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Abstract

A new, structural modeling and hierarchical control approach to large-scale electric
power systems is presented in this thesis. Structural models of power systems explicitly
in terms of tie-line flows are derived. Simple, yet fundamental aggregate models of
very low dimensions are proposed to represent interactions among the subsystems. In
contrast to most existing methods, the new approach does not require the assumption
of weak interconnections among the subsystems, and the new interaction variables
preserve their physical meanings. The new modeling approach provides a solid basis
and simple information structure for monitoring and control of power systems. A
new control design on different time scales is proposed to improve the stability and
performance of the interconnected system.

The general theoretical framework is applied to two important control tasks of
electric power systems - the frequency control and voltage control. The emphasis of
the approach proposed in this thesis is on the inherent structural propertics of the
system. It is proven that the interaction variables are simply the inter-regional tie-line
power flows. It is further shown that the decoupled frequency dynamics are structurally
singular, while the voltage dynamics do not possess the structural singularity, although
numerical singularities are possible. A new, direct tie-line flow control method to
remove the structural singularity of the frequency dynamics using FACTS technologies
is introduced for the first time. Control designs on different hierarchical levels based
on the new structural models are presented. Extensive simulations are done for hoth
small power systems and the large-scale French Power Network. Simulations show that
the proposed approach leads to an improved systemwide performance.

Thesis Supervisor: Dr. Marija D. Ilic
Title: Senior Research Scientist
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Chapter 1

Introduction

1.1 Thesis Motivation

This thesis is directly motivated by the need for a systematic coordination of con-
trollers in administratively separated regions in large-scale electric power systems and
it represents a new, systematic, structurally-based modeling and control approach to
power systems. The approach provides solutions beyond the coordination problem that

directly motivates the thesis.

In the past, power system monitoring and control has been based on a hierarchical
structure under which the monitoring and control tasks are shared by different hierar-
chical levels. Local (primary) controllers on individual generating units are presently
decentralized in the sense that they respond to deviations of local outputs from the
steady state values, or set values, assigned from the higher levels. The steady state set
values of primary controllers are regulated at a regional level (secondary), assuming
weak interconnections among the regions. The regional controllers are, however, not.

systematically coordinated at present, leading to deviations from optimal systemwide
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performance and a possibility of potential global system instability.

This lack of systematic coordination exists in two most important control problems
of the power system - the frequency regulation and the voltage regulation. In the
case of frequency control of the power system, a simple coordination scheme, com-
monly referred to as the Automatic Generation Control (AGC), has been automated
throughout the United States, as well as in some other parts of the world. This scheme
is based on a reduced information structure which allows for simple automation. Al-
though it has been successful in practice in relatively static operating environment,
hidden problems that may lead to potential loss of global frequency regulation have
been identified in the literature [1]. They are becoming more likely to occur under the
newly evolving regulatory changes which create truly dynamic operation of large-scale
systems by encouraging unusual energy generation and transmission over far electrical
distances. Significant research effort is needed to provide a theoretically sound basis for
generalizing control concepts that are amenable to the new operating modes of power

systems.

In the case of voltage control, a systemwide coordination level is not automated at
present time. Each administratively separated region regulates its own voltages, with
interconnections to the neighboring regions neglected, and relies on the operator’s
expertise, as well as some off-line optimization algorithms such as Optimal Power Flow
(OPF) techniques, to provide coordinating signals with other regions. However, as the
system experiences unusual reactive power deficiency due to large disturbances, the
need for a systematic, on-line coordination is emerging to insure the global security of

the interconnected system. This voltage coordination problem is a direct motivation
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for the work in this thesis.

A motivation for the thesis beyond solving the specific coordination problem is
a recognition of the need for systematic, structurally-based modeling approach and
control design to provide a theoretically sound basis for power system planning and
operations, particularly in the present and future energy management environment cre-
ated by the new regulatory changes. Under the new operating rules, presently working
monitoring and control principles upon which high quality and efficient energy delivery
is based will not hold entirely. The power system operation has been for the utilities
to schedule real power generation to meet their load demands and to maintain the ne-
gotiated tie-line flow schedules, at the same time, maintaining voltages within the pre-
specified limits to support the scheduled real power delivery. Under the new operation
regulations, the traditional “scheduling” of the loads becomes relatively meaningless,
because any load can be conceptually served at its own choice by any power producers
in the network, including Independent Power Producers (IPP). The new regulatory
rules greatly increase the trend towards the non-participation of IPP’s in AGC. As a
result, significantly large number of these uncontrolled IPP’s may very well cause the
potential loss of systemwide frequency regulation. Also, the open access among all
subsystems leads to stronger interconnections among them. This rules out one of the
traditionally made assumptions in operation of power systems, the assumption of weak

interconnections.

In summary, the new regulation rules and the need for better understanding of
power systems call for a fundamental study of power system dynamics and control.

The prime goal is to develop a structurally-based modeling and control approach which
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yields a systematic coordination scheme for regional frequency and voltage regulations

to enhance the global stability and security of the interconnected system.

1.2 Contributions

The contributions of this thesis can be classified into two major categories: (1) general
theoretical development for large-scale electric power systems, and (2) its applications

to specific sub-areas of power system operation.

In the general theoretical setting, this thesis introduces a structurally-based mod-
eling and control approach for large-scale electric power systems whose interactions
among the subsystems are characterized by the inter-regional flows!. An intercon-
nected system is first decomposed into administratively divided regions. This natu-
ral division makes practical sense because each region has independent controls and
makes its own decisions. Next dynamics of each region are obtained by combining local
dynamics of individual generator units with the algebraic power balance constraints
imposed by the transmission network. Throughout this thesis, loads are assumed to
be disturbances, rather than measurable, known quantities. Control design principles
studied in this thesis have the main purpose of suppressing the effects of load demand
fluctuations in normal operating conditions over the variety of time scales, ranging
from seconds through hours. Standard dynamical model in the form of ordinary differ-
ential equations (ODE) is obtained in the extended state space from the usual form of

differential-algebraic equations (DAE) by differentiating the power balance algebraic

! Area and region are used interchangeably throughout this thesis. The approach proposed in this
thesis is general enough so that the area or region can be arbitrarily chosen. For practical purposes,
an area or region is chosen as an independent administrative region in this thesis.
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constraints with respect to time. This structural model, first of all, reveals new funda-
mental structural properties of power system dynamics and offers clear physical insights
on the not well understood phenomenon of inter-area dynamics. Second, this model
provides a theoretically solid basis for hierarchical control design of power systems tak-
ing into account the effect of neighboring regions through new simple aggregate models

proposed in the thesis.

Introduction of the structurally-based aggregation is another major contribution of
this thesis. Structural interaction variables on different control levels are defined and
the corresponding interaction dynamical models are obtained to account for interac-
tions on different time scales among the interconnected regions. A particular important
feature of the interaction variables is that they are interpreted in terms of physically
meaningful quantities such as inter-regional power flows. The preservation of physi-
cal meanings of the interaction variables, in contrast to all other aggregation methods
presently known in the area of power systems, is critically important for systematic
control designs aimed at responding to changes in neighboring regions. The derived
aggregate models provide a basis for coordinated on-line automatic control of large-
scale power systems, because they extract information only relevant for each specific
control level and are of very low dimensions relative to the detailed models of typical

electric power systems.

A distinct advantage offered by the results of this thesis is that no assumptions with
regard to the strength of interconnections are needed, in contrast to the present state
of-the-art methods which typically require the weak interconnection assumption. Since

the system is decomposed according to its structural properties, instead of numerical
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ones, the approach is entirely independent of the strength of interconnections. Avoiding
the weak interconnection assumption is important, because strong interconnections are

needed for inter-regional wheelings imposed in the open access operating mode.

On the application side, this thesis studies in detail two most important problems
of power systems, the real power/frequency control and reactive power/voltage control,
using the new structurally-based modeling and control approach proposed in the thesis.
In the case of real power/frequency control, a simple extended state space model in
terms of generator power outputs is introduced. The model reflects the most important
property that the inter-area frequency dynamics are caused by the net real power mis-
matches among the interconnected regions. Moreover, the notion of a single frequency
for each region used in the present AGC formulations is generalized using the proposed
structural modeling approach to include individual frequencies of all generators par-
ticipating in frequency regulation. This simple model also provides a straightforward
mechanism for proving the need for centralized controls in order to directly regulate the
inter-area dynamics. The direct control of the inter-area dynamics using Flexible AC
Transmission Systems (FACTS) technology to remove the structural singularity under
the present local control structure is shown to be the most natural way of control-
ling the inter-area frequency dynamics. The proposed scheme introduces for the first
time a systematic utilization of FACTS devices for the purpose of directly controlling

inter-area dynamics on large-scale power systems [2].

In the case of reactive power/voltage control, it is shown that it is possible to intro-
duce a fully automated systemwide voltage control in the same spirit as the automated

real power/frequency control. A completely decentralized improved regional voltage
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control is proposed to take into account the effect of neighboring re_ions. Coordination
of the decentralized regional controllers is formulated as an optimal control problem
on the tertiary level. Explicit solutions for the optimal control are derived. With the
structural approach developed, it is proven that the reactive power/voltage problem
remains a qualitatively different one from the real power/frequency dynamics, in that
voltage dynamics are structurally nonsingular. Extensive simulations are performed
both on small examples and on the French network to demonstrate the feasibility of
the new structural approach. Part III of the thesis addresses the reactive power/voltage

control.

1.3 Thesis Organization

This thesis is organized in the following way: Part I presents a theoretical development
of the structurally-based modeling and control approach in general setting. It includes
an introduction to cover the motivations, contributions and organization of the thesis,
as well as background material of power systems and underlying assumptions made in

the thesis.

In Part II, the general approach is applied to the real power/frequency control of
power systems, under the assumption of decoupled real power/frequency and reactive
power/voltage dynamics. Detailed modeling approach using new state variables and
control designs is presented. The new direct flow control design using FACTS devices
to suppress inter-area oscillations is proposed. Perspectives for higher level control

designs using the proposed approach are discussed.

Part III of the thesis is devoted to the reactive power/voltage control of power

18



systems. The general structural modeling approach and hierarchical control design
are applied to the voltage control design. Particularly, new concepts needed for au-
tomatic voltage regulation over mid- or long-term time horizons are introduced. A
new improved voltage control at the regional level and coordination scheme of regional
controllers at the tertiary level are proposed. Extensive simulations are given for small

examples and the large-scale French electric power network.

1.4 Literature Survey

Power system dynamics are a combination of the real power/frequency and reactive
power/voltage dynamics. A review of basic concepts of real and reactive power mod-
eling, analysis and control can be found in [3]. Most of modeling and analysis work
is available for studies of primary frequency dynamics, which regulates closed-loop dy-
namics in response to fast disturbances. This work can be identified as small-signal
dynamical and transient stability studies, primarily concerned with the problem of fre-
quency response over the short period of time. The primary controllers for this purpose
are governors on the generators. Most of this work views the interconnected system as
one. The exception to this was the work by several researchers following the infamous
New York blackout in 1968 concerned with model aggregation; the purpose of this work
was to identify coherent electrical areas which respond as one single generator to fast
disturbances, eventually resulting in a lower order aggregate model of direct interest to
a particular region of the interconnected system. All of the coherent area eigenmodes
of the linearized dynamic model of the electric power system, and are not easily inter-

preted in terms of system structure. Particularly, the states contributing to the modes
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relevant for the inter-area dynamics are generally a linear combination of states across
the administrative regions. These aggregate models do not lend themselves naturally
to the control design necessary to directly regulate inter-area dynamics. As a result, at
present there are no solutions for straightforward regulation of the inter-area dynamics
on the short-term domain. This is despite the fact that persistent inter-area oscillations
in the range of 0.7 Hz to 1 Hz have been reported and need to be controlled [4] [5]. More
centralized controls than present entirely localized controls of the existing controllers
on generators, such as governors, as well as the control concepts for new hardware ca-
pable of directly regulating power-line flows (recognized under the FACTS technology),
that would guarantee certain degree of inter-area dynamical performance are basically
an open question at present. This area takes on an even higher relevance since there
has been a significant technological breakihrough in the area of fast communications
across selected points of the power systems. With centralized, reliable communications
available, new developments are needed in the area of supporting control concepts to

meet specifications on the inter-area dynamics.

On the other hand, the supplementary inter-regional frequency control of large
electric power systems needed to regulate set points for the primary frequency con-
trollers has been one of the nice examples of successful automation on the complex
large-scale systems. This supplementary control is recognized under the term of AGC.
The ingenuity of the engineering concept behind AGC can be seen through the use of
truly minimum information structure across an otherwise very complex system. This
concept has served as a strong motivation to the developments in this thesis. They
could be summarized as generalizations of AGC for controlling fast inter-area dynam-

ics, as well as for improved AGC-like control schemes at the higher control levels which
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do not meet the assumptions under which the AGC was originally conceived. AGC
was designed based on the area control principle, that the goal of the controls in each
region is to maintain its own frequency and the scheduled tie-line flows [6][7]. The
basic assumption of AGC is that each area has a single frequency and that different
areas can have different frequencies. In its actual implementation, AGC employs the
area control error, a linear combination of the errors in frequency and the net tie-line
exchange. One of the major problems with AGC is that the overall stability of the
system is not guaranteed, although the actual implementation of AGC has been quite

successful [8].

It is important to recognize that AGC concepts hold only in the normal quasi-static
operating mode [9] [10]. They are designed primarily to compensate small and slow
load variations around nominal conditions. Generalization of the AGC concepts to a
general competitive multi-utility environment to yield desired system operations has

been an open research question and it is therefore conceptually solved in this thesis.

For reactive power/voltage control, majority of the literature has been focused on
the local dynamics of generator-excitation systems, with [11] [12] [13] as a few examples.
Little has been given to formulating voltage problem as a dynamical process on the
system level, except in France and Italy [14] [15]. Based on the assumption that
tie-line interconnections are so weak that they can be neglected, regional dynamical
models for voltage has been derived in the past [16]. The need to neglect the tie-
line interconnections in this formulation was a direct consequence of the fact that
the modeling approach adopted was not general enough to include interconnections.

An isolated region must be singled out first before the sensitivity matrix could be
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calculated. As such, interconnections could not be appropriately modeled.

Systematic coordination of regional voltage controllers to enhance the global se-
curity and performance of the interconnected system does not appear to have been
extensively addressed. As the system becomes more dynamical under active wheelings
by IPP’s, coordination of reactive generations in different regions has emerged as nec-
essary to ensure satisfactory operation of the global system. The need for systematic
formulation and analysis of the systemwide coordination for regional controllers has

served as a direct motivation for the work in this thesis.
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Chapter 2

Structural Modeling and
Structural Singularity

2.1 Introduction

This chapter introduces a new structurally-based modeling approach to large-scale elec-
tric power systems. While the approach recognizes the decomposition of the system
into interconnected, but administratively divided regions, it does not make any a pri-
ori assumptions with respect to strength of their interconnections. The administrative
regions within the interconnected system are tied together through the tie-lines, and
the regional dynamics are coupled through the tie-line power flows. To maintain the
traditional decentralized control structure, we always choose an administrative region
as the base for study, and derive the dynamical models for this particular region ex-
plicitly in terms of the tie-line flows. It will be shown that this framework of modeling
captures fundamental properties of power system dynamics and facilitates the physical

understanding of the inter-area dynamics.

Each administrative region consists of a certain number of generating and control
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units, and a transmission network that connects these generating and control units
together. Typically these units are located over different locations, and each individual
generator has its own local control, in the sense that the control regulates output
variables associated with this particular generator only. The schematic representation

of the structure is shown in Fig. 2.1.

.y
1 cpP

& : é
f her i

Lacal Control Loop

Tie-line
Flows

om

yn m
Local Control Loop ref m )

Local Contro! Loop

Figure 2.1: An Administrative Region with Local Controls

Dynamics of each individual unit, referred to in this thesis as the local dynamics,
are derived in terms of local state variables of each unit. If the transmission network,
which connects all the generating units together, were not present, the local dynamics
of these generating units would be completely decoupled. The role of the transmission
network is to constrain outputs of individual equipment by imposing power balance
conditions on subset of local variables of all the generators and loads connected through
the transmission network. The subset of local variables directly constrained by the

system interconnections is named in this thesis as the coupling variables, because they
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couple local dynamics of individual units. The local dynamics of individual units, in the
form of ordinary differential equations (ODE), together with the algebraic constraints
imposed by the transmission network, form the dynamics of the administrative region

in the form of differential-algebraic equations (DAE).

It is well known that DAE problems are very difficult to handle in general. The
approach proposed here is to convert the DAE problem to an ODE problem by dif-
ferentiating the network constraints under an assumption that holds for a very wide
range of system operation. A standard state space nonlinear dynamical model for the
administrative region in the form of unconstrained ODE’s is obtained by combining
local dynamics for individual units with the differentiated network constraints. Note
that the resulting dynamical model is in an extended state space, since the coupling

variables become also the states.

The developed structural dynamical model offers an essential, yet simple, vehicle for
rigorous analysis of the power system dynamics. The model is exceptionally powerful
for controlling inter-area dynamics at all time horizons. It is proven, with the obtained
structural model, that the real power/frequency dynamics of power systems possess
an important structural property — the structural singularity, as will be defined in this
chapter. It is also shown that the reactive power/voltage dynamics of power systems, on
the other hand, do not have this structural singularity, although numerical singularity
can occur under particular operating conditions. It is further shown that the structural
singularity has a systemwide impact on the dynamical behavior of the system. In this
case, there exist some combinations of the states in the extended state space, defined as

the interaction variables, that stay constant with time for any local controls, and can
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be varied only by the tie-line flows with neighboring regions. In control terminology,
this represents the case of an uncontrollable system under the given localized control

structure presently used, and calls for new control designs to overcome this problem.

The developed structural dynamical model also provides a theoretically solid basis
for hierarchical control design of power systems to reject load disturbances over the
wide-spread frequency spectrum. Much simpler models than the detailed dynamics
specifically for control design at different hierarchical levels are obtained by applying
time scale separation techniques to the new structurally-based models proposed here.
These simple models, or the aggregate models, represent the net effect of interactions
among interconnected regions on specific hierarchical levels. They are exact, since no
assumptions on weak interconnections among the subsystems are made. Details are

given in the next chapter.

2.2 Modeling Issues

In this section, genera: modeling issues related to power system analysis and basic
modeling assumptions made in the thesis are discussed. This section serves as the
background material for the structural modeling and hierarchical control approach pro-
posed in this thesis. It includes topics such as time scales, network and load modeling,

control hierarchy, and the frequency/voltage decoupling assumption.
2.2.1 Time Scales

Modeling and control of large scale systems usually exploits significant time scale sep-

aration among a variety of processes. Due to these different time scales, dynamics and
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responses of the system exhibit different characteristics. Much of the analysis work is
presently available for studying shortest response of the system to fast disturbances.
Very little systematic analysis is available for system responses over the mid- and long-
term time horizons. In order to partly eliminate this gap, it is adopted in this thesis
that for short-term stable operations steady state outputs of fast dynamics can be
viewed as the moving equilibria under slower disturbances, forming a discrete event
process (DEP) over longer time scale. A fundamental difference between this class of
processes and the continuous dynamics is that a DEP under certain conditions on the

continuous dynamics is driven solely by control actions and disturbances.

Electric power systems, generally large in size and complex in operation, typically
display this special class of processes. The local (primary) controllers stabilize system
dynamics to within a threshold of their steady state reference values with a very fast
time constant. The steady state outputs of these primary controllers are regulated at
a regional (secondary) level with a significantly longer time constant than the primary
controllers, forming what can be viewed a DEP process. To fully optimize the opera-
tion of a system consisting of several electrically interconnected regions under varying
loading conditions, the reference values of the output variables are adjusted at an even

higher (tertiary) level with a still longer time constant than ihe secon:ary.

Most important sources of different time scales include different electrical distances
within a large-scale interconnected network and loads which vary over different time
scales. Power systems involve huge number of devices interconnected over far geograph-
ical and electrical distances. The connections among these devices within an admin-

istrative region (electric power utility) are relatively meshed and strong, compared to

27



very sparse, and normally weak tie-line interconnections among different administrative
regions. The meshed or strong intra-area connections represent shorter electrical dis-
tances and the sparse or weak inter-area connections imply longer electrical distances.
Loads typically have wide spread frequency spectrum. They are modeled in this thesis
as containing dynamics at three qualitatively different time scales, fast fluctuations,
mid-term and long-term variations. The controls responding at these three distinct
time scales are the basis for a hierarchical control scheme to stabilize the frequency

and voltage thronghout the system.

As a convention throughout the thesis, we refer to the fast transient dynamics of
the system as the primary process, with typical time constant T,, the DEP on the mid-
range time scale as the secondary process, with typical time constant T, and the slowest,
process a the tertiary process with time scale 7;. The primary process is simply the
continuous dynamics of the system, the secondary process is the set value adjustment
by the regional controls over mid-time horizon, and the tertiary process is associated
with the slowest adjustment of system settings relevant for the entire interconnected

system.

Since the secondary and tertiary processes are activated only at discrete times, any

variable v of interest can be decomposed into
v =u(t) +v[k] +v[K], k,K=0,1,2,--- (2.1)

where v(t) is the continuous component associated with the primary dynamics with
time scale T}, the discrete secondary process is defined as v[k] = v(kT}), and v[K] £ v(KT,)
is the slowest component associated with the tertiary process. A schematic presentation

of relevant time horizons is illustrated in Fig. 2.2.
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Figure 2.2: Multiple Time Scales

2.2.2 Network and Load Modeling

In large-scale power system studies, the transmission network is modeled as a linear cir-
cuit, normally with inductances, resistances and shunt capacitances. For the frequency
range of interest in this thesis, dynamics of the transmission network are neglected.
Under this modeling assumption, the transmission network effectively imposes alge-
braic constraints to the dynamics of the local generating units and their local controls.
The constraints are simply the real and reactive power balances. Generator local dy-
namics in the form of ODE’s, together with the algebraic network constraints lead to

a constrained dynamical problem of a DAE (page 15) form.

Loads are modeled as sinks or sources of real power P and reactive power Q..
The deviations from constant power sinks/sources are further modeled as external
disturbances to the system. Although more realistic models include dependence on
their voltage and frequency, these models are not presently actively used for on-line
control of the interconnected system. Using the notation introduced in (2.1), loads in

this thesis are represented by
PL=PL(t)+PL[k]+PL[K] k3K=0111' (22)

QL =Qc(t) + Qlk] + QK] kK =0,1,. (2.3)
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for real pcwer P;, and reactive power Q. In this equation, P.(t) and Q. (t) are the
fast continuous fluctuations, Pp[k] and P.[K] represent variations over the mid-term

horizon, @, [k] and Q[K] correspond to variations of the load on the long-term horizon.

2.2.3 Control Hierarchy

Corresponding to the three different time scales, monitoring and control of large-scale

power systems typically employs a hierarchical structure:

e Primary control: This level is most often entirely localized in the sense that con-
trollers respond to the local output variable changes only. The main function of
primary control is to correct for small, fast output deviations caused by fast load
disturbances. Excitation and governor systems are the main primary controllers

responsible for voltage and frequency controls, respectively.

e Secondary control: This level is concerned with changes at the regional level, con-
sidering interactions with the neighboring regions to be small. Its main function
is to eliminate frequency and voltage deviations at certain critical locations over
the mid-term time horizon. These deviations are caused by slow load deviations
and the structural singularity associated with the frequency dynamics under the
present localized primary control structure. Adjusting speed-changers of the gov-
ernors and terminal voltages of the generators are the main control means at this

level of hierarchy.

e Tertiary control: This level is concerned with the coordination of secondary con-

trollers by incorporating effects of interactions on the quasi-static changes of the
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interconnected system over the long-term time horizon. The ultimate goal of this
coordination is to achieve a systemwide optimal performance over the long-term

time horizon.

In terms of the load decomposition discussed in the previous section, the main
purpose of the primary frequency and voltage controllers is to cancel the effects of the
fast load fluctuations P, (t) and @ (t). The regional secondary controllers are designed
to control frequency and voltage under the slower load changes P, [k] and Q_[k]. The
systemwide tertiary controller is intended to update settings at secondary controllers

in response to slow nominal load changes Pj[K] and QL[K] over the time horizon T;.

2.2.4 Decoupling Assumption

It is well understood that in a static operation real power injections to a power system
closely affect voltage angle differences across the transmission lines, and that reactive
power injections closely affect the voltage magnitudes, under normal operating con-
ditions. In other words, sensitivities of real powers to phase angle differences, and
sensitivities of reactive powers to voltage magnitudes are relatively larger than the
cross sensitivities of real powers to voltage magnitudes and reactive powers to phase
angle differences. This property is referred to in the power systems literature as the

real power/voltage decoupling assumption.

Under normal conditions, power systems operate in a quasi-steady state on slow
time scales, i.e., the system reaches its steady state within the fast time scale T,,.
Therefore, it is generally a valid assumption that real power/angle dynamics and reac-

tive power/voltage dynamics are decoupled in normal operating conditions. In order
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to exploit the most fundamental characteristics of power system dynamics, and not to
confuse with complex mathematical expressions associated with the coupled dynam-
ics, the decoupling assumption of real power/frequency and reactive power/voltage

dynamics will be made throughout this thesis. This, however, does not imply that the

decoupling assumption holds in general.

2.3 Structural Modeling

Let us first discuss the decomposition of power systems into various devices. A power
system typically consists of the following three major components: 1) loads, 2) the
transmission network, and 3) generator units. Loads are simply modeled as power
sinks/sources. In this thesis, load deviations from their nominal constant power values
are modeled as external disturbances to the system, and therefore are not measured. It
is fully recognized in this thesis that more detailed knowledge of load dynamics could
provide for better design of the system. However, since load models are quite uncertain,
the approach proposed here is to view loads as uncertainties at different time scales
for which controls are designed. This single fact makes a strong case for the need for
on-line controls, instead of static off-line optimization scheme, such as OPF, assuming
loads to be known. Dynamics of the transmission network are neglected for the time
scale of interest to this thesis. As a result, the transmission network only imposes
power balance constraints between generation and load. These two components are
simply static and do not have any dynamical feature. Dynamics of power systems
occur only at generator units, each of which has its own individual controls. These

control units together with generators form the local dynamics of the system, which are
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coupled together by the algebraic relationship imposed by the transmission network.
A complete dynamical model of any power system is the combination of the local
dynamics and the network coupling. This structural decomposition is schematically

illustrated in Fig. 2.1.
2.3.1 Local Dynamics

Let us first discuss local dynamics of generator units. Define z%, as the local states of

generator i. One can express local dynamics of this generator in a general form as
Trc = for(TLer Uier Tep) (2.4)

where u* is the control input to the generator, and zp represents the coupling variables
which relate local dynamics of different generator sets together. For example, in the
case of real power/frequency dynamics, the coupling variable is simply the real power
generation of the generator. Real power generations of different generators are coupled
together by the transmission network that connect different generators. The primary
task of the local controller is to stabilize the local output variables of the specific
generator to their desired settings, which can be calculated locally or more often given

by higher level controls. Assume that
y' =C'zic (2.5)

is the vector of output variables of interest for generator i. Let yi, s represent the
desired settings for output variables. The local control ui. is typically a feedback

control designed using the error signal

ei = yi - yri'ej (2'6)
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After appropriate design of the local controller, the closed-loop dynamics of the gen-

erator set can be written as

j"iC = f;..C(:BiC) y:ef$ thP) (27)

We now derive local dynamical models for all generator units in the network. As
discussed in the previous section, we choose any administratively divided region as the
base system for our study. Consider here such a region consisting of m generator units.
Define the local states, output variable settings, and coupling variables for the region

as

1 1 1
Zic Yres Icp
A : al . A )
TZre=| |y Yes=| P |y Tep=E| (2.8)
m
Zic Yres zép

Since Eq. (2.7) is true for any generator control set, one can simply obtain the local

dynamical model for the entire region as

Zre = fre(Zie, Yresr Tep) (2.9)

where the nonlinear function is defined as
fie(@Le yrlefa TEp)
fro(Lo, Yrep Tep) = : (2.10)

finC (mTC’ yv'-zfa wrgP)

2.3.2 Network Constraints

The transmission network imposes algebraic constraints on the coupling variables z¢p
and a small subset of local state variables z,c. With definition (2.8), it will be demon-
strated in this thesis that the constraints are always given in the following structural
form

9(zcp,zLc, F) =0 (2.11)
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where the nonlinear function g(s,,+) has the same dimension as that of the coupling
variables. The term F represents tie-line flows into the region from its neighboring
regions. This formulation assumes constant power loads. Any variations in the loads
are viewed as disturbances to the system. The primary goal of power system control
design is to reject the load disturbances. Details will be presented in the next chapter.
The differential equation of local dynamics given in (2.9), together with this algebraic
relationship, forms the dynamics of the system in the form of differential-algebraic

equations (DAE).

It is well known that DAE problems are very difficult to handle in general. It is
proposed here that the DAE problem is converted to ordinary differential equations
(ODE), by differentiating the algebraic constraint equation (2.11) with respect to time.

It follows that

Jepzcop + JicZe + JpF =0 (2.12)
where
a _9g a _Og a9
Jep = 2P’ Jic = 970" and Jr = oF (2.13)

are defined as the Jacobian matrices of the network constraints. Note that these
Jacobian matrices are evaluated at the actual value of the state and flow variables

(zcp,zLe, F), and therefore no approximations are introduced.

To derive a standard state space ODE model for the dynamics of the region, let us
assume that the square matrix Jop is nonsingular. If this is not the case, complicated
phenomenon such as impasse points [17] will occur. This case is out of the scope of

the thesis and will not be further discussed. Under this condition, Eq. (2.12) can be
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equivalently written as
cp = Sue(zep, zie) F)ive + Sr(zcp, Tic, F)F (2.14)
where
Sie(zep zie, F) & —J5hJic and  Sr(zep,zic, F) & -J5hJr (2.15)

are defined as the sensitivity matrices of coupling variables to local states and flows,
respectively. Again, these sensitivity matrices are functions of the state and flow vari-
ables, as explicitly indicated above. Eq. (2.14) represents an equivalent nonlinear ODE

set for the network algebraic constraints.
2.3.3 Structural Dynamical Model

The local dynamical model (2.9), combined with the coupling dynamics given in (2.14),

forms a complete set of ODE’s for dynamics of the specific region under consideration,

[ 7% ] _ l fre(zLe, Yres, Tcp) . ] (2.16)
Tcp Sre(zep, zLe, F)ire + Sr(zep, zLe, F)F '
Or,
[ Trc ] _ [ fre(ZLe Yres, Tcp) . (2.17)
Zcp Ste(zep,zre, F) fue(Tie, Yres, Tep) + Sr(zep, zre, F)F '

Define the state variables in the extended state space for the region under study as

za [ :Zi ] (2.18)

and the nonlinear function on the right hand side of (2.17) as

f(x: yre]1F1 F) é [ SLCfo(.'fi SFF l (219)
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We obtain the ronlinear standard state space dynamical model for any administratively
divided region as

& = f(,Yres, F, F) (2.20)

Notice that the reference values for output variables, y,.; are updated more slowly
than the transient dynamics by a higher level control center. The purpose of updating
the reference y,.s is to render an optimal performance of the system accommodating
the slowly varying component of the load fluctuations (fast component of the load
variations is stabilized by the appropriate design of local controllers). This typical
implementation of the control, referred to in this thesis as the hierarchical control
structure, gives rise naturally to different time scales for the closed-loop dynamics. The
following section will discuss the time scale separation associated with this particular

structure.

Note also that this dynamical model is written explicitly in terms of tie-line flows
into the region from neighboring systems. In Eq. (2.20), the tie-line flows act as an ex-
ternal input to the dynamics of the region under study. These flows play important roles
in the inter-area behaviors of different regions within the interconnected system, as it
will be studied in detail later. It will be shown that the decoupled real power/frequency
dynamics are not completely controllable under the present control structure; the local
control uyc cannot regulate inter-area behaviors of the inter-connected system. The
popular, but not well understood phenomenon of inter-area oscillations cannot be effec-
tively suppressed with local governor controls, without significantly changing voltages
throughout the network. In this case, additional control actions are needed to guaran-
tee a desired performance of the system. This leads to the idea of direct flow control,

as will be studied later in this chapter.
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2.4 Structural Singularity

Detailed analysis of the structural dynamical model (2.20) of any region are given
in this section. We define an important property of power system dynamics - the
structural singularity, associated with the real power/frequency dynamics which will
be studied in detail in Part II of the thesis. It is shown that for structural singular
dynamics, there exists a combination of states that stays as constant independent of
operating conditions unless the local reference values y,.; and/or tie-line flows vary.
This combination of states is defined as the interaction variable. For an isolated system
(no tie-line flows), the interaction variable will be constant if the reference values are
not changed. This structural property is the fundamental concept behind the inter-area

dynamics in electric power systems.
2.4.1 Definition of Structural Singularity

The state space dynamical model of any administrative region was derived in (2.20).

From this general nonlinear model, we define the matrix
. A D .
AT, Ypes, F F) & a—i(x,y,.e,,F, F) (2.21)

as the system matriz associated with each administrative region. Note that the system
matrix is a function of variables (z, yres, F, F). With the system matrix, we define the

structural singularity as follows:

Definition 2.1 (Structural Singularity) Any administrative region is defined as
structurally singular if its system matriz A(z, Yres, F, F) defined in (2.21) is singular

for any (z, yres, F, F).
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2.4.2 Interaction Variables

It can be shown that the structural singularity has a profound systemwide impact on
the dynamical behavior of the system. To better understand the fundamentals, and not
to be confused with complicated mathematical expressions, we illustrate the analysis
on structural singularity using a linearized model, noting that the principle carries over
to the nonlinear model under the assumption of nonsingular Jeop in (2.12). Assume
that for a given set of output variable references y;;,, the steady state of Eq. (2.20)

given by (z**, F**). The linearized model takes the form
8& = A*6z + B**8y,e; + UOF + V**6F (2.22)

where the prefix § denotes deviation of the corresponding variable from its steady state

value, e.g., 0z A 1 — z**. Matrices A* and B** are given by

A* = Az, yres, F*,0) (2.23)
of
88 __ S8 88 S8
B —ayref(a: yYregr F*%,0) (2.24)

In this model, the tie-line flows are viewed as external inputs to each region.

To simplify the notation, let us drop the prefix § and the superscript ** on all
variables, with the understanding that the model under study represents the linearized

dynamics around the given steady state. Now one can rewrite (2.22) as
&= Az + By,ey + UF + VF (2.25)

For this model, we define the interaction variables as follows:
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Definition 2.2 (Interaction Variable) Any linear combination of the states, z = Tz,
T # 0, that satisfies
(t)=0 (2.26)

in the absence of the reference value changes and the interactions among different
regions, i.e. when Yoy = 0 and F = 0, is defined as the interaction variable of the

administrative region under study.

This definition clearly indicates that any variations in time of the interaction vari-
able are caused only by the interaction among different regions, and the active controls
- the updating of the reference values, because they remain constant if the interac-
tions and active controls are not present. As a result, the interaction variable captures

properties of the interactions among interconnected regions.

Note from this definition that interaction variables are local variables associated
with each region. There is no coupling among different regions, since the interaction
variables are defined in terms of the disconnected regions. In other words, the inter-
action variables for region ¢ are function of the state vanables of region i only. As a
result, the calculation of the interaction variables can be performed in a decentralized

manner by each region separately.

Let us find the matrix T in the definition. Eq. (2.25), together with z = T'z, simply
gives

% =TAz + TBy,e; + TUF + TVF (2.27)

Under the condition stated in Definition 2.2, y,e; = 0 and F' = 0, the above leads to

3+ =TAr (2.28)
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Thus, we obtain the condition for calculating matrix T
TA=0 (2.29)

From this simple condition, it is obvious that no interaction variables exist for non-
singular systems characterized by the existence of A~!. For a singular system, assume
that each row of the matrix L represents a left eigenvector of A corresponding to its

zero eigenvalue, i.e.,

LA=0 (2.30)

It trivially follows that:

Proposition 2.1 (Existence of Interaction Variables) Interaction variables ezist

only for singular systems, and are given by
z2=Lx (2.31)

where matriz L contains all left eigenvectors of A corresponding to its zero eigenvalues.

2.4.3 Interaction Dynamics

Assume that the region under consideration is a singular system, i.e. A is singular.
After calculating the interaction variables from (2.31) for a singular system, one can
derive from (2.27) an aggregate model in terms of the reference and tie-line flow changes
as

2 =TBy,e; + TUF +TVF (2.32)

This model defines changes in the interaction variables explicitly in response to the

inter-regional flows and the output reference values. It is referred to as the inter-area
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dynamics. Note from (2.32) that the inter-area dynamics correspond to the singular
mode of the system, since any change in z is driven only by external inputs - the flow
and reference value changes. This singular mode causes steady state errors in output
variables. Appropriate designs must be done to eliminate this mode. This will be

addressed in the next chapter.

Note that this model does not require weak interconnections, since it is based on the
structural properties of the system. When interconnections are indeed weak, changes
in the interaction variables will be slow, allowing for a singular perturbation-based
formulation [18], [19]. When interconnections are strong, singular perturbation does
not apply, while the model (2.32) still holds. It can be shown that for the case of
weakly connected power systems the interaction variables as defined here are related

to the slow variables of the aggregate model in [18].

It follows from Proposition 2.1 that interaction variables as defined in Definition
2.2 are not present for nonsingular systems. However, it is important at this point to
observe that there exist variables which have the similar property as in Definition 2.2
on slower time scales than the time constant of transient dynamics. These variables,
to be defined in the next chapter as the interaction variables on secondary level, are
caused structurally by insufficient number of controls at the secondary level of power
system control design, as discussed in Section 2.2.3. This will be fully introduced in

the next chapter.
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2.5 Summary

A new structurally-based modeling approach to large-scale electric power systems is
proposed in this chapter. The approach is general enough so that the decomposition
of the interconnected system into areas or regions (interchangeable throughout this
thesis) can be arbitrary. For practical purposes, an area or region is chosen as an

independent administrative region in this chesis.

Each region consists of generators typically at different locations. Dynamics of each
generator i are represented by the local states =}, and the coupling states zfp. The
local states and coupling states for the entire region, denoted by z ¢ and zcp, are
the collection of the local states and coupling states, respectively, of all generators
in the region, as defined in Eq. (2.8). The extended state variables z for the entire
region are the combination of local states and coupling states of the region, as indicated
by (2.18). The full dynamics of the region are then linearized. From the linearized
dynamics, interaction variables, z = Tz, are defined in Definition 2.2. Conditions
for calculating the interaction variables are given, and the interaction dynamics are

derived.
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Chapter 3

Hierarchical Control

3.1 Introduction

In this chapter we present a new hierarchical control design concept based on the
structural models developed in the previous chapter. The need for control design is
mostly promoted by the inevitable load variations, which consist of components of
different time scales as introduced in Section 2.2.1. The main goal of local control
design is to reject the fast component of load variations so that local output variables
are stabilized to their reference values. This can be achieved if the resulting system
under the given local control is a nonsingular and stable system. Load fluctuations
can be successfully suppressed by an appropriate design as long as the the slowest
eigenvalue of the system is faster than the fast component of load variations. It is
shown in this thesis for the first time that suppression of fast load variations can
only be fully achieved for nonsingular systems via local, decentralized control structure

presently practiced.

Disturbance rejection cannot be achieved for a structurally singular system under
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the given local control design, because the structural zero eigenvalues cannot be re-
moved. As a consequence, steady state offsets in the output variables to their given
reference values are necessarily present. The remedy for this structural singularity is
to employ more centralized control structure than the simple localized control. In this
thesis, a new approach to directly control inter-regional tie-line flows using FACTS
(page 17) devices is proposed. The goal of the additional control is to remove the
singular modes, which corresponds to the interaction dynamics in Eq. (2.32), so as
the resulting system is nonsingular and stable. Theoretical background on the direct
tie-line power flow control will be presented in this chapter, and its applications to the

real power/frequency control of power systems will be given in Part II of the thesis.

Further higher level control actions are needed for both singular and nonsingular
systems, due to the presence of slower components in load variations. Steady state
values of output variables cannot be maintained at their given reference values on a
slower time scale, because they are affected by the slow component in the load varia-
tions. This is true even for nonsingular systems, including those which are originally
singular, but become nonsingular with appropriately designed FACTS controls dis-
cussed in this chapter. The reason is that steady state errors of the output variables,
although zero on the short time scale, will be driven to nonzero values by the slow load

variations.

This chapter introduces a hierarchical control design concept for nonsingular sys-
tems by slowly updating the reference values of output variables to suppress the slow
drifting of output variables and to achieve a global optimality on the slow time scale.

It is shown that control designs can be done at different hierarchical levels using much
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simpler aggregate models than presently known in the literature directly relevant for
the specific levels. This is fully illustrated later in context of reactive power/voltage

control.

For singular systems, such as the real power/frequency dynamics, similar control
designs are more complicated due to the more complicated relationship between con-
trols and states on the slow time scale. This topic is still an open question, and is
currently under active research sponsored by the Pennsylvania-New Jersey-Maryland

(PJM) power pool, which is one of the largest electric pools in the United States.

3.2 Direct Tie-line Control for Singular Systems

As discussed above, steady state errors in the regulated output variables always exist
for singular systems, due to the structural singularity. In this case, additional controls
are needed to remove the structural singularity associated with the original control
structure. In this section, an entirely novel approach to regulating the inter-area dy-
namics using the FACTS technology is proposed. It is possible with FACTS devices to
directly vary the voltage phasor angle difference, or equivalently the power flow, across
a transmission line. In other words, the tie-line flows can be viewed as additional con-
trols to the system dynamics. With appropriate design of the new controls, the original
singularity of the system can be removed and eigenvalues of the system can be placed

in desired locations.

To include this control option into formulation in this thesis, let us use the standard
control terminology by defining

Up = F (3.1)
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as the supplementary control variables with the FACTS devices. The dynamics of the

administrative region with this additional control can be derived from (2.25) as
T = Az + Byyes + Uurp + Vur (3.2)

Let us consider suitable feedback designs to remove the system singularity. Since the
~ singular mode corresponds to the inter-area dynamics derived in (2.32), let us study
further the inter-area dynamics under the new control up. With definition (3.1), the

inter-area dynamics given in (2.32) can be written as
2 =TByref + TUur + TVur (3.3)

It is clear from this equation that the singularity, when tie-line flows are not directly
controlled, can be removed easily with a simple feedback of the interaction variables z,
noting that the dimension of interaction variables is very low. It should be pointed out
that implementation of the tie-line control is not restricted to either the fast transient
time scale of system dynamics or the slow time scale of updating the reference values.

Details of the control design to meet desired specifications are given in Part II.

3.3 Time Scale Separation

Because the updating of reference values of output variables is done typically more
slowly than the time constant of the system transient dynamics, different time scales
exist in the system dynamics over long time horizon. Time scale separation techniques

can be used to simplify higher level control designs.

The linearized dynamical model for any adminisirative region was derived in Chap-
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ter 2 as

& = AT + BYpe; + UF + VF (3.4)

In this equation, vector F represents the tie-line flows into this region from its neigh-
boring regions. The reference value y,¢s is updated, by either the local level or higher
level controls, at discrete instances to regulate the profiles of output variables of direct
interest so that some predefined optimality is achieved. Due to physical limitations and
practical considerations, the updating is typically done more slowly than the transient
dynamics. This process of updating the reference values of individual controllers is
often called the secondary control. Let us denote the time interval of the secondary
control as Ty, i.e., the reference value is updated at instances kT, k = 0,1, --. Thus
the reference value y,.y is constant in the interval k7, <t < (k + 1)T;. Let us further
denote vy[k] = yres(kT,) as a discrete time sequence of the reference value. With this

notation, Eq. (3.4) can now be written as

&= Az + Bu[k] + UF + VF (3.5)

The secondary control is to design an appropriate discrete time sequence v,[k] to
achieve some prespecified optimality, as will be further discussed. Because the discrete
sequence v,[k] varies more slowly than the transient dynamics, much simpler models
can be derived to assist the secondary control design. Let us now carry out the detailed
derivations. Because the time constant of the transient dynamics is much shorter than
the secondary control time interval T, one can assume that all transient dynamics
settle to a steady state before each time instance kTy, i.e., £ = 0 at kT,. Eq. (3.5)
then reduces to

Az + Bu,[k] + UF =0, att=kT, (3.6)
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or

Az[k] + By,[k] + UF[k] =0 (3.7)
using the convention of (2.1). Eq. (3.7) determines a static relationship between the
steady state equilibria of the system and the reference values to be adjusted by the

secondary control.

The secondary level controls are designed to eliminate the slower steady state offset
of some critical variables in the region under the slow drifting of disturbances. Let us

express these critical variables for the secondary level as
zs = Dz (3.8)

The dimension of z, is in general much lower than the dimension of z. The reference
value v,[k] is updated on the time scale T, so that slower steady state offset in z, on
the time scale 7, is eliminated. To derive the relationship between z,[k] and v,[k], we
distinguish two important cases, the singular system and nonsingular system. Singular
system corresponds to the real power/frequency dynamics without direct flow control,
and the nonsingular system corresponds to the reactive power/voltage dynamics. For
a singular system, i.e., matrix A in (3.7) is singular, the relationship between z,[k] and
vs[k] derived from (3.7) is quite complicated. Details will be given in Part II. In the
case of a nonsingular system, either the voltage dynamics or the frequency dynamics
with direct flow control, the desired relationship between z,[k] and v,[k] can be easily

determined from (3.7) as
z[k] = —A'Bu,[k] — AT'UF[k] (3.9)

and therefore

z,[k] = Byv,[K] + M, F[k] (3.10)
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with B, 2 —DA"'B and M, £ —-DA-'U.

Eq. (3.10) determines a quasi-static relationship between z,[k] and v,[k]. This
quasi-static relationship is best utilized for the secondary control design when trans-
formed into a dynamical model. To introduce the secondary discrete time dynamical

model, let us subtract (3.10) at two consecutive time instances kT, and (k + 1)7T}:

zo[k + 1] — 2 [k] = By(us[k + 1) — v,[k]) + Mu(F[k + 1] — F[k]) (3.11)

Define the update of the reference value, or the corrective control for the secondary
level as
us[k] = vs[k + 1] — v,[k] (3.12)
and the change of tie-line flows as
F,[k) = F[k + 1] — F[k] (3.13)
One obtains the secondary level discrete time dynamical model as

z4[k + 1] — z,[k] = Byu,[k] + M, F;k] (3.14)

Model (3.14) is introduced as the simplest model for designing output feedback-based
secondary level controllers at the regional level. This model can also be interpreted
as representing a discrete event process of a moving equilibrium z,[k] driven by the
discrete control actions u,[k] and the tie-line flows [8]. Variables z,[k] will be referred

to as the secondary level states.

It should be pointed out that the corrective control signal u,[k] defined in (3.12)

represents an implicit integral control, because, from (3.12),

vs[l] = lii u,s[k] + v,[0) (3.15)
k=0
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for any integer . It is this implicit integral control that rejects the steady state error

in the output variables on the secondary level time scale.

3.4 Hierarchical Control Design

In this section we present the hierarchical control design methodology based on the
time scale separation method discussed above. It is shown that the effect of neighboring
regions can be easily accounted for in the regional control design, using the derived

simple model at the secondafy level.
3.4.1 Controllability

Let us first show a structural property associated with a control-driven system - the
controllability of the system is determined by the relative dimensions of the states and
controls. Assume that the dimension of the secondary level states z,[k] is n, and the
dimension of the secondary level controls u,[k] is m. Recall that the controllability

matrix of (3.14), with F,[k] treated as an external input, can be written as
[B, o - 0] (3.16)

This matrix has maximum rows of m and therefore maximum rank of m. If the number
of controls m is less than the number of states n, as is typically always the case, this
controllability matrix is always singular, and the system is not fully controllable. This
property is a structural one since it is independent of the numerical values of the

system.

As a result of this structural uncontrollability, only at most m states can be con-
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trolled independently. Let us choose m critical states as the output variables to be

regulated by the secondary control, expressed as
Ys[k] = C,xz,(k] (3.17)

with matrix C, having dimension m x n. Variations in the output variables y,[k] can

be easily obtained from (3.14) as
Ys[k + 1) — ys[k] = CsBsu,[k] + Cs M, Fy[k] (3.18)
Define the m x m square matrix U, = C,B,. Then the above can be written as

y’[k + 1] - y.[k] = Usus[k] + CsMsFa[k] (3.19)
3.4.2 Conventional Secondary Control

The goal of the secondary level control is to stabilize the output variables y,[k] over the
secondary time horizon to an optimal value determined by the tertiary control. The

conventional secondary control takes the simple proportional form
u,[k] = G(ys[k] - y:P(K]) (3.20)

where yP![K] & yP'(KT,) is the optimal value for the output variables on the even
longer tertiary time scale 7;. This optimal value is calculated by the tertiary control,

and is constant for secondary processes.

Under this conventional feedback control, secondary level closed-loop dynamical

model for output variables is obtained as

ys[k + 1] - y,[k] = UnG(ya[k] - y?t[K]) + C,M,F,[k] (3.21)
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The gain matrix G can be chosen to optimize a performance index at the regional level

Js = D (y; (k] Qys[k] + u [k] Ru,[k]) (3.22)

k=0
for some matrices Q = QT > 0 and R = RT > 0 specified by each region. The
superscript T denotes the transpose of a matrix. The optimization is with respect to
u,[k], and the result is the optimal gain matrix G. In this process, tie-line flows with

neighboring regions are neglected, due to the large scale of the system and the desire

to maintain decentralized nature of the regional control.
3.4.3 Improved Secondary Level Control

It is clear from (3.21) that tie-line flows viewed as an independent external input to the
system affect the dynamics of the output variables. The conventional “optimal” control
designed with interconnections neglected will no longer be optimal when implemented
to the actual system where interconnections are indeed present. To fully compensate

the effect of interconnections, we propose a modified feedback control law in the form
Us[k] = G(ys k] — y;"'[K]) + HF,[k] (3.23)

where the term H F[k] is to cancel the effect of F,[k] on output variables. Substituting

(3.23) into (3.21) yields
Ys[k + 1] — ya[k] = U, G (ys[K] — :‘/:pt[K]) + (U,H + C; M,) F; k] (3.24)

It is clear that if U, is invertible, then the effects of the tie-line flows can be fully

eliminated by simply choosing

= -U;'C,M, (3.25)
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With this choice of H, (3.24) reads
ys[k + 1] - y,[k] = UaKs(ya[k] - y:pt[K]) (3'26)

with no flows entering into the equation. In other words, the region under study looks
as if it were fully isolated from the rest of the system, as far as the output variables

are concerned.

Note that the condition that U, is invertible should not be viewed as restrictive;
instead, it ought to be taken as one of the requirements for the choice of output
variables. This is due to the fact that the matrix (I + U,K,) is the system matrix for
the output variables y,[k] seen from (3.21) or (3.26); therefore, if the matrix U, were
singular, the closed-loop system matrix (I + U,K,) would always have an eigenvalue
of 1. The consequence of this is that steady state errors are inevitable for the chosen
output variables. To fully control all output variables, it is required that they are

selected such that U, is of full rank.

Note also that the control scheme presented here is totally decentralized, assuming
that tie-line flows are locally measurable at each region level. No detailed information
about neighboring regions is needed; only tie line flows are required, since they aggre-
gate the net effect of detailed dynamics of neighboring regions. It is not an unrealistic

assumption that tie-line flows are locally measurable.

3.4.4 Tertiary Level Control Design

As mentioned earlier, the tertiary level control is mainly concerned with regional coor-
dination over the long time scale T;. The ultimate goal of this level is to ensure that the

interconnected system as a whole operates in an optimal fashion. It is implemented by
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adjusting the optimal values y?* of the secondary output variables over the time hori-
zon T,. Since inter-regional effects take place through tie-line flows, scheduling these
flows is of direct concern for the tertiary control. In fact, the goal of tertiary level
design, as proposed here, is to reschedule the tie-line flows according to a systemwide

performance criterion.

There exists a trade-off between the settings of flows and the secondary level output
variables. An ideal optimal operation at the tertiary level may require unrealistic
setting at the secondary level, due to physical limitations and constraints. Thus, a
typical performance criterion at the tertiary level should involve the trade-off between
the scheduled flow and the optimal settings for the secondary level outputs. To solve
this problem, one must have the relationship between the optimal setting y:*[K] and
the tie-line flows. This relationship, which reveals the effect of tie-line flows on the
output variables of each region, is the aggregate model on the tertiary level to be

derived in Part III.

3.5 Summary

A new hierarchical control design concept based on the structural models developed in
Chapter 2 is presented. The main goal of the hierarchical control is to eliminate the
structural singularities associated with singular systems and reject load variations of
different time scales. The new concept is based on the use of FACTS devices to directly
vary the power flows across a transmission line. This chapter also discusses higher level
control designs for both singular and nonsingular systems to stabilize the system in the

presence of slower components in load variations. Quasi-static discrete-time dynamical
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models are derived on slower time scales, with z,[k] representing the state variables
of interest at the discrete-time instance kT,. The corresponding output variables are

represented by y,[k].
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Part 11

Real Power/Frequency Control
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Chapter 4

Modeling and Singularity

In Part I the structurally-based modeling and hierarchical control approach was pre-
sented conceptually. Here these theoretical concepts are applied specifically to real
power/frequency dynamics of power systems. It is shown that real power/frequency
dynamics under the present localized control constitute a structurally singular system
as defined in Definition 2.1. Detailed discussions on the direct tie-line flow control to
remove the structural singularity is presented. Quasi-static models for frequency on
mid-term time scales will be derived under the assumption tHat the fast dynamics of the
system are stabilized. Conceptual use of these new structural models for systemwide

frequency regulation is proposed.

4.1 Modeling

In this section, the general structurally-based modeling approach proposed in Part I is
used for modeling the real power/frequency dynamics. Load disturbances are explicitly

modeled.
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4.1.1 Local Dynamics

The typical structure for real power/frequency control can be represented by Fig. 4.1.

Fb‘”G_ G

P
mech | GENERA. NETWORK |——={ LOADS

GOVERNORY——3] "~ ToRs >

TIE-LINES
Figure 4.1: Typical Structure of Real Power/Frequency Control

The governor control regulates the mechanical power applied to the generator shaft
to stabilize the frequency. Presently, the control structure is entirely localized in the
sense that each governor control uses only the frequency error signal, defined as the
difference of the measured frequency and the given reference value, of the particular
generator to which it is connected. There does not exist a direct coupling among the

controls of different generator units.

Let us first study the local dynamics of each generator unit. Consider any generator
unit 7. Since the generafor is simply a rotating shaft, the dynamical model is simply

the mechanical rotation equation
ot =1 — 18— 1) (4.1)

where " is the rotating speed, or frequency of the generator, J' is the inertia of the
rotating shaft. The terms 7, 7, and 7} represent the input mechanical torque, output
electro-magnetic torque, and mechanical damping torque, respectively. To simplify

notation, the subscript * will be dropped throughout the subsection. Eq. (4.1) then
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becomes

JWw=Tpm —Te — T4 (4.2)

This equation is typically converted into a more convenient form using power instead
of the torque. Multiply (4.2) by w. That leads to, by recognizing that multiplication

of torque with frequency is power,
Mw=P,—-P, - P, (4.3)

where M = wJ, and P,,, P., and P, are the input mechanical power, output electrical
power, and mechanical damping power. Since the generator is operating very close to
the nominal frequency wp (60 Hz in US), one typically takes M = woJ as a constant.
The damping power P, is usually small, and is assumed to be a linear function of the
frequency, P; = Dw, where D is the damping coefficient. For the linear damping, Eq.
(4.3) becomes

Mw+ Dw =P, - P, (4.4)

The mechanical power P, is regulated by the governor control. Consider a simple

governor-turbine-generator (G-T-G) set shown in Fig. 4.2.

ref err

0gG oG a Pmech oG
—=(O)—=]GOVERNOR[—"| TURBINE ——FENERATORI._.

t

Figure 4.2: Primary Control Loop of a G-T-G Set

The governor regulates the valve opening a of the turbine, which in turn controls

the mechanical power applied to the generator shaft P,,. We adopt the same notation

60



as in [20]. Turbine and governor are in general modeled as a first order system, given
by
TyPrn = n(Pp,a) (4.5)

Tya = m(a,w ) (4.6)

where T, and T, are the turbine and governor time constants. Frequency error signal

is defined as w*™" = w — w™/, with w&“’ being the reference value for the governor.

The local state variables of the G-T-G set are defined as the frequency, mechanical

power and valve position, given by

w
P
a

TLc 2 (4.7)

The local dynamical model of the G-T-G set is described in a nonlinear state-space
form:

ire = fre(zLo,w™) — cP. (4.8)

where frc is the combination of (4.4)-(4.6), and the vector c is given by
c= L (1) (4.9)
=1 :

Assume that there exists a nominal operating point given by zJ, = (w° P2, a?),

and P, = P?. Define deviations of the local state variables from the nominal operating

point as :
ow & w-u°
6Pn & P,-P° (4.10)
ba & a-a°



or 6z.¢c a zrc — 2%c. The linearized local dynamics can be derived as
dirc = Apcdzic + bowiE! — coP, (4.11)

where Ay c is the system matrix of local dynamics of each generator, and given by

-—D/M l/M eT/M
ALc = 0 -1/T. K./T. (4.12)
-1/T, 0 ‘-r/T,
1 0
b=—10 (4.13
T, 1 )

Quantities T,,, K,, T, and r are constant parameters. See [20] for more details. To sim-
plify notation, the prefix § will be omitted throughout the thesis. With this convention
Eq. (4.11) becomes

Ire = ALC"L'LC + bwchf —cP, (4.14)
Now let us write the local dynamics for all generator units in the region. Eq. (4.14)

is true for any generator, i.e.,
iho = Alozi o + VW™ P =1, m (4.15)

Define the local state, frequency reference, and the generator output for the region as

1 1 1
Tre Wrefs P,
A . A . A .
T = : y Wref = : » Pe=1| (4.16)
Tic Wre P

and the regional local system matrix

Alc
ALC = (4.17)
Ic
and " J
b2 , c2 (4.18)
™ cm
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One obtains the local dynamical model for the entire region as
Trc = ALcZic + bwz;ef —cPg (4.19)

The vector of generator power outputs Pg is the coupling variables z¢p introduced
in Chapter 2, which serve as the link to local dynamics of other generators via the

transmission network. This is discussed next.

4.1.2 Network Coupling

Consider any single region with m generators. Network constraints are typically ex-
pressed in terms of nodal type equations that require complex valued power into the
network SV to be equal to the complex valued power S = P + jQ injected into each

node

-

SN =8 (4.20)

where SV = PV 4+ jQV is the vector of net complex power injections to all nodes,
which can be written as

SN = diag(V)Y},,V* (4.21)
where Y,,.,, is the admittance matrix of the network, V = Ve is the vector of all
nodal voltage phasors, with magnitude V and phase §. The notation diag(e) stands
as the diagonal matrix with each element of the vector as the diagonal element. Here
we focus only on the real power constraints. The constraints for the reactive power
will be discussed in detail in the next part of the thesis. The real part of this equation

becomes

PN = PN(5,V) (4.22)
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Further, the real power injected into each generator terminal on the interconnected
system, P, generally is the sum of the generator power output P and the real power
flow from the neighboring areas. Let us define the vector of the real power flow from

the neighboring areas into all generator nodes as

F§
A .
G — ‘ .
Fga| : (4.23)
Fg

Then it is obvious that PY = Fg + Pg. The network constraints for the real power

balance can be further written as
PY(6,V)=Fg+Ps (4.24)

Similarly, since the real power from the load into the network can be written as the
difference of real power flow injected into the network at the load terminal Fy, and the

real power absorbed by the load Py, i.e.
PN=F,-P, (4.25)
the network constraints (4.22) at the load nodes are expressed as
PN(,V)=F, - P (4.26)

assuming that the positive direction for tie-line flows is the injection into the network,
and the positive direction for loads is leaving the the network. Note that F; and Fj,
represent real power flows throughout Part II of the thesis. The separation of the power
injection into the part of the injection from the actual device and the part from the
interconnecting tie-lines with the neighboring subsystems is essential for establishing

structural models of the interconnected systems introduced here.
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Differentiating these equations under the decoupling assumption (8P" /8V = 0)

obtains
Fg + Pg = Jggdg + JoLL (4.27)
Fy, — P, = Jigb + JLLdL (4.28)
where
Jy = %, i,j=G,L (4.29)

are the Jacobian matrices evaluated at the given equilibrium operating point. Assuming
Ji1 to be invertible under the normal operating conditions, we define one of the most

important matrices associated with a transmission network, the sensitivity matrix,
C, & -JilJe (4.30)

to express frequency deviations at loads wy, in terms of frequency deviations at gener-

ators wg and fluctuations in load power. It follows from (4.28) that
oL =Culg + JEII,(FL - PL) (4.31)

or by differentiating it with respect to time

wy, = Cowe + Ji} (FL — Pp) (4.32)
where
wl
weg=0c2 | : (4.33)
wm

Relationship (4.32) defines the explicit dependence of load frequencies on generator
frequencies determined by the network constraints. Combining (4.31) and (4.27), and

defining the other two most important matrices associated with a transmission network

Kp 2 Jog + JoLC. (4.34)
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and

Dp 2 —JgLJg} (4.35)

results in

Pg = Kpdg + DpP,, — F, (4.36)

Here F, represents effective tie-line flow as seen by each generator and is given as
F.2 Fg+ DpFy (4.37)

It follows after taking derivative with respect to time on both sides of (4.36) that
Pg = Kpwg — F, + DpPy, (4.38)

This equation defines the relationship among all the generator real power outputs Pg,
the tie-line flows into the subsystem, and the loads variations, through the network

characteristics specified by the two important matrices Kp and Dp.

It should be noted that any (portion of) network is fully characterized by the three
matrices (Kp, C,,, Dp), with Kp reflecting the effect of the generator frequencies on the
generator real power outputs, C, relating the generator frequencies to the load frequen-
cies, and Dp representing different electrical distances of loads at different locations
seen by the generators. The structural properties of these three matrices determine
the fundamental features of the power system primary real power/frequency dynam-
ics. They have a direct impact on important issues such as the inter-area oscillations.
These properties also have a systemwide effect on the higher level dynamics. Detailed

studies on these matrices will be presented in the next section.
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4.1.3 Regional Dynamics

The state space formulation of the linearized local dynamics of all the governor control
sets on the system (4.19), together with the network constraint equation (4.38), forms
the closed-loop dynamic model of the interconnected system. To derive this, let us first
repeat Eq. (4.38) here

Pg = Kpwg — F, + DpPy, (4.39)

Generator frequencies are part of the local generator states, given by

Wwg = E:BLC (4.40)
with the matrix
el
E = BlockDiag(e!,---,e™) = .. (4.41)
em
and € = [ 10 ..-0 ]i, with the dimension matching the dimension of the local

states z35, i = 1,---,m. Local dynamics are derived in (4.19). Combining these
two equations together, the standard state space linearized model of the single region

within the interconnected system in terms of the tie-line flows explicitly takes the form
Tre | _ | Ae —c || zie 0 0 |
e l=les xR ][] ww
The system matrix for the region is given by

_ ALC —-C
A= KoE 0] (4.43)

The augmented state variables within each area to be used throughout this thesis

are defined as

z2 [ TLo ] (4.44)



instead of traditionally used

Totd = [ZC ] . (4.45)

The state coordinate transformation at each machine level is the mapping from the vari-
ables defined in (4.45) into (4.44). With these new state variables the general structure
of an arbitrarily interconnected system is given in (4.42). At this point we could di-
rectly use the model formulation proposed here to re-visit the question regarding the
information obtained from the static load flow equations in analyzing small-signal sta-
bility. This was recently studied in [21]. It follows in a very straightforward way that
the small-signal stability properties of an isolated system (F. = 0) are dependent only
on the properties of the static network constraints, i.e. on the properties of the matrix
KpE, when the local system matrices A.c of all components are stable. This obser-
vation shows that as long as the local dynamics at each component level are stable,
the small-signal stability information obtainable from matrix A is equivalent to the
information obtainable from the static load flow equations. This claim is independent

from the complexity of particular components.

From a structural view the choice of electric real power outputs of the generators
Pg as the state variables is a natural choice for the state variable since it can be directly
interpreted in terms of generators’ interactions with the transmission system. Notice
that this model is not a simple generalization of the swing equations often used for
transient stability analysis. The state variable used here is Pg instead of the state dg
commonly employed in the swing equations. The significance of the new choice for the

state variables and the relationship with the traditional ones will be studied next.
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4.2 Analysis

In this section a detailed analysis of the real power/frequency dynamics is given, much
in the same spirit as in Chapter 2. Let us first exploit the structural singularity of the

real power/frequency dynamics.
4.2.1 Network Properties

The transmission network has distinct properties that directly contribute to the inter-
area oscillations and other important dynamical features. The decoupled Jacobian

matrix J is defined as

a 0P [ Jge JoL ‘
J= 5 [ Jie JLL (4.46)
with submatrices J;j, 4,5 = G, L shown in (4.27)-(4.28). Define further

K} 2 KPINo electrical losses (4.47)

when the network is (real power) lossless. With these definition, some important

network properties are listed as the following Proposition.

Proposition 4.1 (Network Properties) For any (portion of) network, the follow-

ing is true:
1..J1=0
2. Kp1=0
3. C,1=1
4. 1TKb =
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where 1 is the column vector with all 1’s such that all operations are meaningful.

All of the above propositions are direct consequence of the fact that the row sum
of the incidence matrix is zero [22]. Note that Kpl = 0 simply implies that, for any
network, Kp is singular with 1 as the right eigenvector corresponding to its zero eigen-
value. The last conclusion in the proposition states further that, for a lossless network,

matrix K% has 17 also as its left eigenvector corresponding to the zero eigenvalue.

4.2.2 Structural Singularity

Singularity of matrix Kp for any network leads to a fundamental characterization of

the regional system dynamics. For this, we have

Proposition 4.2 (Structural Singularity) For any (pertion of) network, lossy or

lossless, any generator type, the system matriz A defined in (4.43) is always singular.

This is a direct result of the singularity of Kp. Let the left eigenvector of Kp

corresponding to its zero eigenvalue be 7, i.e.,
ITKp=0 (4.48)

Consider the row vector

Lo 17| (4.49)

with the same number of 0’s as the dimension of z.¢. It is easy to check that

LA=]0 zT][ﬁ’ﬁg "3]:[1TKPE 0] =0 (4.50)
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i.e. matrix A is also singular with the vector L given in (4.49) as its left eigenvector
corresponding to the zero eigenvalue. Details on the systemwide effect of this structural

singularity will be discussed next.
4.2.3 Inter-Area Dynamics

Inter-area variables were defined in Definition 2.2. It is emphasized that with the
structuraily-based modeling approach no weak interconnection assumption is required.
To derive the inter-area dynamical model, let us recall that the state space model of a

single region is given by

Tre | _|Awe —c ||z | _| O 0 |
E b A NP P L
with the system matrix

_ ALC —C
A= [ KpE 0 ] (4.52)
Let the inter-area variables defined in Definition 2.2 be z = Tz. It has been shown
that

T=L=[0 IT] (4.53)

where T Kp = 0. The inter-area variable becomes
z=Tz=I1"Pg; (4.54)

This inter-area variable has a clear physical meaning that it is the combination of the
real power outputs of all generators in the region according to the left eigenvector of
Kp matrix. This particular combination remains constant if interactions are removed
and there is no load variation. As tie-line flows or loads vary, the inter-area variable

will vary with time.
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The dynamical model for the inter-area variable is of the form

z=—T[£]+T[l‘)}P]PL (4.55)
or simply
z=—IT(F, - DpPy) (4.56)

Clearly it is seen that the inter-area variable z varies due to the tie-line flows, for a
constant power load. Eq. (4.56) defines exactly the relationship between these two. It
is also seen that the fundamentally the inter-area dynamics represent the regional net
real power exchanges. This kind of interactions among subsystems are referred to as

inter-area power interactions.
4.2.4 Computation of Inter-Area Variables

Since the inter-area variables are defined for individual separate region, the compu-
tation of inter-area variables can be done by each region separately. For each region,
the computation involves only the calculation of the left eigenvector L of matrix A

corresponding to its zero eigenvalues, as specified by

LA=0 (4.57)

In general, it is desired to have a stable local dynamics, i.e. the governor control
design is such that each matrix A,¢ is of full rank. This assumption is normally met
since local controls are typically designed such that the local dynamics are stable.
Under this condition, the singularity of matrix A is directly caused by the singularity

of matrix Kp. In this case, we can take L as
L=[0 I"] (4.58)
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where IT is the left eigenvector of matrix Kp corresponding to its zero eigenvalue, i.e.

ITKp=0 (4.59)

Let us discuss the calculation of I7. It is emphasized that (4.59) can be easily solved
by simple Gauss elimination-like method. But a structural approach for the solution
seem more physically meaningful. It has been shown in Proposition 4.1 that, for a
lossless network, we have a surprisingly simple, but meaningful solution [T = 17, This
particular structure is by no means coincident, it represents a fundamental requirement

for the network — the power balance.

For a (real power) lossy network, since the losses are in general very small, we
can use a perturbation method to obtain an approximate solution based on the lossless
solution /T = 17. The approximate solution is expected to be quite accurate if the losses
are not unreasonably high. Numerical example will show later that the approximation
gives a simple but quite satisfactory answer. Again, this approach is an alternative to

the numerical Gauss method, but more physically meaningful. Let us write [ as
l=0-19=1-10 (4.60)
where [® = 1 corresponds to the eigenvector of the lossless Kp matrix, and /9 is added

to account for losses. When the losses are small, the term /9 is expected to be also

small. Condition (4.59) becomes
TKp=(I"-19T(KL+K§) =0 (4.61)

Recognizing from Proposition 4.1 that I’K% = 0, and neglecting higher order term

15T K} due to small losses, one obtains
TK:, = I'TKY (4.62)
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Furthermore, without loss of generality, one could assume the form for {9 to be
=0 -l ] (4.63)

since the transformation {7 is unique only up to a constant scalar, and one can always
choose the first element of I to be the first element of I*T, and therefore first element

of 197 is always 0.

Let us denote

rafy - (4.64)
Then Eq. (4.62) can be written as
[0 " | Kb =01TK} (4.65)

Since the first row of K% is multiplied by zero, it can be eliminated. Define matrix

B 21 | Without 1st Column (4.66)
Then it is easy to see that for any matrix M,
ME, = M | wimout 15t Column (4.67)
EfM = M| Without 1st Row (4.68)
With this notation, Eq. (4.65) now becomes
TETKS, = I'T K3, (4.69)
Further, let us split K% and K3 as follows:
Kp=[xt i kb ]=[Kb ¢ kb5 | (470)
Kp=[kg i kp_]=[Kp i KB\ ] (47)
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where K%, and K%, represent the first column of K% and K3. Since both K} and K}
satisfy

K% =0 and K$1=0 (4.72)

from Proposition 4.1, we have

K% =—-KLE1 and K}, = —K§E1 (4.73)
Thus,
Kb=[_KiE1 | KLE | (4.74)
K} =[ -K3E1 | KIE | (4.75)
Eq. (4.69) becomes
TET | KBl ¢ KLE, | =UT[ —-KLE1 © KLE, | (4.76)
Or
ITETKSE)1 = I'TKSE 1 (4.77)
TETKYE, = I'TKLE; (4.78)

Eq. (4.77) will be automatically satisfied if Eq. (4.78) is satisfied. This redundancy is

always the case due to the singularity of Kp.

Let us now consider Eq. (4.78) only. Under normal operating conditions, matrix
K% is rank deficient only by 1. In this case, matrix ET K% E), which is the matrix K%
with first row and first column eliminated, has full rank. Therefore, one can solve for
1T from Eq. (4.78) as

1T = "KL B\ (ETKSE,)™! (4.79)
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Using the fact that I* = 1, one derives

T =0 : 1TKLE,(ETKLE,)™ | (4.80)

This is the desired expression for the perturbation to the left eigenvector of Kp corre-

sponding to its zero eigenvalue. It is valid for small real power losses.

It is interesting to recognize that when matrix Kp has rank lower than (m — 1),
there exists a possibility of having more than one interaction variable per area. These
additional interaction variables are simply caused by the non-existence of any solution
to the static network constraints (4.21), and are independent from the relative inertia
and damping coefficient values of generators, as well as from the type of governor
controls. Although an open question remains if such operating points would be feasible,
a near loss of rank would be of definite practical interest. For example, one scenario
of additional loss of raik in the matrix Kp would be when the system operates at
unusually high real power transfers. The inter-area oscillations have been recognized

in context of this operating mode [4].
4.2.5 Interpretation of Inter-Area Variables

Let us now discuss the physical meaning of the inter-area variables defined in 2.2.
Since inter-area variables are defined when interconnections are removed, i.e. they are
defined separately for each region, we focus on a single region for our study. First, for
the (real power) lossless case, it has been shown that [T = 17, The inter-area variable
can, from (4.54), be further written as

m
z=1"Pg=1"Pg =) P! (4.81)
j=1
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i.e. the inter-area variable is the sum of the real power outputs of all the generators
in this region, or the total generation of the region. Under the conditions specified
in Definition 2.2, i.e. when there are no tie-line flow exchanges with the neighboring
regions, and no load variations, the total generation of the region must be constant,
equaling the constant load demand. It is clear that the definition of the inter-area

variables in Definition 2.2 captures this fundamental property of the network.

For the case of a lossy network, part of the generation must be absorbed by the
losses in the network, and the other part of the generation must be balanced with the
loads. Therefore, the total generation of the region minus the power absorbed by the
losses must be a constant under the conditions in Definition 2.2. This portion of the
power absorbed by the losses is precisely described by the correction term 197 Pg. In
fact it can be shown that the term 97 Pg is exactly the total real power loss of the
region. Thus we see here again the requirement of power balance for the network. This
power balance requirement is the fundamental property of the network. It will have a

systemwide effect on higher level dynamics also.

4.2.6 Comparisons with Conventional Models

The choice of electric real power outputs Pg of generators as state variables facilitates
greatly the study of inter-area dynamics. For comparison, let us discuss conventional
models, which employ generator phase angles as state variables. The local dynamical
model, under the condition that updating the reference values is inactive, has been
obtained as

Zrc = Arczic — cFPg (4.82)
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where the generator power P is replaced by the network coupling relation in (4.36)
Pg = Kpdg + DpPy, — F, (4.83)
Together, the global linearized model of an area takes the form
zrc = Arctic — ¢(Kpbg + DpPy, — F,) (4.84)
and the trivial relation
b¢ = we = Ex1c (4.85)

is used. The most often used model in the conventional state variables is the so-called
swing dynamical model, i.e. there is no governor control, and the mechanical power

applied to the generator shaft is constant. The primary dynamics become
Még + Dé¢ + Kpbg + DpPL, — F, =0 (4.86)

with
M! D!

M= and D= (4.87)
M™ D™

being the inertia and damping matrices. This model loses the clear structural properties
of the system matrix A as stated in Proposition 4.2. Also it is not easily generalized

to more complicated cases.

The new state variables P; can be viewed as a linear transformation from the

conventional state variables d¢ as specified in (4.83)
P; = Kpdg + DpP,, — F, (4.88)

or simply

Pg = Kpdg (4.89)
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if one neglects the inputs to the system. This is not a conventional transformation in
the sense that the transformation matrix Kp is always singular for any network, as
stated in Proposition 4.1. This singular transformation proves to be very efficient for

the basic understanding of inter-area oscillations in power systems.

Let us first briefly present the existing results in the literature. ror the conventional
model (4.86), storage variables have been proposed [19]. These storage variables are
defined as |

£ = Mwg + Dég (4.90)

Note that the defined storage variables have the dimension of the number of generators,
not just a single scalar for an area. The question is how the generalized definition
of the interaction variables introduced in Definition (2.2) is related to this widely
accepted approach to modeling inter-area variables. To answer this, we first interpret

the previous work from the viewpoint of Definition (2.2).

If we perform the calculation of the inter-area variables for the model (4.86) in the

old state variables, it can be easily shown that the resulting area variable is
Zold = le = lT(Mwa + Dé¢) (4.91)

where [T Kp = 0, the same left eigenvector of Pg corresponding to the zero eigenvalue.
In other words, the scalar inter-area variable defined here when applied to the conven-
tional model is the same linear combination of the storage variables as the inter-area

variable

z=ITP; (4.92)

in the new state space proposed here, with the left eigenvector I* of Pg. The relation

between the two inter-area variables is derived from (4.86) (with P, = 0 and F, = 0)
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2= —q (4.93)

since

Pg = Kpbg = —(Mwg + Dwg) = —é (4.94)

In the context of mechanical variables, inter-area variable z can be explained as the
force, and the inter-area variable z,4 can be viewed as the momentum modulo me-

chanical losses.

There are a few drawbacks with the conventional model. Conceptually, first of all,
the inter-area variable z,q = [T(Mwg + Ddg) misleadingly indicates that generator
local dynamics directly participate in the inter-area mode, since all quantities involved
are mechanical ones constituting the generator local dynamics. Although these lo-
cal dynamics quantities show up in the inter-area dynamical equation, the particular

expression (Mwg + Dd¢) actually implies the electrical power balance, as we see next.

Second, structurally, the form z,q4 = IT(Mwg + Ddg) is valid only for the linear
damping. When the damping takes a nonlinear form, the expression is completely not
valid. But, the inter-area variable z = [T Pg still holds. This is because the inter-
area variable reflects the fundamental requirement of the power (force) balance for an
isolated system without any disturbances. The expression (Mwg + Ddg) is useful just

because it is another form of the power (force) balance, for
(Mwe + Déc) = — / Ps(r)dr (4.95)

through the dynamical equation. For different forms of damping, expression (Mwg +

Dé¢) becomes meaningless, while the basic power (force) balance will still hold. This
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clearly reveals that the choice of the power outputs P as state variables captures the

fundamental properties of the system.

Third, from the point of view of control design to suppress inter-area oscillations,
the inter-area variable 2,4 = {7 (Mwg + Dd¢) involves the measurements of m angles dg
and m frequencies wg, and the inertia matrix M and the damping matrix D. It is very
hard to get accurate numerical values for these parameters. In the new state space,
the inter-area variable z = IT Pg only involver the measurements of m generator power
outputs, which are measured anyway. No parameters regarding the local dynamics are

needed.

4.2.7 An Example

\\
S

In this section, we study a small example power system to illustrate the theoretical
concepts developed in this thesis. The example is the 5-bus power system given in 23],
also shown in Fig. 4.3.

Region I§ ...

o e,
."' "o‘
o Region | .,

P i iad

Figure 4.3: An Interconnected 5-bus Power System

This example will be used throughout this thesis consistently to show the structural
decompositions and cont'rol designs. The system is composed of two regions. Region I
includes generator buses #1, #2 and the load bus #4. Region II includes generator

#3 and load #5. There are two tie-lines connecting generator #4 to #3, and load #4
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G-T-G Set Parameters
M D er T. K, T T,
#1 10 5 1696 2 10744 19 .25
#2 5 4 1696 2 10744 19 .25
#3 3 4 1696 2 10744 19 .25
Line Parameters
H1 - H2 | #1 - H4 | #2 - F#4 | #3 - #5 | #2 - #3 | #4 - #5
b 10 10 10 10 X .5
g 1 1 1 1 .05 .05
Load Flow Data
#1 #2 #3 #4 #5
| %4 1 1 1 .9802 .9502
) 0 .0157 -.191 -.0575 -.3013

Table 4.1: Per Unit Data of the 5-Bus Example

to #5. The data used in the simulation are listed in Table 4.1.

All simulations are done using the software MATLAB. The Kp matrix for each

region are calculated as

14.8977 —14.8977

I _ 11 _
K= [ ~14.9446 14.9446] and Kp =0 (4.96)

Clearly, each row in the Kp matrix sums up to zero, i.e.
K} [ } ] =0 and K} 1=0 (4.97)

It is easy to check that the left eigenvector of Kp corresponding to the zero eigenvalue

is given by

PT=[109969] and I""7T=1 (4.98)

For the purpose of illustration, let us consider only the swing dynamics. In this case,
the closed-loop eigenvalues for the disconnected and connected system are computed

and shown in Table 4.2.
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Disconnected Region 1 Region 11
System —0.3487 +£2.08255 | —0.6025 | 0 | —1.3333 0
Connected System [ —0.3509 + 2.1005 | —0.4201 &+ 0.25035 | —1.5523 0

Table 4.2: Closed-Loop Eigenvalues - Lower Damping

From Table 4.2, it is seen that each disconnected region has a zero eigenvalue. One
zero eigenvalue remains at zero when the regions are connected, while two eigenvalues
—0.6025 and 0 move together to the complex eigenvalues —0.4201 % 0.2503;5. These
two additional oscillatory eigenvalues correspond to the inter-area oscillations. The
frequency of the inter-area oscillations w = 0.2503 is much smaller than the other

frequency €2 = 2.100 to yield the so-called slow intra-area oscillations.

Figure 4.4 shows the response of the system. Obviously, both fast intra- acd slow
inter-area oscillations are seen. As expected, the inter-area variable 2/ captures the

slow inter-area oscillations.
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Swing primary dynamics of the 5-bus example: Pg

Pgl
----- Pg2
Pg3
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2.2

Swing Primary dynamics of the 5-bus example: yl

yI=Pg1+0.9969Pg2
Under-damped
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«'igure 4.4: Inter-Area Oscillations
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4.3 Quasi-Static Model

In this section, a simple discrete time dynamical model on the secondary time scale
is derived. The purpose of the regional secondary control is to update the frequency
reference value for each participating G-T-G set at discrete time instance kT, so that
steady state frequency errors are eliminated. The discrete-time actions of updating

frequency reference values result in a DEP in frequencies on the secondary level.

Let us start with the closed-loop primary dynamical model (4.42),

B =R Sl [o)em- (R ]+ [0 ] oo
Assume that the governor controls are designed such that the closed-loop transient
dynamics are fast relative to the updating of reference values. Under this assumption
one can write 2 = 0, at kT,, k = 0,1,---, i.e., the systerm settles to steady state
at these discrete time instances kT,. Let us first consider the local dynamics of each

G-T-G set, derived before in (4.19),
i = ALezie + g’ k] - cPa (4.100)

The assumption of fast transient dynamics yiclds

Arcziclk] = —bwg (K] + cPolk] (4.101)
or
Ti.clk] = ~ALbbw ™ (k) + ALbcPalk) (4.102)

since A.c, given in (4.12), is invertible. One can further calculate

1 -rM T, —(er + K,)T,
Al = X KM —(rD +ep)T, -DK,T, (4.103)
M T, -DT,
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with n = rD + er + K,. Substituting this back into (4.102) simply gives

UJ[IC] 1 er + K t 1 -T
Pkl | ==| DK, |wk]+-| K, | Pglk] (4.104)
alk) | " D T

Since we are interested in the frequency variations only on the secondary level, let us

consider only the first row,
wlk] = fz—;-&w"” (k] - %Pa[k] (4.105)

or

wik] = (1 - %D)w! [k] - -:;PG[k] (4.106)
Define the droop constant of any G-T-G set as

Owlk)

£
OFclk] wrel [k]=0

o (4.107)

The physical meaning of the droop constant is that it represents the sensitivity of the
steady state frequency deviation to the deviation of steady state real power output of
the G-T-G set, when the frequency setting is kept at a constant, or the secondary level
control is inactive. A small droop constant indicates that real power output variations
have a small effect on the steady state frequency variations. A flat droop characteristic,
i.e., 0 = 0, implies that the steady state frequency always reaches the reference value,
no matter how the real power output varies. Clearly, an integral control must he
involved in the primary controller in this case, so that the steady state error of the

primary local control vanishes.

With this general definition, one simply obtains the droop constant for the G-T-G

set discussed here as

T T
n rD+er+K, (4.108)

g =
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It then follows from (4.11) that the steady-state transfer function of the G-T-G set for
specified Pglk] is

wlk] = (1 — oD)w"! (k] — o Pglk] (4.109)
where D is the generator damping constant.

This is the quasi-static relationship among the frequency deviation, reference value,
and real power output variation of each G-T-G set. This relationship is completely
decentralized, in the sense that no coupling between different G-T-G sets occur except.
through the local output variables Pg. This complete decentralization is possible only
if the real power output of each G-T-G set is chosen as a state variable as done in this
thesis. Real power output variations of all G-T-G sets in the network will be coupled,

and the coupling is exactly the network relationships discussed before.

Let us derive the secondary level relationship for a region consisting of m such G-T-
G sets. Since relationship (4.109) is completely decentralized and true for each G-T-G

set, the secondary level relationship for the entire region is simply obtained by putting

relationship-(4:109)-for-each-G-T-G-set-together. To do this, we define the generator
frequency vector and power output vectors as

W

we 2| | (4.110)
we '

and the diagonal droop matrix and damping matrix as

()] Dl
o4 and D2 (4.111)
am Dm

Then the decentralized quasi-static model for all m G-T-G sets can be obtained as

welk] = (I — o D) [k] — o Pglk] (4.112)
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where I is the m x m identity matrix.

Vector Pglk] is coupled to all generator angles by the following equation derived in
(4.83),
Pg(k] = Kpéglk] — Fe[k] + DpPL[k] (4.113)

Eq. (4.112) is combined with (4.113) to yield
welk] = (I — oD)wg’[k] — o(Kpég[k] — Felk] + DpPyk)) (4.114)
Writing (4.114) at two successive LFC sampling instances kT, and (k+1)Tj, one obtains
wolk +1] - wolk] = (I = oD)(Wg/[k +1] - w5’ [K]) — oK p(3clk + 1] - 8a[k])
o(Felk + 1) — F.[k]) — oDp(P[k + 1] - P,,[k]) (4.115)

Since

Salk + 1] — 8¢k ~ Tawelk] (4.116)

model (4.115) expressed in terms of wg(k] only takes the form
welk + 1) = (I — 0KpT,)welk] + (I — oD)(wg' [k + 1] — wg’[K])
+ o(F.[k + 1] — F.[k]) — oDp(P[k + 1] — P[k]) (4.117)

Model (4.117) is defined in terms of system variables at discrete times kT, k = 0,1, - --
only. General theory of control design for such systems introduced in Chapter 3 is

applicable to this model.

The discrete-time corrective signal (wg’[k + 1] — «i/[k]) is the control action for
the secondary level. To allow for generating units not participating in the secondary

level control, let us separate the participating and nonparticipating generators as

wg = [ Ws l (4.118)

Wn
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where w, and w, represent the participating and nonparticipating generators, respec-

tively. The term (wfy/[k + 1] — wg/[k]) can now be written as

Witk + 1) — wi/[k]

WG b+ 1] = wi ! Ikl = | Srerii 4 1] — wref[i (4.119)
It is obvious that for the nonparticipating generators
wielk+1) -kl =0, Yk (4.120)
Let us define the actual secondary LFC control signal as
u (k] £ Wk + 1] — Wi [K] (4.121)
From these definitions, we can rewrite the control term as
W [k 4+ 1) — W K] = [ wld l - [ ! ] w,[k] & Byus[k] (4.122)

where I is the p x p identity matrix with p being the number of participating generators.
Let us further define the net tie-line flow effect as
F,[k) = F.lk + 1] — F.[k] (4.123)
and also define the disturbance at the secondary level as
dy[k] = PLlk + 1] — Py [k] (4.124)

With these definitions, we derive the discrete-time dynamics of the generator frequen-

cies at the secondary level as
wglk + 1] = (I ~ 0KpT,)wglk] + (I — 0 D)Byu,[k] + o F,[k] — o Dpd,[k]  (4.125)

This is the secondary level dynamical model for all generator frequencies in terms of

the frequency setting changes and tie-line flow changes.
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Load frequencies wy, are expressed in terms of th}: generator frequencies wg by Eq.
(4.32):

wy, = Cywg + JZII,(FL - PL) (4.126)
which leads to, with all time derivatives vanishing at discrete times kT,
wi k] = Cuwelk] (4.127)

This relationship determines changes in load frequencies in terms of changes in gener-

ator frequencies.

The output variables for the secondary control include part or all of the generators
and possibly some loads. Inclusion of load frequencies allows for demand side man-
agement of the secondary frequency regulasions. Let us define the output variables
as

wolk] = Chwg[k] + Cowy[%] (4.128)
where C) and C; are matrices with 0’s and 1’s to pick up the desired output variables.
Using (4.127) to express wy[k] in terms of the state variables wg[k], we obtain the

output equation of the secondary level frequency control as
wolk] = Cswelk) (4.129)
where the output matrix is simply C, = C, + C,C.,..

Eqgs. (4.125) and (4.129) constitute the simple discrete-time dynamical model for
variables of interest on the secondary level. This simple model forms a basis for the

secondary level frequency control.

Here a numerical example is used to confirm that the derived simple quasi-static

models agree with the detailed transient models evalucted on the secondary level time
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scale T,. In the simulation, secondary level control is not activated, i.e., u,[k] = 0, Vk.
The entire system is considered as a single area. Because this region is isolated, there
is no tie-line flow. We compare the time domain responses of the system under a
given load variation, obtained using the full complicated primary models and the much
simpler secondary level models. All initial conditions are set to zero. Figure 4.5 shows
the linearly varying load at bus #4 and the responses of three generator frequencies to
this load variation, with the primary and secondary models. The following is observed

from the numerical simulations:

e Frequencies of generators #1 and #2 are almost equal. This is because the two
lines connecting bus #4 to generators #1 and #2 are the same. Generator #3
is nearly unperturbed by the load disturbance occurring at bus #4, because the

two tie-lines are weak;

e Time responses of generator frequencies roughly follow inversely load fluctuations,

i.e., load increases result in frequency decreases, and vice versa,;

e Time domain responses of the system obtained using complete model (4.42) is
indistinguishably identical to the responses obtained using much simpler models
(4.125) and (4.129). However, calculations involved with the quasi-static models
are significantly simpler and easier, compared to the calculations with the original

detailed models.
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Dynamics of the 5-bus example: PL4
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Figure 4.5: Load Variation and Frequency Response
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4.4 Summary

In this chapter, a structurally-based modeling approach for real power/frequency dy-
namics of an interconnected power system is presented. Dynamics of the system are
formulated by combining the local dynamics of individual generators and the network
couplings. The concept of structural singularity for large-scale power systems is de-
fined. It is shown that the decoupled real power/frequency dynamics of power systems
are structurally singular. Discrete-time dynamical models on slower time scales are
derived. The modeling approach provides a solid basis for systematic control designs

to be discussed in the next chapter.
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Chapter 5

Control Designs

5.1 - Direct Flew Control -

2

As discussed in Chapter 4, inter-area dynamics represent singular modes of the system
under the present local control structure. Due to small dampings these singular modes
often occur as oscillatory. Under weak interconnections, the oscillations become slow
and persistent [24] ?4] As shown before, the structural singularities cannot be removed
by any design under the present local control structure. In this thesis, we propose a
new control scheme to remove the structural singularities by directly regulating tie-line
flows using the fast power-electronic switched controllers presently being developed and
tested. These controllers are often referred to as the FACTS devices [25], [26]. The idea
of the proposed new control scheme is to change the dynamical characteristics of the
inter-area modes by a feedback control so that the oscillatory behavior of the inter-area
modes becomes exponential and settles in a desired time constant. First the case when
all tie-lines are equipped with the FACTS control devices is studied. Detailed control

design procedures are given. Next, the case where only a limited number of tie-lines

are equipped with the controllers is briefly discussed.
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5.1.1 All Tie-Lines Directly Controlled

As proposed in the general theoretical setting in Chapter 3, tie-line flows act as direct
control inputs to the regional dynamics using FACTS devices. The additional control
inputs are used to remove the structural singularity understhe present local controls.
Consider any administratively divided region within an interconnccted system. If all
components of the equivalent tie-line flows F, are assumed to be the direct control
variables with FACTS devices, model (4.56) can be viewcd from a control design point,
as being of the form

i=-Tu+d . (5.1)

i
where u = F, is the additional control variables for the administrative region, [ is
the participation factor vector, and d = [TDpP,, is the disturbance caused by the
typically not measurable load variations P;,. The equivalent tic-line flows F, defined
in (4.37) as a combination of flows into area generator nodes F; and into the load
nodes Fj, are the new control variables to be designed according to specifications of
the inter-area dynamics. If the inter-area dynamics are to meet particular response
characteristics, including elimination of slow, persistent oscillations, specific fows Fy;
and/or Fj, will need to be controlled. Notice that model (5.1) of inter-area dynamics
can be seen as entirely control/disturbance driven. In the ideal case when all tie-lines
are equipped with the additional control hardware capable of directly regulating real
power flows, each area could directly regulate its inter-area variable z responsible for
interactions with the neighboring systems by simply regulating it to the scheduled

value 2"/, according to the general form
u=Gye+Gi [ edt+Gat (5.2)
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where e = z — 2™/ is the error of the inter-area variables, G, G; and G, are the gains
corresponding to the proportional, integral and differential controls. It can be seen
from (4.37) that the equivalent tie-line flows F, corresponding to each specific aree; can
be achieved by a variety of combinations of individual tie-line flows into the boundary
generators, F¢, and into the boundary loads F. Eq. (4.37) can be used to decide
on most effective locations of individual controllers which could achieve F, needed to
stabilize the inter-area variables to its scheduled value 2™/. Fig. 5.1 shows schematics

of such controls on the 5-bus example.

For the purpose of illustration, let us take the simple form of the control with only

a proportional control, i.e.

u=Gp(z — 2") (5.3)

Under tl;is control, the inter-area dynamical model in (4.56) becomes
t=A,(z-2")+d (5.4)
where A, = —ITG,. Note that there is in general only one singular mode corresponding

to each region. Therefore, the inter-area dynamics are in general a scalar system. The
control gain vector G, is chosen such that the scalar A, is a negative number with
sufficiently large magnitude to ensure the settling time. This is done easily because
the left eigenvector T is roughly the vector with all 1’s. The constant number z"/
determines the steady state value of the inter-area variable. Since the inter-area variable
is basically the total area generation, modulo losses, the number z"/ will have a decisive
effect on the steady state total area generation, and the steady state tie-line flows. It
can be determined in a way such that the scheduled tie-line flows are achieved in steady

state.
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Let us use the same 5-bus example introduced in Fig. 4.3. Schematics of the direct

tie-line controls on the 5-bus example are illustrated in Fig. 5.1.

.........
o ..
o .

~" Region Il

— |
.‘,.-' F45 ' '-,.. 5

Direct tie-line flow control ‘

Figure 5.1: Direct Tie-Line Control

1‘ .,
In this example, F} = [0 Fy|"; Fi' = Fuo; F! = Fys; F{! = F5,. 1t follows that

the inter-area variables are measurable directly through measurements of real power

generations of the region. In this example, inter-area variables are given in the form

2! = 1! TP} = Pg, + .9969 P, (5.5)
2 =1 TP = Pg, (5.6)

The equivalent flows are calculated from Eq. (4.37) as

5 op 0
4
F! = [—66"—4 1Ry — (5.7)
Qgﬁ" 4 Fy3
OPg;. 0P,
F/'= [‘53?][ 66’;,5]-1&4 — F3 (5.8)

The inter-area dynamics of the system explicitly in terms of load disturbances are

expressed from (4.56) as

§

. . [ OPry,
A= TE - n [66’;“] 'PLy) (5.9)
¥



and
0Pg3, 0P

I __ gl TypIl

[

7' PpLs) (5.10)

To illustrate by simulation the effects of direct tie-line flow control on the inter-area
dynamics, let us first re-write the system model (4.42) in terms of voltage phase angle

differences. For the same 5-bus example, one has
i=Az+NA+d (5.11)

where A = [A; A,]7, and A, is the phase angle difference across the line connecting
nodes #2 and #3, A, the phase angle difference across the line connecting nodes #4
and #5. Matrix N is related to the tie-line impedances. d = [0 — Dp]" P, is the
system disturbance due to load variations. It can be shown that only the total (net)
power generation of each region is important for inter-area dynamics regulation. Thus,
one can assume A, = 0 for simplicity. Assume further a lossless system, and define
U= —Z1A1 as the control signal, where Z; is the impedance of the first tie-line. Using

these notations, the open-loop dynamical model of the region (4.42) becomes
it=Az+bu+d (5.12)
where b=1[0 0 0 1 0 — 1]7. The open loop inter-area dynamics take the form
Hd=u+ P (5.13)

A =—u+ Py (5.14)

For this small power system the order of the full model (5.12) is three times the
order of the local state space ;¢ augmented by one, and the dimension of the model

representing inter-area dynamics (5.13)-(5.14) is only two. In general, for realistic size
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power systems the orders of the two models differ drastically. The proposed tie-line

control design uses only the low-order model (5.13) or (5.14).

I are suppressed, there will be no

It is clear that once oscillations in either of z/ or z
inter-area oscillations. This is obvious for the 2-area system, since inter-area oscillations
are consequences of the power exchange between the two areas. As a result, control

design can be done from either side. In this case, since 2! = Pgy, controlling '/ needs

only one measurement (compared to two for z'). To illustrate this, assume
u = Gp(2!! = 2" ref) (5.15)

where 2/! ™€/ is a constant target to be appropriately chosen. The closed-loop dynamics

(5.13)-(5.14) for the inter-area dynamics have the form
=Gy -2y + Py (5.16)
3= —G(2" -y o) + Py (5.17)
Clearly the stability requirement for z// dictates G, > 0.

Shown in Fig. 5.2 is the case for 2!/ "¢/ = .929 and G, = .1, and 2!’ ™/ is chosen
to be the steady-state value of net tie-line flow out of area II prior to adding the new
controller. G, is chosen such that the settling time for the inter-area dynamics is

roughly 46 seconds. Initial conditions for all states are unity.

As a comparison, Fig. 5.3 shows responses of the system when there is no direct
tie-line flow control. Clearly the slow mode corresponding to the inter-arca oscillations

is eliminated by the proposed control method.
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Swing Primary dynamics of the 5-bus Example: Pg
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Figure 5.2: System Responses After Control
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5.1.2 Only A Subset of Tie-Lines Directly Controlled

The fact that the inter-area behavior is contained in the inter-area variable z provides
some interesting opportunities for the application of the Ho, design methodology to the
use of FACTS devices for improved transmission grid response. In order to formulate
the problem, we make the following assignments, to follow the notation of [27]. First,
we separate the tie-line flows into a controlled group and an uncontrolled one, F, and

F,, respectively, via a signed permutation matrix U:

FG _ Fu
&)=l %
so that

F, = Fg — DpF;, = B.F. + B,F, (5.19)

In addition, for the moment it will be assumed that P, = 0. We can then write the

system model (4.42)as:

z = Az + B.F, + B,F, (5.20)
z=Lx (5.21)

or
= Az + B.u + B,w (5.22)

in the same notation of [27]. At this point the controlled output, the disturbance
and the input have been defined adequately for the purposes of the Ho, minimization.
Appropriate weighting functions W (jw) could be defined at the output and input, to
tailor the behavior of the resulting controller. Emphasis could be placed on damping a
particular inter-area mode, for example, by placing higher weighting at that frequency.

Further research is needed to establish accurate solutions to this problem.
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In summary, a new approach to regulating the inter-area dynamies via direct, tie-
line flow control using a reduced-order model relevant for the inter-area dynamies is
proposed for the first time. The approach allows for a systematic control design regard-
ing both best placement of the controllers and their control logic. It is shown that the
inter-area dynamics can be regulated using standard designs for low-order linear dy-
namical systems. An underlying assumption that the new control does not. destabilize
the intra-area dynamics regulated by generator controls needs to be verified as part
of the proposed design. The design is based on reduced decentralized measurement
structure at each regional level. The physical devices for controlling the inter-arca os-
cillations are assumed to be capable of directly controlling flows of transmission lines
on which they are located. These FACTS devices are typically controlled by fast power

clectronic switchings.

5.2 Frequency Regulation

In this section, the simple discrete-time dynamical model for an administrative region
within an interconnected power system derived in Chapter 4 is used for control de-
signs at higher levels to offset the effects of neighboring regions and load disturbances.

Control designs at the secondary level and tertiary level are studied separately.
5.2.1 Secondary Control

It is shown here that the fairly simple quasi-static dynamical model of the frequency is
basic to developing decentralized secondary level controllers. The proposed secondary

level control schemes provide a system-theoretic support for the ingenious concept. of
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AGC, and help to answer many open questions stated, for example, in {1}, [28] and

[29].

The main task of the secondary level control is to eliminate steady state deviations
of frequencies at critical locations from their scheduled values. The secondary level
control, often referred to as also the Load Frequency Control (LFC), is implemented
by updating the reference values of governor speed-changers of the G-T-G sets par-
ticipating at this control level at discrete time instance kT, k = 0,1,---. In practice
LFC is often combined with generation scheduling needed to optimize total fuel cost for
meeting a given load at each regional level. The simplest static optimization method for

distributing total Pz among all generators according to their production costs needed

= .. to maintain the average frequency at each subsystem level is the Economic Dispatch

-method. This optimization task is generally not coordinated with LFC and this is
known as one of the open issues in the LFC area [30]. The mathematical formulation
of optimal LFC proposed in this thesis naturally overcomes this issue since the con-
tribution of each generator to the average frequency is defined as dependent on the

electric properties of the transmission network.

It is important to recognize that the secondary level control should keep operations
at each regional level as autonomous as possiblé. In other words, the secondary level
control should be designed so that deviations in mechanical outputs of the G-T-G
sets are introduced to respond to the load deviations within the same region, while

suppressing unintentional changes in real power tie-line flows. This requirement is

based on the widely accepted Area Control Principle [7).
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Control Design

The secondary level quasi-static discrete-time model for an administrative region within

an interconnected system was derived in Eq. (4.125), and is repeated here as
welk + 1) = ({ — o KpTy)wglk] + (I — 0D)B,u,lk] + 0 F5[k] — 0 Dpd,[k] (5.23)

The secondary level control signal u,[k] is to cancel the effect of the load and tie-line
flow variations to eliminate the steady state frequency deviations. Since the number
of tie-lines is small, and tie-line flows are in general being monitored in practice, a new

control logic on the secondary level to stabilize frequencies is proposed as follows:
us[k] = Gs(wo[k] — wi*[K]) + H Fi[K] (5.24)

where w?*[K] is the set value for the output frequencies defined in Eq. (4.129). The
settings are changed on a longer time scale T, by the tertiary level control to achieve
best performance over the time horizon 7,. The gain matrices G and H; are to be

determined.
Under this control law, the closed-loop dynamics on the secondary level become
welk + 1] = (I - oKpT)wglk] + (I = 0D)B,G.(wolk] — wi[K])
+ [(I — eD)BsH, + o]F;[k] — 0 Dpd,[k] (5.25)
Using the output equation w,[k] = Cswg[k], one obtains
welk+1] = Aswglk]—(I—0D)B,Gwi*|K|+([(I -0 D) B, Hy+0]F[k] -0 Dpd,[k] (5.26)

where

A, 2 (I - 6KpT,) + (I - sD)B,G,C, (5.27)
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is the closed-loop system matrix of the secondary level dynamics.

The purpose of the additional term H,Fi[k] in the control law is to cancel the
effect of tie-line flows from the neighboring regions, so that each region has effectively

decoupled dynamics. The decoupling can be achieved if
(I-0D)BsH;+0=0 (5.28)

In general, both generator damping and the droop constants are very small, so that
matrix (I — oD) is invertible. In this case to derive a unique solution for H, from
(5.28), one must require that B; be nonsingular. From the structure of B, defined
in Eq. (4.122), it is clear that nonsingularity of B; is equivalent to all generators
participating in the secondary frequency control. In this case, B; = I, and we can

simply choose
H,=—(I —oD)'o (5.29)
to cancel the effect of neighboring regions. With this choice of Hj, the region under

study looks as if it were disconnected from the rest of the system. The closed-loop

dynamics of the region take on the form
wglk + 1] = A,wglk] — (I — 0D)B,G,wi* K] — 0 Dpd,[k] (5.30)

with no coupling among different regions occurring in this equation. Unless all gener-
ators participate in the secondary control, complete cancellation of tie-line flows in all
generator frequencies is not possible. In this case, only partial cancellation for some

state variables can be achieved.

The gain matrix G, can be determined by specifying the desired closed-loop dynam-

ics, as will be seen from the numerical example in the next section, or by formulating
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an optimal control problem. A linear quadratic performance criterion for the region
can be written as

J, = 3 @ kI Quolk] + u k] Ru k) (5.31)

k=0

for @ = QT > 0 and R = RT > 0. Depending on the relative importance of quality of
frequency regulation and fuel cost associated with specific G-T-G sets, the weighting
matrices Q and R in the performance criterion will vary. The optimization, with re-
spect to the secondary controls u,[k], determines the optimal gain G,. The generalized
formulation here allows for including frequencies of all generators and loads participat-

ing in LFC, instead of conventionally used criterion in terms of average frequency only

[8], [18].

The performance criterion reflects specifications of the output variables at the re-
gional level. It is sufficiently general to allow for specifying different frequency quality
requirements at different individual generators and/or loads throughout the area. In
light of the new regulatory constraints on operating power systems in this country, this
feature is taking on a new importance. The jointly owned units, non-utility owned units
and the large loads participating in the Demand-Side Management are potentially the
points in the system whose requirements need such monitoring and would belong to
the set w,[k]. Note that it is possible to relate generator frequency variations wq as the
output variable to which both primary and secondary controllers respond to the load
frequency variations wy, as the relevant operating specifications. Their relationship is
the simple one derived in Eq. (4.127). This is not presently being done, but with the

formulation proposed here it is fairly straightforward to do.

Note that formulations here clearly separate the governor controllers at the primary
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level and the secondary level, while more conventional formulation combines the two
levels into one PI controller which responds to the average frequency changes w; the pro-
portional part comes from the primary level, and the integral part form the secondary.
Physically these are two different control loops, and the formulation in this thesis for
the first time provides two separate mathematical models (4.42) and (4.125)-(4.129).
A further comparison of the proposed formulation for the secondary frequency control
with the ACE-based AGC implementation shows that the two formulations are actu-
ally consistent in terms of the measurement structure employed at this level. Notice,
however, that the need for defining the frequency bias for the ACE signal is entirely
eliminated with the proposed control scheme. The gain G; is designed according to
the desired frequency quality at different locations in the area w,. The gain H; is a

function of the transmission network parameters, and is computed according to (5.29).

A Numerical Example

The same 5-bus example given in Fig. 4.3 is used here to illustrate the proposed control
scheme. To simplify the computation, we choose all three generators to participate in
the secondary LFC control. In this case, B; = I. The output variables are simply the
three generator frequencies, so that Cy = I. The gain H, is chosen according to (5.29).

In this case, Eq. (5.30) are simplified to
wglk + 1] = A,wglk) — (I — 0D)Gwi* K] — 0 Dpd,k] (5.32)

with A; = (I — 0KpT,) + (I — 0D)G,. To further simplify calculations, the gain G; is

chosen such that the three generator frequencies have a decoupled identical dynamics.
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i.e. A, = M for some scalar constant A\. With this choice of A, one simply obtains

G, = (I - oD) [\ = 1) + 6KpT.)) (5.33)

Fig. 5.4 shows the same linearly varying load at bus #4 as in Fig. 4.5, and the
generator frequency responses to this load change with and without the secondary
LFC. The scalar constant X is chosen to be A = —1. The figure clearly indicates that,
the proposed secondary control scheme eliminates the situation of frequencies inversely
following the load variations, as shown in Fig. 4.5. It also significantly reduces the

steady state frequency errors.
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Figure 5.4: Load Variation and Frequency Response
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5.2.2 Tertiary Control

As introduced in Chapter 3, the main goal of the tertiary real power/frequency con-
trol is to coordinate the regional secondary controllers in such a way that the global
interconnected system operates in an optimal fashion. To be more specific, the goal of
the tertiary level real power/frequency control is to optimally reschedule the tie-line
flows in response to the load variations P;[K], while maintaining the system frequency.
At present this task is carried out by agreement. between several areas at a time when
needed. The concept is referred to in [1] for example, as the “central AGC”. The ter-
tiary level is envisaged as particularly effective when the load-generation mismatch in
a specific subsystem exceeds the capacity of the secondary level controls, which only
stabilizes flows to their scheduled values. When certain control and/or output limits
are reached in the stressed area the scheduled exchange should be changed to facilitate
help from the neighboring areas. At present this is done in an asynchronous, ad-hoc
wanner. If this process were to become automated, it could be implemented much in
the same way as the digital AGC, only at a much slower sampling rate 7;. We observe
here that the presence of slow deviations in the average frequency documented in [28]

can be explained by the inadequate tie-line flow schedules.

The relevant output variables at the tertiary level are the generator frequencies and
the tie-line flows. There exists a potential conflict between the setting of tie-line flows
and the system frequency, because the tie-line flows and frequency are dependent on
each other. An arbitrary setting for the tie-line flows could cause the system frequency
to be offset from the desired value (60 Hz in US, for example). This explains why in

practice the regional control is proportional to the time integral of a combination of the
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frequency deviation and the tie-line flow deviation, simply because when the tie-line
flow setting is not properly chosen, neither of the deviations can be driven to zero. As

a compromise, their combination is targeted to be vanished.

Conceptually, three types of implementation at this level can be envisioned: fully
centralized, fully decentralized, and corbination of the two. The fully centralized ap-
proach entitles the tertiary level decision maker to assign all set values of y[K] for the
feedback controllers so that a system-wide performance criterion is optimized. When
the performance criterion is chosen as the total fuel cost needed to produce generation
for meeting the anticipated load, the tie-line scheduling leads to what is known as a
security constrained economic dispatch. The real advantage of the formulation pro-
posed here is that it does not require full information structure, but only monitoring of

critical load frequencies and tie-line flows, and is therefore amenable to full automation.

The fully decentralized approach preserves the right of subsystems to schedule gen-
erations at their level in order to meet its own performance criterion, and allows for the
individual regions within the interconnected system to compete and make their own
decisions. The dynamical properties of the rest of the system are not assumed to be
known for the individual regions. In this case, each region measures the tie-line flows
into it from the neighboring regions, and, based on the measurements, determines the
control strategies to optimize its own performance criterion. In this case, each region

is completely independent and assumes no dynamical properties of the other regions.

The combined centralized/decentralized approach to the tertiary level scheduling
preserves the decentralized structure of the control implementation, but assumes struc-

tural properties of the other regions on the interconnected system. In other words,
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each region has the knowledge of dynamical structures of the other regions. Based on
the shared knowledge of the dynamical structures of other regions and on-line mea-
surements of the tie-line flows, each individual regions make their decisions to optimize
their own performance criteria. Intuitively, this approach would result in a system-wide
performance in between the fully centralized and fully decentralized implementations.

This approach can be formulated into the framework of theoretical games.

In the tertiary control automation, one of the most important relationships is the
one which relates the frequency schedules to the tie-line flow schedules. The relation-
ship between the system frequency and tie-line flows helps the proper setting of tie-line
flows such that the system frequency is kept at the desired value and the global system
as a whole is operating in an optimal fashion. It presents an essential tool for consistent

optimal scheduling of the tie-line flows.

However, this important relationship is still an open research question. It is not
easily derived because the secondary level dynamical model (4.125) is not a control-
driven model due to the droop characteristics of the generator primary control. As
a result, state variables can still evolve with time even when the system is subject
to no tie-line flows and disturbances, as a consequence of the generator dynamics.
We believe that the structurally-based aggregation method proposed here can be used
and extended to solve this problem. Research effort should be directed to developing
meaningful tertiary level control schemes and comparing the new control schemes to
the already existing AGC. More involved problems such as point-to-point real power
wheeling need further extensive research. However, the new structural modeling and

aggregation approach proposed in this thesis provides a basis for most sophisticated
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frequency regulation schemes of present and future power systems under the truly

dynamical operating mode.

5.3 Summary

This chapter presents a new hierarchical control design concept for the real power/frequency
dynamics of power systems, based on the structural models developed in Chapter 4.
The main goal of the direct tie-line control based on FACTS devices is to eliminate the
structural singularity associated with the real power/frequency dynamics. Systemwide
frequency regulation on longer time scales is also discussed. Simulations show that the
new control scheme significantly reduces frequency fluctuations in the presence of load

variations.
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Part 111

Reactive Power/Voltage Control
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Chapter 6

Voltage Dynamics Modeling

6.1 Introduction

The work on reactive power/voltage dynamics presented in this thesis is motivated by
the practical need to regulate load voltages over mid-term and long-term time horizons
according to a specified performance by changing generator voltage settings. While the
voltage control of an interconnected large-scale power system is widely recognized as a
very important problem, its basic formulation and solutions are often utility specific.
Most often the voltage control is viewed as an entirely static problem, whose solution
is identical to a centralized open-loop optimization-based reactive power/voltage man-
agement. The most common tool for solving this optimization problem is the OPF
based algorithm. This approach computes changes in generator voltages needed to
regulate load voltages on the entire interconnected system. It assumes availability of
the full information of the system and requires a large amount of data which is typically
not available when the system is experiencing unusual operating conditions. Moreover,
this approach does not provide an easy balance between coordination and competition,

which is of practical interest in coordination of regions.
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A second approach to voltage control coordination relies on decomposition of a
large system into regions and an on-line decentralized closed-loop reduced information
structure for controlling regions. For instance, the French power system has been
committed to a full automation of system-wide voltage regulation while employing an
intuitive reduced information structure at the regional level. The dynamical model
of voltage on mid-term and long-term time horizons, as is shown in this chapter, is a
load variation and control-driven model, in the sense that any variations in voltages
with time are caused only by the control signal or the disturbances. It will be shown
in Chapter 7 of this thesis that for this kind of control-driven models, only certain
number of states can be fully controlled. 1he maximum number of states that can be
fully controlled is equal to the number of controls. Therefore only at most the same
number of load voltages as the generators can be independently c-ntrolled. These states
chosen to be independently controlled are referred to as the pilot load voltages. The
pilot load voltages are controlled within each region by regional controllers, assuming
that neighboring regions have negligible effects. In this case the responsibility for
coordinated voltage regulation is shared among regional closed-loop controllers or the
secondary voltage controllers, and the operators at the national control center or the

tertiary level.

This work in the thesis was largely sponsored by the Electricité De France (EDF).
As the French power network has become increasingly meshed during the past decade
and is operated closer to the prespecified voltage limits, a tertiary level coordination of
the regional secondary voltage controllers has become critical to improve the security
and economics of the entire system. Under mild system changes, it is often sufficient to

rely on the operator’s expertise to provide coordinating signals from the national level.
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If time permits and if the results of the state estimation are available, the operator
could employ computer tools such as OPF to assist him in the decision making. How-
ever, when the interconnected network experiences unusual reactive power deficiency,
typically in one region at a time, it is important to provide the dispatchers quickly

with adequate coordination strategies.

The main goal of this part of the thesis is to develop new concepts for coordination
of secondary voltage controllers at the national level which preserves a reduced, pilot
point-based information structure. As in the frequency dynamics case, a structurally-
based decomposition approach is taken to derive the regional voltage dynamical model
consisting of local dynamics of individual devices and the network coupling. A remark-
able feature is that although the reactive power/voltage control has a parallel structure
to the real power/frequency control, these two models represent fundamentally differ-
ent systems. As shown in Part I, the real power/frequency dynamics are structurally
singular. It is, however, not the case for reactive power/voltage dynamics, unless a spe-
cific numerical singularity occurs. The structurally singularity of real power/frequency
dynamics is due to the fact that the real power across a transmission line depend on
the phase angle difference across the line only. A constant offset on both angles makes
no difference for real power transfer. However, the reactive power across a transmis-
sion line is not a function of the voltage difference only, so that a constant offset on
both voltages does change the reactive power flow. Due to the nonexistence of singular
modes in voltage dynamics, there is no need for a direct flow control, as proposed in
the frequency case, except for unusual operating conditions in which voltage dynamics

become numerically singular.
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On the other hand, a different type of structural singularity occurs at the secondary
level quasi-static control-driven voltage models due to insufficient number of controls.
Interaction variables associated with this type of structural singularities are defined
as the quasi-static interaction variables. Both the continuous interaction variables in
the frequency dynamics and the quasi-static interaction variables of voltage dynamics
represent singular modes of the system evolving at different time scales. The most
important property of these two kinds of singularities is that they are structurally in-
herent rather than numerically coincident, as already shown for the case of frequency
dynamics. These structural singularities on different time scales reveal most funda-
mental dynamical properties of power systems. An important breakthrough as a result,
of the structural decomposition is that the interaction variables defined here represent
physically measurable variables, such as reactive tie-line flows. This provides a ba-
sis for automated feedback control designs because interaction variables are physically

measurable.

It should be emphasized that, in contrast to many standard techniques on system
decomposition which assume weak or sparse coupling among the regions, the structural
approach developed in this thesis does not depend on this assumption, as already seen
in the case of real power/frequency dynamics. The decomposition is entirely based on
the structural properties of the system. In the particular case of weak interconnections,
the structural interaction variables defined here can be shown to represent the slow

dynamics obtained using the singular perturbation method.
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6.2 Modeling

Having introduced structurally based models for real power/frequency control at differ-
ent levels of hierarchy in the previous chapters, we revisit the present state-of-the-art
in voltage control via generators. There are many reactive devices present in modern
electric power systems. To avoid confusion, we consider only reactive power scheduling
of generators. It is shown here that an effective formulation of voltage control at all
levels lends itself naturally to exploiting the same structural properties as in designs of
real power/frequency controls of large-scale electric power systems. This fact appears
not to have been recognized in the literature, mainly because of the somewhat inac-
curate notion that a single average frequency can be associated with each subsystem,
while voltages could be quite non-uniform throughout a voltage control area. The need
for more refined frequency measurements and specifications throughout each subsys-
tem is described in the previous chapters, and a model formulation which “unbundles”
frequencies at the locations of interest is proposed as more realistic, particularly when
considering regulatory changes imposed on operating power systems in the future.
Depending on electric characteristics of each subsystem non-uniformity in frequency
deviations could be significant. Formula (4.32) explicitly defines how frequencies vary

at specific locations in the system as a function of real power generation and demands.

The second fundamental issue in comparing the concepts for frequency and voltage
control automation is the issue of reactive losses which are much larger than the real
power losses. A closer look into the systems oriented literature in the area of real
power/frequency dynamics quickly reveals that the most elegant derivations are pro-

posed under the assumption of no real power losses. It is expected that attempts to
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extend such existing formulations for real power dynamics to reactive power will not
succeed. It is with this issue in mind that we emphasize that the formulation proposed
here does not make any assumptions regarding losses, i.e., the linearized real and reac-
tive power flows are not assumed to be lossless. Since the entire concept proposed in this
thesis is not dependent on the above two “facts”, which create potential qualitative dif-
ferences in control concepts for real and reactive power, we suggest a structurally based
concept for voltage control automation which is parallel to the real power/frequency
control introduced in Part III of this thesis. Prior to describing technical details, it
is important to observe that in Part II of the thesis we have established a structural
approach to support an automated control scheme of LFC already operating. On the
other hand, while primary level voltage controllers are fully automated, the secondary
level voltage automation based on a parallel principle to LFC is being implemented
in France and Italy only. Moreover, a tertiary level voltage automation has not yet
been implemented anywhere in the world. We propose, first, that the secondary level
voltage control automation can be improved relative to the existing implementations
in France and Italy [16], by taking into account the effects of neighboring areas at cach
subsystem level. Second, the tertiary level voltage coordination can be fully developed

following general parallelism with the AGC.

To establish a background for the automatic voltage control, let us recognize that
the structural settings for deriving models of voltage dynamics are identical to the ones
exploited in real power dynamics illustrated in Figure 4.1. Primary voltage dynamics
defined by the electromagnetic changes at each generator and the excitation system
controls can be expressed in the same structural form as the frequency dynamics in

(4.42) by introducing local state variables. These local state variables define the local
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Figure 6.1: Typical Structure of Reactive Power/Voltage Control

primary voltage dynamics of each generator-excitation system in response to terminal

voltage deviations from its reference value.

6.2.1 Local Dynamics

The general structure of reactive power/voltage control of power systems can be rep-

resented by Fig. 6.1.

The excitation system controls the field voltage input to the generator using the
error signal between the measured generator terminal voltage and a given reference
value. The goal is to maintain the generator terminal voltage at the prespecified

setting.

As in the real power/frequency control case, the dynamics of all the generators are
coupled together through the transmission network via the reactive power outputs of
all generators. The transmission network imposes an algebraic constraint on the total
reactive power injections into the network, and couples all the generator power outputs

together. It also couples generators to the loads.
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Figure 6.2: A Typical Excitation System

Let us first consider the local dynamics of individual excitation system and gen-
erator set. A schematic block diagram for the excitation control system is shown in

Fig. 6.2.

A typical excitation system consists of the regulator, exciter and the excitation feed-
back compensator. Detailed modeling of dynamics of each component and notations
can be found in [31] [13]. The regulator is described by

K.K;

7, ¢1a~ VR~ Ka(Vo ~ vel) (6.1)
r

Tai)R == Kavj -

where eyq is the field voltage of the exciter, Vi the generator terminal voltage, and

Vé"f the reference value for the generator terminal voltage.
The exciter dynamics can be modeled in the following form
Teé,d = — (K. + Se)esa + vr (6.2)
Generator dynamics are typically given by
Théy = —€y — (Ta — Ty)ia + €fa (6.3)

neglecting the effects of damper winding, i.e., ej = 0. where 44 is the reactive current
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out of a generator. Current component i, is also a function of the states, known as the

network constraint. Under the assumption e}, = 0, it is obtained

ig = Qﬁ (6.4)

9

since Qg = €gia — €yl
Finally the compensator is of the form

K
Tpop = —vy + ——ie,d (6.5)
Ty

Define the local states of each generator as
e = ['UR €rd e; ‘Uf]T (6.6)
One can write Eqs. (6.1)-(6.5) together in a nonlinear state space form as

tre = fre(zie, Qa, Va) (6.7)

recognizing that Vg = ef, since Vg = \/e:,“’ + €7 and € = 0. This model of local
dynamics is of the general form (2.9). In this model, the generator reactive power
output Q¢ is the coupling variable zcp in the general local dynamics model (2.9).

This variable couples dynamics of all generators connected through the network. This

coupling, known as the network constraints, are discussed next.
6.2.2 Network Constraints

As in the real power/frequency case, generator reactive power outputs Q¢ are deter-
mined by the interactions with other generators and loads via the transmission network.
Derivations here are very similar to those for the real power/frequency dynamics. Con-

sider any administrative region with m generators and n loads within an interconnected
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system. The complex power constraint for the transmission network is stated in (4.21).
The real part of the equation, i.e. the real power/frequency constraint, has been dis-
cussed in Part I1. The imaginary part is the reactive power/voltage constraint. Similar

to (4.22), let us write the imaginary part of (4.21) as

QY =QN(6,V) (6.8)
where
é[‘;i'] and vé[“ﬁf] (6.9)

are the nodal voltage angles an+ magnitudes. Define the reactive power tie-line flows

from the neighboring areas into all generator nodes, and all load nodes, as

Fg F
and F 2| : (6.10)
Fg | Fp

v A
Fe =

Note that throughout Part III of the thesis, we use Fi and Fy, to represent the reactive
power tie-line flows. Then it is obvious that Q¥ = Fg + Q¢. The network constraints

for the real power balance can be further written as
Q5(6,V)=Fs +Qq (6.11)
Same relationship is true for the load buses, i.e.
Qf =FL-Q (6.12)
the network constraint (6.8) at the load nodes are expressed as
QY(6V)=F-QL (6.13)

assuming again that the positive direction for tie-line flows is the injection into the

network, and the positive direction for loads is leaving the the network. Similar to the
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real power/frequency case, we separate reactive power injections into the part of the
injection from the generators or loads and the part from the interconnecting tie-lines

with the neighboring regions.

These represent algebraic constraints to the network variables like bus voltage vector
V. They add severe difficulties to the local dynamical models in differential equations.
To eliminate the algebraic constraints, we take differentiation on the algebraic con-
straints. Here the real/reactive power decoupling assumption is made again. In terms

of reactive power relations, the decoupling assumption is expressed as
QN 136 =0 (6.14)

Under this assumption, differentiating the above constraints yields

Fg+ Q¢ = JecVe + JaLVi (6.15)
Fr,—Qu=1JwcVe+ Vs (6.16)

where
Jij = %?g-, ij=G,L (6.17)

are the Jacobian matrices evaluated at the given equilibrium operating point. Assuming
JiL to be invertible under the normal operating conditions, we define one of the most

important matrices associated with a transmission network
Cv = ~Jiidie (6.18)

to express voltage deviations at loads VJ, in terms of voltage deviations at generators

Vg and fluctuations in load power. It follows from (6.16) that

VL = Cvf/a + JEIE(FL - QL) (6.19)
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where |
Ve

>

Ve (6.20)

ve'
Relationship (6.19) defines the explicit dependence of load voltages on generator volt-

ages determined by the network constraints. Combining (6.19) and (6.15), and defining

the other two most important matrices associated with a transmission network

Kq & Jog + JaLCv (6.21)
and
Dg & —JaLJi} (6.22)
result in
QG = KQVG - Fe + DqQL (6.23)

Here F, represents effective reactive tie-line flow as seen by each generator and is
defined as
F. 2 Fg+ DoF,, (6.24)

Eq. (6.23) defines the relationship among the generator reactive power outputs Qg,
generator voltages, the tie-line flows into the subsystem, and the reactive load varia-
tions, through the network characteristics specified by the two important matrices Kq

and Dq.

It should be noted that any (portion of) network is fully characterized by the three
matrices (Kg, Cy, Dg), with Kq reflecting the effect of the generator frequencies on
the generator real power outputs, Cy relating the generator frequencies to the load
frequencies, and Dg representing different electrical distances of loads at different lo-

cations seen by the generators. It is easily shown that matrix Kg does not have the
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structural singularity associated with matrix Kp for the real power/frequency dynam-

ics, although under extreme operating conditions numerical singularities are possible.

6.2.3 Structural Dynamical Model

Local dynamical model (6.7) and the network relationship (6.23) combine to form the
structural dynamical model for reactive power/voltage of the administrative region.
Define the state variables of the region as in (2.18). Voltage dynamics of the region

can be written in a standard nonlinear state space form as
&= f(z,Vz! F,) (6.25)

where the nonlinear function f is the combination of (6.7) and (6.23). This model is

of the general form (2.20).

In contrast to the real power/frequency dynamics, the network matrix Ko is in
general not singular. As a result, the voltage dynamics as described in (6.25) are not
structurally singular. Because of this nonsingularity, inter-area voltage oscillations in
general do not exist, except in the case of numerical singularities. Also there is in
general no need for direct tie-line flow control, as in the frequency case to remove
the structural singularity. Furthermore, there do not exist the interaction variables
as defined in (2.2). However, as will be discussed next, there exists another type of
quasi-static interaction variables on the secondary level, which reflect a different type
of structural singularity - insufficient number of controls for the quasi-static voltage

dynamical model.
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6.3 Quasi-Static Voltage Model

Typical designs of the excitation system yield very fast transient dynamics, relative to
the secondary time scale T,. A quasi-static voltage dynamical model can be derived
when the reference value V5¢/ is updated at discrete time instance kT,. FIRST set all

derivatives in (6.25) to zero. This leads to an algebraic equation
f(z, Vel 0) =0 at kT, (6.26)
The linearized equation for this is
Abz + B6VE! =0 at kT, (6.27)

where A is nonsingular. This nonsingularity determines a unique relationship between
the generator voltage Vi, which is part of the state variables, and the reference value

Ve, For simplicity, let us simply write
8Vslk] = a VS [K] (6.28)

In other words, generator terminal voltages are directly proportional to the reference

values.

The secondary level control of the reactive power/voltage is to regulate load voltage
profiles with generator terminal voltages. To derive the relationship between load
voltages and generator terminal voltages, let us consider any administrative region
within an interconnected system. From the network relationship (6.19) derived in
the previous section one can obtain the following quasi-static discrete-time model, by

integrating (6.19) from the secondary time instance kT, to the next instance (k+1)T;,

Vilk + 1] — Vi[k] = Cv(Valk + 1) - Valk]) + Jpp[(FL[k + 1] — Fi[k])
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— (Qulk + 1] — QL[k])] (6.29)

As in the frequency control case, let us define the secondary corrective control signal
u,[k] £ Vglk + 1] - Vglk] (6.30)

the tie-line flow changes

F,[k) & Filk +1) - FL[k] (6.31)
and the secondary level load disturbances
du[k] £ Qulk + 1] — QL[] (6.32)
Eq. (6.29) then becomes
Vilk + 1) — Vi [k] = Cyu,[k] + D,(F.[k] - dy[k]) (6.33)

with D, & Jii. This is the desired secondary level discrete-time dynamical model for

a region within an interconnected system.

To write this in standard control notation, let us define the secondary level states

z[k) & V,[k] (6.34)

Then equation (6.33) is rewritten as
z[k + 1] — z[k] = Cyu,(k] + Ds(F;[k] — ds[k]) (6.35)

where F,[k] and d,[k] act as the disturbances to the system with control u,[k]. The
difference between F,[k] and d,[k] is that the flow can be measured, while the loading
variations are rarely measured in practice. They are either estimated or simply treated

as a real disturbance.
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It is emphasized that the discrete-time dynamical model (6.35) is a control- or
disturbance-driven model, in the sense that, if all disturbances (including tie-line flows)
are not present, and the corrective control is inactive, then z[k] = constant, Vk. Clearly
control actions are needed to bring the system (6.35) back to the nominal operation,

if the system is perturbed away from the nominal operation by disturbances.

It is also worth noting that the secondary level control is an implicit integral control.
We see from (6.30) that the secondary level control u[k] is a corrective signal, i.e. it
updates the previous generator voltage Vg[k] to get the next value. This corrective
action is equivalent to an integral control. It is this implicit integral control that can

eliminate steady state errors in the load voltages caused by system disturbances.

6.4 Quasi-Static Interaction Variables

The secondary quasi-static voltage dynamical model for any region explicitly in terms

of the tie-line flows has been derived as
SL'[]C + 1] - .’B[’C] = CVus[k] + Ds(Fs[k] - ds[k]) (636)

where z[k] = V[k] is the state vector consisting of all load voltages. The dimension
of the sensitivity matrix Cy is n x m, where n being the number of load buses, and
m the number of generator buses that participate in the secondary level regulation. In
general it is true that n > m, i.e. the number of load buses is larger than the number

of generator buses participating in the secondary level control.

Under the condition of n > m, one can easily verify that the closed-loop system

using any feedback control is singular, because matrix Cy has maximum rank of m.
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This structural singularity due to the relative numbers of controls and states. This
is a general property for any control-driven systems. In exploiting this structural

singularity of the quasi-static voltage dynamics, we first give the following definition.

Definition 6.1 (Quasi-Static Interaction Variables) Any linear combination of

the states, z[k] = Tz[k], T # 0, that satisfies
z[k +1) - z[k] =0, Vk (6.37)

for any secondary control actions, and in the absence of interactions among regions
and the disturbance, i.e., F, = 0 and d, = 0, is defined as the quasi-static interaction

variable of the administrative region under study.

The same notation as the continuous interaction variables is used here to indicate
the same characteristics of the two. The meaning is clear from the context under
study. Similar to the continuous interaction variables defined in Part II, the quasi-
static interaction variables do not vary with time when interconnections are removed
and load disturbances are not present. For the interconnected system, therefore, any
variations of the interaction variables with time are entirely due to the interactions
among regions or load disturbances. It should be noticed from the definition that
the interaction variables are not unique. In fact, any combinations of the interaction

variables are still interaction variables.

Let us derive the condition for the transformation matrix 7. Combining (6.37) and

(6.36) yields

2[k + 1] — 2[k] = T(Vi[k + 1] = Vi[k]) = TCyu,[k] + TD,(F,[k] - d,[k])  (6.38)
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Under the conditions in the definition, F,[k] = 0 and d,[k] = 0, we arrive at
z[k + 1) — z[k] = TCyu,[k] (6.39)
In order to have z[k + 1] — z[k] = 0 for any control u,[k], matrix T must satisfy
TCy =0 (6.40)

This is the desired equation for calculating 7. Note that matrix Cy has maximum
rank m < n, an‘! therefore, equation (6.40) has nonzero solutions for T'. It is quite
easy to solve T from (6.40), since it is a simple algebraic equation, and can be solved
with Gauss Elimination method. The need for eigenstructure analysis is completely

avoided.

Note that the definition for interaction variables is for any secondary control, mean-
ing that the interaction variables are independent of the specific secondary control.
Equivalently, the secondary control cannot affect the interaction variables. Any varia-
tions of the interaction variables are uniquely due to the interactions with other regions
or the load variations. The matrix T', as a result, will not be dependent on the specific

form of the secondary control.

An interesting difference between the continuous and quasi-static interaction vari-
ables can be noted. For any single region, the dimension of the continuous interaction
variable is in general one, because the system is normally rank-deficient by one. For
the quasi-static interaction variables, as shown above, the dimension is the difference
between the number of states and that of controls. This difference indicates the fun-

damentally different causes for the two types of interaction variables.

Once the interaction variables are determined from (6.40), one can further derive
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the dynamical model for these interaction variables. Egs. (6.38) and (6.40) simply lead
to

2k + 1) - 2[k] = TD,(F.[k] - da[K]) (6.41)

This is the desired dynamical model for the interaction variables. This simple model
relates the interaction variables to the tie-line flows and load variations. It is of crucial
importance for the secondary voltage control and tertiary level coordination, as is

discussed in more detail in the next chapter.

Notice that the definition for interaction variables does not assume numerically
weak interconnections. Rather, it reflects a structural property of the system, different
numbers of the states and controls. It is interesting to relate the interaction variables
defined above to the slow variables in singular perturbation analysis when the intercon-
nections are indeed weak. It is easily seen from the interaction dynamical model (6.41)
that, in the weak interconnection case, the interaction variables do vary more slowly
than the rest of the states. One can rigorously prove that, in the weak interconnection
case, the interaction dynamics derived here will be the slow subsystem in the singular

perturbation analysis.

Let us now demonstrate the interaction variables and their properties by a small

9-bus example network given in Fig. 6.3.

Region I consists of buses #1 and #7, the rest is region II. The pilot points are
buses #1, #2, and #3. The feedback gain G, is designed such that the pilot voltages
settle exponentially in 3 minutes. The load is assumed to have a step increase at bus
#5 at t = 0; thus the effect of d,[k] is seen in changes of the initial conditions for

all the load voltages. This small example will be used throughout to demonstrate the

134



@
I @ Region 1
®

®)
| @ Region 11

Figure 6.3: The 9-Bus Example

developed concepts. Simulations for the EDF network will also be given, but only for

the purpose of illustrating the tertiary level contiol. The numerical data used in the

simulations for the 9-bus system are given in Table 6.1.

Line Parameters

#1-4 | #1-5 | #1-7 | #2-3 | #2-4 | #2-6 | #2-8 | #3-6 | #3-9 | #5-6
b 5 7 7.69 | 15.67 | 21.55 | 7.19 | 833 (1249 10 9.8
g 0 15 0 0 1.02 | .34 0 31 0 0

Nominal Operating Point

#1 | #2 | #3 | #4 #5 | #6 | #7 | #8 | #9

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

Table 6.1: Per Unit Data of the 9-Bus Example

The sensitivity matrix for region I, which has only one generator bus and one load

bus, is simply
Cy =1 (6.42)

The sensitivity matrix for region 11, which has two generator buses and five load buses,
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is calculated as

[ .55 .45 ]
3 6y
Cl'=| .55 .45 (6.43)
44 .56
| .44 .56 |

Let us use condition (6.40) to calculate the matrix T. For region I, condition T'C{, = 0
simply gives T! = 0. This means that region I does not have any interaction variables.

For region I1, condition T'/C}/ = 0 leads to one independent solution

21.55 0 -2155 O 0
T = 0 0 0 98 -98 (6.44)
7.19 1249 0 9.8 —29.48
There are three independent interaction variables given by
2155(22 - 124)
2 = 9.8(z5 — T6) (6.45)
7.19z; + 12.4923 + 9.8z5 — 29.48x¢
To see the physical meaning of these interaction variables, let us rewrite the above
equation as
21.55(z5 — &4)
2= 9.8(x5 — g) (6.46)
7.19(1‘2 — $5) + 12.49(2:3 — .’Bs) + 9.8(z5 — .'L'c)

Note that the interaction variables are given in the differences of bus voltages, with the
coefficients being exactly the line inductances. Therefore, these interaction variables
exact represent the power flows on the lines, since the power flow on each line is exactly
the voltage difference across the line multiplied by the line inductance, for the nomi-
nal operating conditions given in Table 6.1. Preservation of physical meaning of the
interaction variables is important for both regional control and tertiary coordination,

as will be shown in the next chapter.
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6.5 Summary

This chapter presents a structurally-based modeling approach for reactive power/voltage
dynamics of an interconnected power system. Dynamics of the system are formulated
by combining the local dynamics of individual generators and the network couplings. It
is shown that the decoupled reactive power/voltage dynamics of power systems are not
structurally singular. Quasi-static dynamical models on slower time scales are derived.
The structural models developed here will be used for systemwide voltage control on

slower time scales in the the next chapter.
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Chapter 7

Voltage Regulation

As discussed in the previous chapter, voltage regulation of power system involves the
excitation system to stabilize the generator terminal voltages to their given reference
values. These reference values are adjusted at discrete time instances slowly by the
higher level controls. Significant effort has been given to analysis, modeling and design
of excitation systems. This thesis will not further discuss these issues concerning the
designs of fast primary controls. Emphasis here is on higher level control designs -
the slow updating of the reference values for excitation systems. The ultimate goal is
to develop a reliable, automated regional and systemwide voltage control to enhance

secure and economical operation of power systems.

7.1 Regional Voltage Control

The simple control-driven model (6.35) is basic to developing decentralized secondary
level voltage controllers. This control level is referred to in France and Italy as the
Automatic Voltage Control (AVC) [16]. Its main function is to respond to the reactive

load disturbances d,[k] = Q[k+1]—QL[k]. The AVC is implemented on generator units
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whose voltage set points V3¢/[k] are automatically changed to respond to deviations
in load voltages Vi [k] at the chosen subset of loads, the critical “pilot point” loads,
V.[k] = C,V.[k]). Because the maximum number of states that can be fully controlled
is equal to the number of active controls (the number of participating generators),
the number of pilot point loads is always less or equal to the number of participating

generators.

Similarly to the AGC concepts, the AVC at the secondary level should be designed
in such a way to keep operation of subsystems as autonomous as possible given control

constraints. Its main objectives are to:

e Reschedule V3¢/[k] at each subsystem level to meet reactive load deviations Q. [],

k=01, -
e Regulate voltages V,[k] to V¢[K],

e Maintain F[K] = 0 as long as reserves within each area are available (area control

principle),

e Optimize subsystem performance (total reactive reserve or total transmission

losses).

The formulation offered in this thesis enables one to perform optimization of a
chosen performance criterion in a coordinated manner with the voltage regulation at the
pilot point loads. It follows that the secondary control law of general form (7.5) or (3.23)
will achieve the above objectives. It is important to recognize that the “participation

factors” of different units are directly determined by the optimal gain G, for any
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given power network, no additional economic dispatch type functions are required at

a subsystem level.

Consider, within an interconnected system, an area with n load buses and m gen-
erators participating in the secondary control. The dynamical equation for all the load

voltages is given by
z[k + 1] - .'L'[k] = CVus[k] + Ds(Fs[k] - ds[k]) (7.1)

where the dimension of the sensitivity matrix Cy is n x m. In general, n > m. Under

this condition, one can easily prove the following:

Proposition 7.1 (Controllability) The dynamical system given in (6.36) is not fully

controllable.

Proof Let us write the controllability matrix for (6.36) as
Q.=[B AB .- A-B]=[Cy 0 - 0] (7.2)

since A = 0 for the control-driven system. Because the sensitivity matrix Cy has

maximum rank m, the system is not fully controllable.

As a result, not all load voltages can be fully controlled. Only the same number
of loads as the number of generators can be fully controlled. This leads to the idea
of pilot load voltages, the number of which does not exceed the number of generators

participating in the secondary level control.

Due to this controllability issue, the maximum number of loads that can be con-

trolled is equal to the number of active controls. Let us choose m output variables or
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the pilot loads as

y[k]=C§x[’C] e (73)

The control-driven dynamical model for these pilot loads can be simply obtained as
ylk + 1] — y[k] = Ceu,[k] + De(Fs[k] — di[]) (7.4)

where C, = C,Cy is the sensitivity matrix of the critical pilot voltages relative to the
control, and D, = C,D,. This is the basic model for secondary control design. Note

that C, is a square matrix.

7.1.1 Conventional Secondary Level Control

The present state of secondary voltage regulators is based only on the regional mea-
surements, i.e. regional pilot point voltages. The effect of interconnecting flow changes
due to changes in the neighboring regions is not considered directly. One consequence
of this is that under certain conditions the secondary controller may cause a significant

overshoot or not reach the set value within the prespecified time intervals.

The goal of the secondary level regulation is to maintain the pilot voltages (output
variables) at their prespecified set values when the system is under disturbances. A

simple proportional feedback law takes the form
us[k] = G,(y[k] - y**'[K]) (7.5)

where y*®![K] = y*(KT,) is the set value for the pilot voltages on the tertiary level
time scale. This set value is adjusted by the tertiary level control on the even longer
time scale T, and is a constant for the secondary control process, see Figure 2.2 for

reference.
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Under this control law, the secondary level closed-loop dynamical model becomes
zlk + 1] — z[k] = CvG.(Cuzlk] — y**[K]) + D,(Fi[k] - di[k]) (7.6)
and the pilot voltage dynamics are simply
ylk + 1] — y[k] = C.G.(y[k] — y*[K]) + De(Fi[k] — ds[k]) (7.7)
Let A, = C.G,. We then rewrite the above as
ylk + 1] — y[k] = As(yl[k] — y**“[K]) + De(Fs[k] - ds[k]) (7.8)

One requirement for the choice of pilot voltages is that the resulting matrix C, must

be nonsingular. If matrix C. is singular, then A, will be singular for any gain matrix

G,. The discrete-time closed-loop system matrix I‘+“A,_wil‘l‘alway8‘have‘an"eigenvalue""""”"""'

of 1. The consequence of this is that the system will have a linear combination of the
pilot voltages that cannot be moved by any control actions, i.e. not all pilot voltages
can be fully controlled. In other words, steady state errors are inevitable for the chosen
pilot voltages. To fully control the pilot voltages, it is required that the pilot points

are selected such that C, is of full rank.

The secondary level control design is to choose the appropriate gain G,. The
conventional control design neglects the effect of neighboring regions, i.e. it assumes

F,[k] = 0. Under this simplification, the model for pilot voltage dynamics becomes
ylk +1] — y[k] = As(y[k] — y**“[K]) — Ded,[k] (7.9)

where d,[k] is treated as disturbances to the system. The problem of determining

the feedback main matrix G, can be formulated as an optimal control problem with
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some performance criterion. An alternative way is to specify the desired closed-loop
dynamics for the pilot voltages. The choice commonly used in EDF is to specify the
closed-loop dynamics so that all pilot load voltages are completely decoupled with
each other and exponentially reaching their set values within a specified time constant.
This can be easily done by choosing the closed-loop system matrix (I + A;) to be a
fully decoupled diagonal matrix with desired time constant. An example for the choice
of time constant typically used in France is three (3) minutes. Equivalently, this is
achieved by choosing

Ay =M (7.10)

where ) is a scalar such that the pilot voltages settle to their steady state in the given
time. For the specified decoupled dynamics, the time domain response of all pilot
voltages will be purely exponential and no overshoot or undershoot will occur. Using

the given A,, one can solve for the gain matrix as
G, = Cc"‘/\ (7.11)

under the assumption that pilct voltages are well chosen such that matrix C. is non-

singular.

Under the conventional control, the actual dynamics of the pilot voltages become
ylk + 1] — y[k] = My[k] — y*[K]) + De(Fi[k] — di[K]) (7.12)

The flow F;[k] is a function of the state variables. Therefore the effective dynamics of
the pilot voltages are not purely exponential. In fact, overshoot or undershoot have

been observed in some cases. The numerical example to be given later will illustrate

the phenomenon.
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7.1.2 Improved Secondary Level Control

We propose in this section possible ways to improve the secondary level voltage con-
trol, by taking into consideration the effect of interconnections, while preserving its
decentralized nature. The proposed control laws will be such that they cancel out the
effect of interactions based on additional feedback signals which use the reactive power

flow measurements.

It is clear from (7.6) or (7.8) that tie-line flows viewed as an independent external
input to the system affect the voltage dynamics. The conventional design of the sec-
ondary control, i.e. the design of G is typically done neglecting the interconnections
with the neighboring regions, due t6 the large scale of the system and the desire to
maintain the decentralized nature of the secondary level control. The “optimal” con-
trol designed this way will in general not be optimal anymore when implemented to
the actual system where interconnections are indeed present. To fully compensate the

effect of interconnections, we propose a new control feedback law in the form
ua[k] = Gs(y[k] - y“t[K]) + HFs[k] (7'13)

where the first term is the same as the conventional secondary control control. The
additional term HF,[k] is to cancel the tie-line flows on the dynamics of the pilot
voltages. It will be shown that complete cancellation of the tie-line flows for the
dynamics of the pilot voltages is possible with an appropriate choice of the matrix H.

Substituting this improved control law into (7.4) leads to
ylk + 1] — ylk] = As(y[k] — y**(K]) + (C.H + Dc)F,[k] — Ded,[k] (7.14)

It is clear that, when C. is invertible, the tie-line flows can be fully eliminated in the
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pilot voltage dynamics by choosing
H=-C'D, (7.15)
With this choice of H, equation (7.14) reads
ylk + 1] — y[k] = A.(y[k] — y**“[K]) — Ded,[k] (7.16)

with no flows entering into the equation. In other words, the region under study looks
as if it were completely isolated with the rest of the system, as far as pilot voltage

dynamics are concerned.

It is noted that, due to the controllability issue discussed in Proposition 7.1, tie-line
flows can be fully canceled only for as many as m (the number of active controls) load

voltages. Since we choose m pilot points, flows can be canceled for all pilot voltages.

It is also noted that the control scheme presented here is fully decentralized, assum-
ing the tie-line flows are locally measurable from each region. No detailed information
about neighboring regions is needed; only tie line flows, which aggregate the net effect
of detailed dynamics of the neighboring regions, are required. It is not an unrealistic

assumption that tie-line flows are locally measurable.

7.1.3 The 9-Bus Example

Let us now illustrate the results by the small 9-bus example network given in Figure
6.3. Figure 7.1-a) shows the pilot voltage responses using the conventional feedback
law given in (7.5). It is seen that, due to tie-line interactions, overshoot occurs and
settling time is longer than supposed. Figure 7.1-b) shows the pilot voltage responses

with the improved feedback control given in (7.13).
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It is clear that the additional term HF[k] improves the responses in both elimi-
nating the overshoot and ensuring the prompt settling. This improvement is expected

to be significant when tie-lines are strong and meshed.

Figure 7.2 shows the comparison between the non-pilot voltage responses using the

conventional and improved feedback control. Again improvement is appreciable.

These figures also show that no oscillatory modes exist in the time domain responses
of the load voltages, for either conventional secondary control or improved secondary

control.
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Pilot Voltages, p.u.

Pilot Voltages, p.u.
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Figure 7.1: Pilot Voltages: a) Conventional, b) Improved
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Non-pilot Voltages, p.u.
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Figure 7.2: Nonpilot Voltages: a) Conventional, b) Improved
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7.2 Tertiary Coordination

7.2.1 Introduction

With an increased tendency towards large energy transfer over long distances, the prob-
lem of maintaining voltages within the acceptable operating specifications has merged
in operating and planning power systems throughout the world. The systemwide volt-
age coordination problem is viewed by many as the specialized OPF (page 13) problem.
There are some drawbacks for the OPF technique. First o. all, they do not offer much
engineering insight for interpreting the numerical solutions. As a consequence, when
the OPF technique experiences convergence problems, it cannot explain if the cause
is the nonexistence of solutions, or the particular numerical method involved. Also
the OPF technique does not offer much opportunity for handling specific problems of
different individual regions. Another problem with the OPF technique is that a large
amount of data for almost all variables of the entire system is needed in order to carry
out the optimization. Therefore, state estimations are necessary for those unmeasured

states. Errors in the state estimations can cause problems for the algorithm.

The main purpose of the tertiary level voltage controls is to update set values for
reactive power tie-line flows F[K], K = 0,1, - - - on the tertiary level time scale in order
to optimize system-wide performance for the anticipated base load Q.[K], K = 0,1, --.
This could be done on hourly basis, if not more often in accordance with the statistical
information on base load. The actual setting of tie-line flows is achieved by changing
settings of secondary voltage controllers VZ*![K]. Because this is done so infrequently,
it could involve recomputing of basic matrices around a new operating point for the

anticipated load over the time horizon T;.
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The idea behind the coordination of regional controllers is to establish feasible
schemes for maintaining voltages throughout the interconnected system within the pre-
specified limits, subject to available reactive power resources. Although in this project
only reactive power reserves of generators are of direct interest, the coordination under
the development is directly applicable to all other sources of reactive energy which have
primary controls responding to local voltages, such as static VAR compensators and

on-load tap changing transformers, etc.

The determination of the optimal set values for the pilot voltages are formulated
as an optimization problem. However, the notion of optimal voltage profiles remains
as an open research question. The question has not yet been answered even for the
simplest possible network with one generator supplying power to one single load. This
is because the notion of optimal operation of the network has not yet been rigorously

defined. The main performance candidates are concerned with:

e System reactive reserves;
e Transmission losses;
e Voltage proximity to the prespecified limits; and

e Flow scheduling.

We recognize that some of the performance criteria may be more relevant for normal
operating conditions and the others for emergency conditions. Therefore, the coordi-
nation strategies under the development may be dependent on the system operating

mode. In this sense there will be certain degree of adaptation to the operating mode.
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Conventional thinking is that under the normal operation one wishes to minimize trans-
mission loss, assuming that the system is well within the reactive reserve and voltage

limits.

The optimization problem for the optimal set values of the pilot voltages can be

formulated in three basic topologies:

o Fully centralized: The coordination tasks are performed by a global coordination
center which has available the information for all the interconnected region. The
entire interconnected system is modeled as a single region. One single perfor-
mance criterion is optimized, and the optimal set values of the pilot voltages for

all regions are obtained.

e Fully decentralized: The determination of set values of the pilot voltages is done
by each individual region itself. Each region optimizes its own performance crite-
rion. Each region does not assume any information about the rest of the system.
In the optimization process of each region, the tie-line flows into the region are
measured and used to determine the optimal pilot voltage set values for the

region.

e Partially centralized/decentralized: In this scheme, each region assumes limited
information about the rest of the system, and, with the limited information, tries
to optimize its own performance criterion. The natural choice for the limited
information about the rest of the system is simply the aggregate model developed

previously. We model this scenario as a game theoretical setting.

The systemwide performance criterion for the fully centralized method is in general
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quite difficulty to establish, and the computational effort for the solution is enormous,
as the power system is very large. Therefore the coordination scheme cannot be im-
plemented quite often. The fully centralized method also require global communica-
tion over far distances. The fully decentralized or partially centralized/decentralized
schemes, on the other hand, have obvious advantages. There is an extensive degree
of handling specific problems of different regions with different performance criteria.
This is particularly suitable for a multi-utility environment. The performance criteria
for smaller regions are easier to obtain, and the computational work is significantly re-
duced. As a result, no global communication is required, and the coordination schemes
can be implemented relatively more frequently. The major disadvantage of the schemes

with competition nature is that instability can occur.

Due to the large size of the system and complexity of the system operation, any
practical on-line coordination schemes must be based on a reduced-information struc-
ture in order to be efficiently applied. In this thesis, we develop a tertiary coordination
scheme based on a reduced-information structure using the interaction variables defined
in the previous chapters. The defined interaction variables represent the inter-area tie-
line power flows, and serve as a basis for the inter-area coordination. We shall derive
an important relationship between the inter-area tie-line flows and the set values for
the pilot voltages, which are the actual controls on the tertiary level. To establish some
basic concepts for the notion of optimal voltage, we first study the simplest power sys-
tem with only one generator and one load. The results obtained for the simple power

system are then generalized to the more realistic power transmission systems.
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7.2.2 A Simple Power System

In this section the basic notion of optimality with respect to voltage dynamics is studied
by viewing the problem in light of known network theoretic results. New definitions of
the local mazimum and global mazimum are proposed. The new results are interpreted

in context of their potential use in operating the power system in a optimal fashion.

Consider an electric power network consisting one generator and one load (32,

shown in Figure 7.3.

R X P,

O—+N\—0+,,

Figure 7.3: A Simple Example

The generator is connected to the load via a transmission line with impedance

Z = R+ jX. The power balance equations at the load end are
P, = G(V.Vgcos® — V?2) + BV Vgsind (7.17)

QL = B(VpVgcosb — V) — GV Vg sin 6 (7.18)

where G = R/(X?+R?), B = X/(X?+R?), Vi and V}, are the voltages of the generator
terminal and the load, § = 65 — @, is the angle difference between Vi and V. Solution

for the load voltage can be found as

2VE = V2 — 20+ \/V& — 4(aV@ + b?) (7.19)

where
a=RP,+ XQ, (7.20)
b=XP, - RQ, (7.21)
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It is clear that in order for the solutions to exist, one must require
Vg > 4(aVE + b?) (7.22)

It can be further shown that when (7.22) is satisfied, the right hand side of (7.19) is
always positive, leading to no further constraint on the system as far as existence of
solutions is concerned. The inequality (7.22) is the fundamental requirement to the
system, and forms the basis for load limits and maximum power transfer for this simple

system.

If the transmission line is lossless, i.e. R = X =0, then a = b =0, (7.22) is always
satisfied. Mathematically, there always exists a solution to the load flow. When losses
are present, however, only a limited amount of power can, due to the constraint of

(7.22), be delivered to the load, with a given terminal voltage of the generator.

7.2.3 Global Maximum

For a given generator voltage Vg, there is a maximum point for the load real power Py
This absolute maximum real power is called a global mazimum. This is the maximum
real power the system can deliver to a load under the given terriinal voltage of the

generator. This global maximum can be found by holding (7.22) as an equality and

taking
dPy,
— =0 7.23
Differentiating (7.22), for a fixed Vg, leads to
da db
Vi +2b— =0 7.24
a9, " *aq; (7:24)
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Y
Differentiating (7.20) and (7.21) yields

da dPL
=R +X=X 7.25
da: ~ Y (7:25)

db dP,
=X —-R=-R 7.26
aq: = *aa (7:20)
using the maximum condition (7.23). Substituting the above into (7.24), we can find

X 12
b= ﬁVG (7.27)
and, with this and the equality (7.22),
X? V&

a= (1 - EE)—Z (7.28)

Having obtained a and b, the global maximum P, can be easily found by (7.20) and

(7.21) as
_aeR+bX V3
bFo=mix = (7.29)
The corresponding @, can also be solved
aX — bR XV2
QL = = (7.30)

TR+X? 4R
It should be noted that the global maximum is realized when, if the impedance model,
Z1, = Ry + j Xy, for the load is adopted, R, = R and X = —X. This agrees with the

classical circuit theory.
7.2.4 Local Maximum

To understand the fundamental characteristics of the power system, and to make anal-

ysis more universal, we use dimensionless quantities. Let us define

aR AV a XPy aQ

X A p= v 1= p (7.31)

r
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It can be shown that the load power factor « is related to g by

o B _ 1
VPE+@p Vite

Constant load power factor implies constant g, and high power factor means small

absolute value of q.

Using these dimensionless quantities, we can rewrite the load flow solution (7.19)

202 =1-2p(r+q) £ /1 - 4[(r +q)p+ (1 - rq)2p? (7.32)

The inequality (7.22) becomes

1
(r+a)p+(1-rg’p* < 3 (7.33)
Solving this we get
Pm <P < PM (7.34)
where the two limits are
M = 1/2 >0 (7.35)
V@ +r2)(1+¢) +(r+4)
-1/2
Pm = / <0 (7.36)

VA+r)(1+¢) - (r+9)
Equation (7.34) clearly indicates that, for a given r and g, there are a minimum and
a maximum value for the power p. pys is the maximum power that can be delivered
to a load for a given ¢q. To distinguish this maximum from the global maximum we
refer to this as the local mazimum. Note that p,, is the maximum power a “load” can

deliver to the network — when the “load” is actually another generator.
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The load voltages corresponciing to the local maximum can be obtained as

UM = \/ -;- —(r+q)pm (7.37)

U = \/ >~ (r+Q)pm (7.38)

Global maximum can also be re-discovered using the local maximum by setting

dpm _ (7.39)

q

After differentiating (7.35) and some algebraic manipulation, we get the global maxi-

mum condition

rg=-1 (7.40)

This condition is equivalent to the condition found in classical maximum power theory

for circuits, as will be further discussed next.

It is interesting to note that at the global maximum, the real power loss on the
transmission line is equal to the real power on the load, and the reactive power loss is

equal to the negative of reactive power of the load. Losses are given by
Poys = G(VG2 + VE — 2VeV, cos 0) (7.41)

Qloss = B(VE + V2 — 2V5V, cos 6) (7.42)

Using load flow solutions we can show that at the global maximum

-Ploas = I)load (743)

Qlou = "'Qload (7-44)
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7.2.5 Load Impedance Model

We can apply the general results to the case of an impedance model for the load. Let

the complex load impedance be
Zy, =Ry + XL = Z e (7.45)
and the complex line impedance be
Z=R+jX = Ze? (7.46)

With the impedance model we can easily find

¥4
(14 22)y/(1 +72)(1 + ¢2) + 22(r + q)

~ 2/1+)(1+ @)
T (14221 +12)(1+?) + 22(r + q)

where z = Z,/Z is the ratio of the two magnitudes.

Dioad = (7-47)

Vioad (7.48)

Using these results and equations (7.32) and (7.37), we prove the following conclu-

sion:

Proposition 7.1 (Local Maximum) The local mazimum occurs if and only if Z|, =

Z (magnitude matching).

Proposition 7.2 (Global Maximum) The global mazimum occurs if and only if

Z), = Z (magnitude matching) and ¢, = —¢ (phase matching), i.e. Z, = Z°.
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7.2.6 Performance Criteria

Assuming the secondary level control is carried out properly, the tertiary level control
is to determine the set values for the pilot voltages, or equivalently the set values for
the generator voltages, over the tertiary level time scale Tt, so that the global system
as a whole operates optimally according to a certain performance criterion. In this
section, we discuss some general aspects of the performance criteria to be used for the

optimization process.

Since the system is composed of three major components, the generators, transmis-
sion network, and the loads, the overall performance criterion can be written in general

as

J= chn + Jnet + Jiod (749)

where Jyen, Jnet and Ji,q are the performance criteria corresponding to each of the three
major components of the power system. Specifically, using the above performance

criterion, we can achieve the following:

e Generation alignment to nearly equalize the ratios of actual generation to the

maximum capacity of all or part of the generators;

e Flow scheduling to schedule tie-line flows among the interconnected regions so

that the global system operates in a coordinated fashion;

e Security enhancement to ensure the generators stay within their limits as

much as possible;

e Loss minimization to reduce the losses on the transmission network.
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For the generators, we need to deal with both the reactive generations and the
terminal voltages. Therefore the choice for the generator performance criterion can be

further decomposed as

Jpen = Jg + Jv (7.50)

with the first term Jg dealing with reactive generations, and the second term Jy with
the voltage limit problem. The term Jg is to ensure that the reactive generations are
within the physically permittable limits. One simple quadratic form, for example, can

be

Jo = (QelK] — Q&™) Wo(QslK] - Q™) (7.51)
where Q%™ is the desired nominal point inside the limit band of the reactive genera-
tions, and the weighting matrix Wy = Wg > 0. The term Jy is primarily to ensure
that the generator terminal voltages stay within the allowable bounds. The simple

quadratic form for Jy is expressed as
Jy = (Va[K] - V&™) Wy (Vo[K] - V&™) (7.52)

where V3°™ is the desired nominal point inside the limit band of the generator terminal
voltages, and also the weighting matrix Wy = W{¥ > 0. This kind of performance
criteria tends to keep the generator generations and terminal voltages close to their
desired nominal values, if heavy weights are given to these terms. The justification
for this type of performance criteria is that it can eliminate the situation of some

generators hitting their physical operating limits under heavy loading conditions.

Similarly, for the transmission network, we can decompose the performance criterion
into a term involving the total losses on the transmission network, and a term involving

rescheduling the tie-line flows. For the loads, the primary concern is also for the critical
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pilot node load voltages to stay within the acceptable bound. A similar expression to

(7.52) can be written for the load voltages.
Jioa = (Ve[K] = V7o) We(Ve[ K] — V™) (7.53)

where V"™ is the desired point inside the limit band of the load voltages, and the

weighting matrix W, = WX > 0. This performance criterion tends to keep the load

voltages close to the desired point V*™.

In the process of solving the optimal control problem given in (7.49), constraints
among the tie-line flows, unit generations, losses, and the set values for the pilot volt-
ag;s on the tertiary level time scale are needed. These constraints for the time K
involve the values of these quantities at the previous time (K — 1). As a consequence,
the optimal solution for the time K involves quantities at the previous time (K — 1).
Therefore, the pilot voltage settings as a result of the optimal control problem form
another discrete-time sequence on the very slow time scale T;. The basic requirement

for the optimization process is that it must guarantee the stability of this discrete-event

process.

It is emphasized that this process of tertiary control involves only the information
about the generators participating in the secondary control and the pilot points, plus
the tie-line flows if they are to be re-scheduled. The amount of data and computation
involved is drastically less than that needed for the full scale optimal power flow cal-
culation, where information about all loads ic necessary. As an example, two regions
of the French network have 259 buses, while the number of pilot points for the two
regions is only 9. As a result of the significantly limited amount of information needed,

it is visualizable that this tertiary control scheme can be implemented on-line as a
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closed-loop control.

7.3 New Tertiary Level Aggregate Models

Using the structural modeling approach discussed above, one can derive the relationship
between the critical pilot voltages and the generator voltages, the relationship between
the critical pilot voltages and the generator reactive outputs, the relationship between
the flows and the interaction variables, and the relationship between the flows and
the output variables, on the tertiary level time scale T;. These relationships serve as
constraints to the optimization problem to determine the optimal set values for the
output variables — the critical pilot voltages. Since these relationships are derived for
an administrative region, they explicitly involve the tie-line flows into the region from

the rest of the system.

Pilot And Generator Voltages

Let us consider a single region within an interconnected system. The relationship

between the load and generator voltages was introduced in (6.19) as
Vi =CyVo+Jp}(FL— QL) (7.54)

To derive the relationship between the critical pilot voltages and generator voltages on
the tertiary level time scale Ty, let us integrate this equation from KT, to (K + 1)T,.

This simply leads to

VL[K +1] - Vi [K] = Cy(Ve[K +1] - V5[K]) + D(FL[K +1] - FL[K]) — Dd,[K] (7.55)
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where D £ J71, and d,[K] & QL[K + 1] — QL[K]. The critical pilot load voltages are
defined as
V.£CV, (7.56)

Multiplying (7.55) by C, yields
Ve[K +1] - V[K] = Co(VG|K + 1] — Vg[K]) + D(FL[K + 1] — Fi [K]) — Dcd,[K] (7.57)

where C, 2 C,Cy is the sensitivity matrix of the critical pilot voltages relative to the
control, and D, = C,D. Following the discussions in Chapter 3, one should note that
C. is chosen to be a square matrix and nonsingular. Otherwise, not all pilot voltages

can be fully controlled. Under this condition, one obtains from (7.57)
VelK+1)-Vg[K] = Ly (Ve[K +1]~ V¢[K])— Lya(FL[K +1]— F[K])+ Lvad,[K] (7.58)

where Ly £ C:!and Ly, 2 LyD,. This relationship determines the change in gener-
ator voltages for any change in the pilot voltages and the tie-line flows under the given

loading condition. Let us rewrite this ir a more compact form as
VoK 4+ 1] = LyVi[K + 1] — LyaF1[K + 1] + Ry[K] (7.59)

where

Ry[K] = Vg[K] — Ly V[K] + LvaFL[K] + Lvady(K] (7.60)

Or equivalently , with a time delay,
VG[K] LyV, [K] LVdFL[K] + Ry[K - 1] (7.61)

This relationship will be used by the decentralized regional tertiary control to determine

the regional pilot voltages.
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Pilot Voltages And Reactive Generations

Another important quantity for the concern of tertiary control is the reactive genera-
tions of the generating units, because, after all, the reactive generations must match
the reactive loads and the losses on the transmission lines. In this subsection, we derive
the relationship between the change in generator reactive outputs and the change in
pilot voltages. This relationship is important because one needs to be concerned with
the reactive generations when deciding on the desired pilot voltages. The fundamental
relation between the reactive generations and the generator voltages was derived in
(6.23) as

Q¢ = KoVg — F. + DoQ,, (7.62)

where Kg = Jgg + JerCv and Do = —JgJ;}. With the same derivations as in the

previous subsection, by integrating this on the tertiary level time scale T;, we have
QqlK +1] - Qq[K] = Ko(Ve[K +1] - Vo[K]) — (Fe[K +1] - F[K]) + Dod:[K] (7.63)
This, combined with (7.58), gives us
QalK +1] - QalK] = Lo(VelK +1) - Vi[K]) ~ (FolK +1] - Fol K1) + Loads[K] (7.64)

where LQ A Kqu, FQ C) F. + KqLVdFL, and LQd L DQ + KqLVd. Equation (7.64)
defines the relationship between the change in reactive generations and the change in

pilot voltages, given the tie-line flow and load changes. Again, we can rewrite this into
Qg|K + 1] = LoV,[K + 1] — Fo[K + 1] + Rg|[K] (7.65)

for
RalK] = QalK] ~ LqVi{K] + FolK] + Laadi[K] (7.66)
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Or equivalently
Qq[K] = LoV.[K] — Fo[K] + Rq[K — 1] (7.67)

This equation will also serve as the constraint for the regional tertiary optimization

process.

Flows And the Interaction Variables

We have derived the secondary level interaction dynamical model in (6.41) as

2k + 1] - 2[k] = TD,(F.[k] - d[k]) (7.68)

or
z[k + 1] — z[k] = S(F;[k] — ds[k]) (7.69)

for
S&TD, (7.70)

Evaluating this on the tertiary level time scale T, yields
2[K + 1) — 2[K] = S(FL[K + 1] — FL[K]) — S(d[K + 1] — d[K]) (7.71)

Define dy[K] £ d[K + 1] — d[K] as the tertiary level disturbance. Equation (7.71)
becomes

2[K +1) — 2[K] = S(FL[K + 1] — FL[K]) — Sd/[K] (7.72)

Matrix S as defined in (7.70) has a special structure, and can be easily constructed
using inspection. Recall the definition of Cy = —Jf, }, Jie = —D,J ¢ and the condition
of TCy = 0 in (6.40). One simply has

SJg=TD,J g =-TCy (7.73)
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Therefore we derive the important equation for the S matrix as
SJg=0 (7.74)

This gives a simple method to construct the S matrix. Let us discuss this as follows:
Suppose that there are n load buses and m generator buses in the region under con-
sideration, and assume that n > m. Then there are n — m independent solutions for
S, or S has n —m independent rows. If load bus ¢ is not connected to a generator bus,
then the corresponding ith row of Ji ¢ is all zero, because J¢ is the connection matrix

between the load buses and the generator buses. In this case, vector

v=[0 -0 1 0 - 0] (7.75)

+ i element

will satisfy vJrc = 0 because the ith row of Jy¢ is all zero. In other words, matrix S
will have v as one of its rows. Therefore, for all load buses not connected to generator
buses, we construct S by selecting 1 at the corresponding locations, and 0 elsewhere.
If the number of the load buses not connected to generator buses is equal to n — m,
then we have found all n — m independent solutions for S. If this number is less than
n — m, then there are more independent solutions to be determined. In this case, one

needs to solve (7.74) to get all the independent solutions.

Because of the special structure of the S matrix, we see from (7.72) that the inter-
action variables are just the tie-line flows into all the load buses that are not. connected

to generator buses. This is extremely important for tertiary level coordination.
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7.3.1 Centralized Aggregate Models

In this subsection, the global interconnected system is considered as one single region.
Since this big single region is an isolated system, there are no tie line flows into the
systeni. All the previous derivations carry over to the global interconnected system,
except all tie-line flow terms drop out. This is because there is no restriction on how
to choose the region, and all results apply to the global interconnected system as one

single region.

Pilot And Generator Voltages

We use the bold face script letters to represent any variable associated with the global
interconnected system. For example, let us define Vg, Qg to represent the generator
voitages and reactive generations of the global system, define further V, to represent
the critical pilot load voltages of the global system. The relationship between the pilot

load voltages and the generator voltages is in the same form as (7.61)
VG[K] = vac[K] + Rv[K - 1] (7.76)

where Ly 2 C;! and Lyg a LyD,.. Matrices C, is the pilot voltage sensitivity matrix

for the global system, and
Ry[K — 1] = Vg[K = 1] = Ly V [K — 1] + Lyqd:[K — 1] (7.77)

Comparing with Equation (7.61), we see that all the flow term disappeared here, be-
cause the global system is assumed to be an isolated one, and there is no flow for the

isolated system.
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Pilot Voltages And Reactive Generations

Similar to the generator voltage case, we can derive the tertiary level aggregate model
for the reactive generations of the global system. Again, we carry the results for a
single region case. The final relationship needed for tertiary level control is, derived

from (7.67) without all the flow terms,
Qg[K| = Lo Ve[K] + Ro[K — 1] (7.78)
where Lq 2 KqLy and
Ro[K — 1] = Qg[K — 1] — Lo V[K — 1] 4 Lgad[K — 1] (7.79)

All other matrices are defined in a similar way as in the decentralized case, except they

are now defined for the global system.

Flows And the Pilot Voltages

Here we study the relationship between the internal flows among the regions within
the global system and the pilot voltages. This relationship can be easily obtained from

secondary quasi-static models as
S(F[K + 1] — F[K]) = L(y,[K + 1] — y,[K]) + Lad,[ K] (7.80)
where § = TDy, and L = TCy(TC.)™".

It is intriguing to recognize that z[k] can be interpreted as the area load excess
(ALE) introduced in [33] as a better alternative to the area control error (ACE) signal.

This simply follows from the Kirchikoff’s current law for each cutset separating an
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area from its neighboring subsystems. While the ALE concept was introduced in [33]
as a heuristic measure of the most meaningful signal for preserving the famous area
control principle, we provide in this thesis its accurate derivation which also accounts
for transmission losses. The basic difference from the previous literature including [20]
and [33] is that it is not necessary to experiment with the best weighting coefficients
when designing secondary and tertiary level controllers. They are simply result of

general optimization methods for chosen performance criteria.

7.3.2 The 9-Bus Example

Let us illustrate the general model by considering the small 9-bus example given in

Figure 6.3. For the numerical numbers given in Table 6.1, we can calculate

1 0 0
C.=|0 .55 .45 (7.81)
0 .37 .63
1 0 0
Ly=cC'=|0 343 —243 (7.82)
0 —-2.02 3.02
Matrix Kq is given by
0 0 0
Ko=|0 371 -371 (7.83)
0 -3.71 3.71
It is easy to calculate
0 0 0
Lo=KoLy=| 0 2024 —20.24 (7.84)
0 -20.24 20.24
Also the Dy, matrix is
[ —7.69 0 0 1 0 07
0 —-52.75 15.67 21.55 0 7.19
- 0 15.67 —38.16 0 0 1249 PN
“LL = 0 2155 0 —21.55 0 0 \-09)
0 0 0 0 -9.89.8
0 7.19 1249 0 9.8 —29.48 |
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With the T matrix given in (6.45), we obtain

000100
S=TD,,=|{0000 10 (7.86)
[0 0000 1}
—4.06 4.06 0
L=| -338 123 215 (7.87)
[ 0 0 o}

and also

(7.88)
0 0 0 0 0 1

The physical meaning of the matrix S is that only the tie-line flows going into the load

-.53 .27 .18 1.27 .21 .21
Lij=(T-LC)D,=| —44 .18 .19 .18 119 .19

buses are the interaction variables. The fact that all elements of the last row of matrix
L is that the third interaction variable z3 = 7.19(z2—z¢)+12.49(z3 — ) +9.8(z5 —5) a3
calculated in (6.46) will remain constant even when the tie-line are connected, if there
are no load variations. This physically makes sense because this interaction variable is
always equal to the load at bus #6, as can be seen from Figure 6.3, no matter what
the generator voltages and/or the pilot voltages are. This is clearly demonstrated by

the last row of the matrix L.
7.3.3 Fully Centralized Optimization

In this section, we formulate the tertiary level optimization in a fully centralized fashion,
i.e. the coordination tasks are carried out by a tertiary control center. This tertiary
control center is aggumed to have all information about the interconnected regions

needed to solve the optimization problem.

Consider an interconnected system consisting of R regions. Let Vg, Qg and V,
represent the generator voltages, the reactive generations and critical pilot node volt-

ages of the global system. Let the performance criterion for the global system in the
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interval [KT;, (K + 1)T;] be given by
JK] = 3(Vg[K], QglK], Ve[K]) (7.89)
Let us take, as an example, the quadratic form
JK] = (VglK]— ve™)T wy (Ve[K] - VE™)

+ (QglK] — Q&™)" Wq (Qe[K] - Q™)

+ (Vc[K] - V::wm)T We (Vc[K] - V::mm) (7~90)

where VE'™, QF¥™ and V?°™ are the desired nominal values for the generator voltages,
reactive generations and pilot load voltages, Wy, W and W, are the relative weighing
matrices for the corresponding terms. The purpose of the optimization process is to

determine the optimal setting for the pilot voltages V,[K].

Note that the generator voltages Vg and reactive generations Qg are related to the
pilot voltage settings through the aggregate mode!s presented in the previous sectio:'.
These relationships serve as equality constraints for the optimization process proposed
in (7.90). This optimization problem, together with these constraints, can be explicitly
solved and the analytic solution can be obtained. For that purpose, let us first prove

the following optimization result:

Proposition 7.3 (Optimal Solution) The analytic solution to the constrained op-

timization problem:

J = (z-z"")TQ(z — z"™) + (y — y™™) R(y — y") (7.91)
z =Ly +x .
is ezplicitly given by
=" 4+ X znom_Lynom_m
{ ( 0) (7.92)
y= ynom + Y(zuom — Lynom - -730)
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where

X=LY-1I
{ (7.93)

Y = (LTQL + R)"'L"Q

with I being the identity matriz of the same dimension as Q.

Notice that if "™ = Ly"*™ + x,, i.e. the nominal values satisfy the constraint
between = and y, then the optimal solution is given by z = z™°™ and y = y"°™. This
is straightforward. In this case, the optimal cost is calculated to be J = 0. Let us give

a brief proof of the proposition.

Proof Let us convert the constrained optimization problem into an unconstrained

one by constituting a Lagrangian
L= (z—2""™)7Q(z —z™™)+ (y—y"™) Ry —y"™) = N (z — Ly — z) (7.94)

Using vector differentiation results, we derive

oc nom
Frl 2Q(z — z™™) — A (7.95)
3—5 =2R(y — y™™) + LT\ (7.96)

By setting the two partial derivatives to zero, we obtain

Ry-y*™+L"Q@-3z*")=0 (197

Using the constraint z = Ly + x4, we get
Ry —y™™) + LTQ(Ly + 2o — z"°™) = 0 (7.98)

or

(LTQL + R)(y — y™™) = LTQ(z"™ — Ly™™ — o) (7.99)
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which leads to the conclusion in the proposition. Having obtained the optimal solution
for y, one can calculate the corresponding optimal solution for = from the constraint

x = Ly + zo. That simply yields the result stated in the proposition.

Now we can use the proposition to solve the optimization problem posed in (7.90).
To put the performance criterion into the form in Proposition 7.3, let us define the

vector of generator quantities as

x4 [ gz ] (7.100)

and the weighting matrix for the generator quantities
Q £ BlockDiag(Wy, W) (7.101)
The performance criterion in (7.90) can be rewritten as
K] = (x[K] - x"™)T Q(x[K] — 2"™) + (V[K] - V™) We(Ve[K] - V¢°™) (7.102)
The generator voltages and pilot voltages satisfy the constraint as derived in (7.76):
Vg|K] = Ly V[K] + Ry[K — 1] (7.103)
The reactive generations and pilot voltages satisfy the constraint as given in (7.78):
QulK] = LqV.[K] + RglK — 1] (7.104)

Let us further rewrite these constraints as one single constraint in the form

x[K) = LV K]+ R[K — 1] (7.105)
where
cé[:;] and Ré[ﬁzl (7.106)
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Now the problem is in exactly the same format as Proposition 7.3, with x corre-
sponding to z and V,[K] corresponding to y of the Proposition. The optimal solution

for the pilot voltage settings are simply given by
V[K] = V" + Y(x™™ — LV — R[K —1]) (7.107)

for

Y=(LTQL+ w,)'LTQ (7.108)

Corresponding to this optimal solution for the pilot voltage settings, the generator

voltages and the reactive generations are given by
x[K] = 2™ + X(#™™ — LV} — R[K — 1)) (7.109)

with

X=LY-T (7.110)

Note that in the process of solving the optimality problem, inequality constraints
such as voltage or reactive generation limits are not explicitly taken in to account, for
the purpose of simplicity. In real situations, these physical limits must be checked to

ensure that all generators operate in admissible ranges.

The obtained optimal solution forms a control-driven discrete-event process on the
tertiary level time scale, driven by the load variations d,[K] through R[K —1]. As a
result, the optimal solution will be a function of the load variations so that the global

system is kept optimal as loading varies.
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7.3.4 Fully Decentralized Optimization

As opposed to the fully centralized optimization discussed in the previous section,
here we study the the tertiary level control in a fully decentralized fashion, i.e. each
region within the interconnected system optimizes its own performance criterion, while
assuming no structural information about the rest of the system. In the regional
optimization process, each region measures the tie-line flows, and uses the measurement

to determine its optimal settings.

Consider a single region within an interconnected system consisting of R regions.
Let Vg, Qg and V, represent the generator voltages, reactive generations and critical
pilot node voltages of the region under consideration. Similar to the fully centralized
optimization, the performance criterion for the region in the interval [KT;, (K + 1)T;)

can be written in the form
JIK] = J(V6lK], Qa[K], VelK)) (7.111)
Let us also take the quadratic form

JIK] = (ValK] - V&™) Wy (VelK] - V&™)
+ (Qc[K] — Q&™) Wo(QelK] - Q™

+ (Vi[K] = VP™TW(V,[K] - V™) (7.112)

Again, V™, Q™ and V"™ are the desired nominal values for the generator voltages,
reactive generations and pilot load voltages of the particular region, Wy, Wg and W,
are the relative weighing matrices for the corresponding terms. The purpose of the
optimization process is also to determine the optimal setting for the pilot voltages

V.| K], as in the fully centralized optimization case.
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The constraints between Vg[K] and V,[K], Q¢[K] and V(K] are derived in Section

7.3 as given in (7.61) and (7.67). For convenience, let us repeat them
VelK] = LyV,[K] — Ly4FL|K]) + Ry[K — 1] (7.113)
QclK) = LqV.[K] — Fo|K] + Rqo[K — 1] (7.114)
where Ry[K — 1] and Rg[K — 1] are defined as
Ry(K — 1) = Vg[K — 1) — LyVe[K — 1] + LyaFL[K — 1] + Lyad,[K — 1]  (7.115)
Rg[K — 1) = Qg[K — 1) — LoV,[K — 1] + F[K — 1] + Lgud,[K — 1] (7.116)
Similar to the fully centralized optimization case, let us convert the problem into

the form in Proposition 7.3 in order to utilize the proposition. Define again the vector

of generator quantities for the particular region under study

x & lg‘;] (7.117)

and its weighting matrix

Q £ BlockDiag(Wy, W) (7.118)

The performance criterion in (7.90) can now be rewritten as
JIK] = (x[K] - x"™)TQ(x[K] — x"™) + (Ve[ K] = V") We(Ve[ K] - V™) (7.119)

The two constraints (7.113) and (7.114) can be put together into

¥[K] = LV.|K) - F[K] + R[K - 1] (7.120)
where .
a | Lv a | LvaFy a | Ry
C—[Lq], .7-'~—[ Fo ], and 'R—-[Rq] (7.121)
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In the optimization process, the tie-line flows F[K] will be taken as a measured

constant. By Proposition 7.3, the resulting optimal solution is given as
Vi[K] = V™ 4+ Y(2™™ — LV™ + F[K] — R[K - 1]) (7.122)

for

Y= (LTQL+ W) LTQ (7.123)

Corresponding to this optimal solution for the pilot voltage settings, the generator

voltages and the reactive generations are given by
¥[K] = 2™™ + X (™™ — LV™ + FIK] - R[K — 1)) (7.124)

with

X=LY-T (7.125)

All individual regions measure the tie-line flows, and use equation (7.122) to determine

their optimal pilot voltage settings.
7.3.5 Partially Centralized/Decentralized Optimization

Fully centralized and fully decentralized approaches discussed above represent two ex-
tremes, one takes the full information about the global system and one neglects the
structural properties of the rest of the system. One approach that lies in between
the two is the partially centralized/decentralized optimization method, in which one
assumes partial information about the rest of the system. The partial information is
simply the aggregate models discussed before. This approach falls into the category of

game theory. We first give a brief review of the game theory.
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Review of Basic Game Theory

This subsection gives a brief review of the basic Nash game theory. Details can be
found in [34] [35] [36]. We believe that the Nash strategy is more relevant for the

voltage contro! problem than other game settings such as leader-follower game theory.

Consider a game setting consisting of R persons. Assume that each person has the
equal role in the game. Each person tries to optimize its own performance criterion
which is coupled to other persons’ performance criteria. The siandard setting for this
problem is given by

min,, J; = Jy(u1,u2,- -, uR)

(7.126)
min,, Jp = Jp(u1, ug, -+, UR)

where the vector u; is the decision variables of person i. Notice that the hidden as-
sumption with this setting is that each person knows explicitly how the other persons’
decisions affect its performance criterion. This is in general not the case for power
system, where the interactions among subsystems are only through the tie-line flows.

More details will be discussed on this later.

The optimal solution for each person is obtained by optimizing each person’s per-
formance criterion assuming a given set of other persons’ decisions. This is often called

the reaction of the person. The reaction curves are defined as

0J; .
5;‘: = 0, 1= 1,2, ,R (7.127)

The solution (u;,us,---,ug) obtained from this set of equations are often called the

Nash strategy.
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As an example, let us consider a symmetric 2-person game defined by
Jy=ul+2u;+1 (7.128)

J2 = Ug +2u; +1 (7.129)

The reaction curves are obtained from (7.127) as

0J;
L =y = 0, for player 1 (7.130)
6u1
0% =2uy; =0, for player 2 (7.131)
3u2

The Nash strategy is simply obtained as

U =1up =0 (7.132)

The costs under the Nash strategy can be calculated as

h=h=1 (7.133)

Notice that the Nash strategy is in general not the “best” solution for the players.

For the above simple example, we can easily show that for

up=up = -1 (7.134)

the cost for each person is given by

Ji=Jy=0 (7.135)

i.e. both will have smaller costs if they take the solution u; = up; = -1, which is
the centralized global optimal solution. Although the Nash strategy is not the real

optimal solution for the system, it is proven to be a stable one, in the sense that if any
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players give up the Nash strategy and select other solutions, they will have a higher
cost than the one when they stay at the Nash strategy. For the same example given
above, assume that both players are at the Nash solution u; = up = 0 with the cost
J; = Jo = 1. If player 1, for example, changes to the real optimal solution u; = -1,
while player 2 stays at the Nash solution u; = 0, the costs for the two players will be
J, =2 and J; = —1. Clearly player 1, who moved away from the Nash solution, has a
higher cost, while player 2, who stayed at the Nash solution, receives a lower cost. As

a result, both players will try to stay at the Nash strategy.

Game Formulation for Voltage Control

In power systems, the decision variables are the generator or equivalently critical pilot
point voltage settings. For a specific region, the performance criterion usually involves
quantities like the transmission losses, reactive generations, the generator voltages, and
the critical pilot point voltages. The decision variables of other regions do not directly
enter the expression of the performance criterion for this region. In other words, the

competition is not in a standard game theoretical setting.

To see this, we consider again an interconnected system consisting of R regions.

Let the performance criterion of any single region be given by
J[K] = J(VG[K]’ QG[K]a Vc‘K]) (7'136)

Note that all variables in this expression are associated with this particular region
only, no variables associated with other regions directly enter the cost function. The
coupling among the regions occurs only when the constraints among Vg(K], Q¢(K],

and V[K] are introduced. These constraints involve the inter-regional tie-line flows,
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which couple all interconnected regions tcgether.

To see this, let us rewrite (7.136) as
J[K] = J(x[K], Vc[K]) (7.137)

with x as being defined in (7.117). The constraint between x and V. was derived in
(7.120) as

x[K] = LV K] - FIK] + R[K - 1] (7.138)
where all quantities were defined in the previous subsection. In this equation, the
tie-line flow F[K)| acts to couple different regions together, because it is a function of
the generator and/or load voltages of ail the involved regions. This function can be

expressed as
F[K] = NegVg[K] + N VK] = NVEK] + -+ + NEVEK]
+ M VI[K]+ -+ NFVEK]  (7.139)

where Vg and V, are the generator voltages and critical pilot voltages of the global
system consisting of all regions involved, matrices Ng and N are related to the strength

of interconnections. When all interconnections are removed, they both are zero.

In light of this constraint, the performance criterion in (7.137) becomes a function
of the pilot load v-;itages, generator voltages of all the regions within the interconnected

global system. In other words, Eq. (7.137) can be represented in the form of
JIK] = J(vg[K], V.[K)) (7.140)

With this performance criterion, we define the reaction curves for this particular region

under study as
oJ
V.

=0 (7.141)
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The solution corresponding to the intersection of these reaction curves is called the
Nash strategy for the power system. This definition is a natural extension of the

standard Nash reaction curves.

Let us explicitly find the Nash solution for a quadratic performance criterion

JIK] = (K] - 2™™)T Q(x[K] — 2™™) + (V[K] = Vo) W (VL[K] - V™) (7.142)

To do this, we need the following vector differentiation results:

Vector Differentiation Let z and y, y = y(z), be column vectors, and let A be
a matriz (independent of x) of appropriate dimension such that all operations are

meaningful. The following is true:

[ oy 1"
5;[3: Ay] = Ay+[Aa] T (7.143)
%[yTAy] = [%]T(AMT)y (7.144)
where the matriz
g_i’: B [gil;]i,,- (7.145)

One can easily verify these two equations by simply expanding the expressions and

doing element-by-element differentiation. Details are left to the reader.

Now we are ready to derive the analytic Nash solution for the posed problem. From

Eq. (7.142), using the above vector differentiation results, one has

6]_2 ox
=257

T
av, ""'] Q(¥[K] = &™) + 2W(Ve[K] - V™) =0 (7.146)
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ox

Matrix 3y can be found from (7.138) as
ox oF
v = L- FTA (7.147)

Using further Equation (7.139), one obtains
oF Ve

v = N+ Ng 3V, = Ne + NgLy (7.148)
Therefore [/
(7]
6‘2 =L - N, - NgLy (7.149)

From this equation, we can rewrite (7.146) as
(£ = Ne = NoLv)"Q(x[K] — x™™) + W (Vi[K] — V™) = 0 (7.150)
Together with the constraint relationship (7.138), we obtain
Ve[K] = V2™ + Y(a™™ — LV™ 4 FIK] - R[K - 1)) (7.151)
where ) is defined by
Y =[(£-Ne=NeLy)T QL+ W, (L = N, — NgLy)TQ (7.152)

In this optimization result, the optimal pilot voltage settings are expressed explicitly
in terms of the tie-line flows, which are measured by each individual region. Similar
to the previous cases, we can find the generator voltages and the reactive generations,

corresponding to this optimal solution for the pilot voltage settings, as
X[K] = am™™ 4+ X (2™ - LV 4 FIK] - R[K —1]) (7.153)
with
X=LY-TI (7.154)
Again, if ™™ = LVP*™ — F[K] + R[K — 1], i.e. the two nominal values also satisfy
the constraint, then the optimal solution is simply the nominal values.
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Figure 7.4: Tie Line Interconnections on the French Network

7.3.6 French Power Network Simulations

In this section, we describe the French Power Network as an example to illustrate the
concepts and results developed in the previous sections. The most serious coordination
problems are described to us by the EDF personels as occurring for two regions on
the EDF Network. The entire French Power Network consists of more than 1000
nodes, and is divided into 7 regions. The two most important regions for the study of
coordination are the eastern part and south eastern part of France. To be consistent
with the French division, we also name the two regions as region III and IV. The

boundary interconnections are depicted in Figure 7.4.

These two regions are highly interconnected through two strong tie-lines COULAS71
to CHAFFS71, and COULAS71 to P.CORS71. There are also two weak tie-lines con-
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Regions Pilot Nodes Control Units
111 COULAS71 CRUAST 1
111 TRI.PS61 TRICAT 1
111 TAVELST71 ARAMOT 1
111 SEPTES61 M.PONT 1
v CHAFFS71 BUGEYT 2
v P.CORS71 SSAL7T 1
v GIVORS61 LOIRET 3
v CPNIES61 VAUJH 7
v ALBERST71 S.BIH 4

Table 7.1: Pilot Nodes and Control Units of the EDF Network

necting the two regions, BOUDES61 to MTPEZS61, and P.BORS61 to PRATCS63.
[ There are totally 205 nodes in these two regions. Region II] has 4 pilot nodes and
Region IV has 5 pilot nodes. The pilot voltages and the generating units participating

in the secondary control are listed in Table 7.1.

The practical problems that may arise when the regional secondary voltage controls
are not appropriately coordinated can be classified into the dynamical problems and
static problems. The dynamical problems are seen, for example, as the overshooting
of pilot voltages, due to coupling among the pilot voltages, or reactive generation
outputs of units moving in opposition directions during the transient process. The
static problems arise when each region chooses its set points for the pilot voltages
without taking into account the neighboring region. Such scenarios may result in
excessive and useless reactive power exchanges on the tie lines or large unbalance of
the reactive generations on the system. In such cases, the ability of the network to

handle rapid cascades of endangering events can be greatly reduced.

Here we use the coordination schemes described in the previous sections to address
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Regions | Control Units | Maximum | Before Control | After Control
1171 CRUAST 1 2111 455 844
I TRICAT 1 488 198 258
111 ARAMOT 1 674 386 312
111 M.PONT 1 619 283 281
v BUGEYT 2 976 965 936
v SSAL7T 1 1438 1166 681
v LOIRET 3 309 —83 94
v VAUJH 7 889 296 425
v S.BIH 4 371 249 191

Table 7.2: Maximum & Actual Generations of the EDF Network, MVAR

these problems. It will be shc vn that the developed theory for tertiary level coordina-
tion successfully solves the mentioned problems. The simulation results show that it
is feasible and efficient to achieve the coordination purposes by directly controlling a

few selected pilot voltages at the subsystem level.

Generation Alignment Control

First we show the fully centralized tertiary control results of aligning the generations of
the generating units participating in the secondary control. The performance objective
is chosen as the alignment of all generation ratios, defined as the ratio of reactive
generation to the maximum capacity of each generator. The idea is that the generation
limit is the least possible to be reached when the generators are kept aligned with their
generations, because all generators reach their limits at the same time. The maximum
generation capacities and actual generations of the 9 generators in Regions /] and

IV, before and after the tertiary control, are given in Table 7.2.

Before the tertiary control, the reactive generations are quite uneven, with one
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Figure 7.5: Generation Ratio Alignment

generator named LOIRET 3 absorbing reactive power of 83 MVAR. Let us plot the
generation ratios for the 9 generators in Region II] and Region IV of the French

system before and after the tertiary control, in Figure 7.5.

It is seen that the tertiary control scheme simply eliminates the situation of genera-
tor absorbing reactive power as an actual load to the network. The generator LOIRET
3 is generating reactive power of 94 MVAR after the tertiary "control. The generation
ratios are uniformly made more even towards the complete alignment line. It is also
noted that the units do not reach the full alignment. The reason is that some units
are already operating at their limits, and thus nn further adjustments on their termi-
nal voltages can be done. However, all units go towards the alignment line after the

tertiary control, even when some units are operating at the limits.
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Tie-Line Flow Control

The tertiary control can reset the tie-line flows by adjusting the pilot voltage set-points

in each region. This can be easily done by imposing additional equality constraint
FIK) = F* (7.155)
where F*¢ is the desired scheduling value. Using Equation (7.139), one has
Ng VK] + NV K] = F* (7.156)

This is already in the form of (7.105) or (7.138), and can be readily incorporated into
(7.105) or (7.138). The optimal solutions have thus exactly the same form as the ones

given before.

We study the scenario in which the reactive load at bus BOUDES61 in Region I11
increases by 160 MVAR at time t=500 seconds. The goal of the tertiary control is
to increase the reactive tie-line flow from CHAFFS71 in Region IV to COULAST1 in
Region III by 20 MVAR to account for the load increase in region I1/. Figure 7.6
shows the reactive tie-line flow on this line. The tertiary control is activated at time
t=800 seconds. Clearly we see that the flow is successfully controlled to the desired

given new steady state value.

Generator Voltage Control

In this section, we present the case of adjusting pilot voltages so that generator voltages,
which were at their limits before the tertiary control, move away from the limits and
stay within the desired bounds. The Nominal Voltages for the generators and Pilot

nodes in Region III] and IV are given in Table 7.3.
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Figure 7.6: Tie-Line Flow Control

Regions | Control Units | Nominal || Pilot Nodes | Nominal
I CRUAST 1 418 COULAST71 415
111 TRICAT 1 238 TRI.PS61 234
111 ARAMOT 1 420 TAVELS71 410
111 M.PONT 1 245 SEPTES61 241
v BUGEYT 2 425 CHAFFS71 411
v SSAL7T 1 425 P.CORS71 415
v LOIRET 3 225 GIVORS61 235
v VAUJH 7 415 | CPNIES61 | 410
v S.BIH 4 415 ALBERST71 410

Table 7.3: Nominal Voltages of Generators and Pilots of the EDF Network, KV
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The weighting coefficients are chosen as the reciprocal of the corresponding nominal

voltages, i.e.,

W = Diag(1/Vg™, -+, 1/Vgg™) (7.157)
W, = Diag(1/V3™,---,1/V™) (7.158)

The generator and pilot voltages before and after the tertiary control are shown in
Figures 7.7-7.12. It is seen that Generators BUGEYT 2, SSAL7T 1 and S.BIH hit.
their upper limits, and LOIRET 3 operates at its lower limit. It is noted that all of
these generators are in Region IV. As a result of these generators operating already at
their limits, some pilots cannot reach their set values. This is clearly seen from Figures
7.10-7.12. There are small steady state offsets in the responses of pilots GIVORS61,
CPNIES61, and ALBERS71. More seriously, CHAFFS71 moves away from its setting

from the beginning.

The tertiary control adjusts the set values of the pilot nodes in a way such that
the voltages of the generators at upper limits will be lowered, and the voltages of the
generators at lower limits will be increased. This adjustm,,cnt ensures that all generators
stay within their voltage bounds, and that all pilot voltages, as a consequence, will reach
their new settings. Figures 7.7-7.12 show that all generators operate within the desired

bounds, and all pilot voltages reach their settings after the tertiary control.
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Figure 7.7: Generator Voltages: Before and After ‘Tertiary Control
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Figure 7.8: Generator Voltages: Before and After Tertiary Control
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Figure 7.9: Generator Voltages: Before and After Tertiary Control
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Figure 7.12: Pilot Voltages: Before and After Tertiary Control
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7.4 Summary

In this part of the thesis, a hierarchical structure of voltage control for large-scale power
systems is presented. Dynamics of an interconnected system are formulated by com-
bining the local dynamics of individual generators and the network couplings. Under
the assumption of stable primary voltage control design, the discrete-time voltage dy-
namics on slower time scales are derived. Improved secondary control is introduced and
compared with the conventional control. Simulations show a significant improvement
over the conventional control. The concept of tertiary level coordination is introduced.
Simulations are done for both a small power system and the large-scale French Network

to illustrate the proposed tertiary control schemes.
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Conclusions

A structurally-based modeling and hierarchical control approach for large-scale elec-
tric power systems is proposed in this thesis. The interconnected system is decomposed
according to the natural administrative boundaries. Dynamical models of cach region
are obtained by first deriving the local dynamics of individual components and then
recognizing the coupling variables that interrelate local dynamics of all components
in the system. The complete dynamical models in the standard ODE form in an ex-
tended state space are proposed by differentiating algebraic constraiqts imposed by the

transmission network.

In contrast to the present state-of-the-art methods in large-scale system modeling,
which typically require the weak interconnection assumption, the structurally-based
approach proposed in this thesis does not require any typical assumptions on inter-
actions among the subsystems. Avoiding the weak interconnection assumption offers
an essential basis for modeling and analysis of power systems under extensive inter-
regional wheeling, since strong interconnections are typically needed for this operating

mode.

Based on the structural properties of the system, interaction variables on differ-
ent control levels are defined and the corresponding interaction dynamical models are
derived. These interaction variables reflect structural singularities of the system on
different time scales and account for interactions among interconnected regions. It
is important to note that interaction variables defined here have a simple physical
interpretation in terms of real and reactive power flows on the tie-lines connecting sub-

systems. Tertiary level controllers are proposed for a systematic scheduling of tie-line
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flows in response to load variations. They serve the functions of the automatic genera-
tion control and optimal coordination of the secondary voltage controllers. It is further
shown that the newly proposed formulation lends itself to simple ways of entirely de-
centralized controls at the secondary level. This formulation naturally represents the
DEP’s evolving {rom interactions among the subsystems of large-scale electric power

systems.

The approach is particularly suited for establishing different levels of model com-
plexity directly associated with specific hierarchical levels of control design. Quasi-
static control-driven models on slow time scales are derived, which are straightforward
for control design at the secondary and tertiary levels: At the secondary level an opti-
mal design is possible in which a performance criterion is regiéﬁal. The main function
of the secondary level is to assign set values to primary controllers to reach desired set.
values at selected outputs of each subsystem in a manner that guarantees subsystem

level optimality, without neglecting interactions with the neighboring subsystems.

A much simplified relevant model formulation is derived at a secondary level which
captures only changes in set values at primary controllers at each subsystem level
needed to regulate changes in relevant output variables to within the feasible, and
possibly most desired range of operation. In the earlier literature, even in the most
frequently studied examples of the secondary level control problems the assumption
of stable primary control has not been used for establishing simpler models. In this
thesis this assumption is taken as the starting point in formulating the model directly
relevant for the secondary level frequency and voltage controls. The model is also

interpreted as representing a discrete-event process of controlling a moving equilibrium
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[8] to an a priori defined region of acceptable operation i1 response to the slow system

disturbances.

The tertiary level, on the other hand, employs the derived aggregate models for
assigning desired output set values to achieve the coordination purposes. Interactions
among the interconnected regions are essential in establishing game-theoretic trade-offs
between the subsystem performance criteria and the single performance criterion of the
interconnected system. The use of aggregate models proposed is essential for defining
an explicit, closed form relationship between output settings at subsystem levels and
the desired interaction settings which lead to the optimal system performance. This is
needed to implement the desired interactions among the subsystems. From a physical
viewpoint these flows are still direct consequences of states and controls in all sub-
systems, and are controlled to certain values by directly changing coutrol settings at

subsystem levels.
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