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Abstract

Why is it so difficult for the present-day robots to act intelligently in the real-world
environment? A major challenge lies in the lack of adequate tactile sensing tech-
nologies. Robots need tactile sensing to understand the physical environment, and
detect the contact states during manipulation. A recently developed high-resolution
tactile sensor, GelSight, which measures detailed information about the geometry
and traction field on the contact surface, shows substantial potential for extending
the application of tactile sensing in robotics. The major questions are: (1) What
physical information is available from the high-resolution sensor? (2) How can the
robot interpret and use this information?

This thesis aims at addressing the two questions above. On the one hand, the
tactile feedback helps robots to interact better with the environment, i.e., perform
better exploration and manipulation. I investigate various techniques for detecting
incipient slip and full slip during contact with objects, which helps a robot to grasp
them securely. On the other hand, tactile sensing also helps a robot to better un-
derstand the physical environment. That can be reflected in estimating the material
properties of the surrounding objects. I will present my work on using tactile sensing
to estimate the hardness of arbitrary objects, and making a robot autonomously ex-
plore the comprehensive properties of common clothing. I also show our work on the
unsupervised exploration of latent properties of fabrics through cross-modal learning
with vision and touch.

Thesis Supervisor: Edward H. Adelson
Title: John and Dorothy Wilson Professor of Vision Science

Thesis Supervisor: Mandayam A. Srinivasan
Title: Senior Research Scientist
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Chapter 1

Introduction

In 2017, the Al program AlphaGo beat the best human player in the complicated

board game Go, which reminded the public of the old sci-fi scene: Could robots act

as humans to accomplish tactful and delicate tasks, like doing the house-keeping and

washing the clothes? Unfortunately, it turns out that it is more difficult for a robot

to pick up a dish from a messy dish pile than play Go. The physical world has much

more variables and uncertainties, and is hard for robots to deal with. A major barrier

lies in the robot perception system: how to understand the physical world, and how to

interact with it accordingly. The fast development of computer vision in recent years

has enabled robots to well understand visual information, but the perception from

other sensory modalities, especially tactile sensing, which is crucial for physical-based

perception, has been largely underdeveloped.

In the past decades, researchers have developed many different tactile sensors for

robots [10, 70, 9, 29], and the core part of those tactile sensors is to detect the con-

tact and contact force, or force distribution over the fingertip area. For example, a

successfully commercialized sensor is the tactile sensor array from Pressure Profile

Systems, which measures the normal pressure distribution over the robot fingertip,

with a spatial resolution of 5mm. The sensor has been applied to multiple commer-

cialized robots, including PR2, Barrett hands, and it successfully assisted common

robotic tasks, such as contact detection and gripping force control. With the force

measurement from the fingertip tactile sensors, a robot is much less likely to break
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delicate objects. The contact detection and localization also refine the robots' per-

formance in grasping and in-hand manipulation.

Nevertheless, compared to dexterous sensing system of humans, the tactile sensing

technologies for robots are limited. Humans use tactile sensing for a wide range

of tasks. Humans get abundant information from tactile sensing[53, 60, 34, 62],

such as the objects' shape[54], texture[32], material and physical properties including

mass[35], compliance[55, 59], roughness, friction and thermal conductivity. Tactile

sensing is an important part of humans' closed-loop manipulation as well. With

touch, we can know whether the cup in the hand is going to slip, and thus adjust

the gripping force accordingly; we can know whether a USB connector is going to

be correctly plugged into the socket, because we get the feedback of the impedance

force.

The major challenges for robotic tactile sensing technologies come from both hard-

ware and software: how to design sensor devices that can obtain adequate tactile

information, and how to interpret the raw signal into the relevant information for

understanding the world. The information offered by the traditional tactile sensors

- force and pressure distribution over a small area, although helpful for perceiving

contact location and magnitude, is very insufficient to help robots to well understand

the physical world or interact with it.

In the recent years, the emerging of the high-resolution tactile sensing technology

- the vision-based soft sensor GelSight, provides new possibilities for extending the

boundary of what robot tactile sensing is capable of. The detailed shape information

about the contact surface, the dynamic change of the soft sensory medium, are both

informative of the contact surface. A robot could easily learn the local texture or

shape details about the object being contacted, thus easily recognize the possible

material or item. But more information could be contained in the input. The new

questions are, what can the new sensor help with? How to make it work?

My research goal is to build an intelligent robotic tactile perception system for the

sake of exploration and manipulation. This thesis work focuses on the possibility of

applying the new high-resolution tactile sensor. Regarding the application of tactile
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sensing, exploration means understanding the environments and objects, and manip-

ulation means interacting with the physical world, where sensory feedback is very

important. With the tactile perception, a robot can know whether a chair is rigid or

is covered by comfortable and soft cushions, it can know whether an avocado is ripe

enough to eat by estimating its hardness, and it can know whether the ground surface

is slippery that does not suit walking. When interacting with the environment, the

tactile perception will enable a robot to secure a grasp by detecting potential slip,

it will prevent a robot from crushing a rotten tomato, and it will enable a robot to

pick an M&M from a bag of snack mix. Those tasks can only be accomplished by the

perception through physical contact with the objects.

1.1 Tactile sensors

Some thorough reviews of the existing tactile sensors in the past decades are given

by [10, 70, 9, 29]. The sensors use different sensing principles, such as resistance,

capacitance, piezoelectricity, optic component, or magnetics. The major focus of the

sensors have been measuring the pressure distribution, or contact force and location,

over a certain area. For the tactile sensors applied on robots, most of the sensors are

designed for the fingertips or gripper end-effectors (an example is [24]), which mea-

sures the force or contact during grasping; some other sensors designed for body (an

example is [43]), which detect the contact over a much larger area and are commonly

used for contact or collision detection during the robot motion.

Among the tactile sensors, the optical sensors based on vision stand out because

they are of easier wiring and fabrication processes, and can mostly provide a rela-

tively high spatial precision in locating contact area. The vision-based tactile sensors

typically use a deformable body, either a piece of rubber or a fluid balloon, as the

sensing medium, and apply a camera to capture the deformation of the medium. In

most cases, the deformation is indirectly measured from other visual cues, such as

the deformation of the pre-printed patterns on the medium.

In the 1980s, Schneiter and Sheridan [50] and Begej [2] used optical fiber to capture
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the light reflection on silicone surface, and used cameras to capture the change of

optic signal from the optical fibers. The deformation of the medium would cause a

change in the light reflection. A successful example is [611, which has already been

commercialized. The sensor used hollow hemispherical rubber dome as the contact

medium, the dome has a reflective inside surface. The sensor uses three receivers in

the bottom to measure the reflective light from the deformed dome, thus estimating

the 3-axis contact force. But the spatial measurement is not available with the sensor.

Another popular design for the vision-based sensors is to print marker patterns on

or in the sensing medium, and track the motion of the markers from the embedded

camera. Some examples of the designs include [15, 27, 6, 22, 691. Ferrier and Brockett

[151 developed an analytical model to calculate the value and position of the point-

contact force on a round shaped fluid finger. But in most cases, an analytical model is

hard to build and is restrained by many contact requirements. The non-linearity of the

elastomer material and the complicated contact condition with multiple contact points

or contact surface greatly increases the difficulty. Kamiyama et al. [27] developed a

large flat sensor with two layers of markers in the cover rubber, and they used a

simplified mechanical model to calculate normal and shear force during the point

contact condition. In their later work[49], they scaled down the sensor design to

a robot fingertip. They used experimental methods to calibrate the contact force.

Chorley et al. [6] designed another hemispherical sensor with markers close to the

surface, and Cramphorn et al. [8] introduced an improved design by adding the core-

shaped fingerprint on the sensor surface. The sensor is 3D printed, which makes it

much easier to reproduce. TacTip could sensitively discriminate the contact, and can

be used to extract the approximate edge of the contact surface. The force was not

measured, but the edge detection successfully helped a robot to localize contact and

follow the contours [36]. Ito et al. [22] designed a sensor that had a hemispherical

shape filled with translucent water, and the marker patterns were printed on the

surface. The sensor responded to contact with both marker motion and the change

of filling water's reflection, and they built an analytical model to estimate the shapes

when the contact shape is simple. They also showed in [23] that by counting the
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markers that were 'stuck' on the surface or 'lagged behind', the sensor could estimate

partial slip stage. However, their sensor is too large in volume to be properly applied

to robots. Yamaguchi and Atkeson [69] designed a sensor that is similar in tracking the

motion of the markers on the sensor surface, but with a clear body, so that the camera

can also see through the fingertip and obtain images of the outside environment. Their

aim is to apply the close-range vision in the fingertip area to aid the manipulation

tasks.

The high-spatial-resolution measurement is still largely under-exploited. Mahesh-

wari and Saraf [421 offered one possible solution: they proposed an electro-optical

tactile sensor that used a surface film made by metal and semiconducting nanopar-

ticles that converted pressure into optical signals. The sensor is able to sense the

pressure distribution at a resolution similar to human fingers. Here are some major

challenges for making the desired robotic tactile sensors:

" Measurement of shear force. Only some of the tactile sensors are able to measure

shear force as well as normal force, while the shear force is very important in

multiple robotic tasks, such as estimating object states in grasping, estimating

surface friction of the objects through touch.

" Detecting contact area. Most of the sensors focus on the situation of point

contact, which means they are designed to measure the location and magnitude

of the contact force. However, in many tactile tasks, the contact is one or

multiple areas, instead of a single point. Sensors that can detect more tactile

information based on the contact area are desired.

" Hardware optimization. If the sensors can be used on the robots, it must be

small in sizes, easy on wiring, and offer real-time feedback. Some sensors have

delicate structures and good signals, but the design is either too bulky or too

complicated to be mounted on robot hands.

* Fabrication challenge. A major work in the research of the tactile sensing is

to develop a method to fabricate the sensors, which is usually non-trivial. Un-

fortunately, most of the fabrication methods are not well shared - it is hard
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for another lab to duplicate the complicated fabrication procedures. TacTip

offers a good example of where the 3D printing methods are open source. In

other cases, devices have been commercialized and are therefore available via

purchase. Two good examples are the Optoforce sensor [61] and the BioTac

sensor [63]: the researchers founded startups to improve the product design and

produce the sensor commercially, so that other robotic labs have direct access

to the sensors.

Integrating into the robotic system. The designing of the tactile sensor should be

well collaborating with 'What kind of sensor is needed by the robots? How could

robots use the sensors?', while traditionally the sensor designing community

and the robot manipulation community are not closely connected. Applying

the sensors on the robots is equally important to designing the sensors, and

they two should evolve alongside, instead of independently.

1.2 Thesis Contribution

This thesis explores how tactile sensing, especially high-resolution tactile sensing,

could help robots to better understand and interact with the physical world. I address

the challenges from three aspects: hardware, algorithm, and integration with other

robotic components. For the hardware, I help my labmates to improve the sensor

design, to obtain more information about the contact. Especially, our focus includes

simplifying the fabrication process, and making the manufacturing procedure open-

source, so that other labs could reproduce the sensor as well. For the algorithm,

I take advantage of the fast-developing AI and machine learning technologies, and

apply the state-of-the-art neural network methods on the tactile signals to learn the

embedded information from the high-dimensional input. In addition, I believe a

good perception framework is a combination of different robotic components. I try

to integrate the tactile sensing with robot motion and vision. The motion performs

the contact actively, and the vision provides supplementary information from the

perception, that it is much better to capture the global information while touch is
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more about local information. The integration will enable robots to learn more.

The thesis structured as following: Chapter 2 introduces the basic principle of the

GelSight sensor and the design of the fingertip GelSight, which is used for the robotic

tasks in this thesis. It also introduces the principle and capability of slip measurement

with GelSight, and show in the robot experiment about how the measurement could

help robots to perform stable grasp. Chapter 3 introduces how to use GelSight to

estimate the objects' hardness, which is considered one important material property

that is related to the understanding of the objects. In addition to demonstrating the

working principle, I introduce and compare two algorithms for the measurement: one

is using statistical models to directly describe the sensor information, and the other

one is using deep learning that is trained with a large dataset of varied contact cases.

Chapter 4 introduces the research on making a robot to actively conduct touch on

common objects - using clothing as an example, and understand a comprehensive

set of material properties through touch. The chapter focuses on how to integrate

the tactile sensing in the entire robot system, in order to accomplish some semi-real-

world challenges. Chapter 5 tries to explore a possible way to describe the implicit

but comprehensive set of property vector to describe the materials, using fabrics as

an example. The research uses joint neural-networks and co-training with vision

modality, so as to learn a latent vector about the intrinsic properties of the fabrics,

which is consistent regardless of the observing bias and perception modality.
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Chapter 2

GelSight sensor for robots

For this thesis' work, we apply and improve a vision-based tactile sensor called Gel-

Sight, which measures high-resolution geometry, and which can be used to infer local

force and shear. In this chapter, I introduce the working principle and designs for the

robot fingertip GelSight sensors, and the experiment of force measurement and slip

measurement with GelSight. The content in this chapter is published in [69, 701.

2.1 GelSight principle and design

The GelSight sensor uses a deformable elastomer piece as the medium of contact and

an embedded camera to capture the deformation of the elastomer surface. The high-

resolution 3D geometry of the contact surface can be reconstructed from the camera

images. When the sensor surface is painted with small black markers, the motion of

the markers provides information about both normal force and shear force.

Figure 2-1(a) and (b) shows an example of an Oreo cookie being pressed against

the sensing elastomer, while the reflective membrane takes on the shape of the Oreo's

surface. Given that the reflective properties and illumination condition are known, we

can reconstruct the depth map of the surface using photometric stereo algorithm 164].

The example is shown in Figure 2-1(c). The spatial resolution of the sensor, when

optimized for resolution, can reach 1-2 microns. In the case of compact GelSight

devices designed for robot fingers, the spatial resolution is typically in the range of
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Figure 2-1: Working principles of the GelSight sensor: when a cookie is pressed against
the coated elastomer, the skin distorted, and the cookie's shape can be measured using
photometric stereo algorithm. [25]
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(a) Elastomer Elastomer
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Figure 2-2: The markers on the GelSight surface and their motion. The markers are
arranged at an average interval of 1.1mm. They make diverse motion field patterns
under different kinds of forces or torques. The magnitude of the markers' motion is
proportional to the force/torque value.

20-30 microns.

The vision-based design of the sensor also makes the hardware accessible and the

installation much simpler, and the software for processing the raw data easier to

develop by using the algorithms in computer vision. With the help of GelSight, a

robot can easily capture the detailed shape and texture of the object being touched,

which makes the touch-based object or material recognition much easier.

The first GelSight prototype was developed in 2009 by Johnson and Adelson [25].

The picture of the sensor and design is shown in Figure 2-3. Its high-resolution capa-

bilities were further demonstrated in [26]. Unlike other optically based approaches,

GelSight works independently of the optical properties of the surface being touched.
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Figure 2-3: Basic schematic of the Gelsight and the desktop GelSight design [25].
(b)(c) show the overview and LED / camera arrangement of the sensor.

The ability to capture material-independent microgeometry is valuable in manufactur-

ing and inspection, and GelSight technology has been commercialized by a company

(GelSight Inc., Waltham, MA).

Design of the Fingertip GelSight sensors

For applying the tactile sensor on robot hands, it is necessary that the sensor be

compact enough to be mounted on an end effector. At the same time, there is no

need for micron-scale resolution. We have developed two versions of the Fingertip

GelSight sensors that are compact, yet have resolution far exceeding that of human

skin. The sensors are particularly designed for two kinds of robot parallel grippers.

The work in this thesis applies those two sensors.

The first Fingertip GelSight sensor is built by Li et al.[37], and is designed for a

Baxter Robot gripper (Figure 2-4(a)(e)). The sensor is close to a cubic shape, with

the compact size of 35mm x 35mm x 60mm. The design uses perpendicular acrylic

plate sets to guide the lights from the top to the sensing elastomer in the bottom, as

shown in Figure 2-4(b). The sensing elastomer has a semi-specular coating to reveal

the details and small fluctuations on the object's surface. After the internal reflection

in the acrylic plate, the lights will be at the angles close to the parallel direction of

the elastomer surface. The LEDs on the four sides of the sensors are in the form of

a line array (lx 8), and are of four colors: red (R), green (G), blue (B) and white

(RGB). The hue and saturation of each pixel indicate the direction (yaw angle) of the
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surface normal, since the light sources from different directions are different in color,

and the intensity corresponds to the magnitude (pitch of surface normal).

This sensor has 2 major deficiencies: firstly, although the sensor is very sensitive

to small curvatures, the measurement of surface normal is not precise, because of the

non-parallel illumination and semi-specular coating of the gel. The size reduction

decreases the illumination quality. Secondly, the fabrication of this sensor is over-

complicated. Massive accurate manual work is required, so that the product is hard

to be standardized, and the fabrication is time-consuming.

In 2017, Dong et al.[131 proposed another version of the fingertip GelSight sensor

(Figure 2-5(a)), with largely improved precision of shape measurement and simplified

fabrication process. The new sensor is of approximately the same size and spatial

resolution with the previous fingertip sensor, but is in a hexagonal shape and has a

new illumination system using LEDs of three colors (RGB). The new LEDs (Osram

Opto Semiconductor Standard LEDs - SMD) have small collimating lenses, and the

emitted light are within a viewing angle of 30'. They are tightly arranged into 2 x 4

arrays with a customized circuit board, and are tilted at the angle of 71' to the

sensing elastomer surface from the sides. The LED and elastomer are supported

by a semitransparent tray, which homogenizes the LED light while allowing a high

transmission rate. The sensor coating is matte, and the matte coating, as well as the

illumination system, favor a more accurate surface normal measurement. Most of this

sensor's parts are 3D printed with a Formlab 2 printer, and the clear acrylics are cut

by a laser cutter. The parts are shown in Figure 2-5(c). The fabrication of the new

sensor is highly standardized, and manual labor is significantly reduced.

In practice, the GelSight sensor measures the geometry by building a lookup ta-

ble that matches the color of each pixel to the surface normal. The lookup table is

calculated from a calibration process: we press a small sphere on the sensor surface,

so that the surface normal of the geometry is known at every pixel, and we build the

table that matches the surface normal to the color. Figure 2-6(a) gives two examples

of the GelSight images of calibration and the matched surface normal comparing to

the groundtruth. Figure 2-6(b) shows some examples of the reconstructed geometry
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Figure 2-4: The Fingertip GelSight sensor introduced in [37, 36]: the illumination is
of four colors (red, green, blue and white), and the entire sensing elastomer through
the guiding plates are made of clear acrylic boards.
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Figure 2-5: The new GelSight fingertip sensor introduced in [13]. The sensor has
three LED arrays of different color to illuminate the elastomer surface from a tilted
angle of 71'.

of common objects. The ground truth of the geometry is hard to get, but the re-

constructed 3D structures capture both the overall shape and local textures of the

objects.

2.2 Force and shear measurement with GelSight

The markers' motion well represents the contact force in two ways: the pattern of

the motion field indicates the type of the force or torque, and the magnitude of the

motion is roughly proportional to the force [68]. Examples of the different motion

field patterns are shown in Figure 2-2: under the normal force, the markers spread

outwards from the contact center; under the shear force, the markers all move in the

shear direction; under the in-plane torque, which means the torque axis is perpen-

dicular to the surface, the markers move in a rotational pattern. When there is a
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Figure 2-6: (a)Calibration images and results of surface normal matching with the
new fingertip GelSight sensor. (b) Reconstructed depth maps.

combination of multiple force types, the motion field can be approximated as a linear

combination of the individual forces.

We use the ATI-Nano 17 force/torque sensor for measuring the ground truth of

the contact force and torque, and contact the GelSight sensor with different inden-

ters. When using a flat indenter on the fingertip GelSight sensor, that the contact

geometry does not change along the contact force, the force-deformation plot is shown

in Figure 2-7. Figure 2-7(a) shows the normal force change in both the loading and

unloading period, and the gap between the two curves is caused by the elastomer's

viscoelasticity. Figure 2-7(b) shows that when the shear load is small, the force is

linear to the loading displacement; when the load increases, partial slip or slip occurs,

which stops the shear force from growing. Figure 2-7(c) is from the same shear ex-

periment, and it shows that the average motion magnitude of the markers within the

contact area is proportional to the shear force, regardless of whether slip or partial slip

occurs. In fact, the linear relationship remains even before force reaches equilibrium.

Both the experiment and simulation results prove that, for the thin and flat elas-

tomer piece on the fingertip GelSight sensor, when the geometry of the contact surface

remains the same, the displacement of the markers on the surface, is to the linear

relationship of the external force or torque. It is also a linear combination of the dis-

placement field under each kind of the load. In other words, the overall displacement
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Figure 2-7: Force-displacement curves of the fingertip GelSight elastomer when a flat
indenter is pressed against it. (a): The normal force in the loading and unloading
period. (b): The increasing shear force under the increasing displacement of the
indenter. (c): The force-displacement curve under shear loads.

field <D can be approximated as

FN

-F1
S[EN E, E, EI , (2.1)

T

Where EN, Ex, EY, ET denote the displacement field of the markers under unit force

in normal or shear direction, or unit torque; FN, F2, Fy, T denote the scaler of force

and torque on each axis. Note that for different contact geometries, EN, Ex, EV, ET

are different.

Estimating force using neural network

Although there is a simple linear relationship between the displacement field and

the load, it is hard to decompose the motion field into the component fields, especially

when considering the shape of the objects will have an unknown influence on the field.

A straightforward way to estimate the force and torque, regardless of the object

geometry, is to use the deep neural network. In recent years, Convolutional Neural

Network (CNN) [33, 31] has been widely applied in computer vision, that it worked

well in modeling the complicated spatial relationships between the pixels in the im-

ages. Information on both the geometry and marker motion is contained in the pixel

information, thus can be modeled by CNN.

In this experiment, we train the force measurement neural network with a dataset

33



of GelSight contacting objects with basic shapes, including spheres, cylinders, and

flat planes, and then test the network's performance on the cases of contacting other

similar but unseen objects The forces and torque we try to measure is the normal

force, shear force and direction, and the in-plane torque (the torque along the Z axis

in Figure 2-8(a)). The experimental setup is shown in Figure 2-8(a): a fingertip

GelSight sensor is mounted on an ATI Nano-17 force/torque sensor on a fixed table,

and we manually push or twist different objects against the GelSight sensor with

different force amounts and directions. So that the force and in-plane torque on the

GelSight surface is equal to the load on the ATI sensor, and we use the measurement

from the ATI sensor as the ground truth. The objects include 6 balls (diameters from

12mm to 87mm), 5 cylinders (diameters from 10mm to 70 mm), and 2 flat surfaces of

different rigid materials. The total size of the training dataset is around 28815. We

only use the data in the loading process to reduce the influence of viscoelasticity.

The CNN model for measuring force and torque is adjusted from VGG-16 net [51],

pre-trained on the computer vision dataset ImageNet [11. We replace the network's

last fully-connected layer with an output layer of 4 neurons, corresponding to the

forces and torques in 4 axes (Fx, Fy, Fz, Tz). The input of the network is the 3-

channel difference image of the current GelSight image and the initial image, when

nothing is in contact. We train the network with the mean squared error loss function

for the regression problem. To test the model, we use the GelSight data of contacting

three novel objects: a ball (d =25mm), a cylinder (d =22mm), and a flat plane. The

test set contains 6705 GelSight images under different forces and torques.

The comparison between the output of the neural network and ground truth from

the force/torque sensor is summarized in Figure 2-8(b)-(e). The coefficient of deter-

mination (R2 ) and root mean square error (RMSE) for the results of three different

objects are also listed in the figure. The plots show that the model output of forces

and torques by GelSight sensor are correlated to the ground truth measured by the

force-torque sensor. For the force measurements, R2 is higher than 0.9. The results

also show that the GelSight measurement of force can be robust regardless of the

geometry of the contact objects.
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Figure 2-8: Results of the contact force and torque estimation using CNN. (a) Exper-
iment setup. An ATI Nano-17 sensor is attached to GelSight for measuring ground
truth, and the contact is conducted manually with different indenters. (b)-(e) Exper-
iment results of the force torque measurement with different, unseen indenters.

2.3 Slip detection with GelSight

The GelSight sensor can detect signals related to slip and incipient slip by analyzing

the distribution of the markers' motion. Slip can be described as a relative displace-

ment between the tactile sensor's surface and the object in the hold. Before slip

occurs, during the increase of the shear force, there is a state called 'incipient slip'

that indicates slip is occurring very soon. The incipient slip state can also be de-

scribed as, part of the object is free from the contact surface, that there has been

some relative displacement between the object and the sensor surface, but some other

part remains stuck.

A straightforward way to measure slip is to directly measure the movement of

the objects and the sensor surface. The planar motion of sensor surface is equal to

the motion of the markers, and the motion of the objects is equal to the motion

of the geometry on GelSight view. Figure 2-9 gives two examples of the relative

displacement of the object geometry and the markers, which indicate the translational

slip or rotational slip. We firstly crop a small window of the contact geometry, and
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Figure 2-9: Slip detections by detecting the motion of object shapes. The plots are
about the relative displacement or rotation angles between the geometry and marker
motions along the time in the cropped patch.

then measures the motions or rotation of the geometry, which inferred from the color

of the image, as well as the marker patterns. If there is a gap between them, slip has

occurred.

In another case, the object surfaces are flat or near flat, with little shape textures.

So, the contact area is usually large, but the motion of the object can hardly be

tracked by measuring the geometry. But the incipient slip information can also be

inferred from the motion distribution of the marker field. By intuition, the incipient

slip occurs from the border of the contact, so that the markers in the peripheral

contact area have smaller movement in the shear direction compared to the markers

in the central contact area, since these markers are still moving with the object. This

difference in the motion causes an inhomogeneous distribution of the marker motion

within the contact area. [23] used a similar feature to detect slip with a vision-based

soft sensor.

Examples of how the displacement field changes as the shear load increases are
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Figure 2-10: The marker displacement fields under the increasing shear force. In-
cipient slip can be indicated by the smaller motion of the markers in the peripheral
contact area. Inhomogeneity of the motion can be measured by entropy, and is shown
in the right plots.
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shown in Figure 2-10 (experiments done with the fingertip GelSight sensor with flat

sensor elastomer piece). The degree of partial slip can be inferred from the inho-

mogeneity degree of the marker displacement distribution. We use the entropy to

describe the inhomogeneity degree of the displacement field. The entropy of a his-

togram X is

H(X) = - p(x)logp(x)dx
Jx

(2.2)

The entropy H increases as the partial slip degree increases, as shown in the last

column in Figure 2-10. To prevent the slip occurrence, a possible way is to set a

warning threshold on H.

Rotational slip, which is commonly seen in the failure of grasping, can be inferred
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in a similar way. The incipient slip also starts from the peripheral area, and causes

an inhomogeneous distribution of the markers' rotational angles along the rotation

center. Figure 2-11 shows examples of how the marker motion and rotation angle

change as the in-plane torque increases.

The slip detection helps a robot to better perform grasping. We conducted a

grasping experiment with general objects [131. The robot used the combination of

two methods to detect slip: for small objects with obvious surface curvatures or

textures, the robot detected slip by measuring the relative movement between the

object shape and the marker motion; for large objects with smooth surfaces, the

robot detected slip by measuring the inhomogeneity of the marker motion within the

contact area. Experiments show that, for a dataset of 37 different natural objects,

the robot can predict slip, either translational slip or rotational slip, in 84% of the

cases. The robot can also conduct re-grasp with larger normal force, when the slip is

detected. In this experiment, the robot successfully lifted all the objects in 89% of

the cases.
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Chapter 3

Material property perception:

Hardness estimation

Humans learn a significant amount of information about the objects around them

through touch [34, 59], including hardness. We use it to understand the objects, such

as whether a tomato is ripe, or whether a sofa cushion is comfortable to sit on. The

knowledge of object hardness helps humans to quickly recognize some special objects,

evaluate objects for multiple goals, or select corresponding manipulation strategies.

Hardness is defined as the resistant force of a solid matter when a compressive force

is applied, or in other words, the ratio between the displacement created by an in-

dentation and the contact force. And indeed, hardness-measuring devices such as

durometers generally work by measuring the indentation produced by a known force.

In this chapter, I introduce the principle and methods of using GelSight sensor

to estimate hardness of arbitrary objects in a loosely controlled setting. To process

the raw data from GelSight, we compared the statistical models and the deep learn-

ing models that were designed for computer vision. The content of this chapter is

published in [72, 74].
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3.1 Background

3.1.1 Existing work

Robotic researchers have been working on enabling robots to learn the material prop-

erties of objects as well. Two examples are Drimus et al. [14] and Chu et al. [7], who

introduced methods to infer multiple object properties by analyzing touch sensor in-

put during several controlled exploration procedures. There has also been work on

specifically estimating hardness of objects.

Some of the existing work on hardness estimation uses the basic principle of hard-

ness, i.e., by measuring the contact displacement and force when poking the objects

with a robot, thus to infer the object hardness. Su et al. [551 measured the hardness

of flat rubber samples using a BioTac touch sensor, which measures multiple tactile

signals including the pressure on fixed points. In the work, the sensor was installed

on a robot fingertip, and it is pressed onto flat silicone samples in a strictly controlled

motion. Changes in the force were then used to discriminate between 6 samples with

different hardness values ranging from 30 Shore00 rubbers to rigid aluminum. For

this method to be applicable, however, the sensor movement and object geometry

must be strictly controlled.

Some other existing works focus on designing special touch sensors for measuring

the hardness of specific object categories. The special sensors can measure the force

and displacement in a constrained way. For example, Shimizu et al. [501 designed a

piezo-resistant cell with a gas-filled chamber, which was used to measure the inden-

tation of the mesa on its top surface. The cell thus measures the material's hardness

from the force measured by the pressure change in the chamber and the indentation

depth measured by piezo-resistance. The sensor makes measurement easier, under

the condition that the surface geometry is certain. These limitations constrain the

use of the sensor for more general touch tasks. Okamoto et al. [44] introduced a

round shaped soft tactile sensor with strain gauges embedded that measures object

roughness, friction, and hardness. They showed that the sensor had distinctive out-

put signals when testing three samples with different Young's moduli. There are also
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some sensors designed specifically for measuring hardness for medical use, such as

[45, 40]. Another method is to correlate the ultrasonic signal and tissue hardness and

researchers have designed structures to measure vibration and resonance frequency for

tissue tests [57]. Unfortunately, those sensors are not generalized for measuring the

hardness of common objects or using in other tactile tasks. Those sensors, although

effective for the specific tasks, can hardly be used on other general tactile tasks. Also,

they have constraints on the shape of the target objects as well.

3.1.2 Challenges and contribution

The existing methods on measuring object hardness with robot tactile sensors are

largely constrained, in that they only work on a single shaped object (usually flat

surfaces), and they require either precisely controlled contact situation or some spe-

cialized sensor design. Those constraints made the technology not practical to be

applied to real robots in the real world environment. In the real-world scenario, the

contact can hardly be well controlled considering the noise in the robot motion control

system and the arbitrary alignment of the objects. The complicated geometries of the

natural objects also make a big barrier on estimating the object hardness, and most

of the common sensors have a measurement noise that could produce a big error in

the estimated hardness value. However, humans can figure out the basic properties

under all the scenarios. They use touch in a different way. Srinivasan and LaM-

otte [53] showed with experiments that humans can estimate hardness very well with

a passive fingertip, via cutaneous touch alone, evidently based on the deformation

pattern of the fingertip, and that kinesthetic information is not essential. Taking the

lesson from human system, it should also be possible to estimate the hardness from

the local surface change on the shape.

Similar to humans' environment, if a robot wants to estimate the material prop-

erties like hardness in the real-world environment, the necessary conditions include:

1. Being able to estimate the hardness of objects with arbitrary shapes.

2. Being able to estimate the hardness of objects when the contact motion is not
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precisely controlled.

In this part of the work, we focus on exploring the possibility of estimating the

hardness of arbitrary objects using the high-resolution tactile sensor GelSight, and

under the condition of loosely controlled contact. Particularly, we collect a large train-

ing dataset of human testers pressing the GelSight sensor against different objects,

where the contact trajectory and velocity are uneven and unknown. Experiments

show that the GelSight data contains information about the object hardness regard-

less of the contact mode; thus by building a numerical model, we are able to measure

the hardness of objects from only the GelSight data.

3.2 Principle

The GelSight sensor can estimate the hardness of target objects by measuring the

deformation and contact force during the normal contact. An example is shown

in Figure 3-1: the GelSight sensor is pressed against a hemispherical object, and

under the normal pressure, the object deforms. However, if the object is softer, the

deformation will be larger, under the same or smaller normal force. The deformation

of the object resulted in a change in the surface geometry. The GelSight sensor

measures object's geometry at the contact surface, as well as an estimation of the

normal force, thus the information can be used to estimate the hardness.

Examples of the GelSight data when contacting silicone samples of different hard-

ness levels are shown in Figure 3-2. In the image data, the change in the color intensity

is correlated with the local curvature of the object surface, and the magnitude of the

marker motion is correlated to the normal force. As a comparison, when contacting

objects of the same geometry, since the softer objects make a larger deformation, it

naturally causes a flatter surface and a smaller normal force. Thus, in the GelSight

data, the intensity change of the image is smaller, and the magnitude of the marker

motion is smaller. Intuitively, it is possible to build a numerical model to map the

change of the image intensity and marker motion to the hardness of the objects.

Note that in this system, the relationship between the object hardness and the
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(a) (b) (c)

Figure 3-1: When a GelSight sensor contacts a deformable object, the object deforms.
But for a harder sample shown in (b), the deformation is smaller than the one when
contacting a softer object in (c).

Press Press

Figure 3-2: GelSight data when contacting softer silicone samples (first row) and the
harder ones (second row), in the temporal order. The colored figures show the raw
outputs from GelSight and the motion field of the markers, and the gray images show
the intensity change of the GelSight images under the largest contact force.

GelSight data is intrinsic and caused by the material property of the target objects and

the GelSight sensor, so that the contact trajectory and velocity have little influence

on the correlation. So that it should be possible to estimate the hardness of the

objects from merely the GelSight data, while the contact motion is unknown. As a

result, the method could be applied on cheaper robots and more real-world contact

situations as well, where the contact trajectory is hard to control. In the research,

to make sure the system is robust, we collect most of the training data manually, as

shown in Figure 3-1(a), so that both the trajectory and velocity of the contact motion

are uneven and unknown.
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3.3 Dataset

We use statistical learning method to estimate the object hardness from the high-

dimensional GelSight data. To apply the learning method, building a dataset of

different GelSight data when the sensor contacts models of different shapes and hard-

ness levels are necessary. We cast a set of silicone samples as the object stimuli,

and collect the dataset of GelSight data by either manually pressing GelSight on the

samples, or squeezing the samples with a parallel robot gripper.

The silicone samples are cast by three kinds of materials: Ecoflex® 00-10 (hard-

ness of Shore 00-10), Ecoflex® 00-50 (hardness of Shore 00-50) and Smooth-Sil@ 945

(hardness of Shore A-45, or 87 in Shore 00 scale) from Smooth-On Inc. The materials

are mixed in different ratios, so that it produces samples of the hardness levels be-

tween that of the raw materials. In total, we produced 16 hardness levels from Shore

00-10 to Shore 00-87, and use the single number in Shore 00 scale to denote the hard-

ness. The groundtruth hardness is measured by a PTC® 203 Type 00 durometer

on the groundtruth-test sample - the thick samples with flat surfaces and made from

the same silicone mixture. To reduce the measurement error, we took 5 tests and use

the mean value.

As a comparison, we choose the hardness of the GelSight sensor of 17 in Shore 00

scale. It is relatively soft. The hardness of the GelSight sensor influences the sensitive

range of the estimation of the object hardness, and the chosen hardness makes the

sensor sensitive to the soft objects.

For the shape of the object stimuli, we consider 4 situations:

1. Basic shapes: spheres and cylinders of different radii.

2. Basic shapes: flat surfaces, edges, and corners.

3. Arbitrary shapes.

4. Natural objects with irregular shapes.

For making the silicone samples that are of well-controlled shapes, we make a set

of molds of cylindrical and spherical shapes. Most of the molds are 3D printed, as
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Figure 3-3: 3D printed molds and the casted silicone samples. The silicone samples
are used as stimuli objects.

shown in Figure 3-3, and a small portion of the molds are taken from some commer-

cial products that satisfy the shape requirement. The cylindrical and hemispherical

silicone samples made from the molds, as shown in Figure 3-3, are of 9 different radii

ranging from 2.5 mm to 50 mm, but the heights are similar (around 25 mm). This

design is to ensure the sample thickness would have limited influence of on the shape

change during the press. The tactile data of contacting edges and corners are collected

by touching the edges and corners of the spherical or cylindrical samples.

The samples of arbitrary shapes have two groups: one is of simple and common

shapes, that is cast from some daily vessels, like square shaped ice boxes, truncated

cone-shaped measuring cups, small beakers; another group is of complicated and spe-

cial shaped, cast from assorted chocolate molds. They include the shapes of different

emboss textures or complicated curvatures, like the shape of seashells.

In total, we made 95 hemispherical silicone samples, 81 cylindrical samples, 15 flat

samples and 160 samples of arbitrary shapes for experiments. We also used a set of

natural objects as the stimuli, including tomatoes, avocados, mangoes, human body

part, etc.. It is impossible to get the ground truth hardness of those objects, but we

use the human estimation of their hardness as a reference.
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(b) dI (c) Marker Motion 4 (d) 4
N

(e) GelSight image (f) dl (g) Marker Motion 4 (h) 4j N

Figure 3-4: GelSight data when pressing on hemispherical silicones (R = 12.7mm).
Stimulus for the fist row is harder than that of the second row. (b) and (f) show the
intensity change dI in the GelSight images; (c) and (g) show the displacement field of
the markers P; (d) and (h) show the 4)N field decomposed from 4, which is caused
only by normal force. The contact area is masked in the yellow.

3.4 Statistical learning method for estimating hard-

ness of spherical objects

As stated in Section 3.2, the hardness of the target objects is directly correlated with

the intensity change in the intensity change in the GelSight images, and the motion of

the markers under the normal force. In this section, I introduce our work on building a

statistic model of the change in GelSight image intensity change, marker motion, and

the target objects' hardness. As a simplification, we only study the data of contacting

hemispherical samples in this section. However, we aim at estimating hardness of

samples of different radii, while the model is learned based on the contacting case of

the samples of the same radius (12.7mm).

Figure 3-4 shows an intuitive example of how the GelSight data is like. From the

raw GelSight data (a) and (e), we calculated the 1-channel intensity change map,

denoted as dI, and the displacement field of the markers, denoted as <D. The motion

of the markers is the result of both normal force and shear force, while only- normal

force is informative in estimating the object hardness and the shear forces are un-
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controlled noise. Thus, we decompose 4P and get the displacement field (D N that is

caused by only the normal force, as shown in (d) and (h).

To estimate the hardness of the target samples, we first study the independent

correlations of dI and <N to the object hardness H, and then estimate the hardness

from the cues together.

3.4.1 Modeling the shape change

The intensity change in the GelSight image is non-linearly correlated to the gradient

of the surface geometry. A theoretically precise way to measure the gradient is using

calibration and look-tip table, but in this project, we use the intensity directly. This

is because the precision of the lookup table for the 1st generation of the GelSight

sensor is not high enough for measuring the sensitive information like the hardness

of the objects, but the intensity change can preserve more raw information, and thus

reduce measurement error.

Supposing the original GelSight image is I = (r, g, b), where r, g, b corresponds to

the intensity value in the 3 color channels, and Io = (ro, go, bo) denotes the initial

GelSight image, where there is no contact. dI = (r, g, b, ro, go, bo) is a monotonic

function that stably denotes the intensity change. The function differs according

to the illumination systems of different sensors. For the 1st generation Fingertip

GelSight sensor that is used in this project, we choose an experimental function

dI 4.4 x rgb3 + 2.2 x rgb2 + 0.4 x rgb, (3.1)

where

[rgbl, rgb 2, rgb 3] = sort (I, , ) (3.2)
( o go bo

A major consideration for choosing the function dI is to make sure the value is

robustly mapped to the geometry gradient of the surface, and invariant of the contact

location and the gradient direction. A test result on the gradient mapping on different

calibration location for the function 3.1 is shown in Figure 3-5.
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Figure 3-5: Correlation between intensity change function dI (Equation 3.1) and the
ground truth gradient of the local geometry. Different plots indicate different contact
positions on the sensor surface.

Examples of dI when contacting hemispherical objects is shown in Figure 3-4(b) (f)

(Note that the black marker areas are excluded). The circular area of the high dI

is the contact area, and it is straightforward to measure its radius rmax. Tmax is also

monotonically related to the pressing force and depth. Within the contact area, dI

grows larger when approaching the border, indicating larger surface gradient. To

reduce the noise in the measurement, we calculate the mean dI within every ring

area along the contact center, and denote it as dI(r). Figure 3-6 shows two examples

of the growth of dI(r) along the radial direction, and it can be fitted with a binomial

function

dI(r) =pi x r + Po (3.3)

and the peak value is measured as dlmax. Overall, dI(r) of pressing on the softer

sample is significantly smaller than that when pressing on a harder sample.

Both dlmax and the Pi in Function 3.3 well indicate the sample hardness. For

the target objects of hemispherical silicone with a radius of 12.7mm, the relationship

of dlmax to the contact radius rmax is shown in Figure 3-7(a), which is close to a

linear relationship dImax(rmax) = Lur x rmax +i Po, and the linear coefficient fdl is

monotonically related to the hardness. The relation of fB to the hardness is shown
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Figure 3-6: The intensity change of GelSight image along the radial direction within
the contact area. It can be fit with a binomial function dI(r) = pi x r' + po.

in Figure 3-7(b). We fit the data with an offset exponential function

fdl = A1 exp(B 1 x H1 ) + C1, (3.4)

so that if we measure fdl from a sequence of GelSight data during a press, we can

predict the hardness f 1 using fid.

Another hardness indicator is pi in Function 3.3. During a press, p, changes as the

contact radius rmax increases, and the relation differs as the sample hardness differs,

as shown in Figure 3-8. The relationship can be approximated as

[log(pi) log(rmax) i b = H. (3.5)

We use linear regression to obtain b from the training data set, and make a prediction

of hardness Ht by averaging all the II in a single pressing sequence, where rmax differs.
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Figure 3-7: (a): Maximum intensity change dmax during multiple presses on silicone
samples with different hardness levels. (b): The relationship
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3.4.2 Modeling the marker motion

The motion field of the markers on the GelSight surface indicates the type and mag-

nitude of the contact force. Particularly, for sensors surfaced with a thin elastomer,

the resultant vector field can be approximately considered as the linear sum of the

fields caused by different forces. Thus, the overall displacement field P(x, y) has the

expression

= N PS T, (3.6)

where (DN is the field caused by normal force, (Ds is the field caused by shear force,

and (PT is the field caused by torque. In this set of experiments of pressing GelSight

on hemispheres, the contact geometry is rotationally symmetric, and the shear force

is relatively small so that no partial slip exists. So, the displacement field can be

written in polar coordinates er, eo with the origin as the contact center, and within

the contact region, there are

(b N(r, 0)= U,(r)er

'Is(r, 0) = uex + ueY (3.7)

rT(r, 0) = Uo(r)reo

According to experimental results, Ur(r) and Uo(r) can be simplified as

Ur(r) = Urr, Uo(r) = UO (3.8)

Ur, UO, Ux, tY are all constants related to the magnitudes of the external force or

torque. As an approximation, they are linearly related to the force or torque mag-

nitudes. We decompose the displacement field 4 within the contact area according

to (3.8) and (3.7). For estimating hardness, only normal force, or the field 4N is in

concern.

We decompose 4 using a method that combines image registration and image

pyramids. First, we mark the contact area for the press according to the image

intensity change, and consider (P = [ux, at, r, UO]T. The vector is calculated using
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Figure 3-9: (a)The relationships of u, and the contact area radius Rmax, for samples
of different hardness levels. (b)The coefficient fM for ur(Rmax), and the exponential
fit function fm.

image registration, from different scales of the image.

Figure 3-4(c)(g) shows examples of the marker displacement field b, and the

corresponding @N in the contact area shown in (d) (h). The two examples are pressing

experiments with different levels of hardness, so that although the contact area is the

same, the magnitudes of 4) differ. Pressing on softer samples makes smaller urs,

indicating that the normal forces are relatively smaller. In the loading period, u, also

increases as the contact radius rmax and the normal force increase. The relationship

of U, to rmax is shown in Figure 3-9(a), that when pressing on the same sample, there

is an approximately linear relationship Ur(rmax) = fmrmax +po. The linear coefficient

fM is positive with respect to sample hardness, as shown in Figure 3-9(b). We fit an

offset exponential function

fM = Am exp(BM x HM) + CM, (3.9)

for fm, so that we can predict the hardness HM from measured fq in a pressing

sequence.

3.4.3 Estimating hardness of sphere objects

According to Section 3.4.1, 3.4.2, we can obtain three hardness prediction HB, Hp

and km from a sequence of GelSight images during a single press. We make a final
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Table 3.1: Results on training and tests set with a single-shaped spherical samples

HB ]H HM j HA

R2 train (human data) 0.9946 0.9954 0.9921 0.9978
RMSE train (human data) 3.4123 3.1539 4.1147 2.1846

R2 test (robot data) 0.9910 0.9951 0.9794 0.9952
RMSE test (robot data) 4.4349 3.2777 6.7078 3.2218

hardness prediction fA as the linear combination of the three predictions, such that

HA =[ir [f, fim 1] bA (3.10)

Vector bA is trained through linear regression.

3.4.4 Experiment

For training the statistical model, we press the GelSight sensor manually on 12 silicone

samples, which have the same shape: hemisphere with the radius of 12.7mm. The

hardness of the objects ranges from Shore 00-08 to Shore 00-83. We make 46 press

sequences on the samples.

On the training dataset, the prediction HB, Ht, HIA, which are for different fea-

tures, are shown in Figure 3-10(a), and the fitting error shown in Table 3.4.4. The

overall prediction HA is shown in Figure 3-10(b), and the error shown in Table 3.4.4.

Those results show that the separate and overall hardness predictions are all very

close to the ground truth on the training dataset, with an R2 (coefficient of determi-

nation) of 0.9978 and a root mean square error (RMSE) of 2.18 on Shore 00 scale.

In a 10-fold cross-validation test, the RMSE ranges from 0.8441 to 3.8849, with the

mean being 2.4279 and the standard deviation of 0.6771.

We conduct two experiments for testing: one on the same set of silicone samples,

but different contact mode; the other one is on hemispherical silicone samples of

different radii.

For the test on the same set of silicone samples, we make a Baxter robot squeeze

on the samples with GelSight sensor on the fingertip, and collect 24 data sequences.
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Figure 3-10: Hardness estimation results with the single-shaped hemispherical sam-
ples (R=12.7mm). (a): Independent estimation HB, Hp, HM1 for different on training
set. (b): Overall prediction HA on training set. (c): Results on test set, that the
data is collected by a robot, which is different from the manually collected data in
the training set.

The robot is controlled in open-loop, and the force and displacement are not well

controlled. So, there is large and unpredictable variability between each contact

instance, and the variability is larger than human conducted experiments. The result

is shown in Figure 3-10(c), and the error is reported in Table 3.4.4. It can be seen

that the estimation results well match the ground truth, with R squared of 0.9952

and RMSE of 3.22 in Shore 00, although the data noise is of different types. Among

the predictions, Ht is the most stable, and ftiN makes the largest error, most likely

because the robot introduces large noise in pressing force during the measurement,

leading to a ur measurement that makes a much larger error. The final result shows

that the model is very robust regardless of contact modes.

In the second test experiment, we consider the stimuli objects that are of hemi-

spherical shape but 3 different radii: 30 mm, 19 mm, and 9.5 mm, while the model is

trained based on the contact examples of samples of 12.7 mm radius. In general, the

GelSight data has similar features and correlation to the sample hardness for stimuli

of different radii, but when the target sample is of smaller radii, the intensity change

of GelSight images tends to be larger, and the force is likely to be larger when the

contact area is the same. Examples of the GelSight data are shown in Figure 3-11.

In general, when pressing on samples of different dI and ur have a similar relation-
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(c) dI (R=12.7mm)

(e) 4N (R=30mm) (h) DN (R=9.5mm)

Figure 3-11: GelSight data when pressing on hemispherical samples of different radii
but same hardness level (Shore 00-35).

ship to Tmax as shown in Figure 3-7, Figure 3-8, and Figure 3-9, but the parameters

differ. If using the same parameter set, the hardness estimation result is shown in

Figure 3-12(a)(b)(c) and Table 3.2, Table 3.3 (lines of 'before fixing'). It can be seen

that there is a linear deviation between the prediction and the ground truth.

The shift value can be calculated from the target sample's radius, if it is known.

That is based on the assumption that when the shape of the stimuli remains the same

while the dimension differs, it can be assumed that the GelSight data is also scaled

on the spatial dimension. Supposing the stimuli silicone samples in the training set

has a radius of RO, which is 12.7mm in this experiment, and the radius of the target

stimuli object is R. So that the dimension ratio between the test case and the training

case is a = 1. For the measurement on the GelSight data, we denote a normalized

radical measurement r = ar, and use it instead of r in Equation 3.4, 3.5, and 3.9.

Considering C, < fdI and CM < M, the predicted hardness value H0 after the fix

of the sample radius can be denoted by

H' = H 1 + - log a

HP' = HP + log a 4 1 0 b (3.11)

Hi = HM + T log a
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Figure 3-12: For the model trained on samples with R=12.7mm, the hardness esti-
mation of the objects with different radii. (a)(b)(c) show the prediction using the
same model; (d) shows the prediction after linear fixing using Equation 3.12.

Where H1 , H, Hu are the predicted hardness using the model without fixing. Thus,

HI = HA + log a [4 1 0] b (3.12)1 0] bA

Figure 3-12(d), Table 3.2 and Table 3.3 (lines of 'fixed'). showed the estimation result

of Ht. It can be seen that after fixing the estimation error is reduced largely, with

RMSE around 3.1 in Shore 00 scale.
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Table 3.2: R squared of hardness estimation on samples of different radii than the
training set

Sample HfB I(Ip A[

R30mm (before fixing) 0.7768 0.9880 0.9237 0.9084
R30mm (fixed) 0.9680 0.9926 0.9818 0.9927

R19mm (before fixing) 0.9819 0.9907 0.9822 0.9908
R19mm (fixed) 0.9890 0.9907 0.9898 0.9931

R9.5mm (before fixing) 0.9273 0.9651 0.9482 0.9555
R9.5mm (fixed) 0.9899 0.9941 0.9895 0.9952

Table 3.3: RMSE of hardness estimation on
training set

samples with different radii than the

Sample HB HI [ M [HA

R30mm (before fixing) 17.6611 4.0970 10.3246 11.3127
R30mm (fixed) 6.6850 3.2177 5.0460 3.1913

R19mm (before fixing) 5.0352 3.6117 4.9824 3.5942
R19mm (fixed) 3.9252 3.6099 3.7666 3.1036

R9.5mm (before fixing) 12.3616 8.5665 10.4372 9.6737
R9.5mm (fixed) 4.6055 3.5117 4.6957 3.1872

3.5 Deep learning for estimating hardness of arbi-

trary objects

A challenge comes from the geometries of the object - when the objects are of some

complicated and unknown shapes. The physical correlation between the hardness

of the target objects and the GelSight images, which is demonstrated in Figure 3-1

and Figure 3-2, remains the same. However, building the statistical model of the

correlation could be hard. Thus, we turn to deep learning method.

Since the input is simply a sequence of images, it can be analyzed using stan-

dard computer vision models that learn end-to-end, directly mapping from pixels to

hardness values. We apply a neural network model that is similar to [121, which is

used for action recognition: each frame of the GelSight image is represented using the

deep convolutional neural network (CNN). Then, to represent the temporal changes

in the signal, we use a recurrent neural network with long short-term memory units
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Figure 3-13: Neural network architecture for estimating hardness values from GelSight
images. 5 difference GelSight images (I(t) - I(to)) from the sequence of contact, are
represented using CNN features fc7 from a VGG16 net, and feed into an LSTM net.
Output values from the last 3 frames, i.e. y3 , y4, y5 , are used to estimate the hardness.

(LSTM) [21].

3.5.1 Model

The neural network model for estimating hardness is shown in Figure 3-13. The input

is a selected sequence of images from the GelSight data during the contact with the

object, and each image is represented by a CNN, then the LSTM model, and output

a single number of the hardness value in Shore 00 scale. Specifically, for the CNN

model, we choose the 16-layer VGG architecture [51] which has been shown to achieve

high performance on large-scale object recognition tasks [31, 331.

At each timestep, the model regresses the output hardness value via an affine

transformation of the current LSTM's hidden state ht:

yt = Wht + b

ht = L(ht- 1, #(It)), (3.13)
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where W and b define an affine transformation of the hidden state ht, and L updates

ht based on the previous state ht_ 1 using the current image It (here the LSTM's

hidden cell state is omitted for simplicity). The prediction yt is the hardness estimate

for the current timestep. We estimate a hardness value for the object as a whole by

averaging the predictions from the final 3 frames. This per-frame based regression

adds robustness in the hardness estimation. During training, the loss is based on the

difference between the predicted and ground-truth hardness values, using a Huber

loss.

Choosing the input sequence

The input images to the neural network are from a temporal-ordered selected

sequence from the GelSight video of contacting the stimuli objects. In this project,

the raw video typically contains 20 to 30 frames, but we choose 5 frames as the input

sequence, on the belief that the 5 frames contain enough information about the object

hardness. At the same time, choosing a sub-sequence of the images could also make

the model invariant to the speed of the pressing motion and to the maximum contact

force. For example, different human testers or robots may manipulate objects with

different loading speed or maximum force, which result in differences in the sequence

distribution. Therefore, we constrain the video sequence so that it begins and ends

at times that are consistent across manipulation conditions. The 5 chosen frames

are within the loading period of the press, between the trigger moment and the

maximum contact moment. They are evenly distributed on the dimension of the

pressing proceeding stage. Here the press processing is roughly estimated according

to the intensity change of the pixels, that

dI(t) = f (Ir(t) - Ir(to)) + (Ig(t) - Ig(to)) + (Ib(t) - I(to)). (3.14)

where to denotes the moment when there is no contact with the sensor. The process

is demoed in Figure 3-14. In the figure, the grey dashed lines denote the point of

choosing frames from the original GelSight sequence. Note that, since the frames in

the touch sequence is discrete, the selected frames are likely to be not exactly on the
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Figure 3-14: Examples of choosing 5 frames from a sequence of the GelSight images of
the contact. The blue plot shows the intensity change of the GelSight images during
the contact, and the gray lines are the even devision lines between the trigger point
and the maximum contact point. The sample frames are chosen on those moments.

Sdivision, but they are close to an even division of the contact sequence.

For the input images, we experiment with the raw GelSight image I(t), the differ-

ence image of I(t) - I(to), and the derivative image of I(n) - I(n - 1), where n denotes

the number of the frames in the 5 chosen ones. As a result, using the difference image

I(t) - I(to) makes the best estimation result. Note that, in the deep learning method,

we do not explicitly model the motion of the markers on the sensor - relying instead

on the network to learn about their motion via the entire frame.

Training

The training dataset for the network is about 7000 videos obtained by manually

controlled contact on silicone samples; each video is an independent pressing sequence.

The dataset mainly contains the basic object shapes (Group 1 in Figure 3-15), but

also with a large portion of complicated shapes or bad contact conditions (Group 2

and 4 in Figure 3-15). Those irregular shapes help to largely prevent model's overfit.

Each video is used for multiple times during the training, with different end points

for sequence extract, so that the subsequences represent the data of contacting the

samples with different maximum forces. We train the model using stochastic gradient

descent, initializing the CNN weights with ImageNet [311 pretraining, jointly training

the CNN and LSTM. The algorithm is trained for 10,000 iterations, at a learning rate
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of 0.001, and step size of 1000.

3.5.2 Dataset

The dataset of object stimuli is introduced in Chapter 3.3. We contact all the target

objects with the Fingertip GelSight sensor, either manually or with a robot, for

multiple times, with random contact trajectory or location. The contact is always

close to the normal direction. In the human testing scenario, the test object is placed

on a flat hard surface, and a tester holds the GelSight sensor and presses on the

object vertically; for the robot test, we use a Weiss WSG 50 parallel gripper which has

GelSight as one finger. When the objects are within the gripping range, the gripper

closes in a slow and constant speed until the gripping force reaches the threshold,

making the GelSight sensor squeezing on the object. The speed was randomly chosen

between 5 to 7 mm/s, and the gripping force threshold is random between 5 to 9N.

In both cases, the sensor is pressed into the objects, while the contact force grows,

and the deformation of both the GelSight elastomer and the object increases. The

GelSight video is recorded during the contact. In average, there are 20 to 30 frames

in the loading period.

Examples of GelSight data when contacting different object stimuli is shown in

Figure 3-15. They are divided into 5 groups:

1. Basic shapes. Samples of the simplest geometries, including a flat surface, a

spherical surface, cylindrical surface, straight sharp edges, sharp corners. Spher-

ical and cylindrical shapes are of 10 levels of radii from 2.5mm to 50mm.

2. Basic shapes, challenging contact conditions. The contact objects are the same

as in the previous group, but the contact condition is undesired. For example,

the sensor contacts the silicone samples in tilted angles, or the sample is included

in the contact area.

3. Simple shapes. The samples are made into the shapes of natural objects with

simple geometries, such as shapes of frustum measuring cup.
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Figure 3-15: Examples of the GelSight dataset when contacting objects of different
shapes and hardness levels. Data is divided into 5 groups: the basic shapes, basic
shapes when contacted on undesired locations; shapes of natural objects with simple
geometry; complicated shapes made by chocolate molds; natural objects.

4. Complicated shapes. The samples are made of silicone but with complicated

textures or shapes. They are made from the chocolate molds.

5. Natural objects. These are the soft objects in the everyday life, mostly with

relatively simple shapes. Humans can roughly feel whether they are 'very soft',

or 'soft', or 'hard'.

We selected some samples in Group 1, Group 2, and Group 4 as the training set,

and tested the model's prediction on Group 1, 3, 4 and 5. The data in the training

set is the data collected by human testers; in the test set, some data is collected by

human testers, while data is collected by a robot.

3.5.3 Experiment

After collecting the dataset of the Fingertip GelSight sensor contacting different ob-

jects, either manually or with a robot, we train the neural network with part of the

manually conducted data, and experimented on multiple experimental cases to test

the neural network's performance.

62



100 1001

80 80

L20 wJ 20

0 0
0 00 80 100 0 20 40 60 80 100

Ground Truth (Shore 00) Ground Truth (Shore 00)

(a) Seen shapes with unseen (b) Unseen shapes
hardness

Figure 3-16: Hardness estimation result with the deep
objects are of basic shapes.

100

80

0- 20

0
0 20 40 60 80 100

Ground Truth (Shore 00)

(c) Data collected by robot

neural network, when the test

Table 3.4: Hardness estimation results on basic shapes

number of videos R2  RMSE
Trained shape, novel hardness 1398 0.9564 5.18

Novel shapes 73 0.7868 11.05
Trained samples, robot gripper 683 0.8524 10.28

Basic Shapes

The first experiment aims to test whether the network model could generalize to

unseen hardness values. The stimuli objects in the test set are of the same shapes as

the objects in the training set (Group 1 in Figure 3-15), but with different hardness

levels. The second experiment is about target objects of similar shapes in the training

set (spheres and cylinders). The third experiment is about different contact mode,

that the test set is conducted by the robot, that the velocity and trajectory are

totally different. The output result of the neural network is shown in Figure 3-16 and

Table 3.4.

Complicated shapes

In this challenging experiment, we test the deep learning model with target objects

that are of complicated and unseen geometries. Examples are in Group 3 and 4 in

Figure 3-15. For the test data in Group 3, that the objects are of relatively simple

shapes, the R2 of the estimation is 0.57, and RMSE is 19.3. For the data in Group 4,

that the objects are of complicated shapes, the R2 decreases to 0.39, and the RMSE
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Figure 3-17: Hardness estimation results on tomatoes using the neural network.
Data collected by both human and robot for multiple times, on different parts. The
display order of the tomatoes is based on human ranking of the tomato hardness.

is 18.2.

It can be inferred that the large estimation error is mostly caused by the confusion

of the novel geometry. For example, in most of the large-error cases, the objects have

sharp curvatures or dense textures on the surface, which is not included in the training

set, and the neural network tends to estimate a much larger hardness value than the

ground truth. But for the objects whose shapes resemble the ones in the training set,

the neural net can well estimate their hardness.

Natural objects

This experiment aims at testing the generalization of the hardness estimation on

natural objects. The ground truth of the objects is unable to be tested, so that

we refer to human's estimation for a rough comparison. We compare several plum

tomatoes and round tomatoes with different ripeness, and the estimation result is

shown in Figure 3-17. The contact is either conducted manually or by a robot, for

multiple times and at different locations. In average, each tomato has data collected

for 18 times. So, some of the variances of the hardness estimation are caused by the

uneven distribution of the tomato. But in general, the output of the neural network

matches the order of human estimation. We also compare the hardness estimation of

different candies, elastomer tubes, and some random natural objects, and the result is

shown in Figure 3-18. The contact is conducted manually for 5 times on each object.

The results indicate that, for the natural objects with simple geometry and smooth
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Figure 3-18: Hardness estimations on natural objects using the neural network.
In each group, the display order of the objects in each group is based on human
perception from soft to hard.

surfaces, the neural network can well estimate their hardness level. The estimation

can be used to differentiate ripeness levels of some fruits, like tomatoes. Rigid objects

will be estimated with a number larger than 80. However, similar to the previous

experiment on the complicated shaped objects, when the shapes are sharp of textured,

the network is likely to make a larger estimation hardness value. A typical example

is for the candies: the hardness of candy 2, which is a deformable gummy candy, is

confusing to the neural network because of the candy grains on the surface, which

make a rich surface texture. A similar case is the tube 1 and tube 3 in Figure 3-18,

while other tubes in the test set have much smoother surface.

Discussion

The deep learning method provides a possible way to estimate the hardness of

arbitrary objects, whose shapes vary and are unknown. The method is relatively easy

to apply, without long-time trials on building and comparing the analytical models.

However, the deep learning method largely depends on the training dataset. In other

words, the current network model is good at remembering the seen examples, but

is not good at generalizing the rule to a broader set of samples. The failure in

generalization mostly exists in the case of the shape of the objects - when the object

shapes or texture types are different from the samples in the training set, the neural

network could provide a very wrong prediction.
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A common approach to solve this is increasing the training dataset, and adding

more shapes that are representative of more general cases of the objects. In practice,

this approach may be costly regarding materials, human effort and time to make the

physical samples. Another possible solution to this is to build a simulation platform

and produce simulated data for the training set. The idea of using simulation to

enlarge the training dataset with less cost is widely applied in other robotic research.

3.6 Conclusion

In this chapter, I introduce the research of using a high-resolution tactile sensor to

estimate a basic physical property of the objects - the hardness. Particularly, my focus

is to make the method robust to different robot scenarios, i.e., the method should

work for objects with arbitrary shapes and non-standard contact conditions while

the velocities and trajectories cannot be measured. I first showed that by intuition,

the material property of hardness, can be indicated by the deformation during the

contact, while the measured geometry and marker motion by GelSight is correlated

to the deformation. The correlation is general for different object shapes and contact

trajectories, and the challenge is building a numerical model the correlation between

the GelSight signal and the hardness property.

In the chapter, we propose 2 models for measuring the correlation: one is using a

statistical model, one is using deep learning model. The statistical model directly de-

scribes the numerical relationship between the features of the GelSight images, which

includes the intensity change in the image and the motion field of the markers, and

the target samples' hardness. The method can get a relatively precise measurement

of the hardness, with a small training set, but is constrained to target objects that

are of spherical shapes with known radii. For arbitrary shapes, it is hard to build a

direct numerical model for the correlation. For this case, we propose a neural net-

work model for objects with unknown and arbitrary shapes. The network contains a

CNN part for the spatial information in the GelSight images, and an LSTM to model

the temporal change in the sequence from the contact. We train the neural network
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with a training set of GelSight sensor contacting silicone samples of both standard

shapes, like cylinders and spheres, and some complicated shapes. The experiments

show that the neural network can predict the hardness of the objects with either

unseen hardness levels or contact modes.
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Chapter 4

Closed-loop tactile exploration on

common clothing

The goal of this chapter is to develop a robot system that can autonomously explore

common objects through touch, and have a more comprehensive understanding of

the objects. In other words, that means learning a broad set of properties about

the objects. We take clothing in common life as the target object category, which

is an important part of human life. We can easily evaluate an article of clothing

largely according to its material properties, such as thick or thin, fuzzy or smooth,

stretchable or not, etc. The understanding of the clothes' properties helps us to

better manage, maintain and wash the clothing. If a robot is to assist humans in

daily life, understanding those properties will enable it to better understand human

life, and assist with daily housework such as laundry sorting, clothing maintenance

and organizing, or choosing clothes.

However, exploring the extensive properties of common clothing remains a chal-

lenge for robots. The materials for common clothing are similar, but well distinguish-

able to humans. With the help of high-resolution tactile sensing, the robot could learn

more about the material properties and feel the subtle difference between different

materials.

The previous chapter introduces the principle and method of using high-resolution

tactile sensing to estimate object hardness, and the target objects are mostly artificial
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silicone samples. In comparison, the challenges of this work are:

1. Exploring a broad set of different properties from tactile reading

2. Target objects are common objects, and in the state of the natural environment

3. The robot exploring the objects by itself

The system in this chapter addresses the three challenges. We use CNN to recog-

nize a set of pre-labeled properties of the clothing from the GelSight data, and another

CNN on the external camera image that guides the robot to squeeze on some specific-

points on the clothing in order to collect tactile data. We also collect a dataset of 153

items of different common clothing for the experiment, and the results show that the

system can generalize the exploration of the unseen clothing as well.

The content of this chapter is published in [71].

4.1 Background

The robotics community has been interested in clothing related topics for years, es-

pecially for the home assistant robotic tasks. The major focus has been clothing

manipulation and recognition/classification. Researches on clothing manipulation are

mostly about grasping, folding and unfolding. On the clothing recognition or clas-

sification tasks, most of the research uses vision as sensory input, and classifies the

clothing according to their rough types, such as pants, t-shirts, coats, etc. [63, 39, 181

introduced methods for clothing classification by matching the 2D or 3D shape of

the clothing to the clothing dataset. Sun et al. [56 proposed a method to recognize

clothing type from stereo vision, where they applied more local features, such as the

clothing's wrinkle shapes and textures.

On multi-modal clothing perception, Kampouris et al. [281 proposed a robotic

system to classify clothes' general types and materials. They used an RGBD camera

to capture the global shape, a photometric stereo sensor to record surface texture,

and a fingertip tactile sensor to measure the dynamic force when rubbing the clothing.
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They showed that the multi-modal input, especially the texture perception from the

photometric stereo sensors, largely improve the precision of the material recognition.

However, recognizing fine-grained clothing properties of common clothing remains a

challenge.

4.2 Dataset

This project aims at developing a robotic system that can autonomously perceive

clothes and classify them according to material properties. We divide the aim into 2

parts: one is planning a path for the robot to collect the tactile data, and the other

one is recognizing the corresponding properties from the tactile data. The robot

motion is guided by an external Kinect sensor. So, we collect both the GelSight

image sequences and the gripping points on the Kinect depth images. The GelSight

images help the robot to recognize the clothing properties, and the depth images and

the exploration results help the robot to learn whether a gripping position is likely to

generate good tactile data.

4.2.1 Clothing dataset

We collect a dataset of 153 pieces of common clothing with wide varieties. Since we

wish the system can be generalized to the real-world environment, the clothing in

the dataset should well represent the commonly seen clothes in people's everyday life.

The dataset includes both new and second-hand clothes, and differ in sizes, materials

and types. A small number of other fabric products, such as scarfs, handkerchiefs

and towels. Some examples of the clothing are shown in Figure 4-1.

When a robot touches different clothes with the GelSight sensor, it obtains various

tactile signals. Figure 4-2 shows some examples of the GelSight data when touching

different kinds of the clothing. The textile textures of the fabric materials are clearly

shown in the data, and the overall shapes and the foldings are also informative of the

clothing properties as well.

As a ground truth for the clothing understanding, we select 11 clothing properties
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Figure 4-1: Examples of the clothes in the dataset. The dataset contains 153 items
of clothes, ranging widely in materials, sizes, and types.

Empty touch Swimwear Cotton Polo Terry robe Satin Dress Denim Garbardine pants

Net top Crepe top Broadcloth shirt Knit jacket Wool sweater Wool scarf Leather coat

Figure 4-2: Examples of GelSight images when the robot squeezes on clothes (color
rescaled for display purpose). Different clothes make different textures on GelSight
images, as well as different overall shapes and folding shapes. The top left example
is the image when there is no clothing in the gripper.

that humans use to describe clothes, and ask human testers to label the clothes on

the properties. Those properties include 8 physical properties of the material, such

as thickness, smoothness, fuzziness, and 3 semantic properties of the textile type,

the wash method, and wearing season. The semantic properties can guide robots to

better handle the clothing in the homes, such as sorting the clothing for different

washing baskets or storing drawers. The labels and examples of the classes are shown

in Table 4.1.

The properties are in classes, either binary classes (yes or no), or multiple classes.

Given that it is hard, and unnecessary to measure the exact value of the material

properties, we ask human testers to label them into different levels. For example, for
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Table 4.1: Clothing property labels
Thickness (5) Smoothness (5)
0 - very thin (crepe dress) 0 - very smooth (satin)
1 - thin (T-shirt) 1 - smooth (dress shirt)
2 - thick(sweater) 2 - normal (sweater)
3 - very thick (woolen coat) 3 - not smooth (fleece)
4 - extra thick (down coat) 4 - rough (woven polo)

Fuzziness (4) Season (4)
0 - not fuzzy (dress shirt) 0 - all season (satin pajama)
1 - a little fuzzy (dress shirt) 1 - summer (crepe top)
2 - a lot fuzzy (terry robe) 2 - spring/fall (denim pants)

3 - winter (cable sweater)
Textile type (20) Washing method (6)
cotton; satin; polyester; denim; garbar- machine wash warm; machine wash
dine; broad cloth; parka; leather; crepe; cold; machine wash cold with gentle cy-
corduroy; velvet; flannel; fleece; hairy; cles; machine wash cold, gentle cycles,
wool; knit; net; suit; woven; other no tumble dry; hand wash; dry clean
Labels with binary classes:
Softness, stretchiness, durability, woolen, wind-proof

the thickness of the clothing, they are divided into 5 classes: 0 for very thin materials

like crepe, 1 for common single layer materials like T-shirt, 2 for thick materials like

sweaters, 3 for thicker ones like coats, and 4 for extra thick ones like down coat.

4.2.2 Robot setup

The robotic hardware system is shown in Figure 4-3(a), and it consists of four com-

ponents: a robot arm, a robot gripper, a GelSight tactile sensor, and a Kinect 2

sensor that takes RGBD images of the entire table area. The arm is a 6 DOF UR5

collaborative robot arm from Universal Robotics, with a reach radius of 850mm and

payload of 5kg. We use the MoveIt! library for the motion planning. The parallel

robotic gripper is a WSG 50 gripper from Weiss Robotics, with a stroke of 110mm,

and a rough force reading from the current. We mount GelSight on the gripper as

one finger, and the other finger is 3D printed with a curved surface, which helps Gel-

Sight get in full contact with the clothes. The GelSight sensor we used is the revised

Fingertip GelSight sensor [13], with a soft and dome-shaped surface for sensing, and
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Figure 4-3: (a): The robot system that collects tactile data on clothing. (b): The
gripper with a GelSight sensor mounted is gripping the clothing. In the exploration,
the gripper squeezes on the clothing foldings to collect a series of GelSight data. (c)
Tactile images from GelSight when gripping a piece of clothing with a increasing
force.

a sensing range of 18.6mmx 14.0mm, a spatial resolution of 30 microns for geometry

sensing. The elastomer on the sensor surface is about 5 in Shore A scale, and the

peak thickness is about 2.5mm. The sensor collects data at a frequency of 30Hz.

The external RGBD camera we used is a Kinect 2 sensor, which has been calibrated

and connects to ROS system via IAI Kinect2 [62] toolkit. It is mounted on a fixed

supporting frame which is 106mm above the working table and a tilt angle of 23.50,

so that the sensor is able to capture a tilted top view of the clothes.

A challenge in this project is that, since the robot needs to frequently lift the

clothing, which could be heavy, the coatings on the GelSight elastomer wear off after

a while. We have to change the elastomer. However, since the sensor is manually

fabricated, each elastomer piece is similar but unique in the shape and the marker

patterns. As a result, the GelSight images vary for each elastomer piece, and it may

cause confusion in the property recognition. As a possible solution, we try to balance

the collected data on each elastomer piece during the network training. The intention
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Figure 4-4: The flow chart of the autonomous data collection process.

is to make the property recognition system robust regardless of the gel pad.

4.2.3 Data collection

The training data is autonomously collected by the robot. The flow chart of the

process is shown in Figure 4-4. At the start of each iteration, the Kinect takes a

depth image of the clothing on the table, and chooses a possible gripping location

on the image. Then the robot will move to the target location, and grip on the

clothing slowly, while we take a sequence of tactile images with GelSight. If the robot

successfully gripped the clothing, it then would lift the clothing and moves it to a

random position, then releases it, so that the clothing will be re-positioned. In this

procedure, we also record the Kinect image and the gripping location, and record

whether the exploration of the given location is successful: which means the robot

has gripped the clothing, and the tactile data is explicit. In total, we collect 6616

iterations of the data, with 3762 GelSight sequences valid for training the property

classifiers. In the other cases, the robot could not touch the clothing at the position.

The data is also recorded to learn what is a good or bad contact location.
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Figure 4-5: Demonstration of finding winkles on the clothes.
Kinect. (b) The depth image D from Kinect. (c) Dw: the

(a) The RGB image from
depth image in the world

coordinate, using the table as x - y plane. (d) ADw: the Laplacian operated Dw,
where the borders are picked as high-value points. (e)-(g): the Laplacian operated
Dw on different pyramid levels. (The color in the figures is re-scaled for display
purposes.)

Choosing gripping positions from Kinect images

The robot is most likely to collect good tactile data when it grips on the wrinkles

on the clothes. The wrinkles are higher than the surrounding area, which will be

captured by Kinect's depth images D. We firstly transfer the depth map into the

world frame, thus obtain the depth map Dw using

Dw = TK2W . K-1 - D (4.1)

where K is the camera matrix that expanded to 4 x 4 dimension, and TK2W is the

4 x 4 transformation matrix from the Kinect frame to world frame.

We set the x - y plane in the world frame as the table, so that the 'depth' value

of Dw, which is represented as z, corresponds to the real height of the clothing on
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the table. An example of the transformed Dw is shown in Figure 4-5(c). The edges

of Dw, which could be easily picked by Laplacian operation, show the wrinkles on

the clothing. We apply the pyramid method to down-sample the image to 3 different

levels, therefore the high-derivative areas on different levels represent the wrinkles

of different widths. From all the high-derivative points in the 3 levels, we randomly

choose 1 point as the target gripping position.

Before gripping, the gripper should rotate to the angle perpendicular to the wrin-

kle. The rotation of the gripper is decided by the direction of the folding, which can

be derived by:

Dir(x, y) = arct an( aDw(xy)/ ODw(xy) (4.2)
Oy ax

Gripping on the wrinkles

Once the target point on the wrinkle is selected, the robot will move about the

point, with the gripper in a perpendicular direction, and then descend to the position

below the wrinkle to grip the clothing, with a low speed of 5mm/s. Due to the

simplified setting in this project, the clothing in the 3D space could be simplified as

a 2D motion problem: the clothing is placed on the flat surface, and the robot will

only contact the wrinkles from the top-down direction, on the x - y plane that is

parallel to the table. The low speed is for the safety concern and aims at collecting

more touch data during the process. The current sensor uses a USB webcam as the

vision acquisition device, which obtains images in a low frequency. Thus, a slow

speed of the gripper helps the robot to obtain more frames during one contact. The

gripper stops closure when the motor current reaches a threshold, which indicates a

large impedance force. The GelSight records videos during the closure. Typically the

GelSight records 10 to 25 frames for one gripping iteration.

After the gripping, we judge whether the contact is valid using GelSight images.

If the GelSight image shows no contact with the clothing, we mark this tactile data

invalid, and mark the gripping location as a failure case.
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Figure 4-6: (a) The multi-label classification CNN for recognizing different proper-
ties from a single GelSight image. (b) The neural network for recognizing different
properties from GelSight video, where we choose 9 frames from the video as the in-
put. (c) The neural network for evaluating points on the clothing: whether it would
generate effective tactile data.

4.3 Method

In this project, we apply two independent neural networks for 1) selecting a point on

the clothing for the robot to explore, and 2) estimating the properties of the clothing

from the collected tactile data.

4.3.1 Networks for property perception

To perceive the properties of the clothes, we use a CNN for the multi-label classi-

fication of the GelSight images. The labels correspond to the clothing properties,

and they are independently trained. We experiment on two networks: one takes a

single GelSight image as the input (Figure 4-6(a)), and the other one takes in multi-

ple frames (Figure 4-6(b)). The CNN for GelSight images are VGG19 [511, which is

originally designed for object recognition for general images, and pre-trained on the

image dataset ImageNet [11].

For the network with a single input frame, we choose the GelSight image when

the contact force is the maximum, and use a single CNN to classify the image. For

recognizing the multiple properties, we train the same CNN with classification on
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multiple labels, which correspond to the clothing properties. The architecture is

shown in Figure 4-6(a).

Additional to learning the properties from the single GelSight image, we also try to

learn the properties from the GelSight image sequence. The sequence includes a set of

images when the sensor squeezes the clothing with increasing forces, thus the frames

record the surface shapes and textures under different forces. The image sequences

are more informative than the single images. To train on the image sequence, we use

the structure connecting CNN and a long short-term memory unit (LSTM) [12] with

a hidden state of 2048 dimensions, as shown in Figure 4-6(b). We use the features

from the second last layer fc6 from VGG16 as the input of LSTM.

The image sequence contains 9 frames, with -an equal time stamp interval until

reaching the frame of max contact. We choose the number of 9 as a balance of low

computational cost and the sum of information. Since the gripper closes slowly and

evenly when collecting the data, the gripper's opening width between the frames is

equal. As a result, some of the thick clothes would deform largely in the squeezing

process, so that the selected sequence starts after the contact; while when gripping

thin clothes, the maximum contact point is easily reached, and the selected sequence

starts with several blank images.

4.3.2 Networks for gripping point selection

In the data collection part, the robot selects a set of wrinkle positions on the clothing,

but not all the wrinkle points are good positions for touch exploration, and thus some

data collection fails. So, we train a CNN (based on VGG16 [51] architecture) to learn

whether a location, or the selected wrinkle point, is likely to generate good tactile

data. The network architecture is shown in Figure 4-6(c). The input data is a cropped

version of Dw, the depth image in the world frame, and the output is a binary class

on whether the image represents a potentially successful gripping. To indicate the

gripping location in the depth image, we crop the depth image to make the gripping

location the center of the new image, and the window size is I1cmx 11cm. Using Dw

also makes the network robust to the exact .experimental setting. In other words, in
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another experimental setting, where the Kinect position differs from the current one,

we can still derive the Dw with Equation 4.1 but a different TK2w, and feed the Dw

into the same neural network.

4.3.3 Offline training of the neural networks

We divided the robot exploration data on the 153 items of the clothing into 3 sets:

the training set, the validation set, and the test set. The training set and validation

set make of data from 123 items of clothing, and the testing set contains data from

the rest 30 items. For the 123 items, we randomly choose data from 85% of collecting

iterations as the training set, and 15% of the data as the validation set. The division of

clothes for training and testing is manually done ahead of the network training, with

the standard that the clothes in the test set should be a comprehensive representation

of the entire dataset.

In all the exploration iterations, we consider 2 situations that the exploration is

'failed': 1) the gripper does not contact the clothing, which can be detected automat-

ically from GelSight data; 2) the contact is not good, that collected GelSight images

is not clear. Those cases are manually labeled. We train the tactile CNNs with only

the data from 'successful' exploration. When training the Depth CNN, the iterations

that are considered 'successful' are made class 1.

We train the networks using stochastic gradient descent as the optimizer. The

weights of the Depth CNN (Figure 4-6(c)) and single GelSight image (Figure 4-6(a))

is pre-trained on ImageNet 1111, and the CNN for the multi GelSight image input

(Figure 4-6(b)) is initialized with the weights of Figure 4-6(a). For the video network,

we jointly train the CNN and LSTM for 500 epochs, at a dropout rate of 0.5. For

training the network for GelSight images, we apply data augmentation to improve

the performance of the network, by adding random values to the image intensity in

the training. When training with the image sequence, we choose the input sequence

slightly differently on the time stamp.
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4.3.4 Online robot test with re-trials

We run the robot experiment online with the two networks: at the start of the

exploration, the robot generates a set of candidate exploration locations from the

depth image, and uses the depth CNN to select the best one. After collecting tactile

data by gripping the clothing at the selected location, we use the tactile CNN to

estimate the clothing properties. At the same time, the robot evaluates whether the

collected tactile data is good, by analyzing the output classification probability of the

tactile network. If the probability is low, it is likely the tactile data is ambiguous and

the CNN is not confident about the result. In this case, the robot will explore the

clothing again, until a good data point is collected. In the practice, we choose the

property of washing method and the probability threshold of 0.75.

4.4 Experiment

We conduct both offline and online experiments. For the offline experiments, we test

the system on the dataset that is collected in Section 4.2.3.

4.4.1 Property perception

In the experiment of property perception, we test the neural networks' performance

on the offline data.

We use 3762 GelSight videos from the 153 clothing items, and classify the tactile

images according to the 11 property labels. The training set includes 2607 videos, the

validation set includes 400 videos from the same clothes, and the test set includes 742

videos from novel clothes. We try the networks with either a single image as input,

or multiple images from a video as input. The results are shown in Table 4.2.

The results show that for both seen and novel clothes, the networks can predict

the properties with a precision much better than chance. Specifically, the precision on

seen clothes is very high. The network with video input makes slightly better results,

especially on the more complicated tasks. However, the precision gap between the
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Table 4.2: Result of property perception on seen and novel clothes
Seen clothes Novel clothes

E Chance Image Video Image Video

Thickness 0.2 0.89 0.90 0.67 0.69
Smoothness 0.2 0.92 0.93 0.76 0.77

Fuzziness 0.25 0.96 0.96 0.76 0.76
Softness 0.5 0.95 0.95 0.72 0.76

Stretchiness 0.5 0.98 0.98 0.80 0.81
Durability 0.5 0.97 0.98 0.95 0.97

Woolen 0.5 0.98 0.98 0.90 0.89
Wind-proof 0.5 0.96 0.96 0.87 0.89

Season 0.25 0.89 0.90 0.61 0.63
Textile type 0.05 0.85 0.89 0.44 0.48

Wash method 0.17 0.87 0.92 0.53 0.56

validation set and test set indicates the

the major reasons for the overfit are:

model overfits to the training set. We suppose

" The dataset size is limited. Although the dataset has a wide variety of clothing

types, the number of the clothes in each refined category is small (2 to 5).

" We used 5 GelSight sensors in data collection, and the difference in the sensor

system causes confusion to the network.

" The CNNs are designed for visual images, which is not the optimum for the

GelSight images. For example, the networks tend to highly related to the tex-

tures from the tactile images, as they are more obvious features, and put small

weights to the general shapes that are more directly related to the physical

properties.

" Some properties, are not only related to the materials but also the occasions

of the clothing. For example, satin is mostly used for summer clothing, but a

satin pajama, which feels exactly the same, is worn for all seasons. The touch

sensing can only provide local information about the clothing.

We also experiment with other CNN architectures for the multi-label classification

task, including VGG16 and AlexNet [31], but the results are not satisfactory. VGG19

82



performs relatively better. We suppose for the given task of tactile image classifica-

tion, AlexNet and VGG16 are not deep enough to extract all the useful features from

the limited dataset. At the same time, the complicated architecture of VGG19 also

makes it more likely to overfit on the training set.

Unfortunately, the neural network trained on videos (Figure 4-6(b)) does not make

a significantly better performance, which was expected. The possible reason is that

the networks overfit on the textures of the clothing, and the training set is not large

enough to train the neural networks to learn the information from the dynamic change

of the GelSight images.

4.4.2 Exploring planning

We experiment on picking effective gripping locations from the Kinect depth image,

using the Kinect images from the 6616 exploration iterations. The images are also

divided into the training set, the validation set (on the same clothes), and test set (on

unseen clothes). On both the validation and test sets, the output of the neural network

has a success rate of 0.73 (chance is 0.5). The result indicates the identification of

the clothing item has limited influence on the result of gripping location selection. In

the training process, the network quickly reaches the point of best performance and

starts to overfit. For achieving better results for exploration planning, we plan to

develop a more robust grasping system, and collect more data or use online training.

4.4.3 Online robot test

In this experiment, the robot runs the exploration autonomously using the depth CNN

and tactile CNN. The exploration is similar to the procedure in the data collection

part, that firstly a Kinect sensor takes the picture of the clothing on the table, and

then the robot chooses a set of points on the wrinkles. Instead of gripping on the

robot directly, in the online robot test, we feed the candidate points into the depth

CNN for choosing a good gripping position. The robot follows the prediction of depth

CNN and gripping on points with a high probability of success, and collect a set of

83



Table 4.3: Property perception on unseen clothes in online robot test

Without With With Re-trial,
Properity Chance Re-trial Re-trial on Easy Clothes

Thickness 0.2 0.59 0.65 0.72
Smoothness 0.2 0.71 0.74 0.82

Fuzziness 0.25 0.67 0.74 0.82
Softness 0.5 0.60 0.66 0.72

Stretchiness 0.5 0.74 0.81 0.88
Durability 0.5 0.86 0.86 0.91

Woolen 0.5 0.92 0.91 0.93
Wind-proof 0.5 0.83 0.82 0.86

Season 0.25 0.57 0.64 0.71
Textile type 0.05 0.37 0.50 0.59

Wash Method 0.17 0.50 0.60 0.71

tactile images on the clothing. We use the single-image-input neural network, as

shown in Figure 4-6(a), to estimate the properties of the target clothing.

We also try the re-trail strategy when the tactile data is 'not good', that the

tactile CNN could not effectively estimate the material properties from the obtained

tactile data. This is usually caused by an undesirable gripping position. The method

is described in Section 4.3.4.

We experiment on the test clothes(30 items), and each clothes is explored 5 times.

The result is shown in Table 4.3. Here we compared the result of 'without re-trial'

which means the system would not judge the data quality, and 'with re-trial'. Note

that the 'without re-trial' results are worse than the results in Table 4.2 because the

tactile data here is all the raw data generated by the robot, while Table 4.2 is only

from good tactile data. Another reason is that the gel sensor in this experiment is

a different one, and not seen in the training set before, so that there is some slight

difference in the lighting distribution. The results also showed that with the re-trials,

the precision of property classification increases largely. On average, the robot makes

1.71 trials for each exploration, but 77.42% of the clothing is 'easy' for the robot,

that it takes less than 2 grasps to get a confident result, and it turns out the property

estimation is more precise. The rest clothes are more 'confusing', that the robot needs
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to explore them for multiple times, but the properties are still not well recognized.

4.5 Discussion

This work proposes a system for a robot to autonomously explore the comprehensive

property set of common clothing through touch. The breakthrough of the work is that

it makes a system that can be generalized to a big set of different common clothing,

and can be applied to the natural environment. However, the current challenge for the

system is that, the property recognition of the clothing overfits the training set, and

lack the ability of generalization. Especially, the networks largely rely on the material

texture, but not other useful information, like the overall shape of the contact surface.

In other words, what the current neural network does is mostly modeling the mapping

between the texture and the property classes. For the same reason, the neural network

that takes video as the input does not make a much better performance, while the

videos certainly contain more information about the clothing.

A common method to address this challenge in deep learning, is to build a much

larger dataset. As far as the dataset contains enough variety about the clothing types

and contact mode, the trained neural network should be able to recognize the general

situations much better. But enlarging the dataset, in this work, requires large cost

and effort for collecting clothing and conduct experiments.

Another concern comes from the architecture design of the neural networks. The

current network is designed for computer vision, but not exactly for GelSight images.

The comparison of the performance of multiple network architectures also shows that

the VGG19, which has a much more complicated architecture, makes the best perfor-

mance. The data does not necessarily need a complicated architecture to recognize

the properties, but the network has been inefficient. The situation with the gripping

point evaluation from the Kinect images is the same. In a preliminary experiment,

we designed a much smaller neural network architecture that has only 3 layers, and

tried it on the Kinect images from scratch, and the performance was better than the

current one. So, a future direction for improving the performance is to explore more
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efficient network architectures for the specific tasks, like understanding the tactile

images and explore on the Kinect data.

Another question that is raised in this research is how to more effectively tell

whether a tactile data is 'good', and could produce reliable property recognition

results. In this work, we apply a hack way, that is to predict whether the data

is good or not from the 'confidence' of the network output. This is easy, yet not

necessarily the best solution. A possible way to improve on this is to train a specific

network to judge 'whether the input data is good', or using online learning to train

the two networks recursively, thus to achieve the goal of unsupervised learning.

Considering the real-world scenarios of clothing recognition, humans not only use

touch to evaluate clothing or other objects. The rule should be the same for robots: in

the future, if we could combine multi-modal sensory input to the property recognition

task, such as vision, motion sensing, the robot should be able to better evaluate the

target objects.

4.6 Conclusion

In this Chapter, I introduce a collaborative project on recognizing the comprehensive

properties of common clothing using autonomous active touches of robots. We divide

the task into two parts: planning a gripping motion of the robot from the external

depth image captured by Kinect, in order to obtain tactile data through the contact

with the clothing; then recognizing the material properties from the high-resolution

GelSight images. We use neural networks to get the useful information from the

original 2D images, either the depth images or the tactile images. In the robot

experiment, we combine the 2 networks to make the robot actively explore the clothing

and recognize their properties. And when the property prediction output from the

neural network is not of high confidence, we also make the robot to retry on the

clothing, which in turn makes the exploration result more reliable.
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Chapter 5

Cross-modal material perception with

vision and touch

In this chapter, we further focus on the problem of finding a comprehensive description

of common objects that related to their intrinsic material properties. The previous

chapter focused on making a robot exploring common clothing and find the description

of a wide set of properties, that are pre-set by humans. However, those properties

do not necessarily well describe the clothing. Humans are good at perceiving and

evaluating objects according to their properties, but it is hard for us to explicitly

name and value those relevant properties. So, there raises a question, is it also

possible for robots to find a latent description of the material properties?

We take the common fabrics as the target object, since they have a rich set of

mechanical properties. They could have significant different configurations, while

humans' evaluation of them are not influenced. At the same time, humans have

perception through different modalities, especially vision and touch. We see the

fabrics, and we touch the fabrics, through seeing or touching we get the 'feeling'

of the fabrics. We consider the similar motivation here: a robot should be able

to recognize the latent properties of the material, and those properties should be

consistent, regardless of the perception modality or the exact configuration for one

observation.

We apply Convolutional Neural Networks (CNN) to extract an embedding vector
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Figure 5-1: A human presses Fingertip GelSight sensor on the fold of a fabric, and
gets a sequence of tactile images.

to describe the latent properties, from the high-dimensional observation, either touch

or vision. To train the neural network, we jointly train the three networks for the 3

modalities: color vision, depth vision, and touch. The goal is to make the property

vector very close to each other when they are from the observation of the same piece of

fabric. To demonstrate the networks' performance, we design the task of 'picking the

image of the fabrics that match the one you touched', by comparing the embedding

vectors from the inputs. The task can be compared to the human perception part,

that when we see some objects, we can naturally imagine how it feels like through

touch, and vice versa.

The content of this chapter is published in [73].

5.1 Background

5.1.1 Fabric perception

There have been works studying the perception of fabrics. Works like [1, 16] showed

humans use visual cues to infer different material properties. Specifically, Xiao et al.
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Figure 5-2: Three modalities of the fabric data. For the visual information, the fabrics
are draped from a cylinder in natural state; for the tactile information, a human holds
the GelSight sensor and presses on folds on the fabric.

[65] studied human perception of fabrics and the influencing factors by using tactile

sensing as ground truth to measure visual material perception. They showed that

humans made a high matching accuracy, while the color and 3D folds of the fabrics

are the most important to the human visual perception.

Researchers in computer vision and graphics have been trying to track or represent

fabrics or clothes, but their visual representation is difficult to obtain compared with

that of rigid objects', and the uncertainty and complexity of the shapes and motion

make the fabrics or clothes more difficult to predict. To track the exact shape of the

clothes, White et al. [61] made dense patterns on fabrics or clothes, and used multiple

cameras to track their motion thus to reconstruct the 3D shapes of the clothes. Han

et al. [20] represented the cloth shape with a 2-layer model: one represents the general

shape, and the other one represents fold shapes, which are measured by shape-from-

shading methods. Some other researches tried to represent the fabrics by physical

parameters, and estimated the parameters from the visual appearance. Baht et al.

[3] used a model made of physical properties, including density, bending stiffness,

stretch stiffness, damping resistance and friction, to describe and simulate clothes.

They estimate the properties by comparing the real clothes' motion video with the

simulated videos. Bouman et al [4] measured fabric properties (stiffness and density)

directly from the video of fabric motion using hand-crafted features, when the fabrics

were hung and exposed to different winds.
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5.1.2 Joint neural networks

The joint neural network is the network architecture that joins two or more separate

networks for different inputs. Chopra et al. [51 first proposed a Siamese Neural Net-

work (SNN), that learned low dimensional embedding vectors from a single-modal

input. The SNN has two identical neural networks with shared weights, and outputs

the distance of embedding vectors from the two inputs. In the training, the network

uses energy-based contrastive loss [191 to minimize the distance of the embeddings

from similar input pairs while making the distance of dissimilar input pairs' embed-

dings larger than margin. SNN has been applied in face verification 15] and sentence

embedding [431.

For single-modality recognition, Chopra et al. [5] proposed Siamese Neural Net-

work (SNN) to learn low dimensional embedding vectors. The SNN has two identical

neural networks with shared weights. Each time it takes in a pair of data inputs,

and outputs the distance of their embedding vectors. In the training, the network

uses energy-based contrastive loss [19] to minimize the distance of the embeddings

from similar input pairs while making the distance of dissimilar input pairs' embed-

dings larger than margin. SNN has been applied in face verification[5] and sentence

embedding[43].

In recent years, people have been using joint neural networks for cross-modality

learning - mostly two modalities. A traditional method is to extract features from

one modality and project the other modality to this feature space. Frome et al. [17]
proposed hinge rank loss to transform visual data to text. Li et al. [381 learned the

joint embedding by associating generated images to the trained embeddings from

shape images of objects. Owens et al. [46] combined CNN and LSTM to predict

objects' hitting sound from videos. They extracted the sound features first, and then

regress the features from images by neural networks. Their other work [47] presented

a CNN that learn visual representation self-supervised by features extracted from

ambient sound.
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5.2 Method

In this work, we use Convolutional Neural Networks (CNN) to extract an embed-

ding vector from the high-dimensional input of the fabrics. The embedding vector,

although could hardly be manually interpreted, is expected to be a comprehensive

description of the important material properties of the fabrics, that decide how the

fabrics 'look like' and 'feel like'. The input is from either touch image with GelSight,

or color image of the fabric, or the depth image of the fabric. In each case, the

fabric may have different configuration under the same method of observation. But

the embedding vector of the fabrics, which describes the intrinsic properties of the

fabrics, should be consistent regardless of the observation bias or input modal. At

the same time, the quantitative description of the embedding vector should also be

able to estimate the 'similarity' of two fabrics.

Thus, we build joint neural network models to associate visual and tactile infor-

mation of the fabrics in order to calculate the embedding vector. The input data is

of three different modalities: the depth image, the color images, and the tactile im-

ages from GelSight. All in the image form. The input data from each modality goes

through an independent CNN to form an embedding vector E, as a low-dimension

representation of the fabrics. We use the sum of Euclidean distance D = JJE1 - E2 11 to

measure the differences between two Es, regardless of the input's modality. Ideally, all

the input data on the same fabric will make the same E through the networks, while

two fabrics, when they are similar, will have a small distance D between the embed-

ding vectors E, and two very different fabrics will have large D. We trained a joint

CNN of the three modalities and compared the performance of different architectures.

Figure 5-3 shows the network architecture.

5.2.1 Neural network architectures

We designed and experiment with different neural network architectures in order to

obtain the embedding vector.

Cross-modal Net
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Figure 5-3: The architectures for training the neural network in order to get the
embedding vector to describe the fabrics. (a) The Cross-modal Net: data from the
three modalities goes through three independent CNNs (AlexNet [31]) in a joint
network, and be presented by an embedding E, which is the fc7 layer of the network.
(b) The Auxiliary Network with the subtask of fabric classification. Clusters of the
fabrics are made according to human label. (c) The Multi-input Network, that touch
embedding is derived from 3 independent GelSight pressing images.

The basic network to join the three modalities is shown in Figure 5-3(a). In this

network, the architecture images, color images, and GelSight images go through three

separate CNNs in a joint network. The CNN we used in this work is the AlexNet [31],

which is pretrained on ImageNet, and we take the fc7 in the network as the embedding

vector E to represent the property set of a fabric.

We use contrastive lossi5] as the objective function. For an input group of depth

image X1, color image X2 and GelSight image X3, the embedding vectors coming

from the three neural network Gw1 , Gw2 and Gw3 can be denoted as E1 = Gwi(X1),

E2 = Gw 2(X2) and E3 = Gw3(X 3 ). For each input group, we measure the overall

distance between the embedding vectors, denoted as D3:

D3 = 11E1 - E2 11 + E2 - E 3 11 + fE 3 - E11H (5.1)

We make Y = 0 if X 1, X2 and X3 are sourced from the same fabric, and Y = 1 if
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they are from different fabrics. The network loss is

1 1
L(W1, W2, Y, X 1, X 2 ) =-(1 - Y) x D + -Y x max(O, m - D )2 (5.2)

2 2

where m > 0 is a margin (we used m= 2 in our experiments). Dissimilar pairs

contribute to the loss function only if D 3 is smaller than the margin radius m. The

existence of dissimilar pairs is meaningful to prevent the D3 and the loss L being zero

by setting Gws to a constant.

Auxiliary Net

The auxiliary net is the network architecture that is based on the basic cross-

modal net, but with an auxiliary task of fabric classification on the embedding vector

E, as shown in Figure 5-3(b). The motivation is to make similar fabrics have close

embedding vectors by adding some supervision. The classification label of the fabrics

is made based on human labeling, as described in Section 5.3.3. Examples of the

cluster are shown in Figure 5-4. The three cross-entropy losses of cluster classification

are combined with the contrastive loss(5.2) in addition for a total loss.

Multi-input Net

The multi-input network is designed based on the auxiliary net, but the input from

touch is of 3 different GelSight images, instead of on only one. The three GelSight

images go through the same network Gw3 respectively, making 3 fc7 vectors, and we

make the final embedding E of the inputs as element-wise maximum of them. The

network is shown in Figure 5-3(c). The motivation for this design is that humans are

likely to touch an object for multiple times before obtaining a confident perception of

it, and similarly, we design the multi-input architecture to exploit more information

from the multiple presses. In practice, we find that element-wise maximum makes

the training much easier compared with concatenating the three embeddings and also

it's symmetric unlike concatenating.
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5.2.2 Training and testing

In the training, we use the Adam [30] optimizer and fix learning rate as 0.001 through-

out the experiment. Parameters of AlexNet before fc7 will be fixed during training.

We train the network for 25,000 iterations with a batch size of 128.

In the test, we used the trained CNNs Gwi, Gw2 and Gw3. Each input image,

either a depth image, color image or GelSight image, go through the corresponding

network to produce an embedding E, as a representation of the fabric. For different

inputs, either from the same or different modalities, we calculate the Es from the

input, and compare the distance D between the two E to decide the likeliness that

the two inputs are from the same fabric.

5.3 Dataset

We collect a dataset for fabric perception that consists of visual images (color and

depth), GelSight videos, and human labeling of the properties. The dataset contains

118 fabrics, including the apparel fabrics like broadcloth, polyester, knit, satin; bed-

ding fabrics like terry, fleece; and functional fabrics like burlap, curtain cloth, oilcloth

(examples shown in Figure 5-2). About 60% of the fabrics are of single but different

colors, others have random color patterns. Each fabric piece is of the approximate

size im x im. Some of the fabrics are kindly provided by researchers working on [65]

and 14].

5.3.1 Vision data

We drape the fabrics from a cylindrical post(30.7cm height, 6.3cm diameter) in natu-

ral states and take both the color images and depth images of them. The color images

are taken by a Canon T2i SLR camera, and depth images are taken by a Kinect 2.

For each fabric, we take pictures of 10 different drapes. Those drapes make different

appearances, but humans could easily tell the similarity between the images.
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Cluster 1 (8) Cluster 2 (18) Cluster 3 (24) uluster 4 (MU)
Thin, light and flexible Thin. light and stiff. not stretchable Very streachable, moderate thick Dense, moderate thick, stiff

Cluster 5 (9) Cluster 6 (6) Cluster 7 (20) Cluster 8 (13)
Thick and dense, stiff Thick and extreamly stiff, dense A little thick, kind of flexible Thick. light and flexible

Figure 5-4: Clustering of the fabrics based on human labeling on properties. Numbers
in the bracket denote the fabric number in the cluster.

5.3.2 Tactile data

We press the tactile sensor, GelSight, on the fabrics when they lay on a hard flat

surface, thus obtaining a sequence of GelSight tactile images for the press process.

The sensor we used is the fingertip GelSight device [37]. We collected three forms of

tactile data: one is the 'flat data', when the GelSight is pressed on the single-layer of

the flat fabrics; another one is 'fold data', when the GelSight is pressed on the fold

of the fabrics, as shown in Figure 5-1; and the last one is 'random data', that the

GelSight is pressed on some randomly shaped foldings of the fabrics, as demoed in

the rightmost columns in Figure 5-2. For each fabric, we collect 10 pressing samples

of the fiat data and 15 samples of the fold data. Note that in the current stage of

this research, we only experiment with the 'flat data' and 'fold data', which have

relatively more constraints in the data form.

5.3.3 Attribute labels

We label each fabric with the estimation of the physical parameters that we believe

are the most important determining the fabric draping and contact process: thickness,

stiffness, stretchiness and density. The human label, although hardly precise due to

the interpersonal difference, offers a reference to the evaluation by the neural network.

The thickness and density are measured by a ruler and a scale; stretchiness is roughly

estimated at the level of 'non-stretchable', 'stretchable', and 'extremely stretchable';
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the stiffness is estimated by humans: we ask 5 human subjects to score the fabric

stiffness in the range of 0 to 5 (with the permission of excess for extra stiffness),

and take the mean value. Note that the label does not necessarily cover all the true

properties that influence the drape, and the values contain human bias, but they can

provide a convenient and reasonable reference.

In this work, we cluster the fabrics into 8 clusters by using k-means on the fabrics'

physical parameters, as shown in Figure 5-4. For humans, fabrics in the same cluster

will have relatively similar properties. We describe the human intuitive description

of each cluster in Figure 5-4.

5.4 Experiment

We train the neural networks that extract property-representative embedding vectors

from the high-dimension input. To test how well the embedding vector represents

the fabrics, we design a following task: given an input from a target fabric, either on

touch, color image or depth image modality, and 10 candidate inputs from different

fabrics, we ask the neural network to pick the candidate input that is most likely from

the same fabric source.

The task can be achieved by comparing the Euler distance between the embedding

vectors from the inputs. When the two embedding vectors are close, it is likely the

source fabrics are very similar, or are the same piece of fabric. In the experiment,

we train the three networks jointly with input from three modalities, and test the

match between either 2 different modalities, or a single modality. We report the

result of top 1 precision and top 3 precision, which means the correct match ranks

top 1 or top 3 among all 10 candidates. Note that the task is even challenging for

humans. Considering the large fabric datasets, some fabrics may appear very similar

to humans, and humans can hardly make a very high top 1 precision in the test.

We divide the 118 fabrics in the dataset as a training set (100 fabrics) and test set

(18 fabrics). The 18 test fabrics are selected evenly from the 8 clusters in Figure 5-4,

so they are considered well representative of the entire dataset.

96



Input

: 14.0 J 25.0 34.2 160.6 164.1 167.5

Input Input

D: 627 67.7 82.1 160.3 D: 65.3 77.4 88.7 162.4

Figure 5-5: Examples of picking the corresponding depth image to the GelSight input,
according to the distance D between their embeddings. Trained on the Auxiliary Net.
Green frames mark the ground truth.

5.4.1 Inferring touch from vision

The first experiment is picking the depth or color images that best match the GelSight

input. The match is according to the D between the Es from the given GelSight image

and the candidate images. In the experiment, the candidate depth or color images

are 10 images from 9 random selected fabrics and the ground-truth fabric from the

test set. The network will calculate the embeddings of the input GelSight images

and each candidate depth or color images, and compute the distance D between

them. The candidate with smallest D is considered most likely to be the correct

correspondence. The selecting procedure is shown in Figure 5-5. For each network

that is experimented, we test each 15 different GelSight input images on each fabric

for 10 times, and calculate the average precisions.

We test the performance of 4 networks: 1. the cross-modal network (Figure 5-

3(a)), when the GelSight input is the pressing image on flat fabrics without folds; 2.

the cross-modal network, when the GelSight input is one pressing image on the folded

fabrics; 3. the auxiliary network (Figure 5-3(b)) that compares depth images and

GelSight on single folds, but with the auxiliary task of clustering the embeddings; 4.

the auxiliary network that takes three GelSight images as the input (Figure 5-3(c)).
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Touch to Depth: topi precision Touch to Color topi precision
1 =Touch to Depth: top3 precision EM Touch to Color top3 precision

0.821 0.827 0.860

0.724 0.733 0.748
0.65358

0.5 0.459 04711

0.3.3-293
09 p3 chance

... Top 1chance

0
Flat Cross-modal Auxiliary Multi-input

Figure 5-6: Test result: the top 1 and top 3 precision on matching the depth or

color image candidates to a given GelSight input, using different network structures

or tactile data input. The first row is an example on training set, second row shows

examples on the test set.

Model Flat Cross-modal Auxiliary Multi-input

Depth2Gel 0.3063 0.4292 0.4318 0.4576
Color2Gel 0.2681 0.3742 0.4022 0.4124

Depth2Color 0.4133 0.4329 0.4141 0.4417
Color2Depth 0.4050 0.4240 0.4070 0.4306

Table 5.1: Result on the test set: average top 1 precision on test set for the "pick 1
from 10" experiment of matching 2 modalities.

The results of the top 1 precision and top 3 precision on the test set is shown in

Figure 5-6. We also test the precisions of matching other modalities, and the results

are shown in Table 5.1. In comparison, the precisions on matching the data from a

single modality are much higher, as shown in Table 5.2.

From the results, we can see that all the networks can predict the matching images

better than average chance. As for the architectures, the auxiliary net with 3-frame

input performs the best, the auxiliary net with 1-frame input places the second, and

the basic model with the plain GelSight press comes the last. The match between

touch images and depth images is better than the match with color images. At the

same time, matching between inputs from the same modality is very easy.

The positive results in the matching experiments show that the neural networks

are able to automatically extract the features related to fabric intrinsic properties
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Model Flat Cross-modal Auxiliary I Multi-input

Depth2Depth 0.6030 0.6265 0.6224 0.6459
Color2Color 0.7941 0.7831 0.7968 0.8247

Gel2Gel 0.8025 0.7672 0.8090 0.9351

Table 5.2: Result on the test set: average top 1 precision on test set for the "pick 1
from 10" experiment of matching single modality.

from either visual or tactile information. The properties from the three modalities

are correlated, so that the networks can match one modal input with the other by

comparing the embedding vectors. But in the given dataset with the limited size,

the neural networks extract the physical properties better from the depth images

than from the color images, because the former has less information and the fabric

shape is more directly related to the physical properties. The results also show that,

the additional information helps the network to better recognize the materials: the

comparison between model 1 and 2 shows that the folds on the fabric reveal more

properties; comparison between model 2 and 3 shows on this small dataset, the human

label help to improve the network performance; the comparison between model 3 and

4 shows that providing more touch information, the network will extract the relevant

information better, and makes the matching more robust.

5.4.2 Data augmentation

To compensate the error caused by the color of the fabrics, which does not influence

the intrinsic material properties of the fabrics, we augment the dataset on the color

images, by changing the hue and exposure of the images during the training. To be

specific, we perform Gamma Correction (range 0.5-2.0) to each image, and change

the order of the RGB channels. The matching tests with the color images involved

make a better result, as shown in Table 5.3. But the results of other matching tests

between GelSight images and depth images do not change.

We also tried other data augmentation on the GelSight images and the depth

images, including adding noise to the input, and cropping the images randomly, but

the results make little difference.
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Model Cross-modal Cross-modal Multi-input Multi-input
(with aug) (with aug)

Gel2Color 0.3954 0.4359 0.4303 0.4937
Color2Gel 0.3742 0.4088 0.4124 0.4264
Depth2Color 0.4329 0.4674 0.4417 0.4924
Color2Depth 0.4240 0.4607 0.4306 0.4624

Table 5.3: Comparison of the top 1 precision before and after data augmentation on
the color images.

5.5 Analysis

In this section, we try to find some insight on how well the embedding vector E

represents the fabrics. Especially, whether Es from the same or similar fabrics are

closer than those of distinct fabrics.

we continue with the experiment of 'picking the possible depth image given a

GelSight image' as an example. To denote the possibility that the two Es are sourced

from the same fabric, we build a function P to describe the distance between two Es

in the exponential scale:

P(E1 , E2 ) = A exp (-c x D(E1 , E2 ) 2 ) (5.3)

Where c is a positive coefficient (I set it as 8.5 x 10-2), and A is a coefficient that

can be set according to each fabric. For a given input with embedding Etar, and a

set of candidates with embedding vectors {Ei}, we normalized P by adjusting A for

each fabric so that

P(Etar,Ei) = 1 (5.4)

Here we make {E} from all the depth images in the candidate fabric set. For each

test fabric, we calculate P over all the available GelSight input image and take their

average, so that we got a possibility of 'mismatching the touch data from the current

fabrics to the other fabrics'. We draw confusion matrices of the mean P between the

fabrics in Figure 5-7. In the figure, we re-order the fabrics numbers to put the fabrics

adjacent when human subjects consider them similar, so that the bright spots near
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Cross-modal (flat input) Cross-modal Between Clusters All Fabrics Cluster 2 ClUster 5 1

0.9

U~ 0.7

U~0.6

0.5
Auxiliary Net Multi-Input Net

0.4

1 0.

(a) (b) (c)

Figure 5-7: Confusion matrices based on the distance between the Es between
fabrics, on "picking the possible depth image to a given GelSight input". The fabrics
are placed in the order according to human subjects, so that similar fabrics are close.
(a) Test results for different networks. (b) Training set for the Cross-modal net and
Mutli-input Net, either between clusters, or on the individual fabrics. (c) Confusion
matrices on fabrics in the training set within Cluster 2 and Cluster 5.

the diagonal line means the neural network gets confused with the fabrics that are

likely to confuse humans too.

Figure 5-7(a) shows the confusion matrix on the test dataset, and it indicates

that most of the possible confusion occurs between the similar fabrics. The order of

the fabrics on the axes is according to the fabric clusters, so that the adjacent two

fabrics are likely to be similar according to human labels. So the bright spots near

the diagonal line are more likely to represent the confusion when the two fabrics are

very similar. Figure 5-8 shows examples of the fabrics that are easily confused with

each other, while they also appear similar to human. In general, the Multi-input Net

performs the best on the confusion distribution, while the Cross-modal Net with only

plain input performs the worst.

Figure 5-7(b) shows the probability in matching the GelSight data and depth

image in the training set (100 fabrics). Here we compared the matching probability

of all the independent fabrics, and also between different clusters. The figures indicate

that both networks well distinguish the fabrics in different clusters. Even the Cross-

modal net does well, while it does not know the cluster in the training. But within
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Figure 5-8: The confusion matrix on the test dataset, using the cross-modal network.

the clusters, the network can be confused between fabrics. We also compare the

correspondence of the embeddings on the training set (100 fabrics), and the confusion

matrices for the Cross-modal Model and Multi-input Net in Figure 5-7(b). The figures

indicate that in both cases, the fabrics in the same cluster tend to have more close

embeddings than those between clusters, and the majority of confusion comes within

the cluster.

Figure 5-7(c) shows the confusion matrices of fabrics within Cluster 2 and 5. Clus-

ter 2 denotes fabrics that are 'thin, light and stiff', and contains many broadcloths.

They appear very similar to human; similarly, the Cross-modal Net and Auxiliary

Net make their embedding vectors close, and display a blurred area in the bottom

left in the matrices. the two upper right fabrics, however, are unique in that they

are translucent gauze, so that even human labeling of physical properties suggests

they are similar to other fabrics in the cluster, they show special textures or optical

characteristics for both GelSight and depth images, and are distinguished from the

other fabrics. But for the Multi-input Net, as there is more input information, the

network is able to represent the more subtle differences between the fabrics, so that
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the confusion matrix concentrated. Cluster 5 contains fabrics that are thick and stiff.

Similarly, the Multi-input Net reduced the confusion between different fabrics the

best (although not totally), and the embedding vectors would better represent the

fabrics.

The results in this section prove that all those factors will improve the network's

ability to represent the fabrics: touching the folds instead of the plain fabric; mul-

tiple presses that contain less biased information. The clustering information made

according to human label also help the network to narrow down the fabric range to

represent the properties.

5.6 Comparison of cross-modal learning and single-

modal learning

In the research, we also find that training with the cross-modal network boosts the

performance. Taking the single-modal match as an example: "picking a depth image

of draped fabrics that best matches a given depth image". We can use the same

CNN to extract the embedding vector, but trained in different ways. One is using a

Siamese Neural Network (SNN) [5] trained on only depth images, and the other is a

joint network similar to Figure 5-3(a), but have only two branches for depth images

and GelSight images. The two architectures are the same other than they take in

different modalities as branches.

In this test, we select 80% of the data on the 100 training fabrics as the training

set, and the rest 20% data, as well as the data from 18 test fabrics as the test set.

The test results are shown in Table 5.4.

As shown in the results, on this size-limited dataset, the joint model on both touch

and depth images have much better performance than single-modal SNN model. We

assume this means the extra information from one modality will help the training in

the other modality to reduce overfit and find a better local minimum. The situation is

similar to human learning: we learn the materials, especially fabrics, with both vision
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Seen Fabrics Novel Fabrics
Model TopI Top3 TopI Top3

SNN (only depth) 0.482 0.660 0.554 0.729
Cross-mdl (depth&Gel) 0.608 0.786 0.606 0.786

Table 5.4: Test results on the depth-to-depth match on two networks: a Siamese
Neural Network (SNN) [5] trained only on depth images, and a Cross-modal Net
trained on depth and GelSight images.

and touch. Our brain automatically combined the two modalities when we explore a

fabric, and built a connection between the two. This also helps us better understand

the material even when we observe a material with single-modality input.

5.7 Conclusion

This chapter introduces the work of obtaining the latent vector that describes the com-

prehensive properties of the common fabrics, through three modalities respectively:

color vision, depth vision, and high-resolution touch. The properties are highly re-

lated to the perception and evaluation of the fabrics. We use a CNN to achieve the

goal, and jointly train the three CNNs that take data from different modalities. In the

test set, we compare the similarity of the source fabric of the input data, whichever

modality it is from, by comparing the distance between the CNN's embedding vector.

We use the experiment of picking 1 from 10 candidate input that matches the inquiry

data using the other modality to prove the effectiveness of the network model.
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Chapter 6

Conclusion

This thesis introduces the robotic application of a high-resolution tactile sensor, Gel-

Sight. The sensor has a soft contact interface, and use vision-based methods to

measure the geometry and traction field of the contact surface with a resolution as

high as 20 microns. The applications of the sensor introduced in the thesis can be

divided into two groups: manipulation, where tactile feedback helps robots to better

perform manipulation tasks; exploration, where robots use tactile sensing to obtain a

better understanding for the surrounding physical environment. On the manipulation

side, the thesis introduced how to use the GelSight sensor to estimate the hardness of

deformable materials, how to estimate a broad set of general properties of common

clothes in an autonomous robot exploration loops, and how to learn the comprehen-

sive set of fabric's material properties using a cross-modal deep learning set. The

works in this thesis provide new possibilities for applying tactile sensing for a more

intelligent robotic system.

The high-resolution tactile sensing, which was hardly accessible for robots before

the invention of GelSight, opens more possibilities for how could tactile sensing help

robots. Much more information is provided through a simple touch, but the challenges

lie in deciding the goal of using the information, and exploring effective inference to

apply the information. Existing works showed that the high resolution of GelSight

helps it to perform extraordinarily on classifying material textures, and localizing the

textures on objects. But the sensor is able to provide more information. In this thesis,
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I show that by analyzing the dynamic change of the tactile signal during the physical

contact, the robots can get insight into the material properties of the objects, such as

hardness. The state of contact area tells other information too, such as the slip state

during grasping. The research exploring multiple material properties of fabrics and

clothing, also indicates that the rich tactile information at the local contact area is

correlated with a broad set of material properties. The correlation could be explicit

or implicit.

The thesis work also introduces the method of applying deep neural network

models on high-resolution tactile data. The neural networks are designed for images,

and proved effective in processing the high-dimensional data. The GelSight data,

which comes in the form of images, is a typical kind of the high-dimensional data,

and the neural network models for computer vision was proved useful on extracting

the useful representation of the physical world from the high-dimensional tactile data,

while the tasks were very challenging or even impossible using traditional methods.

The experimental results also revealed some limitation of the deep learning methods,

such as requiring large training datasets, and the incompetence in generalization. It

remains a future research topic to exploring better neural network architectures or

training methods to prevent those limitations.

The thesis also starts the trial of integrating high-resolution tactile sensing into

the closed-loop robot exploration. In the clothing perception project, the robot uses

tactile information to infer the clothing's material properties, but it uses visual infor-

mation to plan touch movement, and conduct the touch motion with the hardware

parts; at the same time, the feedback from the tactile sensing guides the robot to

decide whether to conduct an extra touch exploration. In the long run, instead of

only using tactile input, or any other single-modal sensing, building frameworks that

well integrate multi-modal sensing and the motion system of the robots, will enable

the robots to better understand and interact with the physical world.
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