experiment, we set 𝐵 = 170 and the initial

price 𝑝0 will take on values much lower than this. In order for us to formally define

the payoff function, we will need to fully describe the state in terms of a knock-

out indicator 𝑦𝑘, which equals one if the option has been knocked out and is zero

otherwise. In particular the discrete-time binary-valued stochastic process 𝑦𝑘 evolves

according to the recursion

𝑦𝑘 =

⎧⎪⎨⎪⎩1 (max𝑖 𝑝𝑖,0 ≥ 𝐵) 𝑘 = 1

1 (max𝑖 𝑝𝑖,𝛿𝑘 ≥ 𝐵) ∨ 𝑦𝑘−1 𝑘 > 1.

A state during the 𝑘th exercise period is defined as the tuple 𝑥𝑘 , (𝑝𝑘𝛿, 𝑦𝑘), and the
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corresponding value of the payoff function is given by

𝑔(𝑝𝑘𝛿, 𝑦𝑘) =

(︂
max

𝑖=1,...,𝑛
𝑝𝑖,𝛿𝑘 − 𝑆

)︂+

(1− 𝑦𝑘).

Given this particular payoff function it’s possible to use the same basis function

architecture described earlier in implementing both LSVI and its neural network

extension. To derive the lower bounds, we sampled 200,000 independent trajectories

of the price processes. Using this same set of sample paths and a common set of

basis functions (alluded to earlier), we computed the following heuristic policies on a

machine with a single CPU and 32 GB of RAM:

∙ LS: The standard Longstaff-Schwartz method as described in Algorithm 1 where

the approximation architecture is a linear combination of the basis functions.

∙ NN: An extension of the previous method, where the approximation architec-

ture is a 4 layer feedforward neural network with sigmoid activations between

the hidden layers. Batch normalization (explained later) is also applied to the

output of the activations. There are 20 hidden neurons in each layer and the

input to the network consists of the basis function values. We train a separate

network in each iteration of Algorithm 1 using the Adam Kingma and Ba [2014],

with a minibatch size of 32. We run the optimization for 50 epochs over the

training data.

∙ PO: Another heuristic policy derived from the value function approximation

given by the pathwise optimization method in Desai et al. [2012]. This is

supposed to be an improvement over Longstaff-Schwartz so we include it for

comparison.

After training each policy, we evaluate it ten times on a different set of 10,000 inde-

pendent sample paths. The mean payoff from each policy, as well as the standard

error over the 10 evaluations, are shown in Table 4.1. In addition, we show the abso-

lute and relative improvement over the two benchmarks in Table 4.2. We also report

the time taken to train in each policy in minutes. More precisely, in the case of LS
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𝑛 = 4 assets
𝑝0 90 100 110
Method LS NN PO LS PO NN LS NN PO

Mean 32.73 34.06 33.01 40.74 42.72 41.54 46.87 49.18 48.16
S.E. 0.07 0.08 0.06 0.05 0.07 0.05 0.06 0.04 0.04 0.06
Time (min) 6.67 452.22 136.08 6.53 437.87 142.18 6.15 66.98 125.77

𝑛 = 8 assets
𝑝0 90 100 110
Method LS NN PO LS PO NN LS NN PO

Mean 43.10 45.08 44.11 49.00 51.24 50.25 52.43 54.16 53.49
S.E. 0.04 0.05 0.04 0.02 0.03 0.02 0.04 0.05 0.01
Time (min) 6.91 480.61 160.53 6.90 603.86 154.23 5.96 50.82 155.72

𝑛 = 16 assets
𝑝0 90 100 110
Method LS NN PO LS PO NN LS NN PO

Mean 49.83 51.57 50.87 52.79 54.55 53.62 54.54 55.81 55.14
S.E. 0.02 0.04 0.02 0.03 0.02 0.02 0.02 0.03 0.04
Time (min) 7.89 477.70 236.08 7.05 432.57 212.08 6.41 50.33 207.47

Table 4.1: Lower bound estimates on option price from the heuristic policies as a
function of the initial price 𝑝0 and number of assets 𝑛.

𝑛 𝑝0 (NN)-(PO) (%) (NN)-(LS) (%)

4 90 1.05 3.19 1.33 4.07
100 1.18 2.83 1.98 4.85
110 1.01 2.10 2.30 4.92

8 90 0.96 2.18 1.98 4.59
100 0.99 1.97 2.24 4.57
110 0.67 1.25 1.73 3.31

16 90 0.68 1.34 1.74 3.49
100 0.92 1.71 1.76 3.33
110 0.67 1.21 1.27 2.34

Table 4.2: Relative value of the NN algorithm as a function of the initial price 𝑝0 and
number of assets 𝑛.
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this is the time taken to solve the least squares problems and for the NN extension,

this is the time taken for Adam to converge after the 50 epochs over the training

data.

As we can see, there is a significant (greater than 200 basis point) improvement on

the lower bound from fitting the continuation value function using a more complex

neural network architecture as opposed to OLS with basis functions. We also see

an improvement (albeit a more modest one) on the PO method, which is based on

a different way of regressing the value function [see Desai et al. [2012] for details].

When implementing our algorithm, we avoided potential issues such as overfitting

by using enough sample paths, improved optimization with batch normalization and

through the use of the state-of-the-art Adam algorithm.

While this experiment is conceptually simple, it does demonstrate tangible value

from deep learning. By a slight enough modification to a least squares based algo-

rithm, we obtain encouraging results and outperform two well-established exercise

policies. Of course, all this is at the expense of longer computation times, which may

be managed by utilizing more hardware (more CPUs or GPUs), but this is beyond

the scope of the experiment. In the next section, motivated by these encouraging

results, we will tackle duality methods for computing upper bounds and see how we

could leverage deep learning there.

4.2.3 Upper Bounds via Martingale Duality

In this section, we will focus again on approximating the price of an option, but

only this time through unbiased estimates of an upper bound. We will again explore

how deep learning can be exploited to improve existing approximations. Recall that

computing a lower bound on an option price is, in principle, straightforward as all

that is required is to estimate the mean payoff from a (sub-optimal) policy. On the

other hand, getting an upper bound boils down to solving a new, tractable stopping

problem, in which the non-anticipativity constraint is relaxed and the payoff function

is modified in a carefully chosen way. The optimal value of the new stopping problem

is an upper bound to the original one.
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To be more precise, let us assume that the set of exercise times 𝒯 is finite, so

we are again dealing with Bermudan options. We will denote the individual exercise

times as 0 = 𝑡0 < 𝑡1, . . . , 𝑡𝐾 ≤ 𝑇 . We will fix an arbitrary ℱ𝑡-measurable martingale

𝑀 = {𝑀𝑡, 𝑡 ≥ 0} and define the tractable approximation problem

𝑈(𝑥,𝑀) , E
[︂
max
𝑠∈𝒯

(︀
𝑒−𝑟𝑠𝑔(𝑥𝑠)−𝑀𝑠

)︀ ⃒⃒⃒
𝑥0 = 𝑥

]︂
(4.2)

which is computationally easy to estimate since 𝑠 is not a stopping time but rather

the maximal index over a sample trajectory of values. When the set 𝒯 is finite, it’s

clear how to estimate the above quantity with a simple Monte Carlo algorithm, where

each iteration’s time complexity is linear in 𝐾 = |𝒯 |.

The following well-known weak duality result is crucial in what will follow, and

we show the proof because it’s short but instructive.

Lemma 12 (Weak duality). For any martingale 𝑀 adapted to the filtration F and

any starting state 𝑥 ∈ R𝑛,

𝐽⋆
0 (𝑥) ≤ 𝑈(𝑥,𝑀).

Proof. Let 𝜏 ⋆ be an optimal stopping time taking values in 𝒯 . We then have

𝐽⋆
0 (𝑥) = E

[︀
𝑒−𝑟𝜏⋆𝑔(𝑥𝜏⋆) | 𝑥0 = 𝑥

]︀
= E

[︀
𝑒−𝑟𝜏⋆𝑔(𝑥𝜏⋆)−𝑀𝜏⋆ | 𝑥0 = 𝑥

]︀
≤ E

[︂
max
𝑠∈𝒯

𝑒−𝑟𝑠𝑔(𝑥𝑠)−𝑀𝑠 | 𝑥0 = 𝑥

]︂
,

where the second equality follows from the optional stopping theorem and the fact

that 𝜏 ⋆ is bounded. The inequality above follows from relaxing the non-anticipativity

constraint and allowing exercise policies access to the entire sample trajectory.

The result above is analogous to duality in optimization (hence the name), where

we remove difficult constraints and replace them with penalty terms in the objective

for penalizing them. For example, we could choose an obvious martingale such as

𝑀𝑡 ≡ 0, and this will give a loose, yet valid bound. In fact, the above upper bound
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is tight, which follows from the following strong duality result:

Theorem 4.2.1 (Strong duality). For any starting state 𝑥 ∈ R𝑛, there exists a zero-

mean martingale 𝑀⋆ such that

𝐽⋆
0 (𝑥) = 𝑈(𝑥,𝑀⋆).

Moreover, 𝑀⋆ is the martingale part of the Doob-Meyer decomposition of the super-

matingale {𝐽⋆
𝑡𝑘

(𝑥𝑡𝑘) : 𝑘 ∈ [𝐾]}, that is

𝐽⋆
𝑡𝑘

(𝑥𝑡𝑘) = 𝐽⋆
0 (𝑥) +𝑀⋆

𝑡𝑘
− 𝐴⋆

𝑡𝑘
, 𝑘 = 1, . . . , 𝐾

where 𝐴⋆ is a previsible increasing discrete process.

The work in Rogers [2002] includes a proof of strong duality and we omit it here.

The fact that we have a potentially tight upper bound given in terms of any martingale

𝑀 , motivates us to consider the intractable dual problem:

inf
𝑀∈ℳ

𝑈(𝑥,𝑀) (4.3)

which is a search over the space of martingales adapted to F, denoted by ℳ. As is

apparent from Lemmas 12 and 4.2.1, the optimal value to (4.3) is the option’s price

𝐽⋆
0 (𝑥). Our focus will be on approximately solving this dual problem by restricting

our search to a more manageable space of martingales.

Pathwise Optimization

In order to see how deep learning could be leveraged to approximately solve the dual

problem in Equation (4.3), we describe the pathwise optimization method [Desai

et al., 2012]. Notice that, given knowledge of the optimal value function 𝐽⋆
𝑡𝑘

(.), we

can determine the optimal martingale in Theorem 4.2.1 as follows:

𝑀⋆
𝑡𝑘

=
𝑘∑︁

𝑝=1

𝑒−𝑟𝑡𝑝
(︁
𝐽⋆
𝑡𝑝(𝑥𝑡𝑝)− E

[︁
𝐽⋆
𝑡𝑝(𝑥𝑡𝑝) | 𝑥𝑡𝑝−1

]︁)︁
. (4.4)
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The above equation follows from Doob’s decomposition theorem. In practice, we

might need to estimate the conditional expectation above via Monte Carlo simulation.

For each exercise period 𝑘, let 𝒥𝑘 be the space of ℱ𝑡𝑘-measurable functions 𝐽 :

R𝑛 ↦→ R, which we assume includes the payoff function 𝑔(.). We define 𝒫 as the set

of functions 𝐽 : [𝐾] × R𝑛 ↦→ R, such that for each 𝑘 ∈ [𝐾], the function 𝐽𝑡𝑘(.) ,

𝐽(𝑘, .) belongs to 𝒥𝑘. Thus, it is clear that if by an abuse of notation, we wrote

the value function 𝐽⋆
𝑡𝑘

(.) as 𝐽⋆
𝑘 (namely we only defined the optimal value function

during discrete exercise times), it would follow that 𝐽⋆ ∈ 𝒫 . The idea of pathwise

optimization is to parameterize martingales in terms of an arbitrary function 𝐽 ∈ 𝒫 ,

by defining the process

(𝑀𝐽)𝑡𝑘 =
𝑘∑︁

𝑝=1

𝑒−𝑟𝑡𝑝
(︀
𝐽𝑡𝑝(𝑥𝑡𝑝)− E

[︀
𝐽𝑡𝑝(𝑥𝑡𝑝) | 𝑥𝑡𝑝−1

]︀)︀
. (4.5)

Subsequently, we shall refer to this as a discrete representation because we express the

process as a finite sum of random variables. Since the above is indeed a martingale,

we can formally define the following upper bound operator, given in terms of a value

function 𝐽 ∈ 𝒫 and the starting state 𝑥:

(𝐹𝐷
0 𝐽)(𝑥) , E

[︂
max
𝑠∈𝒯

{︀
𝑒−𝑟𝑠𝑔(𝑥𝑠)− (𝑀𝐽)𝑠

}︀ ⃒⃒⃒
𝑥0 = 𝑥

]︂
.

Thus we can focus our attention on finding the minimum upper bound over all value

functions in the space 𝒫 , namely the following dual problem:

inf
𝐽∈𝒫

(𝐹𝐷
0 𝐽)(𝑥) (4.6)

whose optimal solution is 𝐽⋆, as noted from Equation 4.4 and Theorem 4.2.1, and

where the optimal objective value is 𝐽⋆
0 (𝑥). Unfortunately, (4.6) remains an infinite-

dimensional optimization problem for which there aren’t any solution methods, and

we discuss ways to address that.

In order to find a tractable approximation to Problem (4.6), we will optimize over

a smaller space of functions 𝒫 ⊂ 𝒫 which is compactly parameterized by some real
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vector 𝜃 ∈ R𝑝. That is we consider a restricted family

𝒫 =
{︀
𝐽𝜃 ∈ 𝒫 : 𝜃 ∈ R𝑝

}︀
,

where, for the purposes of this chapter, 𝐽𝜃 could denote the output layer of a deep

feedfoward neural network whose input is the state vector 𝑥𝑡 ∈ R𝑛 at time 𝑡. In

that case, 𝜃 denotes the sequence of all parameters in the network (including all

hidden layers). Alternatively, and in Desai et al. [2012], 𝐽𝜃 is assumed to be a linear

combination of 𝑝 basis functions Φ = {𝜑1, . . . , 𝜑𝑝} ⊂ 𝒫 , that describe features of the

state. In other words, they would define a candidate value function as

𝐽𝜃(𝑥) =

𝑝∑︁
𝑘=1

𝜃𝑘𝜑𝑘(𝑥), (4.7)

which describes the same method of approximating the continuation function in the

Longstaff-Schwartz algorithm of the previous section. In fact, later on, we will use

the same set of basis functions as we did in Section 4.2.2.

In any case, we refer to both ways of approximating the value function as an

approximation architecture. The advantage of using the neural network, as we saw

last time, is that we do not need to design basis functions by hand, so that the same

architecture can (hopefully) be reused in a variety of stopping problems. At the same

time, a major drawback of the neural network is that we might need many more

parameters, and the function 𝐽𝜃(.) becomes non-linear and non-convex in 𝜃.

Once we have decided upon a parameterization 𝐽𝜃 and thus fixed a family 𝒫 ⊂ 𝒫 ,

we may consider the problem

inf
𝜃∈R𝑝

(𝐹𝐷
0 𝐽

𝜃)(𝑥) (4.8)

which is an unconstrained optimization over 𝑝 real numbers and thus can be tackled

with numerical techniques. This is what we call the pathwise optimization problem.

We can see that solving this problem provides a (somewhat) practical way of finding

an upper bound to Problem (4.6). Now if 𝐽𝜃 was given in terms of a neural network,

the previous optimization problem would be non-linear and non-convex, however we
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could find local minima using methods such as stochastic gradient descent. On the

other hand, were we to opt for the linear basis function architecture, the same problem

would be both practically and theoretically tractable, and this observation is stated

in the following Lemma:

Lemma 13. Suppose that 𝐽𝜃 is a linear combination of 𝑝 basis functions. That is,

there exist {𝜑1, . . . , 𝜑𝑝} ⊂ 𝒫 such Equation (4.7) holds, then Problem (4.8) is convex

and therefore practically tractable.

We omit the simple proof of this lemma, which appears in the original pathwise

optimization paper. The bottom line is that as long as the function 𝐽𝜃 is affine in the

parameters 𝜃, the pathwise optimization problem is convex.

Before making a final remark about the convex variant of the pathwise opti-

mization problem just discussed, we briefly outline how we might actually solve

(4.8). In practice, we would approach this problem by formulating either its SAA

(sample-average approximation) version, or using stochastic gradient descent. More

precisely, for the SAA method, we would generate 𝑆 outer sample paths of the un-

derlying Markov process {𝑥𝑗𝑡 , 0 ≤ 𝑡 ≤ 𝑇, 𝑗 = 1, . . . , 𝑆}. Then for every exercise

opportunity 𝑘 = 1, . . . , 𝐾 and outer sample path 𝑗 = 1, . . . , 𝑆, we generate 𝐼 in-

ner samples of the process conditioned on its value in the previous exercise time,

that is {𝑥𝑗,𝑖𝑡𝑘 , 𝑖 = 1, . . . , 𝐼}, where each random variable in that sequence is an i.i.d

draw from the conditional distribution P
(︀
𝑥𝑡𝑘 ∈ . | 𝑥𝑡𝑘−1

= 𝑥𝑗𝑡𝑘−1

)︀
. With these outer

and inner samples, we approximate the upper bound operator (𝐹𝐷
0 𝐽

𝜃)(𝑥) with its

sample-average approximation

(𝐹𝐷
0 𝐽

𝜃)(𝑥) ,
1

𝑆

𝑆∑︁
𝑗=1

(︂
max

𝑘=1,...,𝐾

{︁
𝑒−𝑡𝑘𝑟𝑔(𝑥𝑗𝑡𝑘)− (𝑀̂𝐷𝐽)𝑗𝑡𝑘

}︁)︂
. (4.9)

where we let (𝑀̂𝐷𝐽)𝑗 denote the 𝑗th sample from a martingale, defined as:

(𝑀̂𝐷𝐽)𝑗𝑡𝑘 ,
𝑘∑︁

𝑙=1

(︃
𝐽𝜃
𝑡𝑙
(𝑥𝑗𝑡𝑙)−

1

𝐼

𝐼∑︁
𝑖=1

𝐽𝜃
𝑡𝑙
(𝑥𝑗,𝑖𝑡𝑙 )

)︃
. (4.10)
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With that, we can now solve the deterministic problem

inf
𝜃∈R𝑝

(𝐹𝐷
0 𝐽

𝜃)(𝑥) (4.11)

whose optimal objective value gives a biased estimate to the value of Equation (4.8).

In order to obtain an unbiased upper bound to our original stopping problem, we take

the optimal solution to the aforementioned problem, say 𝜃⋆, and evaluate the same

function (𝐹𝐷
0 𝐽

𝜃⋆)(𝑥) with a new batch of independent outer & inner samples.

One final fact worth noting is that if 𝐽𝜃 is affine in its parameters, Problem 4.11 can

be reformulated as a deterministic LP. For convenience, we will refer to this specific

algorithm as the pathwise optimization (PO) method. We can then solve large-scale

instances of the problem with off-the-shelf LP solvers. The pathwise optimization

method is a key benchmark that we will consider in this chapter when we develop

new upper bounding methods.

If however, we are to parameterize 𝐽𝜃 as a neural network, we will refer to the algo-

rithm (again for convenience) as the deep pathwise optimization (DPO) method. How-

ever, instead of solving the problem via the complete SAA version in Equation (4.11),

we will instead apply stochastic gradient descent to (4.8) with mini-batches of outer

and inner samples. Rather than simply settling for DPO as an “application of deep

learning" to this problem, we will see if alternative ways of characterizing a mar-

tingale are more computationally efficient in practice, in order to offset the extra

computational burden of using neural networks.

Martingale Duality under Brownian motion

In this section we will consider alternative martingale representations to the one in

Equation (4.5). Recall that in this expression, 𝐽𝜃 can represent a neural network,

which typically contains more parameters than the linear basis function architec-

ture. As such, the need for inner sampling can make evaluating the gradient of

Equation (4.9) computationally onerous. For this reason, we will explore alternative

martingale representations that don’t require nested Monte Carlo and thus make deep
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learning techniques possible.

For the remainder of this section, we will need to assume that 𝑥𝑡 is a geometric

Brownian motion process, and therefore satisfies the SDE

𝑑𝑥𝑖,𝑡 = 𝑟𝑥𝑖,𝑡𝑑𝑡+ 𝜎𝑥𝑖,𝑡𝑑𝐵𝑖,𝑡, 𝑖 = 1, . . . , 𝑛 (4.12)

𝑥0 = 𝑥

where 𝐵𝑡 = (𝐵1,𝑡, . . . , 𝐵𝑛,𝑡) is a vector of 𝑛 independent Brownian motions and 𝑎𝑖 and

𝑏𝑖 are certain functions of the current time and state. As before, we let F denote the

natural filtration generated by 𝐵𝑡. Since the main application of optimal stopping is

option pricing, and asset price dynamics are typically assumed to follow a geometric

Brownian motion, this is assumption is reasonable.

The advantage in this setting is that we can rewrite Equation (4.5) in terms of an

Itô integral. The reason why such representation turns out to be useful are twofold.

First of all, any Itô integral is automatically guaranteed to be martingale and hence

can be used to evaluate objective the function in Problem 4.3. Second of all, an

Itô integral can be approximated without the use of nested Monte Carlo unlike the

martingale from pathwise optimization method. While this seems attractive at first,

we point out that approximating an Itô integral would require us to use a finer mesh

than the discretization of [0, 𝑇 ] given by 𝒯 . Nonetheless, the absence of inner sampling

might make it cheaper to evaluate an approximation to the martingale upper bound

and we’ll investigate if this is true. In any case, for us to express (4.5) as an integral,

we need the following Lemma:

Lemma 14. Let 𝑥𝑡 be a geometric brownian motion with 𝑛 components satisfying

(4.12). Then if 𝐽 : R𝑛 ↦→ R is a twice-continuously differentiable function, we have

that for any 𝑡 > 0

𝐽(𝑥𝑡)− E [𝐽(𝑥𝑡) | 𝑥0] =
𝑑∑︁

𝑖=1

∫︁ 𝑡

0

𝜎𝑥𝑖,𝑠𝜓
𝐽
𝑖 (𝑡− 𝑠, 𝑥𝑠) 𝑑𝐵𝑖,𝑠

=

∫︁ 𝑡

0

𝜎(𝑥𝑠 ·Ψ𝐽(𝑡− 𝑠, 𝑥𝑠))⊤𝑑𝐵𝑠 (4.13)
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where we define for any 𝑢 > 0 the function

𝜓𝐽
𝑖 (𝑢, 𝑥) :=

𝜕

𝜕𝑥𝑖
E [𝐽(𝑥𝑢) | 𝑥0 = 𝑥] , 𝑖 = 1, . . . , 𝑛

and function Ψ𝐽(𝑢, 𝑥) denotes the vector of the above 𝑛 partial derivatives.

The proof of this Lemma follows from the Clark-Ocone theorem and fact that the

stochastic process on the left-hand side of the equation (4.13) is a martingale.

We are now motivated to define a new martingale representation, similar to that

of (4.5), but one which does not include conditional expectations in its definition. Let

𝒬 be the set of measurable functions Ψ : [0, 𝑇 ]×R𝑛 ↦→ R𝑛. For any function Ψ ∈ 𝒬,

in this family, we define a martingale in terms of it

(𝑀𝐶Ψ)𝑡𝑘 =
𝑘∑︁

𝑝=1

𝑒−𝑟𝑡𝑝

∫︁ 𝑡𝑝

𝑡𝑝−1

𝜎(𝑥𝑠 ·Ψ(𝑡𝑝 − 𝑠, 𝑥𝑠))⊤𝑑𝐵𝑠, (4.14)

which we dub the continuous representation. In particular, it follows directly from

Lemma 14 that for any value function 𝐽 ∈ 𝒫 , that is moreover twice-continuously

differentiable, that 𝑀𝐶Ψ𝐽 = 𝑀𝐷𝐽 , where the left hand side is defined in the Lemma.

Put differently, the two martingale representations are equivalent when 𝐽 is a suffi-

ciently smooth function.

Given the new representation, we are ready to define the continuous martingale

duality operator 𝐹𝐶
0 , on functions in 𝒬, as

(𝐹𝐶
0 Ψ)(𝑥) , E

[︂
max
𝑘∈[𝐾]

{︀
𝑒−𝑟𝑡𝑘𝑔(𝑥𝑡𝑘)− (𝑀𝐶Ψ)𝑡𝑘

}︀ ⃒⃒⃒
𝑥0 = 𝑥

]︂
, (4.15)

and as we would expect it shares some of the weak and strong duality properties of

the discrete version. We state these facts in the following Theorem.

Theorem 4.2.2 (Weak and strong duality). For any starting state 𝑥, we have that

1. 𝐽⋆
0 (𝑥) ≤ (𝐹𝐶

0 Ψ)(𝑥) for any function Ψ ∈ 𝒬

2. 𝐽⋆
0 (𝑥) = infΨ∈𝒬 (𝐹𝐶

0 Ψ)(𝑥).
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Proof. The first property (weak duality) follows from the fact that 𝑀𝐶Ψ is a martin-

gale, and hence the steps same as in proof of Theorem 4.2.1 apply here.

Since Equation 4.17 defines a tight upper bound, we will compactly parameterize

a subset of the family 𝒬 just like in the PO method. To this end, we let Ψ𝜃 denote

a function in 𝒬 parameterized by the vector 𝜃. For example, this could describe a

feedforward neural network with 𝑛 inputs, 𝑛 outputs and where parameter 𝜃 ∈ R𝑝

denotes all the 𝑝 weights in the network (from all the hidden layers). Now that we

defined a family of all such parameterized functions, which we may call 𝒬̂ ⊂ 𝒬, we

optimize the upper bound given in Equation (4.15) over it by solving

inf
𝜃∈R𝑝

(𝐹𝐶
0 Ψ𝜃)(𝑥) (4.16)

which is a relatively low-dimensional optimization problem in 𝑝 parameters. If Ψ𝜃

were a neural network, we could interpret the above objective function as a rather

complicated loss function given in terms of the outputs of the network Ψ𝜃.

We are faced with one remaining difficulty, which is evaluating the expectation

inside objective function. To deal with this, as expected, we use a sampling ap-

proach and introduce the following new notation. Let us define the mesh 𝒰 =

{𝑢0, 𝑢1, . . . , 𝑢𝐿} ⊂ [0, 𝑇 ], where 𝑢0 = 0 and 𝑢𝐿 = 𝑇 and we assume that 𝒯 ⊂ 𝒰 ,

i.e. this mesh is finer than the grid of exercise opportunities.

Over this new mesh, we sample 𝑁 trajectories {𝑥𝑗𝑢𝑙
, 𝑡 = 0, . . . , 𝐿, 𝑗 = 1, . . . , 𝑁}

of our Markov process. We also denote with {𝐵𝑗
𝑢𝑙
, 𝑡 = 0, . . . , 𝐿, 𝑗 = 1, . . . , 𝑁}

the corresponding set of paths from the brownian motion. Thus we can compute an

unbiased estimate of (4.15) with the following expression

(𝐹𝐶
0 Ψ)(𝑥) ,

1

𝑁

𝑁∑︁
𝑗=1

(︂
max
𝑘∈[𝐾]

{︁
𝑒−𝑟𝑡𝑘𝑔(𝑥𝑗𝑡𝑘)− (𝑀̂𝐶Ψ)𝑗𝑡𝑘

}︁)︂
(4.17)

where 𝑀̂𝐶Ψ is an approximation of the continuous martingale and is defined according
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to

(𝑀̂𝐶Ψ𝜃)𝑗𝑡𝑘 ,
𝑘∑︁

𝑝=1

𝑒−𝑟𝑡𝑝
∑︁

𝑡𝑝−1≤𝑢𝑙<𝑡𝑝

𝜎(𝑥𝑗𝑢𝑙
·Ψ𝜃(𝑡𝑝 − 𝑢𝑙, 𝑥𝑗𝑢𝑙

))⊤(𝐵𝑗
𝑢𝑙+1
−𝐵𝑗

𝑢𝑙
). (4.18)

In order to tune the network weights, we would then solve the following deterministic

problem with 𝑁 sample trajectories:

inf
𝜃∈R𝑝

(𝐹𝐶
0 Ψ𝜃)(𝑥) (4.19)

where we defined 𝐹𝐶
0 Ψ𝜃 with respect to the 𝑁 sample paths. Evidently, the problem

is analogous to the one in pathwise optimization. In fact, as is explained in the

following Proposition, with the right architecture, Problem (4.19) is convex.

Proposition 5. Suppose that there exist a set of basis function 𝜑1, . . . , 𝜑𝑚, each one

mapping R𝑛 to R, such that

Ψ𝜃(𝑥) = ΘΦ(𝑥)

where, with a slight abuse of notation, Θ denotes the components of 𝜃 arranged into

a 𝑛 × 𝑚 matrix and Φ(𝑥) =
[︁
𝜑1, . . . , 𝜑𝑚(𝑥)

]︁
. In that case, Problem 4.19 is convex

and can be formulated as a linear program.

Proof. By inspecting Equation (4.17) we see that the objective function in the prob-

lem is a sum of maxima over different affine functions in 𝜃. In other words, the

objective is convex piecewise linear in 𝜃 and such a problem can be solved with linear

programming.

The above result simly tells us that as long as Ψ𝜃 is affine in its parameter, the

dual problem for finding an upper bound is convex. Moreover, this suggests to us

another efficient way of computing an upper bound through linear programming,

that is different from the PO method. We will dub this particular algorithm as the

Continuous Pathwise Optimization (CPO) method and we will also benchmark it

later on.
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At this point it is natural to wonder if we can readily just use a neural network

as Ψ𝜃 for Problem (4.19). In theory, that’s possible and we would then minimize

such a function with backpropagation to find a local minimum. Since this mimics

the typical way neural networks are optimized, we describe the step of solving this

optimization problem the training phase. A general issue is that, if 𝑁 is relatively

small, we might ‘overfit’ 𝜃 to the sample trajectories during training. This means

that when we finally compute an unbiased estimate of upper bound (4.15), with the

trained weights, the actual upper estimate on the option price would be too loose.

On the other hand, using a too large value of 𝑁 would make computing gradients in

Problem (4.19) computationally onerous. For these reasons, we will instead consider

an alternative, discretized stochastic problem

inf
𝜃∈R𝑝

E
[︂

max
𝑘∈[𝐾]

{︁
𝑒−𝑟𝑡𝑘𝑔(𝑥𝑡𝑘)− (𝑀̃𝐶Ψ)𝑡𝑘

}︁ ⃒⃒⃒
𝑥0 = 𝑥

]︂
(4.20)

where the martingale part is approximated using the following sequence of sums of

random variables sampled at points in the mesh 𝒰 :

(𝑀̃𝐶Ψ𝜃)𝑗𝑡𝑘 ,
𝑘∑︁

𝑝=1

𝑒−𝑟𝑡𝑝
∑︁

𝑡𝑝−1≤𝑢𝑙<𝑡𝑝

𝜎(𝑥𝑢𝑙
·Ψ𝜃(𝑡𝑝 − 𝑢𝑙, 𝑥𝑢𝑙

))⊤(𝐵𝑢𝑙+1
−𝐵𝑢𝑙

). (4.21)

We would then train our network by minimizing (4.20) via stochastic gradient de-

scent, with independent mini-batches of sample trajectories. We give this algorithm

the nickname, Deep Continuous Pathwise Optimization (DCPO). A nice feature of

our problem is that because we can simulate trajectories, the data we work with is

effectively unlimited and every mini-batch is contains new and (with high probability)

unseen samples. It’s plausible that this would prevent overfitting. It is also worth

noting that the discretized approximation in (4.21) is by construction always a mar-

tingale, no matter how coarse 𝒰 is. Thus we know that (4.20) is a always a valid upper

bound, even when 𝒰 = 𝒯 . In practice, with stochastic gradient descent and a fine

enough mesh 𝒰 , we find good local minima and avoid overfitting. For this reason, we

do not need to resort to regularization techniques such as dropout [Srivastava et al.,
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2014] when optimizing these networks.

Numerical Experiments

In this section we will compute upper bound estimates on option prices using the three

methods described in the previous section, namely PO, CPO and DCPO. Recall that

the first two algorithms rely on us providing basis functions to describe state features,

while the third doesn’t. Whenever they’re needed, we will use a common set of basis

functions, which are the same as what we saw earlier in this chapter. In other words,

we will specifically fix 𝑛 + 2 basis functions, 𝜑1(𝑥), . . . , 𝜑𝑛+2(𝑥) evaluated at a state

𝑥 ∈ R𝑛, where 𝜑𝑛+1(𝑥) = 𝑔(𝑥) (the problem-specific option payoff), 𝜑𝑛+2 = 1 (a

constant) and 𝜑𝑖(𝑥) = 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛 (the individual asset prices).

We will consider a max-call option on 𝑛 assets whose common initial price is

denoted by 𝑝0. The assets will follow the same price dynamics, 𝑥𝑡, as in the previous

experiment of this chapter and so will be modeled with a multi-dimensional brownian

motion. The payoff of the option in a state 𝑥 ∈ R𝑛 is

𝑔(𝑥) =

(︂
max
1≤𝑖≤𝑛

𝑥𝑖 − 𝑆
)︂+

where 𝑆 = 100 is the strike price. We will use two different problem horizons, 𝑇 = 1, 3

years and suppose that there are 𝑑 = 54 evenly spaced exercised opportunities, so

that 𝒯 = {0, 𝑇/𝑑, 2𝑇/𝑑, . . . , 𝑇}. The remainder of the parameters will be reused

from the previous experiment, so that the risk free rate is 𝑟 = 0.05, the annualized

volatility is 20%, and so on. For the continuous representation, we use a finer mesh

with 𝑑′ > 𝑑 evenly spaced points, namely 𝒰 = {0, 𝑇/𝑑′, 2𝑇/𝑑′, . . . , 𝑇} (note that 𝑑

has to divide into 𝑑′). We will leave 𝑑′ as a parameter that we’ll tune later.

In order to help us describe the computational setup for all algorithms and report

results, we define a new complexity parameter (CP) as roughly the total number of

calls to the value function (whether it’s 𝐽𝜃 or Ψ𝜃) in Equations (4.10) or (4.18), within

each term of the summation. More precisely, for the DCPO and CPO methods, CP

would be 𝑑′/𝑑, i.e. the relative increase in mesh granularity, while for the PO and DPO
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methods the CP parameter is roughly 𝐼, the number of inner samples. The reason we

define this parameter, is in order to establish a common metric for the computational

complexity of all the algorithms. Generally, with larger values of this parameter, the

bounds from all the algorithms improve, as we will demonstrate later. Employing

a larger complexity parameter however requires longer runtimes and higher memory

requirements due to the increased number of terms in (4.10) and (4.18).

The parameter settings and implementation details for the three algorithms, in

all the experiments that follow, are summarized below:

∙ PO: In the notation of Section 4.2.3, we solve the LP in (4.11) with 𝑁 = 10, 000

outer samples and using the basis functions mentioned earlier. For each outer

sample, the number of next state inner samples for each period is equal to CP,

the complexity parameter. Given a solution 𝜃P𝑂 we evaluate 𝐹𝐷
0 𝐽

𝜃P𝑂 using a

distinct set of 𝑁 = 10, 000 outer samples and 𝐼 = 𝐶𝑃 inner samples for one-step

conditional expectations, where CP is the complexity parameter.

∙ CPO: We solve a LP derived from equation (4.19) with 𝑁 = 10, 000 outer

samples. These are the same trajectories as the ones we use for the PO method,

only sampled at a finer granularity given by the mesh 𝒰 , where 𝑑′ = 𝐶𝑃 × 𝑑

and 𝐶𝑃 is the complexity parameter. We let Ψ𝜃, in the definition of (4.19),

denote the linear basis function architecture, so that the parameter 𝜃 is a 𝑛+ 2-

dimensional vector. Given an optimal solution 𝜃C𝑃𝑂 to this LP, we evaluate

𝐹𝐶
0 Ψ𝜃C𝑃𝑂 on a distinct batch of 𝑁 = 10, 000 sample trajectories. These are the

same paths used to evaluate the PO method.

∙ DCPO: Following the notation of Section 4.2.3, we let Ψ𝜃 = Ψ̃𝜃 where Ψ̃𝜃 :

R𝑛 ↦→ R𝑛 denotes a feedforward neural network with some number of hidden

layers 𝐻 and width 𝑊 (the number of hidden units in every layer). We ap-

ply batch-normalization [Ioffe and Szegedy, 2015] and ReLU activations to the

output of every hidden layer. Here 𝜃 represents all the weights, biases and

batch-normalization scaling parameters in this network. All neuron weights

are initialized at random from a zero-mean Gaussian distribution with variance
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1/(𝐻𝑊 ).

We train this network by minimizing the corresponding loss function given in

(4.20) using the Adam algorithm [Kingma and Ba, 2014] with different learning

rate parameters that we will vary between 0.001 and 0.1. Every update step to

𝜃 is performed with a fresh mini-batch of 1,000 independent sample trajectories.

We use the early stopping framework from [Goodfellow et al., 2016, p. 240] with

100 steps between evaluations and the ‘patience parameter’ set to 10, and where

the validation data consists of a separate batch of 10,000 independent sample

trajectories.

Letting 𝜃DCPO denote the best parameters after training the network, we eval-

uate 𝐹𝐶
0 Ψ̃𝜃D𝐶𝑃𝑂 on the same batch of 𝑁 = 10, 000 sample trajectories used for

the PO and CPO methods. We keep this evaluation data the same to reduce

variance when comparing algorithms.

∙ DPO: For this algorithm, we let 𝐽𝜃 = 𝐽𝜃 where 𝐽𝜃 : R𝑛 ↦→ R is a feedforward

neural network with some number of hidden layers 𝐻 and 𝑊 hidden units in

every layer (also known as width). This is the same type of neural network

as for the DCPO method, where batch-normalization and ReLU activations

are applied to the output of every hidden layer. We train this network, in a

similar way to DCPO, with the Adam algorithm. The main difference is that

we minimize the loss function from (4.8).

Like in the PO algorithm, we take for each outer sample, and at every exercise

time, 𝐼 = 𝐶𝑃 inner samples. Here CP denotes the complexity parameter. We

evaluate this algorithm in an analogous manner to the PO method.

The goal of the following experiment is to find the tightest bounds possible with each

algorithm, given the available computational resources. For this reason, we will use a

relatively large number of outer/training samples (mentioned above) and fix CP to a

large value, specifically 100, that allowed us to compute all bounds within 24 hours.

We tested both methods involving neural networks, namely DPO and DCPO,

using the Adam algorithm and tried four learning rate parameters: 0.001, 0.005, 0.01
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𝑛 4 8
Algo CPO DCPO PO CPO DCPO PO

Mean 55.626 52.841 52.998 76.063 72.081 72.206
S.E 0.017 0.064 0.041 0.038 0.055 0.069
Time (min) 0.000 1032.732 144.633 149.337 2150.381 151.043
Best LR 0.010 0.010 N/A 0.010 0.005 N/A
Best Depth 0 4 N/A 0 4 N/A

Table 4.3: Best bounds from all methods with different problem sizes. The last two
rows show the corresponding parameter values for the best solutions.

and 0.1. All code was implemented using the Python interface for TensorFlow 1.3.1

[Abadi et al., 2015] and performed on an Intel Xeon E5-2690 2.60GHz CPU with 32

GB of RAM. Since training a neural network is a non-convex problem, we repeated the

training procedure 30 times with random initial weights and with the four different

settings of Adam algorithm’s learning rate parameter. We picked the best solution

from all 30× 4 = 120 initializations.

The resulting bounds generated by all four methods are shown in Table 4.3, where

we vary the number of assets 𝑛 in the problem and fix 𝑝0 = 100. In the table, we report

average upper bounds on option price over 10 trials, along with the corresponding

standard errors and computation times in minutes.

Broadly speaking, we make the following observations and conclusions. The

bounds generated from the DCPO methods are always at least as strong as the PO

ones. At best, we find a 30 basis point improvement. Bounds from DPO and CPO are

typically the weakest. From this, we can see the DCPO method offers us two benefits:

(i) potentially better quality bounds over alternatives (ii) the ability to estimate the

option price quite well, without the need for basis functions to be provided as inputs.

We emphasize this point and recall that the only input to the network in DCPO were

merely the asset prices. Nonetheless, the approximation architecture we used for it

(such as a 4-layer neural network) was able to model a rich enough class of functions.

As long as the optimization is properly run, we are able ensure good quality bounds.

Unfortunately, the benefits just mentioned came at the expense of much greater

computational cost. As shown in Table 4.3, it typically took at least 16 hours for
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Figure 4-1: Objective value as a function of the number of training steps. This
corresponds to the same problem as in Table 4.3 with 𝑛 = 8.

the stopping criterion, associated with training the network, to be met. Figure 4-

1 shows how the objective function on both training and validation data changed

with the number of gradient update steps for networks of varying depth. We see the

algorithm begins to converge about a quarter of the way through until it hits the

early stopping criterion. Therefore, for purely practical purposes, we could settle for

slightly looser bounds if computation times were limited to roughly 4 hours and we

were forced to terminate the optimization earlier. Another key observation is that

the number of training steps until termination increases proportionally with network

depth. The figure also suggests that, because validation and training set objective

values are close, we are indeed mitigating the effects of overfitting thanks to using

mini-batches of sample trajectories and the Adam algorithm.

We end this section by exploring the effects of setting different parameters on

bounds generated by the DCPO method, as well as runtimes. Just as in the main

experiment of this section, we train the network 30 times using the DCPO method

from different random starting weights and pick the best solution. To start with,
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Mean S.E Time (min)
𝑛 Depth

4 1.0 53.885 0.037 365.576
2.0 53.225 0.055 423.834
3.0 53.010 0.056 906.412
4.0 52.965 0.047 1,375.504

8 1.0 74.930 0.034 566.103
2.0 73.451 0.043 832.401
3.0 72.860 0.055 1,103.703
4.0 72.626 0.059 1,411.745

Table 4.4: Best bound with DCPO for networks of varying depths.

Mean Time (min) S.E
Depth LR

3.0 0.001 72.40 2720.68 0.06
0.005 72.23 1787.76 0.05
0.010 72.30 1106.52 0.05
0.100 72.86 1103.70 0.06

4.0 0.001 72.24 2268.59 0.06
0.005 72.08 2150.38 0.06
0.010 72.21 1265.81 0.04
0.100 72.63 1411.74 0.06

Table 4.5: Effect of depth & learning rate on DCPO bounds.

we explore the effects of network depth by keeping all other parameters fixed. In

particular, we set the width to 30 neurons and keep the learning rate for Adam to

0.1; all other parameters are set the same way as before. For the results that follow,

we report the best mean upper bound estimate, its standard error, the time taken

to train the network In table 4.4, we see that in almost all cases, deeper networks

result in tighter bounds but this improvement diminishes with more layers. This is

promising as this implies there is a real gain to be had from deeper architectures,

as we might expect. We also remark that the batch-normalization was crucial for

allowing us to optimize deeper networks. Without that, we found that the objective

value, unlike what was shown in Figure 4-1, would zig-zag over time and generally

fail to converge to good local minima.

Next, we explore the effect of varying the learning rate with deep networks. In
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Figure 4-2: Complexity

this experiment, we fix the learning rate and depth, then take the minimum solution

over 30 random instances. Table 4.5 shows that with lower learning rates, convergence

generally takes much longer but the bounds improve slightly. As expected, this shows

that with a smaller learning rate parameter, the Adam algorithm progresses more

slowly but settles into local minima better. Again, this demonstrates an important

trade-off between computational efficiency and solution quality.

Finally, we provide some experimental evidence that suggests the DCPO method

gives tighter bounds than PO, with smaller complexity parameter values. This can

be seen from Figure 4-2, where we see that the DCPO bound deteriorates much more

gracefully even with a complexity parameter (i.e. number of additional calls to a

neural network in between exercise opportunities) of around 20. With such a modest

runtime overhead, the DCPO bound is tighter by around 2 %. This may suggest

that the continuous representation is in some sense better for approximating a good

martingale.

The main conclusion we reach from these experiments is that deep learning pro-

vides a tangible edge to option pricing. Moreover, the neural network architecture
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used in the novel DCPO algorithm leverages no knowledge about the underlying prob-

lem (such as the payoff function) because it only takes as input the asset prices. It

seems likely therefore that the method can readily generalize to different kinds of

stopping problems with new payoff structures. Unfortunately, the nature of training

neural networks can make computing bounds using this new method computationally

intensive in terms of both time and memory. The way to combat this might be to use

GPUs for training the network, or possibly multiple cores. It could also be fruitful to

train multiple networks in parallel, as we have done here, in order to find good local

minima quickly.

In the next section, we will study another key problem in financial engineering,

namely, portfolio optimization and see how a broad class of such problems could be

tackled with different RL methodology.

4.3 Portfolio Optimization and Quasi-Linear Convex

Control Problems

In this section, we will study a broad class of control problems that have several im-

portant, practical applications in financial management, but moreover extend to other

domains such as engineering and supply chain management. What control problems

in these areas have in common is that they deal in discete time, the decisions are

modeled with continuous variables and the endogenous state dynamics are, not only

known to the decision maker, but are also linear. Even though this seems restrictive,

many systems are linear over the range we’d like to operate them, or can be approx-

imated as such via linearization and/or discretization of time. Moreover, in many

control problems of significant practical interest, such as in business and economics,

state dynamics do follow arguably simple, linear update rules. For instance, if the

state is inventory, like the problem we studied in Chapter 3 or in supply chain ap-

plications, the update rule is a simple addition or subtration of the control applied

(such as quanitity ordered or sold) to the state variable. There are other particular,
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salient features of the problem we will study and we list them below:

1. General Markovian dynamics of exogenous state: While we mention earlier

that the endogenous component of state (i.e. that part affected by the agent’s

controls) follows linear dynamics, in the framework we develop and analyze, it

is allowed for the exogenous state to follow arbitrary stochastic dynamics so

long as they are Markovian. This is useful in financial applications, since it is

often assumed that asset prices evolve independently of the agents actions and

do follow a Markov process, such as a Geometric Brownian motion.

2. Concave reward functions: The class of problems we are about to study

include as a special case the Linear Quadratic Regulator (LQR) problem, which

we will expound upon later. One of the key features of LQR is the fact that

the reward function is concave quadratic (assuming that we’re maximizing the

overall objective function) in the controls and state variables. For the type of

problems we are about to test out and analyze, the reward function could be

any general concave function of state and control.

3. Convex constraints on control & state: Our framework has the flexibility

to model convex constraints on both control on state. This is a feature that

in cannot be handled in the stadard LQR framework. For example, in finance

this allows us to model no-short constraints on trading decisions or to limit the

maximum position size in a portfolio.

We give this class of problems the name ‘quasi-linear-convex control’. In what follows,

we will formulate this framework as a certain type of dynamic programming problem.

If it were not for the non-anticipativity constraints imposed on a policy, the problem

could be solved through convex optimization. Unfortunately, the fact that this is a

stochastic dynamic problem, makes it suffer from the curse of dimensionality shared

with MDPs.

On the surface, what could make this problem harder to tackle than many MDPs

is the fact that the control is continuous. This means that were we to resort to
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general ADP methods, like approximate value iteration or Q-learning, it would be

unclear how we might even determine actions for a greedy policy due to the non-

linear, and non-convex form of the value function approximation. In other words, we

would be forced to solve intractable (possibly constrained) non-linear optimization

problem during the course of running a policy. For this reason, we attempted to

implement the continuous Q-learning technique from Gu et al. [2016] and the policy

gradient method [Williams, 1992, Sutton et al., 2000, Kakade, 2002]. Ultimately,

we found surprisingly that a certain policy gradient method, adapted to constrained

QLCC problems, yielded state-of-the-art performance in portfolio optimization. This

finding, along with some preliminary theoretical analysis, will be the focus of this

section.

4.3.1 Problem formulation

We start by formulating a general discrete-time stochastic control problem with quasi-

linear dynamics, which captures a range of applications in finance, business and en-

gineering.

Consider a 𝑇+1 period dynamic problem whose state at each period 𝑡 ∈ {0, 1, . . . , 𝑇}

is given by the vector 𝑦𝑡 ∈ R𝑛+𝑘. We express the state as a pair 𝑦𝑡 = (𝑥𝑡, 𝑓𝑡), where

𝑥𝑡 ∈ R𝑛 and 𝑓𝑡 ∈ R𝑘. As well see shortly, in the context of portfolio optimization,

we can think of 𝑥𝑡 is being a state variable representing the current portfolio and 𝑓𝑡

being the current set of factors for predicting asset price movements. Suppose further

that the agent is given fixed, known values 𝑥 ∈ R𝑛 and 𝑓 ∈ R𝑘 for the initial state,

such that 𝑥0 ≡ 𝑥 and 𝑓0 ≡ 𝑓 with probability 1. For consistency, we denote the pair

of initial states as the vector 𝑦 = (𝑥, 𝑓). Let {𝜂𝑡, 𝑡 = 1, . . . , 𝑇} and {𝜖𝑡, 𝑡 = 1, . . . , 𝑇}

be two zero-mean, exogenous i.i.d noise processes (possibly correlated with one an-

other) that generate the uncertainty in our problem. Assume that 𝜖𝑡 and 𝜂𝑡 are of

dimensions 𝑛 and 𝑝, respectively. We denote with F = {ℱ𝑡, 𝑡 = 0, . . . , 𝑇} to be the

natural filtration generated by these processes. We will assume that the dynamics for

𝑓𝑡 satisfies the equation

𝑓𝑡 = ℎ𝑡(𝑓𝑡−1, 𝜂𝑡)
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for all 1 ≤ 𝑡 ≤ 𝑇 , where ℎ𝑡 : R𝑘 × R𝑝 ↦→ is an arbitrary measurable function. This

means that the process {𝑓𝑡} evolves in a Markovian fashion and is only affected by

i.i.d process {𝜂𝑡}. Thus, we will say that it’s exogenous, i.e. not affected by the agent’s

actions. At the same time, the dynamics of the remaining components of state are

defined according to the linear equations

𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 +𝐵𝑡𝜇𝑡 + 𝐶𝑡𝑓𝑡−1 + 𝜖𝑡 (4.22)

for all 1 ≤ 𝑡 ≤ 𝑇 . Here the vector 𝜇𝑡 ∈ Rℓ is the control applied in period 𝑡, and we

assume that this is an ℱ𝑡−1-measurable function, i.e. the control is non-anticipative

and depends on all the randomness observed up to and including period 𝑡−1. Thus the

dynamics of 𝑥𝑡 are linear and are determined by matrices 𝐴𝑡 ∈ R𝑚×𝑚, 𝐵𝑡 ∈ R𝑚×ℓ and

𝐶𝑡 ∈ R𝑚×𝑘, as well as the current exogenous state, 𝑓𝑡−1. Since the above component

of state does depend on the agent’s actions, we will refer to this as the endogenous

state.

Now we will define a per-period reward function 𝑟𝑡 : R𝑛+𝑘 × Rℓ ↦→ R for every

1 ≤ 𝑡 ≤ 𝑇 . This is a function that takes as input the entire state from 𝑡− 1, as well

as the control applied at period 𝑡, and outputs a reward to the agent. We define it as

𝑟𝑡(𝑦𝑡−1, 𝜇𝑡) = 𝑟𝑡(𝑥𝑡−1, 𝑓𝑡−1, 𝜇𝑡) = 𝑓⊤
𝑡−1𝐻𝑡𝜇𝑡 + 𝑔𝑡(𝑥𝑡−1, 𝜇𝑡),

where 𝑔𝑡 is some strictly, jointly concave function in 𝑦𝑡 and 𝜇𝑡 and 𝐻𝑡 ∈ R𝑘×ℓ. In

addition to defining rewards, we impose polyhedral constraints on the allowed state

at every time period:

𝐹𝑡𝜇𝑡 +𝐺𝑡𝑥𝑡−1 ≤ 𝑏𝑡, 𝑡 = 1, . . . , 𝑇 (4.23)

where 𝐹𝑡, 𝐺𝑡, 𝑏𝑡 are real matrices/vectors of appropriate dimensions. In other words,

the control at any period has to satisfy some set of linear constraints that depend

on the current value of the endogenous state. We let 𝒰 denote the set of all non-

anticipative policies that satisfy all the above linear inequalities with probability 1.
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Our goal is to find a policy in 𝒰 which maximizes the total sum of rewards across

all time periods from 1 to 𝑇 . Therefore, in summary, the problem we face is the

following stochastic dynamic one:

maximize
𝜇∈𝒰

E

[︃
𝑇∑︁
𝑡=1

𝑟𝑡(𝑦𝑡−1, 𝜇𝑡)

]︃
subject to 𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 +𝐵𝑡𝜇𝑡 + 𝐶𝑓𝑡−1 + 𝜖𝑡, 𝑡 = 1, . . . , 𝑇

𝑓𝑡 = ℎ𝑡(𝑓𝑡−1, 𝜂𝑡). 𝑡 = 1, . . . , 𝑇

𝐹𝑡𝜇𝑡 +𝐺𝑡𝑥𝑡−1 ≤ 𝑏𝑡 𝑡 = 1, . . . , 𝑇

𝑦0 = 𝑦 .

(4.24)

We denote the optimal value of this problem as 𝑉 ⋆
0 (𝑦) = 𝑉 ⋆

0 (𝑥, 𝑓), which is a function

of the initial state 𝑦 = (𝑥, 𝑓). We generalize the definition of the optimal value

function to arbitrary time periods 1 ≤ 𝑡 < 𝑇 , and write it as 𝑉 ⋆
𝑡 (𝑦𝑡) = 𝑉 ⋆

𝑡 (𝑥𝑡, 𝑓𝑡),

which is a measurable function of 𝑥𝑡 and 𝑓𝑡. In other words, this is the value-to-go

from time 𝑡 + 1 and onwards, given that we are currently in a state 𝑦𝑡 = (𝑥𝑡, 𝑓𝑡).

Finally, we will assume that under any random realization, there is a feasible control

𝜇𝑡 for every time period.

Notice that the above framework includes, as a special case, the LQR problem.

In particular, it can be shown that Problem (4.24) is LQR if ℎ𝑡 is an affine function,

there are no constraints on state, and 𝑟𝑡 is concave quadratic in 𝑥𝑡−1 and 𝜇𝑡.

4.3.2 Policy Gradient with Penalization

Unfortunately, solving the problem given in (4.24) is intractable and so we resort to

RL methods. A popular approach in RL is to treat the policy we’re searching for

as a parameterized function of the relevant state information. We would then tune

the parameters of this function to maximize some metric, usally just the average

total reward earned by the corresponding policy, in order to find an effective (yet

likely sub-optimal) policy. This is similar in a lot of ways to Q-learning, TD-Learning

or approximate value iteration, in the sense that we use Monte-Carlo simulation to
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generate sample trajectories from our system in order to fit some function of interest.

The difference this time is we would be ‘fitting’ a heuristic policy directly, as opposed

to an approximation to the optimal value function and defining a heuristic greedy

policy in terms of it.

Policy gradient (PG) is a mature RL technique that has been expounded on and

developed in Williams [1992], Kakade [2002], Sutton et al. [2000]. Traditionally, PG

deals with MDPs that have finite action spaces, and typically represents a policy as a

probability distribution over actions in a given state. This means that the policy, in

practice, is randomized. Moreover, PG has typically been used as a method for model-

free reinforcement learning because all that is needed for it to work is simulation of

sample trajectories, given the current parameterization of a policy, and observations

of the rewards earned. In particular, there is no need for knowing model dynamics

in implementing PG. To keep this section shorter, we will not delve into details of

how vanilla PG works exactly but it suffices to say, that periodically after running

the system for some time, the policy’s parameters are updated given obsevations of

past actions, visited states and rewards.

Our application of PG differs from standard implementations in two key ways.

First of all, we model a policy as a real, vector-valued function of state. In other

words, we do not impose the restriction that a policy should be represented by a

probability distribution. Secondly, the policy is modeled as a deterministic time-

inhomogenous function of state.

Thus let us parameterize a policy in terms of a feedfoward neural network. In each

period 𝑡, we define the proposed control as the deterministic function 𝑢𝜃𝑡 : R𝑛+𝑘 ↦→ R𝑚.

This could be modeled as neural network with weights 𝜃 ∈ R𝑃 . Due to the constraints

(4.23), we cannot in general use the control 𝑢𝜃𝑡 in period 𝑡 as-is because it isn’t

guaranteed to be feasible. For this reason, we will project the proposed control to the

feasible set. To this end, let us define the polyhedron

𝐶𝑡 = 𝐶𝑡(𝑥𝑡−1) , {𝑢 ∈ Rℓ : 𝐹𝑡𝑢+𝐺𝑡𝑥𝑡−1 ≤ 𝑏𝑡}.
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Assume we are given a distance metric 𝐷 : Rℓ × Rℓ ↦→ R+, which must be convex.

Let us denote the distance of a vector 𝑢 ∈ Rℓ to the feasible set, for the given metric

𝐷, as the function 𝐷𝐶𝑡(𝑢). Formally, this is given by the optimal cost of the convex

minimization problem,
minimize

𝑧∈Rℓ
𝐷(𝑧, 𝑢)

subject to 𝑧 ∈ 𝐶𝑡,

(4.25)

where we let Π𝐶𝑡(𝑢) denote an optimal solution to the above optimization problem,

which we also call the projection of 𝑢 onto 𝐶𝑡. Now that we defined a projection

operation and a notion of distance to the feasible set, we may consider applying a

control of the form

𝜋𝜃
𝑡 (𝑦𝑡−1) , Π𝐶𝑡(𝑢

𝜃
𝑡 (𝑦𝑡−1)),

which by construction is guaranteed to be feasible. The above should simply be

interpreted as the projection of the, generally infeasible, proposed control to the

nearest feasible one. Thus, it’s clear how to implement a policy in practice. The

only remaining question is how to find a proposal function 𝜇𝜃
𝑡 (.) that yields good

performance in terms from the resulting policy 𝜋𝜃 = {Π𝐶𝑡 ∘ 𝑢𝜃𝑡 : 𝑡 = 1, . . . , 𝑇} ∈ 𝒰 .

Training algorithms We list four ways of searching for proposal functions 𝜇𝜃
𝑡 .

Recall that the above simply denotes a function parameterized by vector 𝜃 ∈ R𝑃 . All

of the algorithms involve maximizing some objective function in terms of 𝜃. We can

intuitively guess that the first of these won’t perform well (as we will see later) but we

describe the algorithm nonetheless for pedagogical reasons. As we will demonstrate

later, the remaining two algorithms yield near-optimal policies.

All the algorithms essentially work by fixing an objective function in terms of the

initial state 𝑦 and parameters 𝜃, say 𝜈(𝜃, 𝑦), and the maximizing this objective over 𝜃.

The function 𝜈 is always an expectation over sums of random variables corresponding

to rewards and penalties. In other words, we would solve:

maximize
𝜃∈R𝑃

𝜈(𝜃, 𝑦)
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via algorithms such as Adam, and performing parameter updates using mini-batches

of sample trajectories. Below we list the four possible choices for 𝜈, which would give

us a complete algorithm:

1. Policy gradient: To guide us in our search for 𝜇𝜃, we can ignore the constraints

and calculate the hypothetical total expected reward without projection as:

𝑉 (𝜃, 𝑦) = E𝜇𝜃

[︃
𝑇∑︁
𝑡=1

𝑟𝑡(𝑦𝑡−1, 𝜇
𝜃
𝑡 (𝑦𝑡−1))

⃒⃒⃒
𝑦0 = 𝑦

]︃
,

where the expectation is over sample paths produced by applying the infeasible

proposed controls 𝜇𝜃
𝑡 , with the dynamics in (4.22).

If the original problem was merely constrained LQR (a problem with linear

dynamics, convex quadratic costs and polyhedral constraints), we could find a

globally optimal value for 𝑉 , which would correspond to the projected optimal

LQR policy (see Moallemi and Sağlam [2015]). As we might expect this would

produce highly sub-optimal policies.

2. Projected policy gradient: Because our goal is to solve (4.24), we simply aim

to calculate the value of a policy 𝜋𝜃 via the equation

𝑉 Π(𝜃, 𝑦) = E𝜋𝜃

[︃
𝑇∑︁
𝑡=1

𝑟𝑡(𝑦𝑡−1, 𝜋
𝜃
𝑡 (𝑦𝑡−1))

⃒⃒⃒
𝑦0 = 𝑦

]︃
,

where the expectation is over sample paths produced by running the policy 𝜋𝜃.

Recall again that 𝜋𝜃 describes the projected values of 𝜇𝜃
𝑡 . For reasons that we

will discuss later, the trained policy here typically performs poorly.

3. Penalized policy gradient: This is an extension of the first method where we

allow infeasible controls. The only difference here is we penalize the objective

every time that the constraints get violated. Precisely, the penalty at every

period 𝑡 is 𝜆𝐷𝐶𝑡(𝜇
𝜃
𝑡 (𝑦𝑡−1)) where 𝜆 > 0 is some scalar. In other words, the

penalty is proportional to the distance from the nearest feasible control. Thus,
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the objective we would maximize is

𝑉 (𝜃, 𝑦) = E𝜇𝜃

[︃
𝑇∑︁
𝑡=1

{︀
𝑟𝑡(𝑦𝑡−1, 𝜇

𝜃
𝑡 (𝑦𝑡−1))− 𝜆𝐷𝐶𝑡(𝜇

𝜃
𝑡 (𝑦𝑡−1))

}︀ ⃒⃒⃒
𝑦0 = 𝑦

]︃
,

where the expectation is over trajectories generated by executing the infeasible

policy 𝜇𝜃 given the dynamics in (4.22).

4. Projected and Penalized policy gradient: Finally, this method is an extension

of the second where we follow sample paths of the projected policy, namely use

the controls according to 𝜋𝜃
𝑡 = Π𝐶𝑡(𝜇

𝜃
𝑡 ), but penalize the underlying proposed

control 𝜇𝜃
𝑡 in every period. In other words, we use the objective function

𝑉 Π(𝜃, 𝑦) = E𝜋𝜃

[︃
𝑇∑︁
𝑡=1

{︀
𝑟𝑡(𝑦𝑡−1, 𝜋

𝜃
𝑡 (𝑦𝑡−1))− 𝜆𝐷𝐶𝑡(𝜇

𝜃
𝑡 (𝑦𝑡−1))

}︀ ⃒⃒⃒
𝑦0 = 𝑦

]︃
,

where the expectation, in analogy with the second method, is with respect to

trajectories seen by following the projected policy.

The advantage of the last two methods is that the additional penalty term provides

“gradient information" that encourages the algorithm to search for policies that satisfy

the constraints in the problem in addition to earning large rewards. Without it, the

training procedure might find and settle for policies that seem effective but, when

implemented in practice via projection, yield lower rewards. We make the intuition

clearer with the following concrete example of where projected gradient descent fails

to find a globally optimal policy given a particular parameterization for 𝜇𝜃.

Example 1. Suppose we have a one period problem (i.e. 𝑇 = 1) with initial state

𝑦 = (𝑥, 𝑓) and that we parameterize a policy as a constant vector 𝜇𝜃(𝑦) = 𝜃 with

𝜃 ∈ Rℓ. Assume that the constraint set, at time period 1, is the following polyhedron

𝐶1 = {𝑢 ∈ Rℓ : 𝑢𝑖 ≤ 1, ∀𝑖 ∈ [ℓ]}.
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Then we have that

𝑉 Π(𝜃, 𝑦) = E
[︀
𝑟1(𝑦,Π𝐶1(𝜇

𝜃(𝑦))
]︀

= E [𝑟1(𝑦,Π𝐶1(𝜃))]

= 𝑟1(𝑦, 𝜃 ∧ 𝑒)

where 𝑟1 is some strictly concave function in its second argument, 𝑒 = (1, . . . , 1) is an

ℓ-dimensional vector of ones and ∧ denotes the componentwise minimum. Assume

that there exists 𝜃⋆ ∈ Rℓ such that 𝜃* ≤ 𝑒 and is the global minimum of 𝑟1(𝑦, 𝜃) over

𝜃. It is not hard to see that 𝜃* is the global minimum for 𝑉 Π(𝜃, 𝑦) as well.

Suppose that we start gradient descent with an initial value 𝜃0 > 𝑒, then the

gradient of the objective function evaluated at this point is

∇𝑉 Π(𝜃0, 𝑦) = ∇(𝜃0 ∧ 𝑒)∇𝑉 Π(𝑦, 𝜃0 ∧ 𝑒) = 0,

and so gradient descent doesn’t make any progress, and we never recover the optimal

solution 𝜃⋆.

As the above example shows, projected policy gradient can easily get stuck at poor

stationary points. Applying penalization to the above example would prevent this

problem and our intuition at the moment is that this is the reason why algorithms 3

and 4, mentioned previously, work so much better in practice. We will demonstrate

this phenomenon shortly with the following two case studies.

4.3.3 Numerical Case Studies

To gauge the efficacy of policy gradient algorithms just discussed, we will test out

two practical trading problems. The first is a relatively small-scale problem that

involves liquidating a long position on a single stock. Meanwhile, the second case-

study involves a much larger problem, which is about managing a portfolio of 15

commodity futures contracts over a period of several months. The two problems,

while distinct from each other, have a common underlying model based off our quasi-
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linear, convex one, that we will outline here.

Portfolio optimization formulation

We consider an economy with 𝑛 different assets. The agent is given an initial portfolio

𝑥0 ∈ R𝑛
+ in these 𝑛 assets and needs to trade into and out of it over 𝑇 periods. Here,

the control 𝜇𝑡 ∈ R𝑛 represents a trade, where 𝜇𝑖,𝑡 > 0 if asset 𝑖 is being bought in

period 𝑡, 𝜇𝑖,𝑡 < 0, if it’s being sold and 𝜇𝑖 = 0 represents the absence of a trade in

that asset 𝑖 during 𝑡. Our positions in the 𝑛 assets are given by vector 𝑥𝑡, which

evolves according to the linear equations

𝑥𝑡 = 𝑥𝑡−1 + 𝜇𝑡.

Let 𝑝𝑡 ∈ R𝑛 denote the price of the assets in period 𝑡. Returns earned by holding a

unit of each of the assets over time period (𝑡 − 1, 𝑡] is given by 𝑟𝑡 = 𝑝𝑡 − 𝑝𝑡−1. We

assume a factor pricing model, where the conditional expectation of returns at time

𝑡− 1 is an affine function of 𝐿 factors in the economy denoted by 𝑓𝑡 ∈ R𝐿, that is

𝑟𝑡 = 𝑟 +𝐵𝑓𝑡−1 + 𝑧𝑡

where 𝑧𝑡 denotes a zero-mean i.i.d noise process, matrix 𝐵 ∈ R𝑛×𝐿 are the factor

loadings, and 𝑓𝑡−1 is the collection of 𝐿 factors during period 𝑡 − 1. Finally 𝑟 is the

intercept term. We write the covariance matrix for 𝑧𝑡 as Σ𝑧. The factors themselves

follow a mean reverting process according to

𝑓𝑡 = (𝐼 − Φ)𝑓𝑡−1 + 𝜂𝑡

where Φ ∈ R𝐿×𝐿 is a matrix of mean-reversion coefficients for the factors and 𝜂𝑡 is an

i.id. zero-mean noise process having covariance matrix Σ𝜂, that is Var(𝜂𝑡) = Σ𝜂 for

all 𝑡.

In every period 𝑡, given a discount factor 𝜌 ∈ [0, 1) we take the reward function
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to be

𝑟𝑡(𝑥𝑡−1, 𝑓𝑡−1, 𝜇𝑡) = (1− 𝜌)𝑡+1(𝑥𝑡−1 + 𝜇𝑡)
⊤E [𝑟𝑡 | 𝑓𝑡−1]

− (1− 𝜌)𝑡+1𝛾

2
(𝑥𝑡−1 + 𝜇𝑡)

⊤Σ𝑧(𝑥𝑡−1 + 𝜇𝑡)−
(1− 𝜌)𝑡

2
𝜇⊤
𝑡 Λ𝜇𝑡

= (1− 𝜌)𝑡+1
(︁
𝑥⊤𝑡 (𝑟 +𝐵𝑓𝑡−1)−

𝛾

2
𝑥⊤𝑡 Σ𝑧𝑥𝑡

)︁
− (1− 𝜌)𝑡

2
𝜇⊤
𝑡 Λ𝜇𝑡

where the first term represents the total expected return on our portfolio over the

period (𝑡, 𝑡+1], the second term is the risk, the third term are transaction costs. Here,

𝛾 is a risk aversion parameter. Note that the above reward is the in the objective

function of Gârleanu and Pedersen [2013]. Essentially, the dynamic trading strategies

we develop trade off total expected portfolio returns with risk and transaction costs.

To highlight that we are being consistent with our earlier framework in sec-

tion 4.3.2, we remark that the function ℎ𝑡(𝑓𝑡−1, 𝜂𝑡) = (𝐼 − Φ)𝑓𝑡−1 + 𝜂𝑡 in this set-

ting and that the linear dynamics, in (4.22) are such that 𝐴𝑡 ≡ 𝐼, 𝐵𝑡 ≡ 𝐼, 𝐶𝑡 ≡ 0

and 𝜖𝑡 ≡ 0. For the reward function, we have 𝐻𝑡 ≡ 𝐵⊤ and 𝑔𝑡(𝑥𝑡−1, 𝜇𝑡) = (1 −

𝜌)𝑡+1𝑥𝑡−1𝐵𝑓𝑡−1 − (1− 𝜌)𝑡+1 𝛾
2
(𝑥𝑡−1 + 𝜇𝑡)

⊤Σ𝑧(𝑥𝑡−1 + 𝜇𝑡)− (1−𝜌)𝑡

2
𝜇⊤
𝑡 Λ𝜇𝑡.

Finally, now that we stated the overall model, we will now describe all policies

that we will evaluate in our case studies, as well as their implementation:

∙ Policy Gradient: Broadly speaking, this is the name we give to all parame-

terized, projected policies, denoted by 𝜋𝜃, that we train via maximizing one of

the four objective functions given in section 4.3.2. We will now describe exactly

how we configure a certain set of these policies, in addition to describing their

implementation.

The general parameterization we use for 𝜇𝜃
𝑡 is that of a feedfoward neural net-

work with 𝐷 hidden layers (the depth) and 𝑊 neurons in each hidden layer

(this number is also referred to as the width). We assume that we use different,

non-overlapping sets of weights in 𝜃, at each time 𝑡.

As mentioned, we implement a policy gradient algorithm with each of the four

objectives listed in section 4.3.2, and we will refer to them as PolicyGradient,
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Project, Penalize, and ProjectAndPenalize. To optimize a given objective func-

tion, we run the Adam algorithm with a learning rate parameter of 0.01 and

update 𝜃 using mini-batches of 100 independent sample trajectories. We per-

form 10,000 training steps and stop the optimization, on the 𝑘th iteration early

if ∆𝜈(𝑦, 𝜃(𝑘)) < 10−7, where ∆𝜈(𝑦, 𝜃(𝑘)) is the empirical change in objective

value on an independent validation set of 1,000 sample trajectories. For the

Penalize and ProjectAndPenalize versions of this algorithm, we use a range of

values for 𝜆, namely {0.05, 0.01, 0.1, 1.0, 5.0, 10.0}.

∙ Projected LQR: This is equivalent to the first policy gradient method discussed

in this chapter, as shown in Fazel et al. [2018]. Because the unconstrained

version of the problem is an LQR one [Gârleanu and Pedersen, 2013], we can

find the optimal LQR policy 𝜇⋆ and then project it as described earlier in this

chapter. We will dicuss how the projection is carried out in each of the case

studies separately due to the difference in constraints.

∙ Deterministic: By replacing all random variables with their expected values in

Problem (4.24), we could efficently solve a static convex optimization problem.

In particular, let us define the following general optimization problem with

parameters 𝑠 ∈ [𝑇 ], f = (𝑓0, . . . , 𝑓𝑇−𝑠+1) and 𝑥 ∈ R𝑛:

maximize
𝑢1,...,𝑢𝑇−𝑠+1∈R𝑛

𝑥0,𝑥1,...,𝑥𝑇−𝑠+1∈R𝑛

𝑇−𝑠+1∑︁
𝑡=1

𝑟𝑡+𝑠−1(𝑥𝑡−1, 𝑓𝑡−1, 𝑢𝑡)

subject to 𝑥𝑡 = 𝑥𝑡−1 + 𝑢𝑡, 𝑡 = 1, . . . , 𝑇 − 𝑠+ 1

𝐹𝑡+𝑠−1𝑢𝑡 +𝐺𝑡+𝑠−1𝑥𝑡−1 ≤ 𝑏𝑡, 𝑡 = 1, . . . , 𝑇 − 𝑠+ 1

𝑥0 = 𝑥.

(4.26)

We let 𝑉 𝐷
𝑠 (𝑥, f) be function that maps problem parameters 𝑥 and b𝑓 to the

optimal objective value for (4.26). Here, 𝑠 describes the ‘starting time period’,

𝑥 is the initial portfolio and f are some fixed values for the factors. In the above

problem, we essentially find an optimal series of trades given we are solving a

129



determinsitic problem with 𝑇 − 𝑠+ 1 periods, where we know ahead of time the

sequence of factors are f and our initial positions are 𝑥.

For the deterministic policy we would compute 𝑉 𝐷
1 (𝑥, f𝐸) where f𝐸 = (𝑓0, (𝐼 −

Φ)𝑓0, . . . , (𝐼 − Φ)𝑇𝑓0). Given an optimal solution 𝜇⋆ = (𝜇⋆
1, . . . , 𝜇

⋆
𝑇 ) to the

above, we would implement a static policy with these controls from the optimal

solution.

∙ Deterministic MPC: This is based on the previous idea except that we would

re-solve a new deterministic problem every period 𝑠 to find the current control.

Specifically, at every period 𝑠 and given we’re in state 𝑦𝑠−1 = (𝑥𝑠−1, 𝑓𝑠−1), let us

define the expected remaining factor sequence as f𝐸𝑠 , (𝑓𝑠−1, (𝐼−Φ)𝑓𝑠−1, . . . , (𝐼−

Φ)𝑇−𝑠+1𝑓𝑠−1). In period 𝑠, would solve the convex problem for 𝑉 𝐷
𝑠 (𝑥𝑠−1, f𝐸𝑠 ) de-

fined in (4.26), whose optimal solution we denote by u⋆
𝑠 = (𝜇⋆

1,𝑠 . . . , 𝜇
⋆
𝑇−𝑠+1,𝑠).

By taking as the control 𝜇⋆
1,𝑠 in every period 𝑠 = 1, . . . , 𝑇 this would exactly

define the MPC policy.

In addition to benchmark policies, we also compute upper bounds on the optimal

objective value to (4.24) in order to estimate the optimality gap from all the heuristics.

The two methods we use for this are:

∙ LQR Bound: By computing the same Riccati equations as in Gârleanu and

Pedersen [2013], we calculate the optimal value for the unconstrained LQR

version of this problem. Of course, this give us a (in practice, a very loose)

upper bound.

∙ Perfect-hindsight Bound: This upper bound is gotten by relaxing all of the

non-anticipativity constraints on policies and finding the mean optimal value

of the relaxed version of our problem over 𝑁 independently sampled scenarios.

In other words, letting f𝑖 = (𝑓 𝑖
0, 𝑓

𝑖
1, . . . , 𝑓

𝑖
𝑇 ) denote the 𝑖th independent sampled

trajectory of the factors, we would compute

1

𝑁

𝑁∑︁
𝑖=1

𝑉 𝐷
1 (𝑥0, f𝑖)
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where the function 𝑉 𝐷
1 is defined in (4.26). This is one of the simplest ways

to get a (loose) upper bound on the optimal expected value of problems of the

form in (4.24).

In the two case studies that follow, we will set the parameters Φ, 𝐵,Σ𝑧,Σ𝜂, 𝜌, 𝛾, 𝑟, 𝑥0

and 𝑓0 in different ways. We will also use different choices for the constraint sets 𝐶𝑡,

which will illustrate the range of problems our framework is able to capture.

Optimal Execution

For an application of our policy gradient method, we consider the problem of optimal

exection, originally explored in Bertsimas and Lo [1998]. The following concrete

instance is given in Moallemi and Sağlam [2015].

We consider the problem of liquidating 𝑥0 = 100, 000 shares of AAPL stock over a

trading horizon of 1 hour. There is a trading opportunity every 5 minutes so that the

horizon is 𝑇 = 12. Every trade has to be a sell so that 𝐶𝑡(𝑥𝑡−1) = {𝑢 ∈ R : 𝑢 ≤ 0} for

all 1 ≤ 𝑡 < 𝑇 , moreover 𝑥𝑇 must equal zero (the portfolio must be fully liquidated at

the end) so that 𝐶𝑇 (𝑥𝑇−1) = {𝑢 ∈ R : 𝑢 ≥ 0, 𝑥𝑇−1 + 𝑢 = 0}. With these constraints,

the projection operation used in our algorithms is simple enough to carry out with

respect to the 𝐿2 norm:

Π𝐶𝑡(𝑥𝑡−1)(𝑢) = 0 ∨ (𝑥𝑡−1 ∧ 𝑢)

where ∨ and ∧ denote the componentwise maximum and minimum operators, respec-

tively.

Using historical AAPL prices from January 4, 2010 and January 5, 2010, Moallemi

and Sağlam [2015] estimated the following parameters via regressions, which will use

in our experiment:

∙ Factor loadings 𝐵 = [0.3375,−0.072].

∙ Intercept term 𝑟 = 0.0726.

∙ Variance in returns Σ𝑧 = 0.0428.
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∙ Mean reversion coefficients:

Φ =

⎛⎝0.0353 0

0 0.7146

⎞⎠

∙ Transaction cost matrix is assumed proportional to Σ𝑧, i.e. Λ = 1
2
Σ𝑧.

∙ Covariance matrix of factor changes is

Σ𝜂 =

⎛⎝0.0378 0

0 0.0947

⎞⎠

∙ No discount factor, i.e. 𝜌 = 0.

∙ No risk aversion added in so that 𝛾 = 0.

The factor parameters were taken to be value and momentum signals. Finally to

add more randomness into the problem, we will not take the intial factor 𝑓0 to be a

deterministic quantity but rather sample it from a multivariate Gaussian with zero

mean and covaraince matrix
∑︀∞

𝑡=0(𝐼 − Φ)⊤Σ𝜂(𝐼 − Φ).

Results and discussion We trained several policies using the PG method with

different settings of the objective function, the 𝜆-parameter and the general config-

uration described earlier. We took the best performing policy out of these and call

it ‘BestPG’, which in this case turned out to use 𝜆 = 0.01, utilized neural networks

with depth of 3, width of 10 and used the ProjectAndPenalize objective. In addition,

we trained a few benchmark policies that also appear in Moallemi and Sağlam [2015]

and we give the nicknames TWAP, LQRProject, DetMPC and ‘Opt Linear’. The

first of these is a simple sell strategy that divides up the trades into equal amounts,

i.e. 𝑢𝑡 = −𝑥0/𝑇 . The second is the projected LQR algorithm described before. The

third is the MPC policy also mentioned earlier, and the fourth is the optimal linear

policy deribed by Moallemi and Sağlam [2015].
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Method BestPG TWAP LQRProject DetMPC Opt Linear

Mean 6.43 -8.92 5.70 5.90 6.19
S.E 0.22 0.21 0.22 0.23 0.22
Sim (min) 3.90 0.20 0.47 251.13 3025.11
Train(min) 20.12 0.00 0.00 0.00 0.00

Method Pathwise PH-UB LQR

Mean 6.46 8.43 12.59
S.E 0.22 0.31 N/A

Table 4.6: Upper and lower bounds with existing approaches

We simulate the total wealth from every policy over a common set of 5,000 inde-

pendent sample problems. Table 4.6 shows the mean objective value, the standard

error and the time taken to both ‘train’ the policy as well as the time taken to ac-

tually run it with the simulated problem data. By train, we mean to tune a policy’s

parameters via Monte Carlo before running it. In the results table we see that the

best policy gradient algorithm outperforms the state-of-the-art optimal linear policy

by about %4. Moreover, its gap from the pathwise upper bound (the best known

upper bound for this problem) is about is 0.5% meaning that the trained policy is

nearly optimal. Finally, the training time for policy gradient is modest compared to

the time taken solve the optimization problem for the optimal linear policy.

Large-Scale Algorithmic Trading

In this next case study we consider a constrained variation on the benchmark problem

from Gârleanu and Pedersen [2013], Glasserman and Xu [2013], which also fits the

general model outlined in section 4.3.3 but is much higher dimensional than the exe-

cution problem. Here, we develop a constrained long term dynamic trading strategy

for 15 commodity futures contracts. These are: Aluminum, Copper, Nickel, Zinc,

Lead, and Tin from the London Metal Exchange (LME), Gas Oil from the Intercon-

tinental Exchange (ICE), WTI Crude, RBOB Unleaded Gasoline, and Natural Gas
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from the New York Mercantile Exchange (NYMEX), Gold and Silver from the New

York Commodities Exchange (COMEX), and Coffee, Cocoa, and Sugar from the New

York Board of Trade (NYBOT). Our goal is to manage a portfolio of these contracts

under a maximum book size constraint.

To estimate parameters for this problem, Gârleanu and Pedersen [2013] used the

historical prices of all 15 contracts in a ∼ 13 year sample period from January 1996

to 2013. Using the historical returns, and three rolling rolling Sharpe Ratios of the

aforementioend returns as factors, they estimated the following parameters (some of

which were not explicitly provided in the paper and we needed to calculate):

∙ There are 𝑛 = 15 commodity futures contracts.

∙ 𝐿 = 45 factors corresponding to the 5-day, 1-year and 5-year rolling average

Sharpe ratios for each contract 𝑖 ∈ [15] denoted by 𝑓 5𝐷,𝑖
𝑡 , 𝑓 1𝑌,𝑖

𝑡 and 𝑓 5𝑌,𝑖
𝑡 .

∙ Factor loadings 𝐵 ∈ R45×45 and offset vector 𝑟 ∈ R15 defined such that

E
[︁
𝑟𝑖𝑡 | 𝑓

5𝐷,𝑖
𝑡−1 , 𝑓

1𝑌,𝑖
𝑡−1 , 𝑓

5𝑌,𝑖
𝑡−1

]︁
= 0.001 + 10.32𝑓 5𝐷,𝑖

𝑡−1 + 122.34𝑓 1𝑌,𝑖
𝑡−1 − 205.59𝑓 5𝑌,𝑖

𝑡−1 (4.27)

where the left-hand side is the predicted daily commodity price changes and

the right-hand side contains the return predictors corresponding to the 5-day ,

1-year and 5-year rolling average sharpe ratios.

∙ Mean reversion coefficients Φ ∈ R45×45 defined such that

E
[︁
𝑓 5𝐷,𝑖
𝑡 | 𝑓 5𝐷,𝑖

𝑡−1

]︁
= 0.7481× 𝑓 5𝐷,𝑖

𝑡−1 (4.28)

E
[︁
𝑓 1𝑌,𝑖
𝑡 | 𝑓 1𝑌,𝑖

𝑡−1

]︁
= 0.9966× 𝑓 1𝑌,𝑖

𝑡−1 (4.29)

E
[︁
𝑓 5𝑌,𝑖
𝑡 | 𝑓 5𝑌,𝑖

𝑡−1

]︁
= 0.999× 𝑓 5𝑌,𝑖

𝑡−1 (4.30)

∙ Return covariance matrix Σ𝑧 estimated from the residuals corresponding to

(4.27).

134



∙ Factor change covariance matrix Σ𝜂 estimated from the residuals corresponding

to eqs. (4.28) to (4.30).

∙ Transcation cost matrix Λ = (5× 10−7)Σ𝑧.

∙ Discount factor 𝜌 = 1−exp(−0.02/260), corresponding to a 2% annualized rate.

∙ Risk-aversion parameter 𝛾 = 10−9, which Gârleanu and Pedersen [2013] inter-

pret as a relative risk aversion of an agent with $1 billion under management.

∙ We sampled the initial factor 𝑓0 using a multivariate Gaussian calculated the

same way as in section 4.3.3.

∙ In all our simulations, we fix the initial prices 𝑝0 ∈ R𝑛
+ from the prices on

January 1, 1996.

Finally, we impose a constraint that the total value of the invested portfolio cannot

exceed a limit 𝑊𝑚𝑎𝑥 = $2M at any given time period. That is,

𝐶𝑡(𝑥𝑡−1) =

{︃
𝑢 ∈ R𝑛 :

𝑛∑︁
𝑖=1

|𝑝⊤𝑖,𝑡(𝑥𝑖,𝑡−1 + 𝑢𝑖)| ≤ 𝑊𝑚𝑎𝑥

}︃
.

In order to project proposed controls onto this polyhedron, we need to use as the

distance matric the following weighted one:

𝐷𝑝𝑡(𝑢, 𝑣) =
𝑛∑︁

𝑖=1

|𝑝𝑖,𝑡(𝑢𝑖 − 𝑣𝑖)|.

Duchi et al. [2008] provide an 𝑂(𝑛) algorithm for a projecting arbtirary vectors in

R𝑛 to an 𝐿1 ball and we leverage it in the following sub-routine to carry out our

projection, namely Π𝐶𝑡(.)
1:

1. At any period 𝑡, suppose we are given a proposed control 𝑢𝑡 ∈ R𝑛 by some

heuristic algorithm.
1This is assuming 𝑝𝑡 is positive, we handle the edge case when it might be negative in our code.

Notice that under the factor pricing model a simulated price can be negative, which is not the case
in the geometric borwnian motion model.

135



Objective Objective S.E. Train (m) Sim (m)
𝑇 Method

30 BestPG 262,793.4 2,310.4 84.14 1.18
Det 50,264.8 421.6 0.00 52.59
DetMPC 120,846.4 481.7 0.00 701.26
ProjLQR 122,138.2 1,215.3 0.00 2.76

60 BestPG 377,792.1 2,791.2 149.96 2.33
Det 75,189.7 790.3 0.00 124.53
ProjLQR 220,693.3 1,999.3 0.00 4.83

90 BestPG 547,058.5 4,629.1 225.58 3.93
Det 86,384.4 1,080.1 0.00 220.68
ProjLQR 301,833.5 2,604.6 0.00 6.17

Table 4.7: Overall lower bounds

2. Project the notional values 𝑝𝑡 · 𝑢𝑡 onto the 𝐿1 ball, where · denotes the compo-

nentwise multiplication of two vectors, and call the result 𝑤̂𝑡.

3. Return the vector (𝑤̂1,𝑡/𝑝1,𝑡, . . . , 𝑤̂𝑛,𝑡/𝑝𝑛,𝑡).

One can show that the above routine is an 𝑂(𝑛) algorithm for solving the problem

𝐷𝐶𝑡(𝑢) = min𝑣∈𝐶𝑡 𝐷𝑝𝑡(𝑢, 𝑣), but we omit the proof.

Results and discussion As before we trained different versions of the policy gra-

dient algorithm by varying the objective function used in training, the parameter

𝜆 and neural network topolgy. Unfortunately, due to the significantly larger prob-

lem size, we were not always able to simulate the deterministic MPC policy – but

whenever we did, we reported its performance. Similarly, we could not simulate the

optimal linear policy due to problem size, nor calculate the pathwise upper bounds

or perfect hindsight policy. This was all because we were limited to 64GB of RAM

and 48 hours of computation time. For this reason this experiment focuses more

on practical performance against other implementable algorithms and how effectively

our method scales to large instances. We also investigate more closely the effect of

setting parameters, such as the objective function, 𝜆-parameter and others, on our

algorithm’s performance.

Table 4.7 shows the mean objective values and standard errors of all heuristic
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Objective Objective S.E.
𝑇 Method

30 LQCUB 15,527,106.4 0.0
Perfect Hindsight 634,977.2 2,767.1

60 LQCUB 41,745,614.8 0.0
Perfect Hindsight 1,107,307.4 6,454.4

90 LQCUB 64,503,457.0 0.0
Perfect Hindsight 1,364,200.7 10,326.7

Table 4.8: Overall upper bounds

Objective Objective S.E.
𝑇 PGType

30 Penalize 206,891.6 1,516.1
PolicyGradient 78,676.6 568.8
Project 186,322.8 2,748.4
ProjectPenalize 262,793.4 2,310.4

60 Penalize 368,619.8 2,515.9
PolicyGradient 122,318.0 1,494.1
Project 297,030.1 4,050.7
ProjectPenalize 377,792.1 2,791.2

90 Penalize 410,563.8 1,966.0
PolicyGradient 162,260.8 981.7
Project 324,883.0 7,497.0
ProjectPenalize 547,058.5 4,629.1

Table 4.9: Breakdown by PG type

policies that we are able to implement. The corresponding LQR lower bounds, which

are quite weak, are shown in Table 4.8. The best policy gradient algorithm used

the ProjectAndPenalize objective, used neural networks with 30 hidden neurons in a

single layer, and set 𝜆 = 0.05. We see that policy gradient sometimes beats the closest

competitor ‘Projected LQR’ by more than 100%, and in all other cases by at least

50%. Policy gradient turns out to be a strong algorithm here and with manageable

training times that extend to just a few hours even with large horizons such as 𝑇 = 90.

In addition to showing the overall mean wealth generated by the different strate-

gies, we also break down the performance of policy gradient by objective function.

This parameter turns out to make a huge difference as demonstrated in Table 4.9. We

see that the most effective objective function is ProjectAndPenalize, followed usually
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by Penalize. Our explanation for this is that penalization and projection both work in

tandem to guide gradient descent methods into policies that both satisfy constraints

and earn large rewards. Penalization encourages constraint satisfaction and projec-

tion ensures that we don’t explore sample paths that would not be generated by a

feasible and optimal policy.

Given these impressive numerical results, we attempt to analyze the policy gradi-

ent algorithm and give some conjectures in the following section.

4.3.4 Theory and Conjectures

In this section our goal is to show that the general problem in (4.24) has a special

enough structure that we can guarantee that the optimal policy is continuous in state,

or that the value function is concave. The former is a useful property because it shows

that a neural net can, in principle, fit an optimal policy arbitrarily well with enough

width and depth. Moreover, the fact that an optimal value function is concave can, in

principle, reduce the search space for good approximations. We start with proving the

following Lemma which contains most of the technical groundwork needed to prove

our main result.

Lemma 15. Let 𝜂 ∈ R𝑛 and 𝜃 ∈ R𝑘 be parameter vectors and 𝑔 : R2𝑛+𝑘 ↦→ R be a

twice-continuously differentiable function, which is strictly, jointly convex in its first

𝑛 and last 𝑘 components. That is, for any 𝜂, 𝑔(𝑥, 𝜂, 𝜃) is jointly and strictly concave

in 𝑥 and 𝜃.

Fix any matrices 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, 𝐹 ∈ R𝑚×𝑘 and consider the convex opti-

mization problem
𝑉 (𝜂, 𝜃) :=maximize

𝑥∈R𝑛
𝜂⊤𝑥− 𝑔(𝑥, 𝜂, 𝜃)

subject to 𝐴𝑥 ≤ 𝑏+ 𝐹𝜃.

(4.31)

Let 𝒢 ⊂ R𝑛 × R𝑘 denote the set of possible parameter values 𝜂, 𝜃 that result in a

feasible, bounded problem. Define the function 𝑥⋆(𝜂, 𝜃), where 𝑥⋆ : 𝒢 ↦→ R𝑛, to be the

unique optimal solution with the given parameters. Then, we have that

1. The optimal solution 𝑥⋆(𝜂, 𝜃) is a continuous function of both 𝜂 and 𝜃.
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2. For any 𝜂 ∈ R𝑛, the value function 𝑉 (𝜂, 𝜃) is a concave function of 𝜃.

Proof. To prove the first part, let us first write out the KKT conditions by introducing

dual variables 𝜇 ∈ R𝑚

∇𝑥𝑔(𝑥, 𝜂, 𝜃) = 𝜂 − 𝜇⊤𝐴 (4.32)

𝐴𝑥 ≤ 𝑏+ 𝐹𝜃 (4.33)

𝜇 ≥ 0 (4.34)

𝜇𝑖

(︀
𝑏𝑖 + 𝐹⊤

𝑖 𝜃 − 𝐴⊤
𝑖 𝑥
)︀

= 0, 𝑖 = 1, . . . ,𝑚. (4.35)

Since 𝑔 is strictly concave in 𝑥, we have that the Jacobian of ∇𝑥𝑔(𝑥, 𝜂, 𝜃) is positive

definite. Thus the determinant of the Jacobian is always non-zero. Therefore, by the

inverse function theorem, there exists an inverse function ℎ : R2𝑛+𝑘 ↦→ R𝑛 such that

ℎ(𝑦, 𝜂, 𝜃) = 𝑥 ⇔ 𝑦 = ∇𝑔𝑥(𝑥, 𝜂, 𝜃). Now let 𝜇̃(𝜂, 𝜃), 𝜇̂(𝜂, 𝜃) denote vectors of optimal

dual variables corresponding to active and inactive constraints, respectively. Let,

similarly, 𝐴, 𝐹 and 𝑏̃ denote the parts of matrices 𝐴, 𝐹 and 𝑏 whose rows correspond

to the active constraints. For the inactive constraints, we know that 𝜇̂(𝜂, 𝜃) = 0.

Then, by substituting in (4.32) into (4.35), we have that

𝑏̃+ 𝐹𝜃 = 𝐴ℎ(𝜇̃(𝜂, 𝜃)⊤𝐴− 𝜂, 𝜂, 𝜃)⇔

𝜇̃(𝜂, 𝜃)⊤ = ∇𝑥𝑔((𝐴)−1(𝑏̃+ 𝐹𝜃) + 𝜂, 𝜂, 𝜃)(𝐴)−1. (4.36)

By doing further substitution, we derive that

𝑥⋆(𝜂, 𝜃) = ℎ
(︁
∇𝑥𝑔((𝐴)−1(𝑏̃+ 𝐹𝜃) + 𝜂, 𝜂, 𝜃)− 𝜂, 𝜂, 𝜃

)︁
.

The largest set of parameters that produce an optimal solution with the active con-
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straints, shown above, is defined to be a critical region

ℛ𝐴 ,{︁
(𝜂, 𝜃) ∈ 𝒢 : 𝜇̃(𝜂, 𝜃) ≥ 0, 𝐴ℎ

(︁
∇𝑥𝑔((𝐴)−1(𝑏̃+ 𝐹𝜃) + 𝜂, 𝜂, 𝜃)− 𝜂, 𝜂, 𝜃

)︁
≤ 𝑏+ 𝐹𝜃

}︁
.

(4.37)

Within the critical region, it’s clear since 𝑔 is twice-continuously differentiable, that

𝑥⋆(𝜂, 𝜃) is continuous. At the boundary between two or more regions, the optimal

solution can be expressed in terms of different sets of active constraints. However,

because the optimal solution is always unique (due to strict concavity of the function

𝑔), the optimal solution must be continuous across the boundary between regions.

The proof for the second statement is immediate from Lemma 2.1 in Bemporad

and Filippi [2006].

The above immediately enables us to prove the following key proposition. Essen-

tially, it shows that because of the structure in our problem, and the fact that our

controls are continuous as opposed to discrete, means that the optimal policy is a

continuous function of 𝑥𝑡−1. One could easily come up with examples of control prob-

lems (with finite action spaces), where even if we expressed a policy as a probability

distribution over actions (i.e. the policy takes values in a simplex), the policy would

not be a continuous function of state. Thus in principle a neural network might not

be able to represent an optimal policy in our problem fairly accurately. In any case,

we state the result in question below:

Proposition 6. Consider Problem 4.24 and assume that 𝑔𝑡(𝑥𝑡−1, 𝑢) is strictly con-

cave. Let 𝜇⋆
𝑡 (𝑥𝑡−1, 𝑓𝑡−1) denote the optimal control at time 𝑡, then 𝜇⋆

𝑡 (𝑥𝑡−1, 𝑓𝑡−1) is a

continuous function of its inputs for all times 𝑡. Moreover, the optimal value function

𝑉 ⋆
𝑡 (𝑥𝑡, 𝑓𝑡) is concave in 𝑥𝑡 for all 0 ≤ 𝑡 < 𝑇 .
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Proof. Let’s start with the base case. When 𝑡 = 𝑇 , we’re solving

𝑉 ⋆
𝑇−1(𝑦𝑇−1, 𝑤𝑇1) =maximize

𝑢
𝑓⊤
𝑇−1𝑢− 𝑔𝑇 (𝑥𝑇−1, 𝑢)

subject to 𝐹𝑇𝑢+𝐺𝑡𝑥𝑇−1 ≤ 𝑏𝑇

(4.38)

and the result is immediate from Lemma 15 once we notice that we can substitute in

𝑥𝑇−1 for 𝜃 (where 𝜃 is the variable used in Lemma 15). Now take some time period

𝑡 < 𝑇 and assume the induction hypothesis for 𝑡+ 1. Then we have that

𝑉 ⋆
𝑡−1(𝑥𝑡−1, 𝑓𝑡−1) =maximize

𝑢
𝑓⊤
𝑡−1𝑢− 𝑔𝑡(𝑥𝑡−1, 𝑢) +𝑄𝑡(𝑥𝑡−1, 𝑓𝑡−1, 𝑢)

subject to 𝐹𝑡𝑢+𝐺𝑡𝑥𝑡−1 ≤ 𝑏𝑡

(4.39)

where we used the Q function abbreviation of the following expression

𝑄𝑡(𝑥𝑡−1, 𝑓𝑡−1, 𝑢) = E [𝑉𝑡(𝐴𝑡𝑥𝑡−1 +𝐵𝑡𝑢+ 𝐶𝑓𝑡−1 + 𝜖𝑡, 𝑓𝑡) | 𝑓𝑡−1]

= E [𝑉𝑡(𝐴𝑡𝑥𝑡−1 +𝐵𝑡𝑢+ 𝐶𝑓𝑡−1 + 𝜖𝑡, ℎ(𝑓𝑡−1, 𝜂𝑡)) | 𝑓𝑡−1] .

It then sufficies to simply show that the Q function is jointly concave in 𝑢 and 𝑥𝑡−1,

after which we can apply Lemma 15. This follows because for each realization of the

noise 𝜖𝑡, 𝜂𝑡, the function 𝑉𝑡(𝐴𝑡𝑥𝑡−1 +𝐵𝑡𝑢+𝐶𝑓𝑡−1 + 𝜖𝑡, 𝑓𝑡) is concave in 𝑢 and 𝑥𝑡−1 due

to the induction hypothesis. Finally, taking expecations over 𝜖𝑡 and 𝜂𝑡 preserves the

concavity.

We finally make the following conjecture based on the previous result that was

just proved.

Conjecture 1. Let 𝜇⋆ denote the optimal policy for Problem 4.24 and 𝜖 > 0. Assume

that the linear constraints in (4.23) are given such that each set of constraints, at every

time 𝑡, defines a bounded polytope. Then there exists a neural network large enough

and a parameter 𝜆 > 0 such that if

𝜃⋆ ∈ arg max
𝜃

𝑉 Π(𝜃, 𝑦),
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then ||𝜇𝜃⋆

𝑡 − 𝜇⋆
𝑡 ||∞ < 𝜖 for all 𝑡 = 1, . . . , 𝑇 .

We suspect the conjecture is true because of Proposition 1 and the results in

Cybenko [1989], Hornik et al. [1989] that show that any continuous function with

a bounded domain can be approximated abritrarily well by a feedforward neural

network in terms of the 𝐿∞-norm.

While it remains for this conjecture to be rigorously shown, if it were true it would

mean the neural network parameterization is rich enough to nearly recover an optimal

policy. Unfortunately, this wouldn’t tell us about how good this approximation could

be in practice and since the optimization problem remains non-convex we might not

be able to give guarantees on the closeness to the solution gotten via our penalized

policy-gradient method to a globally optimal solution.
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Chapter 5

Conclusion

This thesis explored the enormous subject of large-scale control from different angles,

and covered a range of problems their and applications. We saw that solving dy-

namic programs can be directly useful in applications such as portfolio optimization,

collateral management and option pricing, but also can be effectively leveraged to

minimize regret in multi-armed bandits via a Bayesian formulation. A key conclusion

from this thesis is that, ultimately, what worked best when solving these immensely

challenging problems was one of two general approaches that we outline below.

∙ The first strategy is to carefully examine the most important features of the

problem and see if ‘very simple’ heuristics make sense. This helped when tack-

ling the Collateral Management Problem since we were able to find a connection

between greedy policies and the pricing of collateral via duality. The advantage

of basic, myopic policies is they’re usually efficient to implement and are easier to

analyze and reason about. Such an strategy seems most relevant/effective when

the problem has complex dynamics that do not allow it to fit into the general

frameworks. As for other ‘very simple’ heuristics, we also saw in Chapter 2 that

the limited lookahead trick, in the context of computing Gittins indices (and

solving the corresponding stopping problem), provided good approximations to

the indices.

∙ The second strategy, is to see if the problem can formulated in a way that it fits
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some general framework such as that of quasi-linear convex control. We found

evidence that this class of problems can be effectively solved through popular

RL algorithms such as policy gradient, albeit with a modification to the usual

algorithm. Another general framework, for which we know good RL solutions,

is that of optimal stopping. What’s useful is that virtually any kind of option

pricing problem can be handled through it.

Before we state future research directions and wrap up this thesis, we will recap what

was ultimately achieved during the course of this work.

In Chapter 2, we proposed a novel way for designing Bayesian Multi-Armed Bandit

algorithms by treating the problem of minimizing regret as a sequence of separate

Markov Decision problems where the discount factor increases from one problem to

the next, according to a carefully chosen rate. We showed that the fundamental idea

of using such a heuristic results in sub-linear regret and, when applied to a binary

bandit problem, that a simple and efficient algorithm with a flat Beta prior achieves

the optimal rate of growth in regret.

In Chapter 3, we formulated what we believe is a new and practical model of

managing a Prime Broker’s business. Based on the model, we stated a dynamic

optimization problem that focuses on the question of what collateral a Prime Bro-

ker should hypothecate from eligible clients over time, and when it should borrow

assets externally. At first glance, the problem is intractable due to it being a high-

dimensional dynamic one. In order to address the problem, we propose a practical

scheme based on estimating the long-run dual values of assets in a stable, ‘ergodic’

regime. In particular, we have shown that under such conditions, the algorithm in

question is not only asymptotically optimal but enjoys, for many non-trivial cases, a

constant optimality gap. Our other contribution is a set of simulation benchmarks

based, either fully or in part, on a Prime Broker’s data. By running our algorithm

and similar competing ones with the data, we have shown that our method can of-

fer notable increases in revenue for the Prime Broker. Moreover, our new simulation

benchmark can of course be used and adapted to simulate new collateral management

algorithms.

144



In Chapter 4, we explored and tested general RL methodologies and their appli-

cations to financial engineering problems. For option pricing, we uncovered a novel

dual-martingale method for computing upper bounds on price via deep learning.

5.1 Future research directions

We now conclude this thesis by listing open questions and possible, future research

directions pertaining to each of the main topics:

∙ Optimistic Gittins Indices: First, it remains to be proven that playing arms

with maximum (exact) Gittins indices together with the increasing discount fac-

tor schedule, does produce an algorithm whose regret matches the Lai-Robbins

lower bound. We have a strong reason to suspect this is true due to the findings

in our numerical experiments.

Secondly, it is worth exploring whether the idea of the OGI framework can be

extended to contextual bandit problems where dependencies between arms exist.

In our setting, the fact that arms were independent allowed us to exploit the

Gittins index but there could be other ways to approximate optimal solutions

to bandit problems with dependent arms.

∙ Collateral Management: There are several extensions to the model that we

think are useful to implement. We reckon all of them could be approached using

the idea of estimating the ‘right’ dual asset prices:

– Firstly, we have so far focused on the aspect of re-hypothecation where

the Prime Broker specifically re-uses the collateral to satisfy future client

borrowing demands. It’s also possible that Prime Broker would be faced

with collateral requirements from external lenders, when they borrow their

own stock, and this is a feature of the model that’s not yet captured.

– Secondly, we have implicitly assumed that all client loans in the problem

have a term that’s longer than the problem horizon; otherwise it would be
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possible for assets to return to the Prime Broker after the corresponding

loans expired, and also for the collateral that the Prime Broker hypothe-

cated to also be returned to the original client. This is yet again a difficulty

we have avoided here, but it would be useful to address fully.

– Another practically relevant question is whether it’s possible to stitch to-

gether a network of similar problems as the one considered in the paper.

Then the challenge would be finding an equilibrium strategy among mul-

tiple agents for how they set borrowing fees and hypothecate collateral.

The results of such a work, would likely yield insights on how the securi-

ties lending industry as a whole could function better.

∙ Deep Reinforcement Learning in Finance: This chapter offers us a myriad

of interesting, open theoretical problems. For example, in the context of the

general policy gradient method applied to constrained problems, can we prove

a similar result to Fazel et al. [2018], namely that gradient descent recovers at

least a local minimum? Another interesting result to prove/disprove, in this

space, is whether policy gradient finds the globally optimal policy, if we are to

restrict ourselves to the space of linearly parameterized ones (like in Moallemi

and Sağlam [2015]).

In general, the great challenge in deep learning is proving anything about how

close to global optimality the local minimum solutions we get are, so we ap-

preciate the full potential of neural networks. Also, it would be useful to prove

anything about how deep, or wide, a neural network needs to be in order to

better approximate various functions and, particularly, within the context of

our deep RL applications where we search for good parameterized policies or

martingale upper bounds.

146



Appendix A

Supplementary Material for

Optimistic Gittins Indices

A.1 Proof of Lemma 1

Proof. Consider an instance of the MAB with 𝐴 = 2 arms and Bernoulli rewards.

We assume that the prior on arm 1 is degenerate with mean 𝜆 = 1/2 while arm 2 has

a Beta(𝛼, 𝛼) prior where 𝛼 is a parameter we set later. Then, it is simple to check

that 𝜋𝐺,𝛾 must pull arm 2 at the first time period. With probability 1/2, we receive

a reward of 0, so that the posterior on arm 2 is given by a Beta(𝛼, 𝛼+ 1) prior. Now,

the continuation value from pulling arm 1 at this stage is lower bounded by 1/2
1−𝛾

, while

the continuation value from pulling arm 2 is upper bounded by

𝛼

1 + 𝛼
+
𝛾E
[︁
max (𝑅(𝑦2,0), 1/2)

⃒⃒⃒
𝑦2,0 = (𝛼, 𝛼 + 1)

]︁
1− 𝛾

.

It follows that any optimal policy must pull arm 1 if

1/2

1− 𝛾
>

𝛼

1 + 𝛼
+
𝛾E
[︁
max (𝑅(𝑦2,0), 1/2)

⃒⃒⃒
𝑦2,0 = (𝛼, 𝛼 + 1)

]︁
1− 𝛾

,
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an inequality which in turn is satisfied if

1/2 >
𝛼

1 + 𝛼
+
𝛾P
(︁
𝑅(𝑦2,0) > 1/2

⃒⃒⃒
𝑦2,0 = (𝛼, 𝛼 + 1)

)︁
1− 𝛾

,

But the right hand side of the above expression goes to 0 as 𝛼 → 0. Consequently,

we can choose an 𝛼 such that any optimal policy (for the discounted infinite horizon

problem) chooses to pull the first arm; let 𝛼* be the largest such 𝛼. Since the state

of the first arm does not change (the prior on that arm was assumed degenerate),

the same condition must hold at subsequent iterations. Consequently, 𝜋𝐺,𝛾 must

incur 𝑇 -period regret lower bounded by 𝑇
2
E [(𝑅((𝛼*, 𝛼* + 1))− 1/2)+] . The result

follows.

A.2 Proof of Proposition 1

Proof. Recall that the policy 𝜋𝐷 uses a doubling trick, which boils down to executing

the policy 𝜋𝐺,1−1/2𝑘−1 during periods {2𝑘−1, . . . , 2𝑘 − 1} for each 𝑘 ∈ N. Consider the

𝑘th epoch and let 𝑛 , 2𝑘−1, so that that this epoch lasts from periods 𝑛 to 2𝑛 − 1,

during which the algorithm employs a fixed discount factor 𝛾𝑛 = 1− 1/𝑛.

We begin by bounding the regret just in the 𝑘th epoch. At the beginning of the

epoch, the policy’s information set is ℱ𝑛−1. It is straightforward to show that this is

equivalent to the 𝜎-algebra generated by the tuple of sufficient statistics at time 𝑛,

namely (𝑦1,𝑁1(𝑛−1), . . . , 𝑦𝐴,𝑁𝐴(𝑛−1)), which we will write as a random vector y𝑛−1 ∈ 𝒴𝐴.

We will generally write the sufficient statistics vector at an any time 𝑡 as y𝑡−1.

For bounding the regret just between the periods 𝑛 and 2𝑛− 1, it will be helpful

to define the notation

𝑆𝑚1,𝑚2(𝜋, 𝜃) ,
𝑚2∑︁

𝑡=𝑚1

𝑋𝜋𝑡,𝑁𝜋𝑡 (𝑡)

as the total rewards accumulated between times 𝑚1 and 𝑚2 by a policy 𝜋, when the

rewards from the 𝑖th arm are distributed according to 𝑝𝜃𝑖 . When there is just a single
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subscript 𝑚, we let

𝑆𝑚(𝜋, 𝜃) , 𝑆1,𝑚(𝜋, 𝜃)

denote, simply, the total rewards from the time 1 up to time 𝑚. By the Markovian

nature of 𝜋𝐷 we are able to conveniently characterize the conditional expected regret

in epoch 𝑘 in the following way. In particular, for any tuple of sufficient statics for

the arms ŷ ∈ 𝒴𝐴, we have

E

[︃
𝑆𝑛,2𝑛−1(𝜋

𝐷, 𝜃)

⃒⃒⃒⃒
⃒ y𝑛−1 = ŷ

]︃
= E

[︃
𝑆𝑛(𝜋𝐺,𝛾𝑛 , 𝜃)

⃒⃒⃒⃒
⃒ y0 = ŷ

]︃
, Eŷ

[︀
𝑆𝑛(𝜋𝐺,𝛾𝑛 , 𝜃)

]︀
, (A.1)

which is a stationarity property that also follows from the fact that 𝜋𝐷 uses a fixed

discount factor of 𝛾𝑛 on the interval 𝑛, . . . , 2𝑛 − 1. We pause to parse the above

equation. Recall that any Bayesian policy tracks sufficient statistics, which is a se-

quence of random vectors (y𝑡, 𝑡 ∈ N). Thus far, we have always assumed that y0 = y

is defined in terms of a global prior 𝑞 corresponding to a tuple of statistics y. We

now depart from this convention to say that the initial statistic can be anything else,

and so the prior distribution on 𝜃, which the Gittins policy is aware of, is given by a

possibly different prior over the arms (𝑞1, . . . , 𝑞𝐴) corresponding to the vector ŷ.

For this step in the proof, we let 𝐻 ∼ Geo(1/𝑛) be an exogenous geometric

random variable that is independent of 𝜃 and not observed by the agent. The reason

we introduce it is because it can shown that for any y′ ∈ 𝒴𝐴, that

𝑉 *
𝛾 (y′) = Ey′

[︀
𝑆𝐻(𝜋𝐺,𝛾𝑛 , 𝜃)

]︀
,

which means that the Gittins policy is optimal for the random horizon 𝐻 given

the prior corresponding to y′. Now let us fix again an arbitrary statistic ŷ (which
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corresponds to some prior distribution over 𝜃). We have

Eŷ

[︀
𝑆𝐻(𝜋𝐺,𝛾𝑛 , 𝜃)

]︀
= Eŷ

[︀
𝐻𝜇*(𝜃)− Regret

(︀
𝜋𝐺,𝛾𝑛 , 𝐻, 𝜃

)︀]︀
(A.2)

= 𝑛Eŷ [𝜇(𝜃*)]− Eŷ

[︀
Regret

(︀
𝜋𝐺,𝛾𝑛 , 𝐻, 𝜃

)︀]︀
≤ 𝑛Eŷ [𝜇(𝜃*)]− Eŷ

[︀
Regret

(︀
𝜋𝐺,𝛾𝑛 , 𝐻, 𝜃

)︀
|𝐻 > 𝑛

]︀
P (𝐻 > 𝑛)

≤ 𝑛Eŷ [𝜇(𝜃*)]− Eŷ

[︀
Regret

(︀
𝜋𝐺,𝛾𝑛 , 𝑛, 𝜃

)︀]︀
(1− 1/𝑛)𝑛

= 𝑛Eŷ [𝜇(𝜃*)]− Eŷ

[︀
Regret

(︀
𝜋𝐺,𝛾𝑛 , 𝑛, 𝜃

)︀]︀
(𝑒−1 + 𝑜(1)). (A.3)

By Theorem 3, of Lai [1987], there exists (an efficient) policy 𝜋̃, such that

Eŷ [Regret (𝜋̃, 𝑛, 𝜃)] ≤ Eŷ [𝑐(𝜃)] log2 𝑛,

where 𝑐(𝜃) is a function of 𝜃. Let ∆(𝜃) denote worst case single period regret, that

is, ∆(𝜃) = max𝑖 𝜇(𝜃*)− 𝜇(𝜃𝑖). Using this notation, we obtain the lower bound,

Eŷ

[︀
𝑆𝐻(𝜋𝐺,𝛾𝑛 , 𝜃)

]︀
≥ Eŷ [𝑆𝐻(𝜋̃, 𝜃)] (A.4)

= Eŷ [𝐻𝜇(𝜃*)− Regret (𝜋̃, 𝐻, 𝜃)]

≥ Eŷ [𝐻𝜇(𝜃*)− Regret (𝜋̃, 𝐻, 𝜃)1 (𝐻 ≥ 𝑒)− 21 (𝐻 < 𝑒) ∆(𝜃)]

≥ 𝑛Eŷ [𝜇(𝜃*)]− Eŷ [𝑐(𝜃)]E
[︀
(log(𝐻))21 (𝐻 ≥ 3)

]︀
− 2Eŷ [∆(𝜃)]

≥ 𝑛Eŷ [𝜇(𝜃*)]− Eŷ [𝑐(𝜃)]E
[︀
(log(𝐻))2 |𝐻 ≥ 3

]︀
P (𝐻 ≥ 3)

− 2Eŷ [∆(𝜃)]

≥ 𝑛Eŷ [𝜇(𝜃*)]− Eŷ [𝑐(𝜃)] log2(𝑛+ 3)P (𝐻 ≥ 3)− 2Eŷ [∆(𝜃)] (A.5)

where (A.4) holds by optimality of the Gittins index. The bound (A.5) follows from

the memoryless property of the Geometric distribution, from Jensen’s inequality and

the fact that function log2 𝑥 is a concave function on [𝑒,+∞).

Our next step will involve marginalizing the distribution of 𝜃 over possible future

values of y𝑛−1. Notice that for any measurable function 𝑌 (𝜃) that can depend on 𝜃,
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we have by the law of iterated expectation that

Ey [E [𝑌 (𝜃) | y𝑛−1]] = Ey [𝑌 (𝜃)] . (A.6)

We now turn our attention back to the Bayes’ regret incurred by 𝜋𝐷 between times

𝑛 and 2𝑛 − 1, and we are ready to bound it as follows. Define for any statistic ŷ,

policy 𝜋, and 𝑇 ∈ N, the real-valued function Regret(𝜋, 𝑇, ŷ) , Eŷ [Regret (𝜋, 𝑇, 𝜃)],

then we have

Ey

[︀
𝑛𝜇*(𝜃)− 𝑆𝑛,2𝑛−1(𝜋

𝐷)
]︀

= Ey

[︁
E
[︁
𝑛𝜇*(𝜃)− 𝑆𝑛,2𝑛−1(𝜋

𝐷)
⃒⃒⃒
y𝑛

]︁]︁
= Ey

[︀
Regret(𝜋𝐺,𝛾𝑛 , 𝑛,y𝑛)

]︀
(A.7)

≤ Ey

[︀
Ey𝑛

[︀
𝑐′(𝜃) log2(𝑛)

]︀]︀
(A.8)

= 𝐶𝑞 log2 𝑛 (A.9)

where 𝑐′(𝜃) is a constant that depends on the parameter 𝜃 and 𝐶𝑞 is a constant that

depends only on the prior distribution 𝑞. Equation (A.7) follows from (A.1), while

(A.8) follows from (A.3) and (A.5). The final equation (A.9) uses (A.6). We use the

above bound on the 𝑘th epoch’s regret to bound the complete regret in all of the

epochs up to 𝑇 , as follows,

Regret
(︀
𝜋𝐷, 𝑇

)︀
≤ Regret

(︀
𝜋𝐷, 2⌈log2 𝑇 ⌉)︀

=

⌈log2 𝑇 ⌉∑︁
𝑘=1

(︀
2𝑘−1Ey[𝜇(𝜃*)]− Ey

[︀
𝑆2𝑘−1,2𝑘−1(𝜋

𝐷)
]︀)︀

= 𝑂

⎛⎝⌈log2 𝑇 ⌉∑︁
𝑘=1

𝑘2

⎞⎠
= 𝑂(log3 𝑇 )

and the result is shown.
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A.3 Properties of the Optimistic Gittins index

This section gives proofs for a few properties of the Optimistic Gittins index that are

used throughout the thesis and particularly in the proof of Theorem 1. It shall be

useful, in what follows, to define the continuation value for the Whittle’s retirement

problem (Whittle [1980]) as

𝑉𝛾(𝑦, 𝜆) , sup
𝜏>0

E𝑦

[︃
𝜏∑︁

𝑡=1

𝛾𝑡−1𝑋𝑖,𝑡 + 𝛾𝜏
𝜆

1− 𝛾

]︃
,

so that the Gittins index is then the solution in 𝜆 to 𝜆/(1 − 𝛾) = 𝑉𝛾(𝑦, 𝜆). In an

analogous fashion, we define the optimistic continuation value, for parameters 𝐾 and

𝜆, to be

𝑉 𝐾
𝛾 (𝑦, 𝜆) , sup

1≤𝜏≤𝐾
E𝑦

[︃
𝜏∑︁

𝑡=1

𝛾𝑡−1𝑋𝑖,𝑡 + 𝛾𝜏
𝑅𝜆,𝐾(𝜏, 𝑦𝑖,𝜏−1)

1− 𝛾

]︃
.

From this definition, it follows that the solution for 𝜆 to the equation 𝜆/(1 − 𝛾) =

𝑉 𝐾
𝛾 (𝑦, 𝜆) is the Optimistic Gittins index.

Throughout this section, we will sometimes discuss the value of the index at some

particular time 𝑡 during the execution of the algorithm, which depends on the statistic

gathered about the arm using information up to but strictly not including time 𝑡. As

such, we will define the number of pulls of arm 𝑖 up to time 𝑡− 1 as

𝑃𝑖(𝑡) , 𝑁𝑖(𝑡− 1)

where we recall 𝑁𝑖(𝑡) is the counter for the number of total number of pulls up to and

including 𝑡. From the 𝑃𝑖(𝑡) pulls of the arm, the total reward accumulated is defined

as

𝑆𝑖(𝑡) ,
𝑃𝑖(𝑡)∑︁
𝑠=1

𝑋𝑖,𝑠.

We begin by investigating the effect of the parameter 𝜆, which gives the deter-

ministic payoff in (2.2), on the continuation value 𝑉 𝐾
𝛾 (𝑦, 𝜆) and use that to find out

how close an approximation 𝑣𝐾𝛾 (𝑦) is to the Gittins index.
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Fact 1. For any state 𝑦 ∈ 𝒴, discount factor 𝛾 and parameter 𝐾, the function

𝑉 𝐾
𝛾 (𝑦, 𝜆) is convex in 𝜆.

Proof. Fix an arbitrary state 𝑦 and discount factor 𝛾 ∈ (0, 1). We prove convexity

by induction on the parameter 𝐾. For 𝐾 = 1, recall from Section 2.2 that

𝑉 1
𝛾 (𝑦, 𝜆) = E𝑦 [𝑋𝑖,1] + 𝛾E𝑦 [max(𝜆/(1− 𝛾), 𝑅(𝑦𝑖,0))] .

Thus the function is convex because it is an expectation over a convex piecewise linear

function of random variables 𝑋𝑖,1 and 𝑅(𝑦𝑖,0).

Now we show the inductive step. For any 𝐾 > 1, assume that 𝑉 𝐾−1
𝛾 (𝑦, 𝜆) is

convex. By writing the Bellman equation,

𝑉 𝐾
𝛾 (𝑦, 𝜆) = E𝑦 [𝑋𝑖,1] + 𝛾E𝑦

[︀
max

(︀
𝜆/(1− 𝛾), 𝑉 𝐾

𝛾 (𝑦𝑖,1, 𝜆)
)︀]︀
,

we again notice an expectation over a maximum of convex functions in 𝜆. This form

for 𝑉 𝐾
𝛾 (𝑦, 𝜆) implies that it is also convex in 𝜆.

Lemma 16. Suppose that arm rewards are bounded. That is, there exists a constant

𝐵 ∈ R+ such that 𝑋𝑖,𝑡 ∈ [0, 𝐵] for every arm 𝑖 and time 𝑡.

Let 𝑣𝐾𝑖,𝑡 be the Optimistic Gittins Index of arm 𝑖 at time 𝑡 and let 𝜂 be a scalar,

then the following equivalence holds

{𝑣𝐾𝑖,𝑡 < 𝜂} = {(1− 𝛾𝑡)𝑉 𝐾
𝛾𝑡 (𝑦𝑖,𝑃𝑖(𝑡), 𝜂) < 𝜂}

where 𝑦𝑖,𝑃1(𝑡) is the sufficient statistic for estimating the 𝑖th arm’s parameter 𝜃𝑖 at

time 𝑡.

Proof. First of all note that for any state 𝑦 and discount factor 𝛾, the function

(1− 𝛾)𝑉 𝐾
𝛾 (𝑦, 𝜆)− 𝜆

= sup
1≤𝜏≤𝐾

E𝑦

[︃
𝜏∑︁

𝑠=1

𝛾𝑠−1(1− 𝛾)𝑋𝑖,𝑠 + 1 (𝜏 = 𝐾) 𝛾𝜏 (𝑅(𝑦𝑖,𝜏−1)− 𝜆)+

]︃
, (A.10)
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Figure A-1: Visualization of Lemma 16’s proof for a instance of the problem with a
Beta prior corresponding to the pair 𝑦 = (4, 5), a discount factor of 𝛾 = 0.95 and
𝐾 = 2. The intersection of the two lines represents the Optimistic Gittins index.

is convex (from Fact 1) yet decreasing in 𝜆. Also notice that at 𝜆 = 0

𝑉 𝐾
𝛾 (𝑦, 0) =

E𝑦 [𝑋𝑖,1]

(1− 𝛾)
≥ 0

because it is never optimal to retire in the stopping problem. Also, in the other

extreme case when 𝜆 = 𝐵, the function in question evaluates to

𝑉 𝐾
𝛾 (𝑦,𝐵) = E𝑦 [𝑋𝑖,1] +

𝛾𝐵

(1− 𝛾)
≤ 𝐵

(1− 𝛾)
.

Thus, consider again the above function of 𝜆, namely, (1 − 𝛾)𝑉 𝐾
𝛾 (𝑦, 𝜆) − 𝜆. Such a

function is non-negative for any 𝜆 ≤ 𝑣𝐾𝛾 (𝑦) (since 𝑣𝐾𝛾 (𝑦) is the root of the function)

and is also negative for 𝜆 > 𝑣𝐾𝛾 (𝑦). From these observations, and the fact that 𝑦

and 𝛾 were arbitrary, the result follows. Figure A-1 provides a visualization of this

proof.

A.3.1 Proof of Lemma 2

Proof. Let 𝐾 < 𝑀 be two look-ahead parameters used in the definition of OGI. We

will show that 𝑉 𝐾
𝛾 (𝑦, 𝜆) ≤ 𝑉 𝑀

𝛾 (𝑦, 𝜆) where we recall the definitions of these functions

from the beginning of Section A.3.
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We begin with a fundamental step. Let 𝜏1 and 𝜏2 be any predictable stopping times

(i.e. ℱ𝑡−1-measurable random times) such that 𝜏1 precedes 𝜏2 almost surely, that is

𝜏1 < 𝜏2. Recall that the expected reward of the 𝑖th arm satisfies E [𝑋𝑖,𝑡 | 𝜃𝑖] = 𝜇(𝜃𝑖)

for all 𝑡. Let 𝜃𝑖 ∈ Θ denote a realization of the random variable 𝜃𝑖 and let 𝜁(𝜃𝑖) be a

real-valued, measurable function of 𝜃𝑖. In this case, we have that

E

[︃
𝜏2∑︁

𝑡=𝜏1+1

𝛾𝑡−1𝑋𝑖,𝑡 + 𝛾𝜏2
𝜁(𝜃𝑖)

1− 𝛾

⃒⃒⃒⃒
⃒ 𝜃𝑖 = 𝜃𝑖

]︃
= 𝜇(𝜃𝑖)E

[︃
𝜏2∑︁

𝑡=𝜏1+1

𝛾𝑡−1

⃒⃒⃒⃒
⃒ 𝜃𝑖 = 𝜃𝑖

]︃

+ E

[︃
𝛾𝜏2

1− 𝛾

⃒⃒⃒⃒
⃒ 𝜃𝑖 = 𝜃𝑖

]︃
𝜁(𝜃𝑖)

≤ E
[︁
𝛾𝜏1 | 𝜃𝑖 = 𝜃𝑖

]︁ max(𝜁(𝜃𝑖), 𝜇(𝜃𝑖))

1− 𝛾
.

Thus we conclude, because 𝜃𝑖 was arbitrary, that almost surely,

E

[︃
𝜏2∑︁

𝑡=𝜏1+1

𝛾𝑡−1𝑋𝑖,𝑡 + 𝛾𝜏2
𝜁(𝜃𝑖)

1− 𝛾

⃒⃒⃒⃒
⃒ 𝜃𝑖
]︃
≤ E [𝛾𝜏1 | 𝜃𝑖]

max(𝜁(𝜃𝑖), 𝜇(𝜃𝑖))

1− 𝛾
. (A.11)

Let 𝜏 ⋆ be a stopping time that achieves the supremum in 𝑉 𝑀
𝛾 (𝑦, 𝜆) and define the

predictable stopping time 𝜏 ⋆𝐾 , 𝐾∧𝜏 ⋆. Consider the (conditional) cumulative rewards

in the definition of 𝑉 𝑀
𝛾 (𝑦), from time 𝜏 ⋆𝐾 + 1 onwards, given the sufficient statistic

observed at time 𝜏 ⋆𝐾 . That is,

E

⎡⎣ 𝜏⋆∑︁
𝑡=𝜏⋆𝐾+1

𝛾𝑡−1𝑋𝑖,𝑡 + 𝛾𝜏
⋆

𝑅𝜆,𝑀(𝜏 ⋆, 𝑦𝑖,𝜏⋆−1)/(1− 𝛾)

⃒⃒⃒⃒
⃒ 𝑦𝑖,𝜏⋆𝐾−1

⎤⎦ .
We upper bound this random variable as follows. First, we note that, at any time 𝑠

and for any statistic 𝑦 ∈ 𝒴 , the following statement holds

P (𝑅(𝑦) ≤ 𝑟) = P (𝜇(𝜃𝑖) ≤ 𝑟 | 𝑦𝑖,𝑠 = 𝑦) , ∀𝑟 ∈ R (A.12)

meaning that the posterior distribution of the arm’s expected reward 𝑅(𝑦𝑖,𝑠) is the

same as 𝜇(𝜃𝑖) conditioned on having observed statistic 𝑦 about the arm. This holds
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by definition of the random variable 𝑅(𝑦). Because of this observation, we have that

the following inequality holds almost surely,

𝛾𝜏
⋆𝑅𝜆,𝑀(𝜏 ⋆, 𝑦𝑖,𝜏⋆−1)

1− 𝛾

= 𝛾𝜏
⋆

(︂
1 (𝜏 ⋆ = 𝑀)

max(𝜆,𝑅(𝑦𝑖,𝜏⋆−1))

1− 𝛾
+ 1 (𝜏 ⋆ < 𝑀)

𝜆

1− 𝛾

)︂
= 1 (𝜏 ⋆ = 𝑀) 𝛾𝑀

max(𝜆,𝑅(𝑦𝑖,𝑀))

1− 𝛾
+ 1 (𝜏 ⋆ < 𝑀) 𝛾𝜏

⋆ 𝜆

1− 𝛾
(*)
= 1 (𝜏 ⋆ = 𝑀) 𝛾𝑀

E [max(𝜆,𝑅(𝑦𝑖,𝑀)) | 𝑦𝑖,𝑀 ]

1− 𝛾
+ 1 (𝜏 ⋆ < 𝑀) 𝛾𝜏

⋆ 𝜆

1− 𝛾
(†)
= 1 (𝜏 ⋆ = 𝑀) 𝛾𝑀

E [max(𝜆, 𝜇(𝜃𝑖)) | 𝑦𝑖,𝑀 ]

1− 𝛾
+ 1 (𝜏 ⋆ < 𝑀) 𝛾𝜏

⋆ 𝜆

1− 𝛾
(**)
≤

E
[︀
𝛾𝜏

⋆
max(𝜆, 𝜇(𝜃𝑖)) | 𝑦𝑖,𝜏⋆−1

]︀
1− 𝛾

where (*) and (**) both use the fact that for any 𝑡, 𝜏 ⋆ ≤ 𝑡 is measurable with respect

to the 𝜎-algebra generated by 𝑦𝑖,𝑡−1, namely ℱ𝑡−1. Equation (†) follows from (A.12).

Therefore, immediately using the above inequality and conditioning on the event
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𝜏 ⋆ > 𝐾, we have that

E

⎡⎣ 𝜏⋆∑︁
𝑡=𝜏⋆𝐾+1

𝛾𝑡−1𝑋𝑖,𝑡 + 𝛾𝜏
⋆𝑅𝜆,𝑀(𝜏 ⋆, 𝑦𝑖,𝜏⋆−1)

1− 𝛾

⃒⃒⃒⃒
⃒ 𝜏 ⋆ > 𝐾, 𝑦𝑖,𝜏⋆𝐾−1

⎤⎦
≤ E

⎡⎣ 𝜏⋆∑︁
𝑡=𝜏⋆𝐾+1

𝛾𝑡−1𝑋𝑖,𝑡 + E

[︃
𝛾𝜏

⋆ max(𝜆, 𝜇(𝜃𝑖)))

1− 𝛾

⃒⃒⃒⃒
⃒ 𝑦𝑖,𝜏⋆−1

]︃ ⃒⃒⃒⃒
⃒ 𝜏 ⋆ > 𝐾, 𝑦𝑖,𝜏⋆𝐾−1

⎤⎦
= E

⎡⎣ 𝜏⋆∑︁
𝑡=𝜏⋆𝐾+1

𝛾𝑡−1𝑋𝑖,𝑡 + 𝛾𝜏
⋆ max(𝜆, 𝜇(𝜃𝑖))

1− 𝛾

⃒⃒⃒⃒
⃒ 𝜏 ⋆ > 𝐾, 𝑦𝑖,𝜏⋆𝐾−1

⎤⎦ (A.13)

= E

[︃
E

[︃
𝜏⋆∑︁

𝑡=𝐾+1

𝛾𝑡−1𝑋𝑖,𝑡 + 𝛾𝜏
⋆ max(𝜆, 𝜇(𝜃𝑖))

1− 𝛾

⃒⃒⃒⃒
⃒ 𝜃𝑖
]︃ ⃒⃒⃒⃒
⃒ 𝜏 ⋆ > 𝐾, 𝑦𝑖,𝜏⋆𝐾−1

]︃
(A.14)

≤ E

[︃
𝛾𝜏

⋆
𝐾

max(𝜇(𝜃𝑖), 𝜆)

1− 𝛾

⃒⃒⃒⃒
⃒ 𝜏 ⋆ > 𝐾, 𝑦𝑖,𝜏⋆𝐾−1

]︃
(A.15)

= E

[︃
𝛾𝜏

⋆
𝐾

max(𝑅(𝑦𝑖,𝜏⋆𝐾−1), 𝜆)

1− 𝛾

⃒⃒⃒⃒
⃒ 𝜏 ⋆ > 𝐾, 𝑦𝑖,𝜏⋆𝐾−1

]︃
(A.16)

= E

[︃
𝛾𝜏

⋆
𝐾𝑅𝜆,𝐾(𝜏 ⋆𝐾 , 𝑦𝑖,𝜏⋆𝐾−1)

1− 𝛾

⃒⃒⃒⃒
⃒ 𝜏 ⋆ > 𝐾, 𝑦𝑖,𝜏⋆𝐾−1

]︃
(A.17)

where (A.13), (A.14) use the tower property and (A.15) follows from the bound in

(A.11) because 𝜏 ⋆𝐾 < 𝜏 ⋆, almost surely. Equation (A.16) follows from statement

(A.12) and that the event 𝜏 ⋆ > 𝐾 is ℱ𝐾−1-measurable (we can decide whether to pull

arm 𝑖 or retire based on information up to and including time 𝐾−1). Finally equation

(A.17) is derived by substituting in the definition of 𝑅𝜆,𝐾 (as given in Section 2.2)

and noting that 𝜏 ⋆𝐾 = 𝐾 under the above conditioning.

We now condition on the complement of the previous event we considered, namely,

𝜏 ⋆ ≤ 𝐾. Under that event, 𝜏 ⋆ occurred early enough before time 𝐾 + 1 and thus
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𝜏 ⋆𝐾 = 𝜏 ⋆. Therefore, it follows from this observation that

E

⎡⎣ 𝜏⋆∑︁
𝑡=𝜏⋆𝐾+1

𝛾𝑡−1𝑋𝑖,𝑡 + 𝛾𝜏
⋆𝑅𝜆,𝑀(𝜏 ⋆, 𝑦𝑖,𝜏⋆−1)

1− 𝛾

⃒⃒⃒⃒
⃒ 𝜏 ⋆ ≤ 𝐾, 𝑦𝑖,𝜏⋆𝐾−1

⎤⎦
= E

[︃
𝛾𝜏

⋆ 𝜆

1− 𝛾

⃒⃒⃒⃒
⃒ 𝜏 ⋆ ≤ 𝐾, 𝑦𝑖,𝜏⋆𝐾−1

]︃

≤ E

[︃
𝛾𝜏

⋆
𝐾
𝑅𝜆,𝐾(𝜏 ⋆𝐾 , 𝑦𝑖,𝜏⋆𝐾−1)

1− 𝛾

⃒⃒⃒⃒
⃒ 𝜏 ⋆ ≤ 𝐾, 𝑦𝑖,𝜏⋆𝐾−1

]︃
(A.18)

where (A.18) is obtained by noting that 𝑅𝜆,𝐾(𝜏, 𝑦) ≥ 𝜆 for any choice of 𝜏,𝐾 and 𝑦.

Thus, by the law of total expectation and (A.17), (A.18), we establish that

E

⎡⎣ 𝜏⋆∑︁
𝑡=𝜏⋆𝐾+1

𝛾𝑡−1𝑋𝑖,𝑡 + 𝛾𝜏
⋆𝑅𝜆,𝑀(𝜏 ⋆, 𝑦𝑖,𝜏⋆−1)

1− 𝛾

⃒⃒⃒⃒
⃒ 𝑦𝑖,𝜏⋆𝐾−1

⎤⎦
≤ E

[︃
𝛾𝜏

⋆
𝐾
𝑅𝜆,𝐾(𝜏 ⋆𝐾 , 𝑦𝑖,𝜏⋆𝐾−1)

1− 𝛾

⃒⃒⃒⃒
⃒ 𝑦𝑖,𝜏⋆𝐾−1

]︃
. (A.19)

We are ready to complete our main argument in this proof by using the above bound

and ‘breaking up’ the 𝑉 𝑀
𝛾 (𝑦, 𝜆) into rewards from times before 𝜏 ⋆𝐾 and after (and
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bounding the latter terms). More precisely, we obtain that

𝑉 𝑀
𝛾 (𝑦, 𝜆) = E𝑦

[︃
𝜏⋆∑︁
𝑡=1

𝛾𝑡−1𝑋𝑖,𝑡 + 𝛾𝜏
⋆𝑅𝜆,𝑀(𝜏 ⋆, 𝑦𝑖,𝜏⋆−1)

1− 𝛾

]︃
(A.20)

= E𝑦

⎡⎣ 𝜏⋆𝐾∑︁
𝑡=1

𝛾𝑡−1𝑋𝑖,𝑡 +
𝜏⋆∑︁

𝑡′=𝜏⋆𝐾+1

𝛾𝑡
′−1𝑋𝑖,𝑡′ + 𝛾𝜏

⋆𝑅𝜆,𝑀(𝜏 ⋆, 𝑦𝑖,𝜏⋆−1)

1− 𝛾

⎤⎦
= E𝑦

⎡⎣ 𝜏⋆𝐾∑︁
𝑡=1

𝛾𝑡−1𝑋𝑖,𝑡 + E

⎡⎣ 𝜏⋆∑︁
𝑡′=𝜏⋆𝐾+1

𝛾𝑡
′−1𝑋𝑖,𝑡′ + 𝛾𝜏

⋆𝑅𝜆,𝑀(𝜏 ⋆, 𝑦𝑖,𝜏⋆−1)

1− 𝛾

⃒⃒⃒⃒
⃒ 𝑦𝑖,𝜏⋆𝐾−1

⎤⎦⎤⎦
(A.21)

≤ E𝑦

⎡⎣ 𝜏⋆𝐾∑︁
𝑡=1

𝛾𝑡−1𝑋𝑖,𝑡 + E

[︃
𝛾𝜏

⋆
𝐾
𝑅𝜆,𝐾(𝜏 ⋆𝐾 , 𝑦𝑖,𝜏⋆𝐾−1)

1− 𝛾

⃒⃒⃒⃒
⃒ 𝑦𝑖,𝜏⋆𝐾−1

]︃⎤⎦ (A.22)

= E𝑦

⎡⎣ 𝜏⋆𝐾∑︁
𝑡=1

𝛾𝑡−1𝑋𝑖,𝑡 + 𝛾𝜏
⋆
𝐾
𝑅𝜆,𝐾(𝜏 ⋆𝐾 , 𝑦𝑖,𝜏⋆𝐾−1)

1− 𝛾

⎤⎦ (A.23)

≤ sup
1≤𝜏≤𝐾

E𝑦

[︃
𝜏∑︁

𝑡=1

𝛾𝑡−1𝑋𝑖,𝑡 + 𝛾𝜏
𝑅𝜆,𝐾(𝜏, 𝑦𝑖,𝜏−1)

1− 𝛾

]︃
= 𝑉 𝐾

𝛾 (𝑦, 𝜆) (A.24)

where Equations (A.21), (A.23) use the tower property and (A.22) is immediately

derived by using the bound of (A.19). Finally, we note that an almost identical

proof can be given to show that 𝑉 𝐾
𝛾 (𝑦, 𝜆) ≥ 𝑉𝛾(𝑦, 𝜆) where the lower bound is the

continuation value used to compute the Gittins index.

We have shown that for any 𝜆 and 𝑦, that 𝑉 𝐾
𝛾 (𝑦, 𝜆) is non-increasing in𝐾, and that

𝑉𝛾(𝑦, 𝜆) is a lower bound to this sequence. We make use of these facts to now prove

that 𝑣𝐾𝛾 (𝑦) is also non-increasing in 𝐾. To this end, let us suppose for contradiction

that there exist two integers 𝐾1 ≤ 𝐾2 and 𝑣𝐾1
𝛾 (𝑦) < 𝑣𝐾2

𝛾 (𝑦). From Lemma 16 we

know that

𝑉 𝐾2
𝛾 (𝑦, 𝑣𝐾𝛾 (𝑦)) > 𝑣𝐾𝛾 (𝑦)/(1− 𝛾) = 𝑉 𝐾

𝛾 (𝑦, 𝑣𝐾𝛾 (𝑦)), (A.25)

which contradicts the claim just shown. Therefore, 𝑣𝐾𝛾 (𝑦) must also be a non-

increasing sequence in 𝐾. The same argument can be used to further show that
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𝑣𝐾𝛾 (𝑦) ≥ 𝑣𝛾(𝑦).

We now turn our attention to proving the convergence property stated in the

Lemma. The first step will be to prove that for all 𝑦 ∈ 𝒴 and 𝜆 ∈ R+, that

lim
𝐾→∞

𝑉 𝐾
𝛾 (𝑦, 𝜆) = 𝑉𝛾(𝑦, 𝜆). (A.26)

Indeed, we upper bound the optimistic continuation value for a fixed parameter 𝑀

as follows:

𝑉 𝑀
𝛾 (𝑦, 𝜆) = sup

1≤𝜏≤𝑀
E𝑦

[︃
𝜏∑︁

𝑡=1

𝛾𝑡−1𝑋𝑖,𝑡 +
𝛾𝜏𝑅𝜆,𝑀(𝜏, 𝑦𝑖,𝜏−1)

1− 𝛾

]︃

= sup
1≤𝜏≤𝑀

E𝑦

[︃
𝜏∑︁

𝑡=1

𝛾𝑡−1𝑋𝑖,𝑡 +
𝛾𝜏𝜆

1− 𝛾
+
𝛾𝜏𝑅𝜆,𝑀(𝜏, 𝑦𝑖,𝜏−1)

1− 𝛾
− 𝛾𝜏𝜆

1− 𝛾

]︃

≤ sup
𝜏≥1

E𝑦

[︃
𝜏∑︁

𝑡=1

𝛾𝑡−1𝑋𝑖,𝑡 +
𝛾𝜏𝜆

1− 𝛾

]︃
+ sup

1≤𝜏≤𝑀
E𝑦

[︂
𝛾𝜏𝑅𝜆,𝑀(𝜏, 𝑦𝑖,𝜏−1)

1− 𝛾
− 𝛾𝜏−1𝜆

1− 𝛾

]︂
= 𝑉𝛾(𝑦, 𝜆) + sup

1≤𝜏≤𝑀
E𝑦

[︂
𝛾𝜏 [𝑅𝜆,𝑀(𝜏, 𝑦𝑖,𝜏−1)− 𝜆]

1− 𝛾

]︂
≤ 𝑉𝛾(𝑦, 𝜆) + 𝛾𝑀E𝑦

[︂
𝑅𝜆,𝑀(𝑀, 𝑦𝑖,𝑀−1)− 𝜆

1− 𝛾

]︂
= 𝑉𝛾(𝑦, 𝜆) + 𝛾𝑀E𝑦

[︂
(𝑅(𝑦𝑖,𝑀−1)− 𝜆)+

1− 𝛾

]︂
≤ 𝑉𝛾(𝑦, 𝜆) + 𝛾𝑀E𝑦

[︂
|𝑅(𝑦𝑖,𝑀−1)|

1− 𝛾

]︂
= 𝑉𝛾(𝑦, 𝜆) + 𝛾𝑀E𝑦

[︂
|𝜇(𝜃𝑖)|
1− 𝛾

]︂
, (A.27)

where equation (A.27) follows from the definition of the random variable 𝑅(.) and

the law of iterated expectation. Now because 0 < 𝛾 < 1 and E𝑦 [|𝜇(𝜃𝑖)|] < ∞, the

right hand side above converges to 𝑉𝛾(𝑦, 𝜆). Finally, notice that 𝑉 𝑀
𝛾 (𝑦, 𝜆) ≥ 𝑉𝛾(𝑦, 𝜆),

and from this equation (A.26) follows. To finish the proof, we note that 𝑉 𝐾
𝛾 (𝑦, 𝜆) is

continuous in 𝜆. Therefore, if we fix 𝜖, there is an integer 𝐾 = 𝐾(𝜖) that is large
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enough so that

⃒⃒
𝑣𝐾𝛾 (𝑦)− 𝑣𝛾(𝑦)

⃒⃒
=
⃒⃒
𝑉 𝐾
𝛾 (𝑦, 𝑣𝐾𝛾 (𝑦))− 𝑉𝛾(𝑦, 𝑣𝛾(𝑦))

⃒⃒
≤
⃒⃒
𝑉 𝐾
𝛾 (𝑦, 𝑣𝛾(𝑦))− 𝑉𝛾(𝑦, 𝑣𝛾(𝑦)) + 𝜖

⃒⃒
≤
⃒⃒
𝑉 𝐾
𝛾 (𝑦, 𝑣𝛾(𝑦))− 𝑉𝛾(𝑦, 𝑣𝛾(𝑦))

⃒⃒
+ 𝜖

≤ 2𝜖.

Then, we take the limit as 𝜖 ↓ 0 and the Lemma is shown.

The next Lemma will be the final property of the function 𝑉 𝐾
𝛾 that we prove.

This will subsequently be used in the proof of Lemma 3.

Lemma 17. Let 𝑖 be any arm. For any look-ahead parameter 𝐾 ∈ Z+, discount

factor 𝛾 and any constant 𝜂, we have

E𝑦

[︀
𝑉 𝐾
𝛾 (𝑦𝑖,1, 𝜂)

]︀
≥ 𝑉 𝐾

𝛾 (𝑦, 𝜂)

where we recall that 𝑦𝑖,1 is the summary statistic corresponding to the posterior ob-

tained from pulling arm 𝑖 once.

Proof. For any 𝑦 ∈ 𝒴 , let 𝜏 ⋆(𝑦) be the (predictable) optimal stopping time for the

problem (involving computing 𝑉 𝐾
𝛾 ) whose initial state is 𝑦𝑖,0 = 𝑦. With this notation

in hand, we conclude that

E𝑦

[︀
𝑉 𝐾
𝛾 (𝑦𝑖,1, 𝜂)

]︀
= E𝑦

⎡⎣E𝑦𝑖,1

⎡⎣𝜏⋆(𝑦𝑖,1)∑︁
𝑠=1

𝛾𝑠−1𝑋𝑖,𝑠 +
𝛾𝜏

⋆(𝑦𝑖,1)𝑅𝜂,𝐾(𝜏, 𝑦𝑖,𝜏⋆(𝑦𝑖,1)−1)

1− 𝛾

⎤⎦⎤⎦ (A.28)

≥ E𝑦

⎡⎣E𝑦𝑖,2

⎡⎣𝜏⋆(𝑦)∑︁
𝑠=1

𝛾𝑠−1𝑋𝑖,𝑠 +
𝛾𝜏

⋆(𝑦)𝑅𝜂,𝐾(𝜏, 𝑦𝑖,𝜏⋆(𝑦)−1)

1− 𝛾

⎤⎦⎤⎦ (A.29)

= E𝑦

⎡⎣𝜏⋆(𝑦)∑︁
𝑠=1

𝛾𝑠−1𝑋𝑖,𝑠 +
𝛾𝜏

⋆(𝑦)𝑅𝜂,𝐾(𝜏, 𝑦𝑖,𝜏⋆(𝑦)−1)

1− 𝛾

⎤⎦ (A.30)

= 𝑉 𝐾
𝛾 (𝑦, 𝜂)
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where (A.28), (A.30) both follow from the tower property and (A.29) is due to the sub-

optimality of the stopping rule 𝜏 ⋆(𝑦) when the actual starting state is 𝑦𝑖,1. Intuitively,

we lose out revenue by throwing away information about the arm.

A.4 Results for the frequentist regret bound

This section contains proofs of results required to show Theorem 1. It is helpful to

go over the definitions and some general properties of the Optimistic Gittins index

given in Section A.3 when reading this.

A.4.1 Definitions and properties of Binomial distributions.

We list notation and facts related to Beta and Binomial distributions, which are used

through this section.

Definition 5. 𝐹𝐵
𝑛,𝑝(.) is the CDF of the Binomial distribution with parameters 𝑛 and

𝑝, and 𝐹 𝛽
𝑎,𝑏(.) is the CDF of the Beta distribution with parameters 𝑎 and 𝑏.

Lemma 18. Let 𝑎 and 𝑏 be positive integers and 𝑦 ∈ [0, 1],

𝐹 𝛽
𝑎,𝑏(𝑦) = 1− 𝐹𝐵

𝑎+𝑏−1,𝑦(𝑎− 1)

Proof. Proof is found in Agrawal and Goyal [2012].

Lemma 19. The median of a Binomial(𝑛, 𝑝) distribution is either ⌈𝑛𝑝⌉ or ⌊𝑛𝑝⌋.

Proof. A proof of this fact can be found in Jogdeo and Samuels [1968].

Corollary 1 (Corollary of Fact 19). Let 𝑛 be a positive integer and 𝑝 ∈ (0, 1). For

any non-negative integer 𝑠 < 𝑛𝑝

𝐹𝐵
𝑛,𝑝(𝑠) ≤ 1/2

Lemma 20. Let 𝑛 be a positive integer and 𝑝 ∈ [0, 1]. Then for any 𝑘 ∈ {0, . . . , 𝑛},

(1− 𝑝)𝐹𝐵
𝑛−1,𝑝(𝑘) ≤ 𝐹𝐵

𝑛,𝑝(𝑘) ≤ 𝐹𝐵
𝑛−1,𝑝(𝑘)
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Proof. To prove 𝐹𝐵
𝑛,𝑝(𝑘) ≤ 𝐹𝐵

𝑛−1,𝑝(𝑘), we let 𝑋1, . . . , 𝑋𝑛 be i.i.d samples from a

Bernoulli(𝑝) distribution. We then have

𝐹𝐵
𝑛,𝑝(𝑘) = P

(︃
𝑛∑︁

𝑖=1

𝑋𝑖 ≤ 𝑘

)︃
≤ P

(︃
𝑛−1∑︁
𝑖=1

𝑋𝑖 ≤ 𝑘

)︃
= 𝐹𝐵

𝑛−1,𝑝(𝑘)

Now to prove (1 − 𝑝)𝐹𝐵
𝑛−1,𝑝(𝑘) ≤ 𝐹𝐵

𝑛,𝑝(𝑘), it’s enough to observe that 𝐹𝐵
𝑛,𝑝(𝑘) =

𝑝𝐹𝐵
𝑛−1,𝑝(𝑘 − 1) + (1− 𝑝)𝐹𝐵

𝑛−1,𝑝(𝑘).

Ratio of Binomial CDFs.

Lemma 21. Let 0 < 𝑞 < 𝑝 < 1. Let 𝑛 be a positive integer such that 𝑒
𝑛
2
𝑑(𝑞,𝑝) ≥ (𝑛+1)4

and let 𝑘 be a non-negative integer such that 𝑘 < 𝑛𝑞. It then follows that

𝐹𝐵
𝑛,𝑞(𝑘)/𝐹𝐵

𝑛,𝑝(𝑘) > 𝑒
𝑛
2
𝑑(𝑞,𝑝).

Proof. From the method of types (see Cover and Thomas [2012]), we have for any

𝑟 ∈ (0, 1) and 𝑗 < 𝑛𝑟

𝑒−𝑛𝑑(𝑗/𝑛,𝑟)

(1 + 𝑛)2
≤ 𝐹𝐵

𝑛,𝑟(𝑗) ≤ (𝑛+ 1)2𝑒−𝑛𝑑(𝑗/𝑛,𝑟). (A.31)

Because 𝑘 < 𝑛𝑞 < 𝑛𝑝, by applying (A.31) to both the numerator and denominator,

we get

𝐹𝐵
𝑛,𝑞(𝑘)

𝐹𝐵
𝑛,𝑝(𝑘)

≥ 𝑒−𝑛𝑑(𝑘/𝑛,𝑞)

(𝑛+ 1)4𝑒−𝑛𝑑(𝑘/𝑛,𝑝)
=
𝑒𝑛(𝑑(𝑘/𝑛,𝑝)−𝑑(𝑘/𝑛,𝑞))

(𝑛+ 1)4
.

Examining the exponent, we find

𝑑(𝑘/𝑛, 𝑝)− 𝑑(𝑘/𝑛, 𝑞) =
𝑘

𝑛
log

𝑞

𝑝
+

(︂
1− 𝑘

𝑛

)︂
log

1− 𝑞
1− 𝑝

> 𝑞 log
𝑞

𝑝
+ (1− 𝑞) log

1− 𝑞
1− 𝑝

= 𝑑(𝑞, 𝑝)
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where the bound holds because the expression is decreasing in 𝑘, and 𝑘 < 𝑛𝑞. There-

fore,

𝐹𝐵
𝑛,𝑞(𝑘)

𝐹𝐵
𝑛,𝑝(𝑘)

>
𝑒𝑛𝑑(𝑞,𝑝)

(𝑛+ 1)4
=

𝑒
𝑛
2
𝑑(𝑞,𝑝)

(𝑛+ 1)4
𝑒

𝑛
2
𝑑(𝑞,𝑝) ≥ 𝑒

𝑛
2
𝑑(𝑞,𝑝). (A.32)

The final lower bound in (A.32) follows from the assumption on 𝑛.

A.4.2 Proof of Lemma 3

Proof. The proof hinges on showing that for any 𝐾, which is the number of look-

ahead steps used to compute the Optimistic Gittins index, that

P
(︀
𝑣𝐾1,𝑡 < 𝜂

)︀
= 𝑂

(︂
1

𝑡1+ℎ𝜂

)︂
(A.33)

where ℎ𝜂 > 0 is some constant that depends on 𝜂. After showing the above statement,

the result would follow due to convergence of the series
∑︀∞

𝑡=1 P
(︀
𝑣𝐾1,𝑡 < 𝜂

)︀
. The first

step will be to show that for any 𝐾 ≥ 1 and any 𝜁 ≥ 0, that there exists ℎ′𝜂 > 0, such

that

P
(︀
(1− 𝛾𝑡)𝑉 𝐾

𝛾𝑡 (𝑦1,𝑃1(𝑡), 𝜂) < 𝜂 + 𝜁/𝑡
)︀

= 𝑂𝜂,𝜁

(︂
1

𝑡1+ℎ′
𝜂

)︂
, (A.34)

where 𝑉 𝐾
𝛾𝑡 is the continuation value defined in Section A.3 and 𝑂𝜂,𝜁 means that the

constant in front the big-Oh depends on both 𝜁 and 𝜂. After showing the above claim,

Lemma 16 would imply Equation (A.33) because we know from that result that,

P
(︀
𝑣𝐾1,𝑡 < 𝜂

)︀
= P

(︀
(1− 𝛾𝑡)𝑉 𝐾

𝛾𝑡 (𝑦1,𝑃1(𝑡), 𝜂) < 𝜂
)︀

= 𝑂

(︂
1

𝑡1+ℎ𝜂

)︂

for some ℎ𝜂 > 0. The second equation above is just a special case of (A.34) when

𝜁 = 0.

Ultimately, showing equation (A.34), and thus proving the Lemma, is an induction

over the parameter 𝐾 and we begin with the base case, which requires some work

using properties of the Beta and Binomial distributions.
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Proof of the base case

Let us fix 𝜁 ≥ 0. We prove that when the algorithm uses a look-ahead parameter of

𝐾 = 1, that there exists a positive constant ℎ𝜂 such that

P
(︀
(1− 𝛾𝑡)𝑉 1

𝛾𝑡(𝑦1,𝑃1(𝑡), 𝜂) < 𝜂 + 𝜁/𝑡
)︀

= 𝑂𝜂,𝜁

(︂
1

𝑡1+ℎ𝜂

)︂
. (A.35)

First, we define 𝛿 := (𝜃1− 𝜂)/2 and 𝜂′ := 𝜂+ 𝛿. In other words, 𝛿 is half the distance

between 𝜂 and 𝜃1; 𝜂′ is the point half-way. Recall that 𝑃𝑖(𝑡) refers to the counting

process for the number of pulls of arm 𝑖 up to but not including time 𝑡 and that

𝑆𝑖(𝑡) is the corresponding total reward (or number of successes from all the Bernoulli

trials). Showing this base case consists of showing two claims:

Claim 1: {(1− 𝛾𝑡)𝑉 1
𝛾𝑡(𝑦1,𝑃1(𝑡), 𝜂) < 𝜂 + 𝜁/𝑡} ⊆

{︁
𝐹𝐵
𝑃1(𝑡)+1,𝜂′(𝑆1(𝑡)) <

𝜁+1
𝛿𝑡

}︁
Let 𝑉𝑡 ∼Beta(𝑆1(𝑡) + 1, 𝑃1(𝑡) − 𝑆1(𝑡) + 1) be the agent’s posterior on the expected

reward from the optimal arm (notice that 𝑦1,𝑃1(𝑡) = (𝑆1(𝑡)+1, 𝑃1(𝑡)−𝑆1(𝑡)+1) in this

case). Using the simplified equation for the continuation value when 𝐾 = 1, namely

𝑉 1
𝛾𝑡 (see Equation (2.3)),

(1− 𝛾𝑡)𝑉 1
𝛾𝑡 ((𝑆1(𝑡) + 1, 𝑃1(𝑡)− 𝑆1(𝑡) + 1), 𝜂) = E [𝑉𝑡] + 𝛾𝑡E

[︀
(𝜂 − 𝑉𝑡)+

]︀
,

we find that

{︂
(1− 𝛾𝑡)𝑉 1

𝛾𝑡(𝑦1,𝑁1(𝑡), 𝜂) < 𝜂 +
𝜁

𝑡

}︂
=

{︂
E [𝑉𝑡] + 𝛾𝑡E

[︀
(𝜂 − 𝑉𝑡)+

]︀
< 𝜂 +

𝜁

𝑡

}︂
=

{︂
(1− 1/𝑡)E

[︀
(𝜂 − 𝑉𝑡)+

]︀
< E [𝜂 − 𝑉𝑡] +

𝜁

𝑡

}︂
(A.36)

=

{︂
E
[︀
(𝑉𝑡 − 𝜂)+

]︀
<

1

𝑡
E
[︀
(𝜂 − 𝑉𝑡)+

]︀
+
𝜁

𝑡

}︂
⊆
{︂
E
[︀
(𝑉𝑡 − 𝜂)+

]︀
<
𝜁 + 1

𝑡

}︂
(A.37)

165



where (A.36) follows from the definition of 𝛾𝑡 and (A.37) is due to 𝑉𝑡, 𝜂 both lying

in the interval [0, 1]. We approximate the conditional expectation in (A.37) with the

following bound:

E
[︀
(𝑉𝑡 − 𝜂)+

]︀
= E [(𝑉𝑡 − 𝜂)1 (𝑉𝑡 ≥ 𝜂)]

= E [(𝑉𝑡 − 𝜂)1 (𝜂 + 𝛿 > 𝑉𝑡 ≥ 𝜂)]

+ E [(𝑉𝑡 − 𝜂)1 (𝑉𝑡 ≥ 𝜂 + 𝛿)]

> E [(𝑉𝑡 − 𝜂)1 (𝑉𝑡 ≥ 𝜂 + 𝛿)]

≥ 𝛿P (𝑉𝑡 ≥ 𝜂′)

= 𝛿(1− 𝐹 𝛽
𝑆1(𝑡)+1,𝑃1(𝑡)−𝑆1(𝑡)+1(𝜂

′))

= 𝛿𝐹𝐵
𝑃1(𝑡)+1,𝜂′(𝑆1(𝑡)) (A.38)

where the final equality is due to Fact 18. The claim then follows from the above

bound and (A.37). We proceed with the second part of the base case’s proof:

Claim 2: P
(︁
𝐹𝐵
𝑃1(𝑡)+1,𝜂′(𝑆1(𝑡)) <

𝜁+1
𝛿𝑡

)︁
= 𝑂

(︀
1

𝑡1+ℎ𝜂

)︀
for some ℎ𝜂 > 0

Let us fix the sequence 𝑓𝑡 , − log(𝛿𝑡/(𝜁+1))
log(1−𝜂′)

− 1 = 𝑂(log 𝑡). We then have by a straight-

forward decomposition that

P
(︂
𝐹𝐵
𝑃1(𝑡)+1,𝜂′(𝑆1(𝑡)) <

𝜁 + 1

𝛿𝑡

)︂
= P

(︂
𝐹𝐵
𝑃1(𝑡)+1,𝜂′(𝑆1(𝑡)) <

𝜁 + 1

𝛿𝑡
, 𝑃1(𝑡) > 𝑓𝑡

)︂
+ P

(︂
𝐹𝐵
𝑃1(𝑡)+1,𝜂′(𝑆1(𝑡)) <

𝜁 + 1

𝛿𝑡
, 𝑃1(𝑡) ≤ 𝑓𝑡

)︂
.

(A.39)
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Then notice that for the second term in the RHS of (A.39) we have the following

bound,

P
(︂
𝐹𝐵
𝑃1(𝑡)+1,𝜂′(𝑆1(𝑡)) <

𝜁 + 1

𝛿𝑡
, 𝑃1(𝑡) ≤ 𝑓𝑡

)︂
≤ P

(︂
𝐹𝐵
𝑃1(𝑡)+1,𝜂′(0) <

𝜁 + 1

𝛿𝑡
, 𝑃1(𝑡) ≤ 𝑓𝑡

)︂
= P

(︂
(1− 𝜂′)𝑃1(𝑡)+1 <

𝜁 + 1

𝛿𝑡
, 𝑃1(𝑡) ≤ 𝑓𝑡

)︂
≤ P

(︂
(1− 𝜂′)𝑓𝑡+1 <

𝜁 + 1

𝛿𝑡

)︂
= 0. (A.40)

Now we use the following fact to correspondingly bound the left term on the RHS of

(A.39). Define the function

𝐹−𝐵
𝑛,𝑝 (𝑢) := inf{𝑥 : 𝐹𝐵

𝑛,𝑝(𝑥) ≥ 𝑢}

which is the inverse CDF. Then it is known that if 𝑈 ∼ Uniform(0, 1), then 𝐹−𝐵
𝑛,𝑝 (𝑈) ∼

Binomial(𝑛, 𝑝). Furthermore, the event 𝐹𝐵
𝑛,𝑝(𝐹

−𝐵
𝑛,𝑝 (𝑈)) ≥ 𝑈 occurs with probability 1

due to the definition of the inverse CDF.

Now let us only consider large 𝑡, in particular 𝑡 > 𝑀 = 𝑀(𝜃1, 𝜂
′) where:

1. 𝑀 is such that 𝑒𝑑(𝜂′,𝜃1)𝑓𝑀/2 > (𝑓𝑀 + 1)4 (we need this condition when we use

Lemma 21)

2. 𝑀 > 4(𝜁+1)
(1−𝜂′)𝛿

3. ⌈𝑓𝑀⌉ > 0 and 𝐹𝐵
𝑡′,𝜂′(𝑡

′𝜂′) > 1/4 for all 𝑡′ > ⌈𝑓𝑀⌉. Note that there is a large

enough integer for this because 𝐹𝐵
⌈𝑓𝑡⌉,𝜂′(𝑓𝑡𝜂

′)→ 1
2

as 𝑡→∞.

Suppose that 𝑡 > 𝑀 . It then follows that the event

{︂
𝐹𝐵
𝑃1(𝑡),𝜂′(𝑆1(𝑡)) <

𝜁 + 1

(1− 𝜂′)𝛿𝑡
, 𝑆1(𝑡) ≥ 𝑃1(𝑡)𝜂

′, 𝑃1(𝑡) > 𝑓𝑡

}︂

has measure zero because of the assumptions made on 𝑀 . Therefore if 𝑡 > 𝑀 , we
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have

P
(︂
𝐹𝐵
𝑃1(𝑡)+1,𝜂′(𝑆1(𝑡)) <

𝜁 + 1

𝛿𝑡
, 𝑃1(𝑡) > 𝑓𝑡

)︂
≤ P

(︂
𝐹𝐵
𝑃1(𝑡),𝜂′(𝑆1(𝑡)) <

𝜁 + 1

(1− 𝜂′)𝛿𝑡
, 𝑃1(𝑡) > 𝑓𝑡

)︂
(A.41)

= P
(︂
𝐹𝐵
𝑃1(𝑡),𝜂′(𝑆1(𝑡)) <

𝜁 + 1

(1− 𝜂′)𝛿𝑡
, 𝑆1(𝑡) < 𝑃1(𝑡)𝜂

′, 𝑃1(𝑡) > 𝑓𝑡

)︂
≤ P

(︂
𝐹𝐵
𝑃1(𝑡),𝜃1

(𝑆1(𝑡))𝑒
𝑃1(𝑡)𝐷 <

𝜁 + 1

(1− 𝜂′)𝛿𝑡
, 𝑃1(𝑡) > 𝑓𝑡

)︂
(A.42)

≤ P
(︂
𝐹𝐵
𝑃1(𝑡),𝜃1

(𝑆1(𝑡))𝑒
𝑓𝑡𝐷 <

𝜁 + 1

(1− 𝜂′)𝛿𝑡

)︂
= P

(︂
𝐹𝐵
𝑃1(𝑡),𝜃1

(𝐹−𝐵
𝑃1(𝑡),𝜃1

(𝑈)) <
𝑒−𝑓𝑡𝐷(𝜁 + 1)

(1− 𝜂′)𝛿𝑡

)︂
(A.43)

≤ P
(︂
𝑈 <

𝑒−𝑓𝑡𝐷(𝜁 + 1)

(1− 𝜂′)𝛿𝑡

)︂
=
𝑒−𝑓𝑡𝐷(𝜁 + 1)

(1− 𝜂′)𝛿𝑡

= 𝒪𝜂,𝜁

(︂
1

𝑡1+𝐷𝑐𝜂′

)︂
(A.44)

where 𝐷 = 𝑑(𝜂′, 𝜃1) > 0 and 𝑐𝜂′ = − log−1(1−𝜂′) > 0 are constant. The bound (A.41)

holds due to Fact (20). Bound (A.42) follows from an application of Lemma 21 and

the fact that 𝑡 > 𝑀 . Equation (A.43) follows from 𝑆1(𝑡) ∼ Binomial(𝑃1(𝑡), 𝜃1) and

the inverse sampling technique. By combining bounds (A.44), (A.40) and (A.39), we

finally obtain the result for the base case by taking ℎ𝜂 = 𝐷𝑐𝜂′ .

Proof of the inductive step

Now, suppose that for 𝐾 − 1 ≥ 1 and any 𝜁 ≥ 0, the following induction hypothesis

holds

P
(︂

(1− 𝛾𝑡)𝑉 𝐾−1
𝛾𝑡 (𝑦1,𝑃1(𝑡), 𝜂) < 𝜂 +

𝜁

𝑡

)︂
= 𝑂𝜂,𝜁

(︂
1

𝑡1+ℎ𝜂

)︂
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for some ℎ𝜂 > 0. We prove the same result for the next integer 𝐾. Observe that

when 𝑡 is large enough, using the Bellman equation for 𝑉 𝐾
𝛾 , we have

P
(︂

(1− 𝛾𝑡)𝑉 𝐾
𝛾𝑡 (𝑦1,𝑃1(𝑡), 𝜂) < 𝜂 +

𝜁

𝑡

)︂
= P

(︀
(1− 𝛾𝑡)E

[︀
𝑋1,𝑡 | 𝑦1,𝑃1(𝑡)

]︀
+ 𝛾𝑡E

[︀
max(𝜂, (1− 𝛾𝑡)𝑉 𝐾−1

𝛾𝑡 (𝑦1,𝑃1(𝑡)+1, 𝜂)) | 𝑦1,𝑃1(𝑡)

]︀
< 𝜂 +

𝜁

𝑡

)︂
(A.45)

≤ P
(︂(︂

1− 1

𝑡

)︂
E
[︀
(1− 𝛾𝑡)𝑉 𝐾−1

𝛾𝑡 (𝑦1,𝑃1(𝑡)+1, 𝜂) | 𝑦1,𝑃1(𝑡)

]︀
< 𝜂 +

𝜁

𝑡

)︂
≤ P

(︂(︂
1− 1

𝑡

)︂
(1− 𝛾𝑡)𝑉 𝐾−1

𝛾𝑡 (𝑦1,𝑃1(𝑡), 𝜂) < 𝜂 +
𝜁

𝑡

)︂
(A.46)

≤ P
(︂

(1− 𝛾𝑡)𝑉 𝐾−1
𝛾𝑡 (𝑦1,𝑃1(𝑡), 𝜂) <

𝑡

𝑡− 1

(︂
𝜂 +

𝜁

𝑡

)︂)︂
≤ P

(︂
(1− 𝛾𝑡)𝑉 𝐾−1

𝛾𝑡 (𝑦1,𝑃1(𝑡), 𝜂) < 𝜂 +
𝜂

𝑡− 1
+

𝜁

𝑡− 1

)︂
≤ P

(︂
(1− 𝛾𝑡)𝑉 𝐾−1

𝛾𝑡 (𝑦1,𝑃1(𝑡), 𝜂) < 𝜂 +
𝜁 + 1

𝑡

)︂
= 𝑂𝜂,𝜁

(︂
1

𝑡1+ℎ𝜂

)︂
(A.47)

where the final inequality holds when 𝑡 is large enough because 𝜂 < 1, equation

(A.45) results from an expansion of Bellman’s equation and bound (A.46) follows

from Lemma 17. Finally, equation (A.47) follows from the induction hypothesis.

A.4.3 Proof of Lemma 4

Proof. See the main proof of Theorem 1 to recall the definition of constants 𝜂1, 𝜂3 and

their relationship with 𝜃2 and 𝜃1. As an abbreviation we let 𝐿 = 𝐿(𝑇 ). Moreover,

because for any arm 𝑖 𝑣𝐾𝑖,𝑡 ≤ 𝑣𝐾−1
𝑖,𝑡 ≤ . . . ≤ 𝑣1𝑖,𝑡 (Lemma 2), it will be sufficient to

consider this proof only for 𝑣12,𝑡, which we also will abbreviate as 𝑣2,𝑡 , 𝑣12,𝑡. Similarly,

we will abbreviate the notation for the OGI policy as 𝜋𝑂𝐺 and suppress the parameter

𝐾.

Firstly, by the law of total probability and the definition of 𝑃𝑖(𝑡) in Section A.3,
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we find that

𝑇∑︁
𝑡=1

P(𝑣2,𝑡 ≥ 𝜂3, 𝑁2(𝑡− 1) ≥ 𝐿, 𝜋OG
𝑡 = 2)

=
𝑇∑︁
𝑡=1

P
(︀
𝑣2,𝑡 ≥ 𝜂3, 𝑃2(𝑡) ≥ 𝐿, 𝑆2(𝑡) < ⌊𝑃2(𝑡)𝜂1⌋, 𝜋OG

𝑡 = 2
)︀

+
𝑇∑︁
𝑡=1

P
(︀
𝑣2,𝑡 ≥ 𝜂3, 𝑃2(𝑡) ≥ 𝐿, 𝑆2(𝑡) ≥ ⌊𝑃2(𝑡)𝜂1⌋, 𝜋OG

𝑡 = 2
)︀

≤
𝑇∑︁
𝑡=1

P (𝑣2,𝑡 ≥ 𝜂3, 𝑃2(𝑡) ≥ 𝐿, 𝑆2(𝑡) < ⌊𝑃2(𝑡)𝜂1⌋)

+
𝑇∑︁
𝑡=1

P
(︀
𝜋OG
𝑡 = 2, 𝑆2(𝑡) ≥ ⌊𝑃2(𝑡)𝜂1⌋

)︀
, (A.48)

where 𝑆2(𝑡) is also defined in Section A.3 as the total reward from the second arm

observed up to time 𝑡 − 1. Let 𝑉𝑡 ∼ Beta(𝑆2(𝑡) + 1, 𝑃2(𝑡) − 𝑆2(𝑡) + 1) denote the

agent’s posterior on the second arm at time 𝑡, then

𝑇∑︁
𝑡=1

P(𝑣2,𝑡 ≥ 𝜂3, 𝑃2(𝑡) ≥ 𝐿, 𝑆2(𝑡) < ⌊𝑃2(𝑡)𝜂1⌋)

=
𝑇∑︁
𝑡=1

P
(︀
E [𝑉𝑡] + 𝛾𝑡E

[︀
(𝜂3 − 𝑉𝑡)+

]︀
≥ 𝜂3,

𝑃2(𝑡) ≥ 𝐿, 𝑆2(𝑡) < ⌊𝑃2(𝑡)𝜂1⌋)

=
𝑇∑︁
𝑡=1

P
(︂
E [(𝜂3 − 𝑉𝑡)+]

E [(𝑉𝑡 − 𝜂3)+]
≤ 𝑡, 𝑃2(𝑡) ≥ 𝐿, 𝑆2(𝑡) < ⌊𝑃2(𝑡)𝜂1⌋

)︂
(A.49)

where the first equality follows from Lemma 16 and the simplified form of the contin-

uation value (defined in Section A.3) when 𝐾 = 1. The following result lets us bound

(A.49),

Lemma 22. Let 0 < 𝑥 < 𝑦 < 1. For any non-negative integers 𝑠 and 𝑘 with 𝑠 < ⌊𝑘𝑥⌋,

it holds that
E [(𝑦 − 𝑉 )+]

E [(𝑉 − 𝑦)+]
≥ (𝑦 − 𝑥) exp(𝑘𝑑(𝑥, 𝑦))

2

where 𝑉 ∼ Beta(𝑠+ 1, 𝑘 − 𝑠+ 1).
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Proof. See Appendix A.4.3.

Therefore, from equation (A.49) and Lemma 22, we find that whenever 𝑇 >(︁
2

𝜂3−𝜂1

)︁1/𝜖
=: 𝑇 *(𝜖, 𝜃),

𝑇∑︁
𝑡=1

P(𝑣2,𝑡 ≥ 𝜂3, 𝑃2(𝑡) ≥ 𝐿, 𝑆2(𝑡) < ⌊𝑃2(𝑡)𝜂1⌋)

≤
𝑇∑︁
𝑡=1

P ((𝜂3 − 𝜂1) exp{𝑃2(𝑡)𝑑(𝜂1, 𝜂3)} ≤ 2𝑡, 𝑃2(𝑡) ≥ 𝐿)

≤
𝑇∑︁
𝑡=1

P ((𝜂3 − 𝜂1) exp{𝐿𝑑(𝜂1, 𝜂3)} ≤ 2𝑡)

=
𝑇∑︁
𝑡=1

P
(︀
(𝜂3 − 𝜂1)𝑇 1+𝜖 ≤ 2𝑡

)︀
= 0. (A.50)

All that is left is to bound the second term in (A.48), and to do so we apply the

following Lemma whose proof is in Appendix A.4.3

Lemma 23. There exist positive constants 𝐶 = 𝐶(𝜃2, 𝜂1) and 𝑥′ > 𝜃2 such that

𝑇∑︁
𝑡=1

P
(︀
𝑆2(𝑡) ≥ ⌊𝑃2(𝑡)𝜂1⌋, 𝜋OG

𝑡 = 2
)︀
≤ 𝐾 +

1

1− 𝑒−𝑑(𝑥′,𝜃2)

Combining Lemma 23, (A.50), (A.48) and (A.49) shows the claim.

Proof of Lemma 22.

Proof. We upper bound the denominator as follows. Given that 𝑠 < ⌊𝑘𝑥⌋, we have

𝑠 ≤ 𝑘𝑥− 1. Let 𝐵(𝑎, 𝑏) denote the Beta function for parameters 𝑎, 𝑏 > 0, that is

𝐵(𝑎, 𝑏) ,
∫︁ 1

0

𝑡𝑎−1(1− 𝑡)𝑏−1 𝑑𝑡,
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which is used in the definition of the Beta CDF. We can derive an upper bound on

the denominator in the following way. Namely, we have

E
[︀
(𝑉 − 𝑦)+

]︀
=

1

𝐵(𝑠+ 1, 𝑘 − 𝑠+ 1)

∫︁ 1

𝑦

(𝑡− 𝑦)𝑡𝑠(1− 𝑡)𝑘−𝑠 𝑑𝑡

=
1

𝐵(𝑠+ 1, 𝑘 − 𝑠+ 1)

∫︁ 1

𝑦

𝑡𝑠+1(1− 𝑡)𝑘−𝑠 𝑑𝑡− 𝑦P (𝑉 ≥ 𝑦)

=
𝐵(𝑠+ 2, 𝑘 − 𝑠+ 1)

𝐵(𝑠+ 1, 𝑗 − 𝑠+ 1)

(︂
1

𝐵(𝑠+ 2, 𝑘 − 𝑠+ 1)

)︂∫︁ 1

𝑦

𝑡𝑠+1(1− 𝑡)𝑘−𝑠 𝑑𝑡

− 𝑦P (𝑉 ≥ 𝑦)

=
𝑠+ 1

𝑘 + 2
𝐹𝐵
𝑘+2,𝑦(𝑠+ 1)− 𝑦P (𝑉 ≥ 𝑦) (A.51)

≤ 𝑠+ 1

𝑘 + 2
𝐹𝐵
𝑘+2,𝑦(𝑠+ 1)

≤ 𝐹𝐵
𝑘,𝑦(𝑘𝑥)

≤ exp {−𝑘𝑑(𝑥, 𝑦)} (A.52)

where we use Fact 18 and the definition of the Beta CDF to establish equation (A.51).

The final bound in (A.52) is the result of the Chernoff-Hoeffding theorem and Fact 20.

Let 𝛿 := 𝑦 − 𝑥, and note that 𝑠 < 𝑘𝑥 =⇒ 𝑠 ≤ ⌊(𝑘 + 1)𝑥⌋ due to 𝑠 being integer,

whence

E
[︀
(𝑦 − 𝑉 )+

]︀
= E [(𝑦 − 𝑉 )1 (𝑉 ≤ 𝑦)]

= E [(𝑦 − 𝑉 )1 (𝑦 − 𝛿 ≤ 𝑉 ≤ 𝑦)] + E [(𝑦 − 𝑉 )1 (𝑉 < 𝑦 − 𝛿)]

> E [(𝑦 − 𝑉 )1 (𝑉 < 𝑦 − 𝛿)]

≥ 𝛿E [1 (𝑉 < 𝑦 − 𝛿)] (A.53)

= 𝛿P (𝑉 < 𝑥)

= 𝛿
(︀
1− 𝐹𝐵

𝑘+1,𝑥(𝑠)
)︀

(A.54)

≥ 𝛿/2 (A.55)

where equation (A.54) relies on Fact 18. The bound (A.55) is justified from Fact 19

and 𝑠 ≤ ⌊(𝑘 + 1)𝑥⌋. Thus using the inequalities for both the numerator and denomi-
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nator, we obtain the desired bound.

Proof of Lemma 23.

Proof. The steps in this proof follow a similar one in Agrawal and Goyal [2013] but

we show them for completeness. We bound the number of times the sub-optimal

arm’s mean is overestimated. Let 𝜏ℓ be the time step in which the sub-optimal arm

is sampled for the ℓth time. Because for any 𝑥, lim𝑛→∞
⌊𝑛𝑥⌋
𝑛𝑥

= 1, we can let 𝑁 be a

large enough integer so that if ℓ ≥ 𝑁 , then 𝜂1
⌊ℓ𝜂1⌋
ℓ𝜂1

> 𝑥′ := (𝜃2 + 𝜂1)/2 > 𝜃2. In that

case,

𝑇∑︁
𝑡=1

P(𝑆2(𝑡) ≥⌊𝑃2(𝑡)𝜂1⌋, 𝜋OG
𝑡 = 2) (A.56)

≤ E

[︃
𝑇∑︁

ℓ=1

𝜏ℓ+1−1∑︁
𝑡=𝜏ℓ

1 (𝑆2(ℓ) ≥ ⌊𝑃2(ℓ)𝜂1⌋)1
(︀
𝜋OG
𝑡 = 2

)︀]︃

= E

[︃
𝑇∑︁

ℓ=1

1 (𝑆2(𝜏ℓ) ≥ ⌊(ℓ− 1)𝜂1⌋)
𝜏ℓ+1−1∑︁
𝑡=𝜏ℓ

1
(︀
𝜋OG
𝑡 = 2

)︀]︃

= E

[︃
𝑇−1∑︁
ℓ=0

1 (𝑆2(𝜏ℓ+1) ≥ ⌊ℓ𝜂1⌋)

]︃

≤ 𝑁 +
𝑇−1∑︁

ℓ=𝑁+1

P
(︂
𝑆2(𝜏ℓ+1) ≥ ℓ𝜂1

⌊ℓ𝜂1⌋
ℓ𝜂1

)︂

≤ 𝑁 +
𝑇−1∑︁

ℓ=𝑁+1

P (𝑆2(𝜏ℓ+1) ≥ ℓ𝑥′)

≤ 𝑁 +
∞∑︁
ℓ=1

exp(−ℓ𝑑(𝑥′, 𝜃2)) (A.57)

= 𝑁 +
1

1− 𝑒−𝑑(𝑥′,𝜃2)

where (A.57) follows from the Chernoff-Hoeffding theorem and the fact that 𝑆2(𝜏ℓ+1)

is drawn from a Binomial(𝑃2(ℓ+ 1), 𝜃2) ≡ Binomial(ℓ, 𝜃2) distribution.
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A.5 Further experiment results

A.5.1 Bayes UCB experiment

This experiment is motivated by Kaufmann et al. [2012] and in it we simulate the

Bernoulli bandit problem with a 𝑇 = 500 and two arms. Since we are interested

in measuring expected regret over the prior, we draw the arms’ mean rewards at

random from the uniform distribution. There are 5,000 independent trials and we

show the results in Figures A-2. OGI offers notable performance improvements over

both Thompson Sampling and IDS for this modest horizon.

0 100 200 300 400 500

𝑥

0

1

2

3

4

5

6

OGI
IDS
Thompson
Bayes UCB
KL-UCB

Figure A-2: Frequentist regret. The OGI policy is configured 𝐾 = 1 and 𝛼 = 100.

A.5.2 Additional tables for Section 3.4
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𝛼 𝛽 OGI(1) OGI(3) OGI(5) Gittins

1 1 0.760 0.721 0.712 0.703
1 2 0.571 0.522 0.511 0.500
1 3 0.452 0.401 0.389 0.380
1 4 0.374 0.321 0.312 0.302
2 1 0.853 0.818 0.809 0.800
2 2 0.702 0.657 0.646 0.635
2 3 0.591 0.543 0.530 0.516
2 4 0.508 0.458 0.445 0.434
3 1 0.893 0.864 0.855 0.845
3 2 0.771 0.729 0.719 0.707
3 3 0.671 0.626 0.613 0.601
3 4 0.592 0.545 0.532 0.518
4 1 0.916 0.890 0.882 0.872
4 2 0.813 0.776 0.765 0.754
4 3 0.724 0.682 0.670 0.658
4 4 0.651 0.607 0.593 0.581

Table A.1: Optimistic and exact Gittins Indices when 𝛾 = 0.9 for different Beta-
Bernoulli parameters

𝛼 𝛽 OGI(1) OGI(3) OGI(5) Gittins

1.0 1.0 0.817 0.784 0.774 0.761
1.0 2.0 0.637 0.590 0.577 0.560
1.0 3.0 0.514 0.463 0.449 0.433
1.0 4.0 0.430 0.376 0.364 0.348
2.0 1.0 0.890 0.860 0.851 0.838
2.0 2.0 0.752 0.710 0.698 0.681
2.0 3.0 0.643 0.596 0.581 0.562
2.0 4.0 0.558 0.509 0.494 0.475
3.0 1.0 0.921 0.896 0.887 0.874
3.0 2.0 0.811 0.773 0.762 0.744
3.0 3.0 0.715 0.672 0.658 0.639
3.0 4.0 0.637 0.591 0.575 0.556
4.0 1.0 0.938 0.916 0.908 0.895
4.0 2.0 0.847 0.812 0.801 0.784
4.0 3.0 0.763 0.722 0.709 0.690
4.0 4.0 0.691 0.648 0.633 0.613

Table A.2: Optimistic and exact Gittins Indices when 𝛾 = 0.95 for different Beta-
Bernoulli parameters
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Appendix B

Supplementary Material for

Collateral Management

B.1 Proofs

B.1.1 Proof of Lemma 8

Proof. For the first part of the proof, we need to show that 𝐿(𝜆;𝑥) is concave in its

argument. Now because

𝐿(𝜆;𝑥) =
𝑇∑︁
𝑡=1

𝜆⊤𝛿𝑡 −
𝑇∑︁
𝑡=1

E

[︃
sup

𝑢𝑡∈𝑈(𝜉𝑡)

𝜆⊤𝑢𝑡

]︃
− 𝜆⊤𝑥

we need to check that E
[︀
sup𝑢𝑡∈𝑈(𝜉𝑡) 𝜆

⊤𝑢𝑡
]︀

is convex in 𝜆, but this is true since this is

a supremum over linear functions of 𝜆.

Now to show the second result we will derive the KKT conditions for (3.18). First

of all we introduce 𝐾-dimensional Lagrange multipliers 𝜇1 ≥ 0, corresponding to

constraint 𝜆 ≤ 𝑐, and 𝜇2 ≥ 0 for the non-negativity constraints 𝜆 ≥ 0. Next we form

the Lagrangian for this problem which is

ℓ(𝜆, 𝜇1, 𝜇2;𝑥) , 𝐿(𝜆;𝑥) + (𝑐− 𝜆)⊤𝜇1 + 𝜆⊤𝜇2.
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Therefore, we obtain that

𝜕𝜆ℓ(𝜆, 𝜇2, 𝜇2;𝑥) = 𝜕𝜆𝐿(𝜆;𝑥)− 𝜇1 + 𝜇2

= 𝜕𝜆

(︃
𝑇∑︁
𝑡=1

𝜆⊤𝛿𝑡 −
𝑇∑︁
𝑡=1

E

[︃
sup

𝑢𝑡∈𝑈(𝜉𝑡)

𝜆⊤𝑢𝑡

]︃
− 𝜆⊤𝑥

)︃
− 𝜇1 + 𝜇2

=
𝑇∑︁
𝑡=1

𝛿𝑡 −
𝑇∑︁
𝑡=1

𝜕𝜆E

[︃
sup

𝑢𝑡∈𝑈(𝜉𝑡)

𝜆⊤𝑢𝑡

]︃
− 𝑥− 𝜇1 + 𝜇2

These observations are enough to put together the KKT conditions. These are that

𝜆* is an optimal solution to the problem if and only if (due to convexity) all of the

following conditions hold true:

0 ∈
𝑇∑︁
𝑡=1

𝛿𝑡 −
𝑇∑︁
𝑡=1

𝜕𝜆*E

[︃
sup

𝑢𝑡∈𝑈(𝜉𝑡)

(𝜆*)⊤𝑢𝑡

]︃
− 𝑥− 𝜇1 + 𝜇2 (B.1)

(𝑐− 𝜆*)⊤𝜇1 = 0 (B.2)

(𝜆*)⊤𝜇2 = 0 (B.3)

𝜇1, 𝜇2 ≥ 0 (B.4)

0 ≤ 𝜆 ≤ 𝑐. (B.5)

Thus if 𝜆* is an optimal solution, by condition (B.1), there exist sub-gradient vectors

𝑢̄𝑡 ∈ 𝜕𝜆E
[︀
sup𝑢𝑡∈𝑈(𝜉𝑡) 𝜆

⊤𝑢𝑡
]︀

such that

𝑇∑︁
𝑡=1

𝛿𝑡 −
𝑇∑︁
𝑡=1

𝑢̄𝑡 − 𝑥− 𝜇1 + 𝜇2 = 0. (B.6)

We prove the first statement. Let us suppose that for an arbitrary asset 𝑘, the

optimal component of 𝜆* for that asset satisfies 𝜆*𝑘 < 𝑐𝑘. We now show that the first

Lagrange multiplier corresponding to that asset is zero, namely 𝜇𝑘,1 = 0. This follows

simply from observing, from KKT condition (B.2), that

0 =
𝐾∑︁
𝑘=1

(𝑐𝑘 − 𝜆*𝑘)𝜇𝑘,1
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and that 𝑐𝑘 − 𝜆*𝑘 ≥ 0, 𝜇1 ≥ 0 for all 𝑘 (which follows from the feasibility conditions

(B.4) and (B.5)). The above observation along with the stationarity condition, given

by (B.6), imply that

𝑇∑︁
𝑡=1

𝛿𝑘,𝑡 −
𝑇∑︁
𝑡=1

𝑢̄𝑘,𝑡 − 𝑥𝑘 = −𝜇𝑘,2 ≤ 0

where the inequality follows from condition (B.4).

To show the second statement, assume that
∑︀𝑇

𝑡=1 𝛿𝑘,𝑡 <
∑︀𝑇

𝑡=1 𝑢̄𝑘,𝑡 + 𝑥𝑘. Then

the stationarity condition (B.6) implies that 𝜇𝑘,1 < 𝜇𝑘,2, which in turn gives us that

the variable 𝜇𝑘,2 is positive. Finally, from this and the complementary slackness

condition (B.3), we conclude that 𝜆*𝑘 = 0.

Proof of Proposition 3

Proof. First fix 𝜆 and 𝜉𝑡 and note that for any point 𝑢*𝑡 that achieves the supremum

over sup𝑢∈𝑈(𝜉) 𝜆
⊤𝑢, we have

𝑢*𝑡 ∈ 𝜕𝜆

(︃
sup

𝑢𝑡∈𝑈(𝜉𝑡)

𝜆⊤𝑢𝑡

)︃
.

However, from the uniqueness and existence of the point 𝑢*𝑡 (Assumption 1), we have

that 𝑢*𝑡 = 𝑢*𝑡 (𝜉;𝜆). Thus, we can write this statement as

𝜕𝜆

(︃
sup

𝑢𝑡∈𝑈(𝜉𝑡)

𝜆⊤𝑢𝑡

)︃
= {𝑢*𝑡 (𝜉;𝜆)} (B.7)

where we can now, intuitively, simply take the gradient with respect to 𝜆, since

the gradient is precisely the only element of a singleton sub-differential. Therefore,

because 𝑈(𝜉) is a bounded convex set and | sup𝜆,𝑢∈𝑈(𝜉) 𝜆
⊤𝑢| <∞, we can take expec-

tations on both sides of Equation B.7 (and apply the monotone convergence theorem

in order to interchange gradient and expectation) to derive (3.20). Finally (3.21)

follows from Lemma 8 and (3.20).
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Proof of Lemma

Proof. The proof boils down to showing that 𝑧𝑆,𝜆
*

𝑡 = (∆𝑡−𝑥𝑡)+. However it’s enough

to show that for all 𝑡, 𝑥𝑡 = 𝑥−
∑︀𝑡−1

𝑠=1 𝛿𝑠 +
∑︀𝑡−1

𝑠=1 𝑧
𝑆,𝜆*
𝑠 +

∑︀𝑡−1
𝑠=1 𝑢

𝑆,𝜆*
𝑠 , which can be done

by induction. The base case is immediate. Now, let us assume that the equation

holds for 𝑡 and show it also holds for 𝑡+ 1:

𝑥𝑡+1 = (𝑥𝑡 −∆𝑡)
+

=

(︃
𝑥−

𝑡−1∑︁
𝑠=1

𝛿𝑠 +
𝑡−1∑︁
𝑠=1

𝑧𝑆,𝜆
*

𝑠 +
𝑡−1∑︁
𝑠=1

𝑢𝑆,𝜆
*

𝑠 −∆𝑡

)︃+

=

(︃
𝑥−

𝑡∑︁
𝑠=1

𝛿𝑠 +
𝑡−1∑︁
𝑠=1

𝑧𝑆,𝜆
*

𝑠 +
𝑡∑︁

𝑠=1

𝑢𝑆,𝜆
*

𝑠

)︃+

= 𝑥−
𝑡∑︁

𝑠=1

𝛿𝑠 +
𝑡−1∑︁
𝑠=1

𝑧𝑆,𝜆
*

𝑠 +
𝑡∑︁

𝑠=1

𝑢𝑆,𝜆
*

𝑠

−

(︃
𝑡∑︁

𝑠=1

𝛿𝑠 −
𝑡−1∑︁
𝑠=1

𝑧𝑆,𝜆
*

𝑠 −
𝑡∑︁

𝑠=1

𝑢𝑆,𝜆
*

𝑠 − 𝑥

)︃+

⏟  ⏞  
𝑧𝑆,𝜆

*
𝑡

= 𝑥−
𝑡∑︁

𝑠=1

𝛿𝑠 +
𝑡∑︁

𝑠=1

𝑧𝑆,𝜆
*

𝑠 +
𝑡∑︁

𝑠=1

𝑢𝑆,𝜆
*

𝑠 .

Finally, we complete the proof, by letting 𝑡 be arbitrary and showing that

(∆𝑡 − 𝑥𝑡)+ =

(︃
∆𝑡 +

𝑡−1∑︁
𝑠=1

𝛿𝑠 −
𝑡−1∑︁
𝑠=1

𝑧𝑆,𝜆
*

𝑠 −
𝑡−1∑︁
𝑠=1

𝑢𝑆,𝜆
*

𝑠 − 𝑥

)︃+

=

(︃
𝑡∑︁

𝑠=1

𝛿𝑠 −
𝑡−1∑︁
𝑠=1

𝑧𝑆,𝜆
*

𝑠 −
𝑡∑︁

𝑠=1

𝑢𝑆,𝜆
*

𝑠 − 𝑥

)︃+

= 𝑧𝑆,𝜆
*

𝑡 .
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Proof of Lemma 10

Proof. First note that for any 𝑡 ≥ 1 and 𝑘

∆𝑘,𝑡 − 𝑥𝑘,𝑡 = (∆𝑘,𝑡 − 𝑥𝑘,𝑡)+ − (𝑥𝑘,𝑡 −∆𝑘,𝑡)
+

which, since 𝑥𝑘,𝑡+1 = (𝑥𝑘,𝑡 −∆𝑘,𝑡)
+, implies that

(∆𝑘,𝑡 − 𝑥𝑘,𝑡)+ = 𝑥𝑘,𝑡+1 − 𝑥𝑘,𝑡 + ∆𝑘,𝑡.

We therefore have through a telescoping sum that

𝑇∑︁
𝑡=1

E
[︀
(∆𝑘,𝑡 − 𝑥𝑘,𝑡)+

]︀
=

𝑇∑︁
𝑡=1

E [∆𝑘,𝑡] +
𝑇∑︁
𝑡=1

E [𝑥𝑘,𝑡+1 − 𝑥𝑘,𝑡]

=
𝑇∑︁
𝑡=1

E [∆𝑘,𝑡] + E [𝑥𝑘,𝑇+1]− E [𝑥𝑘,1]

=
𝑇∑︁
𝑡=1

E [∆𝑘,𝑡] + E [𝑥𝑘,𝑇+1]− 𝑥𝑘

where we also used that 𝑥𝑘,1 = 𝑥𝑘 almost surely.
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