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Abstract

Immiscible fluid flows are ubiquitous in nature and industry, from multiphase-flow
phenomena on geologic scales such as C02 sequestration and methane venting from
seafloor sediments to bubble/drop/emulsion generation in microfluidic techniques.
All these flows are inherently multi-scale, from the intermolecular interactions on
the nanometer scale in the vicinity of contact lines, where fluid phases meet the
surrounding solid surface, to the micrometer scale of the confinement in a pore or
microfluidic device, and finally to kilometer scale of the natural geologic phenomena.
The multi-scale nature of immiscible fluid flows combined with the inherent disorder
present in many natural or industrial systems renders description of these flows a
formidable task.

Here, using a combination of experimental observations and theoretical modeling
we show that the interplay between confinement and contact line motion leads to
novel and non-trivial consequences on the dynamics and instability of immiscible
fluid fronts.

We first present a theoretical model for thin-film flows on solid surfaces in the
partial wetting regime and show that a self-consistent description of free energy of
this system at equilibrium leads to a Cahn-Hilliard form with an effective height-
dependent surface tension due to the interniolecular forces in the vicinity of the con-
tact line. Within the framework of non-equilibrium thermodynamics, we then study
the consequences of this new form of free energy on the spreading of drops and dewet-
ting of thin films in the partial wetting regime. We show that on macroscopic scales,
our model recovers the classic hydrodynamic Cox-Voinov description of moving con-
tact lines and is consistent with experimental observations. We further show that
on the microscopic scale our model is consistent with the molecular kinetic theory,
therefore bridging the gap between the two descriptions across the scales. We finally
show that our model captures the dynamics of nanometric dewetting thin films in
spinodal and nucleation regimes as well as their long-time coarsening behavior and
brings the theoretical predictions closer to the previous experimental observations.

We then revisit the classic Taylor-Bretherton problem in the partial wetting



regime, where air displaces a highly viscous liquid in a capillary tube. In contrast
with the classic results for complete wetting, we show that the presence of a moving
contact line induces a wetting transition at a critical capillary number that is contact
angle dependent. Beyond wetting transition, a film of the defending liquid coats the
tube walls. The entrained liquid film immediately starts receding along the tube wall,
forming a growing dewetting rim behind the contact line, which finally leads to the
breakup of the bubble. The bubble pinch-off is an example of singularity formation,
where separation of length scales close to the point of singularity are expected to
lead to self-similar and universal dynamics. We show that the breakup of a bubble
confined in a capillary tube undergoes a sequence of two distinct self-similar regimes
even though the balance remains between viscous and surface-tension forces. While
the breakup of a bubble in an unbounded reservoir is known to be non-universal,
we demonstrate that the presence of the early-time self-similar regime in a confined
system effectively erases the system's memory and restores universality to bubble
breakup.

We then revisit the classic Saffinan-Taylor instability in the imbibition regime,
where a more wetting and less viscous liquid displaces a less wetting and more viscous
liquid in a radial Hele-Shaw cell (two plates separated by a small gap). We show that
the wetting liquid invades the cell in the form of a thin-film front, which becomes
unstable and leads to a viscous fingering pattern. To gain an understanding of the
front dynamics, we develop a thin-film model, which predicts the base state of the
invading thin films to be an undercompressive shock, which has previously been shown
to lead to stable fronts. Using linear stability analysis and nonlinear simulations,
we show that consistent with our experimental observations the thin film front in
a Hele-Shaw cell is unstable. The instability here is due to the pressure coupling
between the two fluid flows in a confined domain. We further show that the scaling
of the wavelength of instability in thin-film front is different from the Saffman-Taylor
instability, suggesting that it belongs to a new pattern formation class.

In the final part of this thesis, we explore how the interplay between wetting and
disorder influences the pattern formation. We introduce disorder into the Hele-Shaw
system by making one of the surfaces randomly rough. In particular, we show that in
the imbibition regime aside from the primary thin films that we observed in smooth
cells, secondary thin films of the scale of roughness appear. These secondary films
wick into the crevices of the rough surface with a diffusive dynamics and change the
effective wettability of the medium. We therefore show that disorder on the micro-
scale affects the macroscopic morphology of unstable fluid fronts.
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Introduction

Patterns are ubiquitous in nature, from snowflakes (Libbrecht, 2017) to valley net-

works (Perron et al., 2009) (Fig. 0-1). How these complex macroscopic patterns arise

from simple microscopic rules has always fascinated and attracted scientists. From

an engineering viewpoint, understanding these processes is a first step in designing

self-organized or self-assembled structures from few basic rules (Manoharan, 2015;

Zeravcic et al., 2017). Considerable progress has been made in understanding, and

describing pattern formation using different classes of models (Gollub and Langer,

1999; van Saarloos, 2003). However, given the complexity and seemingly infinite va-

riety of patterns that can be observed in nature, one wonders if there is a universality

in these phenomena.

While in critical phenomena, the microscopic details are screened and macro-

scopic quantities follow universal laws (Kadanoff, 2000; Kardar, 2007), phenomena

associated with pattern formation are often very sensitive to the microscopic details.

For instance, in the dendritic growth and side-branching observed in solidification

processes, noise at the atomic scale is thought to be responsible for many of the

observations on macroscopic scales (Gollub and Langer, 1999; Libbrecht, 2017). In

the dynamical systems language, this is due to the fact that in many of the pattern

forming phenomena, unstable fixed points can be sampled if the system is perturbed,

and this often is the case due to the presence of thermal noise or other experimental

perturbations. Therefore, a good understanding of the microscopic physics is needed

to be able to describe and control macroscopic patterns (Kessler et al., 1988).

One of the archetypes of pattern formation is the Saffman-Taylor instability (?),
which occurs when a less viscous fluid displaces a more viscous fluid in a Hele-Shaw cell

11



(a) (b) (c)

(d)(e)

Figure 0-1: Pattern formation in natural phenomena across the scales: (a) dendritic

patterns observed in the growth of succinonitrile in its undercooled melt (Langer,
1989); (b) an ice crystal sheet naturally grown on the surface of a lake (Libbrecht,
2017); (c) growth of Paenibacillus dendritiformis dendron on the surface of agar gel

(Ben-Jacob et al., 2000); (d) groundwater flow has shaped the networks of valleys,
Florida, USA (Devauchelle et al., 2012); (e) uniformly-spaced valleys in Gabilan Mesa,
California (Perron et al., 2009); the spacing between ticks is 200m.

consisting of two parallel plates separated by a tiny gap, leading to the formation of

"viscous fingers" (Fig. 0-2). The question of pattern selection in the Saffman-Taylor

instability attracted much attention over the past few decades (Pitts, 1980; Park and

Homsy, 1984, 1985; Saffman, 1986; Tabeling et al., 1987; Casademunt, 2004; Nagel and

Gallaire, 2013). The original work by Saffman and Taylor neglected surface tension

and obtained an infinite family of solutions, from which only one was observed in the

experiments. Later, it became clear that this problem is singular, where neglecting

surface tension leads to the non-uniqueness of the solution (Bensimon et al., 1986;

Homsy, 1987). More recent works have shown that three-dimensional effects close

12



(a) (b)

flow interface
direction becomes

------>unstable

air glycerol

time

Figure 0-2: The Saffman-Taylor instability, in which a less viscous fluid displaces a
more viscous liquid: (a) the original experiment by Saffman and Taylor, where air
displaces glycerol in a Hele-Shaw cell, leading to the formation of viscous finger (?);
(b) air displacing glycerol in a radial Hele-Shaw cell, where injection is done at the
center of the cell (Paterson, 1981).

to the fluid-fluid interface may render the gap-averaged equations invalid (Ledesma-

Aguilar et al., 2007a,b). The question of pattern selection in the Saffman-Taylor

instability, its control and variations to this instability is an active and rich research

area (Nagel, 2017; Juel et al., 2018).

Dendritic patterns can also be observed in the Saffman-Taylor instability if the

system is perturbed. Figure 0-3 illustrates several examples, where perturbations in

the form of etched grooves, bubbles, or a wire are introduced and it is observed that

the patterns can be quite different in their morphology from that in the ideal case

(Couder et al., 1986b,a). While we have achieved considerable progress in describing

these patterns and their sensitivity to the ever-present perturbations (Langer, 1989;
Ben-Jacob and Garik, 1990; McCloud and Maher, 1995), the questions are far from
being completely addressed and are subject to ongoing investigation (Franco-G6mez

13



Figure 0-3: Experimental perturbations to the Saffman-Taylor instability: (i) etching

grooves on one of the surfaces of the cell leads to the dendritic growth of the patterns,
i.e. introduce anisotropy in the effective surface tension (Ben-Jacob and Garik, 1990).

(ii) introducing bubbles or a wire into the cell leads to the growth of dendritic patterns,
where the perturbed finger travels faster than the unperturbed ones (Couder et al.,

1986b,a).

et al. , 2016).

Hele-Shaw flows are commonly used as analogue systems to study porous media,

flows. The reason for this analogy is that Darcy's law governs single-phase flow

through both a porous medium and a Hele-Shaw cell. While Darcy's law for single-

phase flow in porous media can be rigorously derived from microscopic physics using a

thermodynamically consistent upscaling procedure (Hassanizadeh and Gray, 1979a,b,

1980; Hassanizadeh, 1986a,b), generalized Darcy equations that are commonly used

to describe immiscible flows in porous media (Bear, 1972) cannot be derived from

14



first principles (Hassanizadeh and Gray, 1990, 1993a,b), and do not account for the

dynamic effects (Hassanizadeh et al., 2002). In fact, averaging from micro scale to

the Darcy scale introduces new parameters that need closure (Gray and Miller, 2005;

Miller and Gray, 2005; Jackson et al., 2009). The generalized Darcy's law involves

capillary pressure and relative permeability functions that are saturation-dependent

and more importantly history-dependent (Cueto-Felgueroso and Juanes, 2016)-the

drainage and imbibition procedures lead to different flow curves and empirical models

have commonly been used to describe these curves (Blunt, 2017). This hysteresis has

been associated with the fact that the generalized Darcy's model is mainly empirical

and misses the important physical ingredients of two-phase flow in porous media. A

school of thought in developing a new generalized multiphase flow model in porous

media has been to introduce more information (interfacial area, connectivity, etc) into

the generalized Darcy's law to allow the capillary pressure and relative permeability

curves be uniquely defined based on the combination of saturation, interfacial area,

connectivity, etc (Reeves and Celia, 1996; Joekar-Niasar et al., 2008; Niessner et al.,

2011); while this approach has led to some level of success in removing hysteresis from

the description, deriving evolution equations for the extra parameters introduced in

this procedure remains and open question and subject to ongoing debate (Gray et al.,

2013, 2015).

The need for a new class of models for immiscible fluid flows in porous media

becomes more clear knowing that the current models often fail to reproduce the

unstable fronts, which are common in applications such as infiltration of water into

soil or CO 2 sequestration, as illustrated in Fig. 0-4 (Cueto-Felgueroso and Juanes,

2008a; Cinar and Riaz, 2014). To address the need for new models for immiscible flows

in porous media, we have to resort to simpler analogue systems such as Hele-Shaw

cells or micromodels, which allows isolating the underlying physics of the system.

Based on micromodel experiments and pore network simulations, Lenormand et al.

(1988) proposed a phase diagram for immiscible displacements in the drainage regime

(less wetting liquid displacing a more wetting one) as a function of the viscosity

ratio between the liquids and injection rate, classifying the observed patterns into

15
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toi sturatlon S) i

Figure 0-4: Immiscible fluid flows in porous media typically lead to unstable fronts:
(i) shows a schematic of the CO 2 sequestration process in a saline aquifer (Szulczewski
et al., 2012). Supercritical CO 2 is less than the surrounding brine and rises due to
buoyancy. On short time scales, the rise of the plume leads to capillary trapping of

CO2 on the back of the plume where brine displaces the CO2 in an imbibition process
(Juanes et al., 2006; Hesse et al., 2008), whereas on longer time scales the mixing of
the CO2 front with brine leads to gravitational fingering (Ennis-King and Paterson,
2005; Riaz et al., 2006), (ii) shows a schematic of the gravity infiltration of water
into unsaturated soil (Cueto-Felgueroso and Juanes, 2008a). The classical Richards
equation for infiltration (Richards, 1931) predicts the front to be stable, which is in
clear contradiction with the experimental observations (DiCarlo, 2013; Wei et al.,
2014).

three groups: capillary fingering corresponding to invasion percolation (Wilkinson

and Willemsen, 1983), viscous fingering corresponding to diffusion limited aggre-

gation (Witten and Sander, 1981; Paterson, 1984; Miloy et al., 1985), and stable

displacement (Fig. 0-5).

Changing the wetting properties of the medium, however, has a profound influence

on the displacement patterns; for instance Stokes et al. (1986) performed experiments

in a Hele-Shaw cell filled with glass beads, and showed that in the drainage regime,

the width of the fingers is in the order of the pore size whereas in the imbibition regime

finger width becomes macroscopic (multiple pore size) and depends on the injection

rate in the form of the capillary number with a macroscopic surface tension (Fig. 0-6).

Trojer et al. (2015) revisited this classic experiment in a radial Hele-Shaw cell filled

with glass beads; by systematically changing the wetting properties of the medium,

they showed that the patterns observed by Lenormand can all be reproduced, i.e.

16



Viscous Fingering

U

Stable Displacement

Viscosity ratio

Capillary Fingering

Figure 0-5: Phase diagram proposed by Lenormand et al. (1988) based on micromodel
experiments and pore network simulations categorizing the observed flow regimes in
drainage into three distinct groups, depending on the viscosity ratio of the two fluids,
and the injection velocity as defined by the capillary number, representing the ratio of
viscous to capillary forces. The left column shows air displacing oil, leading to viscous
fingering at high injection rates and capillary fingering at low rates. The right column
shows mercury (a non-wetting liquid) displacing air, leading to stable displacement
at high injection rates when viscous forces are dominant. At low injection rates,
however, the interface becomes unstable due to the dominance of capillary forces and
the disorder in the pore size distribution of the micromodel, leading to the emergence
of the capillary fingering regime.

capillary fingering, viscous fingering, and compact displacement; displacing a more

viscous liquid by a less viscous one, we expect to observe a fingering instability; they

however, showed that the cooperative pore filling mechanism in the imbibition regime

can lead to a stable displacement (Fig. 0-7).

The experimental observations by Trojer et al. (2015) at low injection rates verified

the quasi-static theoretical modeling of Cieplak and Robbins (1988, 1990); Martys

et al. (1991), who observed a transition from invasion-percolation type behavior to a

cooperative pore-filling mechanism (Fig. 0-8). While the invasion-percolation regime

leads to a fractal structure of the front, the cooperative pore filling regime leads to a

17



A

drainage imbibition

b]Ca

Figure 0-6: The immiscible fluid flow experiments in glass bead-filled Hele-Shaw cells

Stokes et al. (1986), in which a less viscous fluid displaces a more viscous liquid. In

the drainage regime, the pore size determines the finger width. In the imbibition

regime, however, finger width is macroscopic (multiple finger width) and depends on

the flow rate as well as permeability of the medium; here, the normalized finger width

scales as Ca-1/2 . where Ca = pU/f, with y as the viscosity of the defending fluid, U
as the characteristic velocity, and -y as the surface tension.

compact front. The transition between these two regimes therefore marks the onset of

a self-organized criticality, where the correlation length diverges. Martys et al. (1991)

argue that this transition can be categorized as a depinning transition, where the

quenched disorder in porous media pins the contact line while the external pressure

or force together with elasticity of the interface tend to depin the interface. This

observation implies that the onset of flow in the cooperative pore-filling regime is

analogous to the self-organized criticality (Bak et al., 1987) in other systems such as

charge-density-wave conductors (Fisher, 1983), advancing crack fronts (Kardar, 1998;

Alava et al., 2006), or earthquake faults (Carlson and Langer, 1989).

While the displacement of a more viscous liquid by a less viscous fluid is hydrody-

namically unstable (?), the cooperative pore filling in imbibition regime stabilizes the

interface leading to a compact front. In engineering applications, such as oil and gas

recovery, Ohere is a strong evidence for the importance of wettabiity (Jadhunandan

and Morrow, 1995; Buckley et al., 1998; Manrique et al., 2007; Spiteri et al., 2008),

18i
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Figure 0-7: The immiscible fluid flow phase diagram based on experiments in glass
bead-filled Hele-Shaw cells (Trojer et al., 2015): changing the wetting properties
of the medium profoundly changes the displacement patterns. The cooperative pore
filling mechanism in the imbibition regime leads to a complete suppression of fingering
instability at low enough flow rates, resulting in a stable displacement pattern.

and different methods such as low-salinity water flooding (Morrow and Buckley, 2011)

or surfactant flooding (Standnes and Austad, 2003; Chen and Mohanty, 2013) are typ-

ically used to alter the wettability of the medium. To maximize the recovery of oil,
we may then conclude that the best practice is to make the displacing fluid as wetting
to the medium as possible and inject at the lowest possible rate to achieve a stable
compact displacement and maximize the extraction efficiency. Recent experiments,
however, indicate that this conclusion is not correct.

Zhao et al. (2016) studied immiscible displacement of a viscous oil by a less viscous
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Figure 0-8: Quasi-static modeling of immiscible displacement in a micromodel

(Cieplak and Robbins, 1990; Martys et al., 1991): (i) as the pressure of the invad-

ing fluid is increased, the front location shown here between two identical cylinder

adjusts until at a critical pressure the interface becomes unstable, i.e. no static equi-

librium solutions can be obtained. The last stable arc is shown by the dashed line, (ii)

an unstable interface can advance by (a) burst-like behavior, (b) touching the next

cylinder, or (c) overlapping the arc in a neighboring pore space, (iii) pressure-contact

angle phase-diagram of quasi-static invasion, where the solid line indicates the onset

of invasion percolation transition, whereas the dashed line represents the onset of

depinning transition.

water phase in a micromodel system. They tuned the wettability of the system from

the strong drainage regime, where a non-wetting fluid displaces a wetting fluid, all the

way to the strong imbibition regime, where the invading fluid is almost completely

wetting to the medium. Their observations indicated that while changing the wetta-

bility from drainage to weak imbibition leads to a more stable front at low injection

rates, in the strong imbibition regime the interface becomes unstable leading to a

ramified front (Fig. 0-9). The underlying reason for this instability is the emergence

of thin films of the invading liquid in the strong imbibition regime.

The emergence of thin films of the invading fluid in the strong imbibition regime

were first reported in the experiments by Levach6 and Bartolo (2014) on Hele-Shaw

20
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Figure 0-9: Immiscible fluid flow phase diagram based on experiments in micromod-

els (Zhao et al., 2016): here a less viscous liquid, water, displaces a more viscous

liquid, silicone oil. The wettability of the medium is changed all the way from oil-wet

(strong drainage) to water-wet (strong imbibition). In the drainage regime, capillary

fingering is observed at low injection rates, whereas viscous fingering persists at high

injection rates. In the weak imbibition regime, at low injection rates, the interface

becomes stabilized due to the cooperative pore filling mechanism, consistent with

earlier theoretical and experimental observations (Cieplak and Robbins, 1988; Trojer

et al., 2015). In the strong imbibition regime, however, thin films of the invading

liquid become entrained on the surfaces and make the front unstable.

cells and have since been observed in micromodel systems (Zhao et al., 2016; Odier

et al., 2017). The micromodel observations in particular point to the importance of

this regime since it drastically influences the displacement efficiency. The work by

Levach6 and Bartolo (2014) proposed a theoretical framework for the onset of wetting

transition leading to the entrainment of the thin films. The dynamics and subsequent

observed instability of these films, however, have remained open questions.

While Hele-Shaw flows are commonly used as analogue systems to study porous

media flows, the intrinsic disorder of porous media is absent in a Hele-Shaw system.

Disorder, however, can be introduced in a Hele-Shaw cell in the form of defects or

surface roughness. This setting has been widely used in studying the stable imbibi-
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Figure 0-10: Entrainment of thin films of the invading liquid in the unstable imbibition
regime (Levach6 and Bartolo, 2014): while in the drainage regime in a Hele-Shaw cell,
one recovers the classic Saffman-Taylor instability, changing the medium wettability
to strong imbibition leads to the emergence of a ramified structure. Beyond a critical
displacement rate in the imbibition regime, thin films of the invading liquid become
entrained on the channel walls and travel ahead of the main meniscus. While the
onset of this wetting transition has been explained (Levache and Bartolo, 2014), the
dynamics and instability of the thin film front remain open questions.

tion regime, where a viscous wetting liquid displaces a non-wetting gas or less viscous

liquid; the presence of disorder leads to many interesting phenomena like kinetic

roughening and avalanche behavior of advancing fronts (Fig. 0-11). The question

of universality class of disordered fronts in stable imbibition and its connection to

surface growth phenomena has been an active area of research in the past decades

and is still of interest and relevance (Alava et al., 2004; Planet et al., 2009; Clotet

et al., 2014). The influence of disorder on other flow regimes, and in particular on

the unstable imbibition, however, has received much less attention. This is surprising

given that the unstable imbibition regime may be relevant to many applications; for

instance, carbonate reservoirs are typically water-wet, which indicates that the un-
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Figure 0-11: Kinetic roughening of the front in stable imbibition: (i) water flowing

into a Hele-Shaw cell filled with glass beads (He et al., 1992); as the displacement rate

decreases from left to right, the interface become more sensitive to the disorder and

gets pinned. (ii) dyed water imbibing spontaneously into a disordered fiber network

(i.e. a paper towel); the front roughness reflects the inherent complexity and disorder

of the medium (Alava et al., 2004), (iii) the evolution of an interface between two

different turbulent states in a convective nematic liquid crystal, where disorder is

caused by the topological defects in the defending phase, leading to a local surface

growth process (Takeuchi et al., 2011).

stable imbibition regime and film flows can play key role in the displacement process.

In this thesis, we focus on the role of contact line motion on immiscible fluid flows

in confined environments. We begin by developing a theoretical model for moving

contact lines in the context of thin-film flows in the partial-wetting regime. Moving

contact lines are inherently multiscale and multiphysics (Fig. 0-12). We derive the free

energy of the system at equilibrium and show that to achieve an equilibrium droplet

in the partial-wetting regime, one needs to take the intermolecular interactions close

to the contact line into account. We show that these molecular interactions lead to a

height-dependent surface tension in the vicinity of contact line. This new feature leads

to multiple new observations, including compact support for the drop at equilibrium
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Figure 0-12: A schematic of the multiscale nature of the moving contact lines in a
spreading drop with radius R and contact line velocity U: in the hydrodynamic de-
scription of moving contact lines, the dynamic contact angle 9 d is velocity-dependent
and follows the Cox-Voinov law, while the microscopic contact angle is considered
to be constant and equal to the equilibrium contact angle (Bonn et al., 2009; Snoei-
jer and Andreotti, 2013). In the molecular kinetic theory, however, the contact line
meets the surface with an angle that is also velocity-dependent, but follows a scaling
different from that of the hydrodynamic theory (Blake, 2006). Our model bridges the
gap between these two descriptions.

(no precursor film), a localized slip mechanism, convexity of the contact line profile

at the nano-scale, and faster dewetting of nanometric thin films (Pahlavan et al.,

2015; Alizadeh Pahlavan et al., 2018a,c). These results collectively bring theoretical

predictions closer to the experimental observations and propose a new framework for

a self-consistent approach to describe moving contact lines.

Immiscible fluid flows generally take place in confined geometries, such as a mi-

crofluidic cell or the pore space of porous media. Confinement exacerbates the role of

nonhydrodynamic intermolecular forces due to the larger surface-to-volume ratio, and

also introduces a nonlocal coupling between the flowing fluid phases. To understand

the role of confinement, we then describe fluid-fluid displacement in the simple geom-

etry of a capillary tube. The simplicity of this geometry allows us to understand the

role of contact line motion on the meniscus dynamics as well as the stability of thin

films coating the tube surface. These insights will prove essential in the understanding

of interfacial dynamics during phase entrapment and phase change in porous media.
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Figure 0-13: Dewetting rim next to the receding contact line: beyond the wetting
transition, a growing dewetting rim appears, which ultimately leads to the pinch-off.
The dynamics of this film is decoupled from the dynamics of the bubble front and
can be described within a long-wave approximation framework (Zhao et al., 2018).

We analyze the onset of wetting transition, in which a film of the defending liquid

becomes entrained on the walls, as well as the dynamics of the growing dewetting

rim beyond transition (Fig. 0-13). As the contact line keeps receding, the rim grows

and finally leads to the pinch-off of the bubble. This phenomenon is an example of

singularity formation, which is characterized by self-similarity and universality. We

show that the pinch-off dynamics undergoes a sequence of two distinct self-similar

regimes and restores universality to the bubble breakup, which is lost in the bubble

formation in unbounded domains.

We then extend the description of immiscible displacements from a capillary tube

(1D geometry) to the gap between two parallel plates, or Hele-Shaw cell (2D geom-

etry). In particular, we focus on the regime of unstable imbibition, where a wetting

liquid displaces a less wetting and more viscous liquid. We observe in this regime

thin films of the invading liquid get entrained on the cell surface and the thin-film

front becomes unstable, leading to the formation of viscous fingers. Using a thin-film

model, we analyze the stability of the front and show that the base state is an un-

dercompressive shock- a mathematical structure encountered in thin-film flows in
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Figure 0-14: Thin-film fornt instability in unstable imbibition regime in a radial Hele-

Shaw cell: the iD cut of the profile shows a side viiew of the thin-film finger, which

seems like an undercompressive shock structure; symbols represent experimental data

and the dashed line shows the result of the theoretical model.

unbounded domains, which was found to lead to stable fronts (Bertozzi et al., 1998,

1999). However, consistent with our experimental observations, we find the base state

to be unstable due to the non-local coupling of the pressure fields between the two

fluids in the confined geometry. We further show that the scaling of the wavelength

of instability in the thin-filnm front in unstable imbibition is different from that of the

Saffman-Taylor instability. These observations further emphasize on the significant

role of the interplay between contact line motion and confinement in emergence of

novel flow regimes that were previously unnoticed.

In the last part of this thesis, we focus on the impact of disorder on the pattern

formation in a Hele-Shaw cell. While disorder is known to fundamentally alter the

patterns in the classic Saffman-Taylor instability (drainage regime), and in stable

imbibition regime, much less is known about its influence in other wetting conditions

and in particular on the unstable imbibition regime. We show that the presence

of disorder in the form of micro-scale roughness on one of the Hele-Shaw cell surface

leads to macroscopic changes in the pattern formation and morphology of the front. In

particular, we show that roughness leads to the "hemi-wicking" of the invading liquid

into the grooves of the surface with a diffusive dynamics and changes the effective

wettability of the medium. These observations are of significance for instance in
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Figure 0-15: The interplay between contact line motion and disorder in a radial Hele-
Shaw cell: the bright yellow regions show thin films of the invading liquid, which show
a more ramified front compared with the smooth case, and the red halos surrounding
them show the secondary films that wick into the crevices of the rough surface.

water-wet carbonate reservoirs, where film flows can have a dominant influence on

the displacement processes on kilometer scale.
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Part I

Thin films in partial wetting
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Chapter 1

Stability, dewetting and coarsening

Understanding the underlying physics of how fluids coat solid substrates has been

a long-standing quest in fluid dynamics (Blake and Ruschak, 1979; Ruschak, 1985;

Quer6, 1999; Weinstein and Ruschak, 2004; Snoeijer and Andreotti, 2013). With

the advent of micro and nano scale lithography techniques enabling manipulation at

increasingly small scales (Xia and Whitesides, 1998; Gates et al., 2005; Qin et al.,

2010), and with applications ranging from micro/nano-fluidics to additive manufac-

turing (Stone et al., 2004; Schoch et al., 2008; Wijshoff, 2010; Kumar, 2015), questions

arise regarding the relevant description of fluid physics at the nano-scale and the va-

lidity of continuum modeling at such small scales (Squires and Quake, 2005; Bocquet

and Charlaix, 2010; Colin et al., 2012; Bocquet and Tabeling, 2014; Lohse and Zhang,

2015). As the thickness of a liquid film on a solid substrate becomes smaller than

approximately 100 nm, the atoms at the liquid-solid and liquid-gas interfaces start

interacting with each other, giving rise to additional intermolecular forces that need

to be considered in continuum modeling (Israelachvili, 2011; Rauscher and Dietrich,

2008; Bonn et al., 2009).

A uniform nanometric thin liquid film on a solid substrate can become unsta-

ble due to these intermolecular forces. The instability leads to dewetting of the

film and formation of drops. Both liquid and solid-state dewetting at the nano-

scale are relevant in many phenomena (Blossey, 2012; Gentili et al., 2012; Thompson,

2012; Mukherjee and Sharma, 2015; Pierre-Louis, 2016) such as pumping liquids using
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nanowires (Huang et al., 2013), patterning via self-assembly (Gau et al., 1999; Hig-

gins and Jones, 2000; Lopes and Jaeger, 2001; Huang et al., 2005; Segalman, 2005;

van Hameren et al., 2006; Pokroy et al., 2009; Fowlkes et al., 2011; Han and Lin,

2012; Thiele, 2014; Wu et al., 2015; Kong et al., 2015, 2016), synthesis of core-shell

nanoparticle arrays (McKeown et al., 2015), droplet generation (Yamamoto et al.,

2015; Keiser et al., 2017), needle growth (Yu et al., 2013), understanding slip and

rheology of nanometric films (Herminghaus et al., 2002; Fetzer et al., 2005, 2007a;

Bdumchen and Jacobs, 2010; Bdumchen et al., 2012; Biumchen et al., 2014; McGraw

et al., 2014), tear film dynamics (Braun, 2012), film flow in heat pipes (Kundan et al.,

2017), Rayleigh-Plateau instability of nano-wires or liquids in nano-channels (Molares

et al., 2004; Chen et al., 2007), or stability of bubbles/drops in nicro/nano-channels

(Huerre et al., 2015; Hammoud et al., 2017).

Reiter (1992, 1993) was the first to experimentally characterize the dewetting

of a nanometric polymer film on a solid substrate. He observed that, initially, some

holes form with a seemingly characteristic wavelength between them; these holes then

expand with a ridge formed at the receding front; these ridges ultimately meet and

form a network of polygonal patterns. The ridges later collapse due to the Rayleigh-

Plateau instability, forming small droplets of approximately uniform size. On a much

longer time-scale still, these droplets can coarsen to ultimately form a single drop;

the time-scale associated with this last stage, however, is very long and not readily

accessible within typical experiments.

The theory for instability of thin liquid films under the influence of intermolecular

forces far predates the experimental observations, dating back to Vrij (1966); Sheludko

(1967); Ruckenstein and Jain (1974); Williams and Davis (1982); Wyart and Daillant

(1990); Brochard-Wyart et al. (1993); Sharma and Reiter (1996); Sharma and Khanna

(1998); Oron (2000). The Navier-Stokes equations describing the fluid motion can

be greatly simplified using the long-wave/lubrication approximation when the char-

acteristic lateral length of the flow is much larger than its characteristic height, an

approach that has its origins in the work of Reynolds to describe the pressure distri-

bution for slider bearings (Reynolds, 1886). For ultra-thin liquid films, an additional
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disjoining pressure term arises due to the intermolecular interactions between the

solid-liquid and liquid-gas interfaces.

Assuming a particular form for the intermolecular forces, one can use linear sta-

bility analysis of the thin film equation to arrive at a prediction for the scaling of the

wavelength of the instability and its growth rate as a function of the initial uniform

film thickness (Oron et al., 1997; Craster and Matar, 2009); this regime predicted by

the linear theory is known as the spinodal regime. In apolar systems, typically van

der Waals (vdW) forces are the main long-range attractive interactions, scaling with

the film thickness as - 1/h 2 , leading to a scaling of ~ h2 and ~ 1/h5 for the most

unstable wavelength and fastest growth rate, respectively. These scalings therefore

serve as a qualitative benchmark for the experiments to determine if they are within

the spinodal regime. Making quantitative predictions, however, requires prescribing

the exact form of the interface potential.

The observations by Reiter (1992, 1993) led to a wave of experimental studies

focusing on dewetting of thin liquid films. Jacobs et al. (1998) showed that the holes

observed in the experiments of Reiter (1992, 1993) have a Poisson distribution, a

signature of the nucleation regime, and that the scaling of the film-rupture time as

a function of film thickness did not match the theoretical predictions of the spinodal

regime; films in the nucleation regime are linearly stable, yet instabilities can still

grow due to the presence of defects on the substrate or in the film itself (Jacobs et al.,

1998). The first observations of the spinodal regime were reported by Bischof et al.

(1996) and Herminghaus et al. (1998) using thin gold films on quartz substrates, where

the correlations between the holes was rigorously shown using Minkowski functionals

(Mecke, 1998; Mantz et al., 2008).

The presence of residual stresses in thin polymer films can further complicate the

dewetting process; Reiter et al. (2005) observed dewetting through nucleation for

large film thicknesses, where the film is expected to be linearly stable. They realized

that the number of holes is a strong function of the ageing time of the polymer

before the temperature is raised above the glass transition temperature to perform

the experiments; they further speculated that the reason behind this observation
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could be that during the spin-coating process, the solvent evaporates quickly, leaving

the polymer chains in non-equilibrium configurations leading to a residual stress in

the film, which can be responsible for the unexpected instability of the films. The

observations by Reiter et al. (2005) therefore point to the need for extreme caution

in conducting and interpreting experiments on thin films in spinodal and nucleation

regimes (Stange et al., 1997; Thiele et al., 1998; Xie et al., 1998; Segalman and Green,

1999; Meredith et al., 2000; Bollinne et al., 2003; Sharma, 2003; Nguyen et al., 2014).

Seemann et al. (2001a) conducted a series of well-controlled experiments using

polystyrene films spin-cast on silicon (Si) wafers. They demonstrated that by tun-

ing the thickness of the silicone oxide coating of the Si wafer, they could alter the

interface potential and classify three categories of instabilities: 1) spinodal dewetting

for linearly unstable regions, 2) thermal nucleation at the edge of the linearly un-

stable region, where thermal fluctuations can overcome the energy barrier leading to

dewetting, and 3) heterogeneous nucleation within the linearly stable region, where

defects on the substrate or in the film give rise to the appearance of holes and insta-

bilities. The spinodal regime is easily distinguishable as it gives rise to a well-defined

characteristic wavelength of instability, from which the interface potential can be re-

constructed. The key feature distinguishing regimes 2 and 3 is that holes continuously

appear throughout the experiment in the thermal nucleation regime, whereas they all

form within a limited time window in the heterogenous nucleation regime.

Becker et al. (2003) observed good agreement between experimental observations

and theoretical predictions, with the caveat that experiments showed a faster rupture

time. To explain the time-scale mismatch between theory and experiments, Mecke and

Rauscher (2005); Grin et al. (2006); Fetzer et al. (2007b) suggested that accounting

for thermal fluctuations is necessary. They showed that thermal noise at the typical

temperatures used in the experiments can speed up the initial rupture process, thereby

bringing the theoretical predictions closer to the experimental observations.

Here, we revisit the theory of thin liquid films in partial wetting and show that

the intermolecular forces in thin films give rise to a height-dependent surface tension.
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We show that the free energy of the system can be cast in the following form:

F = f(h) + K(h)(hX)2 dx, (1.1)

which resembles the Cahn-Hilliard framework for phase separation in binary alloys

(Cahn and Hilliard, 1958; Langer, 1971), an idea that dates back to van der Waals

(Rowlinson, 1979; Rowlinson and Widom, 1982). Here, f(h) is the bulk free en-

ergy and t(h) is a height-dependent surface tension term; this feature has important

consequences for stability of liquid films, leading to a slightly smaller wavelength of

instability and a faster rupture rate than the classical theory (by up to 6 times),

bringing the theory closer to the experimental observations, and suggesting that the

height-dependence of surface tension could play a role along with the presence of

thermal noise.

Within the framework of nonequilibrium thermodynamics (Hohenberg and Halperin,

1977; Bray, 1994; Cross and Hohenberg, 1993), our model in non-dimensional form

can be written succinctly as follows (Pahlavan et al., 2015):

Oh O -
=h M( x h ,(1.2)

with the mobility M, and the pressure defined as the variational derivative of the free

energy as P = jr/oh = df/dh - ,FO/x (VfOh/Ox); here, h represents the height

of the liquid film, K is the height-dependent surface tension, and f is the bulk free

energy.

Our model leads to a generalized form of the disjoining pressure defined as:

< ) h ) = dop 1 + / / h', (1.3)(D (, hdh 09 O, ~

with 0,,1 (h) and 0$,,2 (h) as components of the vdW force. As indicated in Eq.(1.3),

this generalized disjoining pressure depends not only on the film height, but also on

its slope and curvature. This model allows describing the spreading and dewetting of

drops and thin films in the true partial-wetting regime (Brochard-Wyart et al., 1991;
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de Gennes et al., 2004) without the need to invoke a precursor film (Pahlavan et al.,

2015).

Using the new thin-film model, we revisit the instability and dewetting of a par-

tially wetting thin liquid film on a solid substrate. We first analyze the equilibrium

film and droplet solutions predicted by this model and contrast it with the classical

model, showing that in our model the equilibrium droplets exhibit compact sup-

port and show a nonzero equilibrium angle at the contact line, whereas the classical

thin film model cannot admit solutions with compact support and the equilibrium

droplet only asymptotically meets the substrate through a precursor film (Brenner

and Bertozzi, 1993). Analyzing the stability of uniform film solutions, we show that

the new model predicts a faster growth rate and smaller wavelength of instability

in the spinodal regime than the classical model. Upon dewetting, the newly-formed

liquid droplets arrive at a metastable state; they are connected by ultrathin fluid

films of nonzero thickness and slowly coarsen to lower the energy of the system; this

coarsening process, however, occurs on very long time scales as the dynamics is now

mainly driven by drainage through the ultrathin films and the mobility scales as

~h3 , leading to very small rates of mass transfer between the droplets. We show

that the coarsening process arrives at a self-similar intermediate-asymptotic behavior

(Barenblatt, 1996), which is independent of the details of the contact line models and

even in the presence of thermal fluctuations matches the existing predictions for the

classical thin film model (Glasner and Witelski, 2003; Gratton and Witelski, 2008,

2009). We, however, observe a skewed drop-size distribution for larger drops in the

new model; while the long-tailed distribution follows a Smoluchowski equation, it is

not associated with a coalescence-dominated coarsening process, calling into question

the association made between coalescence and skewed drop-size distribution in some

earlier experiments.
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1.1 Free energy at equilibrium: emergence of Cahn-

Hilliard framework with height-dependent sur-

face tension

Consider a nanometric thin liquid film sitting on a solid substrate as shown in Fig.

1-1. When the film is perturbed, it can become unstable if the solid prefers to be

in contact with the gas phase; in this configuration the uniform film has the lowest

interfacial area, so dewetting lowers the bulk energy of the system at the expense of

increasing its interfacial energy. We can write the energy of a half drop in 1D as:

F = $0 (h, hx)dx, (1.4)
0x

where $ is the free energy density, x = 0 marks the center of the drop and x = xO

is where the liquid, solid, and gas meet, i.e., the contact line. At equilibrium, the

variation of the free energy is zero, i.e., JF = 0:

6 ($o ((h, hx) - Ph) dx) = 0, (1.5)

where the operator J indicates variation of the functional and the Lagrange multiplier

P is introduced to enforce mass conservation. Expanding the above equation leads

to

-- P)hdx + 0ohxdx + q 3xO = 0. (1.6)
0 ah .0 o hx Ix0

Using integration by parts, we can rewrite the second integral in Eq. (1.6) leading

to:

fX [xOF8$ d (o
6.10 ($(h, hx) - Ph) dx = , [aOhdx Kh )PJhdx

0 0 O dx Ox PI(1.7)

+ ( ) o0 +$ x0 = 0.
Ohx 0 X0

We can further use the Taylor expansion for the boundary terms and write 6hx, =

-6x 0 Ohx.
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Figure 1-1: Schematic of a liquid film on a solid substrate; films with a height less than
~ 100 nm can become unstable to infinitesimal perturbations if the liquid does not

completely wet the substrate; in such situations, the instabilities grow and the film
dewets from the substrate forming small droplets that can then coarsen to form larger
drops; the shape of the small drops is governed mainly by surface tension leading to

a spherical cap shape with a macroscopic Young contact angle Gy; deviations from
the spherical cap shape can occur due to the intermolecular forces very close to the
contact line. If the height of the drop becomes comparable to the capillary length
ly = y/ (pg), gravitational force becomes important leveling the drop and forming
a puddle shape; gravity sets the upper limit h. = 2l, sin (Oy/2) for the puddle height.

At equilibrium, the integrand as well as the boundary terms need to be indepen-

dently zero. The integrand represents the Euler-Lagrange equation (Yeh et al., 1999;

Starov et al., 2007; Arfken et al., 2013)

[&$ d (Oq ~i
ao= d ) P (1.8)
ah -dx (ahx) =.

The boundary condition at x = xo then becomes

-hx +q4 = 0. (1.9)

This equation is known as the transversality condition or the Augmented Young

equation. Note that the boundary terms at x = 0 automatically cancel out due to

the symmetry conditions.

We therefore have two constraints on the free energy as we approach the contact

line: 1) it should satisfy the Augmented Young equation (1.9), and 2) it should recover

the solid-gas free energy at the contact line to allow for a continuous variation of the

energy. Our objective therefore is to find the functional form of the free energy, whose

minimizer at equilibrium satisfies these two conditions. Considering the macroscopic

contributions to the free energy, i.e., gravity and interfacial energies, we can write the
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free energy as:

FM =( pgh + (ysl - yIg) +y 1 + h) dx, (1.10)

where pgh2/2 represents the gravitational potential energy, Y.1, 'Yg represent the solid-

liquid, and solid-gas interfacial energies, and the term -yV1 + h! represents the

liquid-gas interfacial energy contribution. Neglecting gravity, the Euler-Lagrange

Eq. (1.8) will simplify to the usual Laplace equation for the pressure jump across an

interface. We can now proceed to check whether the macroscopic free energy density

satisfies the two constraints given above for equilibrium.

As the film height goes to zero, # must be equal to the solid-gas interfacial energy;

in the above representation of the free energy, we have subtracted this contribution,

so we require #(h = 0) = 0. Therefore as we move close to the contact line, we have

(y., - -yg) + -y1+ hjl = 0. Here we consider the true partial wetting regime,

where a droplet is surrounded by a dry solid substrate. The same arguments can be

applied for the case of pseudo partial wetting, where the droplet is surrounded by

a precursor film of height hf; in this case, the height at the contact line goes to hf

instead of zero.

The Augmented Young equation further requires the following

hx
-hz y * + -YV1 + h x + (yt- 3)=0. (.1

V1 + hx___0 __

Note that this equation can be simplified to give us the Young equation, i.e.,

(TYs9 - Yag) +(-y/,/I + hx) |2 = 0, which in turn simplifies to ycos y = (Ysg -

where Oy is the macroscopic Young contact angle (Young, 1805).

Putting the Augmented Young equation and the continuity constraint together

leads to the following conclusion:

h 2
y x 0. (1.12)

1/_ + hj2 X
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The only way for this equation to be satisfied is if h.(xo) = 0; if we substitute

hx(xo) = 0 back in the Augmented Young equation, we arrive at (b.1 - Ng) + 'y = 0;

using the Young equation, this leads to y(I - cosGy) = 0, indicating that Oy = 0.

In other words, the liquid needs to completely wet the surface for the constraints

on the free energy to be satisfied. An alternative way of arriving at this con-

clusion is to consider a uniform flat film; the energy of this film is then written

as f (Ipgh2 + ( ysg - 7) + y) dx; as we thin down the film and its height goes

to zero, we need to recover the solid-gas interfacial energy, therefore we require

('ysi - 7y9) + - = 0, which leads to the same result.

The macroscopic contributions to the free energy are therefore insufficient to model

the partial wetting regime; we need to incorporate the physics at the nanoscale close

to the contact line. As the height of the liquid film becomes small, the liquid-solid and

liquid-gas interfaces start to interact with each other, leading to an additional con-

tribution in the free energy, commonly known as the disjoining pressure (de Gennes,

1985). We can therefore write the free energy in the following form:

F = FM + IF = j + , (h) dx, (1.13)

where #,,(h) represents the intermolecular interactions close to the contact line. We

now can check whether this form of the free energy satisfies the continuity constraint

and the Augmented Young equation. The continuity of the free energy dictates:

(yS - ysg) + 7/1 + h + #,(h = 0) = 0. (1.14)

The Augmented Young equation leads to the following:

hx
-hx lh + yf + h2 + - ysg) + #(h = 0) = 0. (1.15)

+ 2 0 x X

This equation represents the so-called Derjaguin-Frumkin equation (Starov et al.,

2007), relating the Young angle to the microscopic forces close to the contact line:

-/ cos Qy = 'Y cos O, + , (h = 0), where 0, represents the microscopic angle at the
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contact line and we have used h. =I_ tan OP and Young equation Ys, - Ys = y Cos Oy

(Yeh et al., 1999; Starov et al., 2007; Starov, 2010). The above two constraints on

continuity of the energy and the augmented Young equation lead to h.(xo) = 0,

or O,= 0. Putting hx(xo) = 0 back into either of the above equations leads to

Ot,(h =0) = S, where S =/s9 - -/t - y is known as the spreading parameter.

Therefore, we arrive at the conclusion that while the macroscopic Young angle (0y)

can be non-zero, the microscopic angle at the contact line (0,,) needs to be zero to

satisfy the energetic constraints; this regime is commonly known as pseudo-partial

wetting, where a macroscopic liquid drop is surrounded by a microscopic precursor

film (Heslot et al., 1990; Brochard-Wyart et al., 1991; Sharma, 1993a). To describe

the true partial wetting regime, in which a liquid droplet sits on a dry surface without

a precursor film (de Gennes et al., 2004), additional physics are needed.

Surface tension at a liquid-gas interface arises due to the collective interactions

between the liquid and gas molecules (Marchand et al., 2011; Israelachvili, 2011). In

the case of a uniform thin liquid film of nanometric thickness on a solid substrate,

where liquid-gas and liquid-solid interfaces come very close to each other, the collec-

tive interactions also give rise to an excess free energy in addition to the interfacial

tensions. For a nearly uniform thin film, this excess energy simply depends on the

height of the film as represented by 0,(h) (Israelachvili, 2011). Close to the contact

line, however, the interfaces are not parallel, and therefore the collective intermolec-

ular interactions between solid, liquid, and gas molecules lead to a slope-dependent

excess free energy, i.e., #,(h, h,) for a liquid wedge sitting on a solid substrate (Hock-

ing, 1993; Wu and Wong, 2004; Dai et al., 2008). Using density functional theory, this

excess free energy can be represented as a non-local integral of all the interactions

(Keller and Merchant, 1991; Merchant and Keller, 1992; Getta and Dietrich, 1998;

Snoeijer and Andreotti, 2008); however, here we use a simplified local approximation

of the excess free energy, which has been shown to agree well with the non-local for-

mulations (Bauer and Dietrich, 1999; Bonn et al., 2009). We can therefore write the
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free energy as:

F - O 2pgh2 (-Isl - -Isq) + -yv'1+ hx ,h x dx . (1.16)

Continuity of the free energy leads to the following constraint at the contact line:

(7si - y9g) + y1 + hI + ,1 (h, hx) = 0. (1.17)

The augmented Young equation further becomes:

-hx h+ + + -/ 1 + ('Ysi - -ysg) + #t(h, hx) 0. (1.18)
Ih ahx)/ XO XO

Based on the derivations of Dai et al. (2008), we propose to decompose the vdW in-

teractions, 0,(h, hz), into two parts: a height-dependent part, and a slope-dependent

part: 0, = (#5, 1(h) + ,, 2(h)) - ,, 2(h) 1 + (hx) 2 ; using the long-wave approxima-

tion, this form further simplifies to 4i, = # 1 (h) - 1,,, 2 (h)(hx) 2 ; note that for parallel

interfaces, hX = 0, we recover the original height-dependent potential. An alternative

way to arrive at the proposed form for the vdW forces is based on simple symmetry

arguments: #, cannot be linearly dependent on hx as it should have the same sign

everywhere around the droplet; therefore it must be a function of even powers of hx

leading, in the simplest case, to the proposed gradient-squared form above.

The augmented Young equation can thus be written as:

-hx (x- 22) + +y X 1+ h2 + (ys - ysg) +0,(h, hx) =0. (1.19)
V1 + hXX 0 0X

Simplifying this equation leads to the following relation: -y cos Oy = [Y - #p,2(h

0)] cos, + [#5,a,(h = 0) + OM, 2 (h = 0)]. Combining the augmented Young equation

(1.19) and the continuity constraint (1.17) leads to the following condition at the

contact line:
h 2

(_Y - 2,2 0. (1.20)
V/1 + hX ) 0
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To satisfy this condition at the contact line, we either need to have hz(xo) = 0

leading to a zero microscopic angle as before, or Op,2(h = 0) = -, which does not

constrain the value of the microscopic contact angle; this allows the microscopic

angle to naturally arise as part of the solution; this outcome is consistent with the

predictions of nonlocal density functional theory (Snoeijer and Andreotti, 2008). The

augmented Young equation (1.19) simplifies to ycos y = #,1(h = 0) + -y; having

#, I(h = 0) = S therefore leads to the Young equation -y cos Oy = 'ysg - 'ys1.

Allowing for slope-dependence of the vdW forces therefore leads to a form of the

free energy that satisfies all the constraints of the partial-wetting regime. Using the

long-wave approximation, i.e., ,1,+ (h,)2 ~ 1 + $(h,)2 , the total Helmholtz free

energy can be written as

F = f(h) (h)(hx )2 dx, (1.21)

which, interestingly, resembles the Cahn-Hilliard formulation (Cahn and Hilliard,

1958). The free energy here is divided into a bulk contribution, f(h) = !pgh 2 - S +

#4(h), and an interfacial contribution with a height-dependent interfacial tension,

K(h) = -y - #,,2(h). The above constraints on #,, and q.2, therefore, lead to f(h =

0) = 0 and K(h = 0) = 0, which allow for compactly-supported droplets sitting

on a dry solid substrate (Benzi et al., 2011; Cueto-Felgueroso and Juanes, 2012;

Pahlavan et al., 2015). Note that the height-dependent interfacial term leads to a

new nonlinear term of the Kadar-Parisi-Zhang (KPZ) type (Kardar et al., 1986);

similar forms have also been recently proposed in the context of active suspensions

(Stenhammar et al., 2013; Wittkowski et al., 2014). The idea of an order parameter-

dependent interfacial tension has been proposed in the context of binary alloys (Cahn,

1961) and polymer blends (de Gennes, 1980), and the dependence of surface tension

on height has also been recently proposed in the context of capillary waves on thin

liquid films (MacDowell et al., 2013, 2014). In the context of moving contact lines,

Shikhmurzaev (1997, 2007) has proposed that the idea of a dynamic surface tension

close to the contact line can resolve the moving contact line singularity and lead to
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a natural emergence of the dynamic contact angle (Sibley et al., 2014); both these

features are also reproduced in our model (Pahlavan et al., 2015).
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1.2 A generalized disjoining pressure

Having defined the free energy, we can write the evolution equation for the height of

the liquid film in the form of a mass-conservative gradient flow as (Hohenberg and

Halperin, 1977; Bray, 1994; Cross and Hohenberg, 1993):

-- = -- M (6(1.22)
Ot OX Ox 6h '

where M represents the mobility, and the variational derivative of the free energy is

defined as 6F/5h = &F/Dh - 9/Dx [DF/D(hx)] (Anderson et al., 1998).

An alternative way to arrive at the same thin-film model is to start from the

Navier-Stokes equations of motion and simplify them using the lubrication approxi-

mation:

p + u Vu = -VP + V -T - pgez, (1.23)
19t

in which p is the liquid density, u = (u, w) is the velocity field, P is the isotropic

liquid pressure, T is the stress tensor, and the last term in the equation represent

the gravitational force. The stress tensor can be further decomposed into two parts,

T = - + M, where r is the deviatoric stress and M represents the stress due to

external body forces, taken to be zero in this work.

We non-dimensionalize the equations in the following way: i = x/L, i = z/H,

i h/il, ii = u/U, v = w/(cU), I t/ (pLL4/-yH 3 ), p = P/ ('yHI/L2 ), and r=

r/ ('yH2 /L 3 ), where c = H/L and H, and L represent a characteristic height and

length, respectively. This leads to three dimensionless groups, Re = pUH/P, Ca

Ca/c3 with Ca = uU/-y, and Bo = (L/l ) 2 with I- = 'y/pg as the capillary length.

The above equations of motion then need to be supplemented by boundary condi-

tions at the wall and at the liquid-gas interface. At the wall, we impose a Navier slip

boundary condition: ii|=0 = #3o9ii/o9iI,=o, where / = b/H is the non-dimensional slip

or extrapolation length (Granick et al., 2003; Neto et al., 2005; Lauga et al., 2007);

we also assume no penetration at the wall: Cv|j=O = 0. At the liquid-gas interface,

one must satisfy the kinematic boundary condition i, = (1/da)Oh/a[ + ftOh/a,
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where it and v, are the velocity components at the interface. The stress boundary

condition at the interface can be written as:

([P]I - [T]) -n = (y/C + D) n, (1.24)

where [-] represents the jump across the interface, n = (-hr, 1)/ 1+ h2 is the unit

vector normal to the interface, t = (1, h,)/1 + h, is the unit vector tangent to the

interface, K = -V, - n = hxz/(1 + h2) 3 / 2 represents the curvature with V = (I - nn)-

V. The jump in the liquid pressure and stress across the interface is represented by the

terms on the right-hand side of the equation: the first term gives the Laplace pressure

jump due to the interface curvature, 4) arises due to the intermolecular interactions

between the solid-liquid and liquid-gas interfaces and only becomes relevant when

these two interfaces are closer than a few nanometers (Israelachvili, 2011; Bonn et al.,

2009).

Using the above non-dimensionalization and long-wave approximation, C < 1, and

negligible inertia, ERe < 1, and surface tension-dominated flow, Ca = 0(1), the x-

momentum equation reduces to 0 = -dF/&i+O~hx/&i. Further, assuming e3Re < 1,

the z-momentum equation further simplifies to 0 = -Bo - aP/&2. The slip and kine-

matic boundary conditions remain unchanged under the lubrication approximation.

The stress boundary condition however, simplifies further; the tangential component

becomes [r2] = 0 and the normal component reduces to [F] = -hji + 4). The devia-

toric stress is a function of the strain rate E = (Vu + VuT) /2, and for a Newtonian

liquid can be simply written as rij = y (9ui/Dxj + auj/axi). Using this definition

and integrating the z-momentum equation and applying the normal stress boundary

condition, we can write the liquid pressure as follows P Bo(h - i) - hjc + 4).

Integrating the continuity equation and using the kinematic boundary condition,

we arrive at (1/da)Dh/bi- +/0 fo iidi = 0. Replacing the x-velocity component in

the above equation we therefore arrive at the evolution equation for the height of the

film:

-= - + h2 (1.25)
19t 1 3
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Comparing Eq. (1.25) above and Eq. (2.19) in the main manuscript, it is ev-

ident that they are equivalent if P = ff/6h = df /dh - v', (/ , where

F = F/ (-yH 2 /L 2 ), f f/ (-yH 2/L 2 ), and R = -y; we therefore find the disjoin-

ing pressure to be:

4(h, hi, e) =- ' + .+ ( = , (1.26)

where 0.1 = ,,1/(yH2 /L 2) and 0,,2 = 0,,2/y, and 4) is a generalized disjoining

pressure that depends not only on the film height, but also on its slope and curva-

ture. Similar ideas for a generalized disjoining pressure have been proposed in the

past: by integrating the intermolecular interactions in a liquid wedge, Miller and

Ruckenstein (1974); Hocking (1993) derived a slope-dependent disjoining pressure,

which was later generalized by Wu and Wong (2004), who incorporated the interac-

tions with the molecules of the gas phase and showed that it leads to the appearance

of a higher order curvature term in the disjoining pressure. Snoeijer and Andreotti

(2008) compared these results with the predictions of Keller and Merchant (1991) and

Merchant and Keller (1992) and showed that the disjoining pressures do not recover

the correct macroscopic Young contact angle. Dai et al. (2008) later showed that

the form derived by Wu and Wong (2004) does not recover the classical Lifshitz for-

mulation (Dzyaloshinskii et al., 1961) in the limit of parallel interfaces, and derived

a new consistent form for the disjoining pressure. The functional form of disjoining

pressure we have proposed here in Eq. (1.26) resembles that of Dai et al. (2008), and

simplifies to a height-dependent form for parallel interfaces, recovering the classical

height-dependent Lifshitz theory for parallel interfaces.

Information about the detailed form of the disjoining pressure becomes essential in

studying many phenomena such as moving contact lines (Gogotsi et al., 2001; Sibley

et al., 2012, 2014), the final stages of coalescence of drops (Yiantsios and Davis, 1991;

Leal, 2004; Zeng et al., 2007; Li, 2016) or in applications such as solidification (Tao

et al., 2016). Here, we further show the consequences of the form of the disjoining

pressure on the instability and dewetting of thin liquid films in the partial wetting
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regime.
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1.3 Equilibrium Solutions

Here, we review the analysis of Bertozzi et al. (2001a); Glasner and Witelski (2003)

and Gratton and Witelski (2008) for equilibrium solutions of the thin-film equation.

We use the following form of the disjoining pressure for parallel interfaces, consisting of

the "non-retarded" attractive van der Waals interactions and a short-ranged repulsive

term: 11(h) = dt,1/dh = A/(h + do)3 (1 - (hf + do)/(h + do)), with do = A/6ir~

0.2nm representing the Born repulsion length (Sharma, 1993a,c; de Gennes et al.,

2004; Dai et al., 2008; Israelachvili, 2011; Pahlavan et al., 2015); this form of disjoining

pressure is regularized to allow for the film heights to go to zero. Here, A represents

the Hamaker constant, and h1 represents the equilibrium or precursor film thickness.

In our model, the height-dependence of surface tension does allow the droplets to have

a compact support without a precursor film, i.e. hf = 0 (Pahlavan et al., 2015) (see

Fig. 1-3 (b)). However, for the purpose of the present study, we focus on thin films

with a surrounding precursor film of non-zero height (h1 > 0) since we are interested

in modeling dewetting and coarsening phenomena, and our objective is to compare

the results of the new model with the existing results on the classical model with a

constant surface tension; this regime is commonly known as pseudo-partial wetting

(Brochard-Wyart et al., 1991). We can simplify the form of the disjoining pressure by

shifting the heights by do, i.e. h = h+do, which leads to H (h) = A/h'(1-hf/h), where

we have dropped the overbars for convenience of notation. Since both components

of the disjoining pressure arise from the same source (intermolecular interactions

between the interfaces), we believe it is reasonable to assume they would follow the

same scalings; we therefore define #,. 2 (h) = -yO#,,1(h)/q4,, 1 (hyf), leading to K(h) =

' (1 - ,, 1(h)/#5, 1 (hf)), thereby r(hf) = 0. We take A = -6h2S, which leads to

,,1(h) = S.

With the above definition of the disjoining pressure, we can now write the bulk

free energy as follows:

I h2 _ 62 -6(2

f (h) = -Bo I =2 (~ ~ + -,(1.27)
2 h 2 2 3h 6
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construction, which is tangent to the bulk free energy at h~m, the precursor film
thickness, and at h*, the puddle height. The inset shows a zoomed-in view of the
bulk free energy for small heights. Here, an arbitrary line with slope P* < P < Ppeak~
is tangent to the free energy at hm and intersects it at hmax (blue dashed line). (b)
The bulk free energy redrawn on a semilog scale. While vdW forces act at nano-
scale, gravity only becomes relevant on the mm-scale; this 6 orders of magnitude
separation of scales is shown here. Note that the tangent lines become curved in this
semilog representation. (c) The bulk pressure defined as df/dh. Droplet solutions
exist for P* < p < Ppeak, where a typical constant pressure line (P =constant)
intersects the curve at three fixed points corresponding to the three branches hm,
he, and he. as indicated. Uniform films on the he branch are linearly unstable since
their corresponding d2 j/dh2 < 0. The hmax branch shows the maximum height of
the droplet solutions surrounded by a corresponding film of thickness hm; these are
solutions homoclinic to hmn, where a line with slope P is tangent to the bulk free
energy at hm and intersects it at hmax the blue dashed tangent line). In the limit of
very large drops (i.e., puddles) hm and hmax approach h~m and h*, respectively and we
recover the common tangent line with slope P* (the blue dashed tangent line) (see
also Brochard-Wyart et al. (1991); Gratton and Witelski (2008); de Gennes et al.
(2004)).

48



where 6 = hf/H is the non-dimensional precursor filni height, and we have chosen

L2/1H 2= 'yhj/A = 1/ (6(1 - cos Oy)).

At equilibrium, the thin film Eq. (1.22) simplifies to:

- 6f df d A
P= - --- ~ - V/ , (1.28)

6h dh (1.28

where P is a constant pressure; the fixed points of the above equation are the solutions

of P = df/dh. The typical form of the dimensionless free energy f(h) is shown in

Fig. 1-2. Within the range Pnode < P < Ppeak, we can find three fixed points. Using

a singular perturbation analysis in the limit 6 -40, we find these points to be:

Am = 6 + 62 P + 61 (4p2 - Bo) + O(64), (1.29a)

C = P 1 36 21 3 _ 16 + A (BoP-5/3 _ 2pi/3) 64/3 + O(6/3), (1.29b)
3 3\ 3

S P -B02 o 3
6 3  ( 6 4 ) (1.29c)

a Bo P 3  p4

where, to leading order, only the equilibrium film thickness is independent of the

pressure. The fixed points obtained here are not affected by the height-dependence

of the surface tension k(h) as they only depend on the bulk free energy (Gratton and

Witelski, 2008). The pressure in the liquid phase, however, can be affected by the

non-constant surface tension, as we will show later; this pressure change will then

affect the fixed points.

The heights hm and ha are saddle points, whereas h, is a center (Gratton and

Witelski, 2008). In the range of Pnodc < P < Ppeak, we can find three types of

solutions that are bounded in height (Thiele et al., 2001a; Gratton, 2008): localized

hole/dimple solutions that are homoclinic to ha in the range PolC < P < J*, droplet

solutions that are homoclinic to hm in the range P* < P < Ppeak, and heteroclinic

orbits from hm to A at P = P*. To obtain the maximum height of these droplets,

49



we integrate Eq. (1.28) as follows:

1 dh) ~~ ~R(I) 1 (K(h) = f(h) - f(hm) - P(h - hm), (1.30)

where at the maximum height of the drop we have dh/dz = 0, i.e., R(hmax) = 0; in

the limit 6 -> 0, we can then obtain

1max =o p2 _ + 2 O(32), (1.31)
Ba o Bo P2 _ B6

J 30

which is the branch shown in Fig. 1-2 (c). As the pressure decreases towards F*, a

saddle-saddle heterogeneous orbit appears between hm and ha, and the hmax branch

intersects with the h branch. At this point, we then obtain P* = V/Bo/3+(Bo/2) 6+

0(62); this critical value of pressure is the slope of the Maxwell common tangent line

(Rowlinson and Widom, 1982) shown in Fig. 1-2 and satisfies the following equations:

SM, (1.32a)
h* - *

~ df df
dh dh (32b)

where h* and h* are the values of hm and h, as calculated at pressure P = P*.
At no an a h

At Pnode and peak, the I, branch merges with the other two branches and we have

d2 f/dth 2 = 0. Following the procedure above, in the limit of 6 -> 0 and using a

singular perturbation analysis, we find the corresponding film heights:

hpeak = -4 + (4 )5 63+0(67 (1.33a)
3 3 3(3 /4 1

hInode = 31/2 -- - (32) (1.33b)
B1 3
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which lead to the following pressures:

27 4Bo 3
peak = -+ - + 0(63 (3

2566 3
Bo 34 Bo2 /Bo\ 5/4

Pnode= 4 ( 31/2 _ _ 33/2 _ 0(62) (1.34b)
(3 )3 3 (3)

which mark the upper and lower boundaries of the pressure range for which equilib-

rium droplet solutions exist. Note that the results we have obtained so far are only

indirectly affected by the height-dependence of surface tension through the change of

liquid pressure at equilibrium, as we show later.

The droplet solutions of Eq. (1.28) can be divided into three regions: (i) core,

(ii) contact line, and (iii) equilibrium film. Here, we focus on the limit of small

drops, where gravity can be neglected (Bo -+ 0). In the core (region (i)), away

from the contact line and in the absence of intermolecular forces, surface tension is

the dominant force, and Eq. (1.28) simplifies to P = -h, leading to a parabolic

profile, hcore = iP (z 2 _ V
2), where fi is the effective width of the droplet. The

maximum height of the core region at its center i = 0 is therefore max = P2I 2/2.

Before, we derived the maximum height of the droplet in the presence of gravity

and intermolecular forces. In the limit of zero Bond number, we can then show

hmax = 1/(6P) + 6 + O(62); equating this to the maximum height of the parabolic

core, we find the effective width of the drop to leading order: Cv = 1/(/5P). In

the second region (region (ii)), i.e., the region near the contact line, the drop profile

asymptotically matches the droplet core to the equilibrium film outside. In this region,

we use the following transformation h(z) = 3H(z) with 1 = - 6 3i, and defining

f(h) = F(H) we re-scale Eq. (1.28) to leading order as follows:

dF F(H) ~ 1 dF-~
~ I - - H + ~ H- - =0,135)

dlH F(1) 2F(1) dH 5 (

where we have used the definition R = 1 - F(H)/F(1), which appears in the second

term. This equation can be integrated to obtain H?/2 = -F(1), relating the slope of

the profile in the contact line region to the intermolecular forces. Consistent with the
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Figure 1-3: Equilibrium droplet profiles for a) constant (red dash-dotted line) and
height-dependent (solid blue line) surface tension models with a surrounding precursor
film, and b) the height-dependent surface tension model with (green dash-dotted line)
and without (solid black line) a surrounding precursor film.

experimental observations (Pompe and Herminghaus, 2000) and density functional

calculations (Snoeijer and Andreotti, 2008), the height-dependence of surface tension

leads to a non-zero contact angle at the contact line. In this model the droplet

width is a finite value that can be unambiguously defined, where the droplet meets

the surrounding wet or dry surface at a non-zero angle (Fig. 1-3 (b)). This is in

clear contrast with the classical model with a constant surface tension, R = 1, for

which we obtain H;/2 = F(H) - F(1), leading to a zero contact angle as the droplet

asymptotically meets the precursor film, i.e., H -+ 1 (Fig. 1-3 (a)). In the classical

model, only the macroscopic contact angle far away from the contact line can be non-

zero; we therefore need to take the limit of R -+ oc, where P(R) -+ 0, recovering the

result H./2 = -F(1). Using the dimensional version of this result leads to h'/2 =

A/(6-yh'), which simplifies to h'/2 = (1 - cos Gy) using the definition A = -6h'S; in

the limit of small contact angles (Gy < 1), we can therefore relate the droplet slope

to the Young contact angle: h, ~ Oy.

We can more generally define the width of the droplets as follows:

qi(P) = ( dh, (1.36)
hM 2R(h)

52



~ (a) h (b)
0.3- 150

100
0.2-

50 0.2

0.1 - so-s o 
0.-

-2 -1 0 2 -500 0 500

9 hrn hhm hc h

0.2- oy 0.2- y

-0.2 -0.2

I I. I S
7 -7, --- -- 4 ."7 77 -,11

0.1 0.2 0.3 100 104 107

h h

Figure 1-4: Droplet solutions for two different volumes with pressures in the range of
P* < P < Ppeak; these solutions are homoclinic to hm. (a) The equilibrium profiles of
a small droplet (with hmax < hnode, where the entire drop profile is influenced by the
intermolecular forces) for both the constant (red dashed line) and height-dependent
(blue solid line) surface tension models; the horizontal line crosses the droplets at
the height hpeak, where their effective width is defined. The lower plot shows the
solutions in the phase-plane of height and slope 0 = arctan (hx); the green dots show
the saddle node hm and the center he, and the horizontal dashed lines show the Young
contact angle. (b) The equilibrium profiles for a large droplet (with hmax > hnode);
here no difference between the models can be observed on a macroscopic scale, but
a zoomed-in view shows the difference close to the contact line. In its corresponding
phase plane we show both the saddle points hm and ha as well as the center h. (the
height is shown in log scale). For large drops, the equilibrium angle at the inflection
point of the drop profile approaches the Young contact angle. In the height-dependent
surface tension model the angle remains equal to the Young angle all the way down
to the contact line, where it makes a sudden transition and meets the precursor film
while in the classical model this transition is a gradual one and there is no compact
support.
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where we have used hm as the lower bound for calculating the droplet width; this is

allowed due to the compact-support feature, whereas in the classical model the droplet

profile only asymptotically meets the equilibrium film with a zero slope; there, we

have to resort to hpeak as the lower bound of integration for the effective width.

Figure 1-4 shows an example of equilibrium droplet solutions for two different

droplet sizes; for very small drops, where the entire droplet profile is influenced by

the intermolecular forces, we can see a considerable difference between the classical

model with a constant surface tension and our model with a height-dependent surface

tension. While both models leads to equilibrium solutions with equilibrium contact

angles smaller than the macroscopic Young angle, our model predicts a more compact

droplet profile, which meets the surrounding film at a non-zero angle; this is in con-

trast with the classical model predicting an asymptotic approach to the film with a

zero angle. These differences become more pronounced in a phase-plane of height vs

slope. As the drop size grows, the core of the drops will only be influenced by the bulk

surface tension and approach a parabolic profile, thereby both models will predict the

same macroscopic profile; a zoomed-in view in the vicinity of the contact line region,

however, shows the differences: a compact profile vs the asymptotic approach to the

surrounding film. The absence of compact support in the classical model does not

allow solutions without a precursor film (Brenner and Bertozzi, 1993).

Figure 1-5 shows the variation of some of the droplet features as a function of

its equilibrium pressure (or size) for both the classical model (with constant surface

tension) and our model (with a height-dependent surface tension). The first observa-

tion is that the difference between the two models is most pronounced for very small

droplets, where their entire profile is influenced by the intermolecular forces; as the

droplets become larger, intermolecular forces can only be felt very close to the contact

line and the difference between the two models is limited to the vicinity of this region

and less relevant to macroscopic features such as width, maximum height, or even

equilibrium film thickness, which is now determined by balancing the Laplace pressure

due to the curvature of the core region of the drops. The equilibrium contact angle

also becomes size dependent for very small droplets (Fig. 1-5(a)), where the entire
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Figure 1-5: The variation of equilibrium droplet features with the liquid pressure in

the droplet. The symbols show the result of numerical simulations with a constant

surface tension (red diamonds), and a height-dependent surface tension (blue circles).

The dash-dotted lines represent the theoretical predictions for small droplets, and the

vertical dashed lines correspond to the Ppeak beyond which no droplet solutions exist.

(a) The equilibrium contact angle defined at the inflection point of the droplet profile;

the dash-dotted line represents the Young contact angle. The inset shows two typical

droplet profiles of equal mass (but different equilibrium pressure with the new model

leading to smaller liquid pressures) for the constant surface tension (red dash-dotted
line) and height-dependent surface tension (blue solid line) models. (b) Droplet width

defined as the distance from center of the drop to its edge at hpeak. The dash-dotted
line represents zii = 1/(v/3-P). In the constant surface tension case, the droplet

core asymptotically meets the equilibrium film leading to a larger effective width. (c)

Maximum droplet height. The dash-dotted line represents hmax = 1/(6P) +6+0(62).

The height-dependence of surface tension results in lower equilibrium pressures, which

in turn lead to larger hmax values in the small droplets. (d) Equilibrium film thickness.
The dash-dotted line represents hm = 6 + 6 2 P + 63 (4P2 - Bo).
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droplet geometry is influenced by the intermolecular forces; this dependence however,

is not due to the line tension effect, which would be relevant for axisymmetric drops

(Amirfazli and Neumann, 2004; Schinunele et al., 2007; Weijs et al., 2011; Giro et al.,

2017). The second observation is that for small droplets, the height-dependent sur-

face tension model always leads to more localized profiles with larger contact angle

and smaller effective width; for equal droplet mass, the height-dependence of surface

tension leads to a lower equilibrium pressure, which according to the tangent con-

struction shown in Fig. 1-2 leads to a larger maximum height (hmax) and smaller

equilibrium film thickness (hm).

All the simulations in this paper are performed assuming an equilibrium film

thickness of hf Inni, and characteristic height H = 10nm, which is the typical

range of dominance of vdW forces, leading to a non-dimensional equilibrium film

height of 6 h/H = 0.1, and Bo = (L/l) 2 = 2.2 x 10-10, i.e., negligible gravity

(capillary length L = 1.5mm); while the influence of gravity in thin films is in principle

insignificant, ignoring its role can lead to unphysical predictions (Thiele et al., 2001a).
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1.4 Stability of Uniform Films

Here, we analyze the stability of uniform film solutions of Eq. (1.28) to infinitesimal

and finite perturbations. Consider a uniform film of thickness ho that is perturbed

infinitesimally by a superposition of Fourier modes as h = ho + C exp (13i + iqz),

where 3 is the growth rate of the instability, q = 21r/A is the wavenumber, and 6 < 1.

Substituting this decomposition into Eq. (1.22) and linearizing it to O(C), we find:

#3 = qI (qo - R(ho)q2) (1.37)

where qo = -d 2 f/dh 2  . A uniform film becomes unstable if the growth rate is

positive 13 > 0, or qO > R(ho)q 2 . This implies that wave-numbers q < qo/I(ho),

or equivalently wavelengths A > Ac = 27r k(ho)/qo will be unstable; surface tension

damps the shorter wavelength deformations. The curve qo = 0 separates the linearly

stable and unstable regions as shown in Figure 1-6; the instability phase diagram

can be represented in the phase space of the initial uniform film thickness ho vs the

equilibrium film thickness 6 = hf/H (Diez and Kondic, 2007) or ho vs Bo (Thiele

et al., 2001a). The curve qO = 0 represents the boundary of the spinodal region in

the free energy, where the second derivative of the bulk free energy becomes negative,

d2 f/dh2 I < 0. This region is bounded by the heights hpeak and hnode as shown

in Fig. 1-2. The region between these heights and the film heights corresponding to

the tangent construction is called the binodal region, where the uniform wetted liquid

films are not linearly unstable, but they can be nonlinearly unstable, i.e., if perturbed

by a sufficiently large finite amplitude perturbation they can evolve to find a lower

energy state. The boundaries of the binodal region are set by h* and h* as shown in

Fig. 1-2. The lower and upper branches all meet at a critical point, where the bulk

free energy transitions from a double-well to a single-well structure; at the critical

point, we have d2f/dh 2  0, and d3f/d = 0, leading to h = (5/3)6, 6cr 1.9 X 104

and Bor ~ 7.85. To find the fastest growing mode, we take d/3/dq = 0, which leads
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Figure 1-6: Stability phase diagram showing the regions where the uniform film is
linearly unstable, metastable (nonlinearly unstable), and absolutely stable. (a) Shows
the phase diagram as a function of the initial film height, ho = ho/H, and the equilib-
rium film thickness, 6 = hf/H. The full black solid line represents the marginal sta-
bility curve, where the instability growth rate, # is zero (i.e., qo = -d 2f/dh2 j K = 0);
inside the curve, the film is linearly unstable to infinitesimal perturbations, whereas
outside it is linearly stable; the lower branch of the marginal stability curve is coin-
cident with hpeak, whereas the upper branch represents hnode. The blue dashed line
represents the curve of absolute stability; outside this curve, all films are absolutely
stable, whereas inside it uniform films can become unstable due to finite pertur-
bations, i.e., they are nonlinearly unstable. The upper and lower branches of the
absolute stability curve represent the h* and h* lines; these are the points tangent to
the Maxwell double tangent construction. In other words, while the curve of marginal
stability represents the spinodal region, where d2f/dh 2 j. < 0, the curve of absolute

stability represents the binodal or coexistence curve. The upper and lower branches

meet at the critical point, where we have d2f/dh 2 = 0, and d3f/dh3 = 0, leading to

h = (5/3)6 and 6,.~ 1.9 x 10', where (as shown in the inset) a transition from a

double-well to a single-well structure occurs in the free energy. The dashed blue line

in the inset represents the tangent construction. (b) Shows the phase diagram as a

function of the initial film thickness, ho, and the Bond number. The same transition
from a double-well to a single-well structure is observed at a critical Bond number of

Bo, ~ 7.85 where the upper and lower branches of the stability curves meet.
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Figure 1-7: Linear stability analysis results. (a) Dispersion curve showing the insta-
bility growth rate 0 versus the wavenumber q for a film of thickness ho = 46. All
curves labeled with Kc and K(h) represent the classical model with a constant surface
tension and the new model with a height-dependent surface tension, respectively. The
new model results in a shift to larger values for both the maximum growth rate #m
and its corresponding wavenumber, leading to a smaller wavelength of instability Am.
(b) Scaling of the maximum growth rate with the thickness of the initial uniform film
ho. The vertical dashed line (4/3)6 represents the lower limit of linear instability. (c)
Wavelength of the instability corresponding to the most unstable mode. (d) Ratio
of predicted growth rate and instability wavelength between the new model and the
classical model. It is apparent that the maximum ratio corresponds to the smallest
film thickness ho = (4/3)b where the film is linearly unstable; below the height of
ho = (4/3)6 the film becomes linearly stable and the surface tension keeps decreasing
until it reaches a value of zero for ho = 6.
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to the following expressions for the most unstable wavelength

Am = V2A = 27r 2R(ho) (1.38)
-d2f/dh2 

(3

and its corresponding maximum growth rate

ig (d21 2

4k(ho) dh2 Iho (1.39)

We observe that both the instability wavelength and growth rate are affected by the

height-dependence of the surface tension. We can denote the corresponding predic-

tions of the classical model by Am,,c = 2ir/1/qo and !mxc = (3 /4)q2, where the

subscript ic represents constant surface tension. The new model therefore predicts

a smaller instability wavelength, Am/Amc = r(i0 ) < 1, and a faster growth rate

/m/3mKc = 1/k(ho) ;> 1, as shown in Fig. 1-7. For very large initial thicknesses,

the effect of height-dependence of surface tension becomes insignificant and both

models predict the same scaling for the maximum growth rate 0m h5 (Fig. 1-7

(b)), showing that it drastically reduces as the film thickness increases. The height-

dependence of surface tension, however, leads to a larger growth rate for small film

thicknesses, predicting that the instability grows faster. The largest 0#m corresponds

to ho = (28/15)6 for the classical model and ho ~ 1.76 for the new model. Both

models predict a similar scaling for the most unstable wavelength at large thicknesses

Am ~ h2 (Fig. 1-7 (c)), whereas for smaller heights, where the effect of variability of

surface tension becomes relevant, the new model predicts smaller wavelengths. The

minimum Am corresponds to ho = (5/3)6 for the classical model and ho ~ 1.526 for the

new model. Note that these heights are different from those concerning the maximum

growth rate /m. Further the instability wavelength shows a much weaker dependence

on the film thickness than the growth rate (h2 vs h- 5 ). Within the linearly unstable

region, the new model predicts the instability can grow up to six times faster than

the predictions of the classical model (Fig. 1-7 (d)) while its corresponding instability

wavelength can be less than half of that in the classical model; the growth rate is
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Figure 1-8: 2D simulations of dewetting in the spinodal regime with ho = 26 in
a domain of size 10Am by 10Am; 2D profiles of h(i, j) with contour levels be-
tween hmin and hma. as specified are shown. (a) The classical thin film equation
(hmin = 1.996,1.866,6,6, and hmax = 2.026,2.166,46,6.76, respectively). (b) The
stochastic thin film equation (1.44) with constant surface tension at temperature
T = 50*C, i.e., - = 0.039, (hmin = 6, and hm. = 2.86,4.36,5.16,7.56, respec-
tively). (c) The new model with height-dependent surface tension (hmin = 6, and
hmax = 2.86,4.36,5.16,7.56, respectively). Both thermal fluctuations and height-
dependence of surface tension lead to a faster dewetting process, bringing the theo-
retical predictions closer to the experimental observations (Becker et al., 2003).

therefore a more sensitive measure of the height-dependence of surface tension.

To go beyond the linear stability analysis, we conducted 2D numerical simulations

in the spinodal regime to examine the dewetting rate and morphologies obtained.

Figure 1-8 shows that thermal fluctuations (see Eq. (1.44)) and height-dependence of

surface tension both lead to a faster initial dewetting. Figure 1-9 shows the growth

of perturbations in the nonlinear simulations of dewetting using the different models.

The linear stability analysis for this film thickness predicts that the growth rate of

the height-dependent surface tension model is twice faster than the classical model

(#M/OmmKC = 2). From the nonlinear simulations we find that the new model leads to
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Figure 1-9: The growth of perturbations in the spinodal regime (ho = 26 as in

Fig. 1-8) for the classical model (solid red line), stochastic model (solid green line),

and height-dependent surface tension model (solid blue line) as obtained from the

nonlinear simulations. The imposed perturbations become damped at early times

due to the surface tension, but then start to grow exponentially (as shown by the

dashed-lines).
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Figure 1-10: The ratio of the rupture times between the classical model (tr,Kc) and

a) the classical model with thermal noise (green squares), b) the height-dependent

surface tension model without noise (blue circles), c) the height-dependent surface

tension model with noise (cyan diamonds)). Both the thermal noise and height-

dependence of surface tension lead to a faster rupture time compared to the classical

model. While the effect of noise is almost independent of the initial film thickness

(green squares), the height dependence of surface tension leads to an increasingly

faster ruptures as the film thickness decreases (blue circles). This effect becomes even

more amplified when thermal noise is added to the new model (cyan diamonds). The

solid line represents the ratio of the growth rates between the classical and new model

as predicted from the linear stability analysis (see Figure 6(d)).
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a film rupture at trl - 75, whereas the classical model leads to a rupture time of ir3 a

150, which is in agreement with the linear stability predictions. Thermal fluctuations

at T = 50 0C, i.e., a = 0.039 (see Eq. (1.44)), lead to a rupture around 42 ~ 125,

which is faster than the classical model. Figure 1-10 shows a more quantitative

comparison of the rupture times between the classical model and the other models.

The speed up observed due to the thermal noise is independent of the initial height

of the film, whereas the height dependence of surface tension in the new model leads

to increasingly faster rupture as the initial film height decreases. The prediction of

a faster growth rate in our model deserves special attention. Earlier studies have

pointed to temporal inconsistencies between theoretical predictions and experimental

observations (Becker et al., 2003), with experiments showing a faster initial dewetting

process by more than a factor of two compared to the theoretical predictions. Our

new model therefore brings theoretical predictions closer to the earlier experimental

observations. Our results in Fig. 1-10 further suggest that to disentangle the roles

played by the height-dependence of surface tension and the thermal noise, experiments

with different initial heights need to be conducted.
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1.5 Coarsening: self-similar intermediate asymp-

totics

1.5.1 Coarsening phase diagram

The drops formed after the dewetting process are in a meta-stable state; they can still

communicate through the ultra-thin films connecting them and thus coarsen in time

to lower the overall energy of the system. Multiplying both sides of Eq. (1.22) by

6F/6h, integrating in space and using the no-flux boundary conditions we can easily

show (see also Thiele et al. (2001a); Glasner and Witelski (2003)):

dF r 'I'F\ 2
-- ] -M2 )) d < 0 (1.40)

demonstrating that the evolution governed by the thin film equation leads to a de-

creasing free energy and, therefore, a thermodynamically-admissible system.

We can further demonstrate this fact by considering the coarsening of two equally

sized droplets of width 'CV2 and pressure P2 (Glasner and Witelski, 2003). Assuming

that the core of the droplets is only influenced by surface tension (neglecting gravity

and intermolecular forces within the droplet core) leads to a parabolic droplet profile,

from which we can estimate the energy associated with the two distinct drops as

F 2 = 2 ((1/2)(PI)) di = (2/3) (1.41)/v2
where 'CV2 = 1/(/3P2 ). Now if the two drops merge and form a single drop with a

width tD 1 , we can use conservation of mass to show 1' = V2CV 2 and P1 = P2/V; the

rest of the domain (417 2 - 2'iD1 ) will now be covered by an equilibrium film of thickness

6; we can therefore write the energy of this new system as

1 = ((1/2)(P1;)2) dzc- + (4 C2 - 217) f(J), (1.42)

which can further be simplified to: F 1 = (,'F/3) 2 U + (4 - 2v/2)iV2f (6); comparing
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Figure 1-11: Space-time diagrams showing the evolution of drop height of the classical
thin film equation (constant surface tension); the results of the height-dependent case
are similar. The simulations are done in a domain of size 10OAm and the frames shown
here show a zoom-in of a size 4 0Am. In all the cases, a line coming to an end indicates
an Ostwald ripening event, in which a smaller drop feeds into larger neighboring
drops through the ultra-thin film that connects them. (a) ho = 46 representing the
classical spinodal regime, where the number of drops is approximately set by the
most unstable wavelength Am (hmax = 356), (b) ho = 106 representing a mixed mode
instability regime in between spinodal and nucleation regimes; here, fewer drops than
the spinodal regime form and the distance between the formed drops seems to be
random (hmax = 1006), (c) ho = 256 which is deep into the nucleation regime showing
the formation of very few drops (hmax = 7006), (d) ho = 46 and including thermal
fluctuations (T = 500 C, i.e., o- = 0.039) (hmax = 256); thermal noise enhances the
lateral motion of the drops; the coarsening mechanism however, still seems to be
dominated by Ostwald ripening.

this equation with the energy of two drops, we can see that not only is the interfacial

energy of a single drop lower than that of two droplets, but also the part covered by

the equilibrium film further lowers the free energy since (6) = -1/6 < 0.

Figure 1-11 shows space-time diagrams of the dewetting of thin liquid films of

different thickness and their coarsening over time. The simulations presented here
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are conducted on a large domain of size 100Am and the frames shown are a zoomed-in

view of a window of size 4 0A,,; these simulations show the results corresponding to the

classical model with a constant surface tension; the results of the height-dependent

surface tension model are very similar. In all cases we start with a uniform film of

thickness ho on which random perturbations of amplitude 10- 4 ho are imposed. While

all the initial thicknesses are within the linearly unstable regime (see Fig. 1-6), they

lead to entirely different morphologies.

For small initial film height of ho = 46, we observe the characteristics of the

spinodal dewetting, a term originally coined by Mitlin (1993) due to its similarity

to the spinodal decomposition in binary mixtures (Cahn, 1961). In this regime, the

distance between the drops is the same as the most unstable wavelength, i.e., we get

100 drops in a domain of size 100Am (Diez and Kondic, 2007). The coarsening here

proceeds through Ostwald ripening (Ostwald, 1897), or collapse of smaller drops at

the expense of growth of larger ones (Glasner and Witelski, 2003).

As the initial film height increases to ho = 106, we can immediately see in Fig. 1-11

(b) that the number of drops formed upon dewetting and their spacing do not follow

the predictions of the linear stability analysis anymore, i.e., fewer drops form and their

spacing becomes random. This behavior has signatures of nucleation dewetting within

the linearly unstable regime (Thiele et al., 2001b,a; Diez and Kondic, 2007) and shows

a mixed mode instability, i.e., a behavior in-between spinodal and nucleation regimes.

Such a transition has also been reported in phase separation dynamics within the

Cahn-Hilliard framework (Novick-Cohen, 1985). Figure 1-12 shows corresponding

2D simulations of dewetting in this regime; in contrast with the spinodal regime,

where holes appear around the same time with a uniform spacing, here the nucleation

process begins with formation of a hole, which then laterally expands and forms a rim

behind it (Seemann et al., 2001b, 2005; Fetzer et al., 2005: Bsiumchen and Jacobs,

2010; Biumchen et al., 2014). In this mixed mode regime, the growth rate is still

large enough that shortly after growth of a hole, the depression behind the dewetting

rim can lead to rupture; this behavior leads to the satellite-hole formation observed

in the experiments (Becker et al., 2003; Neto et al., 2003) and in the 2D simulations
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Figure 1-12: Nucleation dewetting for ho = 106 for the constant surface tension
model. In this regime, holes randomly appear and start expanding laterally, forming
a growing rim behind them (hma = 306, 546, 706,1206, respectively). The depression
behind the dewetting rim leads to the formation of satellite holes. The dewetting rims
subsequently become unstable and lead to fingering and pinch off to form droplets

(see Reiter and Sharma (2001); Biumchen et al. (2014) for experimental details)

of Fig. 1-12. Figure 1-13 illustrates this nucleation process in a space-time diagram

of a 1D simulation of the height-dependent surface tension model with ho = 106.

As we keep increasing the initial film thickness further to ho = 256 (Fig. 1-11(c)),

we move deeper into the nucleation regime, where fewer drops form; in this case

5 drops formed in random locations in a domain of size 40Am. In the nucleation

regime two time scales compete: the time scale associated with the growth of linearly

unstable modes and the time scale associated with the dewetting front (Thiele et al.,

2001b; Diez and Kondic, 2007; Snoeijer and Eggers, 2010). As we showed before,

the growth rate of the most unstable mode fm scales as h leading to significant

decreases in the growth rate for thicker films, thereby favoring growth via nucleation.

Since the dynamics of the coarsening process is slaved to the flux through the

ultra-thin equilibrium films (him I::: 6) connecting the drops and the mobility scales

as h', the coarsening dynamics are extremely slow. Two time scales are involved in

this process: a fast time scale over which individual coarsening events happen, and

a slow time scale between the individual events (Glasner and Witelski, 2003). A full

numerical simulation of the thin film equation therefore can be computationally very

expensive. Glasner and Witelski (2003) used the separation of time scales in this

problem to reduce the governing partial differential equation, Eq. (1.22), to a system

of ordinary differential equations for the droplet pressures and locations. Coarsening

can proceed via two general mechanisms: coalescence of droplets or Ostwald ripening
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Figure 1-13: Space-time diagram of the nucleation process in the height-dependent

surface tension model with ho = 106 in a domain of size 2 0A. (each snapshot is

shifted up by 106 = 1). The lateral expansion of holes, growth of the rim behind the

hole, and the subsequent instability of the dip behind a growing rim can all be seen

in this illustration.

(Glasner and Witelski, 2005). Their mathematical model allowed them to sinmlate

the coarsening of a very large number (0(10)) of drops. They observed a scaling

of N ~ 2 / 5 for the number of drops in time and also observed a transition from

Ostwald-ripening dominated (capillary-driven drainage and collapse) coarsening to

coalescence-dominated coarsening as they increased the total mass of liquid in the

domain.

In contrast with the findings of Glasner and Witelski (2005), we do not observe

such a transition from Ostwald ripening dominated to coalescence-dominated coarsen-

ing (Fig. 1-11). The change in the instability mode from spinodal to nucleation leads

to the formation of fewer drops as the total mass of the liquid in the domain increases,

i.e., as the initial film height increases: the large distance between the drops favors

coarsening through Ostwald ripening rather than coalescence. The reason Glasner

and Witelski (2005) observe such a transition is that they keep the number of drops

within a given domain fixed as they increase their mass; this naturally leads to wider

drops that progressively get closer to each other, therefore favoring coalescence.
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1.5.2 Influence of thermal fluctuations

Some experiments on thin-film dewetting (Limary and Green, 2002, 2003) and nanopar-

ticle growth in thin films (Meli and Green, 2008; Woehl et al., 2014) have reported a

crossover from diffusion-dominated to coalescence-dominated behavior. A potential

source of this transition could be thermal noise, which may play a dominant role

in thin-film systems (Mecke and Rauscher, 2005; Grun et al., 2006; Fetzer et al.,

2007b; Willis and Freund, 2009; Belardinelli et al., 2016; Diez et al., 2016). In the

presence of thermal noise, Grn et al. (2006) showed that the stochastic thin film

equation can be derived starting from the phenomenology introduced by Landau and

Lifshitz (1987), where the thermal fluctuations enter the Navier-Stokes equations

as a symmetric random stress tensor S, where (S) = 0, and (Sij(x, t)Sim(x', t')) =

2kbTp6(x - x')6(t - t')(66jm + 6imoj). The hydrodynamic equations in the pres-

ence of thermal noise have been used in many studies including the dynamic critical

phenomena of randomly stirred fluids (Forster et al., 1977), or the convective insta-

bilities (Swift and Hohenberg, 1977). Using the long-wave approximation, then one

can arrive at a stochastic thin film equation that includes a vertical integral in the

off-diagonal term of the random stress S_, (Grin et al., 2006; Diez et al., 2016):

-- = -- I ) + - (h -z)S,,z(z) dz .(1.43)0[ a" ( 0,3aP a ( rf

This equation can be further simplified to one without the integral term; to do so,

Grn et al. (2006) use the equivalency of the corresponding Fokker-Planck equations

of the probability densities, further showing that the distribution function satisfies the

detailed balance and is given by Weq = (1/Z) exp (-'-[h]/T), where Z is the partition

function and '-[h] = f f(h)+-y/2(Vh)2 dx is the effective interface Hamiltonian or free

energy. An alternative way of arriving at the Langevin term is to consider the linear

response of a near-equilibrium system and use the fluctuation-dissipation theorem

together with equipartition of the thermal energy (Davidovitch et al., 2005). The

stochastic thin film equation therefore can be written as follows:
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Figure 1-14: Two-dimensional simulations of coarsening dynamics at early and late

times for the height-dependent surface tension model with ho = 26 (hmax = 8.56
in the colorbar). At early times, coalescence events, as highlighted by the dashed

white circles, are dominant. At late times (once the metastable drops have formed),
however, Ostwald ripening, i.e., capillary drainage and collapse of drops, becomes the

key coarsening mechanism; note that this latter process is diffusion-dominated and

therefore much slower than coarsening through coalescence events.

t () 
(1.44)

in which P = df/dh - /ra/Da (/NO/az) with R = r/'y and f= f/ ('yH2/L 2),

where H and L are characteristic height and length scales. The second term on

the right hand side of the equation represents the thermal fluctuations (Mecke and

Rauscher, 2005; Davidovitch et al., 2005; Grn et al., 2006) with a = VkBT/'7H2

where kB is the Boltzmann constant and T represents the temperature, and j rep-

resents a spatiotemporal Gaussian white noise: (j) 0 and ( (i, )((', ')) =

J(i - V')6(i- ') with 6 as the Dirac delta function and (.) implying ensemble average

over realizations of the noise.

Introducing thermal noise to the system leads to enhanced lateral motion of the

drops as seen in Fig. 1-11 (d), and this can promote coalescence. Our simulations for

the stochastic thin film Eq. (1.44) within the spinodal regime, however, shows the

dominance of Ostwald ripening despite the enhanced lateral motion of the drops. The

crossover from the diffusion-dominated to coalescence-dominated behavior observed

in the experiments (Limary and Green, 2002, 2003) therefore could be a consequence

of the dimensionality of the problem, i.e., 2D in the experiments versus ID in the

simulations shown in Fig. 1-11. In two dimensions, each drop can be surrounded
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and interact with multiple other drops, whereas in 1D each drop only interacts with

its two neighbors. To investigate this, we have conducted 2D nonlinear simulations,

which point to the dominance of coalescence events at short times and Ostwald ripen-

ing at long times as shown in Fig. 1-14, which corresponds to the height-dependent

surface tension model; similar results are obtained for both the classical and stochas-

tic models. Our observations are in agreement with the 2D simulations of Glasner

(2008) using a reduced order model that suggest the dominance of the coalescence

mechanism.
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1.5.3 Coarsening statistics

The statistics of the coarsening process for (i) the spinodal regime, ho = 46 (for

both constant and height-dependent surface tension models as well as the classical

stochastic thin film equation with thermal noise) and (ii) for the mixed-mode insta-

bility regime ho = 106 (for the constant surface tension model) are shown in Fig.

1-15. In the spinodal regime, the number of drops follows the scaling N ~ T-2/5 in

time (Fig. 1-15 (a)) as computed by Glasner and Witelski (2003); incorporating the

height-dependence of surface tension does not alter this scaling. Introducing thermal

noise does not affect the scaling either-an observation that is consistent with recent

studies (Nesic et al., 2015). In the mixed-mode instability regime (ho = 106), fewer

drops form, so our simulations have limited statistics and do not clearly reach the

self-similar intermediate regime (Gratton and Witelski, 2009), but it seems that the

results for this case are also in general agreement with the j-2/5 scaling (Fig. 1-15

(a)). Due to mass conservation, it is easy to show that the mean width of drops

should then follow the scaling E1 /5 as shown in Fig. 1-15 (b). An interesting feature

of the variation of the mean width in time, particularly at late times, is the jumps

observed as smaller drops shrink and feed into the larger drops.

As argued above, the thin film evolution equation predicts a monotonically de-

creasing free energy for the system (Eq.(1.40)). We can further check this by looking

at the variation of the numerically calculated total energy of the system Et - =

f (h) + (R/2)(h) 2di. In agreement with the predictions of Otto et al. (2006), we

find a T-1/5 scaling for the decrease of the free energy (Fig. 1-15(c)). An interesting

observation here is that for the thicker film of ho = 106, we observe a lower total

free energy at early times that later converges to the [-1/ 5 scaling. To understand

the reason behind the difference at early times, it is instructive to look at the typical

variation of the different components of the free energy during the entire dewetting

process, as shown in Fig. 1-15 (d). Here, Eb = f f(h)dz is the bulk free energy and

Ei = f(k(h)/2)(h) 2ds& is the interfacial energy. As an initially uniform film becomes

unstable, it must increase the interfacial energy to dewet and create droplets. This in-
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Figure 1-15: Coarsening statistics; red circles and squares correspond to the classical
model with ho = 46 and ho = 106, respectively; blue diamonds show the results of
the new model with ho = 46; green stars correspond to the stochastic thin film model
with ho = 46. (a) Evolution of the number of drops in time shows the scaling i-2/5 as
suggested by Glasner and Witelski (2003). (b) Evolution of mean width of drops in
time; as expected from conservation of mass and the scaling of the number of drops
in time, the mean width scales as j1/ 5 in time. (c) Evolution of the total energy in
time shows a decrease in the energy with coarsening with a scaling of i1/5, which is
expected for the 1D case (Otto et al., 2006); the ho = 106 case results in fewer drops
upon dewetting, therefore the majority of the domain is covered by the equilibrium
film, which means the initial energy is lower than the ho = 46 case; at long times
the dynamics becomes self-similar and both follow the same scaling. (d) Evolution of
the bulk Eb, interfacial Ei, and total Et = E + Es energies for a typical simulation
(here ho = 46 and height-dependent surface tension model); at short times, creation
of drops increases the interfacial energy, but the total energy is still lowered due to
the reduction in the bulk energy; at long times, as drops coarsen, both the bulk and
interfacial energy contribution decrease.
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crease in the interfacial energy, however, is compensated by the reduction in the bulk

free energy as the ultra thin films connecting the drops are in their near-equilibrium

states. The drops connected by these ultra-thin films however are only metastable

and after a long intermediate plateau state the system starts lowering its total energy

through coarsening, which lowers both the interfacial energy as well as the bulk free

energy due to the creation of new ultra-thin films. With this observation in mind,

we can now go back to Fig. 1-15(c); here, the thicker film (ho = 106) leads to the

formation of fewer drops upon dewetting, meaning a lower interfacial and bulk free

energies in the mixed-mode instability regime compared to the spinodal regime (for-

mation of fewer drops means a higher fraction of the total surface is covered by the

ultrathin films that have a lower bulk free energy). This is why right after dewetting,

the thicker film case ho = 106 leads to a lower total free energy compared to the

ho = 46 case in the spinodal regime. At long times, however, as the coarsening sets

in, the dynamics become self-similar and the total system energies per unit length of

the substrate corresponding to the different regimes all collapse on top of each other.
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1.5.4 LSW mean-field description of coarsening: self-similar

drop size distribution

In the late stages of a first-order phase transition of a binary alloy mixture, Ost-

wald ripening is quite common (Ostwald, 1897; Siggia, 1979; Voorhees, 1985). The

curvature-dependence of the chemical potential leads to a flow from higher curva-

ture regions (smaller clusters) to lower curvature regions (larger clusters). The re-

sult of this coarsening is a decrease in the total interfacial energy of the system.

Lifshitz and Slyozov (1961) were the first to place experimental measurements of

Ostwald ripening within a consistent theoretical framework: they considered a spher-

ical cluster in a supersaturated solution and developed a mean-field description for

the evolution of the size of the cluster at long times, (r(t)) ~ t1 /3. This scaling is

an intermediate-asymptotic behavior (Barenblatt, 1996) for a quasi-steady system in

isolation, i.e., the interactions with other clusters are neglected, so it is expected to

hold in the limit of dilute solutions. Lifshitz and Slyozov (1961) originally assumed

the transport in the medium to be diffusion dominated; later, Wagner (1961) inde-

pendently studied the Ostwald ripening process and considered the case where the

attachment/detachment of particles from the clusters is the rate-limiting factor and

derived a scaling (r(t)) 01/2. Apart from the mode of mass transport considered,

the two theories are essentially the same and are known as the LSW model for coars-

ening (Kahlweit, 1975). An alternative generalized view of the same problem is to

consider all the clusters of size greater than r. ~ t13 to grow and all with a smaller

size to shrink, where # = 1/3 in the diffusion-dominated case and # = 1/2 in the

attachment/detachment-dominated case.

Theories of LSW-type appear in many diverse phenomena, such as stability of

emulsions (Imhof and Pine, 1997; Taylor, 1998; Bibette et al., 1999; Solans et al.,

2005; Gupta et al., 2016), droplet size distribution in liquid jet fragmentation (Eg-

gers and Villermaux, 2008), coarsening of granular clusters (Aranson and Tsimring,

2006), phase separation in polymer blends (Geoghegan and Krausch, 2003), growth

of silicone nanowires (Schmidt et al., 2010), quantum dots (Liu and Risbud, 1990),
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Figure 1-16: Droplet mass distribution for the spinodal regime with ho = 46 obtained
from ensemble averaging of 10 realizations in domains of size 25 0Am with z = m/m,;
vertical lines show the error bars computed from the standard deviation of the 10
realizations; red squares represent classical model with a constant surface tension;
green diamonds represent the stochastic thin film model; blue circles represent the new
model wth height-dependent surface tension; the solid line represents the mean-field
LSW theory (Eq. (1.46)); the dashed line represents the Smoluchowski distribution
(Eq. (1.47)).

growth of nanoparticles in colloidal solutions (Talapin et al., 2001), and grain growth

in thin films (Thompson, 1990), or even loss of electrocatalyst coating in low tem-

perature fuel cells (Shao-Horn et al., 2007). There is a close connection between the

LSW theory and coarsening of drops connected by thin films. The drops formed

upon dewetting are in a metastable quasi-equilibrium configuration, so one can treat

a droplet connected to a near equilibrium film in isolation from the other drops. The

transport through the surrounding thin film is diffusion-dominated since curvature

becomes negligible in the film. Diffusion here is set by the interface potential and

mobility reaches a constant value set by the film thickness, so the transport between

droplets can formally be written as a diffusion equation similar to the LSW theory.

At long times, the clusters or drops follow a size distribution function F(r, t), or

equivalently F(m, i) where m = f d- is the mass of a ID drop, which satisfies the

following continuity equation (Voorhees, 1985; Gratton and Witelski, 2009):

~F(m, T) i)v(m)) = 0, (1.45)
ai ao

76

-A



where v(m) = dm/d determines the flux of particles. The number of drops can

then be related to the distribution function as N = fo F(m, T)dm. The problem

then reduces to defining the flux v(m). Gratton and Witelski (2009) showed that

an equivalent LSW mean field model can be defined for a system of drops, where

a drop is considered to be at a mean distance I(T) = L/N(T) from two neighboring

drops of mass m,; since the mass transport between the drops takes place through the

ultra-thin films with nearly zero curvature connecting them, the transport through

the films becomes purely diffusive and its dynamics can be approximated as Oh/& ~

a2/aj 2 (V(h)), where dV/dh = N3d2 fdh 2 (Glasner and Witelski, 2003). The mean

flux between the drops can then be approximated as v(m) = 2(V(m,) - V(m))/I,

where the mean-field potential is defined as V(m,()) = (1/N) fo' V(mr)F(m, t)dm.

The non-locality in this mean-field description comes from the mean quantities L and

mri, both of which evolve in time. At long times, we expect the distribution of the

drop sizes to become self-similar, for which we can postulate F(m, T) = g(m/m*)/i"

and m, = c 3 . Using conservation of mass, one then arrives at the following ODE for

the self-similar distribution function g(z) (Gratton and Witelski, 2009):

dg = ( 27/2 - 8z 3 /2  )

dz 4z 5 / 2 + 27z(1 - f-) '

where 0 < z = (m/m,) < 9/4, and the solution of the above equation can be obtained

in the analytical form to be g(z) = C (Ve 2/(-3+2Vf) / ((3 - 2 y) 28 / 9 (3_+ )17/9)
with C ~ 70 as a normalization constant. From the conservation of mass, one can

further find m,~ 0.846f-. (with 77. Mot/N(T) being the total liquid mass divided

by the instantaneous number of drops), which separates growing and shrinking drops,

i.e., v(m,) = 0. This mean-field treatment is expected to hold in the dilute limit,

where local interactions between drops can be neglected and each drop only interacts

with a background field.

The normalized distribution of the droplet mass ((F(z, )/N(i)) with z = m/m,)

in the self-similar intermediate regime, where the LSW model is applicable is shown

in Fig. 1-16. The results of the simulations closely follow Eq. (1.46) (solid line)
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for small droplets. The close agreement we observe between the classical and new

models, as well as in the presence of thermal fluctuations, indicates that in the self-

similar coarsening reginie the details of the thin-film interfacial dynamics are not

critical. For larger size droplets, i.e. z > 1 (m > m.), however, we do observe

deviations from the LSW model. While sonic deviations have also been observed by

Gratton and Witelski (2009) in their dynamical system treatment of coarsening and

is a known issue in the LSW model, there is a distinct skewness in the distribution of

the droplets in the new model. The long tail observed in the distribution of droplet

sizes in our model has also been reported in sonic experiments and Monte Carlo

models of thin-film coarsening (Lo and Skodje, 2000; Limary and Green, 2002, 2003;

Green, 2003; Meli and Green, 2008; Woehl et al., 2014) and is typically associated

with coarsening through coalescence. This type of drop-size distribution is modeled

with the Snioluchowski equation (Snioluchowski, 1917; Sholl and Skodje, 1996; Lo

and Skodje, 2000; Eggers and Villermaux, 2008):

g(Z) (dW(Wz)d(c+1-1/d) e(Wz)d (1.47)
IF(a + 1)

where W = ['(a - 1 + 1/d)/F(a + 1) with F is the gamma function, and d represents

the dimension of the system. When mass transport is dominated by diffusion around

the periphery of the droplet, a = 3/2; when diffusion away from the boundaries is

the dominant transport mechanism, a = 1, and when evaporation-condensation in

the periphery of the drops is the main transport avenue, a = 1/2 (Lo and Skodje,

2000). Here, we find the best fit for the tail of the distribution in a ID system of

droplets is obtained for the periphery-diffusion dominated case with a = 3/2. It is

interesting, however, that the change inl the tail of the drop-size distribution in our

model is not associated with a change in the coarsening mechanism, i.e., Ostwald

ripening remains the dominant coarsening mechanism (Fig. 1-11); perhaps, it is the

lower lateral motion of the larger-size droplets that leads to the asymmetry in the

distribution. While our ID simulation results cannot be directly compared with the

experiments, the long-tailed distribution in our model calls into question whether the
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reported distributions in the experiments are uniquely a signature of the coalescence-

dominated coarsening and this motivates further detailed experimental observations.
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1.6 Discussions: comparison with experimental data

While the scaling of the wavelength of instability and its growth rate with the film

thickness can be derived from the linear stability analysis, the only way to make

quantitative predictions about the dewetting is to have the precise form of the in-

termolecular forces. The dewetting pattern in the spinodal regime can give us the

information needed to reconstruct the surface potential; one can extract the wave-

length of instability for a given initial uniform film thickness and repeat this process

for different film thicknesses; all the experiments need to be done within the spin-

odal regime, where a uniform distribution of holes can be observed (Seemann et al.,

2001a). Figure 1-17 shows such a reconstruction for polystyrene films on a Si wafer

with a 191 nm silicone oxide layer coating; the free energy is assumed to have a form

f(h) = -Asio/(12rh 2) +c/h8 , where the first term represents the long-ranged attrac-

tive van der Waals forces and the second term represents the short-ranged repulsion;

Asio is the Hamaker constant for this system and c determines the strength of the

repulsive term. We know that the depth of the potential is equal to the spreading

parameter, f(hf) = S = y(cos(Oeq) - 1), where hf and 9eq are the equilibrium film

thickness and contact angle, respectively, which can be independently measured. We

can therefore fit the experimental data for the instability wavelength using the least

squares method with equilibrium film thickness and contact angle as two penalty

conditions. Considering a constant surface tension of -y = 30.8 mN/i, we arrive

at Asio = 2.24 * 10 2 0J, and c = 7.24 * 10- 7 Jm6 that are close to the values ob-

tained by Seeniann et al. (2001a). In our model, surface tension can be defined as

,(h) = -/(1 - f (h)/f(h)), leading to I,(hf) = 0. Following the same fitting procedure

as above, we obtain precisely the same coefficient values as before; the new model

however, predicts a faster instability growth rate compared to the constant surface

tension model (see Fig. 1-17).

The prediction of a faster growth rate in our model compared to the classical model

deserves special attention. Becker et al. (2003) used the potential reconstruction

procedure outlined above to make quantitative predictions about their experimental

80



Am(m) m,(h m, b
3--

3

22

1 ... .. ..

2 4 6 8 10 hf 2  3.9 5 8

h(nm) h(nm)

Figure 1-17: Reconstructing the interface potential using the experimental observa-
tions of spinodal dewetting by Seemann et al. (2001a) with a thin film of polystyrene
film on a Si wafer coated with a 191 nm thick oxide layer: (a) shows the instabil-
ity wavelength in the spinodal regime (green circles) for different initial uniform film
thicknesses; the red dashed line is the fit to the data using the classical model with a
constant surface tension; the blue solid line represents the fit obtained with the new
model with a height-dependent surface tension; both fits also consider the equilibrium
film thickness and contact angle as penalty conditions. The equilibrium contact angle
as measured by the AFM is 7.5* and the equilibrium film thickness measured by x-ray
reflectivity is hf = 1.3 nm (Seemann et al., 2001a); (b) represents the ratio of insta-
bility growth rate in the new model to that of the classical model. It is clear that even
for the same instability wavelength, height-dependence of the surface tension leads to
a faster growth rate. For a typical PS film thickness of 3.9 nm, our model predicts
the dewetting to be z 20% faster than the classical model, bringing the theoretical
prediction closer to the experimental observations (Becker et al., 2003). The blue
square symbol shows the ratio of the growth rate as obtained from the nonlinear sim-
ulations; it coincides with the result of the linear stability analysis. The red diamond
symbol represents the ratio of growth rates obtained from the nonlinear simulations
of the classical model with and without thermal noise (T = 00C and T = 530C in
Eq. (1.44) with a constant surface tension); we find the growth rate in the presence
of thermal noise to be less than the deterministic one by ? 10%.
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Figure 1-18: The growth of perturbations in a uniform film (6h = ho - min(h(i))) as a

function of (a) time i and (b) rescaled time 0m, obtained from the deterministic and

stochastic nonlinear simulations with the experimentally reconstructed potential for

a PS film of thickness 3.9 nm. In both the classical (red dashed line) and new model

(blue solid line), in the absence of thermal noise, the initially imposed infinitesimal

perturbations (6h(i = 0) e 10-') are initially damped by surface tension before

the films become unstable to the fastest growing mode and then grow exponentially

until rupture takes place, when the minimum film thickness reaches the equilibrium

thickness hm; the results of the two models overlay on top of each other when time is

scaled with the growth rate (0m). At non-zero temperatures (T = 530C here) thermal

fluctuations do not allow the initially imposed perturbations to be damped by the

surface tension, leading to a much faster rupture (- 3 times faster than the rupture in

the deterministic case) even though for the constant surface tension model the growth

rate in the presence of thermal noise is smaller than the deterministic case by more

than ; 10%. Nonlinear simulations further show that while the dewetting occurs

much faster in the presence of thermal fluctuations, the morphology of the drops do

not seem to be affected, i.e., 10 drops form in a domain size of 10Am consistent with

the predictions of linear stability analysis.

results; while they observed similar patterns in simulations and experiments, the

temporal evolution did not match: experiments showed a faster initial dewetting

process. It was later argued that thermal fluctuations are responsible for the mismatch

and including them in the theory will bring the results closer to the experiments

(Mecke and Rauscher, 2005; Grin et al., 2006; Fetzer et al., 2007b). Our results are

therefore pointing to the right direction; for the experiments of Becker et al. (2003)

with a 3.9 nm PS film, our model predicts ~ %20 faster growth rate bringing the

theory closer to the experimental results.

To further explore the dewetting rate, we need to go beyond the linear analysis
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and perform nonlinear simulations. Figure 1-18 shows the growth of perturbations,

A = ho - min(h(i)), in a linearly unstable uniform film of 3.9 nm thickness as

obtained from the nonlinear simulations of Eq. (1.44). For the deterministic case

(o- = 0), both the classical model with a constant surface tension and our model with

a height-dependent surface tension show that initially the imposed perturbations

are damped by the surface tension until the fastest growing mode kicks in and the

perturbations start growing exponentially. Our model shows a faster growth rate by

~ 20% (which matches very well the linear predictions as shown with the blue square

in Fig. 1-17 (b)); when the time-scale (i) is rescaled with the corresponding growth

rates (/3#m) the perturbation growth in both models perfectly overlay (Fig. 1-18 (b)).

However, in the presence of thermal fluctuations, the initial damping of the imposed

perturbations by the surface tension is not observed; instead, thermal fluctuations

give rise to the immediate growth of the perturbations until the fastest growing mode

kicks in and the growth continues exponentially; this leads to a rupture more than 3

times faster than the prediction of the deterministic equation. It is interesting to note,

however, that in the classical model, the growth rate in the stochastic case is found

to be ~ 10% smaller than that of the deterministic case (shown as a red diamond

in Fig. 1-17 (b)). While the dewetting proceeds faster in the stochastic case, the

corresponding dynamics and the resulting morphology seem to be similar to that of

the deterministic case, e.g. we observe the formation of 10 drops in both cases in a

domain size of 10Am.

To gain further insight into the stochastic thin film equation, we can linearize it

around the initial uniform film thickness h(z, 1) = h(z, i) - ho:

ah / d2f a 26h - 4 6 3/2 (9-l).= h iK(h0) ' j3.OXt~t = 0; ~- ) o-h aa4 , (1.48)

Using the Fourier transform 6h(q, t) = (27r) 2 f_ 5h(, f)e-i di, we can then

write the linearized equation in the wave domain as:
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Figure 1-19: Structure factor with the experimentally reconstructed potential for

a PS film of thickness 3.9 nm at times i = 0.1i, and i = 0.5i,, where i, repre-
sents a characteristic rupture time for (a) the deterministic (red dashed line) and

stochastic (red solid line) models with a constant surface tension (see also Mecke and

Rauscher (2005)), and (b) stochastic model with a constant (red dotted line) and

height-dependent (blue solid line) surface tension. The symbols show the location

of the peaks of the structure factor; the peak is coincident with the most unstable
wavenumber for the deterministic case, whereas it approaches this value from above
in the presence of thermal noise.

6 h h3 d2f

at = A2 ho
- R(ho)q ) A -iqo, 0 26' (1.49)

(1.50)aoh 'h'/~2
- = /3(q)Jh - iqa 0h3 2 ,at

where as for the deterministic case (Eq. (1.37)) O = gq2  _ 2). The

Fourier transform of the height autocorrelation function then can be defined as (Mecke

and Rauscher, 2005; Diez et al., 2016) < 6h(q, F)6h(q', ') >= (27r) 2 6(q + q')O(q; t, t'),

where:

(1.51)C(q; 0 j') = O0(q)e (+') + 12 q0 _ -' , 2 # (q)

where Oo(q) =< I6h(q, 0)12 >; for a white Gaussian noise, Co(q) = co becomes a

constant. Figure 1-19 shows the normalized structure factor or power spectrum as

a function of the wavenumber for the deterministic and stochastic thin film models.
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In the absence of thermal noise, the peak of the structure factor, shown as black

squares, is always the same as q, i.e., the most unstable wavenumber; further at

long times and for large wavenumbers, we always see an exponential decay eC2I0It as

easily seen in the first term of Eq. (1.51). In the presence of thermal noise however,

the behavior qualitatively changes at large wavenumbers, i.e., exponential decay is

taken over by a power law decay q- 2. Further, the peak of the structure factor shown

by the red diamonds approaches the deterministic most unstable wavenumber from

above (Mecke and Rauscher, 2005; Fetzer et al., 2007b; Nesic et al., 2015). Height-

dependence of surface tension shifts the most unstable wavenumber to larger values

and leads to an increase in the growth rate (see Fig. 1-7 (a) and 1-17 (b)); this leads

to a shift in the peak and magnitude of the structure factor as shown in Fig. 1-19

(b).
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1.7 Conclusions

We have shown, using a consistent thermodynamic framework, that the intermolecular

forces between liquid-gas and liquid-solid interfaces of a thin film in the partial wet-

ting regime lead to an expression for the system free energy with a height-dependent

surface tension. In the long-wave approximation, this free energy resembles the Cahn-

Hilliard formulation for the free energy of binary alloys (Cahn and Hilliard, 1958).

We have shown that this new form of free energy leads to a generalized disjoining

pressure that is consistent with recent calculations (Dai et al., 2008).

Using our model, we have revisited the dewetting and coarsening of thin liquid

films on solid substrates in the partial wetting regime. We have first shown that the

equilibrium droplet solutions obtained in the new model have compact support and

meet the contact line with a non-zero equilibrium angle, whereas equilibrium droplets

in the classical model only asymptotically meet the surrounding precursor film with a

zero angle. While the classical model cannot admit solutions without a precursor film

(Brenner and Bertozzi, 1993), our model does not require the precursor film, allowing

us to recover the true partial wetting regime (Brochard-Wyart et al., 1991).

Analyzing the stability of uniform liquid films, we have shown that in the spinodal

dewetting regime, our model predicts a faster growth rate /3 r for the most unstable

mode, and a smaller corresponding instability wavelength Am than those predicted by

the classical model with a constant surface tension. While the instability wavelength

is only weakly dependent on the height-dependence of the surface tension, we have

shown that the instability growth rate can be up to six times faster than the predic-

tions of the classical model. This faster growth rate brings the theoretical predictions

closer to the experimental observations (Becker et al., 2003).

Experimental observations by Limary and Green (2003) indicate a crossover in

the coarsening from Ostwald ripening-dominated to coalescence-dominated as the

film thickness increases. They infer the coarsening mechanism from the droplet-size

distribution, i.e., they associate the Ostwald ripening and coalescence processes with

LSW-type and Smoluchowski-type distributions, respectively (Limary and Green,
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2002, 2003; Green, 2003). Our nonlinear simulations of the dewetting and subsequent

coarsening on large domains L ~ 100Am have shown that the coarsening process at

intermediate times becomes self-similar (Glasner and Witelski, 2003) and independent

of the details of the models used, i.e., we observe the same scalings for the classical

model (with and without thermal noise) and in our new model with height-dependent

surface tension. We have shown that the crossover reported in the experiments cannot

be observed in ID simulations of the thin-film equation. This is in contrast to the

predictions of Glasner and Witelski (2005), who used a reduced-order model of thin-

film equation and predicted a crossover. As the thickness of the initial uniform film

increases the instability mechanism changes from spinodal, (i.e., equally-distanced

droplets after dewetting) to nucleation, (i.e., randomly-spaced droplets). This change

in the instability mechanism is a result of the competition of two time scales: the

growth rate of the instability, which scales as 3m It0 5 , versus the rate of lateral

expansion of dewetted holes (Thiele et al., 2001b; Diez and Kondic, 2007). This

change of instability mechanism from spinodal to nucleation prevents the crossover

from Ostwald ripening-dominated to coalescence-dominated coarsening. We have also

shown that while thermal noise enhances lateral motion of droplets, it does not lead

to a crossover in the coarsening mechanism. We therefore conclude that the crossover

observed in the experiments is a result of the 2D nature of the experiments versus

the initial 1D simulations presented here and in earlier studies. To investigate this

hypothesis, we have conducted 2D nonlinear simulations, which indeed indicate the

dominance of coalescence events at early times following the dewetting and a crossover

to Ostwald-ripening at late times in the coarsening process.

We also have shown that the droplet-size distribution in the self-similar coars-

ening regime follows a LSW-type distribution (Lifshitz and Slyozov, 1961; Wagner,

1961; Voorhees, 1985; Gratton and Witelski, 2009) and becomes model-independent

at least for small droplets. For larger drops, we have found that the new model leads

to a long-tailed drop-size distribution, which follows the Smoluchowski Eq. (1.47) in

ID for peripheral diffusion-dominated transport. Our observation of a skewed distri-

bution associated with an Ostwald-ripening-dominated coarsening calls into question
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the associations made before between the long-tailed distribution and coalescence-

dominated coarsening in the earlier experiments (Limary and Green, 2002, 2003;

Green, 2003) and motivates further detailed experimental observations.

An important open question is how to characterize the predicted height-dependence

of surface tension in typical dewetting experiments. As we have shown, the charac-

teristic instability wavelength, which is most readily observed in the experiments, is

only weakly dependent on the height-dependence of surface tension and perhaps not a

reliable indicator. The instability growth rate, however, varies more significantly due

to the height-dependence of surface tension and could serve as a distinguishing factor.

Experimental measurements of growth rate are exceptionally challenging, particularly

in the spinodal regime and for very thin liquid films for which the height-dependence

of surface tension becomes relevant. Further, the viscosity of thin polymer films

changes drastically from its bulk values due to a shift in the glass transition tempera-

ture (Herminghaus et al., 2001), making it potentially difficult to distinguish between

consequences of the changes in surface tension from those in viscosity. Spreading of

droplets in the partial-wetting regime can therefore serve as an alternative test for

the height-dependence of surface tension; we have shown that our new model allows

investigations of the spreading process without the need for precursor films (Pahla-

van et al., 2015). Visualization of the contact-line motion at micro/nano-scales (Chen

et al., 2014; Qian et al., 2015; McGraw et al., 2016; Deng et al., 2016) could therefore

lead the way in refining and validating models for interfacial flows.
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Chapter 2

Moving contact lines in partial

wetting

When a liquid touches a solid surface, it spreads to minimize the system's energy. The

classic thin-film model describes the spreading as an interplay between gravity, capil-

larity and viscous forces, but cannot see an end to this process as it does not account

for the non-hydrodynamic liquid-solid interactions. While these interactions are im-

portant only close to the contact line, where the liquid, solid and gas meet, they have

macroscopic implications: in the partial-wetting regime, a liquid puddle ultimately

stops spreading. We show that by incorporating these intermolecular interactions, the

free energy of the system at equilibrium can be cast in a Cahn-Hilliard framework

with a height-dependent interfacial tension. Using this free energy, we derive a meso-

scopic thin-film model that describes statics and dynamics of liquid spreading in the

partial-wetting regime. The height-dependence of the interfacial tension introduces

a localized apparent slip in the contact-line region and leads to compactly-supported

spreading states. In our model, the contact line dynamics emerge naturally as part

of the solution and are therefore non-locally coupled to the bulk flow. Surprisingly,

we find that even in the gravity-dominated regime, the dynamic contact angle follows

the Cox-Voinov law.

A glass of water poured on a table spreads for a while and finally stops. This pro-

cess seems simple enough to be described by a reduced-order model, and indeed the
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classic thin-film model is a step in this direction (Oron et al., 1997; Craster and Matar,

2009). This model can be derived from the Stokes equations using the lubrication ap-

proximation, but it contains no information about the interactions between the liquid

and the underlying solid surface. While these interactions are of non-hydrodynamic

origin and only become significant at heights less than ~ 100 nm (Israelachvili, 2011),

they have pronounced macroscopic implications: the classic model, which does not

incorporate these intermolecular interactions, predicts that the liquid never stops

spreading, in stark contrast with the basic observation of a static puddle that forms

in the partial-wetting regime.

A liquid is said to be partially wetting to a surface when it forms a contact angle

in the range of 0 < 6y < 7r/2 at equilibrium. This equilibrium contact angle is

well described by the Young equation, cos y = (ys, - -y,)/-y, where Ysg, ysi and y

are solid-gas, solid-liquid, and liquid-gas interfacial energies (de Gennes, 1985). To

extend the classical description to the partial-wetting regime, one can supplement

it with non-hydrodynanic interactions as a boundary condition at the contact line

(Oron et al., 1997; Craster and Matar, 2009; Bonn et al., 2009). When capillary forces

are the dominant driving mechanism, the dynamic contact angle, 9 d, follows the Cox-

Voinov law, O) = 6y + 9Caln (lA1/l) (Voinov, 1976; Cox, 1986; Bonn et al., 2009;

Snoeijer and Andreotti, 2013), where Ca = i/U/-y is the capillary number with liquid

viscosity 7 and contact line velocity U; 1M and l, are characteristic macroscopic and

microscopic length scales in the problem. Despite its success in matching experimental

data, invoking this boundary condition does not address the question of how the non-

hydrodynamic forces determine the emerging dynamics at the macroscopic scale.
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2.1 A nonlinear Cahn-Hilliard equation

Here, we work within the long-wave approximation to derive a generalized meso-

scopic thin-film equation that captures the dynamics of the moving contact line self-

consistently as part of the solution, making it non-locally coupled to the rest of the

system. Within the framework of non-equilibrium thermodynamics, a conservation

equation for the height of the liquid film h can be written as (Hohenberg and Halperin,

1977; Cahn, 1961; Mitlin, 1993):

h= V - (M(h)V , (2.1)
at 6h

where M(h) is the mobility, F is the free energy, and 6F/6h = OF/Oh -V -[OF/O(Vh)

is the variational derivative of the free energy with respect to height. In Chapter 1,

we showed how the free energy at equilibrium can be derived based on arguments

using the calculus of variations and the requirement of a non-zero contact angle at

the wall representing the true partial wetting regime.

Here, we present a summary of the derivations presented in Chapter 1 to arrive at

the free energy at equilibrium. We start by deriving the free energy F of a non-volatile

liquid puddle on a solid surface. At equilibrium, the variation of the free energy is

zero, 6F = 0. Writing the free energy as F = f 4(h, Vh) dX and using the calculus

of variations, we arrive at the following two equations for the specific free energy qD

(Yeh et al., 1999; Starov et al., 2007; Arfken et al., 2013):

8(O N
Oh - V - 4h = 0, (2.2)Oh OVh '

[- Vh -(O" )l = 0, (2.3)
O9h .h=O

known as the Euler-Lagrange and Augmented Young equations, respectively. Equa-

tion (2.2) determines the shape of the liquid surface at equilibrium and reduces to the

Young-Laplace equation in the simplest form, while Eq. (2.3) serves as the boundary

condition at the contact line.
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Macroscopic contributions taken into account, we can write the free energy as

4(h, Vh) _ DM(h, Vh) = 1/2pgh 2 + (/,/S -- 18g) + 7Y/1 + (Vh) 2 , in which p is the

liquid density and g is the gravitational acceleration. The classic thin-film model can

be recovered by putting the macroscopic free energy into the conservation Eq. (2.1).

Substituting 4 M into the Augmented Young equation, we recover the Young equation

(de Gennes, 1985). An often-overlooked constraint on the free energy is that as the

height of the liquid film goes to zero, one should recover the solid-gas interfacial

energy, limho ) = 0 (de Gennes, 1985; de Gennes et al., 2004). It is straightforward

to see that the only way to satisfy this constraint with the macroscopic free energy

is to have -/ + -ya = -y,, corresponding to the complete-wetting regime.

Microscopic intermolecular forces close to the contact line must therefore be con-

sidered to arrive at a self-consistent description of the free energy for partial-wetting

systems. These interactions are commonly known as surface forces (Derjaguin et al.,

1987) or disjoining/conjoining pressure (Israelachvili, 2011). Taking the intermolecu-

lar forces 4%(h) into account, we can write the free energy as 4D(h, Vh) = 4m(h, Vh)+

'Il(h). Substituting into the Augmented Young equation, we arrive at what is com-

monly known as the Derjaguin-Frumkin equation, cos Oy = cos , +4, ( 0)/y, relating

the Young contact angle to the surface forces (Yeh et al., 1999; Starov et al., 2007).

The Young angle is defined at the macro scale, whereas Oy is the microscopic contact

angle (de Gennes, 1985; Yeh et al., 1999; Pompe and Herminghaus, 2000), which

needs to be zero for the free energy to be continuous. The combination of a non-zero

Young contact angle and a zero microscopic contact angle indicates the existence of

an ultra-thin liquid film around the main drop, the so-called pseudo-partial-wetting

regime (Brochard-Wyart et al., 1991; Reiter et al., 1999; de Gennes et al., 2004).

While precursor films are commonly observed in the complete-wetting regime (Kaveh-

pour et al., 2003; Hoang and Kavelipour, 2011; Popescu et al., 2012), they are not

in non-volatile partial-wetting liquids (Brochard-Wyart et al., 1991; de Gennes et al.,

2004; Snoeijer and Andreotti, 2013). We therefore need a description of the system's

free energy that allows for non-zero microscopic contact angles.

Traditionally, surface forces are expressed as a function of film height only, since
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they are derived for parallel liquid-solid interfaces (Oron et al., 1997; Craster and

Matar, 2009; Israelachvili, 2011). Close to the contact line, however, the liquid and

solid interfaces are not parallel and one should account for the interface slope to

arrive at a proper description of the intermolecular forces (Miller and Ruckenstein,

1974; Hocking, 1993; Kalliadasis and Chang, 1996; Wu and Wong, 2004; Dai et al.,

2008). The free energy should therefore be written as FD(h, Vh) = 4m(h, Vh) +

<b,(h, Vh). Consistent with the derivations of (Dai et al., 2008) and using the long-

wave approximation, we propose to decompose the surface forces as Dt(h, Vh) =

O,,1 (h)+ Ot,2 (h)(Vh) 2/2. Substituting the free energy, 4, into the Augmented Young

equation and requiring the continuity of the free energy, it is straightforward to show

that all constraints are satisfied without imposing any a priori condition on 0, if

# ,1 (0) = S and 5,, 2 (0) = -- y, where S = Ys-y - - -y is the spreading coefficient

(de Gennes et al., 2004). The microscopic contact angle therefore emerges naturally

as part of the solution, consistent with the predictions of nonlocal density functional

theory (Snoeijer and Andreotti, 2008). We can therefore write the free energy as:

F= f(h)+ K(h) 2 _ dX. (2.4)

This free energy expression resembles the Cahn-Hilliard formulation (Cahn and

Hilliard, 1958), in which the free energy can be decomposed into bulk f(h) = pgh 2 /2-

S + #,, 1(h) and interfacial r,(h)(Vh)2/2 contributions, where K(h) = y + 0,, 2 (h) can

be interpreted as a height-dependent interfacial tension. A nonlinear KPZ-type term

can be generated using this free energy (Kardar et al., 1986; Kardar, 2007). The

constraints on #,, 1 (0) and #,, 2(0) imply that f(0) = 0 and K(0) = 0. Vanish-

ing of the interfacial tension as the film height tends to zero is required to arrive

at compactly-supported spreading states (Benzi et al., 2011; Cueto-Felgueroso and

Juanes, 2012), and our derived form of the free energy naturally meets this require-

ment. Another constraint on 0,,1(h) can be incorporated through a tangent con-

struction on the bulk free energy, which ensures that the two coexisting phases at

equilibrium have the same chemical potential (Rowlinson and Widom, 1982; Bray,
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Figure 2-1: Schematic of the tangent construction on the bulk free energy, f (h),
leading to the coexistence of wet, h = h., and dry, h = 0, states. In the absence of

intermolecular forces, the bulk free energy does not reduce to the solid-gas interfacial

energy as h -- 0 unless S = 0, which implies complete wetting (de Gennes et al.,

2004).

1994), i.e. df/ldhlh=O = df/dhl h=h, = pgh, (Fig. 2- 1), where h,, = 2 1, sin (Oy / 2) is the

height of the liquid puddle that is set by a balance between gravity and surface tension,

and 1., = V, /pg is the capillary length (de Gennes et al., 2004). To describe the func-

tional form of 0,(h), we use a surface force that consists of long-ranged attractive van

der Waals forces and short-ranged repulsive forces, similar to an integrated Lennard-

Jones potential (Israelachvili, 2011). Other such combinations (Sharma, 1993b,c;

Pismen and Pomeau, 2000; Thiele et al., 2001b) can also be used. We therefore write

# j,j(h) = ai [(I + #j)doj/(h + do)2 - jd08/ (h + do)'], where do = V A/6tr/ ~-. 0. 2nm

is a molecular length scale with A being the Hamaker constant (de Gennes et al.,

2004; Israelachvili, 2011). The coefficients al = S, #1 = (1 - do/h.)/3 and a2 = -7-,

02 = 1/3 are determined through imposing the constraints on #,,,i(0), the tangent

construction, and requiring a non-zero slope at the contact line. The denominator

has been regularized by adding do, allowing us to recover the solid-liquid interfacial

energy when the film height is zero (Sharma, 1993b; de Gennes et al., 2004; Dai et al.,
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2008).

Substituting the derived free energy from Eq. (2.4) back into the conservation

Eq. (2.1) and nondimensionalizing the parameters as h = h/h, i = x/Rf, t

t/(3piR2/pgh3), f = f/pgh2, R = ,/y and dropping the tilde for convenience, the

generalized thin film equation takes the form:

fh [f 1t V - M(h)V -B /(h)V - i(h)Vhu , (2.5)at [Oh BJJ

in which Bo = R2/12 is the Bond number, where Rf is the characteristic lateral length

of the liquid, taken to be its final equilibrium radius. Vanishing of the interfacial

tension i,(h) at the contact line indicates that the order of the equation is reduced by

one, pointing to a singular perturbation problem. This picture is consistent with the

description suggested by de Gennes (de Gennes et al., 1990), indicating the dominance

of intermolecular forces very close to the contact line, leading to a natural cut-off scale

that removes the moving-contact-line singularity.
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2.2 A localized slip boundary condition

Starting from the Stokes equation, using the lubrication approximation, and assuming

no slip at the wall and zero shear stress at the liquid-gas interface, r = 0 (neglect-

ing the viscosity of the gaseous phase), the mobility in Eq. (2.1) is easily derived to

be M(h) = h'. The no-slip boundary condition, however, will lead to the moving-

contact-line singularity (Huh and Scriven, 1971b; Dussan V. and Davis, 1974). To

resolve the singularity, the Navier slip boundary condition is generally used, intro-

ducing a slip velocity proportional to the shear stress in the liquid adjacent to the

wall, u. = bVu (Neto et al., 2005; Lauga et al., 2007), where b, is the slip length,

which depends on the liquid-solid interaction (Granick et al., 2003; Huang et al.,

2008; Bocquet and Charlaix, 2010). The slip condition leads to a mobility of the form

M(h) = h3 + 3 beh2 . In immiscible flows however, slip is localized to the contact-line

region (Koplik et al., 1988; Thompson and Robbins, 1989; Freund, 2003; Qian et al.,

2003, 2004, 2006; Ren and E, 2007; Ren et al., 2010) and to match the observations

of molecular simulations, ad hoc functions with decaying slip away from contact line

have been proposed (Dussan V., 1976; Zhou and Sheng, 1990; Hadjiconstantinou,

1999).

The free energy derived in Eq. (2.4) incorporates a height-dependent interfacial

tension i(h). A gradient in the interfacial tension leads to the Marangoni effect

(Scriven and Sterling, 1960; Levich and Krylov, 1969), which causes a non-zero shear

stress at the liquid-gas interface, driving a net flow. The gradient in surface tension

typically is caused by either temperature gradients (Cazabat et al., 1990) or a gra-

dient in the concentration of surfactants (Craster and Matar, 2009). The resulting

Marangoni flow can be utilized to pattern surfaces (Kim et al., 2016a; Darhuber and

Troian, 2005), contribute to the spreading of bacteria on surfaces (Angelini et al.,

2009), and its influence can be readily seen in the tears of wine (Hosoi and Bush,

2001).

In analogy with the Marangoni effect, we propose that the height dependence of

the interfacial tension leads to a non-zero interfacial shear stress at the liquid-gas
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interface. Therefore, we generalize the stress boundary condition at the interface to

account for this additional stress:

([P]I - [T]) -n = (-yK + D) n + -t, (2.6)

where A is a molecular length scale defined as A = /A/y with A as the Hamaker

constant (de Gennes et al., 2004), and s represents the are length of the interface.

The new term on the right hand side represents the proposed tangential stress due to

the height-dependence of surface tension. Note that we cannot simply set this term

to be equal to the gradient in surface tension as is done for the case of Marangoni

stresses in interfacial flows (Craster and Matar, 2009); otherwise, even at equilibrium

there would be a flow due to the height-dependece of surface tension. The variation of

the interfacial tension is limited to the contact line region where intermolecular forces

dominate. Away from the contact line (d,/dh = 0) or at equilibrium (&P/&s = 0),

the stress balance reduces to the usual one (Oron et al., 1997; Craster and Matar,

2009). Only during spreading does this non-zero interfacial stress come into play,

which is similar to the idea of "flow-induced Marangoni effect" (Shikhmurzaev, 1997,

2007; Sibley et al., 2012).

After non-dimensionalization, the tangential component of the stress boundary

condition becomes:

ch. x - TZ0I I- (i - E2h2) 20PX OR (2.7)

The normal component of the stress boundary condition at the interface then

becomes:

[ (2h2 _ - (e2fh2 p:X h 26hc I + C '~ 1( 2h2)

V1 + E2h2

(2.8)

where = 4/ (yH/L 2 ).

Using the above non-dimensionalization and long-wave approximation, E < 1,
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and negligible inertia, cRe < 1, and surface tension-dominated flow, Ca = 0(1), we

find that the slip and kinematic boundary conditions remain unchanged under the

lubrication approximation. The stress boundary condition however, simplifies further;

the tangential component becomes:

[rF ] = -I, (2.9)

and the normal component reduces to [P] -hi + P.

We can then integrate the x-momentum and apply the tangential stress and Navier

slip boundary conditions to obtain the x-velocity component:

ii = ~ _ (_ + ) 2 -- + N .(2.10)
Ca O 2 +x

Integrating the continuity equation and using the kinematic boundary condition,

we arrive at (1/Ca)Oh/af + /d f iid = 0. Replacing the x-velocity component in

the above equation we therefore arrive at the evolution equation for the height of the

film:

a h 3 +(+ 2d h 2  
2 dk DP- -- -+ 2+ -+ - h . (2.11)

ai ai 3 dh 2 Ah a.;-

Comparing this equation with the gradient formulation of Eq. (1.22), we now can

write the mobility as:

.M = h3/3 + (20 + A2(dk/dh)hit) h2/2+ (0A2(dk/dh)Ii5) h (2.12)

The effective slip that we obtained in our proposed "flow-induced Marangoni ef-

fect" bears similarities with the ideas of slip due to the gradient of chemical potential

close to the contact line (Ruckenstein and Dunn, 1977; Pismen and Rubinstein, 2001)

and the generalized Navier boundary condition (Qian et al., 2003, 2004, 2006; Ren

and E, 2007; Ren et al., 2010), where it is proposed that in the vicinity of the con-

tact line, the uncompensated Young force, i.e. -y(cosQy - cosOd), where 0 d is the
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Figure 2-2: Comparison of the mobility with and without slip (M(h) = h3 solid
line, M(h) = h + 3bsh2 , b = 10do dashed line, M(h) = h + (3/2)A2(dK/dh)h2 ,
A = 10do, 9 y = 7r/12 dash-dotted line). While Navier slip is global, our proposed
slip model is localized to the contact-line region, where it dominates the Navier slip,
consistent with molecular simulations (Koplik et al., 1988; Thompson and Robbins,
1989; Freund, 2003; Qian et al., 2003, 2004, 2006; Ren and E, 2007; Ren et al., 2010).

non-equilibrium dynamic contact angle, exerts an additional tangential stress on the

fluid-fluid interface, leading to a generalized slip, which is dominated by this un-

compensated Young force close to the contact line and recovers the Navier slip far

away.

The height-dependent surface tension therefore introduces an effective slip mech-

anism that removes the moving contact line singularity (Huh and Scriven, 1971b;

Dussan V. and Davis, 1974). While the Navier slip is global and defined in single-

phase flows and only depends on the local velocity gradient, this new slip mechanism

concerns multiphase flows and is localized in the contact-line region, consistent with

earlier observations (Koplik et al., 1988, 1989; Thompson and Robbins, 1989; Freund,

2003; Qian et al., 2003, 2004, 2006; Ren and E, 2007; Ren et al., 2010). Our proposed

model therefore addresses two main requirements regarding slip at the contact line: 1)

99



it is localized to the contact line region, and 2) it depends on the non-hydrodynamic

interactions close to the contact line and introduces an energy scale (Snoeijer and

Andreotti, 2013) (Fig. 2-2).

Further, the dependence of our proposed slip mechanism on the slope I implies

the dependence of the slip magnitude on the dynamic contact angle, i.e. a larger

dynamic contact angle leads to a larger slip; this leads to a dynamic slip length that

is larger the farther away from equilibrium the system is; it also implies that as the

system approaches equilibrium, a larger equilibrium contact angle will lead to a larger

slip, which is also consistent with earlier observations (Huang et al., 2008; Sendner

et al., 2009; Bocquet and Charlaix, 2010). These are all interesting and important

consequences that go far beyond the phenomenology of the Navier slip.

In our model, the slip velocity can be written as:

1 -- - I OP ( 2dk dh(.

Ca 1x Ca ox dh dx

where the first term is due to the regular Navier slip, and the second is the term

localized to the contact line region and is the analog of the uncompensated Young

force: it is also caused by a tangential stress at the fluid-fluid interface and goes

to zero at equilibrium (Bonn et al., 2009). Further, while Navier slip removes the

divergence of shear stress close to the contact line, it leads to a logarithmic pressure

singularity; this singularity however can be removed in the presence of a non-constant

surface tension (Sibley et al., 2014). Therefore, we expect our model to remove both

the shear stress and pressure singularities in the classical hydrodynamic description

of the moving contact lines.
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2.3 Macroscopic dynamics

We solve Eq. (2.5) using standard finite differences (Diez et al., 2000) and adaptive

mesh refinement. The disparate length scales involved in this problem make the

numerical computations prohibitively expensive. Since we are mainly interested in

the macroscopic predictions of our model, we regularize the microscopic length do by

multiplying it by a magnifying factor 10', therefore bringing the peak of the energy

function shown in Fig. 2-1 from the nano to the micro scale. For simplicity, we set

the Navier slip length to zero, b, = 0, and consider only the localized effective slip

in the contact-line region, A = 10do (Fig. 2-2). We take the capillary length to be

Y = 1.5mm, which is typical of silicone oil.

We now address the original question of how a liquid puddle spreads on a solid

surface. We expect a partial-wetting liquid to spread initially to minimize the sys-

tem's free energy and to stop spreading when it reaches equilibrium. For small liquid

volumes, i.e. when Bo 1, capillarity is the dominant driving force, leading to

the Tanner's law for spreading, which predicts that the wetted area, A(t), scale as

t1/ 5 (Tanner, 1979) (Fig. 2-3). As the volume of the liquid increases, i.e. Bo >> 1,

gravity becomes the dominant driving force in the bulk while surface tension effects

remain limited to the vicinity of the moving contact line (Lopez et al., 1976; Hup-

pert, 1982a; Hocking, 1983). Balancing the gravity and viscous forces acting at the

macroscopic scale, one arrives at a scaling of t1 /4 for the wetted area. In this regime,

the spherical-cap approximation is no longer valid, but similarity solutions for the

quasi-static spreading can still be obtained (Huppert, 1982a; Hocking, 1983). In both

the capillary and gravity-dominated regimes, the final approach to equilibrium is

exponential (Hocking, 1983; de Ruijter et al., 1999), deviating markedly from the

quasi-static self-similar power-law behavior. Our model predicts this final approach

to a compactly-supported spreading state (Fig. 2-3).

While the macroscopic spreading rate is a good measure for examining the valid-

ity of our model, it is not very sensitive to the contact line dynamics, which arrest

the spreading drop as it approaches equilibrium. In the capillary-dominated regime,
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Figure 2-3: The rate of spreading is influenced by the volume of liquid. For small

volumes (Bo 1, red dash-dotted line), capillary forces are dominant and the drop

takes the shape of a spherical cap while viscosity resists the spreading, leading to

the Tanner's law A ~ t1/5 . For large volumes (Bo -? 360, blue dashed line), gravity

dominates, leading to a t1/4 scaling; the liquid puddle takes the shape of a pancake

at equilibrium. Af is the final equilibrium area and Oy = r/12.

the Cox-Voinov law describes the dependence of the dynamic contact line on the

spreading rate (Voinov, 1976; Cox, 1986; Bonn et al., 2009; Snoeijer and Andreotti,

2013). Our model indeed displays an excellent agreement with the Cox-Voinov law

for different equilibrium contact angles Oy [Fig. 2-4(b)]. Consistent with earlier ob-

servations (Chen, 1988; Reznik and Yarin, 2002), the dynamic contact angle exhibits

a dependence on the liquid volume. This dependence is expected, as the macroscopic

length 1M in the Cox-Voinov law is related to the radius of the drop (Eggers and

Stone, 2004; Bonn et al., 2009), which scales with its volume (Rf ~ V1/' in the

capillary-dominated regime and ~ (V/h.)1/2 in the gravity-dominated regime). The

surprising observation, however, is that the Cox-Voinov law provides an excellent

description of the dynamic contact angle even in the gravity-dominated regime. This

observation is supported by early experiments in the complete-wetting regime (Redon

et al., 1992). The macroscopic length scale, IM, increases with volume and thus with

the Bond number, but saturates to a constant value (proportional to the capillary
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length) beyond the transition from capillary-dominated to gravity-dominated regime

(at Bo ~ 30). Taking the effective slip length to be the microscopic length scale

l, .= A, we find the macroscopic length scale 1 M by fitting the dynamic contact angle

data to the Cox-Voinov law (IM a 100 ,im in the gravity-dominated regime). Tak-

ing the dependence of the macroscopic length scale on the volume into account, we

observe a remarkable collapse of all the dynamic contact angle data corresponding to

different volumes onto a single curve [Fig. 2-4(c)].

In summary, we have shown that incorporating non-hydrodynamic interactions

between the liquid and solid in a self-consistent manner leads to a free energy that

can be cast in a Cahn-Hilliard formulation with a height-dependent interfacial ten-

sion. This height-dependence allows compactly-supported spreading states with no

precursor film (Benzi et al., 2011; Cueto-Felgueroso and Juanes, 2012), in contrast
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with the classic thin-film model that does not admit such solutions (Brenner and

Bertozzi, 1993). The height-dependence of the interfacial tension further introduces

an effective slip that is localized to the contact-line region, where it dominates the

Navier slip, consistent with the observations of molecular simulations (Koplik et al.,

1988; Qian et al., 2003). Our thin-film model predicts that the dynamic contact angle

follows the Cox-Voinov law both in the capillary-dominated and gravity-dominated

regimes. This feature illustrates the ability of our mesoscopic model to capture nonlo-

cal effects on the contact line dynamics, which exert a fundamental control on pattern

formation in immiscible porous media flows (Martys et al., 1991; Geromichalos et al.,

2002; Levach6 and Bartolo, 2014).
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2.4 Bridging the gap across the scales

The classical hydrodynamic description of the immiscible flows breaks down at the

contact line where the two immiscible fluids meet the solid surface, predicting di-

vergent stresses and leading to the conclusion that "even Heracles cannot sink a

solid"(Huh and Scriven, 1971b; Dussan V. and Davis, 1974; Kirkinis and Davis,

2013). This early observation led to a long endeavor in search for the physical non-

hydrodynamic mechanisms that resolve this paradox (Bonn et al., 2009; Snoeijer and

Andreotti, 2013). Two descriptions at different scales prevail, i.e. the hydrodynamic

and molecular descriptions.

The hydrodynamic description assumes that the microscopic contact angle 0,

(see Figure 2-5) is not influenced by the flow and is equal to Young contact angle

defined as cos By = (m, - 'i)/', where y.g, ~ytq and -y are solid-gas, solid-liquid, and

liquid-gas interfacial energies (Young, 1805; de Gennes, 1985). Note that we use Oy

and 9eq interchangeably throughout this thesis. Experimental observations however

indicate that microscopic features of the contact line are indeed influenced by the flow

(Ram6 et al., 2004; Eggers and Stone, 2004) and cannot be assumed constant a priori.

The moving contact line singularity is also removed by introducing slip (Lauga et al.,

2007). While slip is observed in single-phase flows at nanometric scales and can be well

described using Navier law (Barrat and Bocquet, 1999; Zhu and Granick, 2001), its

physical origin is different in immiscible flows as it is very localized to the contact line

region (Koplik et al., 1988, 1989; Thompson and Robbins, 1989; Hadjiconstantinou,

1999; Qian et al., 2003, 2004, 2006; Ren and E, 2007; Ren et al., 2010; Qian et al.,

2015). Using these simplifying assumptions, hydrodynamic theory then relates the

dynamic contact angle 9 d away from the contact line to 0, using asymptotic matching,

resulting in the Cox-Voinov law 03 = 03 + 9Caln (l1/l,) (Voinov, 1976; Cox, 1986;

Bonn et al., 2009; Snoeijer and Andreotti, 2013), where Ca = pU/-y is the capillary

number with liquid viscosity p and contact line velocity U; 1m and l, are characteristic

macroscopic and microscopic length scales in the problem . The dynamic contact

angle is then used as an effective boundary condition cutting off the inner region
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Figure 2-5: Moving contact lines are intrinsically multiscale: the left column shows a
schematic of the contact line structure next to a moving plate (Snoeijer and Andreotti,
2013); macroscopically, the interface bends due to the viscous flow leading to an
apparent or dynamic contact angle (9 p = 9d); in the vicinity of contact line, however,
the angle is assumed to be equal to its equilibrium value 0, = 9 eq; this assumption,
however, has been shown not to be accurate (Thompson and Robbins, 1989; Ram6
et al., 2004; Eggers and Stone, 2004); at the nanometric scale, the interface becomes
diffused and the surface roughness may also become relevant. The macroscopic angle
is well described by the hydrodynamic theory as described by the Cox-Voinov law
and matches the experimental observations (Bonn et al., 2009). On the molecular
scale, however, the molecular kinetic theory (Blake and Haynes, 1969; Blake, 2006)
describes the motion of contact line as an activated process driven by the unbalanced
Young force, leading to an exponential dependence of contact line velocity on the
contact line force as exemplified here for the case of liquid helium being dragged on
a cesium substrate (Prevost et al., 1999).

close to the contact line from the solution (Sui et al., 2014). While this approach is

tempting due to its simplicity, it suffers from the above mentioned inconsistencies.

At nano-scale, behavior of the contact line can be described using the molecular
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Figure 2-6: A schematic of the drop profile in the hydrodynamic framework (Bonn
et al., 2009). Here, only one inflection point, where curvature becomes zero, exists in
the profile, at which the dynamic contact angle 9 d is defined. The microscopic contact
angle O, is assumed to be equal to the equilibrium value.

kinetic theory that is based on the idea of a local activated process (Blake and Haynes,

1969; Blake, 2006; Seveno et al., 2009; Ramiasa et al., 2013). This theory results

in a very different scaling of the contact angle with the contact line velocity, i.e.

sinh (cos Oy - cos 0,) - Ca, which for small capillary numbers can be linearized to

recover the scaling obtained by balancing dissipation mechanisms at the contact line

using the idea of uncompensated Young force (cos Gy - cos 0,) - Ca (Brochard-

Wyart and de Gennes, 1992). These scalings are also observed in molecular dynamic

simulations (Qian et al., 2003, 2004, 2006; Ren and E, 2007; Ren et al., 2010). The

idea of an activated motion in the vicinity of the contact line has also been recently

tested using AFM experiments (Guan et al., 2016).

Realizing the fact that the hydrodynamic and molecular descriptions act at differ-

ent scales, patching the two by assuming 0, = 0, seems to be a reasonable proposal

(Petrov and Petrov, 1992; Lhermerout et al., 2016). In this work however, we put
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Figure 2-7: A schematic of the multiscale structure of the profile close to the moving
contact line as obtained in our model. Here, two inflection points appear in the
interface structure in the vicinity of the contact line. The first zoomed-in view of the
profile shows the macroscopic inflection point, where the dynamic angle 6d is defined.
The dynamic angle connects to the microscopic angle, which is assumed to be equal
to the equilibrium angle in the hydrodynamic picture. The second zoomed-in view
shows that the microscopic angle in our model is a second inflection point connecting
the macroscopic and microscopic frameworks. The contact line meets the wall at a

non-zero angle 0.. This picture is consistent with the recent AFM observations of

the moving contact lines at the nano-scale (Chen et al., 2014).

forward a mesoscopic model that bridges the gap between these two descriptions. We

show in a self-consistent manner that proper description of the system naturally leads

to the emergence of a "missing link" between the two descriptions consistent with the

Atomic Force Microscopy observations (Chen et al., 2014). Our model shows that

9P follows a similar scaling with Ca as 0d does, thereby velocity-dependence of 6i is

screened leading to an excellent match between the Cox-Voinov law with ,. = 9 y and

experimental observations (Hoffman, 1975b; Bonn et al., 2009). On the other hand,

0,, follows a scaling similar to that proposed in the molecular kinetic theory (Blake

and Haynes, 1969; Blake, 2006), which indeed points to the fact that our mesoscopic

model can capture the underlying physics of the moving contact line across the scales.

We now start looking at predictions of this equation through simulations of ax-
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isymmetric drop spreading, varying the equilibrium contact angle and volume of the

liquid. To resolve the detailed structure of the contact line, we use adaptive mesh

refinement together with standard finite difference techniques Diez et al. (2000). In

the classical hydrodynamic picture (Fig. 2-6), viscous forces lead to the bending of

the interface in the vicinity of the contact line, creating an inflection point, where

the curvature is zero. The dynamic, or apparent angle is typically defined at this

point. The microscopic angle is further assumed to be equal to the equilibrium value

OI = Oq = Oy. Our model, in which the effective surface tension becomes height-

dependent, however, leads to a more complex structure of the interface in the vicinity

of the moving contact line. Here, two inflection points appear in the structure (Fig. 2-

7). One of the inflection points is due to the viscous bending of the interface, where

the dynamic angle is defined 9 d, consistent with the hydrodynamic theory. While

in the hydrodynamic picture, the profile smoothly meets the surrounding precursor

film with a zero angle (Fig. 2-6), the height-dependence of surface tension allows the

profile to meet the surrounding filn at a non-zero angle (Alizadeh Pahlavan et al.,

2018a). The presence of this non-zero angle at the contact line leads to a more com-

plex structure of the contact line, in which the microscopic angle 0, becomes a second

inflection point, connecting the macroscopic part of the profile (Od) to the microscopic

part (6W).

This second inflection point therefore provides a "missing link" between the macro-

scopic and microscopic pictures as also observed recently in AFM experiments probing

moving contact lines at the nano-scale (Chen et al., 2014). This observation allows

us to go beyond the ad-hoc patching of the two descriptions as proposed by Petrov

and Petrov (1992) to a reconciled picture, where the two descriptions naturally arise

at different length scales. This new picture is also consistent with the arguments of

de Gennes et al. (1990), where he proposed that the intermolecular forces introduce

a natural cut-off length, removing the contact line singularity even without slip. In

our model, the length scales corresponding to the new inflection point, where 6, is

defined, provide this cut-off length scale. On length scales larger than hp, the hy-

drodynamic description applies, and the point h,, serves as a boundary condition for
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this description; since h,, > 0, the contact line singularity is therefore removed from

the hydrodynamic description. On scales smaller than h,, the molecular description

becomes applicable and the contact line moves with a diffusive motion as we discuss

later.

To gain further insight into the dynamics of the moving contact line, we can

probe the evolution of the heights of the inflection points, where the dynamic and

microscopic angles are defined. Here, we allow a precursor film to surround the drop

to avoid numerical issues with the positivity preserving of the solution (Zhornitskaya

and Bertozzi, 1999); the presence of this film does not influence the structure of the

contact line (Alizadeh Pahlavan et al., 2018a). Far from equilibrium, as a drop starts

spreading, two inflection points exist in the structure of the contact line (Fig. 2-8

(a)). Here, we observe that while the microscopic height h,, remains nearly constant

in time, the dynamic height hd decreases in time as drop spreads and gets closer to its

equilibrium position. The rate of spreading of the drop decays in time, indicating that

the viscous forces weaken in time. Viscous forces lead to the bending of the interface

and appearance of the hydrodynamic inflection point, where 9 d is defined (Cox, 1986;

Bonn et al., 2009). As the viscous forces become weaker, this viscous bending point

becomes closer and closer to the contact line, finally leading to the dynamic branch

merging with the microscopic branch. This is a point, where the two inflection points

merge. We identify this first regime as the hydrodynamic regime, where viscous forces

are dominant and a well-defined dynamic angle exists at a macroscopic length scale.

Beyond the merger of the two branches, no inflection points exist in the contact

line structure as shown in (c). Here, the point of minimum non-zero curvature can

be identified as the continuation of the merged dynamic-microscopic branches. This

branch finally meets the h, branch very close to the equilibrium, where the curvature

becomes nearly constant everywhere as shown in (d). We identify this second regime

as the molecular regime, in which the three length scales identified above all enter the

nanometric length scale, indicating that viscous, surface tension, and intermolecular

forces become of the same order.

We can further probe the evolution of the contact angles as drop spreads and
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Figure 2-8: Evolution of the heights corresponding to the dynamic, microscopic, and
wall angles as defined by hd, hit, and h,, respectively (Fig. 2-7). (a) In the first regime,
far from equilibrium, two inflection points can be identified. In this hydrodynamic
regime, the dynamic angle can be identified at a macroscopic distance from the contact
line. As drop spreads, the viscous forces weaken farther away from the contact line,
leading to a decrease in the dynamic height, which eventually leads to the merger of
the dynamic and microscopic branches as shown in (b). Beyond the merger of the two
branches, no inflection points exist in the contact line structure as shown in (c). Here,
the point of minimum non-zero curvature can be identified as the continuation of the
merged dynamic-microscopic branches. This branch finally meets the h, branch very
close to the equilibrium, where the curvature becomes nearly constant everywhere as
shown in (d). In this molecular regime, the only identifiable angle is the wall contact
angle. This picture therefore suggests that while both hydrodynamic and molecular
mechanisms are at play during the entire evolution, the dominant mechanism evolves
in time: (i) the dynamics farther away from the equilibrium, when viscous forces are
strong on macroscopic scalae, is described by the hydrodynamic picture; (ii) at late
times, when viscous forces become weak and only matter at microscopic scales, the
balance is between viscous and intermolecular forces, leading to a molecular regime.
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compare and contrast it with the hydrodynamic and molecular descriptions. Figure

2-9 (a) shows that all three identified contact angles, dynamic 0 d, microscopic 6,, and

wall 6, evolve in time and are distinct functions of the spreading rate as identified

by the capillary number.

We expect the dynamic angle to follow the hydrodynamic description as described

by the Cox-Voinov law. Figure 2-9 (b) shows that the data corresponding to four

different equilibrium contact angles can be collapsed on a curve using the scaling

0' - 0'g - Ca. In the hydrodynamic framework, the microscopic angle is considered

to be fixed and equal to the equilibrium angle, leading to the description 9 - 3

0' - 0' ~ Ca. Our observations indicate that the microscopic angle is not fixed and

deviates from the equilibrium angle. In fact, we find that the microscopic angle follows

the same cubic scaling as the dynamic angle, only with a smaller prefactor indicating

a weaker deviation from the equilibrium value, i.e. 03- ~3q Ca. Therefore, even

with this non-constant microscopic angle, we can recover the Cox-Voinov scaling, i.e.

d- 6 - eq ~ Ca. This observation explains why using a fixed equilibrium

angle at the wall in the hydrodynamic picture as represented by the Cox-Voinov

model works well.

We, however, find that the wall angle 0, follows a scaling different from that of

the hydrodynamic theory. In the vicinity of contact line the effective surface tension

goes to zero. This implies that the thin film equation governing the flow (Eq. (2.5))

can be approximated as:

O- ~(2.14)
(9t dh

which is effectively a diffusion equation, in which diffusion is set by the intermolecular

forces. This is similar to the idea of diffusive motion of the contact line in the diffuse

interface methods (Seppecher, 1996; Anderson et al., 1998; Jacqmin, 1999, 2000; Chen

et al., 2000; Qian et al., 2003, 2004; Yue et al., 2004; Briant et al., 2004a; Qian et al.,

2006; Ding and Spelt, 2007; Khatavkar et al., 2007; Yue et al., 2010; Xu and Qian,

2010; Yue and Feng, 2011; Sibley et al., 2013; Kusumaatmaja et al., 2016), which lead
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consistent with the hydrodynamic description and Cox-Voinov law and collapse the
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ever, follows a different scaling and can be collapsed using the scaling of the molecular
kinetic theory using (/T) 2 ~ 40.
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to a scaling

COS Oeq - cos 0, - Ca(/l, (2.15)

where ( is the diffuse interface width and 1, is the slip length, which here is taken to

be of the order of the diffusion length 1D (Snoeijer and Andreotti, 2013).

The diffusive description of the moving contact line is analogous to the linearized

version of the molecular kinetic theory, which considers the contact line motion as a

thermally activated process. Here, we briefly review the derivation of the molecular

kinetic theory (Blake and Haynes, 1969; Blake, 2006; De Coninck and Blake, 2008;

Duvivier et al., 2013; Snoeijer and Andreotti, 2013). The liquid molecules in the

vicinity of the contact line need to overcome an energy barrier E* to move. In a

thermally activated process, the frequency of crossing the energy barrier is set by the

reaction rate theory (Hiinggi et al., 1990): v = vo exp (-E*/kBT), where vo ~ kBT/h

is the attempt frequency with h as the Planck's constant. The contact line velocity can

therefore be estimated as U = (v+ - v_), where is the activation length, and v are

the crossing frequencies in the forward and backward directions. Disorder is always

present on real surfaces, therefore relating the activation length to the pinning sites

and the energy barrier to the "rugged energy landscape" of the surface (Giacomello

et al., 2016; Perrin et al., 2016, 2018b,a). Away from equilibrium, the contact line

is driven by the unbalanced Young force F = 'yc(cos 0 eq - cos 0w), tilting the energy

barrier v = vo exp (- (E* F /2)/kBT). The contact line velocity can therefore be

written as:

U = 2vo exp (- E) sinh )2 (cos Oeq - cos 0w) , (2.16)
kBT 1T

where 1T = VkBT/y is the thermal length scale.

To relate the molecular kinetic theory to the macroscopic properties of the liq-

uid, we can use the Eyring's equation for the viscosity of simple liquids (Blake and
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De Coninck, 2011; Snoeijer and Andreotti, 2013):

kBT exp ( E ) (2.17)
V1 W kBT

where E,, represents the liquid-liquid interaction energy. Using this definition of the

liquid viscosity together with the linearized version of the molecular theory Eq. (2.16)

we then arrive at:

Ca = (cos 60, -cos 0.) exp ( E ), (2.18)
kBT

in which E,, 2_y 2 and E* ~ <y2(1+ COS 0q) (Blake and De Coninck, 2011), leading

to

Ca = (cos Oeq - cos 0w) exp (1 - cos Oe)), (2.19)

which can be interpreted as an effective boundary condition on the molecular scale.

It is easy to see that both Eqs. (2.15) and (2.19) can be written in a general simplified

form as:

(cos eq - cos 0w)/X - Ca, (2.20)

which relates the contact line velocity to the driving unbalance Young force with x

representing a friction coefficient.

We use the scaling of the molecular theory for the wall contact angle data as

shown in Fig. 2-9, which indeed seems to collapse the data corresponding to four

different equilibrium contact angles. This observation is consistent with the diffusive

dynamics of the wall angle in diffuse interface methods as well as in molecular dynamic

simulations (Thompson and Robbins, 1989; Qian et al., 2003, 2004, 2006; Ren and E,

2007; Ren et al., 2010).

Our model therefore reconciles the hydrodynamic and molecular frameworks and

bridges the gap in our understanding of the moving contact lines. We observed that

both descriptions are valid throughout the spreading process with the dynamic and

microscopic angles following the hydrodynamic description of Cox-Voinov law and

the wall angle following the molecular theory. At early times, the viscous forces

are dominant, leading to a macroscopic dynamic height corresponding to the viscous
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bending of the interface. This height keeps decreasing in time as drop gets closer

to its equilibrium state and the spreading slows down, weakening the viscous forces.

At late times, this macroscopic height merges with the microscopic height, which is

accompanied by the merger of the two inflection points in the contact line structure.

At late times, no inflection points exists in the structure and only the wall angle is

defined next to the contact line. In this molecular regime, the intermolecular forces

become of the same order as surface tension and viscous forces.
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Part II

Wetting transition, entrainment

and instability
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Chapter 3

Wetting transitions in confined

environments

Here, we propose a phase diagram for wetting transition, entrainment, and instabili-

ties in confined domains. We discuss the parallels between the interfacial instabilities

in confined and unconfined geometries and point out to the differences. Overall, we

show that the topic of pattern formation in confined domains in the presence of mov-

ing contact lines is largely unexplored and promises to be an exciting field of research

with a very rich underlying physics. This chapter serves to review the exiting exper-

imental observations and theoretical models and motivate new studies to address the

unexplored areas.
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3.1 Withdrawing a plate from a liquid bath: liquid

entrainment

When a solid plate is withdrawn from a liquid bath that is perfectly wetting to the

solid surface, a film of the liquid is entrained on the plate. This process was first

described by Landau and Levich (1942) and Derjaguin (1943). They showed that the

entrained film thickness scales as h1 /L Ca2 3 , where L is a macroscopic character-

istic length scale and Ca = [tU/-y with p and -y as the liquid viscosity and interfacial

tension and U as the plate velocity. Later, Taylor (1961a) and Bretherton (1961)

observed that the liquid film thickness around a moving bubble in a capillary tube

follows the scaling proposed by Landau, Levich, and Deraguin (LLD). The LLD scal-

ing is relevant to many coating processes, suggesting that the coating layer thickness

can be controlled by tuning the velocity, surface tension, or viscosity (Ruschak, 1985;

Quer6, 1999; Weinstein and Ruschak, 2004; Stone, 2010). The LLD scaling is strictly

valid for very low capillary numbers as it is obtained via a matched asymptotic ex-

pansion as shown by Bretherton (1961); Wilson (1982) and needs to be modified for

thick films, where gravitational drainage becomes important (White and Tallmadge,

1965), or for high velocities, where inertia becomes relevant (Qu6r6, 1999; Aussillous

and Qu6r6, 2000). At very low velocities also there is a cut-off to the validity of the

LLD scaling, when intermolecular forces become relevant and set the film thickness

(Quer6 et al., 1989). In confined flows also the LLD scaling has been found to be of

high importance, from the pressure drop across a meniscus in a Hele-Shaw cell (Park

and Homsy, 1984) to handling of drops, bubbles, and foams in microfluidics (Baroud

et al., 2010; Cantat, 2013). All these processes rely on an important assumption that

the liquid completely wets the solid surface, i.e. no contact line is present. In many

situations, however, the liquid partially wets the surfaces. This observation leads to

a basic question: how does partial wetting affect the liquid coating and entrainment

process?

In the partial wetting regime, the liquid forms a non-zero angle with the solid

surface. Slowly removing a plate from a liquid bath that partially wets the plate, the
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contact line moves slightly up the plate and remains stationary at its new equilibrium

position, i.e. simply the apparent contact angle decreases (Sedev and Petrov, 1991).

Using the thin-film framework, Eggers (2004) used asymptotic matching to show that

the curvature of the inner solution near the contact line cannot be matched with the

curvature of the outer solution if the plate velocity increases beyond a certain critical

value. The absence of steady state solutions indicates the onset of the wetting tran-

sition and liquid entrainment. The critical capillary number is found to be (Eggers,

2004):
-3 13 -1

93 Ca11 3 Oe
Cacr = In cr , (3.1)

9 181/37r[Ai(Smax)]2Aa )

where Oeq is the equilibrium contact angle, Ai is the Airy function, smax = -1.0188,

a is the plate inclination with respect to the liquid bath, and A is the slip length.

All length scales are non-dimensionalized by the capillary length scale l, = /y/pg,

where p is the liquid density and g is the gravitational acceleration. Here, the onset

of entrainment coincides with the apparent contact angle becoming zero, which is

consistent with the observations of Sedev and Petrov (1991). Whether the apparent

contact angle becomes zero at the onset of entrainment, however, has been a subject

of debate. de Gennes (1986) balanced the viscous dissipation and capillary driving

force near the contact line and concluded that the entrainment occurs discontinuously

at a non-zero apparent angle. Eggers (2005), however, pointed to an inconsistency

in the approximations made by de Gennes (1986) and argued that the transition is

continuous. Further, Snoeijer and Eggers (2010) showed that the dewetting speed of a

receding contact line as predicted by the model proposed by de Gennes is greater than

the critical entrainment velocity, suggesting the incorrect conclusion that a receding

contact line cannot exist. The experimental observations of Delon et al. (2008) for

the plate withdrawal, however, indicate that the entrainment occurs at a non-zero

apparent angle. They suggested that the transition is pre-critical, i.e. occurs at a

capillary number Ca*, which is smaller than the Ca, predicted by the hydrodynamic

theory. The origin of this pre-critical transition is not yet fully resolved as different

mechanisms have been suggested: Snocijer et al. (2006) observed that a capillary ridge
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forms before the critical point and suggest that the formation of this ridge leads to the

pre-critical transition; the inherent roughness of the plates has also been suggested

to lower the critical capillary number (Golestanian and Rapha51, 2003; Perrin et al.,

2016); Maleki et al. (2007) suggest that one needs to be cautious about the definition

of apparent angle as different definitions can lead to different conclusions. Further,

the dimensionality of the problem can also be an important factor in whether a zero

angle is observed at the onset of entrainment as shown for the case of sliding drops,

for which near the corner the 3D nature of the flow needs to be considered (Limat and

Stone, 2004; Snoeijer et al., 2007b). A remarkable observation is that the transient

dynamics of the contact line before the entrainment precisely follows the predictions

of the quasi-static hydrodynamic theory all the way up to the Cac, even though no

static meniscus can be observed experimentally for Ca* < Ca < Cac,.
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3.2 Plunging a plate into a liquid bath: air en-

trainment

In the Landau-Levich problem the dynamics of the surrounding air phase can be safely

neglected. In the reverse case of a plate plunging into a liquid bath, however, the air

dynamics becomes important. In fact, the thin-film model used to predict the critical

capillary number in the receding contact angle case, predicts that the advancing

contact line is stable for any arbitrary velocity. While the experimentally observed

wetting transition for advancing contact lines is observed at much higher velocities

than the receding contact lines, the failure of the thin-film framework to predict the

transition stems from the fact that the dynamics of the air phase is neglected. To get

an estimate of the critical capillary number, therefore, the dynamics of both phases

need to be included. One approach to achieve this goal is to solve for the flow fields

in both phases, i.e. solve the full Stokes or Navier-Stokes equations with appropriate

boundary conditions at the interface between the two fluids as well as the fluid-solid

boundary and contact line. This approach is computationally expensive, but can

reproduce the experimental observations for the air entrainment for instance (Vandre

et al., 2012, 2013). Alternatively, one can use Cox's asymptotic theory for two-phase

flow, which predicts how viscous forces lead to the bending of the interface to get an

estimate of the apparent contact angle (Cox, 1986; Bonn et al., 2009):

g(9(x), M) - g(O,,, M) = Ca ln (x/A), (3.2)

where tan (0(x)) = dh/dx is the slope of the interface at a distance x from the contact

line and M = Prec/Pad, is the ratio of the viscosity of the receding phase to that of the

advancing phase (Vandre et al., 2013). The microscopic contact angle Op is usually

assumed to be equal to its equilibrium value, i.e. 0,= 9 eq. It is however, recognized

that the microscopic angle can deviate from the equilibrium angle due to the flow and

there is an ongoing debate about its dependence on the front velocity (Thompson and

Robbins, 1989; Qian et al., 2003, 2006; Blake, 2006; Ren and E, 2007; Bonn et al.,
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2009; Ren et al., 2010; Perrin et al., 2016; Lhernierout et al., 2016; Alizadeh Pahlavan

et al., 2018c). The function g accounts for the viscous forces in both phases and has

the following form:

g(9(x), M) = (3.3)

0 M [x2 - (sin x)
2] [(ir - x) + sin x cos x] + [(7r - x)2 - (sin x)2 ] (x - sin x cos x)

o 2 sinx [M2 (X 2 - (sin x) 2) + 2M [x(7r - x) + (sin x) 2] + [(7r - X)2- (sin x) 2 )]-

In the limit of zero viscosity contrast, i.e. air-liquid systems, the function g sim-

plifies considerably to:

g () x - sin xcosx 34
9 ( 6 )j x O x(3.4)

0 2 sin x

which can safely be approximated as 63/9 for 6 < 37r/4, leading to the celebrated

Cox-Voinov relation for advancing contact lines (Voinov, 1976):

03 -- 0 = 9Ca ln (x/A). (3.5)

The critical capillary number can therefore be estimated as the point, where the

apparent contact angle approaches 7r:

Cac. = (g(7r, M) - g(p, M)) / In (m/A), (3.6)

where 1M is a macroscopic length scale at which the apparent angle is defined. As

discussed above for the case of receding contact lines in the context of Landau-Levich

problem, whether the transition occurs when the apparent contact angle reaches 7r or

before that is a subject of debate. This definition, however, seems to lead to reasonable

estimates of the critical capillary number for the air entrainment experiments (Vandre

et al., 2012, 2013). Another point that needs to be emphasized is that the general

Cox's relationship or the Cox-Voinov relation are strictly valid for advancing contact

lines, where the outer curvature of the inner solution in the vicinity of the contact

line approaches zero, allowing for an unambiguous matching with the outer solution

(Eggers, 2005); in the case of receding contact lines, as discussed above, the outer
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curvature of the inner solution is a non-zero value, which prevents matching of the

inner to the outer solution beyond a critical capillary number.

An alternative approach to find the critical capillary number is to use the lubri-

cation approximation to simplify the equations of motion (Oron et al., 1997; Craster

and Matar, 2009). The lubrication approximation goes back to the early works of

Reynolds (1886) and is a very powerful technique in fluid mechanics, allowing to get

valuable information about the flow at a much reduced computational cost compared

with the full solution of equations of motion. The downside of this approach is that

it is limited to small slopes to be consistent with the assumption of mainly uni-

directional flow field. It should be noted that the lubrication approximation usually

works well even outside its regime of strict validity, for instance in flows involving

stagnation points, due to its weak ellipticity (Krechetnikov, 2010). For large slopes,

the lubrication approximation can be generalized by assuming that the flow locally

can be approximated as a flow in a wedge instead of the usual Poiseuille flow approx-

imation (Snoeijer, 2006). For the general case of arbitrary viscosity contrast between

the two phases, the interface can be described as (Chan et al., 2013):

d =2  f (0, M) (3.7)
ds 2  h(h+3A)

where 9 is the local interface slope, s is the are length along the interface, and the

function f can be written as:

f(,M) - 2(sin 0)3 [M2 fi(9) + 2Mf3() + fi(r - )]
3 [Mfi(0)f2(-r - 9) - fi(7r - 0)f2(0)] '

where fi(0) = 92 - (sin 9) 2 , f2(0) = 0 - sin cos9 and f3(0) = (r - 9) + (sin 9) 2 . In

the limit of zero viscosity contrast, Snoeijer (2006) has shown that the generalized

lubrication approximation is equivalent to the Cox's asymptotic theory (Eq. (3.2)).

However, this equivalence is strictly valid for the advancing contact lines. In the case

of receding contact lines, the generalized lubrication approximation needs to be used,

which reproduces the experimental observations (Snoeijer et al., 2007a; Snoeijer and

Andreotti, 2013).
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While the Cox's theory and the generalized lubrication approximation have been

qualitatively successful in predicting the experimentally observed critical capillary

number for the onset of air entrainment, the agreement is not quite satisfactory yet.

In particular, the dependence of the critical point on the viscosity ratio is not quite

consistent with the experimental observations (Chan et al., 2013). Changing the

ambient air pressure is known to lead to a change in the critical capillary number

of the entrainment (Benkreira and Khan, 2008), or suppress splashing in a drop

impacting a solid surface (Xu et al., 2005). The gas viscosity, however, is not a

strong function of the pressure. Slip length is therefore thought to be responsible for

the dependence on the air pressure (Marchand et al., 2012; Snoeijer and Andreotti,

2013)., Recently, it has been shown that to get a quantitaive prediction of the onset

of transition, kinetic effects in the gas phase need to be accounted for via solving

the Boltzmann equation coupled with the hydrodynamic model for the liquid phase

(Sprittles, 2017).
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3.3 Influence of confinement on the wetting tran-

sition

In the predictions of the critical capillary number for receding (Eq. (3.1)) and advanc-

ing (Eq. (3.6)) contact lines, the ratio of a microscopic to a macroscopic length scale

in the problem appears inside log terms. This observation implies that confinement

can indeed influence the onset of transition if the macroscopic length scale, i.e. con-

finement scale becomes smaller than the capillary length scale. For instance, Vandre

et al. (2012) have shown that the onset of air entrainment can be delayed by confining

the meniscus to a small gap of order of few hundred microns. Such small spacings are

in fact very typical of many coating applications and indeed point to the importance

of confinement effects. In the context of Couette flow geometry, few studies have ana-

lyzed the role of confinement on the entrainment features (Jacqmin, 2004; Sbragaglia

et al., 2008; Gao and Lu, 2013; Kim and Nam, 2017), where it has been observed

that in liquid-liquid displacement the transition occurs discontinuously at a non-zero

apparent angle, whereas in the air-liquid systems the transition remains continuous.

In fact, the role of the macroscopic geometry on the onset of wetting transition can

be simply understood by considering the example of a fiber being withdrawn from a

liquid bath (Shing Chan et al., 2011). For very large fiber radii, the critical capillary

number can be written as follows:

93 [ (3Cac) 1 /30, iC a., = q In (3a, 1(3.9)
9 _ n 25/63ir[A i(sm a > 2 A )](329)

where the slip length A is the molecular length scale and the capillary length is the

macroscopic length scale (see Eq. (3.1) and (Eggers, 2005)). In the opposite limit of

very small fibers, however, the critical capillary number can be written as:

93 (3Cacr)1/3  -1Car = Iln (3.10)9 21/337r[Ai(smax )]2A-
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where the fiber radius ro is now the macroscopic length scale. In the case of wetting

transition in a capillary tube, the radius would be that of the tube (Zhao et al., 2018).

More recently, Setu et al. (2015) have investigated the effect of confinement on

wetting transition using a demixed colloid-polymer mixture, which has an ultralow

interfacial tension, leading to a small capillary length and therefore a much smaller

separation of microscopic and macroscopic length scales (Aarts et al., 2004), allowing

for a direct visualization of length scales on the order of the diffuse interface thickness.

In this limit, they found that the effect of confinement scale on the critical capillary

number is no longer logarithmic, but in fact linear. They argue that this change in

scaling is due to the fact that in "superconfinement", the influence of contact line

friction dominates the volumetric contributions of the viscous dissipation in the bulk.

Here, we are mainly interested in the influence of confinement on the morphology

of the wetting transition and its ensuing instability features. Figure 3-1 represents a

phase diagram of the displacement patterns in confinement (in a channel, or a capil-

lary tube), where a less viscous fluid displaces a more viscous fluid, and its analogy

to the wetting transitions in open systems, i.e. plate withdrawal from or plunging

into a liquid bath discussed above. In the confined domains, displacement of more

wetting defending fluid by a less wetting invading fluid is called drainage. The reverse

process of displacement of a less wetting fluid by a more wetting fluid is known as

imbibition. We focus on the case of a less viscous fluid displacing a more viscous one,

which is known to lead to interfacial instabilities. Some of the discussions, however,

do extend to the stable displacement processes. We will discuss the influence of vis-

cosity contrast in passing when relevant. While most of the morphologies presented

here are experimentally observed, some are theoretical predictions that remain to be

verified. We need to understand the details of the displacement morphologies beyond

the transition to be able to describe and predict their ensuing instabilities- a very

important topic, which we will discuss next.

128



(a) (b) (c) Ca
U U U U

U IA

(122

1L2 / 2 (2 2

3I
W" MrM

fl2e e 
ir/

12 ~ /12 0

Figure 3-1: Phase diagram of dynamical wetting transitions in confined immiscible flows when a less viscous fluid displaces a
more viscous liquid and its analogy to the unconfined case. (a-c) A liquid film becomes entrained on a solid plate withdrawn
from a liquid bath if the plate velocity is higher than a critical velocity; Cac. ~ 6,q (Eq. (3.1)). The entrained liquid film can
have different morphologies depending on the plate velocity (Galvagno et al., 2014; Gao et al., 2016): (a) shows the formation
of a capillary ridge, which is thought to be responsible for the pre-critical nature of the observed transition (Snoeijer et al.,
2006); while the thickness of the entrained film next to the liquid bath is described by the Landau-Levich scaling h1  y~23
the capillary ridge thickness is set by the contact angle and is independent of the plate velocity; the structure of the ridge is
remiscient of an Lax-undercompressive shock front, in which the front and back of the shock travel at different speeds leading
to the broadening of the ridge (Bertozzi et al., 1998, 1999) (b) shows a thick liquid film with a stationary dimple next to the
liquid bath (Snoeijer et al., 2008); as the plate velocity increases, the dimple finally detaches from the liquid bath and capillary
ridges of the form shown in (a) form; this observation is also remiscient of undercompressive shock formation and separation in
Marangoni-driven thin films (Munch, 2003; Sur et al., 2003; Mfinch and Evans, 2005). (c) Shows the formation of a dewetting
rim next to the contact line (Maleki et al., 2007). (d-f) Forced wetting transition in a channel or a tube, where a film of the
defending liquid gets entrained on the wall. This observation is typical of the drainage reginme, when a less wetting fluid displaces
a more wetting liquid.



Figure 3-1: (d) shows the dewetting rim profile beyond the onset of transition (Zhao
et al., 2018). The entrained film thickness follows the modified Taylor-Bretherton
scaling (Aussillous and Quer6, 2000; Klaseboer et al., 2014). The growth of the
dewetting rim next to the receding contact line finally leads to the pinch-off of the
invading phase and formation of a bubble/drop (Alizadeh Pahlavan et al., 2018e).
Morphologies presented in (e) and (f) have not yet been observed experimentally,
but our preliminary modeling results indicate that they can arise in the presence
of a body force, e.g. gravity, similar to the case of Landau-Levich coating shown
in (a-c). Note that in all cases (a-f), the receding contact angle is different from the
equilibrium angle and can be expressed as 0 - 6' = 9Ca* In 2OeqW/3A, where w is the

width of the rim and Ca* ~ 0' is the nearly constant receding contact line velocity
(Snoeijer and Eggers, 2010). Cases (g-k) show the possible morphologies when the
invading fluid is more wetting than the displaced liquid. (g) Shows the entrainment
of the invading liquid on the walls of the channel or tube (Levach6 and Bartolo,
2014). (h) Shows an entrained film with a capillary Lax-undercompressive shock in
front. The thickness of the capillary shock is set by the contact angle, flow rate, and
viscosity contrast between the fluids. The film behind the shock, however, follows
the typical Landau-Levich scaling. (i) Show the entrained film with a rarefaction
wave-undercompressive shock structure. The morphologies presented in (h) and (i)
are reminiscent of those observed in the case of Marangoni-driven thin films with two
competing driving forces (Bertozzi et al., 1999). (j) Shows an overturned entrained
thin film, where the defending liquid is becoming entrained and will finally lead to the
pinch-off of a drop/bubble of the invading fluid. This type of flow morphology has
been observed in gravity-driven flows down a narrow path, leading to the entrainment
of the air phase and pinch-off of a drop (Ledesma-Aguilar et al., 2011) as well as in
confined channels using demixed colloid-polymer mixtures (Setu et al., 2015). (k)
Shows the morphology when the invading interface overturns transitions from the
imbibition regime to the drainage regime (Setu et al., 2013; Odier et al., 2017). Case
(1) represents the entrainment of a non-wetting fluid in the Landau-Levich setting;
this is a common observation in entrainment of air on hydrophilic plates (Snoeijer
and Andreotti, 2013). Cases (g-j) can be thought of as analogues of Landau-Levich
problem, where a less viscous and more wetting liquid is being entrained on the plate,
whereas case (k) is similar to case (1), where a more viscous and less wetting liquid is
being entrained on the wall.

130



The typical interface morphologies in the Landau-Levich problem of withdrawing

a plate from a liquid bath in the partial wetting regime are shown in Fig. 3-1(a-c). In

the Landau-Levich problem, we expect a uniform coating of thickness hf ~ lCa2/3

where the capillary number is defined based on the plate velocity U. In the partial

wetting regime, however, the morphology becomes more complex. Snocijer et al.

(2006) observed that the wetting transition to coating the plate occurs pre-critical,

i.e. before the capillary number reaches the critical capillary number predicted in

Eq. (3.1). They observed that this pre-critical transition is always accompanied by

the formation of a capillary ridge that separates from the bath and travels upwards

along the plate as shown in Fig. 3-1(a). The thickness of this capillary ridge depends

on the contact angle and shows features of the Lax-undercoipressive shock front

observed in Marangoni-driven thin films (Bertozzi et al., 1998, 1999), i.e. the front

moves at a faster speed than the back of the shock leading to the broadening of the

ridge in time. This ridge is then connected to the liquid bath via a Landau-Levich

film. They later argued that the capillary ridge profile belongs to a class of thick-

film solutions shown in Fig. 3-1(b), which connect to the bath via a dimple, whose

thickness is set by the Landan-Levich scaling (Snoeijer et al., 2008). The structure

shown in Fig. 3-1(a) is then observed in the class of thick films, when the plate velocity

is suddenly increased leading to the detaching of the capillary shock and formation

of a Landau-Levich film behind it. This pinch-off like process is again similar to

the observations in the Marangoni-driven thin films (Munch, 2003; Sur et al., 2003;

Munch and Evans, 2005). The structure shown in pane (c) is the usual Landau-

Levich film, which meets the wall with a dewetting rim (Maleki et al., 2007). In the

confined flow cases (d-f), which can occur in a channel or a capillary tube, we expect

to observe similar morphologies to those discussed in the case of Landan-Levich in

open systems. In particular, Zhao et al. (2018) observed a wetting transition in a

capillary tube, leading to the entrainment of the defending liquid on the tube wall

and formation of a dewetting rim as shown in pane (d). An important difference

with the case of open systems here is that the growth of the dewetting rim next to

the receding contact line eventually leads to the pinch-off of a bubble/drop of the

131



invading fluid (Alizadeh Pahlavan et al., 2018e), whereas in an open system such an

event will not occur. The thickness of the entrained film here follows the modified

Taylor-Bretherton scaling (Aussillous and Quer6, 2000; Klaseboer et al., 2014), which

is essentially the same as that of the Landau-Levich problem (Stone, 2010). Note

also that while we have focused on the unstable displacement, i.e. a less viscous fluid

displacing a more viscous one, the morphology shown in pane (d) is expected to be

observed for arbitrary viscosity contrasts. The critical capillary number of course

increases as the invading fluid becomes more viscous. In the singular limit of the

defending fluid being air, air films become entrained on the wall beyond a critical

capillary number. This will be further discussed below.

Figure 3-1(e-f) show flow morphologies that have not yet been reported exper-

imentally; they are however, motivated by the observed morphologies in the open

system (panes a-c) as well as our preliminary theoretical predictions in the presence

of a uniform body force, e.g. gravity. In particular, pane (e) shows an undercom-

pressive shock next to the receding contact line without a ridge. Pane (f) shows

an undercompressive-Lax shock pair, i.e. a capillary ridge next to the contact line.

Similar to the case of Landau-Levich problem shown in pane (a), here the thickness

of ridge is set by the contact angle; this ridge is then connected to a Landau-Levich

type film. The existence and features of the morphologies presented in panes (e-f)

have important consequences on the stability properties of the interface as will be dis-

cussed further below. Further, in case (d), the contact line speed and contact angle

seem to follow the predictions in the open system, i.e. contact angle can be expressed

as 0' - 0'q = 9Ca* In 2eqw/3A, where w is the width of the rim and Ca* ~ 0' is the

nearly constant receding contact line velocity (Snoeijer and Eggers, 2010). It remains

to be seen whether these remain true for cases (e-f). Further, all our discussions on

cases (a-f) assumed that the fluid 1 is air, i.e. i ~ 0 and its dynamics can be safely

neglected. It remains to be seen how finite viscosity contrasts, for which the dynamics

of both phases need to be considered will change the predictions.

Figure 3-1 (g-k) represent the flow morphologies observed when the invading fluid

is more wetting and less viscous than the defending fluid. It should be noted that
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whether any of the morphologies (g-j) or (k) will be observed depends sensitively on

the viscosity contrast between the fluids as well as the contact angle. Here, we focus on

the case of an arbitrary high viscosity contrast, i.e. a much less viscous fluid displacing

a more viscous fluid. We also consider the limit where the invading fluid forms a non-

zero, but very small angle with the interface. Under these conditions, all the presented

morphologies are likely to be observed, while increasing the viscosity or the contact

angle of the invading fluid can result in only a subset of these morphologies, and in

particular only pane (k) to be observed.

Figure 3-1(g) shows the flow morphology observed first by Levach6 and Bartolo

(2014) in a rectangular Hele-Shaw cell, where thin films of the invading fluid become

entrained on the walls of the cell. These thin films have since been observed in

micromodel experiments (Zhao et al., 2016; Odier et al., 2017) as well as in smooth

and rough radial Hele-Shaw cells (Alizadeh Pahlavan et al., 2018b,d). In particular,

we have shown that depending on the upstream boundary conditions, one of the three

morphologies (g-i) will be chosen. Pane (g) represents a leading Lax shock structure;

pane (h) represents a Lax-undercompressive shock structure, and pane (i) represents

a rarefaction wave-undercompressive shock structure. As we will discuss later, the

front instability is very sensitive to the flow morphology observed here, which serves

as the base state.

Pane (j) shows an overhanging thin-film front, which occurs when the defending

fluid becomes entrained on the wall. Morphologies similar to this have been observed

in open systems (Ledesma-Aguilar et al., 2011), where a narrow stream of liquid

flowing on an inclined plate entrains air at its advancing contact line, leading to the

pinch-off of the droplets. In confined flows also a situation similar to the pane (j) has

been observed in experiments using demixed colloid-polymer mixtures with ultra-low

interfacial tensions (Setu et al., 2015). In this case also similar to the unconfined

case, the entrainment occurs due to the wetting transition at the advancing contact

line. This situation is similar to that depicted in pane (1) with the fluids 1 and

2 being flipped, i.e. a less-wetting fluid 1 being dragged into the fluid 2. Note

that in pane (j), we have assumed that two wetting transitions occur. The first one
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being the entrainment of the invading fluid and the second one being the entrainment

of the defending fluid. While the entrainment condition depends on the boundary

conditions, it is unlikely that both entrainments occur for the same speed, i.e. either

one of the cases (g-i) will be observed or the case represented in pane (k), showing the

entrainment of the defending fluid. Case (j) can however be observed in the presence

of a variable velocity, or in a situation similar to that presented in (Setu et al., 2015),

where the ultra-low interfacial tension leads to a small capillary length and therefore

make gravitational forces relevant even in "superconfinement". We also expect to

be able to observe such a flow configuration in the context of our radial Hele-Shaw

cell experiments, where the invading liquid coats one of the walls; for high enough

injection rates, one would then expect to observe the entrainment of the defending

fluid and overturning and pinch-off of the invading liquid. This hypothesis remains

to be experimentally confirmed.

Finally, pane (k) represents the entrainment of the defending liquid on the walls.

This flow configuration has been observed in Hele-Shaw experiments using demixed

colloid-polymer mixtures (Setu et al., 2013) as well as in micromodel experiments in

unstable imbibition regime for very high injection rates (Odier et al., 2017) leading

to the switching of the flow from the thin-film mode represented in panes (g-j) to the

flipped meniscus in pane (k). The morphology here is analogous to the entrainment of

air on a hydrophilic plate plunging into a liquid bath as shown in pane (1) (Marchand

et al., 2012; Chan et al., 2013; Vandre et al., 2013, 2014). In this case, the flow

morphology is similar to that represented in pane (d) (Zhao et al., 2018); therefore,

we expect a rapid growth of the dewetting rim and pinch-off of bubbles/drops.
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3.4 Interfacial instabilities beyond wetting transi-

tion

So far, we analyzed the morphology of two-phase flow displacement across the gap in

a channel or a capillary tube. When a less viscous fluid displaces a more viscous fluid,

the interface is subject to a lateral instability (Bensimon et al., 1986; Homsy, 1987). In

the case of a non-wetting fluid displacing a wetting fluid, i.e. in the absence of contact

lines, this leads to the classic Saffman-Taylor instability (Saffman and Taylor, 1958;

Saffman, 1986). This instability is one of the archetypes of pattern formation and has

been extensively analyzed to address questions related to the instability wavelength

selection (Pitts, 1980; Tabeling et al., 1987; Kessler et al., 1988; van Saarloos, 2003) or

its sensitivity to perturbations (Couder et al., 1986b,a; McCloud and Maher, 1995).

In the Saffman-Taylor instability, the displacement is either considered to be

complete, i.e. the invading fluid completely displaces the defending fluid across the

gap, or thin films of the defending wetting liquid are considered to coat the walls

according to the Taylor-Bretherton scaling (Park and Homsy, 1984). In either case,

contact line dynamics is neglected, i.e. it is either assumed to move with the same

velocity as the rest of the meniscus, as is observed before the wetting transition, or no

contact line is present and the entire wall is coated with a thin film of the defending

liquid.

The presence of moving contact lines in the partial wetting regime, however, leads

to a wealth of different flow morphologies across the gap as we discussed before (Fig. 3-

1). Given that most of these complexities have only been recently discovered, their

influence on the ensuing interfacial instabilities is an open question with important

consequences for the flow behavior on macroscopic scales. Here, we briefly summarize

the recent experimental observations on this topic and the analogy between confined

and open systems.

In open systems, in the context of a plate being withdrawn from a liquid bath or

plunging into a liquid bath (Fig. 3-2 (b, e, g)), when the plate velocity becomes higher

than the corresponding critical entrainment velocity, as the liquid or air are coating
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the plate, contact lines form an angle with respect to the plate to lower their normal

component of velocity and therefore delay the onset of wetting transition (Blake and

Ruschak, 1979; Snoeijer and Andreotti, 2013). The same phenomenon occurs in the

case of drops moving down inclined plates (Fig. 3-2 (a)), where a corner forms in

the back of the drop (Podgorski et al., 2001; Rio et al., 2005; Peters et al., 2009).

While the normal contact line velocity in these problems turn out to be different

and sensitive to the macroscopic geometry, the dynamic contact angles seem to be

universal (Delon et al., 2008). As the plate velocity or the drop velocity increases

further, a pearling transition occurs leading to drops or bubbles emitting from the

tip of the corner (Simpkins and Kuck, 2000).

Very recently He and Nagel (2018) have studied the plate withdrawal and plung-

ing problem using high-speed interferometric imaging to reconstruct the thickness in

the cornered structure of the entrained films and discovered that a more complex

fingering-like pattern emerges within the entrained corner (Fig. 3-2 (c, f)). Stability

analysis of the Landau-Levich problem has shown that the base profile before the

onset of transition is stable to lateral perturbations (Golestanian and Raphael, 2001;

Snoeijer et al., 2007a). In fact the generalized lubrication approximation predicts

that two branches of solutions exist in this problem (Snoeijer et al., 2007a; Chan

et al., 2012). Both branches are quasi-static solutions with the lower branch being

the stable one and the upper branch the unstable one. Remarkably, as the plate

velocity goes beyond the critical velocity, the contact line follows the lower branch

all the way to the critical point and then follows onto the unstable upper branch,

which is accompanied by the coating of the wall. This observation indicates that the

contact line dynamics is quasi-static all the way to the entrainment. As far as we

know, however, the stability of the unstable branch, i.e. stability of the front beyond

the wetting transition, to lateral perturbations has not yet been analyzed. The obser-

vations by He and Nagel (2018) as well as a separate study by Deblais et al. (2016),

which focuses on controlling the instability using polymeric solutions, indeed indicate

that there is a rich physics in the pattern formation beyond the onset of transition

that needs to be understood. These observations are also relevant to other problems
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involving moving contact lines, such as droplet splashing on solid surfaces (Riboux

and Gordillo, 2014, 2015); in this context, the role of air pressure on the splashing has

been clearly demonstrated (Xu et al., 2005) and points to the kinetic effects of the gas

phase, which needs to be taken into account in combination with the hydrodynamics

of the liquid phase to arrive at a consistent description (Sprittles, 2017).
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Figure 3-2: Phase diagram of the dynamical wetting transition and its ensuing interfacial instabilities in confined immiscible
flows and analogies to the unconfined flows. (a) represents the morphologies of a drop in the partial wetting regime on an
inclined plate (Podgorski et al., 2001; Le Grand et al., 2005). As the inclination angle increases and therefore the drop velocity
increases, a corner forms in the back, which will eventually lead to the emission of tiny droplets from the back of the drop.
This observation is similar to the formation of corners in the Landau-Levich problem, when a plate is withdrawn from a liquid
bath (Blake and Ruschak, 1979) as shown in pane (e). The formation of corner is to delay the onset of wetting transition
as the velocity normal to the contact line is decreased (Snoeijer and Andreotti, 2013). (b) represents the entrainment of the
air phase in a confined meniscus, where the bottom wall drag the meniscus inwards. Beyond a critical capillary number, air
becomes entrained and this coinceds with the contact line becoming three-dimensional due to a lateral instability, in which
small v-shaped cusps form through which small air bubbles emit into the liquid phase (Simpkins and Kuck, 2000; Vandre et al.,
2012).
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Figure 3-2: (c) shows that in the entrainment of air when a plate plunges into a
liquid bath, three-dimensional structures form due to the lateral instability of the
entrained film (He and Nagel, 2018). Pane (g) from the same study shows the lateral
instability in the entrained liquid film withdrawn from a liquid bath. Pane (f) shows
a similar instability for polymer solutions (Deblais et al., 2016). Pane (d) represents
the lateral instability, i.e. fingering, of a receding contact line of a nanometric thin
film dewetting from a solid substrate (Biumchen et al., 2014). Pane (h) shows the
lateral instability of the front during the impact of a superhydrophobic ball on a
liquid bath (Duez et al., 2007; Snoeijer and Andreotti, 2013). Pane (i) shows the
confocal microscope imaging of the cross section of a Hele-Shaw cell, where an ultra-
low interfacial tension demixed colloid-polymer mixture shows a change of curvature
as capillary number increases and finally forms a finger in the middle of the channel
(Ledesma-Aguilar et al., 2007a,b; Setu et al., 2013). Pane (j) shows the entrainment
of the defending liquid next to an advancing contact line and eventual pinch-off of
a drop of the invading fluid due to the entrainment in the side view as well as the
lateral instability of the front in the top view (Setu et al., 2015). Air entrainment
in open systems can also lead to the drop pinch-off as shown in pane (k) (Ledesma-
Aguilar et al., 2011). Pane (1) shows that a similar idea of the air entrainment next to
an advancing contact line is responsible for some cases of splashing events observed
after impact of drops on solid surfaces (Riboux and Gordillo, 2014, 2015). Pane (m)
shows the lateral interfacial instability observed in a rectangular Hele-Shaw cell upon
entrainment of thin films of the invading fluid (Levach6 and Bartolo, 2014).
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In both confined and unconfined systems, a variety of different morphologies can

be observed across the channel gap as shown in Figure 3-1. The morphology across

the gap has important consequences on the front instability to lateral perturba-

tions. In particular, in Fig. 3-1, we showed that three types of base morphologies

can be observed in both drainage and imbibition regimes in confinement as well

as in the Landau-Levich problem in the open systems. These three general types

of solutions are 1) Lax shock, 2) Lax-undercompressive shock, and 3) rarefaction

wave-undercompressive wave (Alizadeh Pahlavan et al., 2018b). These three types

of structures have been also observed in the context of Marangoni-driven thin films,

where two driving forces compete (Ludviksson and Lightfoot, 1971; Cazabat et al.,

1990; Bertozzi et al., 1998; Sur et al., 2003; Munch, 2003) and have also been observed

in the context of two-phase flow solutions in porous media flows (van Duijn et al.,

2007). Apart fron the rich dynamics of the base states of these solutions, they also

have unusual stability features. The Lax shock structure is also observed in the con-

text of thin films flowing down inclined plates and is known to be unstable to lateral

perturbations (Huppert, 1982b; Brenner, 1993; Bertozzi and Brenner, 1997; Diez and

Kondic, 2001). However, in the Lax-undercompressive double shock structure, it was

predicted by Bertozzi et al. (1998, 2001b) that consistent with the experimental ob-

servations, the leading undercompressive shock is stable to perturbation. The trailing

Lax shock can still become unstable. This observation points to the unusual stability

of undercompressive shock fronts that has in fact been utilized in various contexts, in-

cluding ion sputtering of surfaces (Chen et al., 2005; Perkinson et al., 2016; Bertozzi,

2016). Given that the different flow morphologies listed above can in fact be observed

in the context of coating in open systems, i.e. Landau-Levich problem, it remains to

be seen whether the observed front stability properties remains the same as those in

the Marangoni-driven thin films. In particular, the observations of front instability

by He and Nagel (2018) may suggest that their base profile is either of type I, with a

Lax shock front, or type II, where the trailing Lax shock has become unstable.

Presence of confinement, however, can dramatically change the front stability

properties. In fact, we have recently shown that in the context of imbibition, where
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thin films of the invading fluid get entrained on the walls, the same three type of struc-

tures described above in the context of Marangoni-driven thin films can be observed.

The crucial difference, however, is that we discovered that the undercompressive

shock front under confinement becomes unstable to perturbations (Alizadeh Pahla-

van et al., 2018b). This leads to a viscous fingering-like front instability in radial

Hele-Shaw cells, which is reminiscent of the classical Saffman-Taylor instability. We

have, however, found that the scaling of the most unstable wavelength with the flow

rate is different from that observed in the Saffman-Taylor instability, indicating that

the observed instability belongs to a different class of pattern forming processes. We

discuss these observations further in Chapter 6.

The presence of moving contact lines, therefore lead to a very rich morphologi-

cal patterns across the channel gap, which further lead to an even richer variety of

interfacial instabilities in the moving fronts. These instabilities are not expected to

be generally described by the same scalings as those of the classical Saffman-Taylor

instability and therefore call for careful investigation. This opens the door to new

classes of pattern forming processes, which remain to be observed and theoretically ex-

plained. In particular, in the imbibition regime, where beyond the wetting transition

thin films of the invading fluid become entrained on the walls, we have observed that

the instability is quite distinct from the Saffman-Taylor instability. In the drainage

regime, the finger front is similar to that considered in the Saffman-Taylor instabil-

ity (Park and Homsy, 1984); it remains to be seen, however, how the coupling with

the structure of the rim next to the dewetting contact line may alter the instability

features. In fact, Setu et al. (2013) have suggested that when the interface becomes

flipped (Fig. 3-2 (i)), the curvatures may inhibit the front instability, which is other-

wise predicted in the Saffman-Taylor framework. Further, the dewetting rim is prone

to a pinch-off instability, which will then lead to the detachment of bubbles/drops,

which will then travel downstream (Zhao et al., 2018). The receding contact line

can also become unstable and lead to a fingering-like instability as shown in Fig. 3-2

(d). Understanding of these instabilities is not only an exciting fundamental scien-

tific challenge, but also relevant to many applications in controlled pattern formation
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in microfluidics (Wong et al., 2011; Wexler et al., 2015; Kreder et al., 2016; Bazyar

et al., 2018) and biophysics (Hollister, 2005), printing of electronics (Kumar, 2015;

Gu et al., 2018), and self-assembly (Huang et al., 2005; van Hameren et al., 2006;

Thiele, 2014).
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Chapter 4

Forced wetting transition in a

capillary tube

Immiscible fluid-fluid displacement in partial wetting continues to challenge our mi-

croscopic and macroscopic descriptions. Here, we study the displacement of a viscous

fluid by a less viscous fluid in a circular capillary tube in the partial wetting regime.

In contrast with the classic results for complete wetting, we show that the presence

of a moving contact line induces a wetting transition at a critical capillary number

that is contact angle dependent. At small displacement rates, the fluid-fluid inter-

face deforms slightly from its equilibrium state and moves downstream at a constant

velocity, without changing its shape. As the displacement rate increases, however, a

wetting transition occurs: the interface becomes unstable and forms a finger that ad-

vances along the axis of the tube, leaving the contact line behind, separated from the

meniscus by a macroscopic film of the viscous fluid on the tube wall. We describe the

dewetting of the entrained film, and show that it universally leads to bubble pinch-

off, therefore demonstrating that the hydrodynamics of contact line motion generate

bubbles in microfluidic devices, even in the absence of geometric constraints.

The displacement of one fluid by another immiscible fluid in small, confined geome-

tries is an important process in many natural and industrial settings, including water

infiltration into soil (Cueto-Felgueroso and Juanes, 2008b), enhanced oil recovery (Orr

and Taber, 1984), ink-jet printing (Jang et al., 2009), and microfluidics (Whitesides,
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2006). A particularly challenging aspect of describing fluid-fluid displacement in the

presence of a solid is the movement of the contact line between the two fluid phases

and the solid surface (i.e., the three-phase contact line), which violates the no-slip

boundary condition commonly assumed in classical fluid mechanics (Huh and Scriven,

1971b; Bertozzi, 1998; Briant et al., 2004b; Briant and Yeomans, 2004; Bonn et al.,

2009; Pahlavan et al., 2015). Recent experiments in quasi-2D geometries (Levach6

and Bartolo, 2014; ?) have demonstrated that the presence of moving contact lines

lead to a wealth of pattern formation regimes. Due to the planar nature of these

experiments, however, the contact line could not be directly visualized.

A capillary tube provides an ideal experimental system for studying fluid-fluid

displacement, as it allows for unobstructed visualization of the contact line dynamics.

While the displacement of a less viscous fluid by a more viscous one has been ex-

tensively studied in the context of capillary rise (Washburn, 1921; Fries and Dreyer,

2008; Zhmud et al., 2000; Siebold et al., 2000) and forced imbibition (Hoffman, 1975a,

1983; Fermigier and Jeniffer, 1991a), experiments on the displacement of a more vis-

cous fluid by a less viscous one have been relatively scarce. In his seminal work,

G. I. Taylor found that as the air invades into a capillary tube initially filled with a

perfectly wetting, viscous fluid, it leaves a film of the defending fluid coating the tube

walls in its wake, whose thickness is controlled by the finger velocity.

Here, we revisit the Taylor-Bretherton problem (Taylor, 1961b; ?) in the partial

wetting regime by studying the invasion of air into a capillary tube filled by a vis-

cous fluid, and show that contact line motion leads to novel flow behaviors. At low

displacement rates, the fluid-fluid interface moves downstream at a constant velocity,

without changing its shape. As the flow rate increases beyond a critical value, how-

ever, a forced wetting transition occurs and a liquid film is deposited on the tube wall.

The deposited film is unstable and dewets from the wall, leading to the formation of

a growing dewetting rim that ultimately causes bubble pinch-off.

We conduct fluid-fluid displacement experiments in precision-made borosilicate

glass capillary tubes with inner diameter d = 750 pm (Hilgenberg GmbH, Germany).

We wash the capillary tubes with methanol and isopropyl alcohol, followed by ul-
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Figure 4-1: We study fluid-fluid displacement in circular capillary tubes. (a) The cap-
illary tube is open to the atmosphere on one end and connected to a syringe pump on
the other. To achieve viscously unfavorable displacement, we withdraw glycerol from
the capillary tube so that air displaces glycerol. (b) We use precision-made borosil-
icate glass capillary tubes with inner diameter d = 750 ptm. The circular capillary
tube is housed in a slightly larger square capillary tube filled with glycerol, which
has the same refractive index as borosilicate glass. The combination of a collimated
light source and a glycerol-filled square borosilicate glass housing eliminates light re-
fraction through the capillary tube, which enables clear, undistorted visualization of
the fluid-fluid interface via a CCD camera. We identify three distinct regions in the
experimental images: (i) bright sections of the image represent areas of the tube that
are fully saturated with glycerol; (ii) sections with a bright line in the middle repre-
sent areas of the tube that are fully saturated with air; (iii) completely dark sections
of the images represent areas of the tube that are partially saturated with glycerol.
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trasonic cleaning in a de-ionized water bath for 10 minutes. Following cleaning,

we dry the capillary tubes in a convection oven at 70 'C for 10 hours. The capil-

lary tubes are wetting to glycerol after the washing process, having a static reced-

ing contact angle 9 eq = 25 5 . To alter the wettability of the capillary tubes,

we apply heat-assisted chemical vapor deposition (CVD) of trichloro(1H,1H,2H,2H-

perfluorooctyl)silane (Sigma-Aldrich, USA) in a vacuum oven. The silane-coated

capillary tubes are less wetting to glycerol, having a static receding contact angle

0 eq = 68 5'. We use each capillary tube only once to ensure precise control over its

wettability.

The capillary tube is open to the atmosphere on one end and connected to a

glycerol-filled glass syringe (1710-LT-SYR, Hamilton Robotics, USA) on the other

end (Fig. 4-1). The glass syringe is secured to a programmable syringe pump (PHD

2000, Harvard Apparatus, USA). To achieve viscously unfavorable displacement, we

withdraw glycerol from the capillary tube so that air displaces glycerol. By withdraw-

ing the incompressible glycerol instead of injecting the compressible air, we eliminate

compressibilty from our experimental system. The circular capillary tube is housed

in a slightly larger square capillary tube filled with glycerol, which has the same

refractive index as borosilicate glass. The capillary tubes are illuminated with a

collimated fiber optic light (ACEl, SCHOTT, USA) and imaged with a CCD cam-

era (acA3800, Basler, USA). We identify three distinct regions in the experimental

images: (i) bright sections of the image represent areas of the tube that are fully sat-

urated with glycerol-the incoming light passes through the capillary tubes without

any refraction; (ii) sections with a bright line in the middle represent areas of the tube

that are fully saturated with air-the incoming light is refracted towards the center

of the tube due to its circular geometry; (iii) completely dark sections of the images

represent areas of the tube that are partially saturated with glycerol-the incoming

light is refracted away by the fluid-fluid interface.

Figure 4-2 shows an experimental phase diagram of the fluid-fluid interface profiles

obtained under the two distinct wettability conditions and a wide range of capillary

numbers (Ca). We define Ca = pU/-y, where p = 1400 mPa - s is the viscosity
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Figure 4-2: Fluid-fluid interface of air (black) displacing glycerol (white) under
increasing capillary numbers (top to bottom) in a wetting capillary tube with

Oeq = 25 5* (left column) and a weakly wetting capillary tube with eq = 68 t 5*
(right column). The orange arrows indicate the direction of interface displacement.
At small Ca, the meniscus deforms slightly from its equilibrium shape, but remains
as a spherical cap. At large Ca, however, a wetting transition occurs and the in-
vading air forms a single finger that advances along the center of the tube, leaving a
macroscopic trailing film of the viscous liquid on the tube walls. The critical capillary
number Ca* at which film formation occurs is controlled by the wettability (pane r
vs. pane e).
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of glycerol at 20'C, U = 4Q/(7rd2 ) is the displacement velocity, with Q being the

imposed flow rate, and -y = 65 2 mN/m is the glycerol-air interfacial tension. The

left column shows the results corresponding to the more wetting case (Oeq= 250). At

low Ca numbers, the fluid-fluid interface deforms slightly from its equilibrium state

and travels downstream at a constant velocity, without changing its shape (Fig. 4-2a-

d). Deformation of the fluid-fluid interface corresponds to a decrease in the apparent

contact angle, which reaches zero at a critical capillary number Ca*. This value of

Ca* marks the onset of the wetting transition, beyond which the defending liquid is

forced to wet the tube walls as a thin film and the air advances as a finger through

the center of the tube (Fig. 4-2e-j). We find that the onset of the wetting transition

is strongly dependent on the wettability of the capillary tube: Ca* is over an order of

magnitude larger in the less wetting tube (Fig. 4-2, right column) compared to that

in the more wetting tube (Fig. 4-2r vs. Fig. 4-2e).

4.1 Onset of wetting transition

The flow dynamics before the wetting transition (Ca<Ca*) is governed by the two-

way coupling between the fluid-fluid interface shape and the flow field within each

fluid phase, as described by the Stokes equations. The Laplace pressure jump across

the fluid-fluid interface is balanced by a normal viscous stress discontinuity. In the

framework of the generalized lubrication approximation (Snoeijer, 2006; Chan et al.,

2013), we can use the local approximation of the Stokes flow in a wedge, for which

exact analytical solutions exist (Huh and Scriven, 1971b), and greatly reduce the

complexity of this problem to an equation for the shape of the interface in the frame

co-moving with the fluid-fluid interface (Levach6 and Bartolo, 2014). While this

approximation is strictly valid for flow in a 2D setting, our results show that it

provides good estimates for flow in an axisymmetric tube as well. In this framework,

we arrive at the following differential equation describing the interface shape:

d2 0 3Caf (0, R)
ds 2 h(h+3As)'
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where 0 is the local interface slope, s is the arc length along the interface, R = ppgi

is the viscosity ratio between the gas and liquid, and A, = O(nm) is the slip length

that removes the moving contact line singularity (Huh and Scriven, 1971a). In the

limit of zero viscosity ratio (i.e. neglecting the air viscosity), we have f(0, 0) =

-(2/3) (sin 0)3/(9 - sin 0 cos 0). We can then describe the fluid-fluid interface shape

deformation for an arbitrary displacement rate by solving Eq. (4.1) using the bound-

ary conditions 0 1,=o = Oeq, hIs=o = 0 at the contact line, and 01,1 =7r/2, h1,=l = d/2

at the tube center, where I is the half-arc length of the interface.

We find excellent agreement between the experimental data and the theoretical

predictions for the fluid-fluid interface shape before the wetting transition (Fig. 4-

3). The deformation of the interface from equilibrium is accompanied by a decrease

in the apparent contact angle Oapp. At the point of wetting transition, Oapp a 0,

and the liquid becomes effectively wetting to the walls, leaving an entrained liquid

film (Fig. 4-3b). A similar behavior is also observed in the forced wetting transition

dynamics of receding contact lines in unconfined systems when a fiber or plate is

withdrawn from a liquid bath. When the liquid is perfectly wetting to the substrate,

it immediately leaves a film behind, known as the Landau-Levich film (Levich and

Landau, 1942; Que'r6, 1999; Stone, 2010). When the liquid is only partially wetting,

however, a critical plate velocity is needed for the liquid to coat the substrate (Eggers,

2004; Snoeijer et al., 2006; Bonn et al., 2009; Snoeijer and Andreotti, 2013). In the

reverse process of forced wetting transition in advancing contact lines, air is entrained,

but at much higher contact line velocities (Duez et al., 2007; Ledesma-Aguilar et al.,

2011; Marchand et al., 2012; Vandre et al., 2012; Ledesma-Aguilar et al., 2013; Vandre

et al., 2014; Setu et al., 2015; Sprittles, 2017).
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Figure 4-3: (a) Fluid-fluid interface profiles for Ca<Ca* in the less wetting capillary

tube (Oeq = 680). As Ca increases, the fluid-fluid interface deforms further from its

equilibrium shape. The symbols and dashed lines correspond to the experimental and

numerical results for Ca = 0.003,0.006,0.012, respectively. (b) Deformation of the

fluid-fluid interface can be quantified by the apparent contact angle 9 app, which de-

creases asymptotically towards zero as the Ca approaches the critical capillary number

Ca*. This marks the onset of the wetting transition. The diamond and circle symbols
represent the experimental data and theoretical predictions, respectively. The dashed

lines above and below the data points represent the experimental uncertainty.

4.2 Dynamic beyond the transition: growth of the

dewetting rim and pinch-off

Below the wetting transition, the contact 5 lne moves with the same velocity as the

interface tip. Above the critical point (Ca>Ca*), however, the interface becomes
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unstable and a finger is formed. In this regime, the contact line travels at a con-

stant, but smaller, velocity compared to that of the finger tip, which gives rise to

a macroscopic film of the viscous defending fluid in the wake of the the finger. It

is remarkable that, for Ca>Ca*, the contact line speed becomes independent of Ca

(Fig. 4-4). This indicates that the dynamics downstream (near the finger tip) and

upstream (close to the contact line) become effectively decoupled. We further observe

that the contact line speed beyond the wetting transition is strongly dependent on

the wettability-the contact line speed is more than an order of magnitude higher in

the less wetting tube compared to that in the more wetting tube. These observations

lead us to hypothesize that the dynamics of the entrained film next to the contact

line can be analyzed independently of the finger tip dynamics.

The contact line behind the entrained film recedes from the tube wall at a constant

rate, leading to the formation of a dewetting rim (see, e.g., Fig. 4-2r). While the

dynamics of hole formation and the associated dewetting rims has been extensively

studied in the context of thin film on flat substrates (Redon et al., 1991; Snoeijer

and Eggers, 2010; Edwards et al., 2016), much less is known about the influence

of confinement on the dewetting dynamics. In particular, as we show below, an

important distinguishing factor in dewetting in confined geometries is that it leads to

a pinch-off instability in finite time.

We can use the long-wave approximation to derive a model that describes the

dynamics of the dewetting rim in an axisymmetric capillary tube. Consider a liquid

film of height h coating the walls of a cylindrical capillary tube of radius r. The

fluid flow inside the film is governed by the axisymmetric Navier-Stokes equations in

a cylindrical domain, p?JUi = -VP + pV 2 u, where p is the liquid density, D/Dt =

0/t + u -V is the material derivative, u = (u, w) are the fluid velocity components

in the radial and axial directions (r, z), respectively; P represents the liquid pressure,

and p is the liquid viscosity. We consider the liquid to be incompressible, such that

V - u = 0. These governing equations of motion are subject to the no slip and

no penetration boundary conditions on the walls, zero shear stress at the liquid-air

interface, and normal stress jump across the interface due to the Laplace pressure.
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Figure 4-4: The contact line capillary number Caci = pLUc/y as a function of the

macroscopic capillary number Ca = puU/y, where Uci and U are the contact line

velocity and the displacement velocity, respectively. The green and blue circles rep-

resent the experimental measurements in the more wetting tube (0O, = 250) and in

the less wetting tube (0e, = 680), respectively. The triangles show the corresponding

theoretical predictions of Eq. (5.1). The vertical dashed lines represent the critical

capillary numbers Ca* as predicted by Eq. (4.1). For Ca < Ca*, the fluid-fluid inter-

face deforms slightly while remaining a spherical cap, and the contact line and the

interface tip travel at the imposed displacement velocity U = 4Q/7rd2 (gray dashed

line). For Ca > Ca*, the air forms a finger that advances along the center of the

tube, leaving behind a film of the more-viscous defending liquid. The incomplete

displacement of the defending liquid results in an interface tip velocity that is faster

than the imposed displacement velocity. The contact line that trails behind travels

at a velocity that, remarkably, is independent of the imposed flow rate. Instead, the

contact line velocity is controlled by the wettability of the capillary tube.

We non-dimensionalize the governing equations by the following scalings: Q = y/r,

i = z/r with y and z as the coordinates normal and tangential to the walls of

the tube, f, = U/Uo, tb = w/Wo, t = (-y/p)t/(16r), P = (Pr/lWo, where Wo =

Q/7r(r2 - (r - h)2 ), Uo = cWo, c = r/L, with L as a characteristic length scale, and

Q as a characteristic flow rate. We can then simplify the non-dimensional governing
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equations using the long-wave approximation, i.e. assuming c < 1 and EIZ < 1,

where 1Z = pWor/p is the Reynolds number. In the simplified form of the Navier-

Stokes equations, the liquid pressure turns out to be constant across the liquid film

and only a function of the axial direction z. Using this observation, we can integrate

the z component of the momentum to find , = (1 -9) 2 PA/4+ci ln (1 - j)+ c 2 , where

the constants cl and c2 can be determined using the no-slip boundary condition on

the wall and zero shear stress on the liquid-air interface.

The liquid pressure is set by the Laplace pressure jump across the interface, and

is augmented by the disjoining pressure in the vicinity of the contact line, where the

film height becomes nanometric (Bonn et al., 2009; Pahlavan et al., 2015; Craster and

Matar, 2009; Gauglitz and Radke, 1988):

Pi = (I-- ) -- R , (4.2)

where 11(h) = 6(1 - cos 6ec)(6 2 /h)(1 - 6/h) is the disjoining pressure with 6 as the

precursor film thickness, and R = 1/(1 - h) + hij is the curvature.

We can then integrate the axial component of the liquid velocity across the film

thickness to obtain the liquid flux through the film, 4(2, t) = 27r fo hL(1 - p)dp, which

after replacing the velocity simplifies to ij -M.(h) with the mobility:

M(h) = 1 - 4(1 -) 2 +3(1 -h) 4 - 4(1 - h) 4 In (1- h) (4.3)

Using conservation of mass, we then have:

0(+ = 0, (4.4)
19t ./I

where we can replace the liquid flux in this equation to arrive at:

(1 -) - (M(h)P) = 0, (4.5)
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which can finally be expanded to:

--- = ~9 - M )- II(h) - . (4.6)
at (1- h)8 aiz.9

In the absence of the disjoining pressure, this model has similarities to the class of

models describing the evolution of films coating cylindrical fibers or interior of tubes

(Qu6r6, 1999; Craster and Matar, 2009; Camassa and Ogrosky, 2015), and in the

thin-film limit simplifies to the models describing the Rayleigh-Plateau instability of

thin liquid films in cylindrical tubes (Hammond, 1983; Gauglitz and Radke, 1988). It

is interesting to note that, in this limit, the model is equivalent to one describing the

Rayleigh-Taylor instability of a thin film on the underside of a horizontal plate, where

gravity plays the destabilizing role of the azimuthal curvature in the tube (Oron et al.,

1997).

The thickness of the entrained liquid film depends on the finger tip velocity and

has been determined using a matched-asymptotic analysis by Bretherton (?), who

found that hf ~ Ca2/ 3 as Ca -s 0, with Caf = [tUf/y representing the finger capillary

number. This scaling was later empirically extended to higher capillary numbers:

hf/r = 1.34Ca 2/ 3 /(1 +1.34 x 2.5Ca 2/ 3) (Aussillous and Qu6r6, 2000; Klaseboer et al.,

2014). This relationship, in combination with conservation of mass Q = 7r(r - hf) 2 Uf,

determine both the entrained film thickness and the finger velocity. We use this

thickness as the downstream boundary condition for Eq. (5.1).

The growth of the dewetting rim is well-captured by our theoretical predictions

(Fig. 4-5a). At early times, the growth of the dewetting rim is linear in time due to the

constant-speed retraction of the contact line (Fig. 4-4). At late times, however, this

mechanism is overtaken by the surface tension driven Rayleigh-Plateau instability

caused by the azimuthal curvature, leading to an accelerated growth and bubble

pinch-off (Fig. 4-5b). The continual movement of the contact line repeats the process

of ridge growth and pinch-off, leading to the formation of a train of mono-dispersed

bubbles.

The pinch-off time depends on both the capillary number and the wettability of
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Figure 4-5: (a) Top: Experimental images of the fluid-fluid interface profile just be-
fore and after pinch-off. Bottom: The dewetting rim profile in the frame co-moving
with the receding contact line for Ca = 0.096 and Oeq = 68'. The dashed and solid
lines correspond to the numerical and experimental data, respectively. (b) The max-
imum height of the rim hmax grows linearly at early times and nonlinearly accelerates
close to the pinch-off time r. The color-coded circles represent different experimental
realizations of rim growth that led to pinch-off, while the dashed line represents the
theoretical prediction of Eq. (5.1). The inset shows the pinch-off time as a function of
the capillary number and the wettability condition, where the green and blue symbols
correspond to O = 25' and 68*, respectively. The theoretical predictions (diamonds)
matches closely to the experimental data (circles) for Oeq = 680. Given the limited
experimental window, we did not directly observe pinch-off in the more wetting tube
since its r is predicted to be over an order of magnitude larger than that in the less
wetting tube. (c) The bubble length Lb as a function of the capillary number and
the wettability condition, where the green and blue symbols correspond to Oeq = 250
and 680, respectively. The theoretical predictions (diamonds) agree well with the
experimental data (circles) for 9 eq = 680.

the capillary tube (Fig. 4-5b, inset). For a given wettability, higher Ca leads to faster

pinch-off due to the thicker film deposited on the tube wall (hf ~ Ca f). For a given
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Ca, higher 9 eq leads to faster pinch-off due to the higher contact line velocity (Fig. 4-

4) as the contact line velocity of the dewetting rim scales as 0'q (Snoeijer and Eggers,

2010; Edwards et al., 2016). The large difference in contact line velocity, in turn, leads

to a pinch-off time that is over an order of magnitude larger in the more wetting tube

(Oeq= 250) compared to that in the less wetting tube (OBe = 68').

The dependence of the pinch-off time on the wettability leads to a dependence of

the generated bubble length Lb on the contact angle: for a given flow rate, a higher

contact angle leads to faster pinch-off and therefore a smaller bubble (Fig. 4-5c). The

impact of the flow rate on the bubble size is less straightforward. Higher Ca leads

to a faster travelling finger, which increases the length of the bubble, but also to a

thicker entrained film, which reduces the pinch-off time. The competition between

these two effects lead to a weak dependence of the bubble length on the flow rate,

leaving the wettability as the dominant factor controlling the bubble size.

Pinch-off induced bubble formation has a wide range of applications in microflu-

idic devices (Whitesides, 2006; Agresti et al., 2010). Most existing microfluidic bub-

ble generators rely on flow channels with geometric constrictions (Link et al., 2004;

Garstecki et al., 2004b; Dollet et al., 2008b; Roman et al., 2017) or an external cross-

flow (Thorsen et al., 2001; Anna et al., 2003; Garstecki et al., 2006b; van Steijn et al.,

2009b) to initiate bubble pinch-off (Baroud et al., 2010; Seemann et al., 2012; Anna,

2016). Recently, it has been shown that "superconfinement" can trigger a jet insta-

bility from a moving interface in the absence of geometric features, but through a

mechanism that relies on thermal fluctuations in systems with ultralow surface ten-

sion (Setu et al., 2015). Our experiments demonstrate that pinch-off will occur in

smooth, uniform capillaries as a result of wettability-mediated contact line motion.

We have shown that wettability and flow rate control the pinch-off time, and therefore

can be used to tune the size of mono-dispersed bubbles.
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Chapter 5

Restoring universality to the

breakup of a bubble

The pinch-off of a bubble is an example of the formation of a singularity, which

exhibits a characteristic separation of length and time scales in the vicinity of the

singularity. Because of this scale separation, one expects universal dynamics that

collapse into self-similar behavior determined by the balance between viscous, iner-

tial, and capillary forces. Here, we show that the breakup dynamics of a bubble

confined in a capillary tube undergo a sequence of two distinct self-similar regimes,

even though the dominant balance between viscous and surface-tension forces re-

mains unchanged throughout the process. The crossover from one regime to another

is due to the change in the dominant contributions to the dissipation mechanism-

from the spatially-localized moving contact line singularity that translates axially at

early times to the temporally-localized radial necking that controls bubble pinch-

off singularity at late times. While the pinchoff of a bubble from an orifice in the

classic configuration corresponding to an unbounded reservoir is known to be non-

universal, here we demonstrate that the early-time self-similar regime that develops

in the laterally-confined system effectively erases the system?s memory and restores

universality to bubble breakup. This universality of bubble pinch-off dynamics has

important consequences for the control of bubbles and drops in microfluidic devices,

and for understanding multiphase-flow phenomena in porous media.
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From dripping faucets to children blowing soap bubbles, we observe the forma-

tion of drops and bubbles on a daily basis. This seemingly simple phenomenon,

however, has long puzzled and attracted scientists, from the early descriptions of da

Vinci, Savart, Plateau, and Rayleigh (Savart, 1833; Plateau, 1849; Rayleigh, 1879) to

advanced experimental techniques that yield precise observations of the interface evo-

lution leading to pinch-off (Rayleigh, 1891; Worthington, 1908; Edgerton et al., 1937;

Shi et al., 1994; Thoroddsen et al., 2008; Eggers, 1997). In the immediate vicinity

of the pinch-off point the local curvature and velocity diverge. The resulting separa-

tion of temporal and spatial scales is often expected to lead to self-similar behavior

and universal dynamics describing the formation of a singularity (Eggers, 1993; Eggers

and Villermaux, 2008). This observation has important consequences for applications

such as ink-jet printing (Basaran, 2002; Wijshoff, 2010), medical imaging (Lindner,

2004; Rodriguez-Rodriguez et al., 2015), and micro/nanoparticle production (Park

et al., 2010; Amstad et al., 2015), as well as for understanding geologic processes such

as C02 sequestration (Lackner, 2003; Szulczewski et al., 2012), volcanic eruptions

(Blake, 1981; Huppert and Woods, 2002; Parmigiani et al., 2016; Schmid et al., 2017;

Cashman et al., 2017), and venting of methane from seafloor sediments (Skarke et al.,

2014; Ruppel and Kessler, 2017; Andreassen et al., 2017).

Most previous studies of singularities during bubble or drop formation have fo-

cused on unbounded domains (Peregrine et al., 1990; Longuet-Higgins et al., 1991;

Tjahjadi et al., 1992; Oguz and Prosperetti, 1993; Brenner et al., 1994; Papageorgiou,

1995; Day et al., 1998; Lister and Stone, 1998; Cohen et al., 1999; Rothert et al., 2001;

Doshi et al., 2003; Sierou and Lister, 2003; Bergmann et al., 2006; Keim et al., 2006;

Eggers et al., 2007; Gekle et al., 2008, 2009; Schmidt et al., 2009). Many natural

phenomena and industrial processes, however, often involve flows under confinement

(Gafian Calvo and Gordillo, 2001; Anna et al., 2003; Link et al., 2004; Stone et al.,

2004; Garstecki et al., 2004a; Squires and Quake, 2005; Gordillo et al., 2005; Garstecki

et al., 2005a; Utada et al., 2005; Cubaud et al., 2005; Garstecki et al., 2005b, 2006a;

Fuerstman et al., 2007; Gafin-Calvo et al., 2007; van Hoeve et al., 2011; Huerre

et al., 2014; Katsikis et al., 2015; Gai et al., 2016; Anna, 2016), where dimensionality

158



of the confined geometry is known to strongly influence the breakup (Garstecki et al.,

2005c; Burton and Taborek, 2007; Dollet et al., 2008a; van Steijn et al., 2009a). These

studies often assume that a continuous liquid phase coats all the surfaces. In many

situations, however, one encounters partially wetting liquids, which naturally lead to

the presence of contact lines, where fluid phases meet the solid surface. The difficulty

in dealing with moving contact lines stems from the divergence of stress and pressure

(a singularity) in the classical hydrodynamic description, which would imply that an

infinite force is needed to move the contact line (Huh and Scriven, 1971b; Bonn et al.,

2009). To resolve this paradox, non-hydrodynamic processes at the molecular scale

must be incorporated (Snoeijer and Andreotti, 2013; Pahlavan et al., 2015).

Here, we study the breakup of a bubble in confinement in the partial wetting

regime. We show that the moving contact line singularity dominates the viscous

dissipation at early times, leading to an axially-dominated flow and the emergence of

an early-time self-similar regime, which then crosses over to a late-time regime, where

the flow is mainly radial and the viscous dissipation is dominated by the pinch-off

singularity. While the observation of different self-similar regimes is expected when

the balance of forces between inertia, viscosity and surface tension changes (Lister

and Stone, 1998; McKinley, 2005; Castrej6n-Pita et al., 2015), here we show that in

our system the crossover between self-similar regimes occurs even though the entire

evolution is controlled by a balance between viscous and surface-tension forces. We

further show that the presence of the early-time regime has important consequences

on the breakup dynamics, erasing the system's memory and restoring the universality

of bubble breakup, which is lost in the case of breakup in unbounded domains(Doshi

et al., 2003).

We study the bubble generation process in precision-made borosilicate glass cap-

illary tubes (diameter d = 280, 750 jpm). We wash the capillary tubes with Isopropyl

alcohol and Ethanol, followed by an ultrasonic cleaning step in a de-ionized water

bath for one hour. The capillary tubes are then dried using compressed nitrogen gas.

We use glycerol (viscosity p = 1.4 Pa.s) and 90% glycerol-water mixture (viscosity

p = 0.2 Pa.s) with surface tension -y = 65 mN/m) as the liquid phase. Both liquids
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are partially wetting to the tube with a contact angle of ~ 25 degrees. The reced-

ing contact line speed is proportional to the equilibrium contact angle cubed (~ q O)

(Snocijer and Eggers, 2010; Zhao et al., 2018); therefore, to accelerate the pinch-off

process, we make the tubes less wetting to the liquid through a heat-assisted chemical

vapor deposition step of trichloro(1H,1H,2H,2H-perfluorooctyl)silane (Sigma-Aldrich,

USA) in a vacuum oven, which leads to a contact angle of ~ 65 degrees.

The capillary tube is open to the atmosphere at the left end and is connected to

a syringe pump at the right end. The tube is initially filled with glycerol and then

the glycerol is withdrawn at a specified flow rate Q from the right end of the tube

using a syringe pump (CETONI low pressure pump neMESYS). At low flow rates, the

meniscus deforms slightly and moves downstream at a constant velocity 4Q/(7rd2 ).

When the flow rate is higher than a critical value, however, a wetting transition occurs:

the meniscus loses its quasi-static geometry and air starts invading the tube in the

form of a finger, leaving a film of the viscous liquid on the walls (Zhao et al., 2018).

Fig. 5-1 shows that the entrained liquid film immediately starts to dewet along the

tube walls. As the contact line recedes, the rim behind it grows and the bubble neck

shrinks until it finally pinches off and forms a bubble. To achieve refractive-index

matching and an undistorted view of the displacement process, we house the circular

capillary tube inside a square tube (both tubes are made of borosilicate glass) and fill

the gap between the two with glycerol. When the capillary tube is filled with glycerol,

light goes through the system without any refraction (white color in Fig. 5-1). When

air penetrates the tube, it leads to the refraction of light to the center of the tube;

therefore air appears in black color with a straight white line in the middle. The

capillary tube is backlit with a LED light source (constellation 120E, Veritas), which

shines directly on a white light diffuser behind the setup. Imaging is done from the

front side using a high-speed camera (Phantom Micro 320) at a typical frame-rate

of 10 - -25 kfps. A 4X lens is mounted on the camera leading to a resolution of

1.7 ym/pixel.
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Figure 5-1: Displacement of a partially-wetting liquid from a tube: as the glycerol
(white) is withdrawn from the right end of the micro-capillary tube with a constant
flow rate Q, air (black) invades the tube from the left end at atmospheric pressure,
and entrains a thin film of the glycerol on the tube walls (the white color in the middle
of the tube is due to light refraction). The entrained liquid film then starts receding
from the tube wall with a velocity ui, forming a growing dewetting rim behind the
contact line, where the liquid, solid, and air meet at a non-zero contact angle 9. As
the liquid rim grows, the bubble neck diameter shrinks and ultimately leads to the
breakup and formation of a bubble.
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5.1 Approach to singularity: two distinct self-similar

regimes

In the case of bubble formation in a large quiescent tank, the balance of radial viscous

flow and surface tension causes the bubble neck diameter to shrink linearly in time

(Burton et al., 2005; Thoroddsen et al., 2007). In contrast, here, during the process of

bubble pinch-off in a micro-capillary tube, the evolution of the diameter of the bubble

neck indicates the presence of two self-similar regimes (Fig. 5-2 (a)): the bubble neck

diameter initially follows a 7-
1 5 scaling before transitioning to the familiar linear

scaling regime, where r = (to - t) is the time to the pinch-off with to as the breakup

time.

When glycerol is withdrawn from the tube at a high-enough flow rate (Q > QC)

(Zhao et al., 2018), air penetrates the tube from the left side leaving a film of the

liquid on the walls. Since the liquid is partially wetting to the tube (OBe ~~ 650)

it starts dewetting from the tube wall, forming a growing dewetting rim (Fig. 5-3).

Initially, the flow in the film is mainly due to the receding of the contact line, leading

to the flow to be mainly parallel to the tube axis. This observation allows us to

describe the dynamics of the growing dewetting rim using a long-wave approximation

(Zhao et al., 2018):

DiF _ 11 (--- - I , 0z (M(v) ([Hv) - R (5.1)aor 16273 Fig

where i(i, ~) is the radius of the neck of the bubble, M() = 1 - 16i 2 + 48 4 --

64i 4 In 2 is the mobility, II() = 6(1 - cos eq)( 62/(1/2 -- )3)(i - 6/(1/2 - )) is the

disjoining pressure with J as the precursor film thickness, and R = 1/f - fsj is the

curvature. Here, all length scales are non-dimensionalized by the tube diameter d,

and the dimensionless time to the pinch-off is defined as ; = -r/t*, where -r = (to - t)

is the time to the pinch-off with to as the breakup time and t* = id/y is the visco-

capillary time scale. Near the point of pinch-off, we postulate that the shape of the

profile becomes self-similar: ?( ) = f(i, i)/i0 , and = (i - io)/I~ (inset of Fig. 5-2
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Figure 5-2: Evolution of the neck diameter versus time r = (to - t) to pinch-off at
to. (a) Data from 12 different experiments are shown: light blue symbols correspond
to d = 750 pm and p = 1.4 Pa.s; the cyan symbols correspond to d = 280 Am and
p = 1.4 Pa.s; the dark blue symbols correspond to d = 750 pm and M = 0.2 Pa.s.
Each color represents data corresponding to 4 different flow rates with Ca = PU/-y E
[0.008,0.02], where U = 4Q/(7rd2 ) and Q is the liquid flow rate. While changing the
flow rate does not influence the evolution of the bubble neck diameter (2ro), changing
p or d shifts the curves. (b) When time and length scales are non-dimensionalized with
the visco-capillary time scale t* = pd/- and the tube diameter d, respectively, the data
corresponding to all 12 experiments collapse onto a single curve (i = r/t* = yr/(pd),
and ro = ro/d). Here, two self-similar regimes can be observed: an early-time regime,
which follows a 1/5 power-law scaling in time, and a late-time regime very close to
the point of breakup, which follows a linear scaling in time.
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(a)). We can neglect the disjoining pressure in the vicinity of the singularity, which

is far away from the contact line. Substituting this ansatz back into Eq. (5.1), we

arrive at an ordinary differential equation for the neck profile:

(-C5 + 05')F-i 1 1 ( [ &R'2 + - -- (a-#- + ""~r-4, (5.2)
16 2 R . 3 R?2

where primes indicate differentiation. For all the terms to balance in time we need to

have a = 3 = 1/5, which leads to R() = i(, ~F)/r / 5 , and p = (z - 0)/~r1/5. This is

consistent with the scaling of the neck diameter as a function of time to pinch-off in

the early-time self-similar regime shown in Fig. 5-2(b).

The equation governing the dewetting rim in the early self-similar regime is there-

fore the following:

5 1 2 2 1 ~
+ ' ~ ~ , '2 + f (5.3)

162 R .R3 R?2 +

which represents the balance of viscous forces on the left-hand side with the surface

tension forces on the right-hand side. This type of ordinary differential equations

typically leads to an infinite family of solutions, where only one is found to be stable

(Papageorgiou, 1995; Brenner et al., 1996). To obtain the self-similar solution of the

ODE, we solve the original partial differential equation (5.1) numerically and extract

the self-similar solution from the late-time solution of the PDE very close to the point

of pinch-off. The self-similar solution obtained using this technique is shown as the

dashed line in Fig. 5-4(b) and shows an excellent agreement with the experimental

data at the early-time self-similar regime, where the long-wave model is valid.

The early-time self-similar regime is an example of self-similarity of the first kind,

in which the scaling exponents can be determined based on dimensional analysis

(Barenblatt, 1996), as was done above. The crossover to the late-time self-similar

regime, however, hints to the breakdown of the long-wave model very close to the

pinch-off. While both regimes are governed by a balance of surface tension and

viscous forces, the crossover occurs due to a change in the nature of the viscous flow

in the dewetting film from axially dominated to radially dominated as the dominant
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Figure 5-3: Schematics of the dewetting rim: as the contact line recedes from the
tube wall, liquid accumulates behind it and the rim keeps growing. The dynamics
of this growing rim can be described using a long-wave approximation (Eq. (5.1)).
The film thickness downstream of the rim is set by the Taylor-Bretherton scaling
h1 /(d/2) = 1.34Ca2/ 3/(1 + 1.34 x 2.5Ca2/3 ), where Caf = PUf /-y with Uf as the air
finger velocity(Taylor, 1961a; Bretherton, 1961; Aussillous and Qu6r6, 2000; Klaseboer
et al., 2014). This relationship combined with the conservation of mass: Q = ir(d/2 -
hf) 2 Uf determine both the finger velocity and the film thickness.

viscous dissipation changes from the moving contact line singularity to the pinch-off

singularity.

5.2 Crossover in self-similarity

To estimate the crossover time between the two regimes, we compare their correspond-

ing radial velocities. In the early-time regime, the growth rate of the dewetting rim is

proportional to the velocity of the receding contact line, i.e. dro/dr ~ Uc ~ (7-/p)'eq,

which is nearly constant for a given wettability (Snoeijer and Eggers, 2010; Zhao et al.,

2018). In the late-time regime, the bubble neck close to the point of singularity can

be approximated as an axisymmetric cylinder, and the flow in the viscous fluid can be

approximated as radial. The normal viscous stress generated by the radial flow is bal-

anced by surface tension, leading to dro/dt = --y/(2p)(1 - 2ro/rc) (Bolafios-Jimenez

et al., 2009), where r, - rc(t = 0)) is the axial radius of curvature. The radius of the
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Figure 5-4: Self-similarity of the neck profile: (a) The evolution of the bubble neck

profile in time (data corresponding to d = 750 pm, p = 1.4 Pa.s, and Ca = 0.008);
blue and green symbols represent the data corresponding to the early and late-time

self-similar regimes, and red symbols represents the transition between the two. (b)

Scaling the neck profile with the minimum neck diameter collapses the data cor-

responding to the early-time self-similar regime, where R( ) = f(i, f)/I!/5, and

= (i - iO)/T1/5. The dashed line, overlaying the blue symbols corresponding to

the early-time self-similar regime, represents the self-similar solution of the long-

wave model. The data corresponding to the late-time self-similar regime, however,

deviate from the predictions of the long-wave model. (c) The definition of param-

eters used to characterize the bubble neck profile. (d) The evolution of the lateral

length scale defined as =ror versus time to pinch-off. In the early-time regime,

= viciO ~ .i/5, consistent with the predictions of the long-wave model. In the

late-time regime, however, fo - and ~ fi/2, which indicates that the axial ra-

dius of curvature becomes constant, i.e. the neck profile becomes a parabola that

simply translates in time (Doshi et al., 2003; Eggers and Fontelos, 2015). (e) Scaling

the lateral length scale with that obtained in (d) leads to the collapse of the bubble

neck profiles during the entire pinch-off process (shown in (a)) onto a single parabolic

curve: r/ro = 1 + [(z - zo)/(] 2 (dashed line).
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neck can therefore be approximated as ro(t) = roo[1 - rc/(2roo)]e-t/&Irc) + rc/(2roo)

where roo = ro(t = 0), leading to dro/d-r ~ (-/p)e-T/** as the radial velocity in the

late-time regime (Bolanos-Jim6nez et al., 2009). Note that very close to the point of

pinch-off, we have ro < r, leading to dro/dT = y/(2pu), which is the familiar linear

scaling in time (Doshi et al., 2003; Burton and Taborek, 2008). Equating the two

radial velocities corresponding to the early- and late-time regimes we obtain an esti-

mate of the crossover time r - = pd/-y, indicating that the visco-capillary time

scale sets the point of transition between the two regimes. Fig. 5-2(b) shows that, in-

deed, using the visco-capillary time scale and the tube diameter as the characteristic

time and length scales leads to the collapse of the data corresponding to 12 differ-

ent experiments with different tube diameters (d = 280, 750 pm), liquid viscosities

(p= 0.2,1.4 Pa.s), and flow rates (Ca = pU/-y E [0.008,0.02]).

The long-wave model predicts that both the bubble neck diameter and its lateral

extent scale as ~r/5. Fig. 5-4(a) shows the evolution of the bubble neck profile in time

(for the experiment with d = 750 pm, M = 1.4 Pa.s, and Ca = 0.008), where the

blue and green symbols correspond to the early- and late-time regimes, respectively,

and red corresponds to the transition between the two regimes. In Fig. 5-4(b), we

show that, indeed, scaling both the neck diameter and lateral dimension with the the

minimum neck diameter collapses the profiles in the early-time regime (blue symbols).

The self-similar solution of the long-wave model (black dashed line) fits the data in

this regime. This observation further confirms the validity of the long-wave model in

the early-time self-similar regime. The data in the late-time regime (green symbols),

however, cannot be completely collapsed using the scalings in Fig. 5-4(b), and deviate

from the predictions of the long-wave theory.

In the local neighborhood of the minimum neck radius, we expect the profile to

follow a parabolic profile with r(z, t) = ro(t)+(z-zo)2 /rc(t), where ro is the minimum

neck radius, and r, is the axial radius of curvature. Scaling the profile with ro(t), we

then obtain r/ro = 1 + (z - zo) 2 / 2 , where ( = r-ro represents the axial extent of

the parabola.

In the early-time self-similar regime, we showed that both the minimum neck
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radius as well as its axial length follow the scaling Vl/5 . Therefore, we expect ( =

r ~o~rl/ 5 in this regime. This scaling is indeed observed in Fig. 5-4(d) in the

early-time self-similar regime.

Very close to the point of pinch-off in the late-time self-similar regime, we can

approximate the bubble neck as a cylinder, which effectively acts as a sink sucking the

liquid radially towards the tube center, leading to a balance of normal viscous stresses

and the surface tension &r/DT = -y/( 2p) (Doshi et al., 2003; Eggers and Fontelos,

2015). Therefore, the neck profile is simply translated in time without changing its

shape. Assuming the scale-invariance of the dynamics close to the singularity, and

using the ansatz R() = i (i, f)/T, and = ( i - o)/~ro, the governing equation for

the neck profile becomes:

-a ' L5+ -1(5'I -1, (5.4)

where prime indicates differentiation. For all the terms to balance in time we need to

have a = 1. The value of the exponent /3, however, cannot be determined from dinien-

sional analysis, indicating that the self-similarity is of the second kind (Barenblatt,

1996).

Here, we briefly review how to determine the value of the exponent in the

second self-similar regime (Eggers, 2012). The solution of Eq. (5.4) is described by

R = 1 +a 1/O, in which a is a constant of integration that depends on the outer solution

away from the singularity. Close to the pinch-off time, the neck profile away from

the singularity becomes effectively frozen in time, which leads to a constraint on the

behavior of the self-similar solution: i$ -*o c, i -+ c) = -i((i-io)/ ) = const,

and therefore we need to have R( -+ oc) ~ '/O. The regularity condition also

implies that 1/# must be a positive integer and even and a > 0. We can therefore

have a discrete family of solutions for #, i.e. #i = 1/(2i) with i = 1, 2, .... This is

similar to the breakup of a drop, where also an infinite family of solutions is obtained

(Papageorgiou, 1995; Brenner et al., 1996).

To find out which one of these solutions is selected, we need to address the stabil-
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ity of these solutions. Briefly, we use a change of variables T = - In F, rewriting the

equation governing the self-similar profile as RT = R - 13R'- 1, which is a dynami-

cal system representation of the original equation, for which the original self-similar

solution will be a fixed point. We can therefore perturb the self-similar solution as

R((, T) = R() + enTP( ), where n is the eigenvalue and P is the cigenfunction.

The stability analysis (Eggers, 2012) shows that the stable solution is described by

3 = 1/2, i.e. R(() = 1 + a 2 . This implies that the neck profile can be described as

iF(C, ~r) = (i + a[( - i 0 )/i / 2] 2 ) = i + a( - io) 2 , which is a parabola that is simply

translated in time.

We therefore have ;r~112 as the scaling of the lateral length scale, which is

supported by the experimental data in the late-time regime (Fig. 5-4(d)). Using (

as the lateral length scale, we can therefore collapse the neck profiles over the entire

pinch-off process (Fig. 5-4(e)), which is overlaid by the parabola R( ) = 1 + $2

5.3 Universality of the pinch-off

While in the early-time self-similar regime, both the neck radius and its axial radius

of curvature are time-dependent, in the late-time regime the axial radius of curvature

of the neck profile becomes independent of time. This can be shown easily noting

that in the late-time regime iO ~ ~ (Fig. 5-2(b)), and = V~co ~ ~i1/2 (Fig. 5-4(c)),

leading to limfo Fc(f) = rcf = const. The temporal invariance of the axial radius of

curvature of the bubble neck might suggest that the separation of scales is lost and

the singularity formation becomes non-universal. In other words, the lateral extent

of the neck profile retains an imprint of the details of the experimental system and

the memory of the initial/boundary conditions will persist all the way to the point of

pinch-off (Doshi et al., 2003; Eggers and Fontelos, 2015).

In our system, however, this late-time self-similar regime is preceded by an early-

time self-similar regime of the first kind, which sets the lateral length scale of the

late-time regime at the crossover between the two regimes. This characterization is

captured in Fig. 5-4(c) and Fig. 5-5, which shows a crossover in the scaling of the
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Figure 5-5: The evolution of the lateral length scale of the bubble neck (7 = o) in

time: (a) dimensional, and (b) non-dimensional. Data from 12 different experiments

are shown: light blue symbols correspond to d = 750 prm and p = 1.4 Pa.s; the

cyan symbols correspond to d = 280 rn and p = 1.4 Pa.s; the dark blue symbols

correspond to d = 750 pm and p = 0.2 Pa.s. Each color represents data corresponding

to 4 different flow rates with Ca = pU/ E [0.008,0.02], where U = 4Q/(7rd2) and Q
is the liquid flow rate. While changing the flow rate does not influence the evolution

of the lateral length scale ((), changing ft or d shifts the curves.
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lateral length scale at - ~ 1. The self-similar solution of Eq. (5.3) shows that in the

early-time regime, 1o 0.09f1/5, and ~ 0.19i/ 5, leading to ( = '/icfo ~~ 0.13;i/ 5

as the scaling of the lateral length scale. In the late-time regime, we also have =

OT co ~ ~r/2iYrf/2. Therefore, at the point of crossover, ~ ~ 1, the early-time self-

similar regime sets the lateral length scale of the late-time regime ( ~ 0.13), leading

to cfc ~ 0.07. Fig. 5-6 shows a plot of the axial radius of curvature as a function of

time to the pinch-off. Here, we observe that, indeed, the data corresponding to all

the 12 experiments collapse on a single curve, with the asymptotic universal radius

of curvature of icf ~ 0.07. This observation indicates that the early-time self-similar

regime effectively erases the system's memory and restores the universality to bubble

breakup in a viscous liquid.

We therefore conclude that the combined effect of confinement and the contact

line motion leads to the emergence of an early-time self-similar regime of the first

kind, which at late times crosses over to a regime of self-similarity of the second kind.

While the balance remains between viscous and surface tension forces in both regimes,

the crossover occurs due to a change in the dominant viscous dissipation from the

spatially-localized moving contact line singularity at early times to the temporally-

localized bubble pinch-off singularity at late times. This change in the dominant

viscous dissipation is accompanied by a change in the direction of the flow from

axially-dominated in the early-time regime to radially-dominated in the late-time

regime. The late-time regime is also observed in the breakup of bubbles in unbounded

domains, where flow is mainly radial and the lateral length scale of the bubble is

sensitive to the details of the experimental system, making the breakup non-universal

(Doshi et al., 2003). Here, in the case of bubble breakup in confined domains, however,

we observe that the lateral length scale is set by the early-time self-similar regime,

effectively erasing the system's memory and restoring the universality to the breakup

process.

The restoration of universality has important consequences for the control of

bubble/drop/emulsion generation in microfluidics with a myriad of applications in

medicine (Lindner, 2004) and material science (Park et al., 2010; Rodriguez-Rodriguez
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Figure 5-6: The evolution of the axial radius of curvature versus time to the pinch-

off shows that as we get close to the point of pinch-off, the curvature asymptotes

to a constant value (symbols are the same as in Fig. 5-2). (a) The time evolution

of axial radius of curvature is independent of the flow rate, but changes when the

liquid viscosity or the tube diameter are varied. (b) The data corresponding to all 12

experiments collapse on a single curve when non-dimensional axial radius of curvature

is plotted against the non-dimensional minimum neck diameter. The non-dimensional

axial radius of curvature asymptotes to a universal constant limfo c() = e~0.07

at late-times near the pinch-off event.
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et al., 2015) as well as for understanding of multiphase flows in natural geologic phe-

nomena (Parmigiani et al., 2016; Ruppel and Kessler, 2017), where confinement and

liquid-solid interaction play a key role. While we have focused on the case of bubble

breakup in a viscous liquid, we expect the early-time self-similar regime (perhaps with

a different scaling exponent) to persist for any other fluid-fluid displacement process

involving moving contact lines.
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Chapter 6

Revisiting the Saffman-Taylor

instability in imbibition:

emergence of a new scaling

In their seminal work, Saffman and Taylor showed that when a less viscous fluid dis-

places a more viscous immiscible one in a Hele-Shaw cell, the interface between the

two fluids becomes unstable and fingers of the invading fluid protrude into the de-

fending fluid. Here, we revisit the Saffman-Taylor instability in the imbibition regime,

when the invading fluid is more wetting to the substrate, using both experiments in

radial Hele-Shaw cells and theory. We show that thin films of the invading fluid be-

come entrained and propagate on the walls, leading to an entirely different dynamics

from the classical Saffman-Taylor instability. We propose a model to describe the

evolution of these films and show that they lead to a front instability akin to the

fingering of thin films flowing on inclined plates. We show that the wavelength of in-

stability follows a scaling different from the scaling of Saffman-Taylor, implying that

this thin-film front instability belongs to a new class of pattern forming processes.

Revisiting the Saffman-Taylor instability, (Levach6 and Bartolo, 2014) have re-

cently reported the observation of new instability regimes in imbibition, when the

invading fluid is more wetting to the substrate. Beyond a critical displacement rate,

a forced wetting transition was observed, where thin films of the invading fluid became
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t = 22min t = 29min

Figure 6-1: The radial Hele-Shaw cells are first filled with the Krytox GPL105 liquid

and then dyed water is injected in the middle. Water is more wetting, 9 eq ; 300

and less viscous P = 12/Pl = 1000 and becomes entrained and propagates along the

substrate next to the injection port. The color map here shows the light intensity.

Over time, the films swell, and form a bridge when touch the other wall of the cell.

The bridge formation is evident by the increase in the light intensity in particular

close to the injection port. In this work, we are mainly interested in the dynamics of

the entrained thin films before the bridge forms. Since these films propagate in front

of the bridged section, they determine the morphology of the instability.

entrained on the walls, moving ahead of the main meniscus. The dynamics, evolution,

and instability of these entrained thin films, however, remains unexplained. Here, us-

ing a combination of experiments in radial Hele-Shaw cells and theoretical modeling,

we study the dynamics of these films and show how they lead to an unstable front.

Our work therefore goes beyond the classical Saffman-Taylor instability by proposing

a new pathway to the front instability in immiscible flows in Hele-Shaw cells. Figure

6-1 shows the typical dynamics of the entrainment and propagation of the thin films

in the unstable imbibition regime.

The flow schematics is presented in Fig. 6-2, which shows thin films of water

(fluid 1) with height h coat the surface of the Hele-Shaw cell and displace the oil

phase (fluid 2). We focus on the unstable imbibition regime, in which the oil phase

is much more viscous than water Al = p >2/I > 1 and water is more wetting to the

surface than oil 9 eq < 1.
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Figure 6-2: Schematic of the entrained thin film flowing in a rectangular
cell with the width of the cell going into the plane.
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6.1 Theoretical Formulation

Here, we use a long-wave approximation to derive a model describing the dynamics

of the thin-film front. The fluid flow inside the film is governed by the Navier-Stokes

equations

Du
pD t = -VPa +V -Ta, (6.1)aDt

where pa is the liquid density, D/Dt = 0/t + u - V is the material derivative,

u = (u, v, w) are the fluid velocity components in (x, y, z) directions, respectively; Pa

represents the liquid pressure, and T, is the stress tensor, with a = 1 representing

the invading fluid and a = 2 representing the displaced fluid. The stress tensor can

be further decomposed into two parts, T = r + M, where r is the deviatoric stress

and M represents the stress due to external body forces, taken to be zero in this

work. The deviatoric stress is a function of the strain rate E = (Vu + VuT) /2, and

for a Newtonian liquid can be simply written as rij = y (Oui/&xj + Ouj/Oxi). These

governing equations of motion are subject to the no slip and no penetration boundary

conditions on the walls u(z = 0, d) = 0, continuity of shear stress at the fluid-fluid

interface rz,1(h) = T2x,2 (h) and rzyj,(h) = Tzy, 2 (h), normal stress jump across the

interface P - P2 = A + 11, where AC represents the Laplace pressure jump and FL

represents the disjoining pressure due to the intermolecular interactions. Further, we

need to enforce the continuity of the velocity normal to the interface wi(h)= w2(h)

and the kinematic boundary condition at the fluid-fluid interface: D(z - h)/Dt = 0,

leading to:

Dh Dh ah(62
wi(h) = + U1-- + Vi- (6.2)

-t Dx Dy
Dh h alh

w 2(h) = +u2 - +v2 -. (6.3)
at 9x Dy

We non-dimensionalize the equations in the following way: (z, Q) = (x, y)/L, 2 =

z/H, t h/H, ( -,i) (u, v)/U, fv = w/(U), t = t/(L/U), P = P/ (I 1UL/H 2),

and r = ir/ (p1U/H), where c = H/L and H and L represent a characteristic height
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and length, respectively.

In the long-wave approximation, c < 1, and assuming inertia to be negligible

E2Re < 1 with Reynolds number defined as Re = piUL/p 1i, we can considerably

simplify the Navier-Stokes equations of motion, leading to 0 = -0P 1 /)z + a 2it1/ai2

and 0 = - 02 /97 + Ma 2ft2/0i 2 for the x-component of the momentum equation,

where M= P2/Pl is the ratio of the displaced to invading fluid viscosity. Similarly, the

y-component of the momentum equation simplifies to 0 = -ap1 /ap + a 2 
1 /a2 and

0 -DP 2 /0y + M02 ' 2 /Oi2 . The z-component of the momentum equation simplifies

showing a constant pressure in the gap 0 = -OP 1/&0 and 0 = -OP 2/ai. We can

therefore integrate the x- and y-components of the momentum equation to obtain the

velocity components (un, va).

We consider the liquid to be incompressible, such that V u = 0, which integrated

across the gap leads to:

0 [ 1 di + ii 2 d] +f [ 1d+ 2d1 0, (6.4)

which can be written as V - UT = 0 with UT representing the total velocity across the

gap.

Further, the incompressibility constraint together with the kinematic boundary

conditions leads to the evolution equation of the interface height:

-=+ - I1dz+-- ' 1di =0. (6.5)
at ax] 0  ayj 0

Replacing the velocity components in the height evolution equation and incom-

pressibility constraint, we finally arrive at (Merkt et al., 2005):

+ V M 2 (h)UT + M 1(h)V(A M+ 1(h)) 0 (6.6)
at

UT= A (h)(V PI + M 3 (h)V(( + 11 (h))), (6.7)

V - UT = 0, (6.8)
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where we have dropped the tildes for brevity, P represents the pressure field in fluid

1 and V = (a/ax, D/&y, 0) is the plane gradient operator. The normal pressure jump

K = P - P2 = -V 2 h/Ca, where O/Ca = 1/Ca and Ca = p1iU/-y. We have further

scaled the time and length scales (I,Q, t) = Ca'1 3 (x, y, t) to scale out the explicit

dependence on the capillary number and dropped the hat over lines for brevity. The

normal pressure jump is then simply defined as AP = -V 2 h. The disjoining pressure

II(h) represents the influence of intermolecular forces on the fluid-fluid interface in

the vicinity of the contact line when the film height becomes of the order of few

nanometers (Israelachvili, 2011).

The mobilities are defined as follows:

M 1(h) = h3 d-h)3 d + h(M - 1), (6.9)
3D

M 2(h) = 1 - M 3(h), (6.10)

M3(h) =(d Dh) (Mh(4d - h) + (d - h)2), (6.11)
D

A(h) = d) (6.12)
12M ((M - 1)h + d)'

D(h) = (d - h)4 + AMh(h3(M - 2) + 4dh2 - 6d2h + 4d , (6.13)

with M = P2 /pi. Figure 6-3 shows the mobility functions M 1 (h) and M3 (h) for

three different viscosity contrasts M = p'2//i' = 0.001,1,1000.
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Figure 6-3: Mobilities as defined in the governing equations. M1 goes to zero in the
vicinity of the top and bottom walls and its peak magnitude is a strong function of
the viscosity contrast M = P2/I. The mobility function M 2 is a non-convex flux
function, which as we will show later leads to three type of solutions.
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6.1.1 Free energy description

To gain further insight into the evolution equation, we can rewrite it in terms of the

free energy of the system as:

a- + V. -M 2 (h)uT + M 1 (h)V )) = 0, (6.14)
at (6h

where the free energy r is defined as:

f 11(h) + I(Vh)2 dx, (6.15)

in which f (h) fb (h) + ft (h) with fb(h) -6 (1 - COS Oeq) (6 2 /h 2) (1/2 - 6/(3h)) and

ft(h) -6 (1 - COS Oeq) (6 2 /(d - h)2 ) (1/2 - 6/(3(d - h))) representing the interaction

energies with the bottom and top channel surfaces, and disjoining pressure is defined

as Il(h) = df /dh. As shown in Fig. 6-4 we can find the equilibrium states of the system

described by this free energy using the Maxwell tangent construction (Rowlinson and

Widom, 1982).

Merkt et al. (2005) derived the same model to investigate dewetting of nanometric

two-layer films in a channel, where they argued that their results on the instability of

thin films is insensitive to the presence of an external mean flow and focused on the

case without an external flow. In this work, however, we focus on the front instability

of a thin-film front in a macroscopic channel, in which the effect of intermolecular

forces become important only in the vicinity of the contact line. Mavromoustaki

et al. (2010, 2011) also used the same model in the absence of intermolecular forces,

i.e. in the regime of complete wetting, to analyze the front instability of gravity-

driven thin film flows in an inclined channel. They focused the case, where a viscous

liquid displaces a less viscous liquid or air and analyzed the 1D base state solutions

(Mavromoustaki et al., 2010) as well as the front instability (Mavromoustaki et al.,

2011). To do the latter, however, they assumed that the flow perpendicular to the

streamwise direction can be set to zero, simplifying the equations of motion. As we

will show in our work, such an assumption leads to incorrect results for the case
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Figure 6-4: Bulk free energy (black solid line) and the common tangent construction
(dashed blue line) showing the two equilibrium states. The inset shows the zoomed-in
view of one of the energy wells. This form of free energy indicates that uniform films
with heights in the region, where d2f /dh 2 < 0 are metastable and will phase separate
to minimize the free energy.

studied here, i.e. it predicts an unstable front to be stable. The governing equations

presented here have a similar form to those commonly used to describe immiscible

flows in porous media or Hele-Shaw cells using generalized multiphase form of the

Darcy's law (Riaz and Tchelepi, 2004; Cueto-Felgueroso and Juanes, 2012, 2014).
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6.1.2 1D solutions

We begin by analyzing the behavior of the solutions obtained from solving Equation

(6.8) in one dimension. In a ID setting, the incompressibility constraint V -UT = 0

reduces to duT/dx = 0 or uT = qo = const. The evolution equation for the film height

therefore simplifies to:

ah a( a ( 2h df'Q
- + A-M 2(h)qo + M1(h) 19 + -2 h = 0. (6.16)
at OX 09x Ox2 dh)

Figure 6-5 shows the three type of solutions obtained from solving Eq.(6.16).

These three types are: 1) Lax shocks, 2) Lax-undercompressive shocks, and 3) rar-

efaction wave-undercompressive shocks. These solution types have been observed in

the context of thin films with competing driving forces, e.g. gravity and Marangoni

forces (Bertozzi et al., 1998, 1999). Here, we review the conditions for the emergence

of these solution types. Capillary shock profiles are solutions to hyperbolic conserva-

tion laws such as Eq. (6.16), which connect the upstream height h" to the downstream

height hd; in the absence of higher order regularizing terms, we have:

+ a M2(h)qo = 0. (6.17)
at ax (

the solutions of which represent a jump discontinuity across the shock. When the

characteristics of the Eq. 6.17 from both downstream and upstream of the shock

approach each other, the shock is called compressive, or Lax shock, satisfying the

entropy condition c(hs) > s > c(hd), where c(h) = qodM 2/dh is the characteristic

speed and s = qo(M 2 (h,) - M 2(hd))/(h. - hd) given by the Rankine-Hugoniot jump

condition represents the shock speed (Lax, 1957, 1973; LeVeque, 1990; Bertozzi et al.,

1999). In the presence of higher order regularizing terms of Eq. 6.16, traveling wave

solutions can be thought of as smoothed shock solutions, which travel with the same

speed as the shock solutions. We observe this first type of shock profiles when the

upstream height is larger than the downstream height, but smaller than a critical value

(Fig. 6-5(a)). This type of solutions, i.e. Lax capillary shocks, are typical of thin film
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Figure 6-5: Three types of solutions of the Eq. (6.16) with M = 1500, qo.= 0.001 and
Oeq = 0 (complete wetting regime): (a) Lax shock, (b) Lax-undercompressive shock,
(c) rarefaction wave-undercompressive shock. The bottom image shows the corre-
sponding non-convex mobility function with the secant lines connecting the upstream
and downstream heights.

flows with a single driving mechanism, such as gravity-driven flows (Huppert, 1982b),

or Marangoni-driven flows, in which gravity effects can be neglected (Cazabat et al.,

1990). These shocks are the ones we may encounter in our daily lives, from traffic

jams (Lighthill and Whitham, 1955; Richards, 1956) to the dynamics of bacterial

colonies and stock market dynamics (Helbing, 2001).

When the upstream height becomes larger than the critical value, a different struc-

ture appears, consisting of two shocks, which travel at different speeds (Fig. 6-5(b)).

The trailing shock is a Lax shock, connecting the upstream height h., to an interme-

diate plateau height h, > h,, and the leading shock represents an undercompressive

shock connecting hP to the downstream height hd. This leading shock violates the

Lax entropy condition as the shock travels faster than the characteristics both in

front and behind it s > c(hd) and s > c(h,), meaning that the characteristics coming

from downstream pass through the shock. In the context of scalar conservation laws,
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until two decades ago it was thought that the only physically relevant shocks are Lax

shocks (Bertozzi, 2016). The observation of undercompressive shocks in the context

of thin-film flows was therefore a proof to their existence (Bertozzi et al., 1998, 1999),

where it was shown that the presence of a non-convex flux function, i.e. two com-

peting driving forces, as well as a high-order regularizing term, i.e. surface tension

are required to observe these shocks. Undercompressive shocks have been observed

in other contexts as well, such as phase boundaries in fluids or solids (Slemrod, 1983;

Abeyaratne and Knowles, 1991), or ion sputtering of solid surfaces (Chen et al., 2005;

Perkinson et al., 2016).

For upstream heights larger than the undercompressive plateau height h" > hj,

we obtain a third type of solution (Fig. 6-5(c)), which consists of a trailing rarefaction

wave, for which h(x, t) = hR( = x/t) leading to = dM2/dhR when substituted in

Eq. 6.17, and a faster leading undercompressive shock wave with s > c(hp), where

s = qo(M 2 (hp) - M 2 (hd))/(hp - hd) and c(hp) represents the trailing rarefaction wave

speed.
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6.2 Linear stability analysis

We analyze the stability of thin-film fronts in a confined channel as shown schemat-

ically in Fig. 6-2. In particular, we are interested in the stability analysis of type

three solutions shown in Fig. 6-5 (c), which correspond to the experimental condi-

tions: in the experiments once the cell is saturated with the defending liquid, we

inject the invading liquid. We are therefore interested in analyzing the stability of

the undercompressive shock front in Fig. 6-5 (c).

We first need to find the base state solutions of Eq. 6.16. To do so, we move from

the (x, t) reference frame to the frame of reference of the traveling wave ( , t) with

x - st, where s is the traveling wave (shock) velocity:

h h a ( a2 h df-s + M2(h)qo + 1(h) + ) = 0. (6.18)
09t a a (g a 12 Ah

Integrating Eq. (6.18) from -oc to oc, we then obtain the traveling wave speed

as:

M 2 (hu) - M 2 (hd)s =q hq- (6.19)
hu - hd

in which hu and hd are upstream and downstream heights, respectively.

The base states are steady traveling waves (ho( )), which further simplifies Eq. (6.18)

and allows for one integration from -oc to to obtain:

a (_2 ho df 0-s(ho - hu) + qo (M 2 (ho) - M 2(hu)) + M 1 (ho) ( + = (6.20)
a a 2 dho

Note that here we have assumed a film of thickness hd exists in front of the

main front. The use of this film is mainly for numerical simplicity; as we showed in

Chapter 2 in the context of spreading of drops, a height-dependence surface tension

can remove the need to use precursor films. In the context of thin films flowing down

inclined plates, it has been shown that both precursor and slip models lead to similar

results (Spaid and Homsy, 1996), justifying our use of a precursor film here. Further

the instability wavelength should not be sensitive to the height of the precursor film
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(Troian et al., 1989).

Using the incompressibility constraint V - UT= 0, we can further obtain the base

state equation for the pressure field:

_P1, _ o _d (d 2 h0  df\
-AM 3(ho) d + d . (6.21)d A(ho) < d 2  dho

Once we have obtained the base state by solving Eqs. (6.20) and (6.21), we can an-

alyze their stability to transverse perturbations. Our experiments are done in a radial

Hele-Shaw cell, in which the speed of a stable front decays linearly and its perimeter

grows linearly with the distance to the injection port. In the context of Saffman-

Taylor instability Paterson (1981) found A - q- 1 / 2 in a radial geometry similar to the

original stability analysis of Saffman and Taylor (1958) in a rectangular geometry.

Therefore, we also expect the scaling of the instability wavelength to be independent

of the geometry and in the following we focus on a rectangular geometry, which in

particular simplifies the task of identifying and comparing the instability wavelength

obtained in the linear stability analysis with those of the nonlinear simulations in

rectangular domains.

We perturb the base state solutions as follows:

(h, P) = (ho( ), P1 ,o ()) + E (N( , t), P1( t)) eiky (6.22)

where k is the wavenumber of the perturbation in the y direction and (ho(), P1,o ( ))

represent the base state solutions obtained from Eqs. (6.20), and(6.21). Plugging the

perturbed variables into the governing equations (6.8) and (6.6) and keeping the O(C)

terms, we arrive at the following evolution equation for the perturbed height field:

8N 8N02 jg
- + (C1 + M1 ,ok4 ) - (C2 + C3k2) - 2M1,0 +

atA 3 a P1 dho
C3 + M 1,o- Ao M 'o = 0, (6.23)

we3 pie4 ao d

where primes indicate differentiation with respect to h and the coefficients Cl,2,3 are
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defined as follows:

d 4 ho
C1 = A1,0 d 4

1 Md, 0 ddh4

Idho oAM',0 + Ao qoM' + (A 0 M'0M',0 - M'1",O) d 3 ho , (6.24)
-Ao d 1 000 2 20 3,02 1, <~

3

C2 = s + qOM/', - M'1d,3 h0  (6.25)

dh 003= KM (6.26)C= (M' 0 - A 0 M2,0M 3 ,O)

where the subscript 0 indicates base state.

Similarly, the perturbed equation for the pressure field becomes:

a 2

3 h (4_ aP1  dho 0 2 P
C6/Ao+ A0 M, 0 + AO d A0 -- k 2AP 1 = 0 (6.27)

where the coefficients C4,5,6 are defined as follows:

C4 = A M', dho +

dh 0  d3h
dho qO(A' ) 2 + qoAoA' + A (A' M',O + A0M' 0 ) d 3  , (6.28)

dah0
C5 = qoA/ + A2M' 0  , (6.29)

C6 = AOA' dho M,0+ A ',A dh. (6.30)

To analyze the growth of perturbations, we need to solve Eqs.(6.23) and (6.27).

There are two common ways to achieve this; the first method is to define h =

h exp (ut), where o- is the perturbation growth rate. Then equations (6.23), and

(6.27) define an eigenvalue problem with h and P as the eigenfunctions and o- as the

eigenvalue. These set of equations can therefore be compactly represented as follows:

SA 1 B1  0 h
(6.31)

A 2 B2 P 0 0 P

189



0.05 

0.04- =O 0.01

0.03-

0.02 -

0.01 - gO= 0.0025

go -- 0.001,
0 1 2 3 4 5 6

A max Wmax

4 -1/3 100

q, O 4/3 ,'
3 7 q 0O

2- 00%0A
10-

10~

110 -2 2-1 10-3 10-2 10

1O 00

Figure 6-6: Dispersion curve obtained using linear stability analysis through solving

Eqs.(6.23) and (6.27). The maximum growth rate determines the fastest growing

mode and its associated wavelength of instability as shown in the two bottom figures.

The scalings observed here are distinct from the scalings obtained in the classical

Saffman-Taylor instability.

where A1,2 and B1,2 are discretization operators related to the perturbation equations.

These equations therefore allow us to investigate the stability of the thin-film front

in the unstable imbibition regime and give us the most unstable wavelength and its

growth rate.

The alternative way to analyze the growth of the perturbation, which we use here,

is to directly solve for the coupled partial differential equations (6.23) and (6.27) and

monitor the growth of perturbations in time, defining the growth rate a- as (Matar

and Kumar, 2007; Mavromoustaki et al., 2011):

1 E t

q = limt -+ oo- In , (6.32)
2t E(t = 0)
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where the perturbation energy is defined as:

fo 12dg
E(t) = (6.33)

fo0 ho2d<

The result of this linear stability analysis is shown in Fig. 6-6, which shows the

rate of growth of the perturbations imposed on the front of the undercompressive

shock structure shown in Fig. 6-5(c). As we mentioned before, the speed of under-

compressive shocks is higher than the characteristic speeds in front or behind the

shock. Therefore, any perturbations in front of the shock pass through the shock

and becomes amplified if the shock is unstable to perturbations (Bowen et al., 2005).

Figure 6-6 shows that indeed the undercompressive shock front is unstable to per-

turbations. This is a novel and surprising observation as undercompressive shocks in

thin-film flows have been considered to lead to stable fronts (Bertozzi et al., 1998,

1999, 2001b; Bowen et al., 2005; Bertozzi, 2016). The underlying reason for the in-

stability of the undercompressive shocks here is the confinement, which leads to the

coupling of the pressure fields of the two liquids. In fact, assuming the flow in the

y direction to be zero, i.e. zero transverse flow assumption, leads to the decoupling

of the pressure fields and therefore stability of the front. As we have observed in

the experiments, the thin-film front is indeed unstable; therefore, the zero transverse

flow assumption, which is also used by Mavromoustaki et al. (2011) in their stability

analysis, leads to the incorrect conclusion of the front stability.

The second important observation in Fig. 6-6 is the scalings of the most unstable

wavelength and growth rate with the flow rate. Here, we observe that Amax ~ qo 1/3

and Wmax ~ 4/ which is distinct from the classical Amax ~ 1/2 and Wmax 3/2

scalings of the Saffman-Taylor instability (Saffman and Taylor, 1958; Paterson, 1981;

Bensimon et al., 1986; Homsy, 1987). This observation indeed points to the fact that

the thin-film front instability in our experiments belong to a new class of pattern

forming processes.
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Figure 6-7: Nonlinear simulation of the coupled Eqs. (6.6) and (6.8) with qo = 0.005,

M = 1500, and in the complete wetting regime. The snapshots from left to right are

equally spaced in time and show the time evolution of the instability.

6.3 Nonlinear simulations

To go beyond the onset of instability, we need to conduct full nonlinear simulations

of the coupled equations (6.6) and (6.8). In a rectangular domain, we can clearly see

the development of fingers over time as shown in Fig. 6-7. At the onset of instability,

a well-defined wavelength forms leading to a regular spacing between the fingers. As

the fingers grow farther from their root, we observe an overshoot in the height at the

finger tips, which ultimately leads to the pinch-off in some of the fingers. The presence

of the dimple or overshoot at the tip of the fingers is reminiscent of the capillary ridge

formation in driven thin films (Troian et al., 1989), which are the underlying reason

for the front instability in those systems (Brenner, 1993; Bertozzi and Brenner, 1997).

The linear stability analysis presented above showed that the perturbations to the

shock front grow in time leading to the formation of a bump at front. This observation

suggests that the undercompressive shock base states undergo a transition to a Lax

shock type structure en route to instability. At later times, fingers further interact

and merge with each other, leading to a ramified and complex front morphology.
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Figure 6-8: The effect of flow rate on the front instability, from left to right qO =
0.005, 0.01, 0.1. The wavelength of instability for q = 0.01 is Amax ~ 2 and for q = 0.1
is Amax ~ 1, which are in excellent agreement with the results of the linear stability
analysis presented in Fig. 6-6.
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qo
Experiments

Simulations

Figure 6-9: Comparison between experiments and simulations for increasing flow rates

from left to right. The color indicates the normalized film height, where white color

would represent full displacement. In the experiments, water is died with fluorescein

and the light intensity is then converted to the film thickness using the Beer-Lambert

law.

6.4 Discussion

Figure 6-9 shows a comparison between experimental results on the thin-film front

instability and the simulations. Note that here in the simulations, we have considered

the invading fluid to be partially wetting with 9 eq = 7r/6, which is representative of

the experimental conditions. While comparing the exact instability wavelength in the

radial geometry is a harder task than in the rectangular geometry, we do observe a

general qualitative agreement between the experiments and simulation results.
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Chapter 7

Wetting and disorder: imbibition

in a rough fracture

So far, we focused on the influence of contact line motion on interfacial instabilities in

confined domains. Most real surfaces, such as those one encounters in porous media

flows, however, are rough (Bonn ct al., 2009; AlRatrout et al., 2018). Thercfore,

an understanding of the interplay between wetting phenomena and roughness is a

necessity to be able to understand and describe immiscible flows in most applications.

Influence of roughness on wettability of solid surfaces has been the focus of many

studies within the past two decades given the relevance of roughness and hierarchical

topographical features of the surface in creating superhydrophobic surfaces (Quer6,

2008; Bonn et al., 2009; Rothstein, 2010; Wong et al., 2011). Surface roughness

promotes the natural wettability of a surface, i.e. it makes a wetting surface even

more wetting and a non-wetting surface even more non-wetting. This change in the

effective wettability of the surface can be described using Wenzel (1936) or Cassie and

Baxter (1944) laws. These laws, however, can only describe the average wettability

of a surface and do not represent hysteresis associated with the presence of disorder

on the medium (Bonn et al., 2009).

In the context of hydrophilic surfaces, roughness leads to a decrease in the effective

contact angle as proposed by (Wenzel, 1936): cos 0* = r cos Oeq, where Oeq is the

intrinsic contact angle on a smooth surface of the same material and r is the ratio
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of the actual surface area to the projected area, where r < 1. As the contact angle

decreases, however, there is a transition from the Wenzel state, where the liquid drop

is surrounded by the dry solid surface to a regime called hemiwicking, where thin

films of the main drop wick into the grooves of the rough surface (Quer6, 2008). The

transition to this second regime occurs when Oeq(O,., where cos 0 ,. - 1/r. For a

smooth solid surface, where r = 1, therefore this transition will not occur, whereas

for a porous matrix, where r > 1, this transition happens when Oeq(ir/2, i.e. the

Washburn law. Once these thin films emerge from the main drop, they change the

effective wettability of the medium as seen by the drop front, i.e. the grooves in

advance of the drop are filled with the same liquid. This results in a change in the

effective contact angle, leading to cos0* ~ 1 - cos eq. Note that we have assumed

that the liquid fills the grooves of the rough surface, and effectively no part of the

surface remains in contact with air; in reality, this need not be true and the situation

will likely depend on the contact angle. Balancing the driving surface tension forces

with the viscous dissipation in the film, one arrives at a diffusive dynamics for the

hemiwicking films akin to the dynamics predicted by the Washburn law.

The brief discussion presented above shows that the presence of roughness leads

to complicating behavior even at equilibrium. Far less is known about the dynamics

of wetting in the presence of rough surfaces. In particular, roughness is believed

to have a crucial role in the onset of wetting transition (Golestanian and Rapha81,

2001; Zhao et al., 2014; Perrin et al., 2016) and dynamics beyond that (Krechetnikov

and Homsy, 2005; Seiwert et al., 2011). Further, in confined flows roughness not

only affects the contact line motion, but also the local permeability field. While the

influence of heterogeneous permeability in immiscible flows has been widely studied

(Chen et al., 2017; Hu et al., 2018), much less is known about the interplay between

contact line motion and the disorder of the medium. Here, we present the results of

an experimental study using a radial Hele-Shaw cell, in which one of the surfaces is

roughened. Using the Hele-Shaw cell allows us to monitor the flow inside in real time

while roughness can be thought of as a zeroth order correction on analogy between

Hele-Shaw cells and porous media flows, in which the medium is inherently disordered
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and heterogeneous.
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Figure 7-1: Depth-composed optical image of the sand-blasted glass disk under differ-
ent magnifications 1OX, 20X, and 50X. The white line in each image is a scale-bar.

7.1 Characterization of surface roughness

We scan the surfaces using a laser scanning confocal microscope (Keyence VK-X250,

Keyence Corp.) with a 20X objective lens with a numerical aperture of 0.46, giving a

lateral spatial resolution of 694nm and a vertical (height) resolution of 100nm. The

total scanned area on each spot is 0.379 mm2,. Once the height of the surface is

mapped, the mean can be subtracted h(x, y) = z(x, y) - (z(x, y)), where (...) denotes

spatial averaging over the sample area.

To roughen the glass discs, we use sandblasting, which is known to lead to ran-

domly rough semi-Gaussian surfaces (Persson, 2013). The resulting surface is a self-

affine fractal (Pelliccione and Lu, 2008). Figure 7-1 shows depth-composition images

of a spot on the rough glass disc using different magnifications. Visually, it is clear

that the roughness persists on different scales as expected from a self-affine fractal.

To gain a more quantitative sense of the roughness of the surfaces, we use the laser

scanning confocal microscope (Keyence VK-X250, Keyence Corp.) to reconstruct the

height of the surface. This height is then used to compute various features of the

roughness as shown in Fig. 7-2. The root mean square (RMS) roughness defined

as w = (h2 (x, y)) ; 10pm. The autocorrelation function further is defined as

R(u, v) = (h(x + u, y + v) -h(x, y))/w 2 , which measures the correlation of the height

at a location (x, y) with that at (x + u, y + v). The sandblasting procedure leads to an

isotropically rough surface as indicated by the 2D FFT of the topography field shown

in Fig. 7-2 (d). This observation indicates that the autocorrelation function can be

radially averaged to arrive at the function shown in Fig. 7-2 (c), which indicates
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that the correlation length is on the order of few hundred microns ~~ 300ptm. Given

that the gap between the two plates of Hele-Shaw cell in our experiments are of the

same order, i.e. b = 100pm,, we can safely consider the roughness uncorrelated on

the lateral scale of the glass disc d = 6.5", i.e. there are no long-ranged correlations

present in the topography.

The power spectral density PSD(k) = (|(h(x, y) exp (-ik -x))12)/(4r 2 ), as shown

in Fig. 7-2 (e) confirms the self-affine fractal nature of the surface, where a clear power

law can be observed. The power law region can be described as PSD(k) ~ k

where H is the Hurst or roughness exponent. Fitting the function, we find II 0.63.
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Figure 7-2: (a) Two-dimensional surface profilogram obtained with a 20X objec-

tive. (b) Shows the normalized pdf of the roughness height overlaid with a Gaussian

distribution curve with a root mean square roughness of ~ W0pm. (c) Shows the

radially-averaged autocorrelation function, overlaid with an exponentially decaying

function. (d) 2D Fast Fourier Transform of the surface topography, showing the

isotropic nature of the rough surface. (e) Power spectral density of the roughness as

a function of the wavenumber k .
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7.2 Experimental observations

Influence of disorder on the front dynamics in stable imbibition regime, when a more

viscous and more wetting fluid displaces a less viscous and less wetting fluid has been

widely studied within the past two decades (Alava et al., 2004; Ortin and Santucci,

2017). The main question in this context has been the universality of the interface in

the stable imbibition and its connection to other problems related to surface growth.

A cornerstone to describing the interface motion in disordered media is the Kardar-

Parisi-Zhang (KPZ) equation (Kardar et al., 1986):

-= F + vV 2 h + -(Vh)2 + q(x, h), (7.1)
0t 2

where (?(x, h)) = 0 and (iq(x, h)r7(x', h')) = 6d(x - x')A(h - h'), where (..) indicates

averaging over different realization of noise. This equation predicts that in the vicinity

of the depinning transition, the size of pinned region diverges, i.e. the depinning

transition is a critical point and the correlation length (F - F)-.

Figure 7-3 shows the experimental phase diagram for stable and unstable imbibi-

tion experiments. Each pair are done using the same cell, meaning that the front in

both cases experiences exactly the same disorder. The influence of disorder on the

front, however, is very different in the two cases. In stable imbibition, contact line

pinning distorts the interface, whereas nonlocal viscous driven pressure field tends

to smooth the interface. In unstable imbibition, however, both disorder and viscous

pressure tend to perturb the interface, leading to a more ramified front at higher in-

jection rates. Note that in unstable imbibition, thin films of the invading liquid coat

the rough surface and propagate along the surface, whereas in the stable imbibition

experiments the displacement across the gap is complete.

To gain a more quantitative understanding of the differences between the different

patterns, we calculate the fractal dimension associated with the patterns as shown in

Fig. 7-4. The stable imbibition patterns all have rather space-filling patterns that lead

to high fractal dimensions close to two. The high injection rate unstable imbibition is

consistent with the DLA dimension, whereas the low injection rate is consistent with
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Figure 7-3: Phase diagram of stable (bottom row) and unstable (top row) imbibition

in rough Hele-Shaw cells as a function of flow rate. Each cell is first filled with a

highly viscous oil (Krytox, GPL106), and then fluorescein dyed water (800mg/L) is

injected in the middle. The figures show color-coded time-lapse images of the front.

The stable imbibition fronts roughen in time as the front velocity decreases the farther

away from injection port it goes. Viscous forces dominate over capillary and pinning

forces at higher injection rates in stable imbibition. The situation is however different

in unstable imbibition, where disorder perturbs the unstable front, leading to a more

ramified structure.
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Figure 7-4: Fractal dimension of the stable and unstable imbibition experiments.
The dashed lines indicate the fractal dimension of the diffusion limited aggregation,
DJ = 1.71 (Witten and Sander, 1981), and invasion percolation D1 = 1.82 (Wilkinson
and Willemsen, 1983). The viscous fingering pattern at high injection rate is consis-
tent with the DLA dimension. It is interesting to note that at low injection rates,
the unstable pattern seem to have a fractal dimension close to that of the invasion
percolation, which is derived for the drainage regime. Here, in the unstable imbibi-
tion regime, contact line pinning seems to play the same role as the heterogeneous
capillary pressure field does in the drainage regime.
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the invasion percolation dimension. These are surprising observations given that here

in unstable imbibition, thin film fronts propagate on the rough surface rather than

the full displacement that is typically considered in the standard models for invasion

percolation and DLA.

Finally, we briefly discuss the implications of the disorder in the cell on the pressure

signal measured at the inlet of the cell. Figure 7-5 shows the evolution of the pressure

field at the inlet as water is being injected into the cell. Water is less viscous than

oil M =bo/p, ~ 1500; therefore, viscous pressure in the water phase can be safely

neglected; as water displaces oil and the front gets closer to the outlet, the viscous

pressure resistance in front of the leading edge decreases, justifying the decrease in

the pressure. The interesting observation here, however, is that as the interface gets

closer to the edge capillary and pinning forces become more important due to the

radial decrease of the velocity. The oscillations in the pressure signal here therefore

point to the stick-slip motion of the front and reflect the disorder in the medium.

Another interesting observation is that while the propagating thin film coats the top

rough surface next to the injection port, the film may touch the other smooth surface

at some point in time due to the disorder in the medium or swelling of the film or

any other local perturbations. When the film touches the other surface, it forms a

liquid bridge that has a lower pressure than its surrounding liquid due to its Laplace

curvature; this negative Laplace pressure difference is due to the small contact angle

of the invading liquid 0 ,~q 7r/6. In Fig. 7-5, we can see the signature of this bridge

formation in the pressure signal, which shows a sudden decrease in the pressure.
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Figure 7-5: Pressure signal at the inlet to the cell during injection of water into the
oil-filled cell Q = 0.01ml/min. As the less viscous liquid displaces the more viscous
one, the inlet pressure decreases in time. Far away from the inlet, where viscous forces
become comparable to the capillary and pinning forces, oscillations in the pressure
signal begin to emerge. This oscillations correspond to the stick-slip motion of the
front due to the pinning and depinning transitions. The bottom figure shows the dip
in the pressure signal associated with the formation of a liquid bridge between the
top rough surface and the bottom smooth surface. Note that before this point, the
water film only propagate along the top rough surface next to the injection port and
have not touched the bottom smooth surface. Once the bridge forms, it sucks more
water into it due to its negative Laplace pressure and its size grows.
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7.3 Hemiwicking dynamics

As we discussed above, if Cos 0 eq > 1/r, thin films of the wetting liquid wick into

the roughness of the surface and propagate ahead of the main front (Quer6, 2008).

For real surfaces, there is no exact method to determine the ratio of the actual area

to the projected area r; methods such as profilometry always have a lower cut-off

length due to the resolution. One way to get an estimate of the ratio r in the Wenzel

regime is to measure the apparent contact angle and relate that to r via Wenzel

equation. Even then, we know that due to the hysteresis, the apparent contact

angle is not uniquely defined and varies between and advancing and receding values

depending on the history. Therefore, the only practical way to know if the hemi-

wicking regime is achieved is through experimental observations. Figure 7-6 shows an

example of formation of these films in rough Hele-Shaw cells. The presence of these

films effectively lead to the wettability change of the medium as the contact angle of

the main thin-film front changes.

The dynamics of the hemi-wicking films has been analyzed using scaling argu-

ments and miromodel experiments, where the surface is designed to have a specific

topography rather than being randomly rough (Bico et al., 2001; Ishino et al., 2007;

Kim et al., 2016b). They balanced the capillary driving force with the viscous pres-

sure drop in the wicking film to get an estimate of the front velocity, arriving at the

conclusion that the dynamics of the front is diffusive, i.e. L ~ vt. In our case, how-

ever, the viscous dissipation occurs in both the invading and defending liquids. At

early times, the viscous dissipation in the more viscous defending liquid dominates

that of the invading liquid. Using a variant of the arguments of Kim et al. (2016b),

and balancing the driving capillary force Fd = -y(r cos 0 eq - 1) with the viscous force

F ~ fUL(1/w + (r - 1)/A), we find that at early times L - t, i.e. the dynamics is

linear rather than diffusive. Here fi is the oil viscosity, L, is the length of the oil film

in front of the water film, which we consider to be approximately constant at early

times, w is the RMS roughness of the surface, A is the correlation length of the rough

surface. At late times, however, as the L, goes to zero and the viscous dissipation in
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Figure 7-6: Formation of secondary thin films ahead or the main thin film front; this
phenomenon is called hemi-wicking and changes the effective contact angle of the
medium, i.e. the main thin film front now forms a contact angle cos 0* ~1 - cos Oeq

(Qu6r6, 2008).
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the invading fluid dominates, the dynamics of the front becomes diffusive again. The

crossover length scales as L,.- ~ po/( pip)R, where pi is the invading liquid viscosity

and R is the radius of the cell. Note that when po >> pi, the dynamics effectively

remains in the linear regime for the entire process. This scaling argument therefore

points to a new regime of hemi-wicking.
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