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Abstract

Design optimization methods are a popular tool in computational fluid dynamics for
designing components or finalizing the flow parameters of a system. The adjoint
method accelerates the design process by providing gradients of the design objective
with respect to the system parameters. But, typically, adjoint-based design optimiza-
tion methods have used low fidelity simulations like Reynolds Averaged Navier-Stokes
(RANS). To reliably capture the complex flow phenomena like turbulent boundary
layers, turbulent wakes and fluid separation involved in high Reynolds number flows,
high fidelity simulations like large eddy simulation (LES) are required. Unfortunately,
due to the chaotic dynamics of turbulence, the adjoint method for LES diverges and
produces incorrect gradients. In this thesis, the adjoint method for unsteady flow
equations is modified by adding artificial viscosity to the adjoint equations. The ad-
ditional viscosity stabilizes the adjoint solution and maintains reasonable accuracy
of the gradients obtained from it. The accuracy of the method is assessed on mul-
tiple turbulent flow problems, including subsonic flow over a cylinder and transonic
flow over a gas turbine vane. The utility of the method is then tested in performing
shape optimization of the trailing edge of a transonic turbine vane. The optimal de-
sign, found using a modified gradient-based Bayesian optimization algorithm, shows
approximately 15% better aero-thermal performance than the baseline design.

Such design optimizations are possible due to the availability of massively parallel
supercomputers. Designing high performance fluid flow solvers for the next generation
supercomputers is a challenging task. In this thesis, a two-level computational graph
method for writing optimized distributed flow solvers on heterogeneous architectures
is presented. A checkpoint-based automatic differentiation method is used to derive
the corresponding adjoint flow solver in this framework.
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Chapter 1

Introduction

Design optimization is used by researchers in many computational fluid dynamics

(CFD) applications for improving the performance of various fluid machinery com-

ponents. The adjoint method for design optimization is a popular technique to ob-

tain gradients of the design objective with respect to design parameters of the flow

problem[32]. In the field of aerospace engineering, Jameson [49] performed an adjoint-

based shape optimization of an airfoil using the steady state Euler equations and

Lyu [24] performed a design optimization of a blended wing body aircraft using the

Reynolds Averaged Navier-Stokes (RANS) equations. Majority of the adjoint-based

design optimizations carried out in literature use low-fidelity simulations like RANS

or Euler [49, 24, 62].

To accurately model the complex fluid flow structures in turbomachinery prob-

lems, like flow separation, turbulent boundary layer development and wake mixing,

high fidelity simulations like Large Eddy Simulations (LES) are required [70, 36, 66,

8, 51]. Gourdain [36] compared LES to RANS on a transonic turbine vane, and

found that LES predicts heat transfer with a much higher accuracy. Coupling the

accuracy of LES with the performance of the current generation of supercomputers,

adjoint-based design using LES is becoming a more practical option [69].

The adjoint method has wide applicability in gradient-based optimization [49],

uncertainty quantification [114] and error estimation [33]. In this method, a single

additional solution (known as the adjoint solution), obtained by solving the adjoint
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equations, is required to calculate the gradient of an objective with respect to mul-

tiple parameters. In contrast, the tangent method and the finite difference method

for obtaining gradients require multiple linearized flow and nonlinear flow solutions

respectively. An adjoint solution is always tied to a particular design objective func-

tion.

The application of the adjoint method to LES introduces certain complications.

The magnitude of the adjoint solution field diverges to infinity as the LES is performed

for a longer time [116, 14, 12]. This divergence introduces a significant error in the

gradient computed from the adjoint solution, especially when the design objective

function is a long time-averaged quantity. The reason for the divergence is the chaotic

nature of turbulent fluid flows. In chaotic systems, nearby initial conditions diverge

exponentially fast when the system is solved forwards in time. In mathematical terms,

such a system is known to have at least one positive Lyapunov exponent [93]. Even

though the instantaneous solutions in a chaotic system are sensitive to parameter

perturbations it is widely believed that infinite time-averaged quantities of interest

have a linear response [94, 92], assuming ergodicity for the chaotic system. This

assumption has been numerically verified in a variety of chaotic systems like the

Lorenz system [58, 40] and 2-dimensional chaotic flow over an airfoil [12].

In literature, numerous algorithms have been proposed to overcome the adjoint

solution divergence problem and obtain the correct gradients. One of the earliest

methods is the ensemble adjoint method [25, 58], in which multiple adjoint solutions

are obtained over short interval of time and the gradient is computed by averaging all

the adjoint solutions. A disadvantage of this method is that it has a very slow conver-

gence rate and requires a large number of trajectories to achieve a reasonably accurate

gradient. Another method is the Fokker-Planck adjoint method [106], which first es-

timates the physical ergodic measure for the system on a discretization of the phase

space of the system (forming a grid) and then computes the gradient by integrating

over this measure. The main problem with this method is that for high dimensional

systems estimating the measure is very expensive. In addition, the ergodic measure

could be fractal, making representation of the measure on a grid difficult. Abramov
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[3] proposed the blended response algorithm using the fluctuation-dissipation theo-

rem for computing gradients of long-time averaged quantities of chaotic systems. This

method requires the computation of all the Lyapunov exponents and covariant vectors

[34] of a chaotic system, which can become prohibitively large for high-dimensional

chaotic systems. Finally, a recently discovered method is the Least Squares Shadow-

ing method (LSS) [117, 115]. In this method, a shadowing trajectory of the linearized

system is found, from which gradients can be computed. When applying this method

to high-dimensional systems, finding the shadowing trajectory becomes an expensive

optimization problem.

In order to understand the mechanisms behind the divergence of the adjoint so-

lution for the incompressible Navier-Stokes equations, Wang [116] performed an 𝐿2

norm analysis of the corresponding adjoint equations. The analysis showed that there

are two terms which govern the growth or decay dynamics of the 𝐿2 norm or energy

of the adjoint solution. Each of the terms is an integral of a quantity that depends

on the adjoint solution and the flow solution over the domain of the flow problem.

One of the terms is a growth term for the adjoint energy and the other is a dis-

sipation term. The integrand in the growth term is large in regions where the 𝐿2

norm of the gradient of velocity is large. The integrand in the dissipation term is

proportional to the viscosity of the fluid. The energy of the adjoint solution diverges

to infinity when the growth term dominates the dissipation term. In contrast, the

adjoint energy is stable when the dissipation term manages to balance the growth

term. Based on these findings, a similar analysis is performed for the adjoint equa-

tions of the compressible Navier-Stokes equations in Chapter 2. Chapter 3 describes

a new method for solving the problem of diverging adjoint solutions by stabilizing the

adjoint equations for compressible Navier-Stokes equations [103] using an injection of

artificial viscosity based on the adjoint energy analysis. Chapter 4 analyzes the error

due to added viscosity in this new method (known as the viscosity stabilized adjoint

method) and applies it to non-intrusive least squares shadowing [74], another recent

sensitivity analysis method for chaotic systems.

In order to assess the effectiveness of the viscosity stabilized adjoint method, it is
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applied to a representative turbomachinery design problem. In a gas turbine engine,

the nozzle guide vanes are responsible for directing air onto the turbine blades. Shape

design of these vanes is an important problem as it influences the amount of work

that can be extracted from the gases exiting the upstream combustion chamber [37].

In particular, the downstream stagnation pressure loss is sensitive to the shape of the

trailing edge of the vane. It can alter how the boundary layer develops and where

the flow separates on the surface of the vane [102]. Additionally, the trailing edge

shape impacts how much heat from the hot gas is absorbed by the vane. Reducing

the heat transfer can significantly cool the vane, thereby increasing its life span[42].

The turbine vane flow problem is described in detail in Section 1.4.3.

Design optimization with LES is a challenging task [104] because of the noise in

the design objective and gradient evaluations for a particular design parameter and

the prohibitive computational cost of the evaluations. Numerous optimizations algo-

rithms have been designed for handling noisy and expensive objective functions [87].

Gradient-based optimization algorithms are preferred as they require fewer iterations

to reach locally optimal designs than the typical derivative-free optimization algo-

rithms used in CFD and can scale to a larger number of design parameters[64, 27, 15].

One of the most basic gradient-based methods is the Robbins-Monro algorithm [88],

which decides the next design point to evaluate by taking a variable step in the

gradient direction, similar to steepest descent. The algorithm has the tendency to

get stuck in local optimums and requires extensive tuning of the step parameter

[98, 84]. Another optimization algorithm is SNOBFIT (Stable noisy branch and fit)

[48], which belongs to the divide and conquer class of optimization algorithms. While

the algorithm is robust to noise, it cannot effectively utilize gradient information

from all past evaluations as it forms locally approximate quadratic surrogate models.

Bayesian optimization algorithms have several properties that make them ideal for

design optimization using LES [50, 119]. In this thesis, a standard Bayesian opti-

mization algorithm is modified to handle noisy evaluations more effectively. Chapter

5 discusses the optimization algorithm and its application, combined with the viscos-

ity stabilized adjoint method, to shape design of the trailing edge of a turbine vane
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using an aero-thermal design objective.

The utilization of the adjoint method in large scale design optimization requires

the difficult task of writing a correct and efficient implementation, one that scales

to thousands of CPU (Central Processing Unit) cores or utilizes GPU (Graphics

Processing Unit) accelerators. There are two common approaches implementing the

adjoint method for fluid dynamics simulations, one is the continuous adjoint method

and the other is the discrete adjoint method [71]. In the continuous adjoint method,

a fluid dynamics simulation (or a flow solver) is treated as a means to provide a

numerical approximation to the continuous flow solution, whereas the adjoint flow

solver provides an approximation to the continuous adjoint solution which is utilized

to compute the design objective gradient. In contrast, gradients obtained from the

discrete adjoint method are correct for the discretized flow equations. These gradients

can be verified using the finite difference method up to round-off error. The continuous

adjoint method provides gradients at truncation error accuracy when the governing

equations for the fluid flow are discretized using a dual inconsistent scheme [72]. As

this thesis utilizes second-order finite volume schemes which are not dual consistent,

the higher error of the continuous adjoint method, in comparison to the discrete

adjoint method, reduces its utility.

Manual derivation of the adjoint flow solver using the discrete adjoint method

is a laborious process. Employing reverse mode automatic differentiation (AD) to

construct it simplifies the implementation process and increases maintainability [11]

due to a reduction in the amount of effort required to adapt the adjoint flow solver to

different discretizations, design objectives or parameterizations of the flow problem.

But, on the other hand, discrete adjoint flow solvers obtained using manual differen-

tiation generally can provide better performance than an adjoint flow solver derived

by applying a general purpose reverse mode AD tool to the entire flow solver [46].

This thesis focuses on a special purpose AD tool for flow solvers.

There are two methods for applying AD to construct a discrete adjoint flow solver,

operator overloading and source transformation. In operator overloading, floating

point operations are overloaded to perform linearizations and record the result and
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order of operations. This record is used to execute the adjoint flow solver. The

performance of the adjoint flow solver derived using operator overloading is heavily

degraded in comparison to the flow solver. This is especially true for unsteady flow

solvers that use explicit time integration, where the unsteady adjoint flow solver can

be a factor of 10 to 50 times slower than the flow solver, for example when using

Adept [46], CoDiPack [95] or FAD [6]. The primary reason for the slowdown is that

the compiler does not have access to the call graph of the adjoint flow solver as it

is generated at runtime [11]. This reduces opportunities for compiler optimizations

through static analysis of the code and may result in unnecessary computation and

storage of intermediate variables [11].

Source transformation based AD involves parsing the source code of a flow solver,

representing the computations in the form of a graph and then deriving the corre-

sponding adjoint flow solver using a similar procedure like the one used in operator

overloading [109, 43]. This method gives better performance than operator overload-

ing based AD [9]. But, for many source transformation tools, the source code has to

be written in a restrictive manner. For example, OpenAD [109] only supports a sub-

set of FORTRAN and for efficient usage requires the splitting of the flow solver into

numerical and non-numerical components (source files). The current source trans-

formers cannot understand many of the advanced programming language features

of modern FORTRAN or C/C++ that can facilitate flow solver development and

increase maintainability.

This thesis adopts an approach that combines operator overloading method with

source transformation. There are existing AD tools/libraries that follow this method.

Examples of such libraries are Theano [7] and Tensorflow [1]. They utilize operator

overloading to build a computational graph of the flow solver, from which the “adjoint

computational graph" can be derived. Once constructed, both graphs are transformed

by these libraries into optimized source code routines, ready for compilation and then

execution. This method combines the usability advantage of operator overloading and

the performance of source transformation. The aforementioned libraries implement

this method by defining an API (Application Programming Interface) in a high-
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level language, like Python or C++, for specifying the computations involved in a

numerical method. They rely on compilers like gcc or clang to transform the generated

C/C++ code into optimized assembly tuned for specific hardware architectures. This

approach, known as domain-specific modelling (DSM), has been widely used in many

simulation applications [52].

A deficiency with existing DSM libraries is that they miss out on combining dif-

ferent types of computations (like arithmetic expressions and memory accesses) into

a single loop over all the elements of the mesh. Fusing computations together into

a single loop leads to better cache utilization of processors and fewer memory allo-

cations. An AD method that is adopts this approach and efficiently reuses memory

can provide better performance and lower execution time than the current libraries.

Bischof [10] proposed a hierarchical AD method for efficiently differentiating a compu-

tational graph representing the code of a numerical simulation. Chapter 6 describes

a two-level computational graph based AD method, which is inspired by the hierar-

chical AD method, that can be used to construct a high performance and memory

efficient explicit unsteady flow solver for heterogeneous architectures and derive the

corresponding discrete adjoint flow solver using automatic differentiation.

1.1 Thesis contributions

The main contributions of this thesis address the various problems associated with

design optimization for LES. The methods and tools developed in the thesis are listed

below

1. Viscosity stabilized adjoint method

A method for producing high-dimensional gradients for LES. It stabilizes the

diverging adjoint solution by adding artificial viscosity to the adjoint equations.

2. Adjoint-based design optimization for LES

A framework for design optimization using LES with gradients. It biases stan-

dard Bayesian optimization to do more exploration for noisy objective functions.
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3. Two-level computational graph method

A tool for running expensive numerical simulations on current and next gener-

ation supercomputers. It achieves high performance and low memory usage by

representing computations in a two-level graph structure.

1.2 Physical models

In this thesis, turbulent fluid flow is modeled using the compressible Navier-Stokes

equations with the ideal gas law serving as an approximation to the thermodynamic

state equation [29]. The gas is assumed to be air.

In x ∈ 𝑉, 𝑡 ∈ [0, 𝑇 ],

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌u) = 𝑠𝜌

𝜕(𝜌u)

𝜕𝑡
+ ∇ · (𝜌uu) + ∇𝑝 = ∇ · 𝜎 + s𝜌u

𝜕(𝜌𝐸)

𝜕𝑡
+ ∇ · (𝜌𝐸u + 𝑝u) = ∇ · (u · 𝜎 + 𝛼𝜌𝛾∇𝑒) + 𝑠𝜌𝐸

𝜎 = 𝜇(∇u + ∇u𝑇 ) − 2𝜇

3
(∇ · u)I

𝑝 = (𝛾 − 1)𝜌𝑒

𝑒 = 𝐸 − u · u
2

𝑐 =

√︂
𝛾𝑝

𝜌

(1.1)

where 𝑉 is the domain of the flow problem, 𝑇 is the terminal time of the flow problem

(which can be ∞), 𝜌 is the density, u is the velocity vector, 𝜌𝐸 is the total energy, 𝑝

is pressure, 𝑒 is internal energy of the fluid, 𝑐 is the speed of sound, 𝛾 is the isentropic

expansion factor (for air 𝛾 = 1.4), 𝜇 is the viscosity field modeled using Sutherland’s

law for air

𝜇 =
𝐶𝑠𝑇

3/2

𝑇 + 𝑇𝑠
(1.2)
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where 𝑇𝑠 = 110.4𝐾 and 𝐶𝑠 = 1.458×10−6 𝑘𝑔

𝑚𝑠
√
𝐾

. 𝛼 is the thermal diffusivity modeled

using

𝛼 =
𝜇

𝜌𝑃𝑟
(1.3)

where 𝑃𝑟 is the Prandtl number (for air 𝑃𝑟 = 0.71). 𝑠𝜌, s𝜌u, 𝑠𝜌𝐸 denote the source

terms prescribed in a flow problem. In addition to the above equations, depending

on the specifics of the flow problem, boundary conditions are prescribed on each of

the boundary regions of the domain (𝑆). Lastly, appropriate initial conditions for the

flow variables, 𝜌, 𝜌u, 𝜌𝐸, are defined.

1.3 Numerical methods

The numerical approximation to the flow solution is obtained using large eddy sim-

ulations on a discretized domain of the flow problem, generally known as a mesh or

a grid. In an LES, the large scale eddies of the flow are resolved by the grid while

the contribution of the small scale eddies to the filtered Navier-Stokes equations are

modeled using a sub-grid scale Reynolds stress model [29]. The choice of the LES

model can have a large impact on the accuracy of the relevant statistical quantities

of interest of the flow. In this thesis, in all the simulations an implicit LES model

is used. In this model, the numerical error of the discretization scheme serves as the

LES model. It has been shown that when using a dissipative discretization method,

the numerical viscosity from the grid can be of the same order of magnitude as the

sub-grid scale viscosity [68]. Hence, using an explicit LES model may be unnecessary.

The numerical solution of the flow problem is obtained on an unstructured hex-

ahedral mesh using a second order finite volume method (FVM) [59]. The central

differencing scheme is used to interpolate cell averages of the flow solution onto faces

of the mesh [112]. The numerical fluxes for the conservative flow variables are com-

puted using the Roe approximate Riemann solver [89]. An explicit time integration

scheme, the strong stability preserving third order Runge-Kutta method [63], is used

for time marching the numerical flow solution. The size of the time step is determined

using the acoustic Courant-Friedrichs-Lewy (CFL) condition [20]. The flow solver is
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implemented in Python using a library (adFVM ) that provides a high-level abstract

application programming interface for writing efficient CFD applications. The flow

solver is parallelized using the Message Passing Interface (MPI) library. More de-

tails about the flow solver and the implementation of the discrete adjoint method for

unsteady problems can be found in Chapter 6.

1.4 Test cases

There are a couple of turbulent flow problems and a chaotic system that are used

as test cases for verifying the effectiveness of various algorithms devised in this the-

sis. Their description is given in this section. For the flow problems, the following

reference quantities are defined

𝜌𝑟 = 1 𝑘𝑔/𝑚3

𝑢𝑟 = 100𝑚/𝑠

𝑝𝑟 = 𝐶𝑟𝜌𝑟𝑢
2
𝑟

𝜇𝑟 = 1.8 × 10−5𝑚2/𝑠

(1.4)

where 𝐶𝑟 = 10.1325 is a fixed constant. The source term in the flow equations for all

the flow problems is 0, unless otherwise specified.

1.4.1 Lorenz 63 system

The Lorenz system is a three degree of freedom ordinary differential equation (ODE).

It is one of the smallest (by degree of freedom) ODEs that forms a chaotic system, that

is, the solution of the system is sensitive to initial conditions for certain parameter

values of the system [99] and is aperiodic. The Lorenz system was first used by

Edward Lorenz to model atmospheric convection[61]. It approximates 2-dimensional

thermal convection between two parallel planes. It is controlled by three parameters
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𝜌𝑙, 𝛽𝑙 and 𝜎𝑙.

𝑑𝑤𝑙
1

𝑑𝑡
= 𝜎𝑙(𝑤

𝑙
2 − 𝑤𝑙

1) (1.5)

𝑑𝑤𝑙
2

𝑑𝑡
= 𝑤𝑙

1(𝜌𝑙 − 𝑤𝑙
3) − 𝑤𝑙

2 (1.6)

𝑑𝑤𝑙
3

𝑑𝑡
= 𝑤𝑙

1𝑤
𝑙
2 − 𝛽𝑙𝑤

𝑙
3 (1.7)

where the state of the system is given by 𝑤𝑙
1, 𝑤

𝑙
2, 𝑤

𝑙
3.

For the test case, the standard parameters of the chaotic Lorenz system are used,

𝜌𝑙 = 28 and 𝛽𝑙 = 8
3

and 𝜎𝑙 = 10. The system of equations are integrated using explicit

fourth-order Runge-Kutta method with time step size equal to 0.01 time units. A

plot of 𝑤𝑙
3 as a function of time is show in Figure 1-1. It shows that the state of

the system is aperiodic. The design objective is the following infinite time-averaged

objective function

𝐽 = lim
𝑇→∞

1

𝑇

∫︁ 𝑇

0

𝑤𝑙
3 𝑑𝑡 (1.8)

Figure 1-2 shows the design objective as a function of 𝜌𝑙. The uncertainty in the

time-averaged design objective is computed using the time series analysis techniques

discussed in Section 5.1.2.
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Figure 1-1: Plot of 𝑤𝑙
3 as a function of time (represented by time units)

The design objective gradient computed with respect to 𝜌𝑙 is found to be 1.
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Figure 1-2: Plot of design objective vs 𝜌𝑙. Blue dots denote the time-averaged design
objective and the blue error bars signify one standard deviation away from the mean.
The blue line shows the design objective gradient.

1.4.2 3-dimensional subsonic flow over cylinder

The first flow problem is 3-dimensional subsonic flow over a cylinder at Reynolds

number 𝑅𝑒 = 1, 100 and inflow Mach number 𝑀𝑎 = 0.1. The reference velocity of

the flow is 𝑢𝑟 = 31.4𝑚/𝑠, which is also the inflow velocity. The axial length of the

domain is 60𝑑, where 𝑑 = 0.25𝑚𝑚 is the diameter of the cylinder. The Reynolds

number is defined using the diameter of the cylinder and the density, velocity and

viscosity of inflow. The span-wise extent, at 𝑧 = 2𝑑, is sufficient to capture most

of the important flow features, like a turbulent wake and flow separation. The size

of the mesh is approximately 700,000 cells, with 50 cells in the span-wise direction.

Periodic boundary condition is used in the span-wise direction. The surface of the

cylinder is maintained at a constant temperature, 300 K. Static pressure equal to

1 𝑎𝑡𝑚 is prescribed on the outlet boundary. Visualizations of the domain of the flow

problem and the mesh are shown in Figures 1-3,1-4 and 1-5. Figure 1-6 shows a

visualization of the magnitude of an instantaneous velocity field for flow over the

cylinder. Tritton [107] performed experiments of flow over a cylinder at low Reynolds
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numbers, whereas Roshko [90] performed experiments at high Reynolds numbers.

Kravchenko [54] conducted numerical simulations of flow over a cylinder at 𝑅𝑒 =

3, 900.

Figure 1-3: Visualization of the domain for simulating subsonic flow over a cylinder

Figure 1-4: Visualization of the mesh for the flow over cylinder problem

The design objective function for the adjoint solution is time-averaged drag coef-

ficient over the cylinder. The instantaneous drag is defined using an incompressible
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Figure 1-5: Visualization of the mesh near the surface of the cylinder

Figure 1-6: Visualization of the magnitude of the velocity field (units: m/s)

approximation.

𝐽(𝜌, 𝜌u, 𝜌𝐸) =
2

𝜌𝑟𝑢2𝑟𝑧𝑑
lim
𝑇→∞

1

𝑇

∫︁ 𝑇

0

∫︁
𝜕𝑆

(𝑝𝑛𝑥 − 𝜇𝑛 · ∇𝑢𝑥) 𝑑𝑆 𝑑𝑡 (1.9)
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Figure 1-7: Visualization of the instantaneous drag coefficient as a function of time
(represented in time units).
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Figure 1-8: Drag coefficient as a function of inlet Mach number. Blue dots denote
the mean drag coefficient and the blue error bars signify one standard deviation away
from the mean. The green shaded regions denotes the gradient estimated using linear
regression and the associated uncertainty given by one standard deviation.

The boundary integral in the above equation is performed over the surface of the

cylinder. A visualization of the instantaneous drag coefficient is shown in Figure 1-7.

Using a CFL number of 1.2, the flow simulation runs for 1, 000, 000 time steps,

which corresponds to approximately 12 time units, where one time unit (𝑡𝑟) is the
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amount of time that the flow takes to traverse the maximum axial length of the

domain or 60𝑑.

𝑡𝑟 =
60𝑑

𝑢𝑟
(1.10)

This time interval is sufficient to obtain a statistically converged estimate of the design

objective. Figure 1-8 shows a plot of the design objective with respect to the Mach

number at the inlet boundary. The uncertainty in the time-averaged design objective

is computed using the time series analysis techniques discussed in Section 5.1.2. The

design objective gradient is computed with respect to the Mach number of the flow

at the inlet boundary. At 𝑀𝑎 = 0.093, the gradient is approximately 25.0 ± 2.1.

The gradient is estimated using ordinary least squares based linear regression and the

uncertainty in the gradient is computed from the standard deviation of the relevant

estimator [41].

The drag coefficient shown in Figure 1-8 for 𝑀𝑎 = 0.093 (which corresponds to

𝑅𝑒 = 1, 100) is 1.2 ± 0.03. It reasonably matches the drag coefficient reported in

literature from experiments [118, 90, 107] for 𝑅𝑒 = 1, 100, which is approximately

equal to 1.0 ± 0.15.

1.4.3 Transonic flow over a turbine vane

The second flow problem is transonic flow over a nozzle guide vane designed by

researchers at the Von Karman Institute (VKI) [5] for gas turbines.

A visualization of the domain of the flow problem is shown in Figure 1-9. In a

gas turbine engine, gases exiting from the combustion chamber impinge on a circular

cascade of nozzle guide vanes. High temperature and high pressure subsonic flow hits

the leading edge of each vane and then accelerates over the suction side, reaching

close to Mach one near the trailing edge on the suction side of the vane where the

boundary layer transitions from laminar to turbulent. In contrast, on the pressure

side, the boundary layer stays laminar. The boundary layers after separation from

the surface of the vane, merge into a turbulent wake. The exit pressure in gas turbine

engines is much larger than 1 atm.
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In the experimental setup of the VKI vane, the circular cascade is approximated

as a linear cascade. The Reynolds number of the flow, computed using the chord

length of the vane, is approximately 1,000,000. The downstream isentropic Mach

number is 0.92. The chord length of the vane is 𝑐𝑙 = 67.6𝑚𝑚. The Reynolds number

is defined using the chord length of the vane and the density, velocity and viscosity of

the inflow. Gourdain [36] and Morata [70] performed large eddy simulations of this

flow problem at various Reynolds numbers.

A 2-dimensional slice of the computational domain used to model the flow for

this thesis is shown in Figure 1-9. The 𝑥-direction is the direction of the inflow,

the 𝑦-direction is the direction of the periodic cascade from the bottom to the top

surface and the 𝑧-direction is perpendicular to the 𝑥 and 𝑦-directions. The tip of the

leading edge serves as the origin of the computational domain. Periodic boundary

conditions are used in directions transverse to the flow direction. Static pressure

equal to 1 𝑎𝑡𝑚 is prescribed on the outlet boundary. A non-reflecting characteristic

boundary condition is used on the inlet boundary of the domain [83]. The stagnation

pressure (computed from the downstream isentropic Mach number) and stagnation

temperature (420𝐾) are prescribed on the inlet boundary. Using this information on

one side of the boundary and the solution fields from the interior of the domain on the

other side, the Roe approximate Riemann solver is used to propagate the fluxes on the

inlet boundary. The surface of the vane is maintained at a constant temperature of

300𝐾. The span-wise extent is approximately 0.16 𝑐𝑙 , which is sufficient to accurately

capture most of the important flow features [36]. In order to resolve the small scale

eddies of the flow near the wall, the dimensionless wall normal cell spacing (𝑦+) needs

to be below 1 wall unit [18]. However, this thesis does not adopt this practice due

to computational cost considerations. As the Reynolds number of the flow is high,

the 𝑦+ restriction along with a maximum CFL number of 1.2 over the domain of

the flow problem, significantly lowers the maximum time step size that can be used

by an explicit time integration scheme. To obtain results from the flow simulation

in a reasonable time frame, the maximum 𝑦+ is kept at 10. This does not appear

to lead to significant loss in physical accuracy of the simulation as demonstrated by
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the comparison of the experimental heat transfer and static pressure data, obtained

by Arts [5], with numerical data generated by an LES on an under resolved wall

grid in Figures 1-10 and 1-11. The LES on the under resolved wall grid appears to

provide better results than the LES on a resolved wall grid. This potentially can

be attributed to the difference in sub-grid scale models, the former uses an implicit

LES model while the latter uses the Wall-Adapting Local Eddy Viscosity (WALE)

model which could be introducing modelling error in the solution. The maximum

𝑥+ is 250 and maximum 𝑧+ is 50. The total number of cells in the mesh of the

computational domain is approximately 16 million. A visualization of the magnitude

of an instantaneous velocity field of the flow over the turbine vane near the trailing

edge is shown in Figure 1-12.

Figure 1-9: Turbine vane computational domain

The design objective for the flow problem is infinite-time averaged and mass flow

averaged pressure loss coefficient on a plane 0.23 𝑐𝑙 downstream of the trailing edge

of the vane and perpendicular to the direction of the inflow.
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Figure 1-10: Comparison of heat transfer coefficient on the surface of the vane ob-
tained from experimental data produced by Arts [5] (denoted by black dots), numeri-
cal data from an LES on a resolved wall grid produced by Gourdain [36] (denoted by
green colored stars) and numerical data generated by an LES on an under-resolved
wall grid (denoted by blue and red colored lines) at isentropic Mach number 0.9 and
Reynolds number 106. In the figure, the color blue denotes suction side, the color red
denotes pressure side. The 𝑥-axis represents the distance from the leading edge along
the surface of the vane normalized by the chord length.

𝐽 =
𝑝𝑡,𝑙
𝑝𝑡,𝑖𝑛

𝑝𝑡,𝑙 = lim
𝑡𝑒→∞

1

𝑡𝑒

∫︁ 𝑡𝑒

0

∫︀
𝑆𝑝
𝜌𝑝𝑢𝑛(𝑝𝑡,𝑖𝑛 − 𝑝𝑡,𝑝) 𝑑𝑆𝑝∫︀

𝑆𝑝
𝜌𝑝𝑢𝑛 𝑑𝑆𝑝

𝑑𝑡

𝑝𝑡,𝑝 = 𝑝𝑝(1 +
𝛾 − 1

2
𝑀2

𝑝 )
𝛾

𝛾−1

𝑝𝑡,𝑖𝑛 = 𝑝𝑒𝑥(1 +
𝛾 − 1

2
𝑀2

𝑖𝑠)
𝛾

𝛾−1

(1.11)

where 𝑀𝑝 is the Mach number on the plane, 𝑝𝑝, 𝜌𝑝, 𝑝𝑡,𝑝 are the pressure, density

and stagnation pressure on the plane respectively, 𝑆𝑝 represents the plane surface, 𝑢𝑛

is the velocity normal to the plane surface, 𝑝𝑡,𝑖𝑛 is the inlet stagnation pressure, 𝑝𝑒𝑥 is

the exit static pressure and 𝑀𝑖𝑠 is the downstream isentropic Mach number. A plot

of the instantaneous pressure loss coefficient as a function of time is shown in Figure

1-13.
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Figure 1-11: Comparison of isentropic Mach number on the surface of the vane ob-
tained from experimental data produced by Arts [5] (denoted by blue dots) and
numerical data generated by an LES on an under-resolved wall grid (denoted by blue
and red colored lines) at isentropic Mach number 0.875 and Reynolds number 106.
In the figure, the color blue denotes suction side, the color red denotes pressure side.
The 𝑥-axis represents the distance from the leading edge along the surface of the vane
normalized by the chord length.

1.5 Adjoint method for unsteady flows

In this section, the adjoint method applied to unsteady flow problems governed by

the time-dependent compressible Navier-Stokes equations is introduced. It provides a

way for computing gradients of a design objective with respect to multiple parameters

of a flow problem [16, 78, 79].
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Figure 1-12: An instantaneous snapshot of the flow field near the trailing edge of the
vane. The density (units: 𝑘𝑔/𝑚3) is colored over the surface of the vane and the
magnitude of the velocity field (units: 𝑚/𝑠) is colored on the planar cross section.

Rewriting the governing equations from Equation 1.1 in vector form

𝜕w

𝜕𝑡
+ ∇ · F = ∇ · Fv + s

w =

⎛⎜⎜⎜⎝
𝜌

𝜌u

𝜌𝐸

⎞⎟⎟⎟⎠

F =

⎛⎜⎜⎜⎝
𝜌u

𝜌uu

(𝜌𝐸 + 𝑝)u

⎞⎟⎟⎟⎠

Fv =

⎛⎜⎜⎜⎝
0

𝜎

u · 𝜎 + 𝛼𝜌𝛾∇𝑒

⎞⎟⎟⎟⎠

(1.12)
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Figure 1-13: Instantaneous pressure loss coefficient (𝑝𝑙) plotted as a function of time
(represented by time units). The blue time series denotes the cumulative mean and
the gray shaded area denotes a single standard deviation of the sample mean. The
procedure for time averaging is discussed in Section 5.1.2.

Using the Einstein summation notation in Euclidean space Equation 1.12 can be

rewritten as
𝜕𝑤𝑖

𝜕𝑡
+
𝜕𝐹𝑖𝑗

𝜕𝑥𝑗
=
𝜕𝐹 𝑣

𝑖𝑗

𝜕𝑥𝑗
+ 𝑠𝑖, 𝑖 = 1...5 (1.13)

The source term is parameterized by a finite-dimensional vector. The vector serves as

the system parameter of the flow problem. The design objective gradient is computed

with respect to this variable. Additional possible system parameters are inflow Mach

number or shape design parameters.

In many fluid flow problems, the design objectives of interest are infinite time-

averaged quantities. For practical reasons, they are generally approximated by a finite

time-average. Without loss in generality, consider a finite time-averaged objective (𝐽)

which is a function of the flow solution on the boundary surface (𝑆).

𝐽 =
1

𝑇

∫︁ 𝑇

0

∫︁
𝑆

𝐽(w) 𝑑𝑆 𝑑𝑡 (1.14)

𝑇 is a large enough such that 𝐽 is sufficient to approximate the infinite time-averaged

42



design objective.

The first step in deriving the adjoint equations involves forming a Lagrangian with

the introduction of a new vector field known as the adjoint solution (ŵ).

𝐽 =
1

𝑇

∫︁ 𝑇

0

∫︁
𝑆

𝐽(𝑤𝑖) 𝑑𝑆 𝑑𝑡 (1.15)

+

∫︁ 𝑇

0

∫︁
𝑉

𝑤𝑖(
𝜕𝑤𝑖

𝜕𝑡
+
𝜕(𝐹𝑖𝑗 − 𝐹 𝑣

𝑖𝑗)

𝜕𝑥𝑗
− 𝑠𝑖) 𝑑𝑉 𝑑𝑡 (1.16)

Taking the total differential of both sides of the above equations with respect to the

system parameters results in the following equations

𝛿𝐽 =
1

𝑇

∫︁ 𝑇

0

∫︁
𝑆

(
𝜕𝐽

𝜕𝑤𝑖

𝛿𝑤𝑖) 𝑑𝑆 𝑑𝑡

+

∫︁ 𝑇

0

∫︁
𝑉

𝑤𝑖(
𝜕𝛿𝑤𝑖

𝜕𝑡
+
𝜕𝛿𝐹𝑖𝑗 − 𝛿𝐹 𝑣

𝑖𝑗

𝜕𝑥𝑗
− 𝛿𝑠𝑖) 𝑑𝑉 𝑑𝑡

(1.17)

Integrating by parts the second integral term in the right hand side of the above

equation in time and space

𝛿𝐽 =
1

𝑇

∫︁ 𝑇

0

∫︁
𝑆

(
𝜕𝐽

𝜕𝑤𝑖

𝛿𝑤𝑖) 𝑑𝑆 𝑑𝑡+

∫︁
𝑉

(�̂�𝑖|𝑇 𝛿𝑤𝑖|𝑇 − �̂�𝑖|0𝛿𝑤𝑖|0) 𝑑𝑉

−
∫︁ 𝑇

0

∫︁
𝑉

𝜕𝑤𝑖

𝜕𝑡
𝛿𝑤𝑖 𝑑𝑉 𝑑𝑡+

∫︁ 𝑇

0

∫︁
𝑆

𝑤𝑖(𝛿𝐹𝑖𝑗 − 𝛿𝐹 𝑣
𝑖𝑗)𝑛𝑗 𝑑𝑆 𝑑𝑡

−
∫︁ 𝑇

0

∫︁
𝑉

𝜕𝑤𝑖

𝜕𝑥𝑗
(𝛿𝐹𝑖𝑗 − 𝛿𝐹 𝑣

𝑖𝑗) 𝑑𝑉 𝑑𝑡

−
∫︁ 𝑇

0

∫︁
𝑉

�̂�𝑖𝛿𝑠𝑖 𝑑𝑉 𝑑𝑡

(1.18)

Differentiating 𝐹𝑖𝑗 with respect to 𝑤𝑘 to form the tensor 𝐴𝑖𝑗𝑘

𝐴𝑖𝑗𝑘 =
𝜕𝐹𝑖𝑗

𝜕𝑤𝑘

(1.19)

The above tensor can be used to represent 𝛿𝐹𝑖𝑗 as 𝐴𝑖𝑗𝑘𝛿𝑤𝑘. The terms of the tensor

are described in Appendix A.1.

The tensor 𝐹 𝑣
𝑖𝑗 can be simplified as the product of a term, 𝐷𝑖𝑗𝑘𝑙 that only depends

on the solution, and the gradient of the solution 𝜕𝑤𝑘

𝜕𝑥𝑙
. In other words, 𝐹 𝑣

𝑖𝑗 can be
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rewritten as

𝐹 𝑣
𝑖𝑗 = 𝐷𝑖𝑗𝑘𝑙

𝜕𝑤𝑘

𝜕𝑥𝑙
(1.20)

The terms of the above tensor are described in Appendix A.2.

Substituting the new tensors, 𝐴𝑖𝑗𝑘 and 𝐷𝑖𝑗𝑘𝑙, in the respective terms in Equation

1.18 and rearranging the terms

𝛿𝐽 =
1

𝑇

∫︁ 𝑇

0

∫︁
𝑆

[(
𝜕𝐽

𝜕𝑤𝑖

+ 𝑤𝑘𝐴𝑘𝑗𝑖𝑛𝑗 − �̂�𝑘
𝜕𝐷𝑘𝑗𝑚𝑙

𝜕𝑤𝑖

𝜕𝑤𝑚

𝜕𝑥𝑙
𝑛𝑗)𝛿𝑤𝑖 − 𝑤𝑖𝐷𝑖𝑗𝑘𝑙𝛿

𝜕𝑤𝑘

𝜕𝑥𝑙
𝑛𝑗] 𝑑𝑆 𝑑𝑡

+

∫︁
𝑉

(�̂�𝑖|𝑇 𝛿𝑤𝑖|𝑇 − �̂�𝑖|0𝛿𝑤𝑖|0) 𝑑𝑉

−
∫︁ 𝑇

0

∫︁
𝑉

(
𝜕𝑤𝑖

𝜕𝑡
+
𝜕𝑤𝑘

𝜕𝑥𝑗
𝐴𝑘𝑗𝑖)𝛿𝑤𝑖 𝑑𝑉 𝑑𝑡

+

∫︁ 𝑇

0

∫︁
𝑉

(
𝜕𝑤𝑖

𝜕𝑥𝑗
𝐷𝑖𝑗𝑘𝑙

𝜕𝛿𝑤𝑘

𝜕𝑥𝑙
+
𝜕�̂�𝑖

𝜕𝑥𝑗

𝜕𝐷𝑖𝑗𝑘𝑙

𝜕𝑤𝑚

𝜕𝑤𝑘

𝜕𝑥𝑙
𝛿𝑤𝑚) 𝑑𝑉 𝑑𝑡

−
∫︁ 𝑇

0

∫︁
𝑉

�̂�𝑖𝛿𝑠𝑖 𝑑𝑉 𝑑𝑡

(1.21)

Integration by parts can be used to give

∫︁ 𝑇

0

∫︁
𝑉

𝜕𝑤𝑖

𝜕𝑥𝑗
𝐷𝑖𝑗𝑘𝑙

𝜕𝛿𝑤𝑘

𝜕𝑥𝑙
𝑑𝑉 𝑑𝑡 =

∫︁ 𝑇

0

∫︁
𝑆

𝜕𝑤𝑖

𝜕𝑥𝑗
𝐷𝑖𝑗𝑘𝑙𝛿𝑤𝑘𝑛𝑙 𝑑𝑆 𝑑𝑡

−
∫︁ 𝑇

0

∫︁
𝑉

𝜕

𝜕𝑥𝑙
(
𝜕𝑤𝑖

𝜕𝑥𝑗
𝐷𝑖𝑗𝑘𝑙)𝛿𝑤𝑘 𝑑𝑉 𝑑𝑡

(1.22)

The second term in the round bracket of the second last term in the right hand side

of Equation 1.21 is represented as 𝐴𝑣
𝑘𝑗𝑖 =

𝜕𝐷𝑘𝑗𝑚𝑙

𝜕𝑤𝑖

𝜕𝑤𝑚

𝜕𝑥𝑙
. Additionally, in Equation 1.21,

the initial condition is a constant and it does not depend on the system parameters.

Hence, 𝛿𝑤𝑖|0 = 0. Using this fact, Equation 1.21 simplifies to

𝛿𝐽 = −
∫︁ 𝑇

0

∫︁
𝑉

�̂�𝑖𝛿𝑠𝑖 𝑑𝑉 𝑑𝑡 (1.23)

provided the following adjoint equations are satisfied over the domain of the flow
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problem

−𝜕𝑤𝑖

𝜕𝑡
− (𝐴𝑘𝑗𝑖 − 𝐴𝑣

𝑘𝑗𝑖)
𝜕𝑤𝑘

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑙
(𝐷𝑘𝑗𝑖𝑙

𝜕𝑤𝑘

𝜕𝑥𝑗
) (1.24)

with the following adjoint boundary conditions on the boundary of the domain

(
1

𝑇

𝜕𝐽

𝜕𝑤𝑖

+ 𝑤𝑘(𝐴𝑘𝑗𝑖 − 𝐴𝑣
𝑘𝑗𝑖)𝑛𝑗 +

𝜕𝑤𝑘

𝜕𝑥𝑗
𝐷𝑘𝑗𝑖𝑙𝑛𝑙)𝛿𝑤𝑖 − 𝑤𝑖𝐷𝑖𝑗𝑘𝑙𝛿

𝜕𝑤𝑘

𝜕𝑥𝑙
𝑛𝑗 = 0 (1.25)

and terminal condition �̂�𝑖,𝑇 = 0. The existence of a terminal condition and the

absence of an initial condition implies that the adjoint equations have to be integrated

backwards in time. As the adjoint equations require the solutions of the governing

(primal) equations, the procedure to compute design objective gradient involves first

solving the primal equations from time 𝑡 = 0 to 𝑇 and then solving the adjoint

equations from 𝑇 to 0.

If the source term is parameterized by 𝑠𝑖 = 𝑓𝑖(𝜃
𝑠), where 𝜃𝑠 is a finite dimensional

vector, then the following equation

𝜕𝐽

𝜕𝜃𝑠𝑗
= −

∫︁ 𝑇

0

∫︁
𝑉

�̂�𝑖
𝜕𝑓𝑖
𝜕𝜃𝑠𝑗

𝑑𝑉 𝑑𝑡 (1.26)

provides the design objective gradient with respect to the finite-dimensional param-

eterization of the source term.
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Chapter 2

Adjoint energy analysis

In this chapter, energy analysis of the adjoint equations is performed. Section 2.1

demonstrates the divergence of the adjoint solution on transonic flow over a turbine

vane. Section 2.2 discusses the techniques for analyzing the divergence of the adjoint

solutions. Section 2.3 describes non-entropy based symmetrization techniques for the

Euler equations. Section 2.4 describes entropy-based symmetrization techniques for

the compressible Navier-Stokes equations. Section 2.5 details the contribution of the

various terms in the adjoint energy analysis. Section 2.6 elaborates on one of the

growth terms in the adjoint energy analysis and derives an indicator field for the

divergence of the adjoint solution. Finally, Section 2.7 demonstrates the indicator

field on a couple of flow problems.

2.1 Divergence of adjoint solution

As discussed in Section 1, the adjoint solution diverges exponentially fast as an LES of

a turbulent fluid flow is performed for a longer time [116, 14, 12]. In this section, the

adjoint method is applied to the unsteady transonic flow over a turbine vane, described

in Section 1.4.3. The design parameter of the system is the scaling parameter of a

Gaussian shaped source term upstream of the leading of the vane. The manufactured
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form of the source term is given below

𝐺 =
𝜃

∆𝑇
exp(−(x− x0)2

2𝑙2
)

𝑠𝜌 = 𝜌𝑟𝐺

s𝜌u =

⎛⎜⎜⎜⎝
𝜌𝑟𝑢𝑟

0

0

⎞⎟⎟⎟⎠𝐺

𝑠𝜌𝐸 = (
𝜌𝑟𝑢

2
𝑟

2
+

𝑝𝑟
𝛾 − 1

)𝐺

(2.1)

where x0 = (−0.296, 0.148, 0.074) 𝑐𝑙, 𝑙 = 0.191 𝑐𝑙, ∆𝑇 = 1 time unit and 𝜃 is the non-

dimensional scaling parameter. 1 time unit (𝑡𝑟) is the time the flow takes to travel

from the inlet boundary to the outlet boundary.

𝑡𝑟 =
1.5𝑐𝑙
𝑢𝑟

(2.2)

Figure 2-1 shows a visualization of the source term 𝑠𝜌𝑢1 .

Figure 2-2 shows a plot of the pressure loss coefficient as a function of the scaling

parameter of the source term. The design objective gradient computed with respect

to the scaling parameter is (−4.76 ± 0.22) × 10−3. The time-averaging is performed

over an interval whose length is 20 time units. Using a CFL equal to 1.2, the number

of time steps in the flow simulation is 1, 000, 000. The design objective gradient is

estimated using ordinary least squares based linear regression.

A total of 2 adjoint solutions are computed. The first adjoint solution is computed

over a time interval whose length is 0.2 time units and the second adjoint solution

is computed over a time interval whose length is 2 time units. The former is known

as the short time adjoint solution, while the latter is known as the long time adjoint

solution.

The long time adjoint solution for the turbine vane problem diverges exponentially

backwards in time, as shown in Figure 2-3. Figure 2-4 shows a visualization of the

density adjoint field of the long time adjoint solution for the turbine vane, at 𝑇 = 1
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Figure 2-1: Visualization of the source term field, 𝑠𝜌𝑢1 , for flow over a turbine vane
using 𝜃 = 1.

time unit. The magnitude of the adjoint field is large in the regions near the trailing

edge and above the suction side of the turbine vane, which implies that the design

objective is sensitive to perturbations in the flow equations in these regions.

Table 2.1: Comparison between gradient obtained from adjoint solution and finite
difference gradient for the design objective

Length of time interval Finite difference gradient Adjoint gradient
0.2 −4.76 × 10−3 −6.5 × 10−3

2 −4.76 × 10−3 5.3 × 1013

Table 2.1 shows the gradient of the pressure loss coefficient with respect to 𝜃, the

scaling parameter of the Gaussian-shaped source term perturbation, obtained from

the adjoint solutions. The short time adjoint solution provides a gradient with the

right order of magnitude and sign, but the error with respect to the finite difference
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Figure 2-2: Time and mass-flow averaged pressure loss coefficient as a function of
scaling parameter of the source term. Blue dots denote the mean pressure loss coef-
ficient and the blue error bars signify one standard deviation away from the mean.
The green shaded regions denotes the gradient estimated using linear regression and
the associated uncertainty given by one standard deviation.
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Figure 2-3: Adjoint energy (as defined by Equation 2.41) as a function of time (rep-
resented by time units) for the long time adjoint solution
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Figure 2-4: A visualization of the density adjoint field at 𝑇 = 1 time unit

gradient is high ( 36%). In contrast, the large magnitudes of the long time adjoint

solution corrupt the value of the gradient obtained from it. Hence, for long time aver-

aged design objectives, the conventional adjoint method for unsteady flow problems

fails.

2.2 Understanding mechanisms of divergence

In this thesis, stability analysis methods are used to analyze the adjoint equations for

the compressible Navier-Stokes equations. The analysis provides an understanding of

the mechanisms of divergence of adjoint solution by finding the regions in the domain

of the flow problem that contribute most to the divergence.
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2.2.1 Stability analysis methods

As the adjoint equations derived in this thesis are linear with time-dependent co-

efficients, conventional eigenvalue-based linear stability analysis methods cannot be

used. In order to understand the mechanisms of divergence of the adjoint solution in

turbulent fluid flows, nonlinear stability analysis methods are more helpful. Examples

of such stability analysis methods are

1. Lyapunov analysis

2. Energy analysis

The Lyapunov analysis method for stability analysis involves computing the Lyapunov

exponents and Lyapunov covariant vectors of the adjoint flow [56]. It is a global (spa-

tially) stability analysis method and the exponents indicate the stability of the flow,

whereas the covariant vectors provide the modes of divergence. A chaotic system

can have multiple diverging modes or covariant vectors associated with positive ex-

ponents [23]. More information about Lyapunov exponents and covariant vectors can

be found in Section 4.3. As analytical solutions for the compressible Navier-Stokes

equations are generally not available, the exponents and covariant vectors have to be

computed numerically.

In the energy analysis method for stability analysis, the time derivative of the

adjoint energy is computed and the terms that increase the norm of the adjoint

solution are analyzed [101]. It is a local (spatially) stability analysis method which

means that the stability information provided by the analysis can be localized in

the domain of the flow problem. Additionally, for the Navier-Stokes equations the

analysis can be performed analytically. Because of this, the energy analysis method is

substantially cheaper than Lyapunov analysis. Hence, energy analysis is the preferred

stability analysis method for the adjoint equations.
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2.2.2 Symmetrization of the Navier-Stokes equations

Performing energy analysis of the conservative form of the adjoint equations for the

compressible Navier-Stokes equations does not lead to usable information about the

regions of divergence of the adjoint solution [103]. It is more practical to perform

the analysis on the symmetrized form [2, 108, 47] of the adjoint of the compressible

Navier-Stokes equations. This form can be derived by first transforming the Navier-

Stokes equations using a symmetrization procedure.

Symmetrization of the Navier-Stokes equations involves transforming the equa-

tions in such a way that the tensors in the symmetrized form of the equations cor-

responding to 𝐴𝑖𝑗𝑘 and 𝐷𝑖𝑗𝑘𝑙 from Equation 1.21, are symmetric in the indices 𝑖 and

𝑘. There are two types of symmetrization for the compressible Navier-Stokes in the

fluid dynamics literature

1. Non-entropy based symmetrization

2. Entropy based symmetrization

In the non-entropy based symmetrization methods, the conservative form of compress-

ible Navier-Stokes equations are transformed into the equations for the symmetrized

variables by pre-multiplying the equations using a symmetrizing transformation. In

contrast, in the entropy based symmetrization methods, the conservative form of the

compressible Navier-Stokes equations are directly used, but are represented in the

symmetrized variables using a symmetrizing transformation.

2.3 Non-entropy symmetrization

Non-entropy based symmetrization methods provide a symmetrizing transformation

for the Euler equations [2, 108]. The Euler equations provide the governing equations

for a compressible inviscid ideal fluid. The equations are represented in the following

form using Equation 1.19
𝜕𝑤𝑖

𝜕𝑡
+ 𝐴𝑖𝑗𝑘

𝜕𝑤𝑘

𝜕𝑥𝑗
= 𝑠𝑖 (2.3)
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Denoting the symmetrized variables by 𝑣𝑖, the linearized transformation from

the conservative to symmetrized variables is given by, 𝛿𝑣𝑖 = 𝑇𝑖𝑘𝛿𝑤𝑘. Rewriting the

equations using the symmetrized variables

𝑇−1
𝑖𝑘

𝜕𝑣𝑘
𝜕𝑡

+ 𝐴𝑖𝑗𝑘𝑇
−1
𝑘𝑚

𝜕𝑣𝑚
𝜕𝑥𝑗

= 𝑠𝑖 (2.4)

Pre-multiplying the equations by 𝑇𝑛𝑖

𝜕𝑣𝑛
𝜕𝑡

+ 𝑇𝑛𝑖𝐴𝑖𝑗𝑘𝑇
−1
𝑘𝑚

𝜕𝑣𝑚
𝜕𝑥𝑗

= 𝑇𝑛𝑖𝑠𝑖 (2.5)

Representing the term 𝑇𝑛𝑖𝐴𝑖𝑗𝑘𝑇
−1
𝑘𝑚 as 𝐴𝑛𝑗𝑚 and 𝑇𝑛𝑖𝑠𝑖 as 𝑠𝑛

𝜕𝑣𝑛
𝜕𝑡

+ 𝐴𝑛𝑗𝑚
𝜕𝑣𝑚
𝜕𝑥𝑗

= 𝑠𝑛 (2.6)

The linear transformation, 𝑇𝑛𝑖 is chosen such that 𝐴𝑛𝑗𝑚 is symmetric in the indices

𝑛 and 𝑚. The above equations are the symmetrized Euler equations.

2.3.1 Symmetrizing transformations

There are a number of symmetrizing transformations that produce the symmetrized

equations derived in the previous section. A couple of these transformations from

literature are described below.

Abarbanel [2] proposed a symmetrizing transformation for optimal time splitting

of the Navier-Stokes equations and described a symmetrizing transformation from

primitive (𝜌,𝑢, 𝑝) to symmetrized variables. Denoting the primitive variables by

𝑞𝑘, the linear transformation, S, transforms the derivatives of the primitive (𝑞𝑘) to

derivatives of symmetrized variables (𝑣𝑖).

𝛿𝑣𝑖 = 𝑆𝑖𝑘𝛿𝑞𝑘 (2.7)

Using the linear transformation, V, which transforms derivatives of conservative (𝑤𝑘)
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to derivatives of primitive variables (𝑞𝑖),

𝛿𝑞𝑖 = 𝑉𝑖𝑘𝛿𝑤𝑘 (2.8)

the corresponding symmetrizing transformation from the derivatives of conservative

(𝑤𝑘) to derivatives of symmetrized variables (𝑣𝑖) can be constructed.

𝑇𝑖𝑘 = 𝑆𝑖𝑗𝑉𝑗𝑘 (2.9)

The tensor 𝐴𝑖𝑗𝑘 and the matrices 𝑆𝑖𝑘 and 𝑉𝑗𝑘 for the Abarbanel symmetrizing transfor-

mation are provided in Appendix A.3. The derivatives of the symmetrized variables

are given by

𝛿v = (
𝑐𝛿𝜌√
𝛾𝜌
, 𝛿𝑢1, 𝛿𝑢2, 𝛿𝑢3,

𝛾𝛿𝑝− 𝑐2𝛿𝜌

𝜌𝑐
√︀
𝛾(𝛾 − 1)

) (2.10)

Turkel [108] proposed an alternative symmetrizing transformation in which one

of the symmetrized variables is the physical entropy variable. The tensor 𝐴𝑖𝑗𝑘 and

the matrices 𝑆𝑖𝑘 and 𝑇𝑖𝑘 for the Turkel symmetrizing transformation are provided in

Appendix A.4. The derivatives of the symmetrized variables are given by

𝛿v = (
𝛿𝑝

𝜌𝑐
, 𝛿𝑢1, 𝛿𝑢2, 𝛿𝑢3, 𝛿𝑝− 𝑐2𝛿𝜌) (2.11)

The Turkel and Abarbanel symmetrized variables are similar as can be seen from

Equations 2.10 and 2.11. The middle terms of the vectors, from term 2 to 4, are

velocity variables and are the same in both the equations. Term 5 of the two vectors

look alike, but, it can be shown that only the term of the Abarbanel symmetrizing

variables is proportional to 𝛿𝑐. Term 1 for the two symmetrizing variables is quite

different.

2.3.2 Adjoint of symmetrized equations

Applying the adjoint method to the symmetrized equations results in the symmetrized

adjoint equations. The form of these equations is different from the adjoint equations
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for the conservative variables. The derivation process begins by forming the La-

grangian of the adjoint equations for the symmetrized variables

𝛿𝐽 =
1

𝑇

∫︁ 𝑇

0

∫︁
𝑆

𝜕𝐽

𝜕𝑣𝑖
𝛿𝑣𝑖 𝑑𝑆 𝑑𝑡

+

∫︁ 𝑇

0

∫︁
𝑉

𝑣𝑖(
𝜕𝛿𝑣𝑖
𝜕𝑡

+ 𝐴𝑖𝑗𝑘
𝜕𝛿𝑣𝑘
𝜕𝑥𝑗

+ 𝛿𝐴𝑖𝑗𝑘
𝜕𝑣𝑘
𝜕𝑥𝑗

− 𝛿𝑠𝑖) 𝑑𝑉 𝑑𝑡

(2.12)

Representing the term 𝜕𝐴𝑖𝑗𝑘

𝜕𝑣𝑙
as 𝐵𝑖𝑗𝑘𝑙 and integrating by parts in time and space

𝛿𝐽 =
1

𝑇

∫︁ 𝑇

0

∫︁
𝑆

𝜕𝐽

𝜕𝑣𝑖
𝛿𝑣𝑖 𝑑𝑆 𝑑𝑡

+

∫︁
𝑉

(𝑣𝑖|𝑇 𝛿𝑣𝑖|𝑇 − 𝑣𝑖|0𝛿𝑣𝑖|0) 𝑑𝑉 −
∫︁ 𝑇

0

∫︁
𝑉

𝜕𝑣𝑖
𝜕𝑡
𝛿𝑣𝑖 𝑑𝑉 𝑑𝑡

+

∫︁ 𝑇

0

∫︁
𝑆

𝑣𝑖𝐴𝑖𝑗𝑘𝛿𝑣𝑘𝑛𝑗 𝑑𝑆 −
∫︁ 𝑇

0

∫︁
𝑉

𝜕(𝑣𝑖𝐴𝑖𝑗𝑘)

𝜕𝑥𝑗
𝛿𝑣𝑘 𝑑𝑉 𝑑𝑡

+

∫︁ 𝑇

0

∫︁
𝑉

𝑣𝑖𝐵𝑖𝑗𝑘𝑙𝛿𝑣𝑙
𝜕𝑣𝑘
𝜕𝑥𝑗

𝑑𝑉 𝑑𝑡

−
∫︁ 𝑇

0

∫︁
𝑉

𝑣𝑖𝛿𝑠𝑖 𝑑𝑉 𝑑𝑡

(2.13)

After simplification, the above equation can be rewritten as

𝛿𝐽 = −
∫︁ 𝑇

0

∫︁
𝑉

𝑣𝑖𝛿𝑠𝑖 𝑑𝑉 𝑑𝑡 (2.14)

provided the following symmetrized adjoint equations are satisfied

−𝜕𝑣𝑖
𝜕𝑡

− 𝐴𝑘𝑗𝑖
𝜕𝑣𝑘
𝜕𝑥𝑗

− (𝐵𝑘𝑗𝑖𝑙 −𝐵𝑘𝑗𝑙𝑖)
𝜕𝑣𝑙
𝜕𝑥𝑗

𝑣𝑘 = 0 (2.15)

with corresponding boundary conditions for the adjoint solution. The primary dif-

ference of the above adjoint equations for symmetrized variables from the adjoint

equations for conservative variables is the existence of a source term linear in 𝑣𝑘,

which is the last term in the left hand side of the above equation. For non-entropy

based symmetrization methods, the adjoint solution for symmetrized variables is given

by the transpose of the symmetrizing transformation applied to the adjoint solution
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for conservative variables, as derived in Section 2.3.4.

2.3.3 Adjoint energy analysis

Energy analysis of the symmetrized adjoint equations is performed by analyzing the

time derivative of the 𝐿2 norm of the symmetrized adjoint solution. The 𝐿2 norm is

defined as,

𝐸v̂ = ‖v̂‖2 = (

∫︁
𝑉

𝑣𝑝𝑁𝑝𝑞𝑣𝑞 𝑑𝑉 )
1
2 (2.16)

where N is a constant diagonal matrix for v̂ that ensures dimensional consistency of

the above expression. The expression for N depends on the symmetrizing transfor-

mation. In order to obtain the rate of growth of the adjoint solution, the square of

the 𝐿2 norm divided by 2 is differentiated with respect to negative time.

−1

2

𝑑(𝐸2
v̂)

𝑑𝑡
= −𝐸v̂

𝑑𝐸v̂

𝑑𝑡
= −1

2

𝑑

𝑑𝑡
(

∫︁
𝑉

𝑣𝑝𝑁𝑝𝑞𝑣𝑞) 𝑑𝑉

= −1

2
(

∫︁
𝑉

𝑁𝑝𝑞(
𝜕𝑣𝑝
𝜕𝑡

𝑣𝑞 +
𝜕𝑣𝑞
𝜕𝑡

𝑣𝑝) 𝑑𝑉 )

(2.17)

The minus sign exists because of the fact that the magnitude of the adjoint energy

grows exponentially in negative time as the adjoint equations are solved backwards in

time. If the term 𝑁𝑝𝑞 is symmetric in the indices 𝑝 and 𝑞, then 𝑁𝑝𝑞
𝜕𝑣𝑝
𝜕𝑡
𝑣𝑞 = 𝑁𝑝𝑞

𝜕𝑣𝑞
𝜕𝑡
𝑣𝑝.

Hence,

−𝐸v̂
𝑑𝐸v̂

𝑑𝑡
= −

∫︁
𝑉

𝑁𝑝𝑞
𝜕𝑣𝑝
𝜕𝑡

𝑣𝑞 𝑑𝑉 (2.18)

Substituting Equation 2.15 into the above equation

−𝐸v̂
𝑑𝐸v̂

𝑑𝑡
=

∫︁
𝑉

𝑁𝑝𝑞𝑣𝑞[𝐴𝑘𝑗𝑝
𝜕𝑣𝑘
𝜕𝑥𝑗

+ (𝐵𝑘𝑗𝑝𝑙 −𝐵𝑘𝑗𝑙𝑝)
𝜕𝑣𝑙
𝜕𝑥𝑗

𝑣𝑘] 𝑑𝑉 (2.19)

Expanding the term 𝐵𝑘𝑗𝑝𝑙 =
𝜕𝐴𝑘𝑗𝑝

𝜕𝑣𝑙
and using the Gauss divergence theorem, the

integral over the first term in the square bracket in the above equation can be rewritten
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as ∫︁
𝑉

𝑁𝑝𝑞𝑣𝑞𝐴𝑘𝑗𝑝
𝜕𝑣𝑘
𝜕𝑥𝑗

𝑑𝑉 =

∫︁
𝑆

𝑁𝑝𝑞𝑣𝑞𝐴𝑘𝑗𝑝𝑣𝑘𝑛𝑗 𝑑𝑆

−
∫︁
𝑉

𝑁𝑝𝑞
𝜕𝑣𝑞
𝜕𝑥𝑗

𝐴𝑘𝑗𝑝𝑣𝑘 𝑑𝑉 −
∫︁
𝑉

𝑁𝑝𝑞𝑣𝑞𝐵𝑘𝑗𝑝𝑙
𝜕𝑣𝑙
𝜕𝑥𝑗

𝑣𝑘 𝑑𝑉

(2.20)

where 𝑆 = 𝜕𝑉 . Using symmetry of 𝐴𝑘𝑗𝑝 in 𝑝 and 𝑘, the above equation can be

rewritten as

∫︁
𝑉

𝑁𝑝𝑞𝑣𝑞𝐴𝑘𝑗𝑝
𝜕𝑣𝑘
𝜕𝑥𝑗

𝑑𝑉 =
1

2
(

∫︁
𝑆

𝑁𝑝𝑞𝑣𝑞𝐴𝑘𝑗𝑝𝑣𝑘𝑛𝑗 𝑑𝑆 −
∫︁
𝑉

𝑁𝑝𝑞𝑣𝑞𝐵𝑘𝑗𝑝𝑙
𝜕𝑣𝑙
𝜕𝑥𝑗

𝑣𝑘 𝑑𝑉 ) (2.21)

Symmetrization of the Euler equations ensures that the contribution of the convective

term in the adjoint energy analysis can be written in the form of a spatial integral over

a quadratic product. Analysis of the quadratic product provides information about

the regions of divergence of the adjoint solution, the details of which are discussed in

Section 2.6. Combining Equation 2.21 with 2.19, the rate of growth of adjoint energy

equation is

−𝐸v̂
𝑑𝐸v̂

𝑑𝑡
=

∫︁
𝑉

𝑣𝑞[𝑁𝑝𝑞(
𝐵𝑘𝑗𝑝𝑙

2
−𝐵𝑘𝑗𝑙𝑝)

𝜕𝑣𝑙
𝜕𝑥𝑗

]𝑣𝑘 𝑑𝑉 +
1

2

∫︁
𝑆

𝑁𝑝𝑞𝑣𝑞𝐴𝑘𝑗𝑝𝑣𝑘𝑛𝑗 𝑑𝑆 (2.22)

The first term in the right hand side in the above equation is the contribution due to

the convective term and it can be written in the following quadratic form∫︁
𝑉

𝑣𝑞𝑀𝑞𝑘𝑣𝑘 𝑑𝑉

𝑀𝑞𝑘 = 𝑁𝑝𝑞(
𝐵𝑘𝑗𝑝𝑙

2
−𝐵𝑘𝑗𝑙𝑝)

𝜕𝑣𝑙
𝜕𝑥𝑗

(2.23)

Denoting the terms in the round bracket in the above equation as M1 and M2, such

that M = M1 −M2,

𝑀1,𝑞𝑘 = 𝑁𝑝𝑞
𝐵𝑘𝑗𝑝𝑙

2

𝜕𝑣𝑙
𝜕𝑥𝑗

=
1

2

𝜕𝐴𝑘𝑗𝑝

𝜕𝑞𝑙

𝜕𝑞𝑙
𝜕𝑥𝑗

𝑁𝑝𝑞,

𝑀2,𝑞𝑘 = 𝑁𝑝𝑞𝐵𝑘𝑗𝑙𝑝
𝜕𝑣𝑙
𝜕𝑥𝑗

= 𝑁𝑝𝑞
𝜕𝐴𝑘𝑗𝑙

𝜕𝑞𝑚

𝜕𝑞𝑚
𝜕𝑣𝑝

𝜕𝑣𝑙
𝜕𝑥𝑗

=
𝜕𝐴𝑘𝑗𝑙

𝜕𝑞𝑚
𝑆−1
𝑚𝑝

𝜕𝑣𝑙
𝜕𝑥𝑗

𝑁𝑝𝑞

(2.24)
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For the Abarbanel symmetrizing transformation, the matrices M1, M2 and N are

given below. Using 𝑏 = 𝑐√
𝛾
, 𝑎 =

√︁
𝛾−1
𝛾
𝑐

M = M1 −M2

M1 =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∇ · 𝑢 ∇1𝑏 ∇2𝑏 ∇3𝑏 0

∇1𝑏 ∇ · 𝑢 0 0 ∇1𝑎

∇2𝑏 0 ∇ · 𝑢 0 ∇2𝑎

∇3𝑏 0 0 ∇ · 𝑢 ∇3𝑎

0 ∇1𝑎 ∇2𝑎 ∇3𝑎 ∇ · 𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝑏
𝜌
∇1𝜌

𝑏
𝜌
∇2𝜌

𝑏
𝜌
∇3𝜌

√
𝛾−1
2

∇ · 𝑢
0 ∇1𝑢1 ∇2𝑢1 ∇3𝑢1

𝑎
2𝑝
∇1𝑝

0 ∇1𝑢2 ∇2𝑢2 ∇3𝑢2
𝑎
2𝑝
∇2𝑝

0 ∇1𝑢3 ∇2𝑢3 ∇3𝑢3
𝑎
2𝑝
∇3𝑝

0 2
𝛾−1

∇1𝑎
2

𝛾−1
∇2𝑎

2
𝛾−1

∇3𝑎
𝛾−1
2
∇ · 𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.25)

For the Turkel symmetrizing transformation, the matrices M1,M2 and N are

given below.
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M = M1 −M2

M1 =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∇ · 𝑢 ∇1𝑐 ∇2𝑐 ∇3𝑐 0

∇1𝑐 ∇ · 𝑢 0 0 0

∇2𝑐 0 ∇ · 𝑢 0 0

∇3𝑐 0 0 ∇ · 𝑢 0

0 0 0 0 𝑇 2
𝑟 ∇ · 𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛾−1
2
∇ · 𝑢 1

𝜌𝑐
∇1𝑝

1
𝜌𝑐
∇2𝑝

1
𝜌𝑐
∇3𝑝

𝑇 2
𝑟

2𝜌𝑐
∇ · 𝑢

𝛾−1
2𝜌𝑐

∇1𝑝 ∇1𝑢1 ∇2𝑢1 ∇3𝑢1
𝑇 2
𝑟

2𝛾𝑝𝜌
∇1𝑝

𝛾−1
2𝜌𝑐

∇2𝑝 ∇1𝑢2 ∇2𝑢2 ∇3𝑢2
𝑇 2
𝑟

2𝛾𝑝𝜌
∇2𝑝

𝛾−1
2𝜌𝑐

∇3𝑝 ∇1𝑢3 ∇2𝑢3 ∇3𝑢3
𝑇 2
𝑟

2𝛾𝑝𝜌
∇3𝑝

0 (∇1𝑝− 𝑐2∇1𝜌) (∇2𝑝− 𝑐2∇2𝜌) (∇3𝑝− 𝑐2∇3𝜌) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 𝑇 2
𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.26)

where 𝑇𝑟 is a dimensional constant quantity which can be non-dimensionalized using

𝑇𝑟 = 𝐶𝑡
𝑝𝑟
𝑢𝑟

(2.27)

where 𝐶𝑡 is a non-dimensional tunable factor that is in the range (0,∞) and 𝑢𝑟, 𝑝𝑟

are non-dimensionalizing reference quantities of the flow, whose values are defined in

Section 1.4. The Turkel symmetrizing transformation matrix N has one degree of

freedom as the value for 𝐶𝑡 needs to be set. By default, 𝐶𝑡 = 1, unless otherwise

specified. If required, the value of 𝐶𝑡 can be determined by visually evaluating the

divergence indicator fields (derived from the adjoint energy analysis in Section 2.6)

for different values of 𝐶𝑡.
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2.3.4 Relationship between symmetrized and conservative ad-

joint solutions

The symmetrized and conservative adjoint solutions are related by a linear transfor-

mation. This can be shown by knowing that the sensitivity due to a perturbation

can be computed from either the conservative adjoint solution or symmetrized adjoint

solution, from Equations 1.23 and 2.14

𝛿𝐽 = −
∫︁ 𝑇

0

∫︁
𝑉

�̂�𝑖𝛿𝑠𝑖 𝑑𝑉 𝑑𝑡

= −
∫︁ 𝑇

0

∫︁
𝑉

𝑣𝑖𝛿𝑠𝑖 𝑑𝑉 𝑑𝑡 = −
∫︁ 𝑇

0

∫︁
𝑉

𝑣𝑖𝑇𝑖𝑘𝛿𝑠𝑘 𝑑𝑉 𝑑𝑡

(2.28)

Hence, equating the terms inside the integrals,

�̂�𝑖 = 𝑇𝑘𝑖𝑣𝑘 (2.29)

Applying the Cauchy-Schwarz inequality,

‖ŵ‖2 ≤ ‖T𝑇‖2‖v̂‖2 (2.30)

As the components of the transformation matrix (T) consist of bounded scalar fields,

its matrix 𝐿2 norm is also bounded. This implies that if the spatial 𝐿2 norm of the

symmetrized adjoint solution is bounded, then the spatial 𝐿2 norm of the conservative

adjoint field solution is also bounded. The vice versa can be shown to be true.

2.4 Entropy symmetrization

The Entropy-based symmetrization methods provide a symmetrizing transformation

for the compressible Navier-Stokes equations and not just the Euler equations. In ad-

dition, the symmetrized equations formed from the entropy-based symmetrizing trans-

formations have a physical meaning. The entropy (or symmetrized) variables satisfy

the Clausius-Duhem inequality [47]. The linearized relation between the derivatives
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of entropy variables and the derivatives of conservative variables is 𝛿𝑤𝑖 = 𝐴0
𝑖𝑗𝛿𝑣𝑗,

where 𝐴0
𝑖𝑗 forms a symmetric positive definite matrix. Rewriting the compressible

Navier-Stokes equations in terms of the symmetrized variables

𝐴0
𝑖𝑗

𝜕𝑣𝑗
𝜕𝑡

+ 𝐴𝑖𝑗𝑘𝐴
0
𝑘𝑚

𝜕𝑣𝑚
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗
(𝐷𝑖𝑗𝑘𝑙𝐴

0
𝑘𝑚

𝜕𝑣𝑚
𝜕𝑥𝑙

) + 𝑠𝑖 (2.31)

Denoting the term 𝐴𝑖𝑗𝑘𝐴
0
𝑘𝑚 as 𝐴𝑖𝑗𝑚 and 𝐷𝑖𝑗𝑘𝑙𝐴

0
𝑘𝑚 as �̂�𝑖𝑗𝑚𝑙

𝐴0
𝑖𝑗

𝜕𝑣𝑗
𝜕𝑡

+ 𝐴𝑖𝑗𝑚
𝜕𝑣𝑚
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗
(�̂�𝑖𝑗𝑚𝑙

𝜕𝑣𝑚
𝜕𝑥𝑙

) + 𝑠𝑖 (2.32)

The tensor 𝐴𝑖𝑗𝑚 is symmetric in the indices 𝑖 and 𝑚 and �̂�𝑖𝑗𝑚𝑙 is symmetric in the

following sense, �̂�𝑖𝑗𝑚𝑙 = �̂�𝑚𝑙𝑖𝑗. Additionally, the matrix K̂ formed by arranging the

matrices �̂�:𝑗:𝑙 (for fixed indices 𝑗 and 𝑙) in the following manner,

K̂ =

⎛⎜⎜⎜⎝
�̂�:1:1 �̂�:1:2 �̂�:1:3

�̂�:2:1 �̂�:2:2 �̂�:2:3

�̂�:3:1 �̂�:3:2 �̂�:3:3

⎞⎟⎟⎟⎠ (2.33)

is symmetric positive semi-definite. The matrix K̂ can also be written as,

�̂�[3(𝑗−1)+𝑖][3(𝑙−1)+𝑚] = �̂�𝑖𝑗𝑚𝑙 (2.34)

where [] is used to denote separation between indices.
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2.4.1 Symmetrizing transformations

Hughes [47] proposed the following symmetrizing transformation, 𝐴0
𝑖𝑗 = 𝜕𝑤𝑖

𝜕𝑣𝑗

A0 =
1

𝛾 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌 𝜌𝑢1 𝜌𝑢2 𝜌𝑢3 𝜌𝐸

𝜌𝑢1 𝜌𝑢1𝑢1 + 𝑝 𝜌𝑢1𝑢2 𝜌𝑢1𝑢3 𝜌𝐻𝑢1

𝜌𝑢2 𝜌𝑢2𝑢1 𝜌𝑢2𝑢2 + 𝑝 𝜌𝑢2𝑢3 𝜌𝐻𝑢2

𝜌𝑢3 𝜌𝑢3𝑢1 𝜌𝑢3𝑢2 𝜌𝑢3𝑢3 + 𝑝 𝜌𝐻𝑢3

𝜌𝐸 𝜌𝐻𝑢1 𝜌𝐻𝑢2 𝜌𝐻𝑢3 𝜌𝐻2 − 𝛾𝑝2

𝜌(𝛾−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.35)

where the symmetrized variables can be written in terms of the conservative variables

in the following form

v =
1

𝜌𝑒

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝜌𝐸 + 𝜌𝑒(𝛾 + 1 − 𝑠)

𝜌𝑢1

𝜌𝑢2

𝜌𝑢3

−𝜌

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.36)

where the entropy 𝑠 = 𝑙𝑛[𝛽(𝛾−1)𝜌𝑒
𝜌𝛾

], 𝛽 is a non-dimensionalizing constant given by 𝜌𝛾𝑟
𝑝𝑟

.

The symmetrized tensors 𝐴𝑖𝑗𝑚 and �̂�𝑖𝑗𝑚𝑙 are given in Appendix A.5.

2.4.2 Nonlinear stability

The entropy variables satisfy the following entropy production inequality

∫︁
𝑉

(
𝜕𝜌𝑠

𝜕𝑡
+
𝜕𝜌𝑠𝑢𝑖
𝜕𝑥𝑖

+
𝜕

𝜕𝑥𝑖
(
𝛼𝜌𝛾

𝑒

𝜕𝑒

𝜕𝑥𝑖
)) 𝑑𝑉 =

∫︁
𝑉

𝜕𝑣𝑖
𝜕𝑥𝑗

�̂�𝑖𝑗𝑘𝑙
𝜕𝑣𝑘
𝜕𝑥𝑙

𝑑𝑉 ≥ 0 (2.37)

If the right hand side of the above equation (the energy dissipation rate) is bounded

from above, then the entropy solution of the Navier-Stokes equations is nonlinearly

stable. Such a stability result cannot be obtained for the linearized tangent and

adjoint equations of the symmetrized form of compressible Navier-Stokes equations.

In fact, the energy analysis of the adjoint equations shows that there are terms that
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grow fast and contribute to the exponential divergence of the adjoint solution.

2.4.3 Adjoint of symmetrized equations

As the symmetrized equations are the same equations as the compressible Navier-

Stokes equations, but written in a different form, the adjoint method applied to the

symmetrized equations also results in the same equations as the adjoint equations for

the conservative variables, but written in a different form. This implies that v̂ = ŵ,

which means that the symmetrized adjoint solution is the same as the conservative

adjoint solution. Starting from Equation 1.18, rewriting the viscous term in terms

of the symmetrized variables and replacing 𝛿𝑤𝑖 with 𝐴0
𝑖𝑛𝛿𝑣𝑛 in the first volume and

time integral term

𝛿𝐽 =
1

𝑇

∫︁ 𝑇

0

∫︁
𝑆

[(
𝜕𝐽

𝜕𝑤𝑖

+ 𝑣𝑘𝐴𝑘𝑗𝑖𝑛𝑗 − 𝑣𝑘
𝜕𝐷𝑘𝑗𝑚𝑙

𝜕𝑤𝑖

𝜕𝑤𝑚

𝜕𝑥𝑙
𝑛𝑗)𝛿𝑤𝑖 − 𝑣𝑖𝐷𝑖𝑗𝑘𝑙𝛿

𝜕𝑤𝑘

𝜕𝑥𝑙
𝑛𝑗] 𝑑𝑆 𝑑𝑡

+

∫︁
𝑉

(𝑣𝑖|𝑇 𝛿𝑤𝑖|𝑇 − 𝑣𝑖|0𝛿𝑤𝑖|0)𝑑𝑉

−
∫︁ 𝑇

0

∫︁
𝑉

(
𝜕𝑤𝑖

𝜕𝑡
+
𝜕𝑣𝑘
𝜕𝑥𝑗

𝐴𝑘𝑗𝑖)𝐴
0
𝑖𝑛𝛿𝑣𝑛 𝑑𝑉 𝑑𝑡

+

∫︁ 𝑇

0

∫︁
𝑉

(
𝜕𝑣𝑖
𝜕𝑥𝑗

�̂�𝑖𝑗𝑘𝑙
𝜕𝛿𝑣𝑘
𝜕𝑥𝑙

+
𝜕𝑣𝑖
𝜕𝑥𝑗

𝜕�̂�𝑖𝑗𝑘𝑙

𝜕𝑣𝑚

𝜕𝑣𝑘
𝜕𝑥𝑙

𝛿𝑣𝑚) 𝑑𝑉 𝑑𝑡

−
∫︁ 𝑇

0

∫︁
𝑉

𝑣𝑖𝛿𝑠𝑖 𝑑𝑉 𝑑𝑡

(2.38)

After applying integration by parts to the first term the viscous term integral and

grouping all the 𝛿𝑣𝑛 terms, the adjoint equations are

−𝐴0
𝑖𝑗

𝜕𝑣𝑗
𝜕𝑡

− (𝐴𝑘𝑗𝑖 − 𝐴𝑣
𝑘𝑗𝑖)

𝜕𝑣𝑘
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑙
(�̂�𝑘𝑗𝑖𝑙

𝜕𝑣𝑘
𝜕𝑥𝑗

) (2.39)

with appropriate boundary and terminal conditions, where 𝐴𝑣
𝑘𝑗𝑖 =

𝜕�̂�𝑘𝑗𝑚𝑙

𝜕𝑣𝑖

𝜕𝑣𝑚
𝜕𝑥𝑙

. For the

Hughes symmetrizing transformation, 𝐴𝑣
𝑘𝑗𝑖 is not symmetric in the indices 𝑖 and 𝑘.

This can be seen by computing the terms of the matrix for 𝑖 = 1 and observing that

𝐴𝑣
312 =

𝜇

𝑣25

𝜕𝑣5
𝜕𝑥2

, 𝐴𝑣
213 = −2

3

𝜇

𝑣25

𝜕𝑣5
𝜕𝑥2

(2.40)
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It can be clearly seen that these two terms are not equal. Consequently, the matrix

formed by 𝐴𝑣
:1: is not symmetric. Similarly, the matrices formed by 𝐴𝑣

:2: and 𝐴𝑣
:3: are

not symmetric.

2.4.4 Adjoint energy analysis

Energy analysis of the symmetrized adjoint equations is performed by analyzing the

time derivative of a weighted 𝐿2 norm of the adjoint solution. The 𝐿2 norm is defined

as,

𝐸v̂ = ‖v̂‖2 = (

∫︁
𝑉

𝑣𝑝𝑁𝑝𝑞𝑣𝑞 𝑑𝑉 )
1
2 (2.41)

where N = A0. The norm is valid as A0 is symmetric positive definite and the

quadratic product is dimensionally consistent.

In order to obtain the rate of growth of the adjoint solution, the square of the 𝐿2

norm divided by 2 is differentiated with respect to negative time. Using the fact that

𝐴0
𝑖𝑗 is symmetric

−1

2

𝑑(𝐸2
v̂)

𝑑𝑡
= −𝐸v̂

𝑑𝐸v̂

𝑑𝑡
= −1

2

∫︁
𝑉

(2𝑣𝑖𝐴
0
𝑖𝑗

𝜕𝑣𝑗
𝜕𝑡

+ 𝑣𝑖
𝜕𝐴0

𝑖𝑗

𝜕𝑡
𝑣𝑗) 𝑑𝑉 (2.42)

From Equation 2.39

−𝐴0
𝑖𝑗

𝜕𝑣𝑗
𝜕𝑡

= (𝐴𝑘𝑗𝑖 − 𝐴𝑣
𝑘𝑗𝑖)

𝜕𝑣𝑘
𝜕𝑥𝑗

+
𝜕

𝜕𝑥𝑙
(�̂�𝑘𝑗𝑖𝑙

𝜕𝑣𝑘
𝜕𝑥𝑗

) (2.43)

Using symmetry of 𝐴𝑘𝑗𝑖 in the indices 𝑘 and 𝑖 and integrating by parts in space it

can be shown that

∫︁
𝑉

𝑣𝑖𝐴𝑘𝑗𝑖
𝜕𝑣𝑘
𝜕𝑥𝑗

𝑑𝑉 =
1

2
(

∫︁
𝑆

𝑣𝑖𝐴𝑘𝑗𝑖𝑣𝑘�̂�𝑗 𝑑𝑆 −
∫︁
𝑉

𝑣𝑖
𝜕𝐴𝑘𝑗𝑖

𝜕𝑥𝑗
𝑣𝑘 𝑑𝑉 ) (2.44)

The spatial integral of the viscous term from Equation 2.43 can be rewritten as

∫︁
𝑉

𝑣𝑖
𝜕

𝜕𝑥𝑙
(�̂�𝑘𝑗𝑖𝑙

𝜕𝑣𝑘
𝜕𝑥𝑗

) 𝑑𝑉 =

∫︁
𝑆

𝑣𝑖�̂�𝑘𝑗𝑖𝑙
𝜕𝑣𝑘
𝜕𝑥𝑗

�̂�𝑙 𝑑𝑆 −
∫︁
𝑉

𝜕𝑣𝑖
𝜕𝑥𝑙

�̂�𝑘𝑗𝑖𝑙
𝜕𝑣𝑘
𝜕𝑥𝑗

𝑑𝑉 (2.45)
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Expanding the time derivative, 𝜕𝐴0
𝑖𝑗

𝜕𝑡
, from Equation 2.42 in terms of the time

derivative of the conservative solution w

−𝜕𝐴
0
𝑖𝑗

𝜕𝑡
= −𝜕𝐴

0
𝑖𝑗

𝜕𝑤𝑘

𝜕𝑤𝑘

𝜕𝑡
=
𝜕𝐴0

𝑖𝑗

𝜕𝑤𝑘

[
𝜕

𝜕𝑥𝑚
(𝐹𝑘𝑚 − 𝐹 𝑣

𝑘𝑚) − 𝑠𝑘] (2.46)

where 𝐹𝑘𝑚 and 𝐹 𝑣
𝑘𝑚 are defined in Equation 1.12. Substituting Equations 2.43, 2.44,

2.45 and 2.46 into Equation 2.42 and rearranging terms

−𝐸v̂
𝑑𝐸v̂

𝑑𝑡
=

1

2

∫︁
𝑉

𝑣𝑖[−
𝜕𝐴𝑘𝑗𝑖

𝜕𝑥𝑗
+
𝜕𝐴0

𝑖𝑗

𝜕𝑤𝑛

𝜕𝐹𝑛𝑚

𝜕𝑥𝑚
]𝑣𝑘 𝑑𝑉

−
∫︁
𝑉

𝑣𝑖𝐴
𝑣
𝑘𝑗𝑖

𝜕𝑣𝑘
𝜕𝑥𝑗

𝑑𝑉 − 1

2

∫︁
𝑉

𝑣𝑖
𝜕𝐴0

𝑖𝑗

𝜕𝑤𝑛

(
𝜕𝐹 𝑣

𝑛𝑚

𝜕𝑥𝑚
+ 𝑠𝑛)𝑣𝑘 𝑑𝑉

−
∫︁
𝑉

𝜕𝑣𝑖
𝜕𝑥𝑙

�̂�𝑘𝑗𝑖𝑙
𝜕𝑣𝑘
𝜕𝑥𝑗

𝑑𝑉

+
1

2

∫︁
𝑆

𝑣𝑖𝐴𝑘𝑗𝑖𝑣𝑘�̂�𝑗 𝑑𝑆

+

∫︁
𝑆

𝑣𝑖�̂�𝑘𝑗𝑖𝑙
𝜕𝑣𝑘
𝜕𝑥𝑗

�̂�𝑙 𝑑𝑆

(2.47)

The first spatial integral term in the right hand side in the above equation is a

quadratic term in v̂. The terms inside the square bracket can be rewritten as M =

−M1 + M2, where

𝑀1,𝑖𝑘 =
𝜕𝐴𝑘𝑗𝑖

𝜕𝑥𝑗
(2.48)

𝑀2,𝑖𝑘 =
𝜕𝐴0

𝑖𝑘

𝜕𝑤𝑛

𝜕𝐹𝑛𝑚

𝜕𝑥𝑚
(2.49)

Unlike in the case of non-entropy symmetrizing transformations, the expressions for

M1 and M2 for entropy symmetrizing transformations cannot be written in a compact

analytical form of the flow variables. They can be computed by differentiating the

tensors 𝐴, 𝐴0 and 𝐹 with respect to either 𝑥 or 𝑤 using automatic differentiation and

then numerically computing the result, in accordance with Equations 2.48 and 2.49.

The equations relevant to the Hughes symmetrizing transformation are summarized
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below

M = −M1 + M2

N =
1

𝛾 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌 𝜌𝑢1 𝜌𝑢2 𝜌𝑢3 𝜌𝐸

𝜌𝑢1 𝜌𝑢1𝑢1 + 𝑝 𝜌𝑢1𝑢2 𝜌𝑢1𝑢3 𝜌𝐻𝑢1

𝜌𝑢2 𝜌𝑢2𝑢1 𝜌𝑢2𝑢2 + 𝑝 𝜌𝑢2𝑢3 𝜌𝐻𝑢2

𝜌𝑢3 𝜌𝑢3𝑢1 𝜌𝑢3𝑢2 𝜌𝑢3𝑢3 + 𝑝 𝜌𝐻𝑢3

𝜌𝐸 𝜌𝐻𝑢1 𝜌𝐻𝑢2 𝜌𝐻𝑢3 𝜌𝐻2 − 𝛾𝑝2

𝜌(𝛾−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.50)

2.5 Contribution of terms in adjoint energy growth

In order to find the regions of the flow that cause divergence of the adjoint solution,

the contribution of various terms in Equation 2.47 in increasing the adjoint energy

needs to be analyzed. The energy analysis of the symmetrized adjoint solutions

from non-entropy and entropy symmetrizations share a few important characteristics.

Compared to the energy analysis for the non-entropy symmetrizations, there are a few

additional spatial integral viscous terms in the analysis for entropy symmetrization

that can contribute to the growth or decay of adjoint energy. Each term of Equation

2.47 along with corresponding terms of Equation 2.22 are analyzed separately below.

1.
∫︁
𝑉

𝑣𝑖𝑀𝑖𝑘𝑣𝑘 𝑑𝑉

The first term in the right hand side of each of the two equations, Equation

2.22 and 2.47, are spatial integrals of quadratic products of v̂ scaled by the

appropriate matrix M. These terms provide the contribution of the convective

terms of the Euler (for non-entropy symmetrization) or Navier-Stokes equations

(for entropy symmetrization) to the respective formulas for the adjoint energy.

In addition, owing to their quadratic product form, they are among the primary

growth terms responsible for the divergence of the adjoint solution in turbulent

fluid flows.

2.
∫︁
𝑆

𝑣𝑖𝐴𝑘𝑗𝑖𝑣𝑘�̂�𝑗 𝑑𝑆
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The second term in the right hand side of Equation 2.22 and the second last

term in the right hand side of Equation 2.47 are quadratic product terms on the

boundary domain of the flow problem. As these terms are quadratic, they can

potentially contribute to the growth of the adjoint energy. But, in many com-

pressible fluid problems, the inlet and outlet boundaries of the domain utilize

characteristic boundary conditions [83, 105, 28] based on the Euler equations.

Denoting the characteristic variables by 𝑧𝑖 and the corresponding characteris-

tic adjoint variables by 𝑧𝑖, the boundary condition for the symmetrized adjoint

equations on the inlet and outlet can be written as

𝑣𝑘𝐴𝑘𝑗𝑖𝑛𝑗𝛿𝑣𝑖 = 𝑧𝑘Λ𝑙𝑖𝛿𝑧𝑖 = 0 (2.51)

on ignoring the contribution of viscous and objective source terms and using

the eigendecomposition, 𝐴𝑘𝑗𝑖𝑛𝑗 = 𝑄𝑘𝑙Λ𝑙𝑚𝑄𝑖𝑚 with the identities, 𝛿𝑣𝑖 = 𝑄𝑘𝑖𝛿𝑧𝑖

and 𝑧𝑖 = 𝑄𝑘𝑖𝑣𝑘. On the inlet of the flow problem, the characteristic variables

coming into the domain are prescribed as boundary conditions. This implies

that 𝛿𝑧𝑖 = 0, for all 𝑖 for which the 𝑖𝑡ℎ characteristic (or eigenvalues in the

eigendecomposition) is negative. Consequently, 𝑧𝑗 = 0, for all 𝑗 for which

the 𝑗𝑡ℎ characteristic is positive, in order to ensure that the adjoint boundary

condition is satisfied. Hence, v̂ belongs to the negative eigenspace of the matrix

𝐴𝑘𝑗𝑖𝑛𝑗. This ensures that the convective quadratic product term on the inlet

boundary in the adjoint energy analysis is always negative and thus, cannot

contribute to the growth of adjoint energy. Similarly, on the outlet boundary

of the flow problem, the outgoing characteristics are prescribed as boundary

conditions and hence, it can be shown that the outlet boundary too does not

contribute to the growth of adjoint energy.

3. −
∫︁
𝑉

𝜕𝑣𝑖
𝜕𝑥𝑙

�̂�𝑘𝑗𝑖𝑙
𝜕𝑣𝑘
𝜕𝑥𝑗

𝑑𝑉

The fourth term in the right hand side of Equation 2.47 is a spatial integral

over a quadratic product of the gradient of the symmetrized adjoint solution,

scaled by the tensor D̂. The quadratic product can be written as ∇vTK̂∇v,
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where ∇v is a flattened vector that can be described in the following form

(∇𝑣)[3(𝑗−1)+𝑖] =
𝜕𝑣𝑖
𝜕𝑥𝑗

(2.52)

The product is always positive or greater than zero as the matrix K̂ is positive

semi-definite. Hence, as the sign in front of the term is negative, this spatial

integral term never increases the adjoint energy.

4. −
∫︁
𝑉

𝑣𝑖𝐴
𝑣
𝑘𝑗𝑖

𝜕𝑣𝑘
𝜕𝑥𝑗

𝑑𝑉 and −
∫︁
𝑉

𝑣𝑖
𝜕𝐴0

𝑖𝑗

𝜕𝑤𝑛

(
𝜕𝐹 𝑣

𝑛𝑚

𝜕𝑥𝑚
+ 𝑠𝑛)𝑣𝑘 𝑑𝑉

The second term and third terms in the right hand side of Equation 2.47 are

spatial integrals that can contribute to the growth of adjoint energy. The first

term in the above two terms cannot be converted into a quadratic form as

the tensor 𝐴𝑣
𝑘𝑗𝑖 is not symmetric in the indices 𝑘 and 𝑖. This complicates the

analysis of this term. Additionally, in the absence of any viscous effects in

the fluid (𝜇 = 0, 𝛼 = 0) or source terms, the two terms do not provide any

information about the divergence of adjoint energy. Hence, for simplicity, the

analysis of these terms is skipped.

5.
∫︁
𝑆

𝑣𝑖�̂�𝑘𝑗𝑖𝑙
𝜕𝑣𝑘
𝜕𝑥𝑗

�̂�𝑙 𝑑𝑆

The last term in the right hand side of Equation 2.47 provides the contribution

of the viscous term to the adjoint energy on the boundary of the domain. On the

inlet and outlet boundaries the convective terms dominate the viscous terms.

Hence, the contribution of the viscous terms on these boundaries can be ignored.

However, wall boundaries can contribute significantly to the growth of adjoint

energy due to the presence of large gradients at the boundary. Performing

analysis of the contribution of these terms to adjoint energy is complex. In this

thesis, the focus is primarily on finding local regions of divergence of the adjoint

solution in the domain of the problem. Hence, the analysis of wall boundaries

is skipped.
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2.6 Analysis of convective growth term

The regions of the domain of the flow problem that significantly contribute to the

divergence of the adjoint solution can be found by analyzing the integrand in one of the

growth terms, the convective term, from the adjoint energy analysis. The integrand

in this growth term is a quadratic product and can be bounded by performing an

eigenvalue analysis. The growth term can be rewritten as

v̂𝑇Mv̂ = v̂𝑇 1

2
(M + M𝑇 )v̂ (2.53)

The above equation can be derived using the fact that v̂𝑇Mv̂ = v̂𝑇M𝑇 v̂. Represent-

ing 1
2
(M+MT) as the symmetric matrix Ms and formulating a generalized eigenvalue

problem

Msv𝑖 = 𝜆𝑖Nv̂𝑖 (2.54)

where 𝜆𝑖 is the generalized eigenvalue and v̂𝑖 is the generalized eigenvector. N is

the symmetric positive definite matrix and M is the growth term matrix defined for

various symmetrizing transformations in Equations 2.25, 2.26 and 2.50. As Ms is

symmetric, the eigenvalues 𝜆𝑖 are guaranteed to be real. Using the Rayleigh quotient

theorem for symmetric matrices

v̂𝑇Msv̂ ≤ 𝜆1v̂
TNv̂ (2.55)

where 𝜆1 is the maximum generalized eigenvalue. Consequently, the growth term in

the adjoint energy analysis can be bounded using 𝜆1

v̂𝑇Mv̂ ≤ 𝜆1v̂
TNv̂ (2.56)

The scalar field 𝜆1 provides an indicator of the regions in the domain of the flow

problem where the growth rate of adjoint energy is high. It has the dimensions 1
𝑇

and hence has the same meaning as that of a rate of growth term. As there is no

compact formula for the maximum generalized eigenvalue, it is computed numerically
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by forming the matrix Ms at each grid point for various symmetrizing transformations

and solving a 5 × 5 eigenvalue problem.

2.7 Results

The scalar field 𝜆1, which serves as an indicator field for the regions of divergence

of the adjoint solution, is computed using various symmetrizing transformations for

a couple of test cases introduced in Section 1.4. Figure 2-5 shows a visualization

of the scalar field, 𝜆1, for subsonic flow over a cylinder using the non-entropy based

Turkel symmetrizing transformation. The scalar field is normalized by a numerical

approximation to ‖𝜆1‖2, where ‖·‖2 denotes the spatial 𝐿2 norm given by the following

expression

‖𝜆1‖2 =
(︁∫︁

𝑉

𝜆21 𝑑𝑉
)︁ 1

2 (2.57)

The scalar field is positive in every location of the mesh. As indicated by the magni-

tude of 𝜆1 in different regions of the flow in the figure, the region in the boundary layer

near the surface of the cylinder and the near wake region are primarily responsible

for the diverging adjoint solution. This matches a physical understanding of the flow

problem, that perturbations to the flow solution in the boundary layer and near wake

region have a major impact on the dynamics of the flow downstream of the cylinder.

Figures 2-6, 2-7 and 2-8 show visualizations of the scalar field, 𝜆1 for transonic flow

over a turbine vane using different symmetrizing transformations. The scalar field is

normalized by its spatial 𝐿2 norm. The scalar field is positive in every location of

the mesh. A visual inspection of the figures shows that even the magnitude of the

indicator fields is different for different symmetrizing transformations. Even so, across

all figures, it is larger in the same region, turbulent wake downstream of the trailing

edge of the vane, compared to other regions of the flow. This indicates that the

indicator field is largely independent of the symmetrizing transformation. In addition

to the turbulent wake, all the indicator fields have a large magnitude in the trailing

edge region of the suction side of the turbine vane. This is expected from a physical

understanding of the problem. This is the region where the turbulent boundary layer
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Figure 2-5: Visualization of the scalar field, 𝜆1, computed using Turkel symmetrizing
transformation and normalized using its spatial 𝐿2 norm. The color scale is logarith-
mic.

is formed, which leads to flow separation and formation of a turbulent wake.
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Figure 2-6: Visualization of the scalar field, 𝜆1, constructed using the Abarbanel
symmetrizing transformation.
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Figure 2-7: Visualization of the scalar field, 𝜆1, constructed using the Turkel sym-
metrizing transformation.
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Figure 2-8: Visualization of the scalar field, 𝜆1, constructed using the Hughes sym-
metrizing transformation
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Chapter 3

Viscosity stabilized adjoint method

In this chapter, the viscosity stabilized adjoint method is derived. Section 3.1 dis-

cusses the various ways in which the symmetrized form of the adjoint equations can

be modified in order to control their divergence. Section 3.2 describes how artificial

viscosity is added to the adjoint equations. Finally, Section 3.3 demonstrates results

from applying the viscosity stabilized adjoint method to a couple of flow problems.

3.1 Modification of adjoint equations

The symmetrized adjoint equations, Equation 2.39, formed using the entropy sym-

metrization method, are modified in order to reduce the growth of adjoint energy and

stabilize the adjoint solution. The modification should be designed in such a way so

as to preserve the linearity of the adjoint equations. If a design objective is scaled by a

constant, 𝑎, the design objective gradient should also be scaled by the same constant

𝑎. But, if the modified adjoint equations are nonlinear in the adjoint solution (v̂),

the design objective gradient may not satisfy this property. Hence, the modification

term cannot be a nonlinear function of v̂, but, can be a nonlinear function of the

flow solution (w). Additionally, the linearity property restricts the modification to

the class of additive transformations to the various linear operators in the adjoint

equations. There are multiple terms in the symmetrized adjoint equations (Equation

2.39) which can be modified. They are:
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1. Source term (𝑠𝑖)

2. Convective term (𝐴𝑘𝑗𝑖
𝜕𝑣𝑘
𝜕𝑥𝑗

)

3. Right hand side viscous term (�̂�𝑘𝑗𝑖𝑙
𝜕𝑣𝑘
𝜕𝑥𝑗

)

The first modification is adding a linear source term (𝜂𝑠Λ𝑠
𝑖𝑗𝑣𝑗) to the right hand

side of Equation 2.39. If the matrix formed by Λ𝑠
𝑖𝑗 is negative definite and the constant

term 𝜂𝑠 is greater than 0, this source term will always decrease the adjoint energy. This

modification does not preserve the convective property of the adjoint equations. The

convective property refers to the fact that the adjoint equations form a set of linear

convection-diffusion partial differential equations with time dependent coefficients and

design objective based source terms. The importance of this property is discussed in

Section 3.1.1.

The convective term can be modified in the following manner: 𝐴𝑘𝑗𝑖 → (𝐴𝑘𝑗𝑖 +

𝜂𝑐Λ𝑐
𝑘𝑗𝑖), where Λ𝑐

𝑘𝑗𝑖 is a symmetric matrix for a given index 𝑗 and 𝜂𝑐 is a constant term

greater than 0. In order to ensure reduction of adjoint energy, the matrix formed by
𝜕Λ𝑐

𝑘𝑗𝑖

𝜕𝑥𝑗
has to be positive semi-definite everywhere in the domain of the flow problem.

Ensuring this property is not trivial, if not impossible, while constructing a Λ𝑐
𝑘𝑗𝑖 that

is purely a function of the flow solution.

The right hand side viscous term can be modified in the following manner: �̂�𝑘𝑗𝑖𝑙 →
(�̂�𝑘𝑗𝑖𝑙 + 𝜂𝑣Λ𝑣

𝑘𝑗𝑖𝑙), where the matrix formed by Λ𝑉
[3(𝑗−1)+𝑘][3(𝑙−1)+𝑖] = Λ𝑣

𝑘𝑗𝑖𝑙 is symmetric

positive semi-definite and 𝜂𝑣 is a constant term greater than 0. From the symmetrized

adjoint analysis in Equation 2.47, it can be seen that this modification will always

lead to a decrease in adjoint energy. Additionally, this modification preserves the

convective property of the adjoint equations as the modified equations still form a set

of linear convection-diffusion partial differential equations.

3.1.1 Importance of convective property

The importance of preserving the convective property can be seen from the following

example. Consider a subsonic flow in a box of dimensions 1𝑚 × 1𝑚 × 0.1𝑚 with

78



inlet and outlet boundaries on opposite faces of the box. The objective function for

the adjoint equation is the mass flow on the outlet.

𝐽 = lim
𝑇→∞

1

𝑇

∫︁ 𝑇

0

∫︁
𝑆

𝜌u · n 𝑑𝑆 (3.1)

The boundary conditions of the flow problem are the following: velocity at inlet

boundary (𝑢𝑖𝑛) = 100𝑚/𝑠, pressure at outlet boundary 101325𝑃𝑎, with periodic

boundary conditions in directions transverse to the flow. The finite time interval

over which the adjoint solution is computed is 5 time units, where 1 time unit is the

amount of time the flow takes to travel from the inlet to the outlet boundary.

Using the finite difference method for estimating gradients, the gradient 𝜕𝐽
𝜕𝑢𝑖𝑛

is

approximately 0.1189 𝑘𝑔/𝑚. The gradient provided by the adjoint solution matches

the gradient estimated using finite difference. The form of the viscous term modifi-

cation is Λ𝑣
𝑘𝑗𝑖𝑙 = 𝜆1

‖𝜆1‖2 𝛿𝑘𝑖𝛿𝑗𝑙 and the form of the source term is Λ𝑠
𝑖𝑗 = − 𝜆1

‖𝜆1‖2 𝛿𝑖𝑗, where

𝜆1 is the maximum generalized eigenvalue of Ms as derived in Section 2.6. Figure 3-1

shows the absolute error in the gradient computed from the adjoint solutions obtained

by modifying the viscous term or adding a source term to the conservative form of

the adjoint equations.

Even though the dimensions of the viscous term and source term scaling factors

are different, the figure still shows a fair comparison of the absolute error for the

two types of modifications. This is because the ranges of both the scaling factor in

the figure correspond to the range of minimum scaling factors for which the adjoint

energy is stable for different flow problems, like subsonic flow over a cylinder or

transonic flow over a turbine vane. The figure shows that when the source term of

the adjoint equations is modified using a scaling factor that is roughly sufficient to

stabilize the adjoint solution, the error in the gradient is much higher than the case

when the viscous term of the adjoint equations is modified using a scaling factor

that is sufficient to stabilize the adjoint solution. Hence, preserving the convective

property of the adjoint equations is important as it better preserves the accuracy of

the gradient provided by the adjoint solution.
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Figure 3-1: Absolute error in gradient computed from adjoint solutions using viscous
term modification (viscosity scaling factor 𝜂𝑣, units: 1/𝑠) and source term modifica-
tion (with source scaling factor 𝜂𝑠, units: 𝑚2/𝑠)

Consequently, in this thesis, modifying the viscous term of the adjoint equations

is the preferred method for stabilizing the adjoint solution. Modifying the convective

term has the disadvantage that forming the positive semi-definite matrix is difficult,

whereas adding a source term has the disadvantage of not preserving the convective

property of the adjoint equations.

3.2 Addition of artificial viscosity to adjoint equa-

tions

As discussed in the previous section, the adjoint equations are modified by perturbing

the viscous term (�̂�𝑘𝑗𝑖𝑙). It is important to note that only the adjoint equations are

modified by adding artificial viscosity, whereas the primal equations remain the same

with no additional viscosity. The error due to the addition of artificial viscosity is

estimated in Chapter 4.
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The tensor Λ𝑣
𝑘𝑗𝑖𝑙 in the modification is given by

Λ𝑣
𝑘𝑗𝑖𝑙 = 𝜆1, ∀𝑘 = 𝑖, 𝑗 = 𝑙 (3.2)

Λ𝑣
𝑘𝑗𝑖𝑙 = 0, ∀𝑘 ̸= 𝑖 || 𝑗 ̸= 𝑙 (3.3)

where 𝜆1 is the maximum generalized eigenvalue of Ms, derived in Section 2.6 for

the non-entropy based symmetrizing transformations (Abarbanel and Turkel) and

the entropy based symmetrizing transformations (Hughes). The scalar field, 𝜆1, is

an indicator of the regions of divergence of the adjoint solution and the tensor Λv

serves as an artificial viscosity tensor field for the modified adjoint equations. As it

is directly proportional to 𝜆1, it adds large amounts of viscosity in the regions where

the adjoint solution is diverging. From the above equations it can be seen that the

matrix ΛV is symmetric positive semi-definite. Hence, ensuring that this particular

form of the viscous term modification always reduces the adjoint energy. The matrix

is positive semi-definite as the scalar field, 𝜆1, is empirically observed to be positive

everywhere in the domain of multiple flow problems. There are many other ways to

construct an appropriate tensor Λv such that the adjoint energy is always reduced.

A couple of them are listed below

Λ𝑣
:1:1 = Λ𝑣

:2:2 = Λ𝑣
:3:3 = 𝜆1A

0 (3.4)

Λ𝑣
𝑘𝑗𝑖𝑙 = 0, 𝑗 ̸= 𝑙 (3.5)

and finally

Λ𝑣
𝑘𝑗𝑖𝑙 = 𝜆1�̂�𝑘𝑗𝑖𝑙 (3.6)

For simplicity, Equation 3.3 is chosen as the artificial viscosity tensor field, Λv,

for this thesis. It can also be written in the following form

Λ𝑣
𝑘𝑗𝑖𝑙 = 𝜆1𝛿𝑘𝑖𝛿𝑗𝑙 (3.7)
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Hence, the resulting modified adjoint equations in the symmetrized form are

−𝐴0
𝑖𝑗

𝜕𝑣𝑗
𝜕𝑡

− (𝐴𝑘𝑗𝑖 − 𝐴𝑣
𝑘𝑗𝑖)

𝜕𝑣𝑘
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑙
((�̂�𝑘𝑗𝑖𝑙 + 𝜂𝑣𝜆1𝛿𝑘𝑖𝛿𝑗𝑙)

𝜕𝑣𝑘
𝜕𝑥𝑗

) (3.8)

where the constant term 𝜂𝑣 serves as a scaling factor with dimensional units length

squared. The above equation can be simplified to

−𝐴0
𝑖𝑗

𝜕𝑣𝑗
𝜕𝑡

− (𝐴𝑘𝑗𝑖 − 𝐴𝑣
𝑘𝑗𝑖)

𝜕𝑣𝑘
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑙
(�̂�𝑘𝑗𝑖𝑙

𝜕𝑣𝑘
𝜕𝑥𝑗

) + 𝜂𝑣
𝜕

𝜕𝑥𝑗
(𝜆1

𝜕𝑣𝑖
𝜕𝑥𝑗

) (3.9)

A non-dimensional form of the scaling factor can be obtained using the following

formula

𝜂𝑣 = 𝜂
𝜇𝑟

𝜌𝑟

1

‖𝜆1‖∞
(3.10)

where 𝜇𝑟 and 𝜌𝑟 are reference quantities defined in Section 1.4, resulting in the fol-

lowing modified adjoint equations in the symmetrized form

−𝐴0
𝑖𝑗

𝜕𝑣𝑗
𝜕𝑡

− (𝐴𝑘𝑗𝑖 − 𝐴𝑣
𝑘𝑗𝑖)

𝜕𝑣𝑘
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑙
(�̂�𝑘𝑗𝑖𝑙

𝜕𝑣𝑘
𝜕𝑥𝑗

) + 𝜂
𝜇𝑟

𝜌𝑟

1

‖𝜆1‖∞
𝜕

𝜕𝑥𝑗
(𝜆1

𝜕𝑣𝑖
𝜕𝑥𝑗

) (3.11)

where 𝜂 is the non-dimensional tunable scaling factor and ‖𝜆1‖∞ is the maximum

value of the scalar field 𝜆1 in the domain of the flow problem. 𝜂 is a positive value

which can be tuned to a value which is sufficient to stabilize the adjoint solution.

Hence, the modification term for the symmetrized adjoint equations is in the form of

a Laplacian operator.

The symmetrized form of the adjoint equations can be indirectly modified by

altering the viscous term on the right side of the conservative form of the adjoint

equations (Equation 1.24).

−𝜕𝑤𝑖

𝜕𝑡
− (𝐴𝑘𝑗𝑖 − 𝐴𝑣

𝑘𝑗𝑖)
𝜕𝑤𝑘

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑙
(𝐷𝑘𝑗𝑖𝑙

𝜕𝑤𝑘

𝜕𝑥𝑗
) + 𝜂

𝜇𝑟

𝜌𝑟

1

‖𝜆1‖∞
𝜕

𝜕𝑥𝑗
(𝜆1

𝜕𝑣𝑖
𝜕𝑥𝑗

) (3.12)

While it is not possible to show that the above modification will always result in a

reduction in the adjoint energy, practically, it has been observed to exhibit that effect

and stabilize the adjoint solution on multiple flow problems as seen in Section 3.3.
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Figure 3-2 shows a comparison between adding artificial viscosity to the conservative

form and symmetrized form of the adjoint equations using 𝜂 = 10 for both cases. The

figure shows that the difference between the two cases in negligible when comparing

the effectiveness in reducing the exponential growth of adjoint energy. But, the

computational cost of adding artificial viscosity to the conservative form of the adjoint

equations is lower than adding to the symmetrized form. This is due to the fact that

when using the implicit Euler time integration scheme for adding the viscosity, the

coupled linear system formed for the symmetrized adjoint equations is much larger.

Hence, in this thesis, adding artificial viscosity to the conservative form of the adjoint

equations is the preferred method.
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Figure 3-2: Comparison of plot of adjoint energy as a function of time (represented
by time units) between adding artificial viscosity to the conservative form of adjoint
equations (𝜂 = 10 in figure legend) and adding artificial viscosity to the symmetrized
form of adjoint equations (𝜂(symm.) = 10 in figure legend).
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3.2.1 Choice of scaling factor

The choice of 𝜂 is important as it can influence the value of the gradient obtained from

the adjoint solution of the modified equations. Large values of 𝜂 will result in fast

stabilization of the adjoint solutions, but might adversely affect the accuracy of the

gradients obtained from the adjoint solution. In contrast, small values of 𝜂 might not

be sufficient to stabilize the adjoint solution. The optimal value of 𝜂 is the minimum

value of 𝜂 for which the adjoint solution of the modified equations is stable. Stability

of the adjoint solution can be determined either through a visual inspection of the

adjoint energy as a function of time. If the adjoint energy does not appear to grow

exponentially backwards in time, then it is considered stable. A quantitative method

to determine the stability of an adjoint solution is to compute the largest Lyapunov

exponent. If it is less than or equal to 0, then the adjoint solution is stable. The

theory and computation of Lyapunov exponents is described in Section 4.1.

One strategy for finding the optimal value of 𝜂 is to find multiple adjoint solutions

with different values of 𝜂 and choose the minimum 𝜂 which stabilizes the adjoint

solution over the entire finite time interval. For example, one possible set of values of

𝜂 can be obtained by dividing the range [10−1, 104] into 10 equal intervals in log scale.

This method requires obtaining 11 different adjoint solutions using 11 values of the

scaling factor. This strategy, also known as the shooting strategy, has the advantage

that the number of adjoint solutions that need to be found is generally fixed.

Another strategy for finding optimal value of 𝜂 is the following: first start with an

initial estimate. For example, 𝜂 can be set to 1 which doubles the amount of viscosity

in the adjoint equations in certain regions of the domain of the flow problem. If the

adjoint solution is stable, then 𝜂 is halved. Otherwise, 𝜂 is doubled. The process is

repeated until consecutive values of 𝜂 show different stability properties, meaning that

for one value 𝜂 the adjoint solution is stable and for the next value of 𝜂 it is unstable,

or vice versa. The final value 𝜂 for which the adjoint solution is stable is chosen as

the approximately optimal value of 𝜂. If a more refined value of 𝜂 is needed, the step

factor between consecutive 𝜂 can be set to a value smaller than 2. This strategy, also
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known as the bisection strategy, has the advantage that the optimal value of 𝜂 can

generally be found in high precision with a lower cost than the previous strategy.

3.2.2 Algorithm

The final algorithm for computing the design objective gradient using the viscosity

stabilized adjoint method is described below

1. Solve the flow equations to obtain the flow solution from 𝑡 = 0 to 𝑡 = 𝑇 .

2. Solve the viscosity stabilized adjoint equations from 𝑡 = 𝑇 to 𝑡 = 0 for multiple

scaling factors (𝜂 = 𝜂1, ..., 𝜂𝑃 ) using the shooting strategy.

3. Find minimum 𝜂 = 𝜂𝑚 that stabilizes the adjoint solution.

4. Return the gradient computed from the adjoint solution for 𝜂𝑚 as the approxi-

mation to the design objective gradient.

The cost of this algorithm is 𝑃𝐶𝑎+𝐶𝑝, where 𝐶𝑎 is the computational cost of obtaining

a single adjoint solution and 𝐶𝑝 is the cost of obtaining a single flow solution. The

details of the numerical implementation of this method are described in Section 3.2.4.

Roughly, through numerical experiments, it has been observed that 𝐶𝑎 ∼ 4𝐶𝑝. Hence

the cost of the viscosity stabilized adjoint method is (4𝑃 +1)𝐶𝑝. In practice, many of

the adjoint simulations for different artificial viscosity scaling factors can be stopped

early if it is observed that they are diverging. Hence, potentially, the cost of the

algorithm can be much lower than (4𝑃 + 1)𝐶𝑝.

3.2.3 Regularity of artificial viscosity field

The regularity of the artificial viscosity field affects the existence and uniqueness

properties of the adjoint solution. Assuming that the flow solution given by the fields

𝜌,𝑢 and 𝑝 are regular and reside in the Hilbert space 𝐻1(𝐷), where 𝐷 is the domain

of the flow problem. Then, the gradients of the flow solution given by ∇𝜌,∇𝑢 and
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∇𝑝) reside in the Hilbert space 𝐻0(𝐷). This implies that the following term

‖∇𝜌‖2𝐻0(𝐷) =

∫︁
𝐷

(∇𝜌)2𝑖 𝑑𝑉 (3.13)

is bounded. Consequently, each component of the tensor field M is regular, 𝑀𝑖𝑗 ∈
𝐻0(𝐷), as it is a function of the flow solution and its gradients. Unfortunately, the

maximum eigenvalue operation can produce a scalar field that does not have any

regularity. This can be observed from the fact that the maximum root of smoothly

parameterized polynomial equations can have jumps as a function of the parameters

of the polynomial. Hence, the artificial viscosity field is irregular.

An irregular or discontinuous viscosity field could potentially cause issues when

trying to obtain the solution to the modified adjoint equations. But, as demonstrated

in Section 2.7, in practice, the artificial viscosity fields derived from the divergence

indicator fields are smooth or continuous to the naked eye for various flow problems.

Furthermore, the linear solver used to obtain numerical solutions to the modified

adjoint equations converges in 10−20 iterations. Hence, empirically, the mathematical

irregularity of the artificial viscosity field is not a concern, as shall be seen in Section

3.3.

3.2.4 Numerical implementation of artificial viscosity

The numerical solution of the compressible Navier-Stokes equations is obtained by

discretizing the conservative formulation of these equations using FVM with explicit

time integration. This is the preferred approach as it ensures a strict discrete conser-

vation of mass, momentum and energy in the numerical flow solution. While entropy

formulations are necessary for stability and conservation in higher-order methods for

compressible Navier-Stokes [21], discretely conservative schemes are generally stable

for low-order discretization schemes [57].

The numerical solution of the modified adjoint equations is obtained by time

marching using an Implicit-Explicit (IMEX) Euler-RK scheme [17]. Each time step

of this scheme can be divided into two steps, an explicit Runge-Kutta (RK) time
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integration step followed by an implicit Euler time integration step. In the first step,

the numerical solution to the adjoint equations without artificial viscosity is obtained

using the discrete adjoint method applied to the computations involved in numer-

ically approximating the flow solution of the conservative form of the compressible

Navier-Stokes. The details of the discrete adjoint method and its implementation

are described in Section 6.1. This method provides an approximate solution of the

following equations

−𝜕𝑤𝑖

𝜕𝑡
− (𝐴𝑘𝑗𝑖 − 𝐴𝑣

𝑘𝑗𝑖)
𝜕𝑤𝑘

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑙
(𝐷𝑘𝑗𝑖𝑙

𝜕𝑤𝑘

𝜕𝑥𝑗
) (3.14)

In the second step of the time marching scheme, artificial viscosity is added to the

numerical solution of the adjoint equations using the following equations

−𝐴0
𝑖𝑗

𝜕𝑣𝑗
𝜕𝑡

=
𝜕

𝜕𝑥𝑙
(𝜂
𝜇

𝜌

𝜆1
‖𝜆1‖∞

𝛿𝑘𝑖𝛿𝑗𝑙
𝜕𝑣𝑘
𝜕𝑥𝑗

) (3.15)

This is done by performing an implicit Euler time integration step. An implicit

integration step is necessary due to potential stiffness of the artificial viscosity term.

A linear solver, GMRES with ILU preconditioner [111], is used to solve the linear

system formed by the implicit time integration scheme. The above equation is solved

using Neumann boundary conditions for the adjoint solution. In the case where

artificial viscosity is added to the conservative form of the adjoint equations, the

following equations are solved

−𝜕�̂�𝑖

𝜕𝑡
=

𝜕

𝜕𝑥𝑙
(𝜂
𝜇

𝜌

𝜆1
‖𝜆1‖∞

𝛿𝑘𝑖𝛿𝑗𝑙
𝜕𝑤𝑘

𝜕𝑥𝑗
) (3.16)

The implicit time integration step requires solving a linear system of equations.

When running on a single CPU, it increases the wall clock time per time step by

approximately 10− 50% depending on the amount of artificial viscosity added to the

adjoint equations. When running on a large number of cores, the parallel scaling

efficiency of the linear solver reduces, leading to a performance penalty for obtaining

the numerical adjoint solution. Hence, in order to reduce the computational cost
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for solving the modified adjoint equations, instead of adding artificial viscosity at

every time step, it can be added every 10 or 100 time steps. As the size of each

time step is small, due to the use of explicit time integration for the primal equations

and the existence of thin boundary layers in the flow problems, not adding viscosity

at every time step allows computing the adjoint solution over longer time intervals.

The scaling factor (𝜂) can be appropriately increased to maintain the stability of the

adjoint solution. By default, artificial viscosity is added every 10 time steps for each

of the simulations of the modified adjoint equations in this thesis, unless otherwise

specified. This is roughly equivalent to increasing the scaling factor by a factor of

10 than what is reported. The additional error introduced in the adjoint solution

due to adding viscosity every 10 time steps instead of every time step is analyzed in

Appendix B.

3.3 Results

The effectiveness of the viscosity stabilized adjoint method in stabilizing the adjoint

solution and providing an approximation to the design objective gradient is tested on

a couple of test cases introduced in Section 1.4.

The first test case is subsonic flow over a cylinder. The adjoint solution is com-

puted for the design objective: time-averaged drag over the surface of the cylinder.

The length of the time interval over which the solution is obtained is 5 time units.

The gradient of the design objective is computed with respect to the inlet Mach

number. The Turkel symmetrizing transformation is used for constructing the artifi-

cial viscosity field. Multiple adjoint solutions are obtained using the scaling factors,

𝜂 = 1, 10, 30, 100, 300, 1000 and 3, 000. Artificial viscosity is added to conservative

form of the adjoint equations, using Equation 3.12. Figure 3-3 shows the behavior of

the adjoint energy (as defined for entropy symmetrizing transformations in Equation

2.41) for different scaling factors. When the scaling factor is low (𝜂 = 1), the addi-

tional viscosity does not significantly affect the adjoint solution and hence, the energy

of the adjoint solution remains high. On increasing the scaling factor to 𝜂 = 10, the
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energy of the adjoint solution reduces, but still shows exponential growth. Further

increasing the scaling factor to 𝜂 = 30 halts the exponential growth of adjoint energy

and stabilizes the adjoint solution. At this point, the magnitude of the adjoint energy

maintains an approximate steady value over the entire finite time interval over which

the adjoint solution is computed. The minimum value of 𝜂 for which the adjoint

solution is stabilized is 𝜂 = 30.

The accuracy of the gradients obtained using the viscosity stabilized adjoint

method (𝑔𝜂) is tested by comparing them with gradients obtained using the finite

difference method (𝑔𝛿). Figures 3-4 and 3-5 show that the gradients computed from

the viscosity stabilized adjoint solutions approximately match finite difference gradi-

ent when 𝜂 is in the range 30 to 1, 000. The uncertainty in the adjoint gradients is

computed using the time series analysis techniques discussed in Section 5.1.2. The

relative error is defined as the following,

𝑒𝜂 =
|𝑔𝜂 − 𝑔𝛿|

|𝑔𝛿|
(3.17)

For the gradients obtained from the adjoint solution, it varies from 1% to 25% in

the aforementioned range of 𝜂. The optimal adjoint gradient with the lowest relative

error is obtained for 𝜂 = 300, 𝑔𝜂 = 25.1 ± 2.0. This value of 𝜂 is close (in log scale)

to the minimum value of 𝜂 for which the adjoint solution is stabilized.

The gradient of the design objective when computed using the ensemble adjoint

method [25] is 15.57±3.1. The ensemble adjoint method is applied to the same finite

time interval used for the viscosity stabilized adjoint method. The ensemble is formed

by splitting this interval into 20 segments. The ensemble adjoint gradient has a higher

relative error 40% and a higher variance compared to the viscosity stabilized adjoint

gradient.

Figures 3-6 and 3-7 show a comparison between a visualization of the density

adjoint solution at 𝑡 = 2.5 time units (mid point of the finite time interval over which

the adjoint solution is computed) obtained from solving the adjoint equations with and

without artificial viscosity. Large magnitudes of the density adjoint solution indicate
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Figure 3-3: Plot showing the growth of adjoint energy (units: kg s/m3) for various
artificial viscosity scaling factors (𝜂) as a function of time (represented by time units)
for the flow over cylinder problem.

the regions of the domain where perturbations in the flow can lead to large changes

in the objective [65, 113]. The figures show that without any artificial viscosity, the

density adjoint solution has large magnitudes near the boundary layer region of the

cylinder and the diverging solution is convected upstream towards the inlet boundary.

In contrast, with artificial viscosity, the density adjoint solution does not diverge and

stays bounded when convected upstream.

The second test problem for the viscosity stabilized adjoint method is transonic

flow over a turbine vane. The adjoint solution is computed for the design objective:

time-averaged pressure loss coefficient downstream of the trailing edge of the vane.

The gradient of the design objective is computed with respect to a source term per-

turbation upstream of the leading edge of the vane. The length of the time interval

over which the solution is obtained is 2 time units. Similar to the cylinder problem,

the Turkel symmetrizing transformation is used and artificial viscosity is added to the

conservative form of the adjoint equations. Figure 3-8 shows the growth of adjoint en-

ergy for various artificial viscosity scaling factors ranging from 𝜂 = 0 to 𝜂 = 13, 333.
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Figure 3-4: Plot showing the design objective gradient computed using adjoint solu-
tions with different artificial viscosity scaling factors (𝜂) vs finite difference gradient
for the flow over cylinder problem. The blue dots denote the adjoint gradients and the
error bars denote the uncertainty in the gradients. The center line in the green shaded
region denotes the finite difference gradient and the shaded region itself denotes the
uncertainty in the gradient.

The minimum value of 𝜂 for which the adjoint solution is stabilized is 𝜂 = 4, 444.

Figure 3-9 shows the design objective gradient obtained using adjoint solutions com-

puted for different scaling factors. Figure 3-10 shows the relative error in the design

objective gradient as a function of the artificial viscosity scaling factor. Similar to the

cylinder problem, for 𝜂 in the range 4, 444 to 133, 333, the design objective gradient

computed from the adjoint solution has less than 25% relative error with respect to

the finite difference gradient. The optimal value of 𝜂 is 44, 444, which is close (in log

scale) to the minimum value of 𝜂 = 4, 444 for which the adjoint solution is stabilized.

Figures 3-11 and 3-12 show a comparison between a visualization of the density

adjoint solution at 𝑡 = 1 time unit (mid point of the finite time interval over which

the adjoint solution is computed) obtained from solving the adjoint equations with

and without artificial viscosity. The figures show that without any artificial viscosity,

the density adjoint solution has large magnitudes near the trailing edge and suction
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Figure 3-5: Plot showing the relative error in the design objective gradient computed
using adjoint solutions with different artificial viscosity scaling factors (𝜂) for the flow
over cylinder problem. The blue dots denote unstable adjoint solutions and green
dots denote stable adjoint solutions. The blue line denotes 100% relative error ,the
red line denotes the minimum 𝜂 for which the adjoint solution is stable and the green
line denotes the standard deviation of the finite difference gradient estimate.

Figure 3-6: Density adjoint solution (units: m3 s/kg) at 𝑡 = 2.5 time units without
any artificial viscosity.
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Figure 3-7: Density adjoint solution (units: m3 s/kg) at 𝑡 = 2.5 time units with
artificial viscosity using 𝜂 = 30.

Figure 3-8: Plot showing the growth of adjoint energy (units: kg s/m3) for various
artificial viscosity scaling factors (𝜂) as a function of time (represented by time units)
for the turbine vane problem.

side of the surface of the vane. In contrast, with artificial viscosity, the density adjoint
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Figure 3-9: Plot showing the design objective gradient computed using adjoint solu-
tions with different artificial viscosity scaling factors (𝜂) vs finite difference gradient
for the turbine vane problem. The blue dots denote the adjoint gradients and the
error bars denote the uncertainty in the gradients. The center line in the green shaded
region denotes the finite difference gradient and the shaded region itself denotes the
uncertainty in the gradient.
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Figure 3-10: Plot showing the relative error in the design objective gradient computed
using adjoint solutions with different artificial viscosity scaling factors (𝜂) for the
turbine vane problem. The blue dots denote unstable adjoint solutions and green
dots denote stable adjoint solutions. The blue line denotes 100% relative error and
the red line denotes the minimum 𝜂 for which the adjoint solution is stable.
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solution has a small magnitude in the trailing edge region and remains bounded in

the domain of the flow problem. Additionally, there are bump-like structures in the

density adjoint solution on the suction side of the vane surface.

Figure 3-11: Density adjoint solution (units: m3 s/kg) at 𝑡 = 1 time unit without any
artificial viscosity.

From these two cases it can be seen that the viscosity stabilized adjoint method

provides a reasonably accurate design objective gradient with relative error as low as

1%. The optimal value of the scaling factor 𝜂 for which the design objective gradient

has the smallest relative error is generally the same or close to the minimum value of

𝜂 for which the adjoint solution is stabilized. Furthermore, there is a large range of

values of the scaling factor for which the design objective gradient has the right order

of magnitude and sign. While there is no theoretical guarantee that the gradient

obtained using the viscosity stabilized adjoint method is accurate, an estimate of the

error in the gradient due to the artificial viscosity can be obtained. The details of the

error estimate are discussed in Chapter 4.
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Figure 3-12: Density adjoint solution (units: m3 s/kg) at 𝑡 = 1 time unit with artificial
viscosity using 𝜂 = 4, 444.

The optimal 𝜂 is different for the two test cases. It is much higher for the transonic

flow over a turbine vane in comparison to the subsonic flow over a cylinder. This is

primarily due to the higher Reynolds number of the turbine vane case, which causes

faster divergence of the adjoint solution. This suggests that there might exist an

alternative scaling for the artificial viscosity that depends on the convective scales of

the flow problem.

3.3.1 Comparison of different symmetrizing transformations

The relative effectiveness of the various artificial viscosity fields, constructed using

the Turkel, Abarbanel and Hughes symmetrizing transformations, in stabilizing the

adjoint solution is tested on the transonic flow over a turbine vane flow problem

described in Sections 1.4.3 and 2.1. These artificial viscosity fields are additionally
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compared with a uniform artificial viscosity field, which is an artificial viscosity field

that has the same value over the entire domain of the flow problem.

The performance metric for the comparison is the growth of the adjoint energy (as

defined in Equation 2.41) as a function of time. In order to ensure a fair comparison

between the various artificial viscosity fields, the scaling factor for each of the fields

is defined as

𝜂 =
𝐶𝜌𝑟‖𝜆1‖∞
𝜇𝑟‖𝜆1‖2

(3.18)

where 𝐶 = 10−3m2/s. The above equation implies that the spatial 𝐿2 norm of each

of the artificial viscosity fields is the same constant.

Figure 3-13 shows the adjoint energy as a function of time for the different artifi-

cial viscosity fields. The figure shows that the artificial viscosity field derived using

any of the symmetrizing transformations is better in dissipating the adjoint energy

than the uniform artificial viscosity field. Among the different symmetrizing trans-

formations, the Turkel artificial viscosity field is the most effective in stabilizing the

adjoint solution. This is primarily because of the higher contrast in the magnitude of

the Turkel viscosity field, as can be seen when comparing Figure 2-7 with Figures 2-6

and 2-8. The Turkel viscosity field has a much lower minimum and higher maximum.

Consequently, using it results in the addition of a higher amount of viscosity in the

turbulent boundary layer and wake, which are the primary regions of divergence of

the adjoint solution for the turbine vane problem. On the other hand, even though

the Hughes viscosity field has a lower effectiveness in reducing the exponential growth

of adjoint energy, it is more theoretically sound as it is derived using an entropy based

symmetrizing transformation for the compressible Navier-Stokes equations.
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Figure 3-13: Plot showing the growth of adjoint energy (units: kg s/m3) using different
artificial viscosity fields: Abarbanel, Turkel, Hughes, Uniform and No viscosity (None)
as a function of time (represented by time units).
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Chapter 4

Error analysis of adjoint solution with

artificial viscosity and application to

non-intrusive least squares shadowing

In this chapter, error analysis of the viscosity stabilized adjoint method is performed.

Additionally, the method is combined with another adjoint method for chaotic sys-

tems, the non-intrusive least squares shadowing method, which utilizes the shadowing

theorem for dynamical systems. Section 4.1 discusses basics of chaotic dynamical sys-

tems and the shadowing theorem. Section 4.2 describes error analysis of the viscosity

stabilized adjoint method when the modified adjoint equations form either a stable

or unstable system. Finally, Section 4.3 demonstrates the application of the viscosity

stabilization method to non-intrusive least squares shadowing.

4.1 Shadowing theorem

The discretized flow equations with a design parameter 𝜃 can be represented as a

parameterized invertible nonlinear map f : R𝑀 ×R → R𝑀 , where 𝑀 is the dimension

of the finite-dimensional discretized flow solution. The map is assumed to be ergodic,

which means that the long-time behavior of the system is independent of the initial

condition. The evolution from one time step, 𝑛, to the next, 𝑛+1, can be represented
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as

𝑝𝑛+1 = f(𝑝𝑛, 𝜃),∀𝑛 ∈ (−∞,∞) (4.1)

with an appropriate fixed initial condition 𝑝0 ∈ R𝑀 , where 𝑝𝑛 ∈ R𝑀 is the solution

and 𝜃 ∈ R is a parameter of the system. The above equations are also known as the

primal system. While in Section 1.2, the flow solution is defined for time 𝑡 ∈ [0,∞),

the discrete system is defined for both positive and negative time in this section, that

is, 𝑛 ∈ (−∞,∞). The discretized design objective function, averaged from 𝑛 = −∞
to ∞, is

𝐽 = lim
𝑁→∞

1

2𝑁

𝑁∑︁
𝑛=−𝑁

𝐽(𝑝𝑛, 𝜃) (4.2)

The adjoint equations can be derived by forming the following Lagrangian

𝜕𝐽

𝜕𝜃
= lim

𝑁→∞

1

2𝑁

𝑁∑︁
𝑛=−𝑁

(
𝜕𝐽(𝑝𝑛, 𝜃)

𝜕𝜃
+
𝜕𝐽(𝑝𝑛, 𝜃)

𝜕𝑝𝑛

𝜕𝑝𝑛

𝜕𝜃
−𝑝𝑇

𝑛(
𝜕𝑝𝑛+1

𝜕𝜃
−𝜕f(𝑝𝑛, 𝜃)

𝜕𝜃
−𝜕f(𝑝𝑛, 𝜃)

𝜕𝑝𝑛

𝜕𝑝𝑛

𝜕𝜃
))

(4.3)

Consequently, the design objective gradient is given by

𝜕𝐽

𝜕𝜃
= lim

𝑁→∞

1

2𝑁

𝑁∑︁
𝑛=−𝑁

(
𝜕𝐽(𝑝𝑛, 𝜃)

𝜕𝜃
+ 𝑝𝑇

𝑛

𝜕f(𝑝𝑛, 𝜃)

𝜕𝜃
) (4.4)

if the following adjoint equations are satisfied

𝑝𝑛−1 =
𝜕f(𝑝𝑛, 𝜃)

𝜕𝑝𝑛

𝑇

𝑝𝑛 +
𝜕𝐽(𝑝𝑛, 𝜃)

𝜕𝑝𝑛

,∀𝑛 ∈ (−∞,∞) (4.5)

where 𝑝𝑛 is the adjoint solution. The above equations form the adjoint system. The

adjoint operator or map can be written as 𝑇(𝑝𝑛) = 𝜕f(𝑝𝑛,𝜃)
𝜕𝑝𝑛

𝑇
. An initial condition,

𝑝0, can be prescribed for the system, but as the system is ergodic, any vector with a

bounded norm can be chosen.

An𝑀 -dimensional ergodic system has at most𝑀 Lyapunov exponents, 𝜆𝑒1, 𝜆𝑒2, ..., 𝜆𝑒𝑀 ,

given by the logarithms of the eigenvalues of the following matrix [77]

lim
𝑛→∞

(𝑇 𝑛(𝑝0)[𝑇 𝑛(𝑝0)]𝑇 )1/(2𝑛) (4.6)
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where 𝑇𝑚(𝑝𝑛) =
𝑛∏︀

𝑖=𝑛−𝑚+1

𝑇(𝑝𝑖) with 𝑚 > 0 and 𝑇 0(𝑝𝑛) = 𝐼, where 𝐼 is the identity

matrix of size 𝑀 . For chaotic systems, the magnitude of the adjoint solution diverges

to infinity when simulated backwards in time for almost all initial conditions 𝑝0. This

is due to the fact that a chaotic system has at least one positive Lyapunov exponent

[23].

A special type of ergodic dynamical systems is uniformly hyperbolic dynamical

systems. For a uniformly hyperbolic dynamical system, each Lyapunov exponent has

a corresponding adjoint Lyapunov covariant vector, 𝑝𝑖(𝑝) at every 𝑝 of all trajectories

of Equation 4.1 with arbitrary initial conditions, that satisfies the following property

[34, 55]
log‖𝑇𝑚(𝑝)𝑝𝑖(𝑝)‖2

𝑛−𝑚

𝑚→∞−−−→ 𝜆𝑖 (4.7)

for all 𝑛 ∈ (−∞,∞). 𝜆𝑖 is the 𝑖𝑡ℎ Lyapunov exponent and 𝑝𝑖
𝑛 is the 𝑖𝑡ℎ adjoint

Lyapunov covariant vector. When there are 𝑀 distinct Lyapunov exponents, the 𝑀

adjoint Lyapunov covariant vectors form a basis of R𝑀 . Ginelli [34] described a QR

factorization based algorithm for numerically estimating the Lyapunov exponents and

adjoint Lyapunov covariant vectors of an ergodic system. This algorithm is used in

this thesis for computing the Lyapunov quantities.

Additionally, uniformly hyperbolic dynamical systems satisfy the following prop-

erty [34], for all 𝑝 ∈ R𝑀 , there exists a splitting of R𝑀 , 𝐸+(𝑝) and 𝐸−(𝑝), such that

for all 𝑝− ∈ 𝐸−(𝑝) and 𝑝+ ∈ 𝐸+(𝑝),

‖𝑇𝑚(𝑝)𝑝−‖2 ≤ 𝐶2𝛿
−𝑚‖𝑝−‖2

‖𝑇−𝑚(𝑝)𝑝+‖2 ≤ 𝐶2𝛿
−𝑚‖𝑝+‖2

(4.8)

for a positive constant 𝐶2, 𝛿 > 1 and all 𝑚 < 𝑛, where 𝑇−𝑚(𝑝𝑛) =
𝑛+1∏︀

𝑖=𝑛+𝑚

𝑇−1(𝑝𝑖) =

[𝑇𝑚(𝑝𝑛+𝑚)]−1 with 𝑚 > 0. ‖·‖2 is the 𝐿2 norm for a vector. 𝐸+(𝑝) and 𝐸−(𝑝)

form a splitting of R𝑀 and are known as the unstable and stable adjoint subspaces

at 𝑝𝑛 respectively. These subspaces have the following properties, 𝑇(𝑝𝑛)𝐸−(𝑝𝑛) =

𝐸−(𝑝𝑛−1) and 𝑇(𝑝𝑛)𝐸+(𝑝𝑛) = 𝐸+(𝑝𝑛−1).
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The divergence of adjoint solution for chaotic systems corrupts the accuracy of

the gradient obtained from it. The divergence behavior is shown for almost all initial

conditions, 𝑝0. However, there is a possibility of the adjoint solution staying bounded

for a particular choice of an initial condition. Mathematically, this means that 𝐿2

norm of the adjoint solution, 𝑝𝑛 from Equation 4.5, is bounded for all 𝑛 ∈ (−∞,∞).

‖𝑝𝑛‖2 ≤ 𝐶1 (4.9)

where 𝐶1 is a positive constant. Such an adjoint solution is known as the adjoint shad-

owing solution. The shadowing theorem guarantees that if the adjoint map satisfies

the hyperbolicity condition, then the adjoint map has a unique adjoint shadowing

solution [44] and it satisfies Equation 4.5. An adjoint shadowing solution can be used

to obtain the true design objective gradient. This is the premise on which the Least

Squares Shadowing (LSS) method operates [117]. It finds a numerical approxima-

tion to the adjoint shadowing solution, which then provides an estimate the design

objective gradient. The adjoint shadowing solution is found by solving a finite-time

interval approximation to the following least squares optimization problem

min𝑝𝑛 lim
𝑁→∞

1

2𝑁

∞∑︁
𝑖=−∞

𝑝𝑇
𝑛𝑝𝑛

𝑠.𝑡. 𝑝𝑛−1 = 𝑇(𝑝𝑛)𝑝𝑛 +
𝜕𝐽(𝑝𝑛, 𝜃)

𝜕𝑝𝑛

,∀𝑛 ∈ (−∞,∞)

(4.10)

4.2 Error analysis

If the artificial viscosity in the viscosity stabilized adjoint method is large enough

to stabilize the adjoint solution, the modified (or damped) adjoint equations form a

stable damped adjoint system. The design objective gradient estimated by solving this

damped system will have some error with respect to the true gradient. In this section,

error analysis of the gradient from the damped system is performed by comparing it

with the gradient obtained from the adjoint shadowing solution.

If the artificial viscosity is not enough to stabilize the adjoint solution, then Equa-
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tion 1.26 cannot be used to estimate the design objective gradient. Instead, an LSS-

like method can be applied to the unstable damped adjoint system to find a modified

adjoint shadowing solution. In this section, error analysis of the gradient computed

from the modified adjoint shadowing solution is performed by comparing it with gra-

dient obtained from the shadowing solution of the unmodified adjoint system.

4.2.1 Stable damped adjoint system

The discrete form of the damped adjoint system can be represented in the following

form

𝑝′
𝑛−1 = 𝑇 ′(𝑝𝑛)𝑝′

𝑛 +
𝜕𝐽(𝑝𝑛, 𝜃)

𝜕𝑝𝑛

(4.11)

where 𝑝′
𝑛 is the solution of the damped adjoint system, which stays bounded for all 𝑛 ∈

(−∞,∞). The chaotic system is assumed to have a fixed trajectory, 𝑝𝑛,∀𝑛 ∈ (−∞,∞).

𝑇 ′(𝑝𝑛) is the modified or damped linear operator which characterizes the dynamics

of this system. As the modification to the adjoint system should preserve the linear-

ity of the operator, 𝑇 ′(𝑝𝑛) is restricted to be of the form 𝑇(𝑝𝑛) + 𝜖𝑊(𝑝𝑛), where

𝜖 ∈ R+ is the damping parameter (analogous to scaling factor in Section 3.1) and

𝑊(𝑝𝑛) : R𝑀 → R𝑀 is a linear operator, representing the type of damping or damp-

ing specification. 𝑇(𝑝𝑛) is defined in the same manner as in Section 4.1.

As the system is stable, all the Lyapunov exponents of this operator are non-

positive. The system is assumed to be contractive which means that all the exponents

are negative and it satisfies the following property

‖𝑇 ′𝑛(𝑝𝑛)𝑝′
𝑛‖2 ≤ 𝐶3𝛿

−𝑛
𝑠 ‖𝑝′

𝑛‖2 (4.12)

for almost any vector 𝑝′
𝑛. 𝐶3 is a positive constant and 𝛿𝑠 > 1. The chaotic system

formed by the discretized flow equations is assumed to be uniformly hyperbolic, which

means that it has an adjoint shadowing solution 𝑝𝑛 which satisfies Equation 4.5.

Given a trajectory {𝑝𝑛, ∀𝑛 ∈ (−∞,∞)}, the following simplified notation is used:

𝑇𝑛 = 𝑇(𝑝𝑛),𝑇 ′
𝑛 = 𝑇 ′(𝑝𝑛),
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Subtracting Equation 4.5 from 4.11 the following equation is obtained

𝑝′
𝑛−1 − 𝑝𝑛−1 = (𝑇𝑛 + 𝜖𝑊𝑛)𝑝′

𝑛 − 𝑇𝑛𝑝𝑛 (4.13)

which can be rewritten as,

𝑝′
𝑛−1 − 𝑝𝑛−1 = (𝑇𝑛 + 𝜖𝑊𝑛)(𝑝′

𝑛 − 𝑝𝑛) + 𝜖𝑊𝑛𝑝𝑛 (4.14)

Let 𝑒𝑛 = 𝑝′
𝑛 − 𝑝𝑛 and 𝑏𝑛 = 𝜖𝑊𝑛𝑝𝑛. Hence, the linear system in the above equation

can be rewritten as

𝑒𝑛−1 = 𝑇 ′
𝑛𝑒𝑛 + 𝑏𝑛 (4.15)

which can be expanded to form

𝑒𝑛−1 = 𝑇 ′𝑛−1
𝑛+𝑚𝑒𝑛+𝑚 +

𝑚∑︁
𝑖=0

𝑇 ′𝑛−1
𝑛+𝑖−1𝑏𝑛+𝑖 (4.16)

using 𝑇 ′𝑚
𝑛 = 𝑇 ′𝑛−𝑚(𝑝𝑛). Taking the vector 𝐿2 norm of both sides of the above

equation and using the triangle inequality for norms

‖𝑒𝑛−1‖2 = ‖𝑇 ′𝑛−1
𝑛+𝑚𝑒𝑛+𝑚‖2 +

𝑚∑︁
𝑖=0

‖𝑇 ′𝑛−1
𝑛+𝑖−1𝑏𝑛+𝑖‖2 (4.17)

Using the contractive property of the operator 𝑇 ′𝑚
𝑛 , the following equations can be

obtained

‖𝑒𝑛−1‖2 ≤ 𝐶3𝛿
−𝑚−1
𝑠 ‖𝑒𝑛+𝑚‖2 +

𝑚∑︁
𝑖=0

𝐶3𝛿
−𝑖
𝑠 ‖𝑏𝑛+𝑖‖2 (4.18)

Using the max norm, ‖𝑏‖ = max𝑛∈(−∞,∞)‖𝑏𝑛‖2,

‖𝑒𝑛+1‖2 ≤ 𝐶3𝛿
−𝑚−1
𝑠 ‖𝑒𝑛+𝑚‖2 + 𝐶3

𝛿𝑠 − 𝛿−𝑚
𝑠

𝛿𝑠 − 1
‖𝑏‖ (4.19)

Taking the limit 𝑚 → ∞ of both sides of the above equation, the first term in the

right hand side of the above equation becomes 0 using the fact that ‖𝑒𝑛‖2 is bounded
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(as ‖𝑝𝑛‖2 and ‖𝑝′
𝑛‖ are bounded by a positive constant)

‖𝑒𝑛+1‖2 ≤ 𝐶3
𝛿𝑠

𝛿𝑠 − 1
‖𝑏‖ (4.20)

Using properties of norms, ‖𝑏‖ ≤ 𝜖‖𝑊‖‖𝑣‖. Hence, the above equation can be

rewritten as

‖𝑒‖ ≤ 𝜖𝐶3
𝛿𝑠

𝛿𝑠 − 1
‖𝑊‖‖𝑝‖ (4.21)

The above equation bounds the error in the adjoint solution of the damped system

with respect to the adjoint shadowing solution.

The adjoint solution of the damped system is used to compute an estimate of the

design objective gradient (𝜕𝐽
𝜕𝜃

)

𝜕𝐽

𝜕𝜃

′

= lim
𝑁→∞

1

2𝑁

𝑁∑︁
𝑛=−𝑁

(
𝜕𝐽(𝑝𝑛, 𝜃)

𝜕𝜃
+ [𝑝′

𝑛]𝑇
𝜕f(𝑝𝑛, 𝜃)

𝜕𝜃
) (4.22)

Subtracting Equation 4.4 from 4.22

𝜕𝐽

𝜕𝜃

′

− 𝜕𝐽

𝜕𝜃
= lim

𝑁→∞

1

2𝑁

𝑁∑︁
𝑛=−𝑁

(𝑝′
𝑛 − 𝑝𝑛)𝑇

𝜕f(𝑝𝑛, 𝜃)

𝜕𝜃
(4.23)

Taking absolute values of both sides and applying Cauchy-Schwarz inequality

|𝜕𝐽
𝜕𝜃

′

− 𝜕𝐽

𝜕𝜃
| ≤ lim

𝑁→∞

1

2𝑁

𝑁∑︁
𝑛=−𝑁

‖𝑝′
𝑛 − 𝑝𝑛‖2‖

𝜕f(𝑝𝑛, 𝜃)

𝜕𝜃
‖2 (4.24)

Using the max norm, computing the sum and taking the limit

|𝜕𝐽
𝜕𝜃

′

− 𝜕𝐽

𝜕𝜃
| ≤ ‖𝑒‖‖𝜕f

𝜕𝜃
‖ (4.25)

Substituting Equation 4.21 into the above equation

|𝜕𝐽
𝜕𝜃

′

− 𝜕𝐽

𝜕𝜃
| ≤ 𝜖𝐶3

𝛿𝑠
𝛿𝑠 − 1

‖𝜕f
𝜕𝜃

‖‖𝑊‖‖𝑝‖ (4.26)
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Hence, the error in the design objective gradient from a stable damped adjoint sys-

tem with respect to the gradient provided by the adjoint shadowing solution can be

bounded by the size of damping parameter. Note that when the gradient is approx-

imated using an adjoint solution over a finite time interval, an additional error is

introduced. Methods for quantifying this error are discussed in Section 5.1.2.

4.2.2 Unstable damped adjoint systems

Similar to the stable damped adjoint system, the discrete form of the unstable damped

adjoint system can be represented in the following form

𝑝′
𝑛−1 = 𝑇 ′

𝑛𝑝
′
𝑛 +

𝜕𝐽(𝑝𝑛, 𝜃)

𝜕𝑝𝑛

(4.27)

where 𝑝′
𝑛 is the adjoint shadowing solution of the damped system, which stays

bounded for all 𝑛 ∈ (−∞,∞). Such an adjoint solution exists if, in addition to the

chaotic system formed by the discretized flow equations (whose adjoint shadowing

solution is denoted by 𝑝𝑛), the damped adjoint operator is assumed to be uniformly

hyperbolic (with 𝐶4 replacing 𝐶2 and 𝛿𝑢 replacing 𝛿 in Equation 4.8). The modified

linear operator 𝑇 ′
𝑛 has the same form as in the previous section, 𝑇 ′

𝑛 = 𝑇𝑛 + 𝜖𝑊𝑛.

But, for the unstable damped system, one or more of the Lyapunov exponents are

positive.

Subtracting Equation 4.5 from 4.11 the following equation is obtained

𝑒𝑛−1 = 𝑇 ′
𝑛𝑒𝑛 + 𝑏𝑛 (4.28)

where 𝑒𝑛 = 𝑝′
𝑛 − 𝑝𝑛 and 𝑏𝑛 = 𝜖𝑊𝑛𝑝𝑛. Using the hyperbolicity assumption, 𝑒𝑛

and 𝑏𝑛 can be split into two components, one residing in the unstable adjoint space

𝐸+
𝑛 of 𝑇𝑛 and the other in the stable adjoint space. For 𝑒𝑛, these are 𝑒+

𝑛 and 𝑒−
𝑛

respectively. The above equation becomes

𝑒+
𝑛−1 + 𝑒−

𝑛−1 = 𝑇 ′
𝑛(𝑒+

𝑛 + 𝑒−
𝑛 ) + 𝑏+𝑛 + 𝑏−𝑛 (4.29)
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Rearranging the terms,

(𝑒+
𝑛−1 − 𝑇 ′

𝑛𝑒
+
𝑛 − 𝑏+𝑛 ) = −(𝑒−

𝑛−1 − 𝑇 ′
𝑛𝑒

−
𝑛 − 𝑏−𝑛 ) (4.30)

The terms on the left and right hand side exist in orthogonal linear subspaces. For

them to the equal the only valid explanation is for both the sides to be zero. Hence,

𝑒+
𝑛−1 = 𝑇 ′

𝑛𝑒
+
𝑛 + 𝑏+𝑛

𝑒−
𝑛−1 = 𝑇 ′

𝑛𝑒
−
𝑛 + 𝑏−𝑛

(4.31)

Expanding 𝑒−
𝑛

𝑒−
𝑛−1 = 𝑇 ′𝑛−1

𝑛+𝑚𝑒−
𝑛+𝑚 +

𝑚∑︁
𝑖=0

𝑇 ′𝑛−1
𝑛+𝑖−1𝑏𝑛+𝑖− (4.32)

Taking the 𝐿2 norm of both sides and using the triangle inequality

‖𝑒−
𝑛−1‖2 = ‖𝑇 ′𝑛−1

𝑛+𝑚𝑒−
𝑛+𝑚‖2 +

𝑚∑︁
𝑖=0

‖𝑇 ′𝑛−1
𝑛+𝑖−1𝑏

−
𝑛+𝑖‖2 (4.33)

Applying the stable adjoint subspace property of hyperbolicity

‖𝑒−
𝑛−1‖2 ≤ 𝐶4𝛿

−𝑚−1
𝑢 ‖𝑒−

𝑛+𝑚‖2 +
𝑚∑︁
𝑖=0

𝐶4𝛿
−𝑖
𝑢 ‖𝑏−𝑛+𝑖‖2 (4.34)

Rewriting the unstable subspace part of Equation 4.31 by taking inverse of the

damped adjoint operator

𝑒+
𝑛 = [𝑇 ′

𝑛]−1𝑒+
𝑛−1 − [𝑇 ′

𝑛]−1𝑏+𝑛 (4.35)

Expanding 𝑒+
𝑛

𝑒+
𝑛 = [𝑇 ′𝑛−𝑚−1

𝑛 ]−1𝑒+
𝑛−𝑚−1 −

𝑚∑︁
𝑖=0

[𝑇 ′𝑛−𝑖−1
𝑛 ]−1𝑏+𝑛−𝑖 (4.36)

Taking 𝐿2 norm of both sides, applying triangle inequality of norms and using unstable
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subspace property of hyperbolicity, the above equation becomes

‖𝑒+
𝑛 ‖2 ≤ 𝐶4𝛿

−𝑚−1
𝑢 ‖𝑒+

𝑛−𝑚−1‖2 +
𝑚∑︁
𝑖=0

𝐶4𝛿
−𝑖−1
𝑢 ‖𝑏+𝑛−𝑖‖2 (4.37)

Using triangle inequality,

‖𝑒𝑛‖2 ≤ ‖𝑒+
𝑛 ‖2 + ‖𝑒−

𝑛 ‖2 (4.38)

Substituting Equations 4.34 (after incrementing the time index by 1) and 4.37 into

the above equation

‖𝑒𝑛‖2 ≤ 𝐶4𝛿
−𝑚−1
𝑢 (‖𝑒+

𝑛−𝑚−1‖2 + ‖𝑒−
𝑛+𝑚+1‖2) +

𝑚∑︁
𝑖=0

𝐶4𝛿
−𝑖
𝑢 (

1

𝛿𝑢
‖𝑏+𝑛−𝑖‖2 + ‖𝑏−𝑛+𝑖‖2)

(4.39)

As 𝑒+
𝑛 and 𝑒−

𝑛 are orthogonal to each other and ‖𝑒𝑛‖2 is bounded, ‖𝑒+
𝑛 ‖2 and ‖𝑒−

𝑛 ‖
are also bounded. Using this fact and taking limit 𝑚→ ∞ of both sides of the above

equation

‖𝑒𝑛‖2 ≤ lim
𝑚→∞

𝑚∑︁
𝑖=0

𝐶4𝛿
−𝑖
𝑢 (

1

𝛿𝑢
‖𝑏+𝑛−𝑖‖2 + ‖𝑏−𝑛+𝑖‖2) (4.40)

Using max norm on the two terms in the round brackets of the right hand side of the

above equation and taking the limit on computing the sum

‖𝑒𝑛‖2 ≤ 𝐶4
𝛿𝑢

𝛿𝑢 − 1
(

1

𝛿𝑢
‖𝑏+‖ + ‖𝑏−‖) (4.41)

Using 2‖𝑏‖ ≥ ( 1
𝛿𝑢
‖𝑏+‖ + ‖𝑏−‖)

‖𝑒𝑛‖2 ≤ 𝐶4
2𝛿𝑢
𝛿𝑢 − 1

‖𝑏‖ (4.42)

The above equation bounds the error in the adjoint shadowing solution due to the

damping. Using this result the following equation can be obtained

|𝜕𝐽
𝜕𝜃

′

− 𝜕𝐽

𝜕𝜃
| ≤ 𝜖𝐶4

2𝛿𝑢
𝛿𝑢 − 1

‖𝜕f
𝜕𝜃

‖‖𝑊‖‖𝑝‖ (4.43)
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Hence, the error in the design objective gradient obtained from shadowing solution

of an unstable damped adjoint system, with respect to the gradient provided by the

shadowing solution of the unmodified adjoint system can be bounded by the size of

the damping parameter. Note that when the gradient is approximated using an ad-

joint shadowing solution over a finite time interval, an additional error is introduced.

Methods for quantifying this error using time series analysis techniques are discussed

in Section 5.1.2.

4.2.3 A-posteriori error estimate

Equations 4.26 and 4.43 can be used as an a-posteriori error estimate for the gradi-

ent obtained using the adjoint solutions for the stable and unstable damped adjoint

systems respectively. In practice, as the adjoint solutions are computed over a finite

time interval, only approximations of the terms in the error estimate can be obtained.

The terms 𝜖 and ‖𝑊‖ can be estimated from the damping specification. ‖𝜕f
𝜕𝜃
‖

can be estimated from the primal solution. ‖𝑝‖ can be approximated using ‖𝑝′‖,
which can be estimated from the adjoint solution of the damped system. As the

adjoint solution solution needs to be computed before estimating this term, the error

estimate is a-posteriori. Finally, 𝐶3 and 𝛿𝑠 for the stable damped system and 𝐶4

and 𝛿𝑢 for the unstable damped system can be estimated from numerical simulating

the adjoint system for various initial conditions in the stable and unstable adjoint

subspaces. Particularly, the algorithm for estimating 𝐶4 and 𝛿𝑢 is the following

1. Use 𝑒𝜆𝑒
𝑚𝑖𝑛 as an approximation to 𝛿𝑢, where 𝜆𝑒𝑚𝑖𝑛 = min

𝑖∈[1,𝑀 ]
|𝜆𝑒𝑖 |. 𝜆𝑒𝑚𝑖𝑛 is the Lya-

punov exponent with the smallest magnitude for the unstable damped system.

2. Compute a single trajectory of each of the adjoint covariant Lyapunov vectors,

𝑝′𝑖
𝑛 for 𝑖 = 1 to 𝑖 = 𝑀 , of the damped system by applying the operator 𝑇 ′

𝑛 from

𝑛 = 0 to 𝑛 = −𝑚 (𝑚 > 0) for the stable vectors and by applying the operator

𝑇 ′−1
𝑛 from 𝑛 = 1 to 𝑛 = 𝑚 + 1 for the unstable vectors. The adjoint covariant

Lyapunov vectors can be initialized at 𝑛 = 0 using Ginelli’s algorithm [34] for

estimating the Lyapunov vectors. The value of 𝑚 should be chosen such that
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the trajectory is computed over multiple time units of the system. This ensures

that the trajectory sufficiently explores the phase space of the system.

3. Assuming that the order of the Lyapunov exponents is from the largest to the

smallest, compute 𝐶4 using

𝐶4,𝑢 = max
𝑖=1..𝑀𝑢,𝑛=1...𝑚+1

([
‖𝑇 ′0

𝑛 ]−1𝑝′𝑖
0 ‖2𝛿−𝑛

𝑢

‖𝑝′𝑖
𝑛‖2

)

𝐶4,𝑠 = max
𝑖=𝑀𝑢+1...𝑀,𝑛=1...𝑚+1

(
‖𝑇 ′−𝑛

0 𝑝′𝑖
0 ‖2𝛿−𝑛

𝑢

‖𝑝′𝑖
𝑛‖2

)

𝐶4 = max{𝐶4,𝑢, 𝐶4,𝑠}

(4.44)

The error estimate for the unstable damped adjoint system is tested on a design

objective for the Lorenz system. The details of this test case are discussed in Section

1.4.1. The damping specification is

𝑊𝑛 = −𝐼 (4.45)

The adjoint shadowing solution is computed over a finite time interval whose length is

20 time units using LSS. Figure 4-1 shows that the error in the gradient of the design

objective computed from the adjoint shadowing solution of the unstable damped

adjoint system is close to the error estimate for all values of the damping parameter

𝜖. In addition, the minimum value of the damping parameter for which the damped

adjoint system is stable is 𝜖 = 1. At this value of 𝜖, the relative error in the gradient

is low and approximately equal to 10%.

The error in the gradient is computed with respect to the gradient obtained from

an adjoint shadowing solution of the unmodified adjoint system using LSS over a finite

time interval whose length is 20 units. The terms 𝐶4 and 𝛿𝑢 in the error estimate

as computed for the discretized Lorenz system are 𝐶4 = 2.5 and 𝛿𝑢 = 2.63. These

terms are computed for the unmodified adjoint Lorenz system over a period of 10

time units. The adjoint Lyapunov covariant vector of the discretized system whose

Lyapunov exponent is close to 0 is ignored while computing these terms. This vector

110



is the neutral component of the adjoint Lorenz system and it is not a part of either the

stable or unstable adjoint subspace. A more rigorous error estimate for the Lorenz

system can be found by performing the error analysis due to damping for continuous

nonlinear systems or flows.
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Figure 4-1: Plot of the error in the gradient of the unstable damped adjoint system
as a function of the size of the damping parameter (scaling factor) 𝜖. The red dots
denote the adjoint shadowing solution obtained using NILSAS with a damped adjoint
system and the green dots denote the stable adjoint solution obtained using a damped
adjoint system. The blue denotes 100% relative error in the design objective gradient,
the red line denotes the minimum damping parameter for which the damped adjoint
system is stable and the green line denotes the error estimate

4.3 Non-intrusive least squares shadowing

In the viscosity stabilized adjoint method, if the damping is not sufficient to stabilize

the adjoint solution, then it is necessary to compute the design objective gradient

using an adjoint shadowing solution of the damped system. While the damping

parameter can be increased until the adjoint solution is stable, high damping param-

eters might result in a large error in the design objective gradient, as demonstrated

by Equation 4.26. The adjoint version of the non-intrusive least squares shadow-
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ing (NILSS) is a recent algorithm for finding the adjoint shadowing solution in a

relatively inexpensive manner [74, 73] compared to its predecessor, the adjoint LSS

method. The viscosity stabilized adjoint method helps the NILSS method by reducing

its computational cost.

The cost of the LSS algorithm scales with the number of time steps in the finite-

time interval over which the adjoint shadowing solution is computed and the dimen-

sion of the system. For the high-dimensional chaotic systems formed by discretized

flow equations on fine meshes, LSS is computationally intractable. The LSS algo-

rithm searches for the 𝑀 -dimensional shadowing solution in a time interval with 𝑁

time steps. In contrast, the NILSS method approximates it as an adjoint solution

(satisfying Equation 4.5) that is orthogonal to the subspace spanned by the unstable

adjoint Lyapunov covariant vectors (corresponding to positive Lyapunov exponents).

An adjoint solution in the stable subspace spanned by the stable adjoint Lyapunov

covariant vectors (corresponding to negative Lyapunov exponents) is guaranteed to

have a bounded norm. The NILSS algorithm finds this solution by solving an 𝑀𝑢-

dimensional optimization problem, where 𝑀𝑢 is the number of positive Lyapunov

exponents. This results in a significant reduction in computational cost in compari-

son to LSS as 𝑀𝑢 ≪𝑀 for many chaotic systems.

For a fluid dynamics system, the size of the discretized flow equations (𝑀) can

be arbitrarily increased by refining the mesh. This does not mean that the number

of positive Lyapunov exponents (𝑀𝑢) becomes unbounded. In fact, for 2-dimensional

incompressible Navier-Stokes equations, 𝑀𝑢 is known to be bounded by a posi-

tive constant and is proportional to the total energy dissipation in a large volume

domain[91, 60]. There is no upper bound result for the number of positive exponents

for 3-dimensional compressible turbulence. Even so, in a number of compressible flow

problems, it has been observed that 𝑀𝑢 initially increases on refining the mesh, but

stays below an upper bound on further refinement [13, 26].

Adding artificial viscosity to the adjoint equations reduces the rate of growth of

adjoint energy. By stabilizing the adjoint solution, it has the potential to decrease

the number of positive of positive exponents of the damped system. Hence, reducing
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the computational cost of NILSS. From Section 4.2, it is observed that the error

introduced in the design objective gradient due to the damping is directly proportional

to the amount of artificial viscosity added to the adjoint system.

4.3.1 Adjoint NILSS algorithm

The adjoint version of the NILSS algorithm (also known as NILSAS) represents the

adjoint shadowing solution as

𝑝𝑛 = 𝑝0
𝑛 + 𝑌𝑛𝑎 (4.46)

for all 𝑛 ∈ (0, 𝑁), where 𝑝0
𝑛 is a particular diverging adjoint solution (satisfying

Equation 4.5) and 𝑎 is a coefficient vector of length 𝑀𝑢, where 𝑀𝑢 is the dimension

of the chaotic system. 𝑌𝑛 is the matrix formed by the 𝑀𝑢 adjoint Lyapunov covariant

vectors, 𝑝𝑖
𝑛, each satisfying Equation 4.7, as columns. NILSAS tries to find the

optimal coefficient vector, 𝑎*, that minimizes the vector 𝐿2 norm of 𝑝𝑛 over all time.

It does this by solving the following optimization problem

𝑎* = argmin
𝑎

1

𝑁

𝑁∑︁
𝑖=0

𝑝𝑇
𝑛𝑝𝑛 (4.47)

where the adjoint shadowing solution, 𝑝*
𝑛, is given by 𝑝*

𝑛 = 𝑝0
𝑛 + 𝑌𝑛𝑎

*. NILSAS

assumes that the chaotic dynamical system is ergodic and uniformly hyperbolic.

The divergence of the adjoint solution, 𝑝0
𝑛, makes it difficult to solve the optimiza-

tion problem due to overflow and round-off error in floating-point representations. In

order to circumvent this issue, NILSAS divides the finite time interval into 𝐾 seg-

ments, 𝑁0, ..., 𝑁𝐾−1, where 𝑁𝑖 = [𝑛𝑖, 𝑛𝑖+1], 𝑛𝑖 = 𝑖𝑁
𝐾

and 𝑁 is divisible by 𝐾. The

adjoint solution and adjoint covariant vectors are denoted separately for each seg-

ment 𝑁𝑖 at 𝑛, by 𝑝0
𝑖,𝑛 and 𝑌𝑖,𝑛 respectively, where the first index in the subscript

denotes the segment index. The segment length is chosen in such a way that the

adjoint solution and vectors stay bounded and do not grow by more than an order of

magnitude in the segment. Additionally, there is a separate coefficient vector 𝑎𝑖 of
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length 𝑀𝑢 for each segment. A numerical implementation of the NILSAS algorithm

uses approximate adjoint Lyapunov covariant vectors and rescales 𝑝0
𝑖,𝑛 and 𝑌𝑖,𝑛 at

the end of each segment, 𝑁𝑖. Continuity of the adjoint shadowing solution at segment

intersections is ensured using

𝑝0
𝑖−1,𝑛𝑖

+ 𝑌𝑖−1,𝑛𝑖
𝑎𝑖−1 = 𝑝0

𝑖,𝑛𝑖
+ 𝑌𝑖,𝑛𝑖

𝑎𝑖 (4.48)

The above equation introduces 𝐾 − 1 equality constraints for the optimization prob-

lem. Finally, there is another equality constraint given by the following equation

𝐾∑︁
𝑖=1

[f(𝑝𝑛𝑖
, 𝜃)𝑇𝑌𝑖−1,𝑛𝑖

𝑎𝑖 + f(𝑝𝑛𝑖
, 𝜃)𝑇𝑝0

𝑖−1,𝑛𝑖
] = 0 (4.49)

which is necessary in order for NILSAS to determine the coefficient of the adjoint

Lyapunov covariant vector whose exponent is very close to 0. Such a vector is obtained

for discrete ergodic systems which are time discretizations of continuous systems.

The complete NILSAS algorithm is given below

1. Solve the primal system from 𝑛 = 0 to 𝑛 = 𝑁 .

2. Set initial conditions for 𝑝0
𝐾−1,𝑁 and 𝑌𝐾−1,𝑁 ,

𝑝0
𝐾−1,𝑁 = 0

𝑌𝐾−1,𝑁 = 𝑄𝐾

(4.50)

where 𝑄𝐾 is a random orthonormal matrix.

3. For each segment 𝑖, beginning from 𝑖 = 𝐾 − 1 up to 𝑖 = 0

(a) Solve the adjoint system, given by Equation 4.5, for 𝑛1 steps with 𝑝0
𝑖,𝑛𝑖+1

as the initial condition in order to obtain the vector 𝑝0
𝑖,𝑛𝑖

.

(b) Using the adjoint operator 𝑇𝑚
𝑛 compute the matrix 𝑌𝑖,𝑛𝑖

𝑌𝑖,𝑛𝑖
= 𝑇 𝑛𝑖

𝑛𝑖+1
𝑌𝑖,𝑛𝑖+1

(4.51)
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(c) Rescale the vector 𝑝0
𝑖,𝑛𝑖

and the matrix 𝑌𝑖,𝑛𝑖
in order to obtain 𝑝0

𝑖−1,𝑛𝑖

and 𝑌𝑖−1,𝑛𝑖
for the next segment

𝑄𝑖𝑅𝑖 = 𝑌𝑖,𝑛𝑖

𝑌𝑖−1,𝑛𝑖
= 𝑄𝑖

𝑔𝑖 = 𝑄𝑇
𝑖 𝑝

0
𝑖,𝑛𝑖

𝑝0
𝑖−1,𝑛𝑖

= 𝑝0
𝑖,𝑛𝑖

−𝑄𝑖𝑔𝑖

(4.52)

4. Solve the following optimization problem

min
𝑎0,𝑎1,...,𝑎𝐾−1

𝐾−1∑︁
𝑖=0

𝑎𝑇
𝑖 𝑎𝑖

𝑎𝑖−1 = 𝑅𝑖𝑎𝑖 + 𝑔𝑖,∀𝑖 = 1, 2, ..., 𝐾 − 1

𝐾∑︁
𝑖=1

[f(𝑝𝑛𝑖
, 𝜃)𝑇𝑌𝑖−1,𝑛𝑖

𝑎𝑖 + f(𝑝𝑛𝑖
, 𝜃)𝑇𝑝0

𝑖−1,𝑛𝑖
] = 0

(4.53)

using the Lagrange multiplier method. The required solution can be obtained

by solving the following linear system of equations⎛⎝ 𝐼 𝐵𝑇

𝐵 0

⎞⎠⎛⎝𝑐

𝑐

⎞⎠ =

⎛⎝0

𝑑

⎞⎠ (4.54)
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where the matrix 𝐵 and the vectors 𝑐,𝑑 are given by

𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼 −𝑅1

𝐼 −𝑅2

. . . . . .

𝐼 𝑅𝐾−1

f(𝑝𝑛1 , 𝜃)
𝑇𝑌0,𝑛1 · · · f(𝑝𝑛𝐾

, 𝜃)𝑇𝑌𝐾−1,𝑛𝐾

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑐 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑎0

𝑎1

...

𝑎𝐾−1

⎞⎟⎟⎟⎟⎟⎟⎠

𝑑 =

⎛⎜⎜⎜⎜⎜⎜⎝
1
...

𝐾 − 1

−∑︀𝐾
𝑖=1 f(𝑝𝑛𝑖

, 𝜃)𝑇𝑝0
𝑖−1,𝑛𝑖

⎞⎟⎟⎟⎟⎟⎟⎠

(4.55)

and 𝑐 is the Lagrange multiplier vector for the equality constraints in the opti-

mization problem.

5. Using the optimal coefficient vectors, 𝑎*
𝑖 , the adjoint shadowing solution, 𝑝*

𝑛, can

be constructed. The shadowing solution can then provide the design objective

gradient using Equation 4.4.

4.3.2 Results

The NILSAS algorithm is tested on subsonic flow over a cylinder. The details of this

problem are described in Section 1.4.2. The design objective is time-averaged drag

over the surface of the cylinder and the gradient is computed with respect to the inlet

Mach number of the flow.

The algorithm is applied to the adjoint equations for the discretized flow system

and the viscosity stabilized adjoint equations. Plots of the Lyapunov exponents com-

puted for the unmodified and modified adjoint systems are shown in Figure 4-2. The
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scaling factor for the viscosity stabilized adjoint equations is 𝜂 = 10. This value of

𝜂 reduces the exponential divergence of the adjoint solution, but is not sufficient to

completely stabilize it over the course of the simulation. Artificial viscosity is added

to the conservative adjoint equations using the Turkel symmetrizing transformation.

20 exponents are computed for the unmodified equations and 10 exponents are com-

puted for the viscosity stabilized equations. The number of segments is 𝐾 = 200 and

the number of time steps per segment is 𝑁
𝐾

= 500 for both cases. As can be seen from

the figures, the modified adjoint equations with the artificial viscosity has a fewer

number of positive Lyapunov exponents (𝑀𝑢 = 3) compared with the unmodified

adjoint equations (𝑀𝑢 = 9).
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Figure 4-2: Plot showing the positive and a few negative Lyapunov exponents for
the unmodified adjoint equations (none in figure legend) and the viscosity stabilized
adjoint equations with scaling factor 𝜂 = 10 (viscous in figure legend) for the subsonic
flow over a cylinder.

The design objective gradient obtained from the shadowing solution provided by

NILSAS on the unmodified adjoint system is 20.8±3.5, whereas the gradient obtained

from the shadowing solution provided by NILSAS on the viscosity stabilized adjoint

system is 17.8 ± 3.2. The relative error of both gradients is less than 30%. The

uncertainty in the gradient is computed using time series analysis techniques discussed
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in Section 5.1.2. In this example, the viscosity stabilized adjoint method reduced the

cost of the NILSAS algorithm to 50% while providing a gradient with a similar level

of accuracy. Figure 4-3 shows the relative error in the design objective gradient as

a function of 𝜂 for the viscosity stabilized adjoint method and the NILSAS method

with artificial viscosity. The relative error is defined in the same manner as in Section

3.3.
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Figure 4-3: Plot showing the relative error in the design objective gradient computed
using adjoint solutions with different artificial viscosity scaling factors (𝜂) for the flow
over cylinder problem. The blue dots denote the unstable adjoint solutions computed
using the viscosity stabilized adjoint method, red dots denote adjoint shadowing so-
lutions computed using NILSAS with the viscosity stabilized adjoint method and the
green dots denote the stable adjoint solutions computed using the viscosity stabilized
adjoint method. The value of the artificial viscosity scaling factor for the 2 left most
dots (1 blue and 1 red dot) is 𝜂 = 0 instead of 𝜂 = 0.1 as shown in the figure. The blue
line denotes 100% relative error and the green line denotes the standard deviation of
the finite difference gradient estimate.

Hence, the viscosity stabilized adjoint method can be applied to NILSAS in order

to reduce it’s computational cost for turbulent flow problems that have a large number

of positive Lyapunov exponents. This method is especially useful when the minimum

artificial viscosity scaling factor for which the adjoint solution is stable results in a high

design objective gradient error (as estimated by Equation 4.26) that is unacceptable

for design optimization algorithms.
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Chapter 5

Adjoint-based design optimization

using large eddy simulations

In this chapter, an adjoint-based design optimization tool, using the artificial viscos-

ity based adjoint method and a Bayesian optimization algorithm, is applied to design

the trailing edge shape of a gas turbine nozzle guide vane. The design objective is a

linearly weighted combination of the time and mass-flow averaged stagnation pressure

loss coefficient downstream of the vane and the time-averaged Nusselt number over

the trailing edge surface of the vane. The shape of the trailing edge is parameterized

using a linear combination of 5 convex designs. The optimization is performed on the

Argonne National Lab Mira supercomputer and a small-scale CPU and GPU based

compute cluster. Section 5.1 describes the parameterization procedure of the trailing

edge shape for the flow over the turbine vane. Section 5.2 details the artificial viscosity

based adjoint method, a modified Bayesian optimization algorithm and its application

to a 2-dimensional optimization problem objective function based on the Rastrigrin

function. Finally, Section 5.3 discusses results from the adjoint-based design opti-

mization and demonstrates a comparison between gradient-based and derivative-free

Bayesian optimization.
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5.1 Flow over turbine vane

The shape of a nozzle guide vane in a gas turbine engine plays a significant role in the

work extraction efficiency of the turbine. Lower work extraction from the fluid results

from a higher pressure loss due to an unfavorable shape of the vane. Additionally,

the shape impacts the amount of heat transfer from the hot gas to the vane surface,

hence, determining the cooling fluid requirements for the vane [42]. An optimally

designed vane can lead to notable fuel and repair cost savings and increased longevity

of the vane. The reference (baseline) shape for the nozzle guide vane used for the

shape optimization is designed by researchers at the Von Karman Institute (VKI) [5].

5.1.1 Flow physics

Understanding the physics of the flow over the turbine vane is crucial for constructing

the optimization problem. The boundary layer development on the two sides of the

vane and turbulent mixing in the wake lead to substantial drop in the stagnation

pressure of the fluid. These phenomena discourage the use of blunt trailing edge for

the vane as they can lead to earlier separation and higher pressure loss.

There is a large increase in the heat transfer coefficient on the suction side due to

the transition of the boundary layer from laminar to turbulent. This behavior rules

out the use of sharp trailing edge for the vane as the material of the vane cannot

simultaneously sustain high temperatures and high stress for prolonged time periods.

The thickness, development and separation location of the boundary layers and

the characteristics of the turbulent wake are greatly influenced by the shape of the

vane near the trailing edge. Hence, the design optimization restricts shape parame-

terization of the vane to the trailing edge in order to lower the dimension of the design

search space and maintain the enhancement potential of the candidate designs.

The details of the numerics for this flow problem are described in Sections 1.3 and

1.4.3.
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5.1.2 Design objective

The design objective for the trailing edge shape optimization is a linear combination

of the stagnation pressure loss downstream of the vane and heat transfer near the

trailing edge of the vane. The stagnation pressure loss is represented by the infinite

time-averaged and mass flow-averaged stagnation pressure loss coefficient (𝑝𝑙) defined

by the design objective in Equation 1.11, which is restated below

𝑝𝑙 =
𝑝𝑡,𝑙
𝑝𝑡,𝑖𝑛

𝑝𝑡,𝑙 = lim
𝑡𝑒→∞

1

𝑡𝑒

∫︁ 𝑡𝑒

0

∫︀
𝑆𝑝
𝜌𝑝𝑢𝑛(𝑝𝑡,𝑖𝑛 − 𝑝𝑡,𝑝) 𝑑𝑆𝑝∫︀

𝑆𝑝
𝜌𝑝𝑢𝑛 𝑑𝑆𝑝

𝑑𝑡

𝑝𝑡,𝑝 = 𝑝𝑝(1 +
𝛾 − 1

2
𝑀2

𝑝 )
𝛾

𝛾−1

𝑝𝑡,𝑖𝑛 = 𝑝𝑒𝑥(1 +
𝛾 − 1

2
𝑀2

𝑖𝑠)
𝛾

𝛾−1

(5.1)

A visualization of the time history of the instantaneous pressure loss is shown in

Figure 5-1. The heat transfer is represented by the Nusselt number (𝑁𝑢).
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Figure 5-1: Scaled instantaneous pressure loss coefficient (𝑎(𝑝𝑙)) plotted as a function
of time (represented by time units). The blue time series denotes the cumulative
mean and the gray shaded area denotes a single standard deviation of the sample
mean. The procedure for time averaging is discussed in Section 5.1.2.
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Figure 5-2: Scaled instantaneous Nusselt number (𝑏(𝑁𝑢)) plotted as a function of
time (represented by time units). The blue time series denotes the cumulative mean
and the gray shaded area denotes a single standard deviation of the sample mean.
The procedure for time averaging is discussed in Section 5.1.2.

𝑁𝑢 =
ℎ̄𝐿

𝑘
(5.2)

where 𝑘 is the thermal conductivity at 𝑇 = 300𝐾, 𝑘 = 0.028 𝑊
𝑚𝐾

, 𝐿 is the trailing

edge radius for the baseline case, 0.0105 𝑐𝑙, and ℎ̄ is the time-averaged heat transfer

coefficient over a part of the vane starting from 0.414 𝑐𝑙 downstream of the leading

edge in the direction of the inflow and leading up to the tip of the trailing edge. The

equation for ℎ̄ is

ℎ̄ = lim
𝑡𝑒→∞

1

𝑆𝑣𝑡𝑒∆𝑇

∫︁ 𝑡𝑒

0

∫︁
𝑆𝑣

𝑘
𝜕𝑇

𝜕𝑛
𝑑𝑆𝑣 𝑑𝑡, (5.3)

where 𝑆𝑣 is the surface area. ∆𝑇 = 120𝐾 is the temperature difference between the

surface of the blade and the stagnation temperature of the flow. A visualization of

the time history of the instantaneous heat transfer is shown in Figure 5-2 The design

objective for the optimization is a linear combination of two quantities, the Nusselt

number and pressure loss coefficient, and is given by

𝐽 = 𝑎(𝑁𝑢) + 𝑏(𝑝𝑙) (5.4)
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where 𝑎 = 5 × 10−4 and 𝑏 = 0.4. The values for 𝑎 and 𝑏 are chosen such that the

contribution of both 𝑁𝑢 and 𝑝𝑙 to the sum is equal for the baseline case.

As the fluid flow solution is obtained for a finite time, the infinite time-averages

in Equations 5.1 and 5.3 are approximated using a finite time-average. The length of

the time averaging interval is chosen to provide a statistically converged estimate of

the infinite time average. A converged estimate is an estimate that has a standard

deviation (or standard error) that is less than 10% of the magnitude of the estimate

itself. Through a numerical investigation it is found to be equal to 𝑁 = 6 time

units. This interval is sufficient to obtain the design objective with approximately

5% standard error relative to the estimate.

A procedure is required to compute an estimate for the finite time-average from

an instantaneous time history of the design objective. The finite time-average can be

modeled as a random variable. The mean estimate of this random variable can be

computed using a sample average, 𝐽𝑁 .

𝐽𝑁 =
1

𝑁

𝑁∑︁
𝑛=𝑁0

𝐽𝑛 (5.5)

where 𝐽𝑛 represents the instantaneous design objective at time step 𝑛. The time

averaging is started after an initial transition period to allow for any transient effects

in the time history to settle down into a statistical steady state. The transition period

is determined by finding the time it takes for a running time-average to lie within 1

standard deviation of the full interval time-average. For the design objective of the

trailing edge shape optimization problem, this period is approximately 𝑁0 = 1 time

units. It is large enough to encompass the transition period for different trailing edge

shapes.

The standard deviation of the mean estimate (or sample mean) provides an indi-

cation of the amount of error in the finite time-average approximation of the design

objective. The standard statistical formula for computing the standard error of a

sample mean cannot be used as the instantaneous values of the design objective are

not independent and form a correlated time series. Oliver (2014) [76] suggested using
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data fitted autoregressive models to get the correlation function for the time series.

This approach is adopted in this thesis. Autoregressive models can be written in the

following form

𝐽𝑛 =

𝑝∑︁
𝑖=1

𝑎𝑖𝐽𝑛−𝑖 + 𝜖𝑛 (5.6)

where 𝑎𝑖 are the constant coefficients of the autoregressive model, 𝑝 is the order of

the model and 𝜖𝑛 are independent, identically distributed normal random variables,

𝜖𝑛 ∼ 𝑁(0, 𝜎2). The coefficients of the model are determined using the Burg estimation

algorithm with the 𝐶𝐼𝐶 criterion to decide the model order. Even though the actual

model for the time series may not belong to the class of linear stochastic models, the

variance computed using the model’s correlation function can be utilized to provide

a reasonable estimate of the variance of the sample mean.

𝑉 𝑎𝑟(𝐽𝑁) ≈ 𝑉 𝑎𝑟(𝐽𝑛)

𝑁𝑑

(5.7)

𝑁𝑑 =
𝑁

1 + 2
∑︀∞

𝑘=1 𝜌(𝑘)
(5.8)

where 𝜌(𝑘) is the autocorrelation between 𝑘 time steps and 𝑁𝑑 is the effective sample

size.

5.1.3 Design parameterization

Parameterizing the trailing edge of the turbine vane is a challenging task. For the

shapes to be valid, they have to satisfy a convexity condition about the chord line.

Such a condition is required in order to ensure that there are no undulations or

obstructions in the surface of the vane which can increase flow instability or cause

back flow. The convexity condition imposes a nonlinear constraint on the shape

parameters, increasing the complexity of the design optimization problem.

One way to get around the nonlinear constraint is to parameterize the trailing

edge of a 2-dimensional turbine vane as a linear combination of 5 trailing edge shapes,

with the weights serving as the parameters. If the candidate trailing edge shapes are
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convex, then they form a reduced basis of all convex shapes [96], ensuring that the

parameterized trailing edge shape is convex. The linear combination is implemented

as a weighted average of the 2-dimensional coordinates of the basis shapes. If the

coordinates of the basis shape 𝑗 are denoted by 𝑥𝑗𝑖 , then the coordinates of a new

shape are given by

𝑥𝑖(𝛼) =
5∑︁

𝑗=1

𝛼𝑗𝑥
𝑗
𝑖 (5.9)

The sum of the weights (𝛼𝑗) is equal to 1. Hence, the weights 𝛼𝑖 of the 5 basis shapes

satisfy the following constraint,
5∑︁

𝑗=1

𝛼𝑗 = 1 (5.10)

The above equality constraint can be transformed into an inequality constraint by

eliminating one of the 𝛼𝑖 variables. This results in a formation of a 4-dimensional

parameterization of the trailing edge shape with the following inequality constraint,

4∑︁
𝑗=1

𝛼𝑗 ≤ 1 (5.11)

The 5 basis shapes are chosen such that the parameterized shapes explore a large

subset of convex shapes. They are shown in Figure 5-3. One of the basis shapes

is from the baseline turbine vane design from VKI. The 5 basis shapes are linearly

independent, meaning that there are no two sets of parameters 𝛼 that generate the

same shape.

Evaluating the design objective and gradient for a trailing edge shape requires

the generation of a new mesh for obtaining the flow and adjoint solutions. The mesh

corresponding to the parameterized shape is formed by perturbing the mesh of the

baseline design. The mesh generation process starts by projecting the nodes of the

mesh of the baseline design onto the parameterized design by minimizing distance

between the nodes of the respective designs. Once projected, a displacement vector is

computed from the nodes of the baseline mesh nodes on the surface of the vane to pa-

rameterized mesh nodes. This displacement vector on the vane surface is propagated
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Figure 5-3: Visualization of the 5 basis shapes

through the remaining mesh using a linear elasticity model for the mesh nodes [22].

This model can be used under the assumption that the magnitude of the displacement

vector is small. The linear elasticity equations are

∇ · 𝜎 = 0 (5.12)

𝜎 = 𝜆𝜖𝑖𝑖𝐼 + 2𝜇𝜖 (5.13)

𝜖 =
1

2
(∇𝑢 + ∇𝑢𝑇 ) (5.14)

where 𝑢 is the displacement, 𝜆 and 𝜇 are constants which govern the elasticity of

the mesh nodes for propagating the displacement. The linear elasticity equations are

solved using the boundary condition 𝑢 = 𝑐 for the mesh nodes on the surface of

the vane, where 𝑐 is the displacement vector of the parameterized design from the

baseline design.

The gradient for the new trailing edge shape is evaluated using the viscosity sta-

bilized adjoint method. The function that maps the parameters of the shape to the

location of the parameterized mesh nodes is difficult to differentiate. Hence, instead
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of directly providing the gradient of the design objective with respect to the shape

parameters, the adjoint method provides the gradient with respect to discrete mesh

fields like cell centers, mesh normals, et cetera, which are typically used to represent

the mesh in finite volume methods. These gradients are denoted by 𝜕𝐽
𝜕𝑚𝑖

. The finite

difference method is used to obtain the gradient with respect to the parameters of

the shape ( 𝜕𝐽
𝜕𝛼𝑗

).
𝜕𝐽

𝜕𝛼𝑗

≈ 𝜕𝐽

𝜕𝑚𝑖

(𝑚𝑖(𝛼 + 𝜖𝑗) −𝑚𝑖(𝛼))

𝜖
(5.15)

where 𝜖𝑗 is a zero vector with the same dimension as 𝛼 and with the 𝑗𝑡ℎ entry set to

𝜖 = 10−5. Hence, for each design objective gradient evaluation, a set of 4 meshes are

generated by perturbing each shape parameter by 𝜖 separately. The corresponding

perturbations in the discrete mesh fields for each of the shape parameters are utilized

to obtain (𝑚𝑖(𝛼+𝜖𝑗)−𝑚𝑖(𝛼))

𝜖
. Multiplying this quantity with 𝜕𝐽

𝜕𝑚𝑖
obtained from the

adjoint method and summing over all the indices 𝑖 provides the design objective

gradient.

5.2 Adjoint-based design optimization

The adjoint method for physics-based numerical simulations is a widely used tool

to accelerate the engineering design optimization process. Adjoint-based design op-

timization tools utilize the adjoint method to efficiently obtain the gradient of the

design objective function with respect to multiple design parameters. The adjoint

method requires a single additional solution field (known as the adjoint solution) for

computing the gradients, in comparison to the finite difference method of computing

gradients, which requires 𝑛 additional solution fields for 𝑛 design parameters [31].

5.2.1 Viscosity stabilized adjoint method

The viscosity stabilized adjoint method, described in Section 3.2 is used to obtain the

design objective gradient. This method damps the divergence of the adjoint solution

for turbulent fluid flows, while maintaining reasonable accuracy of the design objective
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gradients. It requires manual tuning of a parameter known as the artificial viscosity

scaling factor (𝜂). After obtaining multiple adjoint solutions with different values of

the scaling factor , the optimal value of 𝜂 for flow over the turbine vane is determined

to be 𝜂 = 4, 444. The adjoint solution is obtained over a finite time interval whose

length is 0.5 time units. This value is the minimum value of 𝜂 for which the adjoint

solution is stable for the baseline design of the trailing edge of the turbine vane. The

value of 𝜂 is kept constant for different parameterized designs of the trailing edge of

the turbine vane. Empirically, it has been observed that the same value of 𝜂 stabilizes

the adjoint solution for different designs.

5.2.2 Optimization method

Design objectives in LES are often defined as infinite time averages. But, in practice,

as the simulations are performed for a finite time, there is a sampling error associated

with the objective function and gradient evaluations [75]. This error makes it difficult

for the optimization algorithm to know whether a new design point with a lower

objective value is actually better than the current optimal or if the difference can

be attributed to noise. Additionally, the computational expense of LES mandates

optimizers to utilize information from all previous evaluations to decide the next

design point to evaluate and not just the last few design points. Bayesian optimization

is a robust global optimization algorithm that is suitable for optimizing such noisy

and expensive objective functions.

In this class of optimization algorithms, a surrogate model is fit to all the design

evaluations using a Gaussian process [86]. The surrogate model explicitly models

the amount of noise in the objective and gradient evaluations. It forms a global

approximation of the design objective utilizing information from all past evaluations.

In Bayesian optimization, the next design point to evaluate is decided by optimizing a

metric which is a scalar function on the design space. The metric generally depends on

the surrogate model and past evaluations. The Bayesian optimization loop begins by

fitting the surrogate model to the past evaluations, proceeds to optimize the metric to

find the next design point and finally evaluates the design. The loop terminates when

128



there is no appreciable improvement in the design objective in consecutive evaluation

or the computational resources to perform the optimization are exhausted. As the

evaluations are noisy, the optimal design at the end of the optimization process is

the minimum of the surrogate model and not the design with the minimum objective

value in all the evaluations.

Using a stochastic process to model the objective function helps in quantifying the

uncertainty in a surrogate model that is trained on noisy evaluations. Additionally, it

helps in designing a metric for deciding the next evaluation points that works towards

finding the optimal design. A Gaussian process (GP) is a stochastic process whose

mean (𝜇(𝑥)) and covariance functions (𝑘(𝑥,𝑥*)) are sufficient to completely define

it, where 𝑥 is the point in the design space 𝜔. A realization of a GP, evaluated on a

set of discrete points 𝑋, is a sample of a multivariate normal distribution with mean

𝜇(𝑋) and covariance 𝑘(𝑋,𝑋). If the design objective function is denoted by 𝑓(𝑥),

then the corresponding GP is defined by [86]

𝜇(𝑥) = E[𝑓(𝑥)], (5.16)

𝑘(𝑥,𝑥*) = E[(𝑓(𝑥) − 𝜇(𝑥))(𝑓(𝑥*) − 𝜇(𝑥*))], (5.17)

where the true functions 𝜇(𝑥) and 𝑘(𝑥,𝑥*) for the design objective are unknown. An

initial estimate for the mean and covariance functions is known as the prior GP. On

observing a few evaluations, the prior GP is updated using the Bayes rule to form the

posterior GP. A prior mean function that is commonly used is 𝜇(𝑥) = 𝜇𝑓 , where 𝜇𝑓

is a constant. The choice of the prior covariance function restricts the function space

associated with the GP. As a majority of the design objectives typically observed in

CFD are smooth (continuous and infinitely differentiable), the squared exponential

kernel (𝑘(𝑥,𝑥*) = 𝜎2
𝑘𝑒

−(
|𝑥−𝑥*|

𝑐𝑙
)2) is used as the covariance function. This kernel has

a few hyperparameters that need to be decided before beginning the optimization

process. The hyperparameter, 𝑐𝑙, is the length scale of the kernel that determines

how fast the function changes over the design space. The hyperparameter, 𝜎2
𝑘, is

the signal variance and it controls how much nearby points in the design space are
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correlated.

Assuming additive noise in the design evaluations, the equation for an objective

function and gradient evaluation is written as

𝑦 =

⎛⎝𝑓(𝑥) + 𝜖1(𝑥)

𝑓 ′(𝑥) + 𝜖2(𝑥)

⎞⎠ (5.18)

where 𝜖1, 𝜖2 are random variables representing the noise in the objective function and

gradient evaluations respectively. 𝜖1(𝑥) and 𝜖2(𝑥) are assumed to be independent

normal random variables, 𝜖1(𝑥) = 𝑁(0, 𝜎2
1(𝑥)) and 𝜖2(𝑥) = 𝑁(0, 𝜎2

2(𝑥)), where 𝜎2
1

and 𝜎2
2 denote the variance and are a function of the design space. Independence of

𝜖1 from 𝜖2 can be explained from the observation that the additional artificial viscosity

in adjoint equations decorrelates the time series of the gradient evaluations from the

time series of the objective evaluations. Due to a lack of knowledge in the correlation

structure of the gradient components, the noise terms in each of the components of the

gradient evaluation are assumed to be independent. The noise in each design point

evaluation is assumed to be independent of other design points as the correlation

between the error due to finite time-averaging of the design objectives for different

points in design space is observed to be zero. This is due to the fact that the chaotic

time series, formed by the instantaneous design objective evaluations, exponentially

diverges from the time series of even neighboring design points. The variance of the

noise term is modeled heteroskedastically, which means that the amount of noise in

the evaluations is a function of the design point. The dependence of 𝜎2
1 and 𝜎2

2 on 𝑥

is not known beforehand. Hence, they are modeled as independent logarithmic (log)

GPs. This ensures that the variance term remains positive [53]. 𝜎1(𝑥) is represented

as

𝑙𝑜𝑔(
𝜎2
1)

𝜇𝜎2
1

) ∼ 𝐺𝑃 (0, 𝑘1(𝑥,𝑥
*)) (5.19)

where 𝑘1(𝑥,𝑥*) = 𝑒
− |𝑥−𝑥*|2

𝑐2
𝑙 , 𝜇𝜎2

1
is the prior mean for the log GP. A similar expression

can be used to represent 𝜎2(𝑥).

Using the aforementioned noise model, evaluations of the objective function and
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gradient for the design points are used to update the GP using Bayes rule to form a

posterior GP. Consider a set of sample points 𝑋𝑠 and the corresponding function and

gradient evaluations 𝑦𝑠. The mean (𝜇𝑝) and covariance (Σ𝑝) of the posterior process,

when evaluated on a set of evaluation points 𝑋 is given by

𝜇𝑝 = 𝐾𝑇 (𝐾𝑠 + Σ𝑠)
−1𝑦𝑠,

Σ𝑝 = 𝑘(𝑋,𝑋) −𝐾𝑇
* (𝐾𝑠 + Σ𝑠)

−1𝐾,
(5.20)

where 𝑘′ denotes the derivative of 𝑘 with respect to the first argument, 𝑘′′ denotes

the Hessian of the derivatives with respect to the first and second arguments and

𝐾𝑠 =

⎛⎝𝑘(𝑋𝑠,𝑋𝑠) 𝑘′(𝑋𝑠,𝑋𝑠)
𝑇

𝑘′(𝑋𝑠,𝑋𝑠) 𝑘′′(𝑋𝑠,𝑋𝑠))

⎞⎠ ,𝐾 =

⎛⎝𝑘(𝑋,𝑋𝑠)

𝑘′(𝑋,𝑋𝑠)

⎞⎠ ,

Σ𝑠 =

⎛⎝𝑑𝑖𝑎𝑔[𝜎2
1(𝑋𝑠)] 0

0 𝑑𝑖𝑎𝑔[𝜎2
2(𝑋𝑠)]

⎞⎠ ,

(5.21)

The variance estimate of the sample mean of the design objective and gradient eval-

uations, discussed in Section 5.1.2, is used to update the noise GPs 𝜎1(𝑥) and 𝜎2(𝑥)

using an expression similar to 5.20 without the gradient evaluations.

Before starting the Bayesian optimization process, it is important to have a set

of evaluations from which an initial surrogate model can be created [85]. This step,

known as design of experiment (DoE), is also used to estimate the hyperparameters

of the GP. The hyperparameters are estimated using maximum likelihood estimation

[86]. The mean quantities, 𝜇𝑓 , 𝜇𝜎2
1

and 𝜇𝜎2
2
, are estimated using a sample mean of the

design and gradient evaluations and their variance estimates. The design points for

the DoE are chosen from a random subset of points at the corners of the 4-dimensional

hypercube that contains the design space, midpoints of the edges of the hypercube

and the centroid of the hypercube. The points which do not satisfy the constraints

of the design optimization problem are omitted.

In the Bayesian optimization loop, after fitting the surrogate model to all the past

objective function and gradient evaluations, a metric function is optimized to find the
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next design point to evaluate. The metric can be designed to achieve a certain set of

optimization goals [35, 19, 100, 82, 45]. For example, a popular optimization strategy

involves exploring the design space in the initial part of the optimization process

in order to improve the quality of the surrogate and then exploiting the surrogate

model by evaluating designs close to the minimum of the surrogate in order to find

the optimal design. A metric that reflects this strategy is the expected improvement

(EI) criterion [50]. It provides a good balance between exploration and exploitation.

EI is defined by the following expression

EI(𝑥) = E[max(𝑓𝑚𝑖𝑛 − 𝑓(𝑥), 0)], (5.22)

where 𝑓𝑚𝑖𝑛 is the current estimated minimum of the objective, 𝑓𝑚𝑖𝑛 = min𝑥∈𝜔𝜇(𝑥).

For GPs, EI has a compact analytical form obtained by integrating over the expec-

tation [97]

EI(𝑥) = (𝑓𝑚𝑖𝑛 − 𝜇(𝑥))Φ

(︂
𝑓𝑚𝑖𝑛 − 𝜇(𝑥)

𝜎(𝑥)

)︂
+ 𝜎(𝑥)𝜑

(︂
𝑓𝑚𝑖𝑛 − 𝜇(𝑥)

𝜎(𝑥)

)︂
, (5.23)

where 𝜑 is the standard normal density, Φ is the standard normal distribution function

and 𝜇(𝑥 and 𝜎(𝑥) are the mean and standard deviation of the GP. The point in the

design space (𝑥𝑛), which maximizes EI, 𝑥𝑛 = argmax𝑥∈𝜔EI(𝑥), is chosen as the next

design to evaluate.

If the evaluations of the objective function are not noisy, EI can be shown to

converge to the global minimum [110] provided the objective function belongs to the

class of functions that can be represented by the surrogate model. But, when the

evaluations are noisy, there is no proof of convergence. Additionally, it has been

observed that using the EI metric can cause the optimization process to get stuck in

a local minimum[81]. The reason is that the optimizer spends too many evaluations

exploiting the GP without doing enough exploration. One possible solution to this

problem is to choose 𝑓𝑚𝑖𝑛 in such a way that EI is biased towards exploration.

𝑓𝑚𝑖𝑛 = min𝑥∈𝜔(𝜇(𝑥) + 𝛽𝜎(𝑥)) (5.24)
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Increasing 𝛽 leads to a significant increase in 𝑓𝑚𝑖𝑛, and consequently EI, for regions of

the design space where 𝜎(𝑥) is high. Hence, due to the larger EI values in unexplored

regions, higher 𝛽 results in more exploration.

Numerical experiments show that for various values of 𝛽 the Bayesian optimization

algorithm, with the modified EI metric, converges to the global optimum for a range

of noisy functions including the noisy Rastrigin and long-time averaged quantities

of chaotic systems like the Lorenz system. Figure 5-4 shows the performance of the

exploration biased EI metric on 2-dimensional optimization for two parameter choices

of 𝜁 for the noisy Rastrigin function. The function is given by

𝐽(𝑥) = −30 + 𝑥21 + 𝑥22 − 10[𝑐𝑜𝑠(2𝜋𝜁𝑥1) + 𝑐𝑜𝑠(2𝜋𝜁𝑥2)] + 𝜓𝑧 (5.25)

where 𝑧 is the standard normal random variable. The global minimum of this function

is at 𝑥 = (0, 0) and the minimum objective value is −50. 𝜓 is set to 4, which means

that the objective function has a large amount of noise. When 𝜁 is set to 0.5, the

objective function has a lower number of local minima than when 𝜁 = 1.5. Figure

5-4 shows the trajectory of the distance of the minimum evaluation design point

from the global minimum design point, averaged over 1000 runs of the optimizer.

For the objective function with 𝜁 = 0.5, using any positive value of 𝛽 results in

the Bayesian optimization algorithm finding an optimal design that is closer to the

global minimum than using 𝛽 = 0. Using higher values of 𝛽 enables the optimizer

to explore more and reach a lower objective value. For the objective function with

𝜁 = 1.5, using 𝛽 = 1, 2 or 3 results in better performance for the Bayesian optimization

algorithm. The high number of local minima lowers the convergence rate of the various

optimization algorithms with different values of 𝛽 and increases the difficulty of finding

the global optimal design. Similar to the 𝜁 = 0.5 case, positive values of 𝛽 causes the

optimizer to suppress exploitation of local minima and do more exploration. For all

the optimization runs, the number of DoE points are set to 4.
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Figure 5-4: Comparison of the distance from the global minimum of the minimum
design evaluated by the Bayesian optimization algorithm using different 𝛽 values for
the modified EI metric on the modified noisy Rastrigin function. Top figure: Rastrigin
function with 𝜁 = 1.5. Bottom figure: Rastrigin function with 𝜁 = 0.5.

5.2.3 Algorithm

The final optimization procedure for the trailing edge shape optimization problem,

where the number of parameters in the optimization problem is 𝑛 = 4, is described

below
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1. Evaluate 2𝑛 design points, where the design points are obtained from a design

of experiment.

2. Decide hyperparameters for GP using maximum likelihood estimation applied

to the 2𝑛 design evaluations.

3. Obtain posterior GP by fitting the surrogate model to all the past design eval-

uations.

4. Find next design point to evaluate by maximizing the exploration biased EI

metric using 𝛽 = 1.

5. Evaluate design point.

6. If the computational resources are exhausted or the optimization process has

reached convergence, then return the optimal design, else repeat the process

starting from step 3.

The cost of this algorithm is (10𝑛 + 5𝑚)𝐶𝑝, where 𝑚 is the number of design evalu-

ations in the optimization loop and 𝐶𝑝 is the cost of obtaining the design objective

value (or a single flow solution). The cost of a design evaluation is 5𝐶𝑝, as the typical

cost of obtaining the design objective gradient (or a single adjoint solution) is 4𝐶𝑝.

5.3 Results

The shape of the trailing edge of the turbine vane is optimized using the modi-

fied Bayesian optimization algorithm utilizing the viscosity stabilized adjoint method

for computing gradients. The optimization process begins with a design of exper-

iment for 8 evaluations. The hyperparameters for the Gaussian process are 𝑐𝑙 =

(0.7, 0.4, 0.5, 0.3) and 𝜎2
𝑘 = 10−6. The prior means for the GPs are 𝜇𝑓 = 0.0092, 𝜇𝜎2

1
=

5×10−9 and 𝜇𝜎2
2

= (10−9, 10−7, 10−8, 10−7). The Bayesian optimizer is run for a total

of 16 design objective and gradient evaluations. The value of 𝛽 for the exploration

biased EI metric is set to 1. During the optimization, multiple trailing edge shapes

are found which have a lower design objective value. The optimization ends when
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consecutive designs evaluated by the optimizer do not lead to a reduction in the design

objective value or its standard deviation. Figure 5-5 shows how the optimizer spends

a majority of the initial evaluations on exploration (high standard deviation and high

mean objective value of the posterior GP at evaluation point) and the evaluations

towards the end of the optimization process in exploitation (low standard deviation

and low to high mean objective value of the posterior GP at evaluation point).

Figure 5-5: Plot of the design objective mean value and standard deviation of the
posterior GP evaluated at the design point decided by the modified EI metric at each
step of the optimization process. The points in the plot are colored and labeled by
the optimization step number.

The optimization used a mixture of computational resources consisting of CPUs

and GPUs. The design objective value was obtained by computing the numerical

flow solution on an Nvidia GeForce GTX 1080Ti, which has 3584 CUDA cores and

11 GB RAM. The design objective gradient was obtained by computing the numerical

adjoint solution on 16 Intel Xeon E5-1650 CPUs, where each of the CPUs has 4 cores

and 32 GB RAM. The CPUs are interconnected using Gigabit Ethernet. The time to

solution for a single design objective value is 12 hours and for a single design objective
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gradient is 12 hours. Hence, the total computational cost of the optimization is 18, 432

CPU core hours and 288 GPU hours.

5.3.1 Comparison of optimal and baseline designs

Figure 5-6: Visualization of the current optimal design (blue color) and baseline
design (green color)

The optimal design at the end of the optimization process is shown in Figure 5-6.

The baseline design has a design objective value equal to 0.00931±0.0004, whereas the

optimal design has the objective value 0.008124±0.00003. The optimal design has an

approximately 12% reduction in Nusselt number and 16% reduction in pressure loss

coefficient. The design of experiment procedure produced a design with an objective

value 0.00831. Consequently, the optimization procedure led to a 2.2% improvement

in the design objective over the design of experiment.

A visualization of the magnitude of the instantaneous velocity field (U) and the

gradient of the temperature field (gradT) are shown in Figure 5-7 and 5-8 respec-

tively. A comparison of the two fields for the baseline and optimal design shows that

the optimal design has a slightly thinner turbulent boundary layer on the suction side
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Figure 5-7: Left figure: Visualization of velocity field for baseline design. Right figure:
Visualization of velocity field for optimal design

Figure 5-8: Left figure: Visualization of gradient of temperature field for baseline
design. Right figure: Visualization of gradient of temperature field for current optimal
design

near the trailing edge. The width of the wake and the size of the vortex structures in

the wake are smaller in the optimal design. Both these factors contribute to the lower

stagnation pressure loss in the optimal design. A thicker turbulent boundary layer

leads to a higher convective heat transfer due to more mixing in the flow. Hence, the

optimal design has a lower heat transfer than the baseline design. Finally, visualiza-

tions of the instantaneous design objective for the baseline and optimal designs are

shown in Figure 5-9.
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Figure 5-9: Top figure: Visualization of design objective for baseline design. Bottom
figure: Visualization of design objective for current optimal design

5.3.2 Comparison to Bayesian optimization without gradients

In order to quantify the utility of the gradient in the optimization process a com-

parison is performed between Bayesian optimization with and without gradients.

Running a separate optimization without gradients is too expensive as this would

involve running a large number of large eddy simulations. Hence, the two Bayesian

optimization algorithms are compared by averaging multiple optimization runs that
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Figure 5-10: Comparison between Bayesian optimization with and without gradients

use an approximate LES design objective function. This objective is a Gaussian pro-

cess which is trained on all the objective and gradient evaluations obtained during

the adjoint-based design optimization process. Both the Bayesian optimization al-

gorithms utilize the same DoE evaluations obtained during the adjoint-based design

optimization. While running the optimizations, whenever the algorithm requires an

evaluation for a particular design point, the objective is evaluated (including gradi-

ents if required) by sampling the Gaussian process at that point using Equation 5.18

by replacing 𝑓(𝑥) and 𝑓 ′(𝑥) with the mean of the corresponding Gaussian process.

The noise term is realized by sampling the normal distribution with zero mean and

variance computed from the mean of the noise log GP in accordance with Equation

5.19.

Figure 5-10 shows the trajectories of the minimum objective value for the two

optimization algorithms as a function of the number of function evaluations. The

minimum objective value as reported by the optimizers is minimum of the mean

function of the posterior GP of the optimization algorithm. The figure shows a tra-
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jectory of the mean and the uncertainty corresponding to a single standard deviation

of the posterior GP at the design point with the minimum objective value. The

Bayesian optimizers with and without gradients are executed 1000 times to achieve a

statistically converged Monte Carlo estimate of the optimization trajectory. The es-

timates provide less than 1% relative sample standard deviation for each mean value

in the optimization trajectory.

From the figure it can be seen that the Bayesian optimization with gradients per-

forms significantly better than optimizer without gradients as it reaches the optimal

design faster. Furthermore, the optimizer with gradients obtains the minimum design

objective value with a much lower standard deviation.
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Chapter 6

Optimized code generation for

unsteady adjoint methods

In this chapter a new automatic differentiation method is developed. The method

represents the computations involved in the flow solver in a two-level graph structure

to facilitate better performance. Section 6.1 describes the graph structure and Section

6.2 demonstrates an implementation the method in the form of a Python library. The

library defines an interface for writing a structured or unstructured explicit unsteady

flow solver using a finite volume or finite difference discretization scheme. Section

6.3 details the adjoint derivation procedure and implementation. Finally, Section 6.4

shows performance benchmarks of the developed flow solver.

6.1 Representing flow solver as a two-level compu-

tational graph

The computations of the flow solver are represented in the form of a two-level di-

rected acyclic graph [30]. The overall structure of the graph is defined by an outer

level graph which consists of two types of nodes: arrays and kernels. An array pro-

vides a discrete representation of a scalar, vector or tensor field in the flow solver.

The first dimension of the array spans the elements of the mesh (either cells, faces,
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nodes or edges depending on the type of discretization). For scalar fields, like pressure

and temperature, the second dimension is 1, for vector fields like velocity the second

dimension is 3. For tensor fields like gradient of velocity, the second and third dimen-

sions are 3. A kernel denotes a function that applies a stream of operations on the

input arrays of the kernel and produces the corresponding output arrays. Directed

edges in the outer graph either denote array feeding into a kernel as an input or a

kernel producing an output array.

The operations in each kernel are represented by an inner level graph. This graph

signifies a set of operations that can be performed independently for each element of

the mesh. Similar to the outer graph, there are two types of nodes in the inner graph:

variables and operations. The variables represent intermediate values of operations

like arithmetic operations or value modification. They are only defined locally, in the

scope of the kernel, while performing the operations in the kernel for each element of

the mesh. Unlike in the case of arrays, there is no global allocation of memory for

these variables. Similar to the outer graph, directed edges in the inner graph either

denote variables feeding into an operation as an input or an operation producing a

new variable.

The separation of the graph into two levels, an outer level graph and an inner

level graph, allows for more efficient code generation and execution. Furthermore, the

computational graph approach simplifies the derivation of the adjoint graph. Utilizing

the graph, efficient memory managers can be designed to increase the performance

and reduce the memory utilization of the flow solver.

6.1.1 Inner graph

A kernel node, denoting an inner graph, represents the operations applied on the input

arrays to produce the output arrays. There are 3 kinds of mathematical operations

that are typically encountered in the numerical methods used to discretize the partial

differential equations (PDEs) for flow physics. They are:

1. Element-wise arithmetic or transcendental operations.
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2. Accessing or modifying value of neighboring element.

3. Global dimension reduction operations.

The first type, element-wise operations, involve arithmetic or transcendental func-

tions operating on field values of every element of the mesh (or in other words the

values of an array). The second type of operation involves indirect memory accesses

for accessing or modifying field values of the neighboring elements of the mesh. An

indirect memory access is a memory access where the memory offset is a variable.

The values of an array for neighboring elements may not be present in adjacent mem-

ory addresses with a constant memory offset, necessitating the use of an additional

variable to locate the correct memory address. This is an expensive operation. The

last type of operation, global reduction, involves eliminating the first dimension of a

solution field by performing a sum or a min/max operation over the all the elements

of the mesh.

In finite volume methods for discretizing flow physics equations, a common kernel

node that is encountered is the interpolation of field values of cells onto faces. This

kernel uses indirect memory accesses for obtaining the field values of a cell adjacent to

a face. A visualization of the computational graph of this kernel is shown in Figure 6-1.

The round blocks represent operations and rectangular blocks represent intermediate

variables. The kernel is processed for each face of the mesh. The extract operation

performs an indirect memory access to get the field value of the cell adjacent to a

face. 𝐿𝑒𝑓𝑡 represents the index of the cell on one side of the face and 𝑟𝑖𝑔ℎ𝑡 represents

the index of the cell on the other side of the face.

Calculations of the flow solver should be divided into kernels in such a way as to

maximize the set of operations that can be performed in each of the inner graphs. This

results in the formation of fat kernels, which are kernels that contain a lot of floating

point and load/store operations. They ensure that most intermediate results remain

in the CPU or GPU cache. As many current flow solvers are memory bandwidth

limited, better cache utilization by reducing memory transfers between main memory

and cache can lead to significant performance benefits.
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Figure 6-1: Computational graph of the cell-to-face interpolation kernel.

6.1.2 Outer graph

The outer graph describes the relative order and location of the inner graphs in the

two-level computational graph. Additionally, it prescribes when arrays should be

initialized and passed as inputs to the kernel nodes.

When discretizing the compressible fluid flow (Navier-Stokes) equations using

FVM, the following ordinary differential equations (ODEs) are obtained [59]

𝑑𝜑𝑐

𝑑𝑡
= Ψ𝑐 =

∑︁
𝑓𝑖∈𝐹

�̂�𝐹
𝑓𝑖
· (Ψ𝐹

𝑓𝑖
)∆𝑆𝐹

𝑓𝑖
(6.1)

for each internal cell of the mesh. 𝜑𝑐 is the array that denotes the average field

values of 𝜑 = (𝜌, 𝜌u, 𝜌𝐸) (representing density, momentum and total energy) on the

internal cells of the mesh. Ψ𝑐 is the right hand side update term of the ODEs. �̂�𝐹
𝑓𝑖

is the normal vector on a face 𝑓𝑖 adjacent to a cell and ∆𝑆𝐹
𝑓𝑖

is the face area. The

146



superscript 𝐹 means that the array stores field values on both internal faces and

boundary faces of the mesh. The computation of the flux term Ψ𝐹
𝑓𝑖

utilizes a large

number of arithmetic operations performed on each face of the mesh. An outer graph

representation for computing the fluxes and update terms for a compressible flow

solver is shown in Figure 6-2. In the figure, round nodes represent the kernels and

the rectangular nodes represent the arrays. The superscript 𝐶 means that the array

contains field values from both internal and boundary cells of the mesh. The primitive

kernel transforms the conservative fields (𝜌, 𝜌u, 𝜌𝐸) into primitive fields (𝑈, 𝑇, 𝑝). The

boundary kernels computes the field values on the boundary cells from the field values

on the internal cells using predefined boundary conditions of the flow solver. The

gradient kernel computes the gradient of the primitive fields using the Green-Gauss

theorem. Finally, the flux kernel computes the fluxes on the internal cells for each

of the compressible flow equations using the Roe approximate Riemann solver [89].

The ODEs in the flow solver are solved using an explicit strong stability preserving

third-order Runge-Kutta (RK3) method [63]. An outer graph representation of the

RK3 method is shown in Figure 6-3. In the figure, 𝜑𝑐
0 represents the field values of 𝜑

on the internal cells from the previous time step. Subscripts in this graph denote the

stage of the RK3 method. The circles form a compact representation of the outer-level

graph for computing the fluxes. The array at the end of this graph, 𝜑𝑐
3, represents

the field values at the new time step.

6.2 Implementation

The two-level computational graph method is implemented in the form of a Python li-

brary called adFVM. The library defines an application programming interface (API)

for constructing the flow solver. Once constructed, it analyzes the graph and gener-

ates the corresponding C/C++ code for executing the graph. The library is able to

generate code for multiple architectures including Intel/AMD CPUs, Nvidia GPUs

(using CUDA) and Intel MICs (using OpenMP).
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Figure 6-2: Computational graph for computing the fluxes of the compressible flow
equations.

6.2.1 Kernel implementation

The first step in the code generation process involves transforming the kernels (inner

graphs) into functions in C. These kernel functions accept as arguments the relevant

input and output arrays. They execute a single for loop (on a CPU), access each

element of the input arrays, perform the necessary operations and then store the

results into the output arrays. The inner graph is transformed into a series of floating-

point arithmetic operations or memory loads/stores by traversing the graph in a

topological ordering. A topological ordering of a directed graph is an ordering of its
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Figure 6-3: Computational graph of the third-order Runge-Kutta (RK3) time inte-
grator method.

nodes such that for every edge in the graph from a parent node to its child node,

the parent node comes before the child node in the ordering. In the library, each

operation in the inner graph is a Python object with a “c_code" method for generating

the C code that performs the operation. A demonstration of the Python API for
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1 def interpolate(T, left , right ):
2 # These statements extract value of the field on cells
3 # adjacent to a particular face.
4 TL , TR = T.extract(left), T.extract(right)
5 # This statement computes value of the field on a face as the
6 # average of its value on adjacent cells.
7 TF = 0.5*(TL+TR)
8 return TF

1 // The first argument of the function defines the number
2 // of elements on which the kernel is applied.
3 // The const pointer arguments define the input arrays.
4 // The non -const pointer arguments denote the output arrays.
5 // The __restrict__ keyword specifies that there is no pointer
6 // aliasing in the input and output array pointers.
7 void Function_interpolate(int n,
8 const scalar* __restrict__ Tensor_0 ,
9 const integer* __restrict__ Tensor_1 ,

10 const integer* __restrict__ Tensor_2 ,
11 scalar* __restrict__ Tensor_3) {
12 integer i;
13 // The for loop over all the elements
14 // for which the kernel is applied to.
15 for (i = 0; i < n; i++) {
16 scalar Intermediate_0 = 0.5;
17
18 // These statements extract value of fields
19 // for a particular element.
20 // code: TL = T.extract(left)
21 integer Intermediate_1 = Tensor_2[i*1 + 0];
22 scalar Intermediate_3 = Tensor_0[Intermediate_1 *1 + 0];
23 // code: TL = T.extract(right)
24 integer Intermediate_4 = Tensor_1[i*1 + 0];
25 scalar Intermediate_5 = Tensor_0[Intermediate_4 *1 + 0];
26
27 // These statements perform intermediate operations
28 // code: TI = TL + TR
29 scalar Intermediate_6 = Intermediate_5 + Intermediate_3;
30 // code: TF = 0.5*TI
31 scalar Intermediate_7 = Intermediate_6 * Intermediate_0;
32
33 // This statement stores field in output array by adding
34 // to an existing value.
35 Tensor_3[i*1 + 0] += Intermediate_7;
36 }
37 }

Figure 6-4: Python and C code of a simple tensor expression for interpolating a
cell-centered field onto faces
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writing a kernel that interpolates a cell-centered field on faces and the corresponding

generated 𝐶 code is shown in Figure 6-4. The operations in this kernel form a small

subset of the flux kernel used in Figure 6-2. The full flux kernel is not shown due

to space constraints. The first argument of a kernel function denotes the number of

elements for which the operations of the inner graph are performed and the remaining

arguments are the memory addresses for the input and output arrays.

As mentioned in Section 6.1.1, forming fat kernels can improve the performance

of a flow solver. Other computational graph based code generators, like Theano [7]

and Tensorflow [1], try to form such kernels by performing multiple traversals of the

graph to combine kernel nodes. As these libraries might not have all the information

necessary to know whether multiple kernels can be fused together, they can miss

opportunities for optimizations. For example, indirect memory loads or stores are

not combined with other arithmetic operations into a single kernel. Additionally,

indirect stores on the same array are stored in separate memory locations and then

combined, instead of using the same memory buffer for all indirect stores. Failure

to optimize these operations can lead to additional memory allocations and transfers

between main memory and cache. This degrades performance due a reduction in

the ratio of operations to memory transfers and is especially disadvantageous on

GPUs. Another advantage of combining all the operations into a single kernel is that

the larger number of instructions enable the compiler and the processor to further

optimize execution by using sophisticated instruction scheduling algorithms.

Automatic identification and construction of these fat kernels is a difficult task.

The programmer of a flow solver generally has a good understanding of the pieces

of code that can be considered to operate independently on each element of the

mesh. Hence, instead of writing a graph analyzer that makes decisions on whether to

combine kernels, the responsibility of dividing the code into distinct kernels is left to

the programmer. Additionally, in a flow solver, many kernels are applied repeatedly

with different input and output arrays. The Python library provides an interface to

define such kernels, generating reusable and efficient code.
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6.2.2 Outer graph implementation

The outer graph dictates the order of execution of the various kernels. Once the code

for the kernels is generated, the outer graph is translated into a C++ function that

can be called from Python. The kernel nodes are converted into kernel function calls

with the corresponding input and output arrays and number of elements to process

the kernel for, as arguments. Figure 6-5 demonstrates the Python code needed to

define the outer graph for the RK3 time integrator previously shown in Figure 6-3.

1 # Arguments of the function are the field at the
2 # current time step and the required mesh fields.
3 def RKGraph(phi0 , *meshArgs ):
4 # This function transforms
5 # the list of mesh fields into an object with
6 # the fields as attributes.
7 mesh = createMeshObject(meshArgs)
8 # This function computes the flux from the fields
9 # at the current time step.

10 psi0 = fluxGraph(phi0 , *meshArgs)
11 # The RKStep1 function is a method that performs
12 # the first RK step given the field and the flux.
13 # The Kernel function creates a kernel node for RKStep1.
14 # The kernel node is called on the internal cells of the
15 # mesh with the field and the flux as arguments.
16 # This kernel is the first RK step on all the
17 # internal cells of the mesh.
18 phi1 = Kernel(RKStep1 )(mesh.nInternalCells )(phi0 , psi0)
19 # This function performs the second step of the RK integrator.
20 psi1 = fluxGraph(phi1 , *meshArgs)
21 phi2 = Kernel(RKStep2 )(mesh.nInternalCells )(phi0 , phi1 , psi1)
22 # This function performs the third step of the RK integrator.
23 psi2 = fluxGraph(phi2 , *meshArgs)
24 phi3 = Kernel(RKStep3 )(mesh.nInternalCells )(phi0 , phi1 ,\
25 phi2 , psi2)
26 return phi3

Figure 6-5: Python code for defining the computational graph for a RK time integra-
tion scheme

Many kernels in the flow solver, like the gradient and flux kernels, add values

to the output arrays and do not overwrite existing values. Hence, to support such

operations the library allows passing previously generated arrays as output arrays to

the kernels. Additionally, in a kernel, the operation that stores intermediate variables

in output arrays always adds to the existing value in the array. Consequently, if no
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1 # Arguments for the function are the fields that need
2 # to be interpolated and the mesh fields required for it.
3 def interpolateGraph(T, *meshArgs ):
4 mesh = createMeshObject(meshArgs)
5 # This kernel defines the cell to face interpolation function
6 # as shown in Figure 6-1.
7 interpolateKernel = Kernel(interpolate)
8 # This function creates the output array
9 # and initializes it to zero.

10 TF = Zeros((mesh.nFaces , 1))
11 # This function applies the interpolate kernel to the
12 # internal faces of the field.
13 TF = interpolateKernel(mesh.nInternalFaces , (TF ,))(T,\
14 mesh.left , mesh.right)
15 # This statement extracts information
16 # about a particular set of boundary faces.
17 startFace = mesh.boundary[’inlet ’]. startFace
18 nBoundaryFaces = mesh.boundary[’inlet’]. nFaces
19 # The square bracket is a reference operation
20 # used to create a subarray. The kernel is called
21 # by reusing the output array from the previous call.
22 # This function applies the interpolate kernel
23 # to the boundary faces.
24 TF = interpolateKernel(nBoundaryFaces , (TF[startFace ],))(T, \
25 mesh.left[startFace], mesh.right[startFace ])
26 return TF

Figure 6-6: Python code for a computational graph interpolating a cell-centered field
onto faces

output array is explicitly provided to a kernel node, memory for a new output array

is allocated and all entries are set to zero before passing it to the kernel function. In

the outer graph, a kernel node creates a new array node to represent the incremented

output array. Subsequent use of the output array should utilize the array created by

the kernel.

In a flow solver, often, there are multiple kernels that operate on separate parts of

a single array. Instead of storing the inputs and outputs of these kernels in separate

arrays, the library allows passing part of an array as an input or output to the kernel.

This reduces memory allocations and copying due to splitting or merging parts of an

array. A part of the array (henceforth called a subarray) contains values that belong

to a particular set of elements of a mesh. Examples of such sets are the set of internal

cells of the mesh, the set of boundary faces or the set of faces belonging to specific
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regions of the boundary. The values of a subarray are constrained to be stored in

contiguous memory locations of the underlying or parent array. A subarray can be

created from an array by a reference operation that specifies an offset for the first

dimension of the parent array. The subarray and the parent array share a unique

identifier that signifies that the two arrays are related.

An example of an outer graph that uses some of the more complex features of the

library is shown in Figure 6-6. The interpolateKernel kernel function is used twice on

different parts of the input arrays T, mesh.left and mesh.right and output array TF.

The reference operation, TF[startFace], is used to create the subarray that is passed

as an output array the second time interpolateKernel is called.

6.2.3 Memory management

The computational graph representation allows for global memory management strate-

gies for either reducing memory usage or total number of memory allocations. On

many hardware accelerators, like Nvidia GPUs, memory allocations and transfers are

synchronous operations that cannot be executed concurrently with each other. They

can take up a significant fraction of the execution time of the two-level computational

graph. For example, using the simple strategy of allocating new memory whenever

it’s required and deallocating when it’s no longer used, the amount of time spent in

memory related tasks is 50% of the total execution time for the RK3 time integrator

graph (henceforth called the flow solver graph). This means that by minimizing the

number of memory allocations, potentially, the execution time can be reduced by up

to 50%.

When executing a graph constructed using the Python library, memory reuse

is prioritized by forming a memory pool. The pool is a data structure that stores

the available memory addresses and their corresponding sizes. If a kernel requires

memory for storing results in an output array, memory is acquired from the memory

pool. If the pool does not contain a free memory address with the appropriate size,

new memory is allocated. After the execution of a kernel, the memory of input

arrays of the kernel that are no longer used in the rest of the computational graph
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are released into the memory pool. When running a fluid simulation, the flow solver

graph is called multiple times with different inputs. At the start of a simulation the

memory pool is empty. The memory pool reaches its maximum size at the end of the

first execution of the flow solver graph, when all the necessary memory allocations

have been performed. On later executions of the graph, there is no new allocation

of memory. It is always acquired from the pool. This memory management strategy

ensures maximum reuse of allocated memory, albeit at the cost of greater memory

usage.

On every execution of the flow solver graph there are only some input arrays that

change their values while the rest remain the same. The input arrays that do not

change are called static arrays. For example, arrays describing the mesh fields like

face normals, face areas are static arrays. When running the graph on GPUs, the

input arrays of the graph often need to be transferred from the CPU onto the GPU.

For static arrays it is beneficial to allocate memory and transfer the array to the GPU

only on the first execution of the graph. On subsequent executions of the graph, the

static arrays reuse the GPU memory address stored during the first execution. This

strategy reduces the execution time of the graph by reducing memory transfers from

CPU to GPU.

6.2.4 Parallelization

The flow solver is parallelized on multiple computer nodes by dividing the domain into

separate parts such that each computer node gets an approximately equal amount

of computation to perform. The mesh is decomposed into multiple subdomains by

reducing a function of the total communication among processors [80]. When using

flux computation procedure outlined in Figure 6-2, on every execution of the flow

solver graph, the “Boundary" kernel uses non-blocking communication primitives from

the message passing library (MPI), like Isend and Irecv, to transfer the field and

gradient field values to neighboring processors. The Python library has special kernels

written in C++ that can be used as kernel nodes to perform these operations.

The flow solver is constructed in such a way that the message passing communica-
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tion overlaps with other computation. For example, while the relevant boundary field

values of 𝑈 𝑐, 𝑇 𝑐, 𝑝𝑐 are being transferred to neighboring processors, gradient compu-

tation of the primitive fields on internal cells occurs at the same time. The library

enables this procedure by providing separate kernel nodes that start communication

and wait for the messages to finish transferring.

6.3 Adjoint Graph

Similar to the computational graph of the flow solver, the adjoint flow solver is repre-

sented in the form of a two-level graph (henceforth known as the adjoint graph). The

inner and outer graphs of the adjoint graph are derived with the help of reverse mode

AD of the corresponding inner and outer graphs of the flow solver graph (hereby both

referred to as the primal graph). In the first stage of the adjoint graph generation

process, the kernel nodes or inner primal graphs (inner graphs of the primal graph)

are differentiated to produce the corresponding adjoint kernels. Differentiation in-

volves linearization of each operation in the inner graphs. In reverse mode AD, given

the gradient of an objective function with respect to outputs of a kernel, the adjoint

kernel computes the gradient with respect to the inputs of the kernel by propagat-

ing the gradient from outputs to inputs using the chain rule of differentiation while

performing a reverse traversal of the inner graph.

A similar differentiation process is followed for the outer primal graph to get the

outer adjoint graph. The objective gradient with respect to the output arrays of the

outer primal graph are propagated to the inputs arrays of the outer primal graph

using the adjoint kernels to get the gradient with respect to the input arrays.

6.3.1 Implementation

To aid the formation of the adjoint kernels, each operation in the inner primal graph

has a “grad" method that generates the corresponding operations for performing the

gradient propagation. The adjoint kernel is constructed by calling the “grad" method

of the operations in a reverse topological ordering of the inner primal graph. Similar
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to the outer primal graph, the adjoint kernels are called with the appropriate input

and output arrays as arguments in order to build the outer adjoint graph. Figure 6-7

shows how a primal and an adjoint kernel process the input and output arrays that

are passed to them.

Reverse-mode AD is applied to the outer primal graph to construct the corre-

sponding outer adjoint graph using the generated adjoint kernels. Similar to the

outer primal graph, the memory for the input and output arrays of the adjoint ker-

nels is managed explicitly using techniques described in Section 6.2.3. Special care

needs to be taken in order to ensure that these arrays are allocated and passed to

the adjoint kernels in a topological order of the outer adjoint graph. In contrast, the

management of the local memory in the adjoint kernel is automatically handled by the

compiler. Each adjoint kernel in the outer adjoint graph requires arrays for storing

its outputs, which are the gradients with respect to input arrays of the corresponding

primal kernel. In the outer primal graph, an array or its subarrays may be used as an

input array in multiple kernels. Such arrays share a unique identifier. Correspond-

ingly in the adjoint graph, the gradient with respect to these arrays (henceforth called

a gradient array) share an additional unique identifier. For an adjoint kernel, if the

gradient array with a particular unique identifier does not exist, the memory for the

gradient array is allocated and it is initialized to zero. In subsequent adjoint kernels,

the gradient arrays are matched with previously generated gradient arrays using their

unique identifiers. Once matched, the gradient arrays are reused and passed as argu-

ments to the kernel. The library implements this memory management procedure by

maintaining a hash table of all gradient arrays with their identifiers serving as a key.

As each primal and adjoint kernel always adds values to its output arrays and does

not replace any values, using the chain rule of differentiation [38] it can be shown

that a topological ordering traversal of the outer adjoint graph provides the correct

gradient array after all the adjoint kernels are executed. This can be understood

from the following example. Let 𝐴𝑛 represent the set of values of all the arrays with

unique identifiers in the outer primal graph at index 𝑛 in a topologically ordering of

the graph. The action of a particular kernel 𝐾𝑛, with input arguments 𝐴𝑛, can be
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mathematically represented in the following form

𝐴𝑛+1 = 𝐴𝑛 +𝐾𝑛(𝐴𝑛) (6.2)

where 𝐴𝑛+1 represents the values of the distinct set of arrays in the outer primal graph

after applying the kernel 𝐾𝑛. For arrays of 𝐴𝑛 that are not output arrays of 𝐾𝑛,

denoted by the subset 𝐴𝑗
𝑛, 𝐾𝑗

𝑛(𝐴𝑛) = 0. Hence, for these arrays, 𝐴𝑗
𝑛+1 = 𝐴𝑗

𝑛. For

arrays of 𝐴𝑛 that are output arrays of 𝐾𝑛, denoted by the subset 𝐴𝑖
𝑛, the resulting

arrays from 𝐾𝑛, 𝐾𝑖
𝑛(𝐴𝑛), are added to 𝐴𝑖

𝑛 in order to form the new set of arrays

𝐴𝑖
𝑛+1. In the outer adjoint graph, the action of the corresponding adjoint kernel

�̂�𝑛 on the set of gradient arrays with unique identifiers at index 𝑛 in a topological

ordering of the outer primal graph, 𝐴𝑛, can be written as

𝐴𝑛−1 = 𝐴𝑛 + �̂�𝑛(𝐴𝑛,𝐴𝑛) (6.3)

where �̂�𝑛 = 𝜕𝐾𝑛(𝐴𝑛)
𝜕𝐴𝑛

𝑇
𝐴𝑛 is a linearization of the kernel 𝐾𝑛 with respect to its input

arguments multiplied by the output gradient arrays. The decrease in index of 𝐴 in

the above equation represents the fact that the outer adjoint graph follows a reverse

topological ordering of the outer primal graph. The input and output arrays of 𝐾𝑛

are passed as input arrays to �̂�𝑛. For arrays of 𝐴𝑛 that are not input arrays of 𝐾𝑛,

denoted by the subset 𝐴𝑘
𝑛, 𝜕𝐾𝑛(𝐴𝑛)

𝜕𝐴𝑘
𝑛

= 0. Hence, for the corresponding set of arrays,

𝐴𝑘
𝑛, 𝐴𝑘

𝑛−1 = 𝐴𝑘
𝑛. For arrays of 𝐴𝑛 that are input arrays of 𝐾𝑛, denoted by the

subset 𝐴𝑙
𝑛, the resulting arrays from the kernel �̂�𝑛, �̂�𝑙

𝑛(𝐴𝑛,𝐴𝑛), are added to 𝐴𝑙
𝑛

in order to form the new set of arrays 𝐴𝑙
𝑛+1. Hence, after applying all the adjoint

kernels, the correct gradient arrays are obtained.

Application of reverse mode AD to computational graphs can require significant

amounts of memory, due to the requirement of storing the linearization of each opera-

tion during a forward traversal of the graph. The memory usage of the adjoint method

can be reduced by applying the checkpointing method [39] to two-level computational

graphs. During the execution of the outer adjoint graph, each adjoint kernel require

as inputs, the input arrays from the corresponding kernel of the outer primal graph.
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Figure 6-7: Demonstration of how a primal and adjoint kernel are processed by the
Python library. The primal kernel processes the input arrays (inputs) and produce
intermediate output variables (intermediate outputs) that are added to the output
arrays that are passed to them (reference outputs) to generate the final output arrays
(outputs). The adjoint kernel follows a similar procedure. “grad" stands for “gradient
with respect to".

As the outer adjoint graph operates in the reverse order of the outer primal graph,

a part of the outer primal graph needs to be executed before the adjoint kernels in

order to precompute all the necessary input arrays from the corresponding primal

kernels. For example, in the flow solver graph in Figure 6-3, the arrays Ψ𝑐
0,Ψ

𝑐
1 and
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Ψ𝑐
2 need to be precomputed and stored before executing any of the adjoint kernels.

Instead of storing all the intermediate variables of the primal kernels, during the ex-

ecution of each adjoint kernel they are recomputed in the kernel while propagating

the gradient from the output variables to the input variables. Hence, in the execution

of the adjoint graph, almost all operations in the primal kernels are executed twice.

This makes the two-level adjoint graph procedure more computationally intense than

a single-level adjoint graph. But, it leads to a significant reduction in memory usage

and access in comparison to a single-level adjoint graph, as the intermediate variables

from the primal kernels are not stored in separate arrays.

6.3.2 Verification of adjoint flow solver

The implementation of the adjoint flow solver using the two-level computational graph

method is verified by comparing the gradients provided by the adjoint flow solver with

those obtained using the finite difference method. The test problem is subsonic flow

over a 2-dimensional cylinder at Reynold’s number 10,000. This flow problem is

similar to the 3-dimensional flow over a cylinder problem described in Section 1.4.2.

The mesh contains 92,000 cells. The design objective (𝐽) is drag over the surface

of the cylinder averaged over 0.02 time units, where 1 time unit is the amount of

time the flow takes to traverse the cylinder. While the time averaging interval is not

sufficient for computing a statistical average of the drag, it is adequate for verifying

the adjoint implementation. The governing equations of the flow are perturbed by

adding a source term to the density, momentum and energy equations. The source

term is non-uniform over the domain of the flow problem. It’s shape is a 2-dimension

Gaussian function with a center 4𝑑 upstream of the cylinder and length scale 8𝑑, where

𝑑 is the diameter of the cylinder. The scaling of the Gaussian-shaped perturbation

serves as the parameter of the system (𝜃) with respect to which the gradient of the

objective is computed. The default scaling parameter is 𝜃 = 0.

Figure 6-8 shows the agreement between the one-sided first-order finite difference

gradient and the gradient from the adjoint flow solver. The finite difference gradient
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is computed using the following equation

𝜕𝐽

𝜕𝜃
∼ 𝐽(𝜃 + ∆𝜃) − 𝐽(𝜃)

∆𝜃
(6.4)

For large perturbations in the scaling parameter (∆𝜃), the relative difference is dom-

inated by the truncation error of the finite difference approximation [67]. As the

perturbation in scaling is reduced, this error reduces. But, for even smaller pertur-

bations in scaling parameters (∆𝜃 < 10), the round-off error in the finite difference

causes the relative difference to increase again.
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Figure 6-8: Relative difference between gradient computed using the adjoint flow
solver and the gradient computed using the finite difference method as a function of
the scaling parameter of the perturbation (∆𝜃), denoted by red dots. The green line
denotes the slope for the round-off error and the blue line denotes the slope for the
truncation error.

In addition to the above test case, the library implementing the two-level computa-

tional graph method has many independent unit tests that check various components

of the flow solver. These unit tests verify that the gradient provided by the adjoint

method matches the gradient provided by the finite difference method up to round-
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off error. Finally, the implementation of the adjoint flow solver using the two-level

computational method is validated by comparing the numerical adjoint solution gen-

erated after a couple of time steps on the subsonic flow over 2-dimensional cylinder

problem with the numerical adjoint solution generated by an implementation of the

adjoint flow solver using an established AD tool (CoDiPack). It is found that the

maximum of the relative difference between the two numerical adjoint solutions is

close to machine precision.

6.4 Results

The Python library (adFVM), implementing the two-level computational graph method,

is used to develop an unsteady flow solver utilizing the FVM for discretization. It has

been applied to flow problems with meshes containing 100 millions cells and has been

demonstrated to run on 10 thousand cores. The source code of adFVM is available

at https://github.com/chaitan3/adFVM.

The efficiency of the two-level computational graph approach is demonstrated by

comparing the wall clock time per time step of the primal and adjoint flow solvers

with those developed using competing AD libraries. The wall clock measurements

are recorded on a 2-dimensional simulation of transonic flow over the turbine vane

described in Section 1.4.3. The mesh size for this 2-dimensional flow problem is

approximately 77,000 cells. Each of the primal and adjoint flow solvers, developed

using the respective AD libraries, utilize the same discretization schemes described

in Section 1.3. The flow solvers are executed on a single core of a Intel CPU (Xeon

CPU E5-2650) or an Nvidia GPU (GeForce GTX 980), whenever possible. Table

6.1 demonstrates the performance (wall clock time per time step) and memory usage

of the flow solvers developed using various AD libraries. It shows that the primal

solver built in Python using adFVM is approximately 30% faster than the flow solver

written in C++ using CoDiPack [95].

The performance difference can be attributed to adFVM simplifying auto-vectorization

for the compiler by combining arithmetic expressions of a kernel in a single function
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and providing optimized memory management by minimizing number of dynamic

memory allocations. The corresponding adjoint solver derived using adFVM is about

3 times faster than the one derived using CoDiPack, which provides operator over-

loading based AD using expression templates. Typically, a flow solver written in C++

can be transformed to use an AD tool, like CoDiPack, by changing the floating-point

variable type used for the numerical flow solution arrays (like 𝑓𝑙𝑜𝑎𝑡 or 𝑑𝑜𝑢𝑏𝑙𝑒) to an

active variable type (like 𝑐𝑜𝑑𝑖 :: 𝑅𝑒𝑎𝑙𝑅𝑒𝑣𝑒𝑟𝑠𝑒 in CoDiPack). The C++ flow solver

code is written using object-oriented programming in a manner similar to the Python

flow solver code, without major language-specific optimizations. Even though the

C++ code can be optimized further such that the primal solver performance matches

that of adFVM, the performance of the adjoint solver will likely remain the same due

to the use of operator overloading based AD in CoDiPack.

On CPUs, the primal solver using adFVM is approximately 4 times faster than

the primal solver using Theano and the corresponding adjoint solver is 3 times faster.

When using GPUs, the two-level computational graph approach of adFVM, with its

optimized kernels and memory efficiency, enables an order of magnitude performance

gain over the Theano and Tensorflow libraries. Finally, as shown in Table 6.1 the

peak memory usage when running the adjoint solver using adFVM on the CPU is

considerably lower than CoDiPack, Theano or Tensorflow.

The performance of the flow solver is analyzed on an Intel Xeon CPU E5-2650

running at 2.2 GHz. The CPU uses 128 GB DDR3 RAM running at 1600 MHz in dual

channel as main memory. The peak floating point performance of the CPU, when

utilizing all the 8 physical cores, is 256 Giga floating point operations per second

(Gflops) and the peak DRAM memory (main memory) bandwidth is 51.2 Gigabyte

per second (GBps). The measured peak performance of the processor on a practical

benchmark, matrix multiplication using Intel MKL, is 20.7 Gigaflops. The measured

peak memory bandwidth using a vector addition benchmark tool (bandwidth) is 42

GBps. On the turbine vane flow problem, most of the compute time (∼ 70%) of the

flow solver is spent in two kernels, the gradient kernel, which computes the gradients

of the velocity, temperature and pressure, and the flux kernel which computes the
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Library (Version) Primal CPU (𝑠) Adjoint CPU (𝑠) Peak Memory (GB)
CoDiPack (v1.5.0) 0.29 2.93 6.7
Theano (v1.0.1) 0.88 2.64 2.12
Tensorflow (v1.5) 4.62 11.9 2.29
adFVM (v0.2) 0.21 0.96 0.41

Library (Version) Primal GPU (𝑠) Adjoint GPU (𝑠)
Theano (v1.0.1) 0.15 14.1
Tensorflow (v1.5) 0.11 0.27
adFVM (v0.2) 0.0065 0.025

Table 6.1: Performance comparison of primal and adjoint flow solvers on a single core
of a CPU and a GPU using different AD libraries. The values in the table represent
wall clock time of each RK3 time step, where the unit (𝑠) denotes one second. The
reason for the slow adjoint solver when using Theano on GPU is an inefficient GPU
implementation of the indirect memory access and value modification function in
Theano.

momentum and energy fluxes. The average memory bandwidth, Gflops and runtime

percentage of the gradient and flux kernels are shown in Table 6.2. These results

are obtained by using software performance counters for the kernels. The counters

are constructed by tracking the memory loads and stores and floating-point additions

and multiplications in the kernel. The measured average bandwidth of the gradient

kernel is higher than that of the flux kernel. The flux kernel utilizes a more significant

percentage of the runtime, 61.7%, in comparison to the gradient kernel, 9.7%. In

addition, an analysis of the kernel functions shows that the flux kernel has a higher

flops to memory transfers ratio, 0.8, than the gradient kernel, 0.5. The flow solver

is tested on another 8-core Intel CPU (Intel Core i7-7820X) that has a much higher

clock rate (4.5 GHz), but approximately the same peak memory bandwidth. On this

CPU, the flux kernel achieves 17.1 Gflops, which is more than double the compute

performance on the slower CPU. In contrast, the increase in Gflops of the gradient

kernel is 50%, which is much less than 100%. This means that the flux kernel is

more compute bound than the gradient kernel as it benefits more from a compute

performance increase.

Another performance analysis of the flow solver is carried out on a Nvidia GeForce
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Kernel Bandwidth (GBps) Compute (Gflops) Percentage of runtime
Gradient 29.8 13.6 9.7%
Flux 16.2 8.1 61.1%

Table 6.2: CPU performance analysis of important kernels

Kernel Bandwidth (GBps) Compute (Tflops) Percentage of runtime
Gradient 180 0.274 27.5%
Flux 211 0.577 38.5%

Table 6.3: GPU performance analysis of important kernels

GTX 980 GPU. It uses the Maxwell architecture, has 16 streaming multiprocessors,

2048 CUDA cores and 4 GB GDDR5 RAM. The GPU has a peak achievable com-

pute performance of 4.6 Teraflops (Tflops) and the peak DRAM memory bandwidth

is 224 GBps. The measured peak compute performance is 2.2 Teraflops for single

precision on the matrixMulCUBLAS benchmark from the Nvidia CUDA SDK. The

peak measured memory bandwidth is 150 GBps on the bandwidthTest benchmark

from the same SDK. The nvprof utility offers detailed global memory bandwidth

(which includes bandwidth measurements from DRAM and cache memory accesses)

and compute performance measurements for every kernel. The gradient kernel for the

GPU differs from the one used on the CPU due to the performance characteristics

of the CPU and GPU. On the CPU, the gradient kernel loops over all the faces of

the mesh and stores the contribution of each face to the gradient in the neighboring

cells. The store operation utilizes an indirect memory store. On the GPU, because

indirect memory stores are implemented using expensive atomic operations, the gra-

dient kernel processes all the cells of the mesh and directly computes the gradient in

each cell by accessing the fields of the neighboring cells. Similar to the CPU case, the

gradient and flux computation kernels are the most time consuming kernels. The av-

erage memory bandwidth, flops and percentage of runtime of these kernels are shown

in Table 6.3 for the two kernels. The average memory bandwidth utilization of both

kernels is high, whereas the flops utilization is much below the measured peak. This

indicates that both the kernels are primarily memory bandwidth bound. Even though
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the compute utilization of the flow solver on the GPU is low, it is about 10 times

faster than running the flow solver on the 8-core Intel CPU.

The scaling performance of the flow solver is analyzed on subsonic flow in a 3-

dimensional periodic box. The flow solver is run on a cluster of nodes with Intel CPUs

interconnected using Gigabit Ethernet. There are two types of scaling studies, strong

scaling study and weak scaling study. In strong scaling, the number of processors is

increased while keeping the number of cells in the mesh constant. Achieving perfect

strong scaling means that the runtime of the flow solver linearly decreases with the

number of processors on the log scale. In weak scaling, the number of compute nodes

is increased while keeping the ratio of the number of cells in the mesh to the number

of processors constant. Achieving perfect weak scaling means that the runtime of the

flow solver remains the same on increasing grid size.

Figure 6-9 shows the strong scaling performance of the primal and adjoint flow

solvers on a mesh with 1, 000, 000 cells running on 1, 2, 4, 8 and 16 processors (a

single node has 4 processors). The adjoint flow solver achieves closer to optimal

scaling as it performs more computations than the primal solver for a given amount

of communication. The adjoint flow solver is approximately 3.5 times slower than the

primal. Figure 6-10 shows the weak scaling performance of the primal and adjoint flow

solvers on meshes with number of cells varying from 100, 000 to 1, 600, 000 running

on 1, 2, 4, 8 and 16 processors. The number of cells per processor is kept constant

at 100, 000. The adjoint flow solver shows better weak scaling than the primal flow

solver as it has a higher work to communication ratio.

The scaling performance is further analyzed on the same flow problem running on

the Argonne National Lab’s Mira supercomputer. The nodes contain IBM PowerPC

CPUs which are interconnected using QDR Infiniband. Figure 6-11 shows the strong

scaling performance of the primal and adjoint solvers on a mesh with 24, 000, 000 cells

running on 512, 1024, 2048, 4096 and 8192 processors (a single node is 16 processors

with 16 hardware threads). Both flow solvers show near perfect strong scaling up

to 3,000 cells per processor. Figure 6-12 shows the weak scaling performance of the

primal and adjoint flow solvers on meshes with number of cells varying from 2, 500, 000
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Figure 6-9: Strong scaling study for the box problem on a CPU Ethernet based cluster

Figure 6-10: Weak scaling study for the box problem on a CPU Ethernet based cluster

to 40, 000, 000 running on 512, 1024, 2048, 4096 and 8192 processors. The number of

cells per processor is kept constant at approximately 5000. Both flow solvers show

perfect weak scaling.

Finally, the scaling performance is analyzed on the same problem running on GPU
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Figure 6-11: Strong scaling study for the box problem on a supercomputer
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Figure 6-12: Weak scaling study for the box problem on a supercomputer

compute 𝑝2.𝑥𝑙𝑎𝑟𝑔𝑒 instances in the Amazon EC2 Cloud. The nodes contain Tesla

K80 GPUs interconnected using high-speed Ethernet. Figure 6-13 shows the strong

scaling performance of the primal and adjoint solvers on a mesh with 10, 000, 000 cells

running on 1, 2, 4, 8 and 16 GPUs (a single node has 1 GPU). The primal solver shows
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worse scaling than the adjoint solver. Figure 6-14 shows the weak scaling performance

of the primal and adjoint flow solvers on meshes with number of cells varying from

2, 500, 000 to 40, 000, 000 running on 1, 2, 4, 8 and 16 GPUs. The number of cells

per GPU is kept constant at 2, 500, 000. The relatively poor scaling on GPUs on

the Amazon Cloud can be attributed to the higher latency and lower bandwidth of

Ethernet in comparison to Infiniband.
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Figure 6-13: Strong scaling study for the box problem on a GPU cloud
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Figure 6-14: Weak scaling study for the box problem on a GPU cloud
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Chapter 7

Conclusion

Adjoint-based design optimization using high-fidelity fluid flow simulations is a pow-

erful tool for the design of fluid machinery components. Using a viscosity stabilized

adjoint method and a gradient utilizing Bayesian optimization method, the trailing

edge of a gas turbine vane was optimized in Chapter 5. The optimal design has a

12% reduction in Nusselt number and 16% reduction in pressure loss coefficient.

The Bayesian optimizer has a few issues scaling to a large number of design pa-

rameters (> 20). The number of design points needed to obtain a surrogate model

with low error scales exponentially with the number of design parameters. Addition-

ally, optimizing the EI-based metric becomes more difficult with a high number of

parameters. Further research needs to be performed in order to increase its efficiency

for higher dimensional problems. Alternative optimization algorithms like multi-start

stochastic gradient descent should be investigated for design optimization problems

with a large number of parameters. The successful application of the adjoint-based

design optimization method to the trailing edge shape optimization problem using

LES increases its applicability to more challenging design problems like shape design

of an entire low-pressure turbine blade.

The chaotic behavior of turbulent fluid flows hampers the utility of the adjoint

method. The energy analysis of the adjoint equations, derived in Chapter 2, provides

valuable insight into the mechanisms of divergence of the adjoint solution for the com-

pressible Navier-Stokes equations. The viscosity stabilized adjoint method, derived in
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Chapter 3, is an inexpensive adjoint method for obtaining a stabilized adjoint solution

and reasonable accurate design objective gradients. The effectiveness of this method

was demonstrated on a canonical flow problem and an industrial flow problem. The

viscosity stabilized adjoint method can be combined with another adjoint method for

chaotic systems, the adjoint version of non-intrusive least squares shadowing, in order

to reduce its computational cost. Additionally, in Chapter 4 it was shown that the

error in the gradient due to the addition of artificial viscosity to the adjoint equations

can be bounded by the size of the damping parameter (or scaling factor 𝜂).

There are many avenues of additional research for the viscosity stabilized adjoint

method. In the energy analysis of the entropy symmetrized form of the adjoint

equations, the tensor 𝐴𝑣
𝑘𝑗𝑖 is not symmetric in the indices 𝑘 and 𝑖 for the Hughes

symmetrizing transformation. If there exists another entropy-based symmetrizing

transformation that ensures that the tensor is symmetric, then it would allow the

construction of an indicator field that takes into consideration the viscous terms from

the energy analysis. The existence of such a symmetrizing transformation is an open

question. In order to reduce the burden of the numerical implementation of the

viscosity stabilized adjoint method, the form of the viscous term modification was

kept simple. More complex forms of the modification mentioned in the thesis might

result in better stabilization performance and should be explored in the future. As the

optimal value of 𝜂 depends on the Reynolds number of the flow problem, an alternative

scaling of the artificial viscosity that depends on the convective scales should be

constructed. The error analysis of the viscosity stabilized adjoint method was applied

to the discretized flow equations. More insight can be obtained by extending the

analysis to the continuous form of the flow equations. Such an analysis would require

significant effort for handling the neutral subspace of the adjoint flow operator. The

error estimates for the design objective gradient (Equations 4.26 and 4.43) can only

be applied to low-dimensional chaotic systems. Efficient algorithms for estimating

𝐶3, 𝐶4 and 𝛿𝑢, 𝛿𝑠 for high-dimensional chaotic systems need to be devised.

The two-level graph method, described in Chapter 6, for defining the computations

in a flow solver increases the performance of the flow solver and reduces memory usage.
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The formation of fat kernels that require a single loop to process a set of computations

for all the elements of the mesh leads to better cache utilization. The computational

graph approach simplifies the derivation of the adjoint flow solver with the help of

reverse-mode AD. Additionally, it facilitates the creation of asynchronous schedulers

that overlap communication with computation and optimal memory management

strategies. The developed Python library implements the two-level graph method by

providing an abstract and expressive interface for writing high performance structured

or unstructured flow solvers. The library hides the low-level implementation details of

how to get optimal performance from the available hardware resources. The library

can generate code for a large variety of hardware platforms including CPUs and

GPUs. Furthermore, it provides kernels for asynchronous communication between

different instances of the flow solver for distributed execution. The flow solver scales

to thousands of CPUs and tens of GPUs. It is able to utilize a significant fraction

of the peak memory bandwidth and compute performance of both CPUs and GPUs.

The Python library, adFVM, significantly outperforms state of the art expression

template based AD and computational graph based AD libraries.

There are a number of avenues for future research to increase the performance of

the flow solver by improving the Python library. A program autotuner, like Open-

Tuner [4], can be used to optimize the different hardware specific parameters in the

library, like the kernel block size for GPUs. Using vectorized memory loads and stores

on the GPU can increase the DRAM memory bandwidth utilization of the flow solver.

Using AVX instructions on CPU can increase the flops utilization. Implementing an

asynchronous scheduler on GPUs for the two-level computational graph can increase

performance by allowing multiple kernels and memory transfers to run concurrently

on the same device.
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Appendix A

Tensors for the compressible

Navier-Stokes equations

A.1 Convective flux tensor in conservative formula-

tion

The tensor 𝐴𝑖𝑗𝑘 in the conservative formulation of the compressible Navier-Stokes

equations is given by

𝐴:1: =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

−𝑢21 + (𝛾−1)
2
𝑞2 −(𝛾 − 3)𝑢1 −(𝛾 − 1)𝑢2 −(𝛾 − 1)𝑢3 𝛾 − 1

−𝑢1𝑢2 𝑢2 𝑢1 0 0

−𝑢1𝑢3 𝑢3 0 𝑢1 0

−𝑢1(𝛾𝐸 − (𝛾 − 1)𝑞2) 𝛾𝐸 − (𝛾 − 1)(𝑢21 − 𝑞2

2
) −(𝛾 − 1)𝑢1𝑢2 −(𝛾 − 1)𝑢1𝑢3 𝛾𝑢1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.1)

𝐴:2: =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0

−𝑢2𝑢1 𝑢2 𝑢1 0 0

−𝑢2𝑢2 + (𝛾−1)
2
𝑞2 −(𝛾 − 1)𝑢1 −(𝛾 − 3)𝑢2 −(𝛾 − 1)𝑢3 𝛾 − 1

−𝑢2𝑢3 0 𝑢3 𝑢2 0

−𝑢2(𝛾𝐸 − (𝛾 − 1)𝑞2) −(𝛾 − 1)𝑢2𝑢1 𝛾𝐸 − (𝛾 − 1)(𝑢22 − 𝑞2

2
) −(𝛾 − 1)𝑢2𝑢3 𝛾𝑢2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.2)
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𝐴:3: =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0

−𝑢3𝑢1 𝑢3 0 𝑢1 0

−𝑢3𝑢2 0 𝑢3 𝑢2 0

−𝑢3𝑢3 + (𝛾−1)
2
𝑞2 −(𝛾 − 1)𝑢1 −(𝛾 − 1)𝑢2 −(𝛾 − 3)𝑢3 𝛾 − 1

−𝑢3(𝛾𝐸 − (𝛾 − 1)𝑞2) −(𝛾 − 1)𝑢3𝑢1 −(𝛾 − 1)𝑢3𝑢2 𝛾𝐸 − (𝛾 − 1)(𝑢23 − 𝑞2

2
) 𝛾𝑢3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.3)

A.2 Viscous flux tensor in conservative formulation

The tensor 𝐷𝑖𝑗𝑘𝑙 in the conservative formulation of the compressible Navier-Stokes

equations is given by

𝐷:1:1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

−4
3
𝜇
𝜌
𝑢1

4
3
𝜇
𝜌

0 0 0

−𝜇
𝜌
𝑢2 0 𝜇

𝜌
0 0

−𝜇
𝜌
𝑢3 0 0 𝜇

𝜌
0

𝛼𝛾(−𝐸 + 𝑞2) − 𝜇
𝜌
(1
3
𝑢21 + 𝑞2) (4

3
𝜇
𝜌
− 𝛼𝛾)𝑢2 (𝜇

𝜌
− 𝛼𝛾)𝑢2 (𝜇

𝜌
− 𝛼𝛾)𝑢3 𝛼𝛾

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.4)

𝐷:1:2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

−𝜇
𝜌
𝑢1

𝜇
𝜌

0 0 0

0 0 0 0 0

−𝜇
𝜌
𝑢1𝑢2

𝜇
𝜌
𝑢2 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.5)

𝐷:2:1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

−𝜇
𝜌
𝑢2 0 𝜇

𝜌
0 0

0 0 0 0 0

0 0 0 0 0

−𝜇
𝜌
𝑢1𝑢2 0 𝜇

𝜌
𝑢2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.6)

with similar matrices for 𝐷:2:3, 𝐷:3:2, 𝐷:1:3 and 𝐷:3:1.
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A.3 Abarbanel symmetrizing transformation

The linear transformation, 𝑆𝑖𝑗, is given by

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐√
𝛾𝜌

0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

− 𝑐

𝜌
√

𝛾(𝛾−1)
0 0 0

√︁
𝛾

𝛾−1
1
𝜌𝑐

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.7)

The linear transformation, 𝑉𝑗𝑘, is given by

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

−𝑢1

𝜌
1
𝜌

0 0 0

−𝑢2

𝜌
0 1

𝜌
0 0

−𝑢3

𝜌
0 0 1

𝜌
0

(𝛾−1)𝑢𝑖𝑢𝑖

2
−(𝛾 − 1)𝑢1 −(𝛾 − 1)𝑢2 −(𝛾 − 1)𝑢3 (𝛾 − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.8)

The tensor 𝐴𝑖𝑗𝑘 is given by the following 3 matrices

𝐴:1: =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢1
𝑐√
𝛾

0 0 0

𝑐√
𝛾

𝑢1 0 0
√︁

𝛾−1
𝛾
𝑐

0 0 𝑢1 0 0

0 0 0 𝑢1 0

0
√︁

𝛾−1
𝛾
𝑐 0 0 𝑢1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.9)

𝐴:2: =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢2 0 𝑐√
𝛾

0 0

0 𝑢2 0 0 0

𝑐√
𝛾

0 𝑢2 0
√︁

𝛾−1
𝛾
𝑐

0 0 0 𝑢2 0

0 0
√︁

𝛾−1
𝛾
𝑐 0 𝑢2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.10)
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𝐴:3: =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢3 0 0 𝑐√
𝛾

0

0 𝑢3 0 0 0

0 0 𝑢3 0 0

𝑐√
𝛾

0 0 𝑢3

√︁
𝛾−1
𝛾
𝑐

0 0 0
√︁

𝛾−1
𝛾
𝑐 𝑢3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.11)

A.4 Turkel symmetrizing transformation

The linear transformation, 𝑆𝑖𝑗, is given by

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1
𝜌𝑐

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−𝛾𝑝
𝜌

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.12)

The linear transformation, 𝑇𝑖𝑘, is given by

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(𝛾 − 1)𝑢𝑖𝑢𝑖

2𝜌𝑐
−(𝛾 − 1)𝑢1

𝜌𝑐
−(𝛾 − 1)𝑢2

𝜌𝑐
0 − (𝛾 − 1)𝑢3

𝜌𝑐
(𝛾 − 1) 1

𝜌𝑐

−𝑢1

𝜌
1
𝜌

0 0 0

−𝑢2

𝜌
0 1

𝜌
0 0

−𝑢3

𝜌
0 0 1

𝜌
0

(𝛾−1)𝑢𝑖𝑢𝑖

2
− 𝑐2 −(𝛾 − 1)𝑢1 −(𝛾 − 1)𝑢2 −(𝛾 − 1)𝑢3 (𝛾 − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.13)

The tensor 𝐴𝑖𝑗𝑘 is given by the following 3 matrices

𝐴:1: =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢1 𝑐 0 0 0

𝑐 𝑢1 0 0 0

0 0 𝑢1 0 0

0 0 0 𝑢1 0

0 0 0 0 𝑢1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.14)
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𝐴:1: =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢2 0 𝑐 0 0

0 𝑢2 0 0 0

𝑐 0 𝑢2 0 0

0 0 0 𝑢2 0

0 0 0 0 𝑢2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.15)

𝐴:1: =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢3 0 0 𝑐 0

0 𝑢3 0 0 0

0 0 𝑢3 0 0

𝑐 0 0 𝑢3 0

0 0 0 0 𝑢3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.16)

A.5 Hughes symmetrizing transformation

Using the following notation

𝑘1 =
1

2

(𝑣22 + 𝑣23 + 𝑣24)

𝑣5
, 𝑘2 = 𝑘1 − 𝛾, 𝑘3 = 𝑘21 − 2𝛾𝑘1 + 𝛾

𝑘4 = 𝑘2 − 𝛾 + 1, 𝑘5 = 𝑘22 − (𝛾 − 1)(𝑘1 + 𝑘2)

𝑐1 = (𝛾 − 1)𝑣5 − 𝑣22, 𝑑1 = −𝑣2𝑣3, 𝑒1 = 𝑣2𝑣5

𝑐2 = (𝛾 − 1)𝑣5 − 𝑣22, 𝑑2 = −𝑣2𝑣4, 𝑒2 = 𝑣3𝑣5

𝑐3 = (𝛾 − 1)𝑣5 − 𝑣22, 𝑑3 = −𝑣3𝑣4, 𝑒3 = 𝑣4𝑣5

(A.17)

180



the symmetrized tensors 𝐴𝑖𝑗𝑚 and �̂�𝑖𝑗𝑚𝑙 are

𝐴:1: =
𝜌𝑒

(𝛾 − 1)𝑣25

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒1𝑣5 𝑐1𝑣5 𝑑1𝑣5 𝑑2𝑣5 𝑘2𝑒1

* −(𝑐1 + 2(𝛾 − 1)𝑣5)𝑣2 −𝑐1𝑣3 −𝑐1𝑣4 𝑐1𝑘2 + (𝛾 − 1)𝑣22

* * −𝑐2𝑣2 −𝑑1𝑣4 𝑘4𝑑1

* * * −𝑐3𝑣2 𝑘4𝑑2

* * * * 𝑘5𝑣2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.18)

𝐴:2: =
𝜌𝑒

(𝛾 − 1)𝑣25

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒2𝑣5 𝑑1𝑣5 𝑐2𝑣5 𝑑3𝑣5 𝑘2𝑒2

* −𝑐1𝑣3 −𝑐2𝑣2 −𝑑1𝑣4 𝑘4𝑑1

* * −(𝑐2 + 2(𝛾 − 1)𝑣5)𝑣3 −𝑐2𝑣4 𝑐2𝑘2 + (𝛾 − 1)𝑣23

* * * −𝑐3𝑣3 𝑘4𝑑3

* * * * 𝑘5𝑣3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.19)

𝐴:3: =
𝜌𝑒

(𝛾 − 1)𝑣25

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒3𝑣5 𝑑2𝑣5 𝑑3𝑣5 𝑐3𝑣5 𝑘2𝑒3

* −𝑐1𝑣4 −𝑑2𝑣3 −𝑐3𝑣2 𝑘4𝑑2

* * −𝑐2𝑣4 −𝑐3𝑣3 𝑘4𝑑3

* * * −(𝑐3 + 2(𝛾 − 1)𝑣5)𝑣4 𝑐3𝑘2 + (𝛾 − 1)𝑣24

* * * * 𝑘5𝑣4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.20)
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𝐷:1:1 =
1

𝑣35

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

* −4
3
𝜇𝑣25 0 0 4

3
𝜇𝑒1

* * −𝜇𝑣25 0 𝜇𝑒2

* * * −𝜇𝑣25 𝜇𝑒3

* * * * −[4
3
𝜇𝑣22 + 𝜇(𝑣23 + 𝑣24 − 𝛾𝛼𝜌𝑣5)]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.21)

𝐷:2:2 =
1

𝑣35

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

* −𝜇𝑣25 0 0 𝜇𝑒1

* * −4
3
𝜇𝑣25 0 4

3
𝜇𝑒2

* * * −𝜇𝑣25 𝜇𝑒3

* * * * −[4
3
𝜇𝑣23 + 𝜇(𝑣22 + 𝑣24 − 𝛾𝛼𝜌𝑣5)]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.22)

𝐷:3:3 =
1

𝑣35

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

* −𝜇𝑣25 0 0 𝜇𝑒1

* * −𝜇𝑣25 0 𝜇𝑒2

* * * −4
3
𝜇𝑣25

4
3
𝜇𝑒3

* * * * −[4
3
𝜇𝑣24 + 𝜇(𝑣23 + 𝑣22 − 𝛾𝛼𝜌𝑣5)]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.23)

𝐷:1:2 =
1

𝑣35

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 2
3
𝜇𝑣25 0 −2

3
𝜇𝑒2

0 −𝜇𝑣25 0 0 𝜇𝑒1

0 0 0 0 0

0 𝜇𝑒2 −2
3
𝜇𝑒1 0 1

3
𝜇𝑑1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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𝐷:1:3 =
1

𝑣35

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 2
3
𝜇𝑣25 −2

3
𝜇𝑒3

0 0 0 0 0

0 −𝜇𝑣25 0 0 𝜇𝑒1

0 𝜇𝑒3 0 −2
3
𝜇𝑒1

1
3
𝜇𝑑2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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𝐷:2:3 =
1

𝑣35

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 1
3
𝜇𝑣25 −1

3
𝜇𝑒3

0 0 −𝜇𝑣25 0 𝜇𝑒2

0 0 𝜇𝑒3 −2
3
𝜇𝑒2

1
3
𝜇𝑑3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.26)

(A.27)
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The sign (*) denotes the fact that the entry is the same as the entry in the matrix

with its indices swapped.
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Appendix B

Analysis of error due to sparse

addition of artificial viscosity

Adding 𝑏 times artificial viscosity every 𝑏 time steps, where 𝑏 is a positive integer,

introduces an additional error in the numerical adjoint solution of the modified adjoint

equations. The addition of artificial viscosity is modelled using the following equation

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 (B.1)

where 𝑥 is a scalar and 𝑎 is a constant.

Using the implicit Euler integration method, when adding viscosity at every time

step, the solution at a time step 𝑛+ 1 can be written as

𝑥(𝑡𝑛+1) =
1

1 − 𝑎∆𝑡
𝑥(𝑡𝑛) + 𝑎2𝑂(∆𝑡2) (B.2)

where ∆𝑡 = 𝑡𝑛+1 − 𝑡𝑛 is the time step. Using a constant time step and representing

𝑥(𝑡𝑛+1) as 𝑥𝑛+1

𝑥𝑛+1 =
1

1 − 𝑎∆𝑡
𝑥𝑛 + 𝑎2𝑂(∆𝑡2) (B.3)

Using the above equation for 𝑏 time steps

𝑥𝑛+𝑏 =
1

(1 − 𝑎∆𝑡)𝑏
𝑥𝑛 + 𝑎2𝑂(∆𝑡2) (B.4)
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For small time steps (𝑎∆𝑡≪ 1), the above equation can be simplified to

𝑥𝑛+𝑏 = (1 + 𝑏𝑎∆𝑡)𝑥𝑛 + (𝑏𝑎)2𝑂(∆𝑡2) (B.5)

Using the implicit Euler time integration method, when adding 𝑏 times the vis-

cosity at every 𝑏 time steps, the solution at time step 𝑛+ 𝑏 can be written as

𝑥𝑛+𝑏 =
1

1 − 𝑏𝑎∆𝑡
𝑥𝑛 + (𝑏𝑎)2𝑂(∆𝑡2) (B.6)

For small time steps (𝑏𝑎∆𝑡≪ 1), the above equation can be simplified to

𝑥𝑛+𝑏 = (1 + 𝑏𝑎∆𝑡)𝑥𝑛 + (𝑏𝑎)2𝑂(∆𝑡2) (B.7)

Equations B.5 and B.7 show that the order of magnitude of the error in the solution

for the two different methods of adding viscosity is the same for small time steps.

Hence, adding 𝑏 times the artificial viscosity every 𝑏 time steps does not lead to a

large increase in the error of the adjoint solution for the modified adjoint equations.
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