
Development and Implementation of an Inventory Location Optimization

Algorithm for Improved Distribution Center Picking Rates

by

Dov Hochsztein

Bachelor of Science in Mechanical and Aerospace Engineering
Rutgers School of Engineering, Rutgers University, 2016

SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING IN ADVANCED MANUFACTURING AND DESIGN
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

SEPTEMBER 2018

2018 Dov Hochsztein. All rights reserved.

The author hereby grants MIT permission to reproduce and distribute publicly paper and
electronic copies of this thesis document, in whole or in part, in any medium now known or

hereafter created.

Signature of Author...

D

Certified by ... S ig n a

Signature redacted
Dov Hochsztein

epartment of Mechanical Engineering
August 10, 2018

ture redacted
......................
Davidl Hardt

Ralph E. and Eloise F. Cross Professor in Mechanical Engineering
Thesis Advisor

Accepted by Siqjnature redacted..
%/ Rohan Abeyaratne

Quentin Berg Professor of Mechanics, Mechanical Engineering
Chairman, Committee for Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

OCT 0.2 2018

LIBRARIES
ARCHIVES

This page was intentionally left blank.

Page 12

Development and Implementation of an Inventory Location Optimization

Algorithm for Improved Distribution Center Picking Rates

by

Dov Hochsztein

Submitted to the Department of Mechanical Engineering on August 10, 2018 in Partial
Fulfillment of the requirements for the Degree of Master of Engineering in Advanced

Manufacturing and Design

ABSTRACT

A strategic roadmap was developed for Waters Corporation detailing four central themes
and twelve project proposals to direct future projects and innovations at the company over the
next 3-10 years. Specific attention was paid to the growing need at Waters to shift processes
from manual to automatic and to convert data collection and usage techniques from analog to
digital. Pilots of two projects, Warehouse RFID-based Dock Door System and Inventory
Relocation, were developed in conjunction with the preparation of the roadmap in order to
provide proofs of concept and technology and to serve as reference points for future projects.
The Inventory Relocation Pilot Project is discussed in this thesis.

An automatic inventory relocation tool was developed to recommend product locations
within Waters' Global Distribution Center (GDC). The tool was configured to allow full region
reorganization, relocation of a specified number of stock keeping units, and recommendation of
put-away locations for incoming shipments. The pilot was constrained to the high bay area at
GDC due to the amount of available data for that region, but was designed to be easily
extendable to include other regions in GDC and other Waters distribution centers.

Simulations were run that showed greater than 40% reductions in the objective function
that correspond to approximately 5% less time spent picking orders by material handlers, given
the amount of available supporting data.

Thesis Supervisor: David Hardt

Title: Ralph E. and Eloise F. Cross Professor in Mechanical Engineering

Page 13

This page was intentionally left blank.

Page 1 4

ACKNOWLEDGMENT

I would like to take the opportunity to extend thanks to those who helped make this possible:

To Gabriel Kelly and Lichung Pan for their constant guidance and availability at Waters

Corporation in seeing this project through to completion.

To Kathleen Wright, Ryan Cashman, Kwaku Manu-Tawiah and the team at GDC for opening up

their home to us and helping us with anything we needed.

To everyone at Waters Corporation for their assistance throughout this project, including Dan

Welch and Jim McPherson for their support in making the collaboration between MIT and

Waters possible.

To my teammates, Rushil Batra and Akshay Harlalka for their collaboration, ingenuity, and

endless discussions.

To the rest of the M.Eng. crew for a year I will never forget.

To our advisor, David Hardt for keeping us on track and reminding us to be selfish.

To Jose Pacheco for welcoming us to the M.Eng. Program and leading us for the past 12 months.

To my parents and siblings for supporting me in everything I do.

To my wife, Talia, for keeping me sane all year long.

Page 1 5

This page was intentionally left blank.

Page 1 6

TABLE OF CONTENTS

A BST RAC T ... 3

A C K N O W LEDG M ENT .. 5

TA BLE O F C O N TENTS ... 7

LIST O F FIG UR ES .. I I

LIST O F TA BLES .. 12

IN TR O D UC TIO N ... 13

1.1 PROBLEM STATEMENT ... 13

1.2 M OTIVATION .. 13

1.3 O BJECTIVE ... 13

1.4 TASK D IVISION .. 13

1.4.1 Corporate Roadm ap .. 13

1.4.2 Pilot Projects ... 14

1.5 RELATED W ORK .. 14

1.6 THESIS STRUCTURE .. 15

BAC K G R O UN D ... 16

2.1 W ATERS CORPORATION: CORPORATE PROFILE ... 16

2.2 W ATERS - M IT A LLIANCE ... 16

2.3 A DVANCED M ANUFACTURING CENTER ... 17

2.4 G LOBAL D ISTRIBUTION CENTER (G DC) .. 17

2.5 W ATERS PRODUCTS ... 18

2.5.1 H igh Pressure Liquid Chromatography Instrum ents .. 18

2.5.2 M ass Spectroscopy Instrum ents .. 19

2.5.3 Consum ables ... 19

STRA TEG IC R O A D M A P ... 20

3.1 THE N EED .. 20

3.2 O UTLOOK ... 21

Page 17

3.3 THEMES ... 22

3.3.1 O ptim ization ... 22

3.3.2 D igitalization... 22

3.3.3 A utom ation ... 23

3.3.4 Standardization ... 23

3.4 PROJECT PROPOSALS ... 23

3.4.1 D istribution N etw ork Redesign ... 25

3.4.2 Lot Sizing Optimization for Lot-Controlled Consumables 27

3.4.3 Box Erection A ssistive Technologies .. 29

3.4.4 Inventory Relocation w ithin DC ... 30

INVENTORY RELOCATION PROBLEM.. 32

4.1 PROJECT O VERVIEW AND PROBLEM STATEMENT .. 32

4.2 TASK D IVISION .. 34

4.3 O BJECTIVE FUNCTION .. 35

4.3.1 Cost Functions .. 36

4.3.2 Constraints .. 39

4.4 PLACEM ENT A LGORITHM .. 40

4.4.1 A lgorithm O ptim ality... 44

4.4.2 Sum m ary of N ecessary A ssum ptions .. 47

INVENTORY RELOCATION IMPLEMENTATION.. 50

5.1 PYTHON 3.6 ENVIRONMENT ... 50

5.1.1 O pen Source D evelopm ent .. 51

5.1.2 Fully Supported Libraries .. 51

5.2 M ICROSOFT EXCEL D ATASHEETS ... 53

5.2.1 Static D ata... 54

5.2.2 Sem i-Static D ata ... 56

5.2.3 Dynam ic D ata ... 58

5.2.4 O utput D ata... 59

5.3 D EVELOPED SCRIPTS... 60

5.3.1 Update Sem i-Static Data.. 60

Page 18

5.3.2 Inventory Relocation Tool ... 61

5.4 IMPLEMENTED TOOLS ... 62

5.4.1 Section Specific Inventory Relocation.. 62

5.4.2 Cost of Situation Estim ation ... 62

5.4.3 Full Inventory Relocation ... 63

5.4.4 Replace X Relocation .. 63

5.4.5 Recom m ended Put-Aw ay ... 63

5.5 FLEXIBILITY FOR FUTURE IMPROVEMENTS .. 64

5.5.1 Handling of M issing Data.. 64

5.5.2 N ew Storage Areas in GDC ... 66

5.5.3 Extension to A DC and EDC ... 66

SA P INTEG RA TIO N ... 68

6.1 O PTIONS... 68

6. 1.1 Offline ... 68

6.1.2 Autom atic.. 69

6.1.3 Reim plem entation ... 69

6.2 CURRENT SOLUTION .. 70

6.3 PLAN FOR M OVING FORWARD .. 70

RESULTS AND DISCUSSION ... 71

7.1 IMPLEMENTATION ON HIGH BAY A REAS ... 71

7.2 RELOCATION SIMULATION.. 71

7.2.1 Tim e Savings A nalysis ... 72

C O NC LUSIO N S...75

8.1 STRATEGIC ROADMAP .. 75

8.2 INVENTORY RELOCATION PROJECT ... 75

FUTU RE W O RK.. 77

9.1 PROJECT EXTENSIONS ... 77

9.1.1 Extend to Rest of GDC .. 77

9.1.2 Interface Recommended Shipment Locations with RFID Technology 77

Page 1 9

9.1.3 Extend to EDC and ADC .. 78

9.1.4 Recommended Relocation During Picking/Receiving ... 78

9.1.5 Use Code Skeleton to Inform Other Optimization Problems 78

9.2 ALGORITHM IMPROVEMENT ... 78

9.2.1 Relax Constraint of SKU Specific Location Costing ... 79

9.2.2 Refinement of Cost Analysis ... 79

9.2.3 Refinement of Objective Function... 79

9.2.4 Improve Placement Algorithm .. 80

9.2.5 Include Routing Algorithm .. 80

9.3 INTERFACE IMPROVEMENTS .. 80

9.3.1 Develop SAP-Python GUI.. 80

9.3.2 Develop Platform for Algorithm Refinement ... 81

REFERENCES.. 82

APPENDIX - PYTHON CODE .. 84

Page I 10

LIST OF FIGURES

Figure 1 - C orporate R oadm ap... 25

Figure 2 - Process Flow Diagram: Picking [8].. 34

Figure 3 - Step-wise distribution of time for Picking, Packaging & Shipping [8]................... 34

Figure 4 - Placement Algorithm Flow Chart Representation.. 41

Figure 5 - Spyder Developm ent Interface ... 51

Figure 6 - Inventory Relocation Tool Environment Overview .. 54

Figure 7 - Update Semi-Static Data Script Flow.. 61

Figure 8 - Inventory Relocation Tool Script Flow .. 62

Page I 11

LIST OF TABLES

T able I - E xam ple 1 SK U s...42

Table 2 - Exam ple 1 Locations .. 42

Table 3 - Example 1 Results Following Pure, Frequency-Based Placement 42

Table 4 - Example 1 Results Without Following Pure, Frequency-Based Placement............. 43

T able 5 - Exam ple 2 SK U s... 46

Table 6 - Exam ple 2 Locations .. 46

Table 7 - Example 2 Results Following Placement Algorithm.. 46

Table 8 - Example 2 Results Without Following Placement Algorithm.................................. 47

Table 9 - Sensitivity Analysis of Packing Fraction.. 56

Table 10 - Time Savings Analysis Simulation Results ... 73

Page 112

CHAPTER 1

INTRODUCTION

1.1 PROBLEM STATEMENT

The purpose of this project is to find opportunities for process improvement within

various business verticals under the umbrella of digitalization and automation. The team was

expected to find opportunities, develop and present them, and research and implement a pilot

project on one or more of them.

The focus of this thesis is the implementation of an Inventory Relocation Tool capable of

recommending new storage layouts for a distribution center based on product data.

1.2 MOTIVATION

The motivation for an Inventory Relocation Tool stems from a lack of regarding the stock

in distribution centers. Furthermore, due to the daily need to visit different stock storing locations

in a distribution center to fulfil orders, optimizing the choice of storage locations is crucially

important. Suboptimal storage layouts can lead to many wasted man-hours of traveling,

searching, and maneuvering associated with handling material. It is therefore valuable to develop

a tool that automatically calculates and recommends location improvements to distribution center

managers.

1.3 OBJECTIVE

The objective for Inventory Relocation is to develop a tool that automatically

recommends new storage layouts based on the current layout, product data, and storage location

data, which increases the efficiency of the warehouse by shortening the amount of time

associated with visiting the storage locations.

1.4 TASK DIVISION

1.4.1 Corporate Roadmap

The corporate roadmap was developed as a group. The team deliberated on fundamental

themes and considered multiple projects in order to construct a corporate plan for future projects.

Page 113

Individual projects were developed by individual members of the team and those proposals

appear separately in each thesis.

1.4.2 Pilot Projects

The team developed and implemented two pilot projects, a Warehouse RFID-based Dock

Door System and an optimal Inventory Relocation problem. With two projects and three

members, the team took a dedicated/floater approach toward allocating its resources. The author

of this thesis participated and contributed during the general planning and research phase of the

RFID project, but was otherwise dedicated exclusively to the Inventory Relocation project.

Likewise, A. Harlalka participated in the ideation and planning phase of the Inventory

Relocation project, but was otherwise dedicated exclusively to the RFID Project. On the other

hand, R. Batra was engaged directly on both projects and conducted research, analysis, and

testing in service of both objectives. This hybrid approach between direct collaboration and task

division was crucial to the success of both projects within the time constraints of the shortened

project timeline.

1.5 RELATED WORK

Lots of research has been conducted in the area of warehouse optimization. While most

of the works that exist do not apply directly to this problem, many are related, and they informed

some of the development and formulations of the methods in this thesis.

In terms of the optimal location for a distribution center, the so called "Uncapacitated

Warehouse Location Problem" (UWLP) has been studied extensively. It is well known that the

general UWLP is NP-hard, meaning that solutions are non-deterministic and can be verified in

polynomial time [1], and various attempts at solving it heuristically have been made [2].

Warehouse optimization has also been studied. It has been suggested that for automated

warehouse systems with grid-like storage location arrays, genetic algorithms can be used to

optimally place items [3]. Approaches have also been studied to consider class-based storage [4]

and consolidation [5]. There are also discussions of using linear programming techniques [6].

Optimal methods for order picking have been studied as well [7].

Page 114

1.6 THESIS STRUCTURE

The remainder of this thesis is divided into three sections. The first section, containing

the second and third chapters introduce Waters Corporation and discuss the Proposed Strategic

Roadmap. The next section, containing the fourth, fifth, and sixth chapters, discusses the

implementation of the Inventory Relocation Project, including the mathematical formulations,

technical implementations, and interfaces for existing enterprise software. The final section,

containing the final three chapters, discusses the results of the Inventory Relocation Project as

well as the project conclusions and future work.

Page 115

CHAPTER 2

BACKGROUND

This section introduces Waters Corporation, the host of this thesis project and the primary

subject of the corporate and technical analyses. It details the history of the partnership between

Waters and MIT. The chapter also introduces Waters' manufacturing business unit, its

Massachusetts based distribution center, and the main elements of its technology and product

lines.

2.1 WATERS CORPORATION: CORPORATE PROFILE

Founded in 1958 by James Waters, Waters Corporation is a $2.2 billion publicly traded

corporation headquartered in Milford, Massachusetts. It is a global leader in complementary

analytical technologies like mass spectroscopy, liquid chromatography, rheometry and

microcalorimetry with presence in over 125 countries [11], [12].

The company boasts of an advanced design division, sprawling manufacturing facilities

and service network focused on ultra-performance liquid chromatography (UPLC), high-

performance liquid chromatography (HPLC), chromatography columns and chemistry products,

mass spectrometry (MS) systems, thermal analysis and rheometry instruments. Waters employs

over 7200 people worldwide. The company has segregated its operations into two separate

divisions: Waters Division and TA Instruments [12].

The Waters Division is responsible for design, development and production of UPLC,

HPLC and MS instruments and consumables which are used in a broad range of industries to

measure the chemical, physical and biological composition of materials. Their products are

primarily used by pharmaceutical, life science, biochemical, industrial, academic and

government organizations. Meanwhile, TA instruments is responsible for the thermal analysis,

rheometry and microcalorimetry instruments which are used for determining the applicability of

various chemical substances used in industrial, consumer goods and health care products [12].

2.2 WATERS - MIT ALLIANCE

Incorporated in 2013, Waters - MIT Alliance has led to multiple projects in areas ranging

from Research & Development to Manufacturing to Operations to Supply Chain. Every

Page 116

academic year, a team of student consultants from the Master of Engineering in Advanced

Manufacturing & Design program at MIT come in to augment various teams at Waters realize

their strategic goals and at times, help them set a vision for the future.

The projects have resulted in patent-worthy scientific implementations and have made it

possible to bring fresh innovative ideas into the scientific legacy existing at Waters. The

company benefits from the out-of-the-box thinking and an outsider's perspective to their

challenges. In addition to the student team, a faculty member provides the necessary subject

matter expertise required to take these ideas forward. Meanwhile, the students develop systemic

thinking by getting a holistic view of the business and gaining unparalleled industry experience.

2.3 ADVANCED MANUFACTURING CENTER

Located in Milford, MA, the Waters Advanced Manufacturing Center is a state-of-the-art

manufacturing facility which houses the Advanced Instrument Assembly & Accessory Kitting

Operations area, a Class 10000 clean room and the Global Machining Center [10].

The Advanced Instrument Assembly & Accessory Kitting Operations area is responsible

for assembling the standalone kits and the HPLC instruments. The 8,500 sq. ft. clean room

produces optics, micro valves and critical parts for Waters products [10].

The Global Machining Center is responsible for manufacturing various components like

columns and valves which are critical to the performance of Waters instruments for distribution

worldwide. Around 85% of manufacturing is outsourced to contract manufacturers; however,

high- precision components and parts for New Product Development (NPD) are manufactured in

this facility. The process flow in the factory is primarily job-shop in nature with different areas

corresponding to turning and milling operations. The valve cell and the column area are

exceptions for the existent flow is product based [10].

2.4 GLOBAL DISTRIBUTION CENTER (GDC)

Waters' worldwide distribution is centralized in three primary distribution centers across

the world, the Asian Distribution Center (ADC) in Singapore, the European Distribution Center

(EDC) in the Netherlands, and the Global Distribution Center (GDC) in Franklin, Massachusetts.

GDC handles most of Water's outbound shipments, sending over 1500 lines per day both

directly to customers and to other distribution centers as well.

Page 117

In October 2017, Waters moved its Global Distribution Center into its current home in

Franklin, MA. GDC is currently at a facility with 56,000 square feet of space outfitted with

various types of storage, ranging from high bay areas, to standard shelving, to refrigerator and

freezer locations in order to maintain over 11,000 distinct stock keeping units in over 20,000

separate storage locations. GDC has two separate loading docks and employs the traditional

"flow-through" warehouse model. While GDC has dedicated staff for receiving, international

and domestic picking, and international and domestic packing, many of its experienced material

handlers are cross trained to enable flexibility when confronting different order patterns and

daily, quarterly, and seasonal trends.

2.5 WATERS PRODUCTS

This section introduces the products which form the most significant part of product line-

up for Waters.

2.5.1 High Pressure Liquid Chromatography Instruments

High Liquid Chromatography (LC) is a technique to separate a substance/material into its

constituents by using a pressurized liquid solvent. The most significant markets for LC

instruments are the life sciences and pharmaceutical industries which require the technique to

identify new drugs, test the purity of certain pharmaceuticals and diagnose diseases. Waters

manufactures highly customizable LC instruments for the end user. There are various

configurations and degrees of automation which the customer can choose from, starting with

component configured systems for research and teaching applications to fully automatic systems

which can provide much higher throughputs in industrial settings [13].

In 2004, Waters introduced a novel technology called the Ultra-performance Liquid

Chromatography (UPLC). This technology enabled the use of very small but uniform sized

particles as a packing material for its columns. These packed columns when used with the

Acquity UPLC system helped the customers separate the materials more reliably and achieve the

separations in a faster time frame. These systems are Waters' current workhorses in the LC

instrument segment [13].

Page 118

2.5.2 Mass Spectroscopy Instruments

Mass Spectroscopy (MS) primarily allows users to identify unknown

compounds/materials by measuring the weights of the molecules that get converted into ions

during the process [13]. In September 1997, Waters transformed itself from a minor player in the

MS instrument industry to a leader by acquiring MicroMass Ltd. based in Manchester, England.

MS is frequently used with other analytical techniques like LC or gas chromatography for drug

testing, nutritional safety testing and environmental testing procedures [13].

2.5.3 Consumables

For LC, the primary consumables are columns, which are essentially steel tubes packed

with the separation media [13]. These columns have a much shorter life cycle than instruments

and are typically replaced at regular intervals. The packing material for the columns is typically

made from Silica or Polymeric resins. During the liquid chromatography process, the sample is

introduced into the column at a high pressure and its subsequent interaction with powder initiates

the separation[13].

Page 119

CHAPTER 3

STRATEGIC ROADMAP

This section details the strategic roadmap that was researched and developed during the

exploration phase of the 2018 Waters - MIT Alliance project. While the complete roadmap was

submitted to Waters in a unified document, the proposed projects are listed below to help

understand the significance of the roadmap, themes and some of the ideas.

3.1 THE NEED

The major markets served by Waters Corporation include pharmaceutical, food and

materials. However, the majority of revenue (over 50%) is derived from the pharmaceutical

industry slated to grow at 6% for the next few years [14]. This requires the company to ramp up

production volumes amidst increasing cost pressures from the market to continue to beat

benchmark indices. The scenario in the industry is changing rapidly owing to the high-growth

markets in Asia, lingering fears of protectionism and the economic conditions in Europe. Waters

requires a strategic overhaul to provide them the necessary edge and make their value chain agile

enough to respond to any event effectively.

Traditionally, Waters has led the industry owing to its high-quality instrument portfolio

that has resonated with the customers spanning from the pharmaceutical industry to the food

industry. The competition is now catching up by providing innovative designs with a shorter

turnaround time by incorporating feedback from detailed customer studies. For instance, some of

the competitors have focused more on enhancing the overall user interface (UI) of their

instruments by inclusion of smooth touch-displays whereas most of Waters instruments have an

LCD screen controlled by buttons. With the passage of time, the customer needs have evolved

towards UI being a major buying factor in addition to the all-round performance. The design

teams should scout for such drifts in customer requirements and work towards adapting the next

generation products to the same.

Industry experts cite the development of Artificial Intelligence as the game-changer in

this decade. A plethora of applications of the technology has altered the way the businesses

operate. The ever-increasing complexity of the supply chain has long warranted a systemic

Page 120

overhaul to prune inefficiencies and work towards productivity improvements. It is

recommended that the supply chain of the future be quick to adapt and pivot according to the

mood of the market. The latest technological revolution can aid in better capture and utilization

of data for effective decision making. However, these technologies are only as good as data input

for analysis which makes it all the more important to streamline data collection procedures and

use technology there as well. For instance, the use of Automatic Identifications (Auto-ID)

technologies in conjunction with machine learning and data science can unearth hidden

inefficiencies in the supply chain by improving visibility of product and information flow.

The first set of checkpoints in transition to the organization of the future would be to

revisit the business processes and explore use cases of latest technological trends. This should be

followed by a detailed technical feasibility as well as economic viability study ensuring that the

suggested alterations are in line with the strategic goals. The MIT team during the exploratory

phase interacted with different teams at Waters to take the first step in rethinking the way

business is conducted and laid the strategic roadmap presented in this chapter. The following

sections discuss about the importance of certain themes and how they fit into the roadmap and

subsequently touches upon each idea in detail.

3.2 OUTLOOK

The purpose of this roadmap is to document the findings of the exploration phase in a

way that identifies and directs future projects at Waters Corporation. After considering the

observations and points of view of various managers, the MIT team weighed the different goals

and pain points to find an overall direction for the next three to ten years.

The team highlighted four overarching themes that encompass the direction that Waters

seems to want to move toward as well as twelve specific high-value projects that fit into those

themes and address some of Waters' most crucial needs. Many of these projects are pilot projects

envisioned to bring new approaches, thought processes, and technology into Waters' field of

vision in order to drive and inform other possibilities for growth and improvement.

As this roadmap is designed to illuminate future projects, it can potentially serve as a

menu for teams of interns or MIT M.Eng. teams to select projects. Guided by the leadership team

at Waters, two of the projects, Inventory Management using RFID and Inventory Relocation

were selected as pilots for this year's team.

Page 121

3.3 THEMES

The strategic roadmap is centered around four central themes: Optimization, Automation,

Digitalization, and Standardization. These have been identified as key areas for improvement

across all business areas.

3.3.1 Optimization

Perhaps the simplest objective is for Waters to optimize aspects of its processes. For a

very long time, Waters has relied on its industry leading products and quality to ensure consistent

consumption, profitability, and growth. As most of Waters' projects sell at extremely high

margins, it has been very easy for the company to sit comfortably atop the market and sustain its

high level of success.

However, a recent shift in the mindset of Waters' management is in favor of working to

improve process flows and efficiencies to increase product quality and reduce direct and indirect

costs. It is extremely important for Waters to optimize whatever it can so that it is better

equipped to keep pace with its competitors in this age of continuously evolving technology and

markets.

3.3.2 Digitalization

Large corporations like Waters face challenges in sufficiently collecting, storing,

maintaining, and utilizing the massive amount of data that describes its day-to-day processes.

Business specific data is crucial for decision makers to carve out the competitive strategy and

streamline operations. Managers across all of Waters' business units need to be able to monitor

the activity and availability of their resources, machines, and materials, and the task of handling

all of these concerns becomes increasingly difficult as the company grows.

On one hand, this theme involves an effort to collect more digital data from various parts

of the company. And it is equally important that the data collected using conventional methods

be ideal for digital processing and use. On the other hand, Waters is already collecting

tremendous amounts of information in many of its business units. Effort is necessary to find uses

for data that is already collected and continue to find ways to make the information profitable.

Page 122

3.3.3 Automation

Currently, Waters' experiences tremendous waste through manual tasks. From repetitive

physical tasks like box erection to tedious computer tasks like data entry and manual analytics,

thousands of man-hours are spent doing tasks that don't necessarily require the attention of

human staff members. While it is not the intention of the corporation to downsize its staff and lay

off its workers, Waters still has room to grow by enabling its workers to spend more time on

value-adding activities. Machines have the power to augment the ability of humans and allow

them to perform more effectively.

3.3.4 Standardization

The final theme is focused on unifying aspects of Waters' business. As with many

corporations, the larger Waters' grows, the more difficult it becomes to ensure that output results

of work in many business areas is sufficiently homogeneous.

It was decided that effective standardization would be ensured if it's included in the

upstream processes like product design. Teams responsible for design are often so pressed by

their release deadlines that individual parts of the teams end up diverging in direction from other

parts. Without time to realign the entire teams, the resulting work ends up with aspects from

many different perspectives that do not have common features. Having processes, protocols, and

component designs that do not share any portions results in increased work for staff and

customers who have to deal with those protocols, as well as larger families of parts and

documents to support the wide variety of entities. It is therefore proposed that making

concentrated, team-wide initiatives to introduce strategic standardizations to homogenize the

output of the business units will bring great value to the corporation.

3.4 PROJECT PROPOSALS

In service of the roadmap and its themes, twelve project proposals were prepared, four of

which appear in this thesis, with the rest distributed between Batra [8] and Harlalka [9]. The MIT

team brainstormed multiple ideas across the central themes and met with the key stakeholders in

different departments to learn about their problems in more detail. It is believed that streamlining

the existing business processes would be the first step in this roadmap.

Page 1 23

Under the Optimization theme, four main ideas were considered: inventory relocation

within DC, distribution network redesign, redefining shelf life to reduce scrap and determining

optimal lot sizes. The team believes that an algorithm for optimal location of the inventory in

warehouse could help GDC reduce its costs. Similarly, after learning that Waters' current

distribution network involves significant back and forth shipping, the team believes that there

could be an opportunity to optimize the current network, especially given the fact that freight

costs Waters $40 million dollars each year. A meeting with the demand planning team resulted in

the generation of the other project ideas based on their recommendations. One of their

suggestions involved evaluating the potential of lengthening the expiration periods for certain

products while the other sought to determine the optimal lot sizing structure by analyzing

customer behavior and balancing trade off with manufacturing costs. It is believed that these

ideas can be augmented by better quality data that can be analyzed to unearth inefficiencies.

Digitalization of some of their processes would prove essential for getting access to high

fidelity data. This theme encompassed four main ideas: data-driven manufacturing, digitalization

pilots for manufacturing and assembly, inventory tracking using RFID, and loT-based HPLC

system architecture. During the MIT team's interview with the manufacturing team, it was

learned that many machines in the shop floor were "MTConnect ready" referring to the common

data protocol shared by these machine tools. By leveraging the capability of MTConnect, the

team believes that a dashboard representing the real time activity on the shop floor could be

created for the shop manager, thus saving him time to inspect shop operations physically. During

the team's visit to the shop floor, it was also learned that certain valuable shop floor metrics were

being calculated manually. The team suggested shifting to digital methods of measurement and

recommended the Digital Factory Kit offered by Tulip as a possibility. The visit to GDC, where

the team observed the painstaking process of scanning individual items, convinced them of the

potential of using RFID for inventory tracking. Similarly, learning about the intricacies in

capturing consumer data led the team to propose the idea of introducing an IoT Based HPLC

System Architecture. In addition to better data, it's required to augment the workforce with

necessary machines to improve productivity.

To ensure that humans work only on value-adding activities, certain parts of the

processes need to be automated. Within this broad theme of Automation, the team proposed two

ideas: box erection technologies and assistive technologies for material handlers in GDC. The

Page 124

team discovered that the lack of communication between TrackWise & SAP necessitated manual

checks for inventory levels of raw material for LC columns. Automating the raw material as part

of the larger theme of automation could help shorten the effective lead time. In a similar manner,

automated box erection technology could help reduce the time required for the material handler

to package and ship orders. It's also known that these improvements can only be sustained in the

long term if the processes are standardized.

Within the Standardization theme, two main ideas were proposed: design standardization

and modular design of HPLC system architecture. The design standardization idea focused on

reducing inconsistency in product architecture that lead to greater assembly and service times.

Meanwhile, the modular design aspect focused on creating a common rack architecture for LC

equipment that would allow for independent disassembly of the individual modules.

The Roadmap is shown in Figure 1:

Optimization Digitalization Automation Standardization

Figur 1 -orpoateeRadma

3.4.aizaio Distribui NeLCr Redesigr

Cuoet Sizne

Watrscuretl sens Piloxt l $4 echnlologieasl ofegt Ayh ter

Dnrcce fWtr'spl n istribution Dt-rv newksaemtaedbvaiscsosarf,

igur I - Coprt Roadm

Waer curnl spnd aproiatl $4 milo anulyo rigt ayoh

and taxes associated with conducting business in all of the relevant countries. Additionally, some

of the channels and nodes in the distribution network exist due to historical decisions that may

Page 125

not be applicable today. And it is only because of the inertia of the shipping process and

associated real estate and hardware that these channels and nodes still exist.

It is currently the case that products are being shipped in their completed form from the

manufacturing plant to a distribution center and then to a customer. For example, Waters

customers in the United Kingdom interested in a particular product will end up receiving a

product that originated in a plant in the UK, but was sent first to Wexford, Ireland before

returning back to the UK.

There are currently many such inefficiencies in Waters' distribution network and while it

would be costly to make changes, the possibilities and benefits ought to be explored fully. Such

an undertaking would not fit the scope or timeline of the M.Eng. program and MIT - Waters

Alliance, but it still remains an integral part of the future planning for Waters at the corporate

level.

Proposed Solution

In general, network redesign endeavors tend to be expansive and affect all aspects of the

business. As such, it is extremely crucial that care be taken in determining which aspects of

Waters' network can be changed in which absolutely cannot. For the aspects that can be

changed, it is important to obtain estimates associated with various options that reflect how

costly it would be to alter the existing system (be it overhead costs, capital costs, downtime

costs, or inventory costs).

These estimates would provide an outer framework for a network redesign project -

indicating which shipping steps can be changed, and at what cost. From there, tools and

techniques for optimization of distribution networks can be used to find shipping channels and

nodes that can be reconfigured or eliminated entirely.

Next Steps

As this project involves searching for a solution that could potentially restructure large

portions of the corporation, it is essential that Waters create a taskforce that it trusts in order to

conduct this project. Assigning such a project to a group of interns or graduate students without

consultation of higher level management would be a waste of time, as any solution such a team

could come up with would then need to be validated by Waters executives. It would be

extremely easy (and perhaps prudent) for an executive to shy away from implementing such an

Page 126

extensive change without first reexploring it. Therefore, it is recommended that Waters only task

such a project to a team of external consultants if it constrains the problem so that the team can

provide suggestion without having to implement the change. Alternatively, an internal taskforce

of Waters personnel skilled in distribution network studies would be ideal for approaching this

problem. This project has a potential to bring great value to Waters, but it is crucial that Waters

is ready for such a change before investing its resources in tackling this problem.

3.4.2 Lot Sizing Optimization for Lot-Controlled Consumables

Current State

Waters sells many consumable components that are lot-controlled, meaning that the lot

number is relevant in differentiating parts (as opposed to traditional parts that are identical as

long as they have the same part number). Specifically, columns that contain particular powder

chemistries are controlled because the manufacturing process that produces the powder

guarantees that all columns made in the same batch have sufficiently identical chemical

compositions, but it does not guarantee that columns from different batches have sufficiently

identical compositions. Many of Waters' customers are required to perform validations on these

columns that are specific to the lot before conducting experiments using Waters instruments and

columns and that validation would need to be repeated if the customer were to conduct the

experiments with columns from another lot. As such, Waters has the practice of differentiating

column lots for the purpose of these customers, and is capable of filling orders that have lot

specific requests.

At present, lot specific ordering has caused Waters problems from both overstocking and

understocking perspectives. As customers continue to request columns from the lots as their

previous orders, it often happens that orders are impossible to satisfy as the necessary products

are completely out of stock, and producing new columns that are identical is impossible to

accomplish. On the flipside, certain lots that are purchased by smaller customers with less

demand end up scrapped because the expiration date comes before many of the units can be sold.

Waters has also made some unwritten purchasing agreements with customers who

requested specific lots be reserved for their use only. However, as there were no binding legal

contracts, Waters was not protected from the eventuality that these customers would not buy

enough units from the lots and Waters has had to scrap many units on account of its generosity.

Page 127

Both the manufacturing department and the order fulfillment are affected by the choice of

lot sizing. For extremely large lot sizes, the cost to the manufacturing department associated with

delaying other production will be very high. Conversely, tiny lot sizes introduce very high setup

time to production time ratios that also tax the manufacturing department. Likewise, overly large

lot sizes often cause product scrapping, while overly small lot sizes cause missed orders. As both

concerns are mitigated by a "middle of the road" approach, the lot sizing is currently set by the

production schedule and designed to fit approximately with the demand. This gives the status

quo "medium" lot sizing. Unfortunately, there are still a lot of orders that are missed as well

units that are scrapped.

Past work [17] has shown that in a manufacturing system, effective lot scheduling and

sizing can be used to increase efficiency using an EQQ model originally developed by Harris

[18].

Proposed Solution

The recommended optimization problem is to select a periodic schedule of lot sizes (that

can still change with demand) that minimizes the costs incurred by manufacturing scheduling,

missed orders, and unit scrapping. It is hypothesized that it is not necessarily most effective to

have all lots be the same size as the flexibility of having some larger lots and some smaller can

enable Waters to more efficiently serve its customers.

Procedures can be put in place when a customer wants a new lot to match the customer

with an appropriately sized lot considering the particular customers purchasing behavior

regarding lot specific ordering. Customers with the propensity to order many columns in the

same lot can be 'assigned' to larger lots while smaller customers with little to no evidence of

needing to repeat their orders can be fulfilled from lots that don't have quite as many units

remaining.

An analysis tool can be developed to recommend ideal lot sizing that can, in conjunction

with customer lot assigning practices, optimize the lot sizing to reduce costs. This tool would

need to analyze the current situation and customer behavior to interpret the lot sizing

possibilities. Development of a tool that takes the current situation as an input and returns a

solution is extremely important so that the instead of solving the problem once, it can be solved

Page 128

over and over as circumstances change. Likewise, the methods, assumptions, and parameters can

be adjusted in subsequent trials so that the optimization can be improved.

Next Steps

To move forward with such a project, it is important for the scope to be well defined.

While it is easy for a project planner to list all of the concerns that need to be considered in an

ideal solution, every constraint has the potential to cause the optimization problem to grow with

complexity. Great care needs to be exercised when determining and monetizing the costs and

benefits that arise from different lot schedules so that the resulting problem is feasible to solve. It

can be beneficial for some simplifying assumptions to be made during the first-pass attempt at

solving this problem (i.e. assuming homogeneity in the manufacturing plant to simplify

changeover cost calculation or assuming that all products have the same shelf life to simplify the

scrapping considerations).

This project is well suited to be tackled by a team with a background in data analytics and

machine learning. While this project would be an excellent candidate to give to a team of interns

or graduate students, it would be essential for continued success of such a procedure that

permanent data-oriented resources be involved. This will require multiple iterations and

refinement that can only be done with time, so dedicating personnel to furthering this project

would be a responsible course of action.

3.4.3 Box Erection Assistive Technologies

Current State

Waters currently has many business areas that require manual assembly of corrugated

cardboard boxes. Particularly in the distribution centers, where outbound orders require

consolidation of multiple products into shipping boxes, material handling staff members are

spending large amounts of time estimating the ideal box size and assembling it. While these tasks

are relatively quick when done once, the amount of time spent doing them is actually quite great

when considering how often they have to be done.

Page 1 29

Proposed Solution

There are automated technologies in existence both for box size determination

(estimation based on solving the rectangular prism packing problem) and box erection.

Commercially software can be explored in order to find a solution that will automatically

recommend box sizes and packing layouts to material handling staff. Reducing the planning time

and wasted time due to incorrect box selection can significantly improve the packing rate at

GDC. Likewise, mechanical automation for box erection and bottom sealing can be explored to

find an ideal solution. Shortening the packing time by preparing boxes automatically for packing

can also significantly improve the packing time. There are possibilities that allow for erection of

various box sizes without any changeover. The former employer of the author of this thesis is an

example of an Original Equipment Manufacturer that specializes in automated packaging

solutions (information has been provided to Waters but is omitted from this document for

privacy).

Next Steps

Much of this project will be a technology exploration study and cost/benefit analysis. As

solutions to these problems exist and are available commercially, the primary goal would be to

evaluate existing solutions in order find the most appropriate solution for GDC and then to

validate the selection for a favorable return on investment.

3.4.4 Inventory Relocation within DC

Current State

The layouts of Water's distribution centers were determined by planned, one-time

analysis and continue to be altered by day-by-day observations and a fair amount of "tribal

knowledge." In Franklin, MA in particular, where GDC has made its home since October 2017,

the current layout was determined before the move in. Shelving, high bay areas and specialty

storage locations (refrigeration, freezer, HAZMAT, etc.) were set up to efficiently handle

material receiving and picking. The basic model used is the flow-through model, where the two

loading docks are completely divorced from each other. One dock, by the front of the building,

handles receiving exclusively, while the other dock, in the rear of the building, handles outbound

shipping. One basic principle of inventory location - placing the fastest moving products in the

Page 1 30

most efficient locations - was followed, thus the shelving areas are closer to the shipping area

while the high bay storage area, which contains larger less frequently ordered parts, is farther

from shipping. While the location of the storage hardware (the shelves and high bays

themselves) would be extremely costly and non-trivial to move, the storage locations of

individual parts is much simpler to relocate.

The management at GDC is interested in gaining visibility about the efficiency of the

current layout and to learn easily of any alterations that could be made at any given moment that

would increase the average picking rate.

Proposed Solution

Like many large corporations, Waters collects data on many of its day-to-day operations

and stores records of many kinds of transactions. Much of this data is stored in its corporate

enterprise software, SAPTM. As part of the digitalization theme of this roadmap, it is important to

Waters that it starts utilizing the data it collects to improve its business. Here lies an opportunity:

to study the shipping patterns, picking patterns, and receiving patterns, to determine a way to

optimize the layout at the distribution centers. Such a technique can be automated, so that

distribution center managers can have a software tool that can be consulted and will recommend

material relocation endeavors and initial material put-away locations.

Next Steps

The pilot for this project has been developed and is discussed in detail in the remainder of

this thesis. The pilot considers high bay storage locations storage locations in GDC and primarily

deals with the SKUs located in that area at the time of this study. It includes some measurement

of storage locations and SKUs as well as a preliminary location cost assignment analysis.

Success of this project hinges on careful implementation and ramp-up followed by

additional data collection, reevaluation, refinement, and ultimately, extension beyond the scope

of the initial pilot.

Page 131

CHAPTER 4

INVENTORY RELOCATION PROBLEM

This chapter details the problem, approach, and solution for automated inventory relocation

recommendations. It describes the problem statement and task division between members of the

team and documents the development of the objective function, constraints, and placement

algorithm step.

4.1 PROJECT OVERVIEW AND PROBLEM STATEMENT

GDC shifted from its location in the Milford campus to a stand-alone warehouse in

Franklin, MA around a year ago. However, the storage location for various SKUs was kept

unchanged even after the drastic changes in the overall layout for the 56,000 sq. ft. space. Given

the huge area, delivering over 1,500 lines every day requires the pickers to walk miles across the

facility.

There have been no attempts to optimize the locations of various SKUs within the DC

before or after the shift. After researching this problem, it became clear that while the GDC staff

do their best to make sure to place incoming material intelligently, computationally driven

recommendations would improve on their decisions and save them the time spent making those

decisions. Three key areas were highlighted as ways an automatic software tool could be used by

distribution center managers and personnel to improve productivity:

1. Total Relocation: A relocation of all SKUs currently in a particular section of the

warehouse (or the entire warehouse at once). This goal involves creating a report that will

list the new location of every SKU and estimate the resulting improvement to the

warehouse's picking speed.

2. Replace X: A tool that allows the manager to request recommendations for inventory

relocation procedures that involve relocation of x SKUs within a particular section. This

goal is intended to give control over how extensive a particular relocation effort should

be, as it will often be the case that a manager desires to improve the picking speed but

does not have sufficient time and resources to relocate every SKU in the section. This too

Page 1 32

will create a report listing the new layout and the estimated improvement, as well as a list

of actual moves required.

3. Recommended Put-Away: A tool that recommends storage locations for every SKU

present in an incoming shipment.

With all three goals, it is crucial that they be implemented as recommendations, so that

each particular SKU suggestion can be considered by a human and then ignored if it is believed

that there is a reason to disregard the suggestion. Especially at the initial implementation of this

system, when there will be many instances of information available to the software tool being

incomplete, many of the recommendations will need to be recognized by a human as not

meaningful (i.e. if the system has no information on the size of a SKU and then recommends

placing it in a location where it clearly will not fit, a human familiar with the materials needs to

be able to disregard the recommendation).

As it is necessary to test an inventory relocation system to properly determine its benefits,

it was decided that the implementation cannot involve excessive spending. For this reason, the

algorithm was to be developed from scratch and tailored directly to GDC. By doing so, any costs

associated with purchasing and/or applying commercial solutions (should any exist) to GDC

could be avoided. As such, the need to validate the inventory relocation in terms of return on

investment can be avoided as the implementation requires no capital expenditure.

In addition to the requirement that the algorithm produce relevant and mathematically

sound solutions, it is also necessary for it to interface easily with existing Waters systems and

people. Specifically, it must be able to grab whatever information it needs from the databases,

and the output results need to be readable and manipulatable by staff members that have basic

backgrounds in using computers (text files, emails, Microsoft Excel tables) but not in coding

environments.

The process flow for picking operations appears in Figure 2:

Page 133

Figure 2 - Process Flow Diagram: Picking [8]

Traversing the aisles accounts for roughly 40% of the time spent in the picking, packing,

and shipping process at GDC [8], s0 it would be extremely beneficial if that time could be

shortened.

Time Study - Picking, Packaging & Shipping

Drop Order * Plan Route

P
Pick p Pick-Verify in SAP

a Box Erection & Product Placemnent d Paperoork

Figure 3F- Step-wise distribution oftime for Picking, Packaging & Shipping [8]

4.2 TASK DIVISION

This portion of the "DC of the Future" pilot was handled primarily by the author of this

thesis and by R. Batra. While this thesis should be considered the primary reference for the

implemented inventory relocation project, multiple aspects of the analysis were conducted in

collaboration with R Batra. Much of the necessary data collection, assessment, management, and

Page 1 34

the location cost assignment analysis for the high bay area of GDC as well as a full cost savings

analysis were done by R. Batra [8].

4.3 OBJECTIVE FUNCTION

As inventory relocation is inherently an optimization problem, it needs to be described by

an objective function. At its most basic level, the goal for inventory location is to find a layout

that minimizes the cost incurred by the warehouse associated with the layout. This is

accomplished by finding an objective function that corresponds most directly to labor costs

associated with the layout. It need not be the case that the actual labor cost be equal to or even

proportional to the objective function. It is sufficient for the objective function to be related to

the actual cost in that it increases/decreases whenever the actual cost increases/decreases. This

way, it follows that minimizing the objective function will serve to minimize the actual cost as

well with decent certainty.

Let L be the set of all storage locations and S the set of all SKUs. Let the contents of a

particular storage location 1j E L be represented by the following set indicating the existence of

SKU si E S in location Ij with quantity qij > 0:

Ij = f{(si, qij)} 1

Let a particular total layout L be defined as a set of all triples (si, qij, ii) such that SKU si

exists in location 1j with quantity qij > 0:

L = {(si, qij, ij) 1 3 ((si, qij) E 1j) (2)

Then the objective function, J0, can be represented as a sum of the costs associated with

picking, receiving, and overhead associated with a particular layout L.

Jo (L) = Cpick (L) + Crec (L) + Coverheaa (L) (3)

In general, the primary concern was with costs that change from layout to layout, so

efforts were made to determine portions of the cost that do not vary when the storage layout is

changed. These simplifications, as well as some others, are discussed in the next section. The

general approach with these formulations was to start with the most general and exact forms of

the equations and then make simplifying assumptions to model the cost in a way that is feasible

to calculate.

Page 1 35

4.3.1 Cost Functions

For a particular horizon H (set to six months in the pilot project), all tasks require a

particular number of man-seconds to be completed. Thus, the cost functions

Cpick, Crec, Coverhead, represent the amount of time spent on the task on account of the layout.

Overhead costs were estimated to remain relatively invariant across different layouts. I.e.,

8 Coverhea (L) 0 (4)

Likewise, costs associated with receiving were estimated to vary much less than costs

associated with picking from layout to layout, as the average number of like units put away in a

received shipment was found to be much greater than the average number picked at once.

Because of this, the amount of time spent traveling from location to location was much less

important when more units were received at once. I.e.,

aC ec(L) a Cpick (L
Crec(L) < Cpick(L); ' (<< (5)

Because of this situation, it was determined that the most important cost for which to

optimize the layout is the picking time. The objective function was therefore reduced to:

J(L) = Cpick(L) (6)

At its core, the cost associated with picking items is simply the amount of time pickers

spend walking from location to location in order to pick items during a particular horizon H on

account of the current layout L. So, for all instances of traveling from a to b, the total cost

associated with the layout is:

Cp ick(L) = d(a, b)] (L) (7)

Where d(a, b) is the cost associated with traveling the distance from a to b.

Unfortunately, determining how this function behaves for different layouts proved to be very

difficult. Pickers take a variety of different approaches to order picking (single order picking,

batch picking, wave picking) and build in additional efficiencies and inefficiencies to their tasks.

Ultimately, it was decided to define the total cost for this optimization by determining individual

Page 136

cost amounts associated with the choice of a particular SKU being placed in a particular location.

Thus, the cost function was rewritten as:

Cpick(L) = c(si, q ij , (8)
(si,qij,1j)EL

Where the individual cost function c(si, qij, 1j) is defined as some function of the

physical volume of the SKU vi, the quantity of the SKU qij, the frequency of the SKU fi

(number of times expected to be ordered, regardless of quantity), the expected transit time

contribution from the particular SKU/location pairing dT(si, Ii):

c(si, qij, ij) = F (vi, qij, fi, dT(si, ii)) (9)

The behavior of this function was studied by observing the day to day operations at GDC.

Ultimately, a few key discoveries were made about the different factors:

1. The cost associated with a unit being in a location did not seem to be affected much by

the number of like units present, thus the cost function was assumed to be linearly

proportional to the number of units.

2. It was also not much affected by the sizing, as pickers were virtually always picking up

all units of a necessary SKU at once and increases in picking time were small compared

to transit time (it will eventually be shown that the location and size will be related, so the

extra picking time of large, palleted SKUs will be captured by the location).

3. In terms of frequency, it was estimated that the cost function was also linearly

proportional to the expected number of trips (i.e. the expected demand divided by the

average number of units ordered in a line).

4. The transit time contribution appeared to be affected by a variety of factors, including the

distance from the shipping area of the location, the method of picking (which depended

on the type of material and whether or not it was palleted), the distance from other

identical SKUs (to facilitate the primary-overflow storage strategy), the distance from

other different SKUs (depending on the cross correlations or those SKUs).

Because of these observations and calculations, the individual cost function was refined as:

c(si, qij, 1j) = qij -fi -dT(si, bj) (10)

Page 1 37

Or, when considering individual units:

c(si, Ij) = fi -dT(si, 1j) (1

The transit time contribution dT(si, 1j) was considered a function of the SKU

independent location cost LCj (the time required to travel to the location from the shipping area -

see Batra [8]), the positive contribution from being near other identical SKUs due to the primary-

overflow storage strategy aij, and the positive contribution from being near other SKUs with

high cross correlations) bij:

dT(si, 11) = F(LC;, a1 , bij) (12)

a 1 = a(d(lj, 1k), qij, qik) (13)
IkjSiEIk

bi = Y (d(j, 1k), qij, qi1', corr(si, sit)) (14)

Where the term a(d(1 - 1k), qij, qik) represents the positive value associated with SKU

si being located in both locations 1i and 1k based on the added efficiency of using one location as

primary storage and the other location as overflow storage (a strategy typically employed at

GDC for fast-moving SKUs). The term fl(d(l - Ik), qit', qirk, corr(si, sit)) represents the

positive value associated with SKUs si and sit being location in locations 1i and Ik with a given

cross-correlation corr(si, sit) between the two SKUs that represents the likelihood of the two

SKUs being ordered together.

Ultimately, the effect functions a and fl were very difficult to model, and the amount of

time required to collect data for the distances d(1 , 1k) would be prohibitively great - if the

amount of work required to map distance costs from n storage locations to shipping as done in

Batra [8] was -0(n), then the amount of work to map distances for every possible pair of the n

storage locations would be -0(n 2). Therefore, it was decided to simplify the transit time

contribution further to be:

dT(si, 1j) = LC i r (15)

Page 1 38

Where each r, is a procedural efficiency or inefficiency that scales the location costing.

For example, two of these efficiencies are batching and routing where the fact that multiple lines

are picked at once and the fact that a route is planned by a human enable the walking time from

shipping to the storage areas to be shared across multiple lines. The important assumption that

these factors are invariant regardless of the layout is justified by considering average/expected

behavior for the order compositions and thus assuming that the practice of batching will have, on

average, approximately the same savings for all layouts.

These simplifications were also advantageous for constructing the algorithm, as with this

formulation, the location cost becomes independent of the SKUs themselves.

Thus, the objective function was reduced to:

J(L) = ?ir qij - fi - LC (16)
(si,qij,1j)EL

And as the efficiencies term was assumed to be multiplicative and invariant with different

layouts, it can be removed to form the simple objective function:

J() = Y qij -fi - LC (17)
(si,qij,1j)EL

4.3.2 Constraints

Thus far, the possible layouts L that can be considered are limited only by which SKUs

are known to be in the warehouse. Without further limitation, SKUs can be placed in locations to

the point where the total volume of the SKUs exceeds the allowable volume in the storage

location which cannot be tolerated. Thus, a constraint on possible layouts was formulated:

(VIj E L): qij -v i 5 vj - PFj (18)
(si,qij'1j)EL

PF is the allowable packing fraction associated with location 1j and vj is the total true

volume in that location. Setting the packing fraction to values less than I allows the volume

occupied to be constrained further than the total true volume as filling the full volume of a

storage location entirely is horribly inefficient as it is very difficult it to fill the location and pick

material from it.

Page |39

Additionally, GDC currently has a policy in place to avoid picking errors whereby lot-

controlled SKUs of the same part number but different lots are not permitted to be in the same

location.

Thus, the solution desired is the layout L which minimizes the objective function defined

in Equation 17 subject to these conditions.

4.4 PLACEMENT ALGORITHM

The basic premise understood as common sense by everyone in GDC is to place the most

popular items in the most prime locations. What was unknown is exactly how to define what are

the most popular items and what are the most prime locations.

The algorithm that was developed is a greedy algorithm that simply places the "best"

SKUs in the "best" locations and repeats until all SKUs are placed. The constraints on this

algorithm and its optimality are discussed in the next sections. The process flow of the algorithm

follows the following pseudocode representation (note that this pseudocode is simplified and

contains procedures in English that are intuitive but not necessarily formal functions - the full

code appears in the Appendix):

Algorithm 1 - Basic Placement Algorithm

Function: Placement Algorithm (Currently Placed, Locations, SKUs to Place)

Input: List of locations of already placed stock, Total number to place of each SKU
Output: Final Layout

1 Order: Locations BY best to worst
2 Order: SKUs to Place BY highest popularity to lowest
3 For i in (SKUs to Place):
4 Best SKU = i
5 For j in Locations:
6 If Best SKU FITS inj:
7 Place: Best SKU inj (as many as will fit)
8 end
9 end
10 end

The algorithm is also represented by the flow chart depicted in Figure 4:

Page 140

Placement __W M"o~wK _ ~dh. PW. U Meny AMe a# bf#W

II 2OO ~NJ Y

Figure 4 - Placement Algorithm Flow Chart Representation

The main advantages of this algorithm are its simplicity and versatility. It assumes one

key premise - at any given moment, there is a current best placement to be made, i.e. a pair

(SKU and location) that is most advantageous to be made at the current moment (hence the use

of a greedy algorithm). This algorithm was also chosen as it allows a variety of different

applications ranging from a total relocation (i.e. setting Currently Placed to be empty and

placing all the SKUs) to a relocate X (define Currently Placed as the starting layout and then

remove the X SKUs that have the greatest cost and place them again) to a shipment received

routine (i.e. setting Currently Placed to the starting layout and placing the contents of the

shipment).

The only is missing piece in the function definition is how to define "best" for locations

(which appears in line 1) and "highest popularity" for SKUSs (which appears in line 2). This

proved to be a bit difficult.

The best locations were considered to be the locations that were closest to the shipping

area and thus, most accessible to pickers. Analysis was conducted to develop a method to

determine SKU-independent location costs for each storage location in the warehouse and is

described in detail in Batra [8].

. As the frequency of picking of individual items is defined previously as number of

expected trips per unit time, it was first considered that the popularity of the products be defined

directly as the frequency. In fact, asking most people at GDC to give their gut feeling produced

this definition. However, what this definition fails to consider is the size of the different SKUs

Page 1 41

and the following example, with just two SKUs and two locations, shows how this criterion fails

to optimally organize the warehouse:

Consider a scenario in which two SKUs, with given data on size (in cubic inches),

quantity, and frequency (number of trips per hour), are to be placed into locations, with given

size (cubic inches) and location cost (seconds). The information is shown in Table 1 and Table 2:

Table 1 - Example 1 SKUs

SKUl SKU2
Size (in3) 1 2
Quantity 10 10
Frequency (trips/hr) 3 4

Table 2 - Example I Locations

Location 1 Location 2
Size (in3) 12 18
Location Cost (s) 5 6

Following the criterion defined above, the most popular item, SKU 2 will be placed into

the better location, Location I as much as can fit (6 units) and the remaining units of each SKU

will be placed in Location 2. This procedure yields the following results:

Table 3 - Example 1 Results Following Pure, Frequency-Based Placement

Location 1 Location 2
Number of SKU 1 0 10
Number of SKU 2 6 4
Cost SKU 1 0 180
Cost SKU 2 120 96
Volume SKU 1 0 10
Volume SKU 2 12 8
Total Cost 396

However, if SKU I was considered the more important one to place and it therefore was

placed into the better location, Location 1, the following results would be obtained:

Page 142

Table 4 - Example 1 Results Without Following Pure, Frequency-Based Placement

Location I Location 2
Number of SKU 1 10 0
Number of SKU 2 1 9
Cost SKU 1 150 0
Cost SKU 2 20 216
Volume SKU 1 10 0
Volume SKU 2 2 18
Total Cost 386

Thus, it is unlikely that considering only the frequency of a product without considering

its size is optimal.

Because of this discovery, including the size in determining the most crucial SKU was

considered. To accomplish this, the utility of a SKU ui was introduced and defined in the

following way:

u= f p(v) (19)

Where pf(vi) is some monotonically decreasing function of the volume of the SKU. This

way, SKUs are considered best when they are visited frequently while also occupying little

space. The simplest functions that can be used are the basic reciprocal function, p(vi) = 1/vi,

and a difference function, M(vi) = V - vi for some V s. t. (Vi) V > vi. Multiple possible

functions were considered, but ultimately, it was decided to use the reciprocal in order to relate

the utilization in a useful, understandable way - "frequency per unit volume." In other words, a

SKU with a frequency of 50 trips per month and a volume of 10 in3 will be considered to have a

utility of 5 trips/month/in 3. This function was also chosen due to its absolute optimality in a

relaxed case where SKU volumes can be split among different places (a formal proof appears in

the next section). The function thus becomes:

- (20)
Vi

It is important to note that with this utility function used in the algorithm, the example

shown in Tables 1 and 2 is solved correctly as SKU 1 and SKU 2 have utilities calculated as 3,

and 2 respectively, and thus SKU 1 is prioritized.

Page 143

4.4.1 Algorithm Optimality

The optimality of this algorithm hinges on the definition of the objective function. As the

objective function has been defined in Equation 17, it is clear that an optimal layout must exist,

and it can be shown that the chosen algorithm does a sufficient job approximating it.

Specifically, a layout * is sought that minimizes the total layout cost in the objective

function. Obviously, a brute force algorithm that checks every layout is out of the question, so

the algorithm in the previous section was selected. The only question is, how close to the global

optimum * can one expect the algorithm's output layout to be?

In fact, for the "continuous" version of this problem (i.e. if it were possible to split SKUs

up into infinitely tiny pieces and place fragments of them in any location), it can be shown

conclusively that the algorithm presented here in fact generates the optimal layout V. Consider

the following proof:

Let Av be an infinitesimally small volume unit and assume that each SKU is quantized in

volume as vi = ni - Av where ni is a natural number. The portion of the cost associated with the

placement of SKU si is assumed to split evenly according to where its volume is placed (i.e. (of
ni

the cost is borne for each volume element of size -Av). Thus, the cost associated with placing a

portion the size of Av of SKU si in location 1i then given by:

J1 -LC.
c(si, 1) = f (21)

ni

Let the utility of each SKU be defined as:

ui = - (22)
ni

This means the cost can be rewritten as:

c(si, ij) = ui - LCj (23)

Now if the total volume of all SKUs in the warehouse vtotal is given by vtotal = N - Av,

then there are N differential volumes to be placed among the locations and M storage spaces of

size Av to be used by the SKUs. If all SKUs fit in the warehouse, then it must be the case that

M ;> N. Assume that the M - N storage locations with the highest costs are disregarded entirely

Page 144

as they are not necessary. Thus, the remaining N locations can be listed by location cost in the

multiset of length N:

LCali = {LCjl, L C 2 ...} (24)

Where each differential storage space has a location cost L Cikassociated with the location

lIk it is in.

The utilities of the N differential volumes can be listed in the multiset of length N:

Ual = {Uil, Ui 2 ... (25)

Where each differential volume has a utility uikassociated with the SKU Sik it is part of.

Thus, the total layout cost j(L) of a layout is simply the sum of the pairwise products of

the elements of LCali and Uatl, paired by where each differential SKU volume is placed.

By the Rearrangement Theorem [16], the minimal sum of pairwise products of two

multisets is achieved by ordering one set with the smallest element first and the other set with the

largest element first and pairing them in that order (i.e. the smallest element of one set with the

largest of the other and so on). Therefore, the minimal value for the total layout cost J(L) is

achieved the same way - by placing the costliest SKU volume elements in the cheapest locations

in order.

Thus, the placement algorithm that defines utility this way in fact generates the global

optimal solution L* for the scenario where SKU volumes are continuous and can be split into

multiple locations.

In the real, "discrete" problem, SKUs cannot be split, so, when the algorithm has a SKU

of a certain volume and a few most optimal storage locations with not enough space left, it is

forced to skip the most optimal storage locations in favor of the next best storage location which

also has room. Obviously, the total cost will increase as the space is less perfectly utilized, but

the optimality of the method is still excellent (though not perfect). When storage locations are

not close to full, the discreteness of the size of the SKUs will not matter much, and thus, any

inaccuracies the algorithm would make in these situations can be considered "edge effects" that,

when looking at the whole picture, are relatively negligible (storage locations can store anywhere

from 10-10,000 individual units, so the amount of times the filling up of a location will actually

matter is very few). Only extremely large SKUs encountered later on in the algorithm have the

Page 1 45

potential to increase the cost by being placed into worse positions, but as there are a wide range

of storage location costs, sizes, and SKU sizes, it is likely that these outliers will not have much

of an effect.

The following example highlights a scenario in which this algorithm makes inaccuracies.

One SKU is much larger than the others and one location is much costlier than the others, and

this prevents optimal placement:

Table 5 - Example 2 SKUs

SKUI SKU2 SKU3
Size (in 3) 1 2 10
Quantity 10 10 2
Frequency (trips/hr) 3 4 29

Table 6 - Example 2 Locations

Location 1 Location 2 Location 3
Size (in3) 12 18 20
Location Cost (s) 5 6 10

Following the algorithm, the locations are ranked 1, 2, 3 (due to their respective costs 5,

6, 10) and the SKUs are ranked 1, 3, 2 (due to their respective utilities, 3, 2.9 ,2). Thus, it fills the

space in the following way:

Table 7 - Example 2 Results Following Placement Algorithm

Location 1 Location 2 Location 3
Number of SKU 1 10 0 0
Number of SKU 2 1 4 5
Number of SKU 3 0 1 1
Cost SKU 1 150 0 0
Cost SKU 2 20 96 200
Cost SKU 3 0 174 290
Volume SKU 1 10 0 0
Volume SKU 2 2 8 10
Volume SKU 3 0 10 10
Total Cost 930

It does so by first placing SKU I into Location I because it is best and then having to

place the two large, popular SKU 3 units one in each of Locations 2, and 3, and then placing

Page 146

SKU 2 into the remaining space. However, inspection of this method shows that the difference in

utility between SKU I and SKU 3 is very small while the difference between SKU 3 and SKU 2

is large. So, utilizing good space for SKU 3 versus SKU 2 is likely more crucial than utilizing

good space for SKU I as opposed to SKU 2. It can be seen that the algorithm blindly places the

best SKU (SKU 1) without looking at the relationship between SKU 2 and SKU 3. Once it does

so, there isn't enough room for the large SKU to fit both units into Location 2 and one ends up in

the terrible Location 3. This would suggest that perhaps placing the two larger SKU 3s first

(despite its lower utility than SKU 1) in the two better locations before placing SKU I could be

beneficial.

In fact, in this particular example (where the numbers have been chosen carefully to

illustrate this point), the discrete sizes of the SKUs and locations forces the algorithm to make

suboptimal decisions. The following results are not generated by the algorithm but are better:

Table 8 - Example 2 Results Without Following Placement Algorithm

Location I Location 2 Location 3
Number of SKU 1 2 8 0
Number of SKU 2 0 0 10
Number of SKU 3 1 1 0
Cost SKU 1 30 144 0
Cost SKU 2 0 0 400
Cost SKU 3 145 174 0
Volume SKU 1 2 8 0
Volume SKU 2 0 0 20
Volume SKU 3 10 10 0
Total Cost 893

As it can be seen, this algorithm fails to notice the importance of looking at multiple

SKUs at once, and, for a large scale, this can make the results inaccurate if the numbers are as

inconsistent as they are in this example.

4.4.2 Summary of Necessary Assumptions

In order to complete the calculations in the previous sections, simplifying assumptions

were made in order to make the algorithm feasible, efficient, and useful. Ultimately,

improvements to the algorithm can be made by solving the objective function, constraints, or

Page 1 47

algorithm steps by removing the assumptions. The assumptions are included here for easy

reference.

Location Cost Assignment Independent of SKU

The most fundamental assumption is that the location cost any storage location is not

contingent on what SKUs are there (or what SKUs are in other relevant places). This means

items taken from storage with a forklift are treated the same as those taken off by hand. It also

means that the effects of the primary-overflow storage strategy and SKU cross-correlations

cannot possible be considered by the algorithm. While this seems prohibitive it is important to

note that some of the results that will come from this lack of fidelity are results that are desired

anyway. For example, as the higher bay areas were given costs associated with accessing them

via a reach truck, it technically overestimates the cost of placing a smaller item up there, but

ultimately, placing the smaller items at ground level is desired anyway, so such a lack of

distinction can certainly be tolerated. As for the primary-overflow storage strategy, it is easy for

a human to intervene and ignore results suggesting moving the storage portion down to a

theoretically better location.

Removing this assumption is necessary to effectively consider most of the additional

effects that are highlighted in this section.

Actual Transit Cost Proportional to Objective Function

A big assumption made in Equation 15 is that the efficiencies added by various strategies

will continue to add efficiency for any layout. Obviously, this is not truly guaranteed, but the

best that can be done without considering routing or batch ordering is to assume that on average,

this is true.

Cost Function for SKU in Location is Linearly Proportional to Quantity

An assumption made to get from Equation 9 to Equation 10 was that the contribution of

having 2x units in a location is double that of having x units of the same SKU in that location.

The justification for this is that the number of units drives the number of trips. It is however

known that there are efficiencies at the overhead level, the receiving level, and the inventory

counting level, to group like SKUs where possible. Due to the discreteness of the different utility

Page 148

values, the algorithm will always attempt to put as many like SKUs in the same place anyway,

but it does not account for the added benefit in any way.

Many More Units Received at Once than Picked at once for all SKUs

A big assumption made in Equation 5 is contingent on the fact that all SKUs arrive to

GDC in much larger quantities than those in which they are picked. Specifically, it requires that:

(avgreceived)i ~0 (26)
(avgpicked),

Where (avgreceived)i and (avgpicked). represent the average number of units received

and picked, respectively, for each SKU si. Obviously, this is not truly guaranteed, but the best

that can be done without considering the routing or batch ordering is to assume that on average,

this is true.

Sets of Location Costs and SKU Utilities are Consistently Spaced, More Space in GDC than

SKUs

For the optimality of the algorithm, it is necessary to assume that the different costs for

locations, while not truly a continuous set of values, is approximately evenly spaced without any

large jumps. It is likewise necessary to assume this for the set of location costs and SKU utilities.

The choice of utility function in Equation 20 was made to order the SKUs by their frequency per

unit volume, but this is only optimal when the differences between adjacently ranked location

costs and SKU utilities are approximately consistent.

The assumption that the numbers are consistent is therefore necessary for the algorithm to

generate optimal or approximately optimal results. Note it is also the case that the SKUs fit

exactly into the locations in Example 2, and thus, with the extra space in GDC, it is reasonable to

assume behavior like this is unlikely to occur.

Page 1 49

CHAPTER 5

INVENTORY RELOCATION IMPLEMENTATION

This chapter details the actual implementation of the relocation algorithm. This includes the

Python code, the strategy for storage of constitutive data and downloading of variable data, the

tools developed for the user interface, and designed flexibilities to facilitate future

improvements.

5.1 PYTHON 3.6 ENVIRONMENT

Early in the development process, it was decided that Python would be used to write the

code for the algorithm. In order to select the coding language, multiple factors were considered:

1. Familiarity by the team

2. Ease of sharing and collaborating

3. Cost to install

4. Interface with data files currently used by Waters (currently, Excel spreadsheets

downloaded from SAP)

With these considerations in mind, Python emerged as the obvious choice due to its

modular design, free installation, and intuitive data file interfacing possibilities.

Python is widely used in many industries and many Integrated Development

Environments (IDEs) are devoted solely to development with Python. For this pilot, the Spyder

IDE (part of the Anaconda package) was used for development purposes, and Waters staff have

downloaded it in order to see a similar interface. It should be noted that any Python IDE is

sufficient to run the developed scripts provided the computer running them has installed the right

version of Python and the necessary libraries.

The Spyder IDE interface is shown in Figure 5:

Page 150

Db -*,No E@ N* 0 M @0 4 nioc-sr-moonsters CrrinCd and Des Fil U3C Ory R Wocotion Tool
E@04601 W ~ 00 0 6

@ wo e

frem datetlue iport eatetia4 inventory Alocation ..- 0 . Type te Cak.
Io ttimeior d hol-int COST.old flotsd 1 siinssam mI import to~y 0% tO"P

import pandas a pd it Chaim-01 Currentlywthert list It3 lit [,, .1 .. , .
ftom.000n00$ iopor cotafram, as Of0, itI

prt 'I ChoiCemo Currently.thereotd list 1139 it...1,, , [1 ,[Jfrom sc py import stats HITplcks cauf (90923. 2) 1.
0 tic Vi-"Ib-t-em"i trtl r Pull tonotery eot . lter 0 toc LOC.cont Ostaframe (904, 11) CoAm mas SteCrp hoe, ALIL1 fInt I -or 0eaon a Procedure. Enter * I 1'gOua-ed

Choie *t tnooo comon . t ef '2- LIC lIst etarmp (21933, Ot mo d iest Sterg TYpR, Ste.
jtItyoCct oirlaehm W " 0 0coff~f LOC-olgo Datsprwm 4964, 10) taM amo: Steraep KN AWoLIt ich*oiio'. SI csc .1 & cocll S'6B.oia

raise VoLueerrer(smiN to enter 6, 1. or 2") * OrsMdtbcttt e
raits valouerror"lswed to moter 6. 1, or -) It bet
*ollrlocatootruo VA
S prnti-ftocatipA ll, oLeas.o wit:"A

4 ifhoiroepl: For Incoming Sht.iamot Enter '2
F Oint(iten t f oto or rmepseoo.:o tr e bor of tKUt to rol Clins* an option;p it ('%local iW X *S~k #1**" Ott t stionic ne Tre e ALL .Iocatlfqg All, olease wait:

s hbe netrue Ipore Date
0041f-PIAK~~~~f6 Snipe I lo 4t124. 704320

* -t " t~ Totol Si~ss 90923
mTotal Storage Lotation: 12292

1111 fornerdr Considering Hig ,ay Area 2Oly
GfTT.or onipnlo Podded missin Dot shiq~b *Ot-7. trcono 9:01:16.411

5.1.1SKU ine Sourcen DeeLpM

Sdo tOra"o Locatimons in egion: 1139*d~ 0ic00,e0s Organizeg Ego Lbctltintt

open sorepafr ha nbe h s f cotgenot cr eted bimy:dvlpr rmaon h

-eraturne aenuage

STstltq upag l current Totl Location Cost honts 51967935997.78135
As t hontiscp rimpeettonisei Nege Total Loatioa Coht xi it: 3tIh19f1.44eS bpport muatelp WoOPt Perct Irovemenat b 0.193972eg21s7f3pab

a sktrn a 0 connt e Seyed biles tbOettsbtotalreropotiO 241-00e6 20-23-31sp0527bot.S14 oe rv~tto... (OYohs) * heso :61-3S. 94116314..ot Frs nrly p r Libraries
tor I in anddlo, 1:it ottton hsen , y b4A other~nes..till0

Figure 5- Spyder Development Interface

5.1.1 Open Source Development

The first important property of Python that makes it ideal for this project is its modular,

open source platform that enables the use of content created by developers from around the

world. The modules are basic plug-and-play add-ons that enrich the capabilities of the already

versatile language.

As this implementation is designed to be a pilot, the flexibility Python offers by
supporting multiple types of programming paradigms is crucial to enable programmers with

various skills and styles to be able to interpret the design intent and further develop the pilot.

5.1.2 Fully Supported Libraries

In addition to the benefits of open source development, Python boasts a wide breadth of
developed code modules that the Python community has termed "Libraries." Many are packaged
with the basic Python module and do not require further downloads. However, even the native
libraries need to be imported in a script before running them. Python uses this technique to save
memory, so that running a script will require storage of only the libraries it needs.

Python's basic modules are extremely well supported and many pages of documentation
are available online on the commands within. Likewise, for most other modules, developers

Page 1 51

provide documentation to support their releases. In addition to official documentation, hundreds

of online forums exist where users post questions on how to accomplish goals with Python code.

Many of the top answers even provide time studies and run time order calculations to compare

which solutions are the most efficient under various circumstances. For these reasons,

developing in Python is made increasingly easier as the community and discussions grow.

Three of the most important libraries used for this project are described in detail:

numpy

Numpy is one of the most widely used Python libraries as it allows the use of the array

object type, that does not otherwise exist in Python. One of Python's most fundamental

structures for storing multiple elements is a list, which can be nested to form an array of values.

However, a list or list of lists cannot function like a vector or matrix in order to do vectorized

(i.e. element by element) calculations. Numpy arrays are extremely useful for linear algebra and

are helpful for engineers learning Python who are familiar with MATLAB as the numpy array is

very similar to the default MATLAB object type.

pandas

One of the most important features of the pandas library is its native "DataFrame" object

type. The DataFrame type is essentially an Excel spreadsheet format with rows, columns, and

row and column names. It can be manipulated and sorted like Excel spreadsheets and it is trivial

to go back and forth between the DataFrame object and list or array objects. It was a crucial to

this project to use DataFrame objects to enable seamless integration back and forth between

Excel data files and the Python script as they enabled easy importing and exporting of data. The

pandas library commands are also highly optimized and as this application requires handling

some Excel spreadsheets with >200,000 rows, the efficiency is also crucial.

os

The os library was instrumental in enabling the script to access and rename other files in

the directory. Much of the work in exporting and storing data files involved the ability to find a

file with a particular name and archive it with a new name before generating a new version of it.

Thus, the os.rename command was very useful.

Page 152

5.2 MICROSOFT EXCEL DATASHEETS

Waters currently uses SAP as its corporate enterprise software. Embedded within the

SAP system is a large data repository which can be probed via queries and reports by

credentialed users whose authorization is deemed sufficient for the relevant information. The

SAP software allows reports to be easily exported into Excel format. Additionally, columns can

be individually requested when the reports are generated and the column names are determined

based on the names of the desired fields. This consistency is extremely advantageous when

attempting to build software applications on top of the data.

At the start of this project, various data files were provided by Waters staff to the team in

order for the team to learn how the data is stored and what it looks like. This data was processed

and analyzed in order to determine how best to use and store the data that is to be used by the

inventory relocation algorithm. The script was built around grabbing data from these files, using

the column names as defining features to ensure that the correct data would be captured

regardless of order the columns were selected. Eventually, the program was developed so that it

would operate on the available data files in its working directory, and create other data files and

outputs as required.

Ultimately it was determined that data of four specific categories would be stored in

folders (folder names are indicated parenthetically) in the working directory of the script:

1. Static Data ("Static") includes all data that does not generally change at all with the

passage of time.

2. Semi-Static Data ("Semi Static") includes data that changes very little with time.

3. Dynamic Data ("SAP Data") includes all data that needs to be downloaded freshly from

SAP with every use of the software tool.

4. Output Data ("Outputs") includes all published reports made by the software tool. These

are labeled and timestamped to indicate what they represent and when they were

generated.

These four categories were identified and separated so that humans using the software

would be able to know where to find various datasheets and be able to change or collect the ones

they need.

A directory diagram of the datasheets is shown in Figure 6:

Page 1 53

I- ~

Inventory
PiReloainn

Semi Static

avg_plckedatonce

demand

Static SAP Data Outputs

historical data correlation top pairs

Update S demand data
Semi StaticI
Data.py 0 active part nos

5 current storage

l] Cost Mapping I total.relocation

Inventory] Shipment Received

SKU Sizes Relocation OM replace X

Tool.py 5 AI storage locations
]Location Sizes " shipment put-away

Figure 6 - Inventory Relocation Tool Environment Overview

5.2.1 Static Data

This folder was designed to contain all generally unchanging information about the SKUs

and storage locations in GDC. Specifically, it contains the dimensional SKU sizing data, the

dimensional storage location sizing data, and the location cost assignment data.

"SKU sizes.xlsx"

This datasheet contains measurements of SKUs stored in GDC. For the pilot project

which dealt with SKUs located exclusively in the high bay areas, this is limited to the -1,000

SKUs found there as opposed to the -10,000 total SKUs in GDC. The sparsity of measured data

on SKUs in other regions is one of the primary reasons that the high bay area was selected for

the pilot project. And as it is, only -400 of the SKUs there actually have measurements

populated, and it is suspected that some of the entries contain errors. The purpose of this

spreadsheet is to list all SKUs with known dimensions so that the placement algorithm can make

well informed choices. The algorithm was designed to infer missing measurement values, but the

results will increase in robustness as more data is collected.

Page 154

The data is listed as length, width, and height of SKUs (assuming a rectangular prism

geometry) as well as a number per box entry to account for SKUs that are stored in boxes. It was

determined that the most efficient way to estimate the space that one SKU would occupy would

be the size of the box divided by the number of units generally found in one box. Therefore, the

final column of this spreadsheet represents the estimated spatial volume that a single unit of a

SKU occupies. It is important to note that as some SKUs are nonstandard in shape or packaging,

the software requires only the volume column, so new entries can be added by simply entering

the estimated volume per unit without using the formula involving the length, width, height, and

number per box.

"Location Sizes.xlsx"

This datasheet contains measurements of storage locations in GDC. For the pilot project,

this is again limited to the -1,000 locations there as opposed to the ~20,000 total locations GDC.

Another reason for selection of the high bay area as the pilot is the lower variability of shelving

storage location sizes in the high bay region. The purpose of this spreadsheet is to list all storage

locations with known dimensions so that the placement algorithm can make well informed

choices. The algorithm can again infer missing values, but here too, the results will increase in

robustness as more data is collected

The location data is listed as length, width, and height as well as a packing fraction to

account for the fact that occupying 100% of the space in a storage, while being efficient space

utilization in a technical sense, is not an effective way to make material accessible. The packing

fraction was estimated as 70% for the high bay area but it is anticipated that this value might be

higher for shelving, and can be manually adjusted for any location by editing the spreadsheet.

Changes in bay heights can also be adjusted in the spreadsheet (and values can be allowed to

vary from one location to another). Ultimately, selection of the packing fraction parameter is a

tradeoff between the packing efficiency and the accessibility of SKUs in the location. The ability

to access SKUs is strongly determined by how much of the physical space is filled. The

sensitivity of the output results to this parameter is relatively low, as shown in Table 9:

Page I 55

Table 9 - Sensitivity Analysis of Packing Fraction

Packing Fraction Relative Resulting Objective Function
50% +0.82%
60% +0.82%
70% Baseline
80% -0.43%
90% -0.65%

Thus, it is reasonable to choose the packing fraction considering the accessibility within

the locations and allow the results to be driven by that decision.

"Cost Mapping.xlsx"

This datasheet contains calculations of the location costs associated with each storage

location. Values are calculated formulaically based on the shelf, bay, and level, designations

using the analysis described in Batra [8].

5.2.2 Semi-Static Data

This folder contains up to date data files that are generated periodically from other data as

well as archives of older versions of these files. The main purpose of keeping these files semi-

static is that the runtime for the necessary calculations was much greater for these files than for

the main algorithm operations (~40 versus of-1.5 minutes) and it was decided that the change in

data over even a period as long as a week was so negligible that it hardly paid to require this

analysis to be performed every time the tool is consulted. Thus, the optimal procedure is to run

the script that generates the semi-static data periodically and setting it as a background task if

possible. Every time the main script is run, it simply uses the newest versions of the semi-static

data files.

"demand.xlsx"

This file indicates the demand for every SKU in GDC over a particular horizon (for the

pilot it has been set at six months, but this can be changed easily). The demand is gathered from

two possible sources:

1. The demand forecast published by the planning group for the next six months (or another

period if the horizon is changed)

Page 156

2. The archive of all lines picked for the previous six months (or another period if the

horizon is changed)

The dual sourcing for demand estimates was chosen so that the demand estimates would

be most complete, as neither the forecast nor the historical data necessarily reflects the popularity

of every SKU. The planning group does not forecast every single SKU, and the historical data

can have no entries for a SKU (either by some coincidence or for a newer SKU) or be generally

an inaccurate sample. Thus, an attempt to combine the information was made.

The first step in considering the forecast data was to determine a scaling factor that

reflects the ratio between number of units sold from GDC to number of units shipped from GDC

as the latter includes units shipped to other internal Waters distribution centers. The actual

quantity that is of interest is the number of units shipped from GDC as even units sent to other

Waters distribution centers need to picked off the shelves. Thus, after analyzing the SKUs for

which both a forecast for the next six months existed as well as sufficient data from the previous

six months, it was determined that this ratio is approximately 60%. With this figure, all forecasts

were scaled up by a factor of-1.66 to reflect how they would translate to number of units picked

off the shelves.

With the two options for demand, the following scheme was followed to get demand

values for all SKUs:

1. If neither the forecast nor the previous six-month history contained values for a particular

SKU, a demand of 0 was used (ultimately 0.001 was used to facilitate subsequent

calculations).

2. If the forecast had a value but the history did not, the forecast value was used.

3. If the history had a value but the forecast did not, the history value was used.

4. If both contained values, a weighted average of the two (currently set at 60%-40% in

favor of the historical demand, but this can be changed) was used.

As the situation where both values were available was relatively uncommon, the results

were determined to be relatively insensitive to the weighting factor.

"ave picked at_once.xlsx"

Since the demand simply conveys how many units are expected to be picked but not how

many times a picker would need to pick an item from the location, the average number of units

Page 1 57

picked at a time was calculated for each SKU from the historical pick data. This would allow a

"trip demand" to be determined simply by dividing the demand by the average line quantity (or

equivalently, counting the number of times a SKU appeared as a line item, regardless of the line

quantity). For SKUs that were never picked in the previous six months, a value of 2000 picked at

once was set to automatically make the trip demand very low to reflect the low popularity (since

these products were never picked, it is likely that the demand will have been set to 0.001

anyway, so this precaution is a redundancy in those cases).

5.2.3 Dynamic Data

This folder is the target location for all data downloaded from SAP. These files are

required to be downloaded from SAP before running the scripts so that the critical information is

completely up to date.

"active part nos.xlsx"

This lists all active Waters part numbers so that running the script can match other data

files against this master list. It serves as a compatibility check to make sure none of the SKUs

listed in the other data files are unknown to SAP. It can be downloaded from SAP by running 16

(Plant: US 10, Storage Location: F 101) and specifying the column "Material".

"current storage.xlsx"

This spreadsheet is effectively a snapshot-in-time of the GDC layout and lists where

every SKU is at the present moment. The script uses this to generate the present state from which

it starts its analysis as well as the benchmark for cost calculations. It can be downloaded from

SAP by running WC in SQOI and specifying the columns "Stor.bin", "Material", and "Batch".

"All storage locations.xlsx"

This lists all storage locations in GDC. Like the SKU list, it is included to check

compatibility of other location-related data files by ensuring that none list unknown locations. It

can be downloaded from SAP by running LX03 and specifying the column "Storage Bin".

Page 1 58

"Shipment Received.xlsx"

This spreadsheet is what would be populated in the event of an incoming shipment that

needs to be placed using the algorithm. It can be created manually (or downloaded from SAP by

running a report designed for this application) and requires the columns "Material", "Quantity",

and "Batch".

"historical data.xlsx"

This spreadsheet is a complete log of all shipped orders for the previous 6 months. It is

used to calculate the data that is populated into the average picked at once and demand

spreadsheets (semi-static data) and thus, needs to be updated from SAP only when the script for

those datasets is run. It can be downloaded from SAP by running GDC 0001 in SQOI and

specifying the columns "Delivery", "Target Qty", "Material", "Material Description", and

"Batch".

"demand data.xlsx"

This spreadsheet is a complete list of all forecast data available for the next six months

for all SKUs at GDC. It too is used to generate the semi-static data so it needs to be updated only

when semi-static data is being updated. It can be downloaded from SAP by running APO -

LISTCUBE (specify US 10) and specifying the columns "APO Location / Material", "Fiscal year

/ Period", and "Forecast for Release - Final".

5.2.4 Output Data

This folder contains output results from running the main algorithm script or update

script.

"total relocation YYYY-MM-DD HH-MM-SS....xlsx"

This spreadsheet is the output when a full inventory relocation is selected when running

the main relocation script. It lists the old and new layouts in separate sheets as well as a list of

necessary moves to switch from the old layout to the new layout, which is ordered by default by

the incremental location cost associated with moving it from one location to the other. It includes

a summary sheet with a total location cost estimation and changes from the old layout to the new

one.

Page 1 59

"replace X YYYY-MM-DD HH-MM-SS... .xlsx"

This spreadsheet is the output when "relocate X" is selected when running the main

relocation script. It too lists old and new layouts, an ordered list of moves, and a summary sheet.

"shipment put-away YYYY-MM-DD HH-MM-SS....xlsx"

This spreadsheet is the output when "incoming shipment" is selected when running the

main relocation script. It simply provides a list of the new layout as well as a shorter list of the

locations of the newly placed items. There is also a summary sheet detailing the increase in cost

with the new items.

"correlation top pairs YYYY-MM-DD HH-MM-SS....xlsx"

This spreadsheet is an output when the Update Semi-Static Data script is run. For this

pilot, as the location costing was determined independently of the SKUs, it was not yet possible

to incorporate the results of the SKU cross correlation matrix into the algorithm. The results

however, were still calculated and are populated into this spreadsheet when the script is run. As

the matrix contains more than a million values, only the top 100 correlations are listed in this

output.

5.3 DEVELOPED SCRIPTS

At the completion of this project, two scripts, "Update Semi-Static Data.py" and

"Inventory Relocation Tool.py" were developed to address the needs of reorganizing GDC to

allow for more efficient order picking. The first is intended to be run periodically, to ensure that

the semi-static data is up to date, while the second is the tool to be used to generate quick results

for all inventory location questions (be it a shipment put-away, a full relocation, or a relocate X

procedure).

5.3.1 Update Semi-Static Data

This script is best run as a background task when possible as the most recent time studies

indicate that it takes on roughly 40 minutes to complete the script when running on a 2017

MacBook Pro (16GB RAM, 3.3 GHz Intel Core i5 Processor). This can be sped up by using

smaller datasets (i.e. using a horizon of fewer than 6 months for the demand forecast and the

historical pick data), but this is not recommended as accuracy will be lost.

Page 1 60

The purpose of this script is to take raw data from the dynamic data folder (namely,

historical data.xlsx and demand.xlsx) and process them into the two semi-static data files

(demand.xlsx and avgpickedatonce.xlsx) which can be used much more quickly by the main

script. Additionally, this script calculates the SKU correlation matrix which is intended as a way

to further improve the algorithm when SKU-dependent cost assignment can be introduced. As of

the time of the release of this pilot, where location cost assignment is constrained to be

independent of SKU, it was simply requested that the greatest elements of this matrix be output

so that humans could make informed decisions.

When this script is run, it is designed to find the most recent version of the semi-static

data, archive it with its timestamp and then generate new files without timestamps. The

Inventory Relocation Tool script always uses the versions of the semi-static data files that are not

timestamped (i.e. the newest versions).

The flow of this script is shown in Figure 7:

Process......
Historical Orders

Aerage Picked -OU Results
at once Data

Generat

Process Demnand Cobnd I fut
-- Fcombined -- (uBpst Results

Demand Data

Figure 7 - Update Semi-Static Data Script Flow

5.3.2 Inventory Relocation Tool

This script is the main tool for inventory relocation. The current design packages all of

the tools in one script and prompts the user at the very beginning to select one. The pilot was

developed with a simple "Enter 0, 1, or 2" style user interface with clear directions. The purpose

of this script is to take data from all of the necessary data files (static, semi-static, and dynamic)

and, combined with the user's selection, generate results that can be used immediately to make

storage decisions.

Page |61

Time studies conducted generated an approximate 1.5-minute runtime for this tool using

the same test conditions as the previous script.

When this script is run, it generates an output report that appears in the "Outputs" folder

that is appropriately named and timestamped.

The flow of this script is shown in Figure 8:

FRgure 8 - ePadingen Reocaton To _ScripAN SK.
Def 1;i~ R9f R409ft

ChOSTF ~ ~ ~ _ Pad Miming MbV yRIWbn SNP"K

DOMT~ii-4 mnngShxnei- Wowam__W M a .,*~ (bkdf lu n10d -.--.m. w - SKUsvo --o - Moll

Repac X ~Oli _ Aev __

DOVL#V WoSKU -

Figure 8 -Inventory Relocation Tool Script Flow

5.4 IMPLEMENTED TOOLS

This section discusses the tools that have been implement for the pilot of the inventory

relocation algorithm.

5.4.1 Section Specific Inventory Relocation

As the pilot was selected to consider the high bay region only, the algorithm tool

necessarily needed to address inventory relocation that is confined to certain storage regions

within GDC. To accomplish this goal, the script was designed to admit a criterion to filter the

GDC locations. With the release of the pilot, the script contains an "is high bay" criterion

function that will return "True" for all locations with an aisle value in the set {39, 40, 41, 42, 43,

44} as those correspond to the high bay area. A Boolean object called "high bayonly" is set

automatically to "True" for the pilot version. Subsequent versions can include an "isshelving"

criterion function and a "shelvingonly" or other Booleans that limit the scope of a relocation to

include particular regions as well. For now, the full inventory relocation, relocate x, and

shipment put-away can only function in the high bay region.

5.4.2 Cost of Situation Estimation

One of the basic functions implemented in the Inventory Relocation Tool script is a total

cost function that calculates the total SKU location costs summed across all SKUs under

Page 1 62

consideration (i.e. the objective function). This tool is used to calculate the present state and

compare it to a proposed new state.

Additionally, there is a cost function calculated on an individual basis which is used

when listing the change in cost associated with a particular parts' location-to-location move.

5.4.3 Full Inventory Relocation

This procedure can be executed by running the Inventory Relocation Tool script and

selecting the option for full inventory relocation. The main purpose of this feature is to

reorganize the entirety of GDC or a specific section within. It is still up to a human to decide

whether to execute the moves recommended and it is important to filter out poor suggestions

based on incorrect data (i.e. padded data that gives an unreasonably high or unreasonably low

value for the size or location cost of a particular SKU or storage location) as well as additional

considerations for storage locations (i.e. part cross correlations, primary-overflow storage

strategy, routing considerations) that the algorithm is currently blind to.

As discussed previously, this tool will increase in accuracy and generate more

meaningful results as the supporting data is collected and refined.

5.4.4 Replace X Relocation

This procedure can be executed by running the Inventory Relocation Tool script and

selecting the option for Relocate X. Instead of placing all SKUs into the region from scratch, it

takes the current situation as being already placed and then removes the X SKUs that contribute

most offensively to the total cost of the situation and places them again using the placement

algorithm.

Like the full inventory relocation procedure, this will benefit from increased data

availability.

5.4.5 Recommended Put-Away

This procedure can be executed by running the Inventory Relocation Tool script and

selecting the option for an incoming shipment. It takes the current situation as being already

placed and uses the placement algorithm to recommend storage locations.

This tool will benefit a lot from increased data availability both in terms of accuracy and

in terms of accessibility to the entire warehouse. As the pilot is limited to the high bay area, this

Page | 63

tool will only be able to select high bay storage locations for every part in the shipment, and will

require humans to ignore the recommendations for parts that clearly belong in shelving areas. It

will only be able to recommend put-away locations across the entire facility if the restriction for

"high bay only" is lifted, and it is not recommended to do so until a critical volume of supporting

data (SKU sizes, location sizes, and location cost assignment) is collected for the other regions.

5.5 FLEXIBILITY FOR FUTURE IMPROVEMENTS

This section describes the flexibilities included in the pilot implementation that were

designed to enable the inventory relocation tool to be refined and improved more easily.

5.5.1 Handling of Missing Data

As it has been mentioned before, the algorithm was designed to "pad" the missing data

when it does not have anything to use. This technique is common in data science applications

and is necessary when steps of the algorithm require calculation or comparison using all data

values within a set, and thus missing values will prevent the algorithm from proceeding. Both the

static and semi-static data contain constitutive information about specific SKUs or specific

locations, but none of these datasets are guaranteed to contain data on every SKU or location (in

fact, none of them are even remotely close to complete). The following techniques were applied

to infer the missing data points:

1. For demand and average picked at once data, it was straightforward to pad the missing

data as the complete order history was being used. A SKU missing from this list indicated

that it was not picked at all in the previous 6 months (or another horizon). Thus, it is valid

to set the demand levels to extremely low values (and conversely, the average picked at

once levels to extremely high values) which indicates that part popularity is exceptionally

low.

2. For location volumes, the padding was designed to use the average value of all locations

in the region plus a tiny, randomly generated, noise term in order to make them distinct

from each other (it was useful when developing the algorithm to have storage location

sizes that varied) for any unknown location.

3. Likewise, for location movement costs, any missing value was padded with the average

of all locations in the region plus a noise term (again, distinct location costs were

advantageous for verifying the algorithm was behaving properly).

Page 164

4. For SKU sizes, it was determined that simply using an average of all SKUs under

consideration was insufficient to pad the missing as SKUs tended to vary in size much

more greatly than storage locations (some SKUs are large instruments, while others can

be plastic bags containing just one mechanical fastener). Very poor results were obtained

when attempting to use this approximation as the smallest of SKUs were always taken

from their locations and relocated among other locations because the algorithm thought

they were hundreds of times larger than they were. The volume usage calculated for the

present state exceeded 5000% in some of the locations. Thus, it was determined that a

much more accurate approach would be to take advantage of the negative correlation

between SKU quantity in stock and SKU size. While it is far from exact, as plenty of

products of the same size can exist in GDC in many different quantities, it is still the case

that a large product is more likely to be more scarce in the warehouse. Large products

tend to be more expensive, and expensive products tend to be bought in smaller

quantities. Because of this basic relationship, the inverse percentile of the current SKU

quantity was used to pad missing SKU sizes. For example, if a particular SKU was

missing its size, but it currently had 200 units in stock at GDC (which is the 8 0 th

percentile for SKUs currently in GDC), the size was set to be the size of the 2 0th

percentile SKU in the list of known sizes.

Ultimately, it is of the utmost importance to get complete data on the dimensions of

SKU's and storage locations. It is clear that increasing the base of supporting data will increase

the robustness of the tool.

However, for the purpose of real life implementation, it was decided that the tool needs to

be designed to give results even when data is incomplete. It was well understood by managers at

GDC that a tool that gives excellent results for complete data and increasingly worse results with

less and less data would be far superior to a tool that gives excellent results for complete data and

cannot process incomplete data at all. Additionally, when extending the tool to new situations, it

would work immediately with just a few data points (rather than crashing) even if the results

would be virtually meaningless.

Page I 65

5.5.2 New Storage Areas in GDC

While the pilot project was implemented with efforts focused primarily on the high bay

area, the existence of the rest of GDC was considered as well, as the team knew that the next step

would be to extend the work to the rest of GDC. Instead of truncating all datasets to included

only SKUs in the high bay area, the tools were designed to filter them, so that extending to other

areas of GDC simply requires the removal/replacement of the filter and collection of the

necessary supporting data. As such, it is recommended that as soon as the tool is performing at a

satisfactory level for the high bay area, the following steps can be taken to extend to other areas

(given that it contains most of the SKUs and storage locations, shelving is a good candidate to go

next):

1. Add rows to the SKU sizing datafile for as many shelving SKUs as possible

2. Add rows to the location sizing datafile for as many shelving locations as possible

a. It is recommended that the padding procedure be altered so that it pads shelving

locations sizes by region (i.e. setting any unknown location in the high bays to be

the average of all high bay locations and likewise for shelving as opposed to using

the global average for all)

3. Repeat the location cost assignment procedure for the shelving region following the

scheme outlined in Batra [8].

4. Augment the code in the Inventory Relocation Tool to include necessary criterion

functions for the new region of interest and adjust/create the necessary Boolean

arguments. Additionally, add steps to the user input section to further separate the

possible tools between GDC wide relocation and placements versus region specific

relocation and placement

5.5.3 Extension to ADC and EDC

In addition to designing the tool with the intention that it be applicable to all of GDC, it

was also designed to be able to be scaled to Waters' other primary distribution centers in

Singapore and the Netherlands. It was primarily for this reason that the entire active waters part

numbers data sheet be required - as that file contains a list of roughly 100,000 active SKUs

while GDC contains only roughly 10,000 of them. Additionally, the list of GDC storage

locations was used so that when this project is scaled to other facilities, a new list could simply

Page 166

be substituted in. The demand data could easily be switched from GDC to the new warehouse as

well.

Ultimately, the procedure for scaleup to another distribution center will likely be most

appropriate once it is functioning well in the entirety of GDC. At that point the steps for

extension would be similar to extending from one region of GDC to another with a few caveats:

1. Location sizing, labeling, and the resulting filtering criteria (i.e. that GDC aisles 39-44

are high bay storage - equivalent conditions would need to be developed) would need to

be redone from scratch for the new facility

2. Location cost assignment would need to be redone completely for the new facility

following the procedures in Batra [8] and incorporating the intricacies of that facility's

standard operation procedures.

3. Most likely, a separate script would need to be made for use at the new facility. Because

of this, it would be prudent to institute a periodic version control syncing exercise so that

improvements and changes made by teams in one facility could be included in the script

used by the other facility. This would help to homogenize the two scripts. Alternatively,

the script could be separated so that there is a unified module that functions the same way

for every facility (i.e. the relocation algorithm functions) and write separate script

modules to contain the logic that is warehouse specific.

Page 1 67

CHAPTER 6

SAP INTEGRATION

This chapter details the steps taken to integrate the inventory relocation project with Waters'

primary enterprise software, SAP, and its data. It highlights the different options that were

researched and considered and discusses the method selected for the pilot as well as the plan for

the future.

6.1 OPTIONS

For integrating the inventory relocation with SAP, it is necessary that the dynamic data

(in the folder labeled "SAP Data") be obtained from the SAP databases prior to running the

inventory relocation tool, as that data needs to be completely up to date. Additionally, it is

desired (but not absolutely required) that output results be available on SAP once they are

generated.

To accomplish this, three primary avenues were identified. Each has benefits and

drawbacks and these options were presented before Waters executives to consider the

possibilities. The options are:

1. Offline usage of SAP data - This requires requesting data from SAP and requiring the

data files to be placed into the "SAP Data" folder

2. Automatic running of the script through SAP - this involves allowing SAP to call the

external Python script in the form of a query or report and automatically feeding it the

data it needs

3. Reimplementing the script in a Native SAP developer tool

6.1.1 Offline

The simplest option for use of the algorithm is to run it the way it was run during its

development. To accomplish this, a user would execute the necessary SAP reports with the

necessary columns included and download them all in Excel format. They would all need to be

placed into the "SAP Data" folder with precisely the correct filenames. At this point, the scripts

could run in their offline location and generate all of the output files. These files could be

manually uploaded, printed, or sent to whoever needs them.

Page 1 68

The downsides of this method are the limitations of the local output generation and the

requirement for the dedicated file location and precise file naming. It is advantageous in that of

the Python script would never have access to everything on SAP, and thus there would be no

issues of corrupted files or security.

6.1.2 Automatic

The more preferred option is to automatically run the script using SAP. The team

researched the possibilities and resources within Waters' Business Technology (BT) organization

confirmed that it is possible and relatively simple for SAP to call external software applications.

To accomplish this, the scripts and the relevant directories would need to be stored in a Waters

network location accessible by the SAP system. From there, a procedure would need to be

created within SAP that automatically ran the necessary reports and saved them to the file

location with the correct filenames. It would then call the main script and output the results. The

script for updating the semi-static data could be set to run via another SAP procedure which is

set to run in the background at regular intervals. This solution was determined to be most ideal as

the results can be obtained directly within the SAP system and the integration would be truly

seamless.

The only drawback of such a solution is the series of bureaucratic hurdles associated with

validating Python as permitted third-party software for Waters SAP system. As the SAP system

is used across the entire company in various ways, it would be catastrophic if third-party

software were to introduce security problems. As such, Waters has channels in place to validate

software for integration with SAP, but that process is nontrivial. Ultimately it was determined

that this process is most likely worth the effort given the benefits of direct integration.

6.1.3 Reimplementation

Another alternative is to reimplement the tools within native SAP HANA, SAP's native

development platform. The code in the Python scripts would need to be interpreted and then

reimplemented on SAP's platform. This would to solve the problems of interfacing external

software, as well enable direct integration with the SAP system. In fact, it would not require

much work to have output results available directly through SAP due to the nativity of the

system. Unfortunately, this possibility is not recommended as it would require translation of the

system between coding languages. Such an endeavor is always time consuming and it can never

Page | 69

be guaranteed that all of the functionalities available in one language are available in another.

And even functionalities that are available are not necessarily equivalently efficient.

6.2 CURRENT SOLUTION

Unfortunately, the availability of resources within the BT group at Waters was not

favorable for implementing the automatic solutions within the timelines of this pilot.

Additionally, while SAP does provide an interface environment for using Python, Waters' team

did not have it installed. For these reasons, the decision was made to implement the offline

solution. The tools and necessary data files are to be stored locally on a PC at GDC.

6.3 PLAN FOR MOVING FORWARD

While the offline solution was selected for the implementation of this pilot, the goal of

integrating the tools directly with SAP was not abandoned. The plan for integration involves

initial implementation of the offline solution while designating the direct integration as an

"enhancement request" within the BT organization, to be completed at a later date when BT

resources are more available. Specifically, the plan requires:

1. Copying the SAP info set to protect data from changes that could break the scripts (i.e.

changing field names, etc.)

2. Initiating SAP Procedure Integration (SAP PI) to create files that are automatically

dropped into locations.

3. Generating reports that can automatically call the Python scripts

Page 170

CHAPTER 7

RESULTS AND DISCUSSION

This chapter details the results of the implementation and discusses the expectations for

performance, and time savings.

7.1 IMPLEMENTATION ON HIGH BAY AREAS

As discussed previously, this pilot project dealt exclusively with the high bay areas. The

high bay area at GDC includes approximately 1,000 storage locations and 1,000 distinct SKUs.

The script was completed and outfitted with sufficient data to relocate items in the high bay area

with reasonable accuracy. Results were discussed with managers at GDC who have excellent

knowledge of the Waters products and they were satisfied with the performance. The high bay

area was selected due to the presence of extremely large and unpopular SKUs and due to the

largest amount of existing supporting data. The tool will be used in the high bay area on a trial

basis, with humans overseeing the recommendations and overriding suggestions that are known

to be erroneous. Replacing smaller number of SKUs at a time will allow the staff to easily gage

the performance of the script and observe the time savings.

7.2 RELOCATION SIMULATION

For the purpose of analysis, simulations were run using statically downloaded versions of

the dynamic, SAP data, obtained in July 2018. The script was run with this data using the full

relocation tool so that results could be observed. The most obvious results were SKUs that were

poorly placed due to the system overestimating or underestimating their sizes (for ones without

size data). These errors were immediately obvious to GDC staff members who were familiar

with different Waters SKUs. However, there were a fairly large number of SKUs that were

replaced into better locations - both popular SKUs getting more accessible locations and

unpopular SKUs being relegated to the least accessible locations. These represented very

positive results, as it made suggestions that were validated by knowledgeable staff members as

good ideas were not previously considered.

The summary section of the simulation revealed a very stark result. According to the

analysis, the objective function had dropped by 40.6% from the old layout to the new layout.

Page 171

This indicated that the total of all of the SKU-location costing values was nearly cut in half.

While it is important not to jump to conclusions and get convinced that the picking time will

truly be halved, this is still a very encouraging result.

7.2.1 Time Savings Analysis

One of the primary questions to address about the time savings is how a reduction in the

objective function translates to time savings in real life. The objective function simply sums the

amount of time it would take over six months to remove items off the shelves at their expected

demand rate, one typical trip at a time (i.e. removing the average order quantity each time).

Obviously, the actual amount of time spent picking is much less than this as that the total value

of the objective function translates to millions of days over the six-month period. These numbers

are inflated most due to including the quantity in a location as part of the cost, considering the

cost as if only one SKU were picked at a time, and measuring the picking time based on worst

case scenarios.

Theoretically, if the objective function was simply a linear multiple of the time spent

picking, it would follow that the savings of over 50% are in fact valid, as the ratio of the new

objective function to the old objective function would hold. However, there are multiple reasons

to assume that this is not the case:

1. The additional efficiencies from the primary-overflow storage strategy, SKU cross-

correlations are not considered. These are ways in which pickers increase their picking

speed for a given layout, and, new layouts that don't consider have the possibility to ruin

the efficiencies (in the case of not considering primary-overflow storage) or simply not

improve them (in the case of cross correlations). Because of these, the overall time

savings will be less than the savings in the objective function

2. Perhaps even more important is the effect of batch picking, as staff are likely to pick

multiple SKUs at once, even when presented with one-line orders. Because of this, they

pick an average of 15 lines per trip, (as estimated by material handlers). The savings is

significantly shortened for the 15-SKU route compared to the sum of the savings for each

SKU separately. To illustrate this, a simulation was conducted.

If one considers SKUs of the same size and popularity, then a >50% reduction in the

objective function corresponds approximately to a 50% decrease in the average expected

Page 172

distance of SKUs from the shipping area. However, if 15 SKUs are picked at once, the total

savings is significantly lower, especially as part of the path is common anyway.

To model this behavior, a simulation was constructed that selects points randomly in R3

that lie in the cubic region between (0,0,0) and (10,10,10). The origin point (0,0,0) represents the

entrance to the high bay area, and the cubic region represents three dimensions of location

variability within the high bay area. As distances between storage locations were unknown, this

simulation simply used the Euclidean distances between the points.

To model the initial state, 15 points were generated with a uniform distribution across the

region, thus the value 5 was the mean value for each of the x, y, and z coordinates and 5v3' the

mean distance from the origin. The Eulerian path between the 16 points (including the entrance

node at the origin) was determined using the Christofides algorithm (which gives a 3/2

approximation to the best possible route) [15].

The final state was modeled using the same procedure, except instead of uniformly

distributed points, the points were selected in a manner by which each coordinate was selected

from a trapezoidal distribution in the interval [0,10] but with a mean set to be 5(1 - imp) where

imp corresponds to the savings in the objective function (i.e., for the 56.6% savings found in one

simulation, the mean was set at 2.17 instead of 5). The simulation was run 1,000 times in each

scenario and the path lengths were compared. The following results were obtained:

Table 10 - Time Savings Analysis Simulation Results

Average Picked at Once Percent Improvement in Percent Improvement in Path
Objective Function Length

10 53% 28%
10 40% 25%
15 53% 25%
15 40% 23%

This analysis is obviously very idealized as it considered a nice Euclidean space in R'. It

does demonstrate the principle that improvements in the average distance of all SKUs needed

will result in a significantly smaller improvement in the path length.

Furthermore, it can be assumed that the actual savings in real time might be even less

than those in this idealized simulation. This is because the actual distances from storage locations

to storage locations are greater than the length of the line connecting the locations. For example,

Page 1 73

to travel from a level five storage bay to another level five storage bay, one would have to

descend to the ground level, maneuver the vehicle to the new location and then ascend back up to

level five. Based on the distance of the two level five storage locations that are farthest from each

other, a safety factor of 2 was established to account for this situation, as the distances in this

more complex space lead to less savings in the whole route.

Considering the other limitations due to errors from insufficient data, another safety

factor of 2 was introduced (i.e. the estimate was made conservatively on account of the errors

made due insufficient data). It was determined empirically that approximately half of the

recommendations made in the simulation where known to be poor or impossible suggestions.

Combining these, the actual time savings was estimated to be approximately 1/8th of that

of the objective function savings (the ratio of the path length improvement to the objective

function improvement in Table 10 is approximately 1:2, combined with two additional safety

factors of 2). Thus, the 40% savings in objective function is projected to correspond to

approximately 5% savings in actual time.

Page 174

CHAPTER 8

CONCLUSIONS

This chapter summarizes both aspects of this thesis: the Strategic Roadmap and the Inventory

Relocation Project.

8.1 STRATEGIC ROADMAP

The roadmap represents the work done during the first 3-4 weeks of the project timeline.

During this time, the team met with various stakeholders in Waters' ranks to determine the areas

that needed the most attention. Key themes were identified to provide direction for

improvements at Waters over the next decade. The results were presented to Waters executives

multiple times and project descriptions were prepared for each idea. These project descriptions

appear in CHAPTER 3 of this thesis, Batra [8] and Harlalka [9] and have also been submitted as

a unified corporate document to Waters management. It is anticipated that this roadmap will be

used to help direct future teams in the continuing relationship between Waters and MIT.

8.2 INVENTORY RELOCATION PROJECT

The team developed an algorithm that relocates products in the high bay area of Waters'

Global Distribution Center, despite incomplete supporting data. Tools were developed to relocate

entire regions, replace a selected number of stock keeping units, or to put away a received

shipment. The tools were developed in Python, but managers can utilize the tools without any

prior experience with Python code. The system was designed so that improvements to the data

can be entered directly to the datasheets without having to alter the code.

The tools were designed to be flexible, so that extensions to the rest of GDC and to the

other DCs as well as improvements can be implemented easily and without unnecessary

complications.

Testing and simulations showed a possible 40% decrease to the objective function for the

high bay area (with sizing data for 400 out of 1,000 SKUs) when the entire area was reorganized.

Analysis and estimation showed this to correspond to an approximate 5% reduction in actual

picking time (though this result is intended to be checked and verified in real time as relocations

Page 1 75

are executed). It is recommended that Waters first implement the relocation system in the high

bay area on a trial basis, to assess its performance and work out kinks.

Additionally, collecting more supporting data was shown to be of critical importance. In

fact, many personnel at GDC and across Waters agree that compiling a complete list of SKU

dimensions will bring positive value to Waters in other ways (e.g. estimating freight costs), so it

is not difficult to justify spending resources collecting them.

The next step would be to scale up to the rest of GDC, followed by the other DCs.

Page 1 76

CHAPTER 9

FUTURE WORK

This chapter discusses the future direction for the work contained in this thesis. It details both

extensions and improvements that can be made for the Inventory Relocation Project.

9.1 PROJECT EXTENSIONS

There section documents the many ways to extend the work done in the Inventory

Relocation Project. They first three sections represent a scaleup plan and are presented in the

order of recommended implementation.

9.1.1 Extend to Rest of GDC

As the pilot described in this thesis considers only the high bay area in GDC, the first step

would be to extend the pilot to the rest of GDC. This would involve collecting data and updating

the script as described in section 5.5.2 and extending the pilot to every other area in GDC. This

would allow staff at GDC to consider inventory relocations with a bigger picture in mind. It

would enable relocation choices that actually involve moving items stored in shelving areas to

high bay areas and vice versa. It would also enable the recommended put-away tool to actually

access the entire warehouse and recommend locations throughout the warehouse. The

performance would continue to improve as more data would be collected and eventually the

entire warehouse could operate on automated location recommendations.

9.1.2 Interface Recommended Shipment Locations with RFID Technology

One of the important aspects of technology interfacing is the automatic use of the

recommended put-away function upon receiving a shipment. This can be done the moment a

shipment is dragged through the dock door portal that is implemented as part of the RFID pilot

as described in Harlalka [9]. Work would need to be done to establish the interface between the

recommended location script and the SAP transactions associated with receiving so that a list of

storage locations would be generated automatically.

Page 1 77

9.1.3 Extend to EDC and ADC

After extending to the entirety GDC, the inventory relocation pilot could be extended to

Waters' other major distribution centers, EDC and ADC. The procedure would be similar to the

full GDC scaleup, involving collection of data and cost mapping analyses as described in section

5.5.3 . Eventually, Waters can operate all of its main distribution centers on automated location

recommendations.

9.1.4 Recommended Relocation During Picking/Receiving

Another possible improvement is to generate a procedure that would automatically

recommend location changes to pickers that could executed during their picking routes. As a

large portion of the cost of accessing certain storage location (especially those in high bays) is

associated with the use and stowing of vehicles, additional efficiencies can be gained by

recommending SKU relocations to be done by material handlers already engaged in a task

involving those vehicles. For example, one approach would be to store SKU relocations in a

queue and recommend them to material handlers any time their current tasks take them into a

location/vehicle that makes executing that relocation sufficiently easy. This would render the

actual execution of relocation tasks more efficient as material handlers could accomplish them

while completing other tasks instead of requiring a block of time to work on inventory

relocation.

9.1.5 Use Code Skeleton to Inform Other Optimization Problems

Another extension of this project is to use some of the developed background procedures

as starting points for other optimization problems. Many projects Waters can undertake, both

those researched by the 2018 MIT team and others, involve downloading SAP data from various

places, processing it, and calculating output results for the purpose of improving internal

processes. Some of the framework and initialization code developed in this project is potentially

partially or completely reusable for these purposes.

9.2 ALGORITHM IMPROVEMENT

This section details ways the placement algorithm can be improved in ways beyond

simply collecting more supporting data. It should still be noted that collecting additional data is

Page 1 78

still the simplest and most effective way to improve the accuracy of the algorithm, so efforts to

obtain this data should be prioritized ahead of attempting to improve the algorithm.

9.2.1 Relax Constraint of SKU Specific Location Costing

The most important assumption to reconsider is the assumption that all SKUs have the

same cost in a particular location regardless of size, quantity, or SKU type (whether or not it has

pallet handles). This assumption was necessary to limit the scope of the location cost

assignments by requiring only measurements from locations to the shipping area (-O(n) instead

of ~O(n2)). It was additionally crucial in allowing the simple algorithm step defined in section

4.4 to be optimal. However, relaxing this constraint would enable the algorithm to increase in

accuracy in multiple ways if the resulting more complex optimization problem were to be solved.

It would enable the algorithm to consider location costing that varies based on SKU instead of

requiring the additional assumptions made in that analysis. It would also allow improvements

described in the next few sections.

9.2.2 Refinement of Cost Analysis

The first way to improve the accuracy of the algorithm is to improve the calculation of

the cost assignments. Simplifying assumptions were made in order to make the task of

calculating the cost assignments feasible to be accomplished in the timeframe of this project.

Some ways to improve the calculation methods are described in Batra [8].

9.2.3 Refinement of Objective Function

Likewise, the objective function itself can be refined to improve the accuracy of the

algorithm. The development of the objective function in section 4.3 employs a variety of

assumptions to generate a simple objective function. Some of these can be relaxed in order to get

a slightly more robust solution. For example, the objective can be expanded to include the cost

incurred by the receiving team. The objective function can also be altered to include the positive

effects of primary-overflow storage and SKU cross correlations. Work would need to be done to

analyze the tradeoff between the additional accuracy and the added complexity

Page J 79

9.2.4 Improve Placement Algorithm

One of the main ways to improve the system is by improving the algorithm itself. The

proof presented in section 4.4.1 suggests that the algorithm is truly optimal in the case where

volumes are continuous and SKUs can be cut into pieces. However, the edge effects described

can be studied at a more in-depth level to determine a more effective algorithm that perhaps

looks at more than one SKU at a time.

Additionally, if the objective function is altered to include receiving costs, primary-

overflow storage, and SKU cross correlations, the algorithm would need to be updated to handle

these as well.

9.2.5 Include Routing Algorithm

In the current version of the algorithm, the assumption is made that the actual cost would

be optimized by optimizing the objective function regardless of the routes taken. However, if the

full n x n set of inter-location costs were to be determined, the effects of the routing could be

properly considered. The Christofides algorithm [15] mentioned in section 7.2.1 could be used to

find the actual path cost for a set of SKUs and probabilistic simulations could be run to model

the different order possibilities. Analysis would need to be conducted to ensure that the

additional runtime effects introduced with this improvement are worthwhile.

9.3 INTERFACE IMPROVEMENTS

This section discusses improvements that can be made on the front end of the system to

make the tools more accessible and user-friendly.

9.3.1 Develop SAP-Python GUI

As described in section 5.3.2 , the pilot version of the inventory relocation tool was

implemented with a simple "Enter 0, 1, or 2" style interface. This can be improved to include a

slightly more visual interface. Additionally, the usability of this system would increase if a GUI

were to be built directly into Waters' SAP system (i.e. the necessary tool choices could be made

in the SAP environment instead of in a Python IDE).

Page 1 80

9.3.2 Develop Platform for Algorithm Refinement

In the pilot version, the entirety of the algorithm exists in one script that handles

everything from data downloading, to actual location calculations, to results outputting. The

difficulty associated with implementing improvements to the algorithm are partially because the

entire procedure is packaged into one script. This difficulty could be lessened by developing

modules for the various parts of the script so that each could be improved separately without

requiring as much debugging, full system control, and version control.

Page 181

REFERENCES

[1] Krarup, J., Pruzan, P.M., 1983, "The simple plant location problem: Survey and
synthesis," European Journal of Operational Research, Vol. 12, pp 36- 81.

[2] Kratica, J., Filipovic, V., Tosic, D., 1996, "Solving the Uncapacitated Warehouse
Location Problem by SGA with Add-Heuristic" XVECPD International Conference on Material
Handling and Warehousing, University of Belgrade, Belgrade, Serbia

[3] Qin, G., Li, J., Jiang, N., Li, Q., Wang, L., 2013, "Warehouse Optimization Model Based
on Genetic Algorithm," Mathematical Problems in Engineering
Volume 2013, Article ID 619029, 6 pages

[4] Larson, T., March, H., and Kusiak, A., 1997, "A heuristic approach to warehouse layout
with class-based storage," lIE Transactions. V29, April 1997 pp 337-349.

[5] Nguyen, S, 2008, "Algorithmic Approach to Warehouse Consolidation and Optimization,
M.S. Thesis, California Polytechnic State University, San Luis Obispo, CA

[6] Tompkins, J., White, J., Bozer, Y., Frazelle, E., Tanchoco, J., and Trevino, J., 1996,
Facilities Planning 2"d Edition, United States: John Wiley & Sons, Inc.

[7] Horvat, M., 2012, "An Approach to Order Picking Optimization in Warehouses,"
Diploma Thesis, University of Ljulblana, Ljulblana, Slovenia

[8] Batra, R., 2018, "Operational Analysis of an Inventory Location Optimization Algorithm
and RFID Implementation in a Distribution Center" M.Eng. Thesis, Massachusetts Institute of
Technology, Cambridge, MA.

[9] Harlalka, A., 2018, "Design and Implementation of an RFID-based Dock Door System at
a Distribution Center" M.Eng. Thesis, Massachusetts Institute of Technology, Cambridge, MA.

[10] Chandar, A. S., 2014, "Optimizing Lot Sizes and Establishing Supermarkets in a
MultiPart, Limited-Capacity Manufacturing System," M.Eng. Thesis, Massachusetts Institute of
Technology, Cambridge, MA.

[11] Waters Corporation, 2018 "Corporate History" [Online], Waters Corporation, Available:
http://www.waters.com/waters/en__US/Corporate-
History/nav.htm?locale=enUS&cid=134614712 [Accessed: 20-Jul-2018].

[12] Waters Corporation, 2018 "About Waters Corporation" [Online], Waters Corporation,
Available: http://www.waters.com/waters/enUS/About-Waters-Corporation-
/nav.htm?cid=134614448&locale=enUS [Accessed: 20-Jul-2018].

[13] Waters Annual Report, 2017

Page 1 82

[14] 2017, "Waters Corporation - Investor Day Presentation" [Online]. Available:
https://waterscorporation.gcs-web.com/static-files/0c82 1 7e9-0c24-446b-8349-c8cdab7cadda.
[Accessed: 03-Jul-2018]

[15] Christofides, N., 1976, "Worst-case analysis of a new heuristic for the travelling
salesman problem, Report 388", Graduate School of Industrial Administration, Carnegie Mellon
University

[16] Hardy, G.H.; Littlewood, J.E.; P6Iya, G.; 1952, Inequalities, Cambridge Mathematical
Library (2. ed.), Cambridge: Cambridge University Press, Section 10.2, Theorem 368

[17] Puszko, G, 2014, "Efficient Scheduling to Reduce Setup Times and Increase Utilization
in a Multiple - Part Manufacturing System" M.Eng. Thesis, Massachusetts Institute of
Technology, Cambridge, MA.

[18] Harris, F. W., 1990 [Reprint from 1913], "How Many Parts to Make at Once,"
Operations Research (Informs), 38 (6), pp. 947 - 950.

Page 1 83

APPENDIX - PYTHON CODE

Update Semi-Static Data.py:

1. ## IMPORT LIBRARIES
2. from datetime import datetime
3. startTime=datetime.now()
4. import numpy as np
5. import pandas as pd
6. from pandas import DataFrame as DF
7. import copy
8. import os
9. import os.path
10.
11.
12. #toggle between "real" and "fake"
13. DATASET="real"
14. getcorrelation=True
15.
16. ## Preliminaries
17. def tic():
18. return datetime.now()
19. ST=tic()
20. def toc(TIME):
21. print (datetime.now(-TIME)
22. return
23. def lookup(IDlist,ID): #use this to help deal with missing data?
24. return IDlist.index(ID)
25. def make positive(old):
26. new=[]
27. for i in range(len(old)):
28. if old[i]>8:
29. new+=[old[i]]
30. else:
31. new+=[0.0001]
32. return new
33. def makezero(old):
34. new=[]
35. for i in range(len(old)):
36. if old[i]!=0.0001:
37. new+=[old[i]]
38. else:
39. new+=[0]
40. return new
41. def remnan(old,EMPTY=False): # remove 'nan' from a list
42. if EMPTY==False:
43. new=[x for x in old if str(x) != 'nan']
44. else:
45. new=[]
46. for i in range(len(old)):
47. if str(old[i])=='nan':
48. new+=['']
49. else:
50. new+=[old[i]]
51. return new
52. def remdup(old): # remove duplicates from a list
53. new=[x for x in set(old)]
54. return new

Page 1 84

55, def remneg(old): #changes negative quantities to 0
56. new=(np.array(old).clip(min=)).tolist()
57. return new
58. def strconv(old):
59. new=[]
60. for i in range(0,len(old)):
61. if isinstance(old[i],str):
62. new+=[old[i]]
63. elif isinstance(old[i],list):
64. new+=[old[i]]
65. else:
66. new+=[str(int(old[i]))]
67. return new
68. def changecolons(text): # for windows, colons cannot be used in filenames
69. return text.replace(':','-')
70.
71.
72.
73. ## OPEN DATAFILES
74.
75. fake=["Fake/Fake SKU List.xlsx",
76. "Fake/Fake SKU Demand.xlsx",
77. "Fake/Fake Historical Pick Data.xlsx"]
78. real=["SAP Data/active part nos.xlsx",
79. "SAP Data/demand data.xlsx",
80. "SAP Data/historical data.xlsx",]
81.
82. def importdata(data):
83. SKUlist = pd.read excel(data[0])
84. SKUdemand = pd.readexcel(data[1])
85. HIST_picks = pd.readexcel(data[2])
86. return SKUlist,SKU-demand,HIST_picks
87.
88.
89. #(SKUlist,SKUsize,SKUqty,SKU demand,LOClist,LOC size,LOCcost,HIST_picks,currentSKU_

LOCS, shipment_received)=importfake()
90. if DATASET=="real":
91. (SKUlist,SKUdemand,HISTpicks)=import_data(real)
92. if DATASET=="fake":
93. (SKU-list,SKU-demand,HIST-picks)=import_data(fake)
94.
95. ## sort constitutive data to match the same order
96.
97. SKUlist = DF.sort_values(SKU list,by='Material')
98. SKUdemand = DF.sort values(SKU-demand,by='APO Location / Material')
99. HISTpicks = DF.sort-values(HISTpicks,by='Material')
100.
101.
102. ## GRAB INFO FROM COLUMNS
103.
104. demand00=rem-nan(SKU-demand['Forecast for Release - FINAL'].tolisto)
105.
106.
107.
108. # SKU data
109.
110. mtls=strconv(remnan(SKUlist['Material'].tolisto))
111. #mtls2=strconv(remnan(SKU_qty['Material'].tolist())
112. mtls3=strconv(rem-nan(SKU-demand['APO Location / Material'].tolist())
113. mtls3=[a[4:] for a in mtls3]
114. mtls4=strconv(remnan(HISTpicks['Material'].tolist())

Page 185

115. allmtls=[mtls,mtls3,mtls4] #update when changing datasets
116.
117. print('Imported Data')
118. toc(ST)
119.
120.
121. N=len(SKUlist) # Number of SKUs - master is based on the SKU list spreadsheet

122.
123. print("Total SKUs:",N)
124.
125. desc=str-conv(remnan(SKUlist['Material Description'].tolisto))
126. def get desc(mtl):
127. return desc[lookup(mtls,mtl)]
128.
129.
130. mtls3_short=[]
131. demand0=[]
132. for i in range(len(mtls3)):
133. if mtls3_short.count(mtls3[i])==0:
134. mtls3_short+=[mtls3[i]]
135. demand8+=[demand00[i]]
136. else:
137. demand0[mtls3_short.index(mtls3[i])]+=demandO[i]
138.
139.
140. demand=[]
141. # pad missing data
142. for i in range(0,N):
143. if mtls3_short.count(mtls[i])==1:
144. demand+=[demand[lookup(mtls3_short,mtls[i])]]
145. else:
146. # demand+=[np.mean(demand0)+rnd.random(]
147. demand+=[e]
148.
149. print("Padded Missing Data")
150.
151. GDCdemandfactor=0.6 # gives the ratio between typical demand forecast for GDC and actua

1 shipping (accounts for shipments that don't go to customers)

152.
153. nummonthsforecast=len(set(SKU-demand["Fiscal year / period"]))
154. nummonths_hist_data = 6 #requires 6 months of data, need to change this otherwise
155.
156. #get demand data proportional to same time period as old data

157. demand=(np.array(demand)/GDC_demandfactor*nummonthsforecast/num-monthshist_data).toli
st()

158.
159.
160. # Historical Data
161.
162. ordmtls=strconv(rem nan(HIST_picks['Material']))
163. if DATASET=="fake":
164. ords=remnan(HIST picks['Order'])
165. ordqty=remnan(HISTpicks['Quantity'])
166. if DATASET=="real":
167. ords=remnan(HIST picks['Delivery'])
168. ordqty=remnan(HISTpicks['Target Qty'])

169.
170. orders = remdup(ords) #without duplicates
171. ordmtlsshort=remdup(ordmtls)
172.
173. ## (NOT CURRENTLY USED)

Page 186

174.
175. ## Appear on same order Matrix
176. #gives multiple version of matrix to choose from
177.
178. n=len(ordmtlsshort)
179.
180. a=tic()
181. NUMords=len(orders)
182. NUMlines=len(ord-mtls)
183. ordmtls-inds=np.zeros(NUM lines).tolisto
184. for i in range(e,NUM lines):
185. ordmtls inds[i]=ordmtlsshort.index(ordmtls[i])
186. toc(a)
187.
188. print("Processing",NUM_ords, "Orders with",NUM-lines,"Lines")
189.
190. ORDS=np.array(ords)
191.
192. if getcorrelation:
193.
194. correlation=np.zeros((n,n))
195. for i in range(e,NUM ords):
196. #indices = [k for k, x in enumerate(ords) if x == orders[i]]
197. indices = np.where(ORDS == orders[i])[0]
198. for j in range(O,len(indices)):
199. for k in range(O,len(indices)):
200. correlation[ord_mtls_inds[indices[j]],ord mtls inds[indices[k]]]+=1 #i,j

entry gives number of times i,j were ordered together (diagonal entries are just number o
f times ordered)

201.
202.
203. corrl=correlation/NUMords #gives fraction of orders
204. corr2=correlation/NUM_lines #gives fraction of lines
205. toc(a)
206. correlationnorm=np.zeros((n,n)) #normalizes wrt popularity of each product
207. a=tic()
208. for i in range(0,n):
209. for j in range(0,n):
210. if (correlation[i,i]+correlation[j,j]-correlation[i,j])==:
211. correlationnorm[i,j]=0
212. else:
213. correlationnorm[i,j]=correlation[ij]/(correlation[i,i]+correlation[j,j]

correlationri,j]) #number of times pair is ordered divided by the number of times either
is ordered

214. toc(a)
215. interactiononly=copy.deepcopy(correlation)
216. for i in range(0,n):
217. interactiononly[ii]=0
218. interactiononlynorm=np.zeros((n,n))
219. for i in range(0,n):
220. for j in range(e,n):
221. if i!=j:
222. interactiononlynorm[i,j]=correlation norm[i,j]
223.
224. print("Generated Correlation Matrices")
225. toc(ST)
226.
227. def listcorrelation(interactiononly,ITER=100):
228. C=copy.deepcopy(interaction only)
229. highest=[]

Page 187

230. for i in range(e,ITER):
231. maxcorr=np.max(np.ndarray.flatten(C))
232. maxinds=np.where(C==maxcorr)
233. mtli=ordmtlsshort[max-inds[0][0]]
234. mtl2=ordmtlsshort[max-inds[1][0]]
235. highest+=[[mtll,getdesc(mtl),mt2,gedesc(mtl2),max_corr]]
236. C[maxinds[0][0],maxinds[][0]]=C[max_inds[][0],max_inds[0][0]]=O
237. return highest
238.
239.
240. A=listcorrelation(interactiononly,ITER=100)
241.
242. print("Listed Correlation Top Pairs")
243. toc(ST)
244.
245. ## Number of times ordered
246.
247. timesordered=np.zeros(N)
248. for i in range(8,NUM-ords):
249. indices = [k for k, x in enumerate(ords) if x == orders[i]]
250. for j in range(O,len(indices)):
251. times_ordered[ord-mtls-inds[indices[j]]]+=1
252.
253. ## Average number picked at once
254.
255. total_picked=np.zeros(N)
256. for i in range(0,NUM lines):
257. totalpicked[ord mtlsinds[i]]+=ordqty[i]
258. #avgpickedat-once=totalpicked/times_ordered
259. avg_picked_atonce=np.zeros(N)
260. for i in range(N):
261. if timesordered[i]==0:
262. avgpickedatonce[i]=2000
263. else:
264. avgpickedatonce[i]=totalpicked[i]/timesordered[i]
265.
266. print("Generated avgpickedatonce Data")
267.
268.
269. def soft mean(a,b,weight=.5):
270. if a<=O:
271. mean= b
272. elif b<=e:
273. mean= a
274. else:
275. mean= a*weight+b*(l-weight)
276. if mean<=0:
277. return 0
278. else: return mean
279.
280. demand final=[]
281. for i in range(0,N):
282. demand_final+=[soft_mean(totalpicked[i],demand[i],weight=0.6)] #weight of 0.7 means

70% weighting on last six months, 30% on forecast
283. demandfinal=makepositive(demand_final)
284.
285. print("Generated Combined Demand Data")
286.
287.
288. if os.path.isfile('Semi Static/avgpickedatonce.xlsx'):

Page 188

289. olddate=pd.readexcel('Semi Static/avgpicked_atonce.xlsx',sheetname='DATE')['DATE
'][0].replace(':','-')

290. newname='Semi Static/Backup avgpicked_atonce '+olddate+'.xlsx'
291. os.rename('Semi Static/avg_picked atonce.xlsx',newname)
292. print("Archived:", new name)
293. df=pd.DataFrame(np.array([mtls,avgpicked-at-once]).T)
294. df.columns = ['Material', 'avgpickedatonce']
295. meta= pd.DataFrame([[str(datetime.now()]])
296. meta.columns = ['DATE']
297.
298. writer = pd.ExcelWriter('Semi Static/avgpicked atonce.xlsx')
299. df.toexcel(writer,'Sheet 1',index=False)
300. meta.toexcel(writer,'DATE',index=False)
301. meta.columns = ['DATE']
302. writer.save() #SAVE TO EXCEL
303.
304.
305. print("Saved File: Semi Static/avgpickedatonce.xlsx")
306.
307. if os.path.isfile('Semi Static/demand.xlsx'):
308. olddate2=pd.read excel('Semi Static/demand.xlsx',sheet name='DATE')['DATE'][0].repla

ce(':' -)
309. newname2='Semi Static/Backup demand '+olddate2+'.xlsx'
310. os.rename('Semi Static/demand.xlsx',new-name2)
311. print("Archived:", newname2)
312. df2=pd.DataFrame(np.array([mtls,demand_final]).T)
313. df2.columns = ['Material','Demand']
314. #meta= pd.DataFrame([[str(datetime.now()]])
315. #meta.columns = ['DATE']
316.
317. writer = pd.ExcelWriter('Semi Static/demand.xlsx')
318. df2.toexcel(writer,'Sheet 1',index=False)
319. meta.toexcel(writer, 'DATE', index=False)
320. meta.columns = ['DATE']
321. writer.save() #SAVE TO EXCEL
322.
323. print("Saved File: Semi Static/demand.xlsx")
324.
325. filename=changecolons('Outputs/correlation top pairs '+str(datetime.now()+'.xlsx')
326. writer = pd.ExcelWriter(filename)
327. export=DF(A)
328. export.columns = ['Material 1','Description 1','Material 2','Description 2','Number of Ti

mes Bought Together']
329. export.toexcel(writer,'List of Moves',index=False)
330. writer.save() #SAVE TO EXCEL
331.
332. print("Saved File:",filename)
333. toc(ST)

Page 189

Inventory Relocation Tool.py:

1. ## IMPORT LIBRARIES
2. from datetime import datetime
3. ST=datetime.now()
4. import numpy as np
5. import pandas as pd
6. from pandas import DataFrame as DF
7. import random as rnd
8. import copy
9. from scipy import stats
10.
11. print("For Full Inventory Relocation, Enter '0'")
12. print("For A [Procedure, Enter '1'")
13. print("For Incoming Shipment, Enter '2'")
14. choice = int(input("Choose an option:\n"))
15. fullrelocation=replace=shipment=False
16. if type(choice)==int:
17. if (choice!=0) & (choice!=1) & (choice!=2):
18. raise ValueError("Need to enter 0, 1, or 2")
19. else:
20. raise ValueError("Need to enter 0, 1, or 2")
21. if choice==0:
22. fullrelocation=True
23. print("Relocating All, please wait:")
24. if choice==1:
25. replace=True
26. X=int(input("Enter an integer representing the number of SKUs to relocate:\n"))
27. print("Relocating",X, "SKUs, please wait:")
28. if choice==2:
29. shipment=True
30. print("Placing Shipment, please wait:")
31.
32.
33. #toggle between "real" and "fake"
34. DATASET="real"
35. highbayonly=True
36.
37. ## Preliminaries
38. def tic():
39. return datetime.now()
40. ST=tic()
41. def toc(TIME):
42. print (datetime.now(-TIME)
43. return
44. def prune zeros(QTY,others): #list form
45. QTY new=[]
46. others-new=[]
47. for i in range(0,len(others)):
48. others_new+=[[]]
49. for i in range(0,len(QTY)):
50. if QTY[i]!=0:
51. QTY new+=[QTY[i]]
52. for j in range(0,len(others)):
53. othersnew[j]+=[others[j][i]]
54. N=len(QTYnew)
55. return QTYnew,othersnew,N
56.
57. def prune_unrec(MASTER,LIST,others):
58. othersnew=[]

Page 190

59. LISTnew=[]
60. for i in range(e,len(others)):
61. othersnew+=[[]]
62. for i in range(0,len(LIST)):
63. if MASTER.count(LIST[i])>0:
64. LISTnew+=[LIST[i]]
65. for j in range(0,len(others)):
66. othersnew[j]+=[others[j][i]]
67. return LIST new,others_new
68. def combine(LISTQTY):
69. LISTnew=[]
70. QTY new=[]
71. for i in range(len(LIST)):
72. if LISTnew.count(LIST[i])==:
73. LISTnew+=[LIST[i]]
74. QTY new+=[QTY[i]]
75. else:
76. ind=lookup(LIST new,LIST[i])
77. QTYnew[ind]+=QTY[i]
78. return LIST new,QTYnew
79. def makepositive(old):
80. new=[]
81. for i in range(len(old)):
82. if old[i]>0:
83. new+=[old[i]]
84. else:
85. new+=[0.0001]
86. return new
87. def prunebycriteria(criteria,LIST,others):
88. othersnew=[]
89. LISTnew=[]
90. for i in range(e,len(others)):
91. othersnew+=[[]]
92. for i in range(e,len(LIST)):
93. if criteria(LIST[i]):
94. LISTnew+=[LIST[i]]
95. for j in range(Olen(others)):
96. othersnew[j]+=[others[j][i]]
97. return LIST new,others_new
98. def isnumber(s):
99. try:
100. float(s)
101. return True
102. except ValueError:
103. return False
104. def ishighbay(location):
105. a=location[0:2]
106. return (a=='39')I(a=='40')I(a=='41')I(a=='42')I(a=='43')I(a=='44')
107.
108. def is shelving(location):
109. a=location[0:2]
110. if isnumber(a):
111. return (int(a)>=1) & (int(a)<=20)
112. else:
113. return False
114. def iden(x):
115. return x
116. def perc(x):
117. p=[]
118. for i in range(len(x)):
119. p+=[stats.percentileofscore(x,x[i])]

Page 191

120. return np.array(p)
121. def shiftz(x):
122. p=[]
123. # for i in range(len(x)):
124. # p+=[stats.zscore(x,x[i])+10]
125. p=stats.zscore(x)+3
126. return np.array(p)
127. def ALL(x):
128. return True
129. def lookup(ID list,ID): #use this to help deal with missing data?
130. return IDlist.index(ID)
131.
132. def rem nan(old,EMPTY=False): # remove 'nan' from a list

133. if EMPTY==False:
134. new=[x for x in old if str(x) 1= 'nan']
135. else:
136. new=[]
137. for i in range(len(old)):
138. if str(old[i])=='nan':
139. new+=['']
140. else:
141. new+=[old[i]]
142. return new
143. def rem dup(old): # remove duplicates from a list
144. new=[x for x in set(old)]
145. return new
146. def rem neg(old): #changes negative quantities to 0
147. new=(np.array(old).clip(min=0)).tolist()
148. return new
149. def strconv(old):
150. new=[]
151. for i in range(0,len(old)):
152. if isinstance(old[i],str):
153. new+=[old[i]]
154. elif isinstance(old[i],list):
155. new+=[old[i]]
156. else:
157. new+=[str(int(old[i]))]
158. return new
159.
160. def listmax(List): #for two level lists
161. Max=-100000000
162. for i in range(0,len(List)):
163. for j in range(0,len(List[i])):
164. element=List[i][j]
165. if element>Max:
166. Max=element+0
167. I=i+0
168. J=j+O
169. return Max,IJ
170. def listsum(List): #for two level lists
171. Sum=0
172. for i in range(0,len(List)):
173. for j in range(0,len(List[i])):
174. Sum+=List[i][j]
175. return Sum
176. def uniquelist(old):
177. new=[]
178. for i in range(len(old)):
179. if new.count(old[i])==0:
180. new+=[old[i]]

Page 192

181. return new
182. def total vol used(currentlythere):
183. vol=0
184. for i in range(len(currentlythere)):
185. for j in range(len(currentlythere[i])):
186. vol+=currentlythere[i][j][3]
187. return vol
188. def count(currently_there):
189. COUNT=0
190. for i in range(len(currentlythere)):
191. for j in range(len(currentlythere[i])):
192. COUNT+=1
193. return COUNT
194. def checksum(currentlythere):
195. Sum=8
196. for i in range(len(currentlythere)):
197. for j in range(len(currentlythere[i])):
198. Sum+=(i)/(5+i)*(currentlythere[i][j][1]+currentlythere[i][j][2])
199. return Sum
200. def changecolons(text): # for windows, colons cannot be used in filenames
201. return text.replace(':','-')
202.
203. ## OPEN DATAFILES
204.
205. fake=["Fake/Fake SKU List.xlsx",
206. "Fake/Fake SKU Sizes.xlsx",
207. "Fake/Fake SKU Quantities.xlsx", #Eliminated, can use for new region?
208. "Fake/Fake SKU Demand.xlsx",
209. "Fake/Fake Storage Location List.xlsx",
210. "Fake/Fake Storage Location Sizes.xlsx",
211. "Fake/Fake Storage Location Costs.xlsx",
212. "Fake/Fake Historical Pick Data.xlsx",
213. "Fake/Fake SKU Current Locations.xlsx",
214. "Fake/Fake Shipment Received.xlsx"]
215. real=["SAP Data/active part nos.xlsx",
216. "Static/SKU sizes.xlsx",
217. "Fake/Fake SKU Quantities.xlsx", #Eliminated
218. #"Fake/Fake SKU Demand.xlsx",
219. "Semi Static/demand.xlsx",
220. "SAP Data/All storage locations.xlsx",
221. "Static/Location Sizes.xlsx",
222. "Static/Cost Mapping.xlsx",
223. #"Fake/Fake Historical Pick Data.xlsx",
224. #"historical data.xlsx",
225. "Semi Static/avgpicked atonce.xlsx",
226. "SAP Data/current storage.xlsx",
227. "SAP Data/Shipment Received.xlsx"]
228.
229. SAPnames=["active part nos.xlsx",
230. "",
231. "",
232. "Fake SKU Demand.xlsx",
233. "All storage locations.xlsx",
234. "",
235. "",
236. "Fake Historical Pick Data.xlsx",
237. "current storage.xlsx",
238. "Fake Shipment Received.xlsx"]
239.
240. def importdata(data):
241. SKUlist = pd.read-excel(data[e])

Page 193

242. SKU size = pd.read-excel(data[1])
243. #SKUqty = pd.readexcel(data[2]) # Eliminated
244. SKUdemand = pd.read_excel(data[3])
245. LOC list = pd.read_excel(data[4])
246. LOC size = pd.read_excel(data[5])
247. LOC cost = pd.read_excel(data[6])
248. HISTpicks = pd.readexcel(data[7])
249. currentSKULOCS = pd.readexcel(data[8])
250. shipmentreceived = pd.read_excel(data[9])
251. return SKU_list,SKUsize,SKUdemand,LOClist,LOCsize,LOCcost,HISTpicks,currentSKU

_LOCS,shipment received
252.
253.
254. #(SKUlist,SKUsize,SKUqty,SKUdemand,LOClist,LOC_size,LOCcost,HISTpicks,currentSKU_

LOCS,shipmentreceived)=import fake()
255. if DATASET=="real":
256. (SKUlist,SKUsize,SKU-demand,LOClist,LOCsize,LOCcost,HISTpicks,current_SKU_LOCS,

shipmentreceived)=import-data(real)
257. if DATASET=="fake":
258. (SKU-list,SKU-size,SKU-demand,LOClist,LOCsize,LOCcost,HISTpicks,current_SKU_LOCS,

shipmentreceived)=import-data(fake)
259.
260. print('Imported Data')
261. toc(ST)
262.
263. ## sort constitutive data to match the same order
264.
265. SKUlist = DF.sort values(SKU-list,by='Material')
266. #SKU size = DF.sortvalues(SKUsize,by='Material') #not necessary anymore
267. #SKUqty = DF.sort-values(SKUqty,by='Material') #not necessary anymore
268. SKUdemand = DF.sortvalues(SKU-demand,by='Material')
269.
270. if DATASET=="real":
271. LOClist = DF.sortvalues(LOClist,by='Storage Bin')
272. LOCcost = DF.sortvalues(LOCcost,by='Storage Bin')
273. if DATASET=="fake":
274. LOClist = DF.sortvalues(LOClist,by='Location')
275. LOCcost = DF.sortvalues(LOCcost,by='Location')
276. #LOCsize = DF.sortvalues(LOCsize,by='Location')
277.
278. HISTpicks = DF.sortvalues(HISTpicks,by='Material')
279.
280. ## GRAB INFO FROM COLUMNS
281.
282.
283. # SKU data
284.
285. mtls=strconv(remnan(SKUlist['Material'].tolisto))
286. mtlsl=str conv(rem-nan(SKU-size['Material'].tolisto))
287. #mtls2=strconv(remnan(SKUqty['Material'].tolisto))
288. mtls3=str conv(rem nan(SKUTdemand['Material'].tolist())
289. mtls4=str-conv(rem-nan(HISTpicks['Material'].tolist()))
290. allmtls=[mtls,mtlsl#,mtls2
291. ,mtls3,mtls4] #update when changing datasets
292. SKUvols0=make_positive(remnan(SKUsize['Volume'].tolisto))
293. #numtotal0=remnan(SKUqty['Quantity'].tolisto)
294. if DATASET=="real":
295. demand0=remnan(SKUdemand['Demand'].tolisto)
296. if DATASET=="fake":
297. demand0=remnan(SKUdemand['Quantity'].tolist()
298.

Page 194

299. N=len(SKUlist) # Number of SKUs - master is based on the SKU list spreadsheet
300.
301. print("Total SKUs:",N)
302.
30". # Locations Data
304.
305. if DATASET=="fake":
306. locs=rem-dup(strconv(rem nan(LOC_list['Location'].tolist()))
307. locsl=str-conv(remnan(LOCsize['Location'].tolist())
308. locs2=str-conv(remnan(LOC-cost['Location'].tolist())
309. if DATASET=="real":
310. locs=rem-dup(str-conv(rem-nan(LOC_list['Storage Bin'].tolisto)))
311. locsl=str-conv(remnan(LOCsize['Storage Bin'].tolist())
312. locs2=str-conv(remnan(LOC_cost['Storage Bin'].tolist())
313.
314. alllocs=[locs,locsl,locs2]
315.
316. loc_volse=rem-nan(LOC-size['Volume'].tolist()
317. costs0=remnan(LOCcost['Cost'].tolist()
318.
319. M=len(locs) #Number of storage locations. Need to confirm they match in data files
320. for i in range(1,len(alllocs)):
321. MO=len(set(locs+all-locs[i]))
322. if MO>N:
323. raise ValueError("LOCS's Exist in Dataset "+str(i)+" that aren't in the Master Li

st")
324.
325. print("Total Storage Locations:",M)
326.
327. # pad missing location data
328.
329. loc_vols=[]
330. costs=[]
331.
332. for i in range(8,M):
333. if locs1.count(locs[i])==1:
334. loc.vols+=[locvols[lookup(locsl,locs[i])]]
335. else:
336. loc vols+=[np.mean(loc-vols)+rnd.randomo]
337. for i in range(O,M):
338. if locs2.count(locs[i])==1:
339. costs+=[costso[lookup(locs2,locs[i])]]
340. else:
341. costs+=[np.mean(costse)+rnd.random(/100]
342.
343.
344.
345.
346. # Current Location Data
347.
348. currmtls=str conv(currentSKULOCS['Material'].tolist()
349. if DATASET=="real":
350. currlocs=currentSKULOCS['Stor.bin'].tolist()
351. curr-qty=rem-neg(currentSKULOCS['Total stock'].tolist()
352. currbatch=strconv(rem nan(currentSKULOCS['Batch'].tolist(,EMPTY=True))
353. if DATASET=="fake":
354. currlocs=currentSKULOCS['Stor.bin'].tolisto
355. curr-qty=rem-neg(currentSKULOCS['Total stock'].tolist()
356.
357. def mtlswithbatches(mtls,batchs):
358. mtlsnew=[]

Page |95

359. for i in range(len(mtls)):
360. mtlsnew+=[[mtls[i],batchs[i]]]
361. return mtlsnew
362.
363.
364. currmtlsall=copy.deepcopy(currmtls)
365. currqty-all=copy.deepcopy(curr-qty)
366. currmtlsall,currqtyall=combine(currmtlsall,currqtyall)
367. #Removes entries with unknown location
368.
369. (curr_locs,[curr mtls,curr qty,currbatch])=pruneunrec(locs,currlocs, [curr-mtls,currqt

y,currbatch])
370.
371.
372. if highbayonly:
373. print("Considering High Bay Area Only")

374. #Remove entries with location not in high bay

375. (currlocs,[curr mtls,currqty,curr-batch])=prunebycriteria(is_high_bay,currjlocs,
curr_mtls,currqty,curr -batch])

376. #Remove locations not in high bay
377. (locs, [costs, locvols])=prunebycriteria(ishighbay,locs, [costs, locvols])

378.
379. currmtlswithbatchs=mtlswithbatches(curr mtls,currbatch)
380.
381. m=len(locs)
382. # pad missing SKU data
383.
384. SKUvols=[]
385. numtotal=[]
386. demand=[]
387.
388.
389. for i in range(0,N):
390. if mtls1.count(mtls[i])==l:
391. SKUvols+=[SKUvolsO[lookup(mtlsl,mtls[i])]]
392. else:
393. if currmtlsall.count(mtls[i])>=1:
394. qtytotal=currqtyall[lookup(curr mtlsall,mtls[i])]
395. PC=(100-stats.percentileofscore(curr_qty_all,qty_total))*0.9
396. SKUvols+=[np.percentile(SKU-vols,PC)+rnd.random(]
397. else:
398. SKUvols+=[np.percentile(SKUvolsO,10)+rnd.random()]

399.
400. demand=demandO
401. demand=makepositive(demand)
402. print('Padded Missing Data')
403. toc(ST)
404.
405.
406. # Shipment Data
407. if shipment:
408. shipmtls=shipmentreceived['Material'].tolisto
409. shipqtys=shipmentreceived['Quantity'].tolist()
410. shipbatch=remnan(shipmentreceived['Batch'],EMPTY=True)
411.
412.
413. avgpicked_at_once=np.array(HISTpicks["avgpicked_at_once"])
414. tripdemand=demand/avgpicked_atonce # we set the trip demand as expected number of trip

s per unit time
415.
416.

Page 196

417. ## INITIALIZATIONS
418.
419. def initialize(n=N,m=M):
420. num-placed=np.zeros(n).tolist()
421. currentlythere=[] #currentlythere format [mtl, qty, vlm per, total vlm, batch]
422. for i in range(e,m):
423. currentlythere+=[[]]
424. volremaining=copy.deepcopy(loc-vols)
425. return numplaced,currentlythere,vol_remaining
426.
427. if shipment:
428. numSKU-ship=len(shipmtls)
429. currmtls+=ship_mtls
430. currbatch+=shipbatch
431. curr_qty+=np.zeros(numSKU-ship).tolist()
432. curr_locs+=np.zeros(numSKU ship).tolist()
433.
434. MTLS=uniquelist(mtlswithbatches(currmtls,currbatch))
435.
436. def currentlocationstototal(curr-mtls,currlocs,currqty,currbatch,MTLS): #defines to

place by the current locations
437. n=len(MTLS)
438. numtotal=np.zeros(n)
439. for i in range(0,len(currmtls)):
440. ind=lookup(MTLS,[curr mtls[i],currbatch[i]])
441. num total[ind]+=currqty[i]
442. return numtotal,n
443.
444.
445. ## Place/Remove a SKU command
446.
447. def batch-ind(SKUind,batch): #get
448. if MTLS.count([new-mtls[SKU-ind],batch])==:
449. return lookup(MTLS,[new mtls[SKUind],batch])
450. else:
451. raise ValueError("Can't get batch index")
452. def skuind(BATCHind):
453. if newmtls.count(MTLS[BATCH-ind][0])>=1:
454. SKUind=lookup(new mtls,MTLS[BATCH_ind][0])
455. batch=MTLS[BATCHind][1]
456. return SKU_ind,batch
457. else:
458. raise ValueError("Can't get SKU index")
459.
460. def Nto_n(data):
461. data_new=[]
462. for i in range(n):
463. data new+=[data[lookup(mtls,MTLS[i][0])]]
464. return datanew
465.
466. def place(skuvols,numtotal,num-placed,locvols,costs,currentlythere,vol remaining,SKU_

BATCHind,LOCind,QTY):
467. SKUind,batch=sku-ind(SKUBATCHind)
468. num placed[SKUBATCH ind]+=QTY
469. currentlythere[LOCind]+=[[MTLS[SKU_BATCH_ind][0],QTY,skuvols[SKUBATCHind],QTY*sk

u_vols[SKUBATCHind],MTLS[SKUBATCHind][1]]]
470. volremaining[LOCind]-=QTY*skuvols[SKUBATCH -ind]
471. return num placed,currentlythere,vol_remaining
472.
473. def remove(skuvolsnumtotalnumplaced,loc-vols,costs,currentlythere,vol-remaining,SKU

_BATCHind,LOCind,QTY,CLEAR=True,):

Page 197

474. SKU ind,batch=sku -ind(SKUBATCH_ind)
475. locationcontents=currently-there[LOC-ind]
476. mtls-there=[[a[e],a[4]] for a in locationcontents]
477. if mtlsthere.count(MTLS[SKUBATCHind])==1:
478. inloc_ind=lookup(mtlsthere,MTLS[SKUBATCHind])
479. if locationcontents[in_loc_ind][1]>=QTY:
480. locationcontents[in_loc_ind][1]-=QTY
481. locationcontents[in_loc_ind][3]=locationcontents[in_loc_ind][2]*locationco

ntents[in_loc_ind][11
482. volremaining[LOCind]+=QTY*locationcontents[in_locind][2]
483. num_placed[SKUBATCHind]-=QTY
484. if (CLEAR==True)&(locationcontents[in loc_ind][1]==0):
485. locationcontents.remove(locationcontents[inlocind])
486. else:
487. raise ValueError('NOT ENOUGH THERE TO REMOVE')

488. if mtlsthere.count(MTLS[SKU BATCH ind])==O:
489. raise ValueError('NOT THERE AT ALL')

490. if mtlsthere.count(MTLS[SKU BATCH_ind])>1:
491. raise ValueError('MULTIPLE IN SAME LOCATION')

492. return num placed,currentlythere,volremaining
493.
494. ##PLACE FROM CURRENT SKU LOCATIONS
495. numtotal,n=currentlocationstototal(curr-mtls,curr_locs,curr-qty,currbatch,MTLS)
496. (num-placed,currentlythere,volremaining)=initialize(n)
497.
498. SKUvolsshort=N ton(SKU vols)
499. trip demandshort=Nto_n(tripdemand)
500. newmtls=N-to-n(mtls)
501.
502. def place_current(currmtls,curr_locs,currqty,currbatch,UNREC=True):
503. #Reinitialize
504. (numplaced,currentlythere,volremaining)=initialize(n,m)
505. currmtlsinds=np.zeros(len(curr-mtls)).tolist()
506. currmtlsinds=[]
507. currlocsinds=np.zeros(len(currlocs)).tolist()
508. currlocsinds=[]
509. for i in range(O,len(curr -mtls)):

510. #if mtls.count(currmtls[i])>=1:
511. if locs.count(curr-locs[i])>=1:
512. currmtlsinds+=[MTLS.index([curr-mtls[i],curr-batch[i]])]
513. #
514. # for i in range(0,len(currlocs)):
515. # if locs.count(currlocs[i])>=1:
516. #
517. currlocsinds+=[locs.index(currlocs[i])]
518. elif UNREC: #if set to True, it will place SKU's in unrecognized locations

519. currmtlsinds+=[MTLS.index([currImtls[i],currbatch[i]])]
520. currlocsinds+=[0] #PLACE SKU's in unrecognized location in first location

521. for i in range(0,len(curr_mtls_inds)):
522. (num placed,currentlythere,vol_remaining)=place(SKUvolsshort,num-total,numpla

ced,locvols,costs,currentlythere,vol_remaining,currmtls inds[i],currlocsinds[i],curr

_qty[i])
523. return num_placed,currently_there,vol-remaining
524.
525. def combinelike(currentlythere):
526. C=copy.deepcopy(currently_there)
527. mtlsthere=[]
528. num like=[]
529. for i in range(0,len(C)):
530. numlike+=[[]]
531. mtlsthere=[[a[0],a[4]] for a in C[i]]

Page 198

532. for j in range(0,len(C[i])):
533. numlike[i]+=[mtlsthere.count(mtls-there[j])]
534. for i in range(0,len(C)):
535. mtlsthere=[[a[0],a[4]] for a in C[i]]
536. to remove=[]
537. mtldealtwith=[]
538. for j in range(0,len(C[i])):
539. if (numlike[i][j]>1) & (mtldealtwith.count([C[i][j][0],C[i][j][4]])==O):
540. indices = [k for k, x in enumerate(mtls there) if x == mtls_there[j]]
541. qtys = [C[i][k][1] for k in indices]
542. C[i][indices[0]][1]=sum(qtys)
543. mtldealtwith+=[[C[i][j][0],C[i][j][4]]]
544. for k in range(1,len(indices)):
545. toremove+=[C[i][indices[k]]]
546. for k in range(0,len(to remove)):
547. C[i].remove(to-remove[k])
548. return C
549.
550.
551.
552. num placedold,currentlythere old,volremainingold=place current(curr mtls,currlocs,cu

rrqty,curr batch)
553. currentlythereold=combinelike(currentlythereold)
554.
555. if shipment:
556. del curr qty[-numSKUship:]
557. curr_qty+=shipqtys
558. numtotal,n=current locationstototal(currmtls,currlocs,curr-qty,currbatch,MTLS)

559. (numplaced,currentlythere,volremaining)=initialize(n)
560.
561.
562. print("SKUs in Region:",n)
563. print("Storage Locations in Region:",m)
564.
565.
566.
567.
568. def clear-zeros(currentlythere):
569. C=copy.deepcopy(currentlythere)
570. return C
571.
572. ## COST OF SITUATION
573.
574. def part locationcost(SKU-ind,LOCind,costs,tripdemsku-vols):
575. return costs[LOCind]*tripdem[SKU-ind]
576. def part locationcostutil(SKU ind,LOCind,costs,tripdem,skuvols):
577. return costs[LOCind]*trip-dem[SKUind]/skuvols[SKUind]
578. def currentlocation-costs(currentlythere,coststripdemskuvols,func):
579. current-costs=[]
580. currentcoststotal=[]
581. for i in range(e,len(currentlythere)):
582. currentcosts+=[[]]
583. currentcosts total+=[[]]
584. for j in range(0,len(currentlythere[i])):
585. QTY=currentlythere[i][j][1]
586. current_costs[i]+=[[fl]
587. currentcoststotal[i]+=[[]]
588. #per part
589. current_costs[i][j]=func(lookup(MTLS,[currentlythere[i][j][0],currently-ther

e[i][j][4]]),i,costs,tripdem,skuvols)

Page 199

590. #total
591. currentcoststotal[i][j]=QTY*func(lookup(MTLS, [currently.there[i][j][0],curr

entlythere[i][j][4]]),i,costs,tripdem,skuvols)
592. return current costs,currentcoststotal
593.
594.
595.
596. def totalvol(volumes,qtys=[]):
597. if qtys==[]:
598. qtys=np.ones(len(volumes))
599. total=e
600. for i in range(len(volumes)):
601. total+=volumes[i]*qtys[i]
602. return total
603. TOTALSTORAGEVOLUME=totalvol(locvols)
604. currqtylong=[]
605. for i in range(N):
606. if currmtls.count(mtls[i])==1:
607. curr-qtylong+=[curr_qty[lookup(currmtls,mtls[i])]]
608. else:
609. curr-qtylong+=[0]
610. TOTALSKUVOLUME=total_vol(SKU-vols,currqtylong)
611. BIGGESTLOCATIONVOLUME=max(locvols)
612. BIGGESTSKUVOLUME = max(SKUvolsshort)
613.
614. util=iden(np.array(tripdemand_short))/iden(np.array(SKU_vols_short))
615.
616. def placementalg(num total,num-placed,currently_there,vol remaining,tripdem,costs,sku_v

ols,loc_vols,ITER=1000000,a=iden,b=iden,SEPLIKE=True):
617. m=len(currentlythere)
618. num toplace=(np.array(numtotal)-np.array(numplaced))
619. still to placeinds=[i for i, x in enumerate(num-toplace>0) if x]

620. util=a(np.array(trip_dem))/b(np.array(sku_vols))+np.random.rand(len(tripdem))/100000
00

621. costorder=np.argsort(costs)
622. for i in range(0,ITER): #should terminate sooner than this

623. remutil=[util[k] for k in still toplaceinds]
624. if remutil==[]:
625. break
626. # maxutil ind=np.argmax([util[i] for i in still_to placeinds])
627. maxutilind=util.tolisto.index(max(remutil)) #gives SKU to place
628. #print(maxutilind)
629. for j in range(0,m):
630. #print(num-toplace[max-util-ind])
631. if numto place[max-util-ind]==0:
632. break
633. other mtls=[a[0] for a in currentlythere[cost -order[j]]]
634. othermtlswith batch=[[a[0],a[4]] for a in currentlythere[costorder[j]]]
635. if SEPLIKE & (other mtls.count(newmtls[max util ind])>=1) & (other_mtlswit

h_batch.count(MTLS[maxutilind])==0): #skips that location if another SKU with the same

P/N but different batch is present
636. continue
637. can fit=min(np.floor(volremaining[costorder[j]]/skuvols[maxutilind]),num

to place[maxutil_ind])
638. if canfit>6: #if there is remaining to be placed and any fit
639. (numplaced,currently_there,volremaining)=place(skuvols,num-total,num-p

laced,loc_vols,costs,currently_there,volremaining,max_utilind,cost_order[j],can fit)
640. num toplace=(np.array(num total)-np.array(numplaced))
641. stillto_placeinds=[k for k, x in enumerate(numto-place>0) if x]

642. util=(np.array(tripdem)*np.array(numtoplace)/np.array(sku vols))

643. return num_placed,currentlythere,vol remaining,i,j,remutil,stilltoplaceinds

Page 1100

644.
645. # Remove worst utilized item (all quantity in that location as default)
646. def remove worst(num_placed,currentlythere,volremaining,tripdemand,costs,skuvols,loc_

vols,ALL=True):
647. if checksum(currentlythere)==:
648. raise ValueError('NOTHING TO REMOVE')
649. worst=listmax(current locationcosts(currentlythere,costs,tripdemand,skuvols,part_

locationcost util)[0])
650. SKU ind=lookup(MTLS,[currentlythere[worst[1]][worst[2]][0],currently there[worst[1]]

[worst[2]][4]])
651. LOCind=worst[l]
652. if ALL==True:
653. QTY=currentlythere[worst[1]][worst[2]][1]
654. else:
655. QTY=1
656. (numplaced,currentlythere,vol remaining)=remove(sku-volsnum-totalnumjplacedloc-v

ols,costs,currentlythere,vol-remaining,SKU_ind,LOC ind,QTY)
657. return num placed,currentlythere,vol_remaining
658. #(numplaced,currentlythere,volremaining)=remove-worst(numplaced,currentlythere,vol-r

emaining,tripdemand short,costs,SKU vols short,locvols)
659.
660. # Remove n worst utilized items
661. def removex(num-placed,currentlythere,vol_remaining,tripdemand,costs,skuvols,locvols

,x):
662. for i in range(0,x):
663. (numIplaced,currentlythere,volremaining)=removeworst(num-placed,currentlyther

e,volremaining,tripdemand,costs,skuvols,locvols)
664. return num placed,currentlythere,volremaining
665. #(numplaced,currentlythere,volremaining)=remove-x(num-placed,currentlythere,vol_remai

ning,tripdemand_short,costs,SKU_vols_short,locvols,1)
666.
667. def replace-x(numplaced,currentlythere,vol-remaining,tripdemand,costs,sku-vols,locvol

s,x):
668. numtotal=copy.deepcopy(num placed)
669. (numplaced,currentlythere,volremaining)=remove-x(num-placed,currentlytherevolre

maining,tripdemand,costs,skuvols,locvols,x)
670. ITER=10000000
671. (numplaced,currentlythere,volremaining,a,b,c,d)=placementalg(numItotal,num-placed

,currentlythere,vol-remaining,tripdemand,costs,skuvolslocvols,ITERideniden)
672. return num placed,currentlythere,volremaining
673.
674. 5-.72/2
675.
676. ## Make shipment add to quantities
677.
678. def addshipment(shipmtls,shipqtys,shipbatch,MTLS,num-total):
679. for i in range(len(shipmtls)):
680. num-total[lookup(MTLS,[shipmtls[i],shipbatch[i]])]+=shipqtys[i]
681. return numtotal
682. #numtotal=add-shipment(shipmtls,shipqtys,mtls,numtotal)
683.
684. desc=strconv(rem-nan(SKU_list['Material Description'].tolist())
685. def getdesc(mtl):
686. return desc[lookup(mtls,mtl)]
687.
688.
689. def listmoves(currentlythere old,currentlythere,SKUvols,num total,num placed,locvols

,costs,vol remaining,numplacedold,vol remainingold):
690. moves=[]
691. OLD=copy.deepcopy(currentlythereold)
692. NEW=copy.deepcopy(currentlythere)

Page 1101

693. for i in range(len(OLD)): #stuff in same place
694. for j in range(len(OLD[i])):
695. if [[a[e],a[4]] for a in NEW[i]].count([OLD[i][j][0],OLD[i][j][4]])==1:

696. 1=[[a[0],a[4]] for a in NEW[i]].index([OLD[i][j [0],OLD[i][j][4]])
697. if (OLD[i][j][1]>0) & (NEW[i][l][1]>0):
698. nummoved=min(OLD[i][j][1],NEW[i][1][1])
699. OLD[i][j][1]-=nummoved
700. NEW[il[l][1]-=nummoved
701. for i in range(len(OLD)): #stuff that moved

702. for j in range(len(OLD[i])):
703. for k in range(len(NEW)):
704. for 1 in range(len(NEW[k])):
705. if (OLD[i][j][0]==NEW[k][l][0]) & (OLD[i][j][4]==NEW[k][l][4]) & (OLD

[i][j][1]>0) & (NEW[k][1][1]>0):
706. nummoved=min(OLD[i][j][1],NEW[k][1][1])
707. mtlmoved=lookup(MTLS,[OLD[i][j][0],OLD[i][j][4]])
708. if i!=k:
709. #assume cheaper location is positive cost drop:

710. costdrop=num moved*(part locationcost(mtl-moved,i,costs,tri
p_demand.short,SKU_vols_short)-
part locationcost(mtl moved,k,costs,tripdemandshort,SKUvols_short))

711. moves+=[[locs[i],locs[k],MTLS[mtl-moved][0],MTLS[mtlmoved][1
],getdesc(MTLS[mtlmoved][0]),nummoved,costdrop]]

712. OLD[i][j][1]-=nummoved
713. NEW[k][l][1]-=nummoved
714. if shipment:
715. moves=[]
716. for i in range(len(NEW)):
717. for j in range(len(NEW[i])):
718. if NEW[il[j][1]>0:
719. cost_drop=NEW[i][j][1]*part_location_cost(lookup(MTLS,[NEW[i][j][0],N

EW[i][j][4]]),i,costs,trip_demand_short,SKU-vols-short)
720. moves+=[['shipment',locs[i],NEW[i][j][0],NEW[i][j][4],get_desc(NEW[i]

[j][0]),NEW[i][j][1],cost drop]]
721. return moves,NEW,OLD,i,j,k,l
722.
723. def currentlythereexport(currently_there):
724. output=[]
725. for i in range(0,len(currently_there)):
726. for j in range(e,len(currentlythere[i])):
727. output+=[[locs[i],currently_thereICi][j][0],currentlythere[i][j][4],getdesc(

currentlythere[i][j][0]),currently_there[i][j][1],util[lookup(MTLS, [currently_there[i][j

][0],currentlythere[i][j][4]])]]]
728. df=pd.DataFrame(output)
729. df.columns = ['Location', 'Material','Batch Number', 'Description', 'Quantity', 'Utility

']
730. return df
731.
732. def movesexport(moves):
733. output=pd.DataFrame(moves)
734. df=pd.DataFrame(output)
735. if shipment:
736. df.columns = ['Origin','Destination', 'Material','Batch Number','Description','Qu

antity','Cost Increase']
737. else:
738. df.columns = ['Origin','Destination', 'Material','Batch Number','Description','Qu

antity','Cost Reduction']
739. return df
740.
741. def total cost(currentlythere):

Page 1102

742. return listsum(current location_costs(currentlythere,costs,trip demandshort,SKU vol
s_short,part_locationcost)[1])

743.
744. def one(x):
745. return np.ones(len(x))
746.
747. def getqtys(currently_there):
748. qtys=[]
74c. for i in range(0,len(currentlythere)):
750. qtys+=[[]]
751. for j in range(8,len(currentlythere[i])):
752. qtys[i]+=[currentlythere[i][j][1]]
753. return qtys
754.
755. #numplacedold,currentlythere old,volremainingold=placecurrent(curr mtls,curr locs, c

urrqty,curr batch)
756. #currentlythere old=combine_like(currentlythere old)
757.
758. if fullrelocation:
759. (numplaced,currentlythere,volremaining)=initialize(n,m)
760. if DATASET=="real":
761. ITER=1000000
762. if DATASET=="fake":
763. ITER=1000000
764. (numplaced,currentlythere,volremaining,i,j,remutil,stillto placeinds)=placement

_alg(num total,num placed,currentlythere,volremaining,tripdemandshort,costs,SKU_vols_
short,loc_vols,ITER,iden,iden)

765.
766. if replace:
767. num placed,currentlythere,volremaining=place-current(curr-mtls,currlocs,currqty,c

urr batch)
768. currentlythere=combine like(currentlythere)
769. num-placed,currentlythere,volremaining=replacex(num-placed,currentlythere,volrem

aining,tripdemandshort,costs,SKUvolsshort,loc-vols,X)
770.
771. if shipment:
772. num placed,currentlythere,volremaining=place-current(curr-mtls,currlocs,currqty,c

urr batch,UNREC=False)
773. currentlythere=combinelike(currentlythere)
774. if DATASET=="real":
775. ITER=1000000
776. if DATASET=="fake":
777. ITER=1000000
778. (numplaced,currentlythere,volremaining,i,j,remutil,stillto placeinds)=placement

_alg(num total,num placed,currentlythere,volremaining,tripdemandshort,costs,SKU_vols_
short,loc_vols,ITER,iden,iden)

779.
780. print("Organized New Locations")
781.
782. (moves,Currentlythere,Currentlythereold,i,j,k,l)=list_moves(combine like(currentlythe

re-old),currently_there,SKUvols,num-total,num-placed,loc-vols,costs,volremaining,num-pl
acedold,vol_remainingold)

783.
784. print("Generated Summary:")
785.
786. COSTold=total cost(currentlythere old)
787. print("Current Total Location Cost Units: ",COSTold)
788. COST=totalcost(currentlythere)
789. print("New Total Location Cost Units: ",COST)
790. if shipment:
791. summ=-(COST old-COST)

Page 1103

792. print("Added Cost:", summ)
793. else:
794. summ=(COST-old-COST)/COSTold*100
795. print("Percent Improvement: ",summ,"%")
796.
797. if shipment:
798. summary=pd.DataFrame([["Current Total Location Cost Units:",COST_old],["New Total Loc

ation Cost Units:",COST],["Added Cost:",summ]])
799. summary.columns = ['','']
800. else:
801. summary=pd.DataFrame([["Current Total Location Cost Units:",COSTold],["New Total Loc

ation Cost Units:",COST],["Percent Improvement:",summ,"%"]])
802. summary.columns ['','','']
803.
804. if shipment:
805. filename=changecolons('Outputs/shipment put-away '+str(datetime.nowo)+'.xlsx')

806. if fullrelocation:
807. filename=changecolons('Outputs/total_relocation '+str(datetime.nowo)+'.xlsx')

808. if replace:
809. filename=changecolons('Outputs/replace X '+str(datetime.now()+'.xlsx')
810.
811. writer = pd.ExcelWriter(filename)
812. if shipment:
813. export=movesexport(moves)
814. export.toexcel(writer, 'Put-away Locations',index=False)
815. else:
816. export=DF.sortvalues(movesexport(moves),by='Cost Reduction',ascending=False)

817. export.toexcel(writer,'List of Moves',index=False)
818. currentlythereexport(currentlythere).toexcel(writer, 'New Layout' ,index=False)
819. currentlythereexport(currentlythereold) .toexcel(writer, 'Old Layout',index=False)

820. summary.to excel(writer,"Summary",header=False,index=False)
821. writer.save() #SAVE TO EXCEL
822. print("Saved File: "+filename)
823.
824. toc(ST)

Page 1104

