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Abstract

Compact and smart optical sensors have had a major impact on people's lives over the last
decade. Although the spatial information provided by optical imaging systems has already
had a major impact, there is untapped potential in the spectroscopic domain. By transforming
molecular information into wavelength-domain data, optical spectroscopy techniques have
become some of the most popular scientific tools for examining the composition and nature
of materials and chemicals in a non-destructive and non-intrusive manner. However, unlike
imaging, spectroscopic techniques have not achieved the same level of penetration due to
multiple challenges. These challenges have ranged from a lack of sensitive, miniaturized,
and low-cost systems, to the general reliance on domain-specific expertise for interpreting
complex spectral signals.

In this thesis, we aim to address some of these challenges by combining modern com-
putational and statistical techniques with physical domain knowledge. In particular, we
focus on three aspects where computational or statistical knowledge have either enabled
realization of a new instrument-with a compact form factor yet still maintaining a compet-
itive performance-or deepened statistical insights of analyte detection and quantification in
highly mixed or heterogeneous environments. In the first part, we utilize the non-paraxial
Talbot effect to build compact and high-performance spectrometers and wavemeters that
use computational processing for spectral information retrieval without the need for a
full-spectrum calibration process. In the second part, we develop an analyte quantification
algorithm for Raman spectroscopy based on spectral shaping modeling. It uses a hierarchical
Bayesian inference model and reversible-jump Markov chain Monte Carlo (RJMCMC) com-
putation with a minimum training sample size requirement. In the last part, we numerically
investigate the spectral characteristics and signal requirements for universal and predictive
non-invasive glucose estimation with Raman spectroscopy, using an in vivo skin Raman
spectroscopy dataset. These results provide valuable advancements and insights in bringing
forth smart compact optical spectroscopic solutions to real-world applications.

Thesis Supervisor: Rajeev J. Ram
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction and Overview

1.1 Optical Spectroscopy As a Sensing Modality

Compact and smart optical sensors have had a major impact on people's lives over the

last decade. For example, low-cost imaging sensors have transformed numerous social

paradigms by putting a recording device in everyone's pocket. Although the spatial

information provided by imaging systems has already had a major impact, there is

untapped potential in the spectroscopic domain. As illustrated in Figure 1-1, by

transforming molecular information into wavelength-domain data, optical spectroscopy

techniques have become one of the most popular scientific tools for examining the

composition and nature of materials and chemicals in a non-destructive and non-

intrusive manner [5]. Spectroscopic sensing is also one of the few techniques available

that can perform simultaneous multi-chemical or multi-component analysis in a true

label-free fashion. These characteristics, together with the fact that optical sensing is

typically performed in a non-contact or remote mode, have led to the ever-increasing

adoption and integration of spectroscopic sensing technologies in the industrial world.

However, in comparison to imaging, spectroscopic techniques have not achieved

the same level of penetration despite of their huge potential and demonstrated success

in many sensing areas. This is due to challenges ranging from a lack of sensitive,

miniaturized, and low-cost systems to the general reliance on domain-specific expertise

for interpreting complex spectral signals. As a result, there has been considerable re-
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Figure 1-1: Illustration of the signal generation and acquisition process in optical
spectroscopy. Molecules in physical mixtures have different energy states governed

by quantum mechanics and statistical physics. These energy states can contribute
to spectral features during the light-matter interaction in optical spectral sensing.
A spectrometer is then used to collected measurements that can be used to retrieve
the spectral information. In spectral data analysis, the goal is to infer the molecular
information about the mixture under examination from the spectral measurement.

search and development during recent years in bringing forward compact, sensitive and

smart spectroscopy solutions with in-the-field analysis only previously achievable from

laboratory-grade benchtop instruments with specially-trained spectroscopy experts.

This includes instrumentation and computational improvements to the signal acquisi-

tion process and application-oriented statistical algorithm development for spectral

data analysis. This thesis aims to address some of the contemporary challenges faced

in optical spectroscopy by combining modern computational and statistical disciplines

with physical domain knowledge and design. As introduction and overview, this

chapter will provide the background discussions to the problems that will be addressed

in this thesis. Section 1.2 discusses the various approaches for signal acquisition and

transformation as illustrated in Figure 1-1. Conventional techniques, as well as the

more recent computational approaches, for realizing spectrometers and wavemeters

are presented. Next, Section 1.3 introduces algorithms for spectral data analysis

with a focus on mixture study. Various algorithmic approaches including explicit

mixture modeling, supervised and unsupervised learning, as well as spectral shape

modeling are presented. Afterwards, an overview on skin Raman and autofluorescence
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spectroscopy and its applications in disease diagnostics and monitoring, followed up

with a detailed discussion on the background and technology development for skin

Raman spectroscopy for non-invasive glucose estimation, are provided in Section 1.4.

At last, Section 1.5 provides a structural overview for the content of this thesis.

1.2 Signal Acquisition and Transformation

While many forms of optical spectroscopy exist with various signal generation and

collection approaches, transforming the raw optical wave into spectral domain signals

for data analysis is the core process shared by all techniques. This puts spectrometer

design and optimization at the center stage for many spectroscopy applications. In

general, with bright signals that do not have fine spectral features, selecting a general-

purpose spectrometer that can properly display the spectrum is a straightforward

task. However, this can become progressively more involved and intriguing once

more requirements on spectrometer sensitivity, resolution, bandwidth, and form factor

are in place. For example, spontaneous Raman spectroscopy is one of the most

demanding spectroscopy areas in terms of sensitivity requirement due to the weak

Raman scattering process. No satisfactory instrument solutions exist for miniaturized

Raman spectrometers (with a footprint smaller than ~ 5 cm x 5 cm x 5 cm) that

have a comparable performance to a typical benchtop system. This desire for more

compact and low-cost yet high-performing spectrometer systems is behind the many

innovations proposed and realized over the past decades [6, 7, 8, 9].

Other than spectrometers that are designed for general spectroscopy including

the case with broadband and non-monochromatic light sources, more specialized

wavelength meters, or wavemeters, that are specifically for pulsed and continuous-wave

(CW) coherent laser beams also play an important role in application areas such as

the spectroscopy of atomic systems. A wavemeter usually has accuracy requirement

much higher than that of a typical spectrometer and is generally built through an

interferometric geometry. Similar to the case of spectrometers, a continuous push for

compact, high-accuracy, and broad-bandwidth wavemeters has resulted in a surge of

27



novel concepts for realizing next-generation devices and instruments [10, 11, 12].

Mathematically, for any spectral measurement, assume that the source light has a

power spectral density of S(A). For a diffuse light source with S(A), the input light

can have many spatial modes that are mutually incoherent. The spectral measurement

essentially performs a mapping as

I(1) = S(A)H(1, A) dA, (1.1)

where 1 is the measurement location, I(1) is the field intensity at 1, and H(1, A) is the

averaged instrument mapping function across all the input spatial modes. For H(1, A),

H(1, A) = EZ Hi(1, A), assuming that Hi(1, A) is the instrument mapping function for

spatial mode i. With the proper sensor sampling function, Equation 1.1 can also be

represented in the discrete form as

I = HS, (1.2)

assuming that there are M discrete measurements from the sensor and N discrete

spectral components from the light source to recover, I E RM, H E RMxN, and

S E RN. In general, experimental realization of a spectral measurement system aims

at achieving a well-conditioned transformation H, such that the spectral signal S can

be reconstructed from instrument measurement I through inversion or pseudo-inversion

of H with robust performance against measurement noise. This task can be very

challenging for diffused light sources with many spatial modes, as the spatio-spectral

ambiguity can result in ill-defined or ill-conditioned H. Due to the conservation of

6tendue [13, 14], which states that the 6tendue of light cannot decrease through lossless

propagation, one of the only solutions to this problem is to spatially filter the source

light through a pinhole or slit, thereby restricting the input spatial modal profile.

This means that most spectroscopy solutions are not photon-efficient with diffuse light

sources. Brady [15] provided a more fundamental discussion on this topic, linking the

sensor multiplexing capacity with the constant radiance theorem (which is a closely

related statement to the conservation of 6tendue).
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1.2.1 Commercial Spectrometers and Wavemeters
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Figure 1-2: Schematic setups for (a) dispersive diffraction grating spectrometer;
(b) scanning Michaelson interferometer-based Fourier spectrometer; (c) wavemeter
based on the Fizeau interferometer; (d) tunable diode laser absorption spectroscopy
(TDLAS).

The design choices for commercial spectrometers have been dominated by two

options, the diffraction grating spectrometers and the Michelson interferometer-based

Fourier spectrometers. The setups for these spectrometers are shown in Figure 1-2 (a)

and (b). The diffraction grating spectrometers utilize the spatially-dispersive responses

of periodic diffractive structures and use detector arrays such as CCD or CMOS for

signal readout. In addition, a slit is used to reduce the spatio-spectral ambiguity

associated with the optical signal transformation introduced by the diffraction grating.

With detector line binning, this can achieve near identity matrix transformation as

H, subject to imaging distortions and aberrations. Fourier spectrometers employ a

scanning stage to record the interferogram of the light source through self-interference

at various path length differences. In this case, the corresponding H is the inverse
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Fourier transformation matrix. Both spectrometer approaches achieve near orthogonal

transformation for H. For visible-to-near infrared applications where there is an

abundance of sensitive and low-cost detector arrays, dispersive spectrometers are

more favored due to their static nature and strong balance between sensitivity and

instrument size. On the other hand, for long wavelength applications from mid-infrared

to terahertz frequencies where there is a dearth of large-area and sensitive detector

arrays, Fourier spectrometers are the predominant choices.

For wavemeters, there are also two main approaches. They are the scanning

Michelson interferometer (same as the Fourier spectrometer) and the static Fizeau

interferometer. Figure 1-2 (c) shows an example setup for the Fizeau interferometer

[16]. The Fizeau wedge reflects incoming light wave into to two beams with slightly

off propagation directions. A detector array is used to record the interference pattern

of these two beams. The wavelength information can then be obtained from the

interference pattern through signal process and analysis [17]. For commercial waveme-

ters, the highest accuracy wavemeters are typically based on the Fizeau geometry. In

addition, it has better performances against power fluctuations and side modes due to

the static nature. Similar to the case of spectrometers, Michelson interferometer-based

wavemeters can cover longer wavelength regimes due to the fact that only a single

detection element is required [18].

It is worth mentioning that for some spectroscopy applications, a strict "spectrom-

eter" in the conventional sense is not needed. Figure 1-2 (d) shows an example setup

for tunable diode laser absorption spectroscopy (TDLAS) [19]. In this case, a diode

laser is tuned and two detectors are used for constructing the absorption profile of the

sample in the wavelength sweeping domain. A wavemeter is also used to provide the

necessary reference wavelength information of the measurement. This is an example

where a wavemeter can be a critical component for spectrum acquisition.

Apart from these conventional solutions, there is a myriad of compact spectrom-

eter and wavemeter design approaches that has been proposed and realized. These

approaches include integrated optics [7, 20], micro-optics [21], and filter array [9]

for spectrometers, and Fabry-Perot interferometer [22] and diffraction grating [10]

30



for wavemeters. However, despite these interesting demonstrations, the commercial

landscape for spectrometers and wavemeters are still mostly dominated by the more

conventional techniques discussed in this part.

1.2.2 Computational Instrumentation

The Michaelson interferometer is an example where computational inversion is used to

retrieve the spectral signal from the instrument measurement. Since the early 2000s,

spectrometers and wavemeters that incorporate more sophisticated computational

elements have been proposed and experimentally realized. Compared to the conven-

tional approaches, these instruments have shown competitive advantages in areas such

as light throughput, form factor, and resolving power amongst others. By utilizing

physical modeling and digital computation, spectral information can be retrieved with

unconventional optical elements in these designs.

The most prominent example is the coded aperture spectrometer [6, 23]. This is

shown in Figure 1-3 (a). Instead of a slit, the coded aperture spectrometer uses a

coded mask as the input entrance in a grating spectrometer configuration for through-

put improvement. The coded mask employs orthogonal spatial coding such as the

Hadamard code. This preserves the well-conditioned nature for H in coded aperture

spectrometers. Deconvolution-like algorithms can then be used for spectral reconstruc-

tion. In addition to spectrometer design, the coded aperture configuration has also

been demonstrated for high-performance hyper-spectral imaging applications [28]. It

is worth noting that the coded aperture spectrometer is one of the few spectrometer

approaches that have demonstrated definitive light throughput improvement over the

traditional approaches for diffused light sources [6]. Such throughput improvement

relies on the fact that for diffused light sources, the light intensity can be assumed to

be close to uniform on the entrance mask.

The rest of the computational approaches mostly rely on explicitly measuring the

transformation matrix H with various engineered spatio-spectral responses through a

full-spectrum calibration process. Examples of such approaches are shown in Figure 1-

2 (b) to Figure 1-2 (h). Xu et al. [24] used a 3-D disordered photonic crystal structure
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Figure 1-3: Illustrations for a number of spectrometer and wavemeter designs with
computational elements in literature. (a) The Hadamard mask and the coded aperture
spectrometer [6, 23]. (b) 3-D disordered photonic crystal spectrometer for multi-
modal input [24]. (c) Spectrometer with a broadband diffractive structure [25]. (d)
Waveguide-based spectrometer with disordered scattering media [8]. (e) Multimode
fiber interference-based spectrometer [26]. (f) Multimode waveguide interference-based
spectrometer [27]. (g) Wavemeter with a think film diffuser [11]. (h) Wavemeter with

an integrating sphere [12].

to construct a spectrometer with multimodal diffused light (Figure 1-3 (b)). Wang

and Menon [25] used broadband diffractive structures to reconstruct spectra for light

sources including laser, LED, and broadband sources (Figure 1-3 (c)). For waveguide

and fiber-based approaches, Redding et al. [8] used scattering through disordered

media to realize spectrometers in an ultra-compact footprint (Figure 1-3 (d)). Redding

and Cao [26] and Wan et al. [27] used multi-mode interference pattern for spectral

reconstruction with light input from single-mode fiber and waveguide (Figure 1-3 (e)

and Figure 1-3 (f)). For wavemeter-specific applications, Mazilu et al. [11] used
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scattering from a thin film diffuser as the dispersive element (Figure 1-3 (g)), achieving

picometer level accuracy. Metzger et al. [12] used a fiber-coupled integrating sphere

to achieve sub-femtometer accuracy (Figure 1-3 (h)).

With H obtained from the full-spectrum calibration process, Equation 1.2 becomes

a standard mathematical inverse problem to evaluate the estimated S given any

detector measurement I. Direct pseudo-inversion of H can be easily corrupted due

to noise in the measurement [29]. To overcome this, most of these approaches used

techniques such as regularization [29] for spectral estimation. While these calibration-

based computational spectroscopy approaches have demonstrated impressive resolution

(sub-femtometer at 780 nm in Metzger et al. [12]), bandwidth (from 500 to 1600 nm

in Wan et al. [27] and from 300 to 2500 nm with simulation in Wang and Menon

[25]) and footprint (25 pm x 50 pm in Redding et al. [8]) characteristics, it is worth

pointing out that other than Xu et al. [24] and possibly Wang and Menon [25], the

rest of them assumed high spatial purity for the input light through spatial filter

from single-mode fiber and waveguide. This is fine for coherent light sources such

as lasers but does not match the requirement for incoherent applications such as

fluorescence measurement. In addition, even with techniques such as regularization,

the measurement to obtain the transformation matrix H contains noise and errors,

which will be amplified and injected in the inversion process [29]. As a result, it

is not expected that these spectrometers and wavemeters will have any sensitivity

advantage in comparison to conventional methods with orthogonal transformation

embedded in the physical process. Moreover, experimentally, the full-spectrum spectral

calibration process to retrieve H requires tunable monochromatic light sources, which

currently do not have simple and compact solutions with high accuracy and broad

bandwidth operation. As these instruments might need frequent recalibration due to

environmental factors such as response drifts caused by mechanical and temperature

influences [30], this aspect could severely hinder their practical use and adoption.

Despite the several potential issues described above, overall, there has been signifi-

cant innovation and progress in the search for more compact and high-performance

spectroscopy solutions. It is imaginable that spectroscopy systems with new elements
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Figure 1-4: The Hamatsu C12666MA mini-spectrometer and its build structure [31].

introduced in this part are on the horizon for wider adoption in the near future. For

example, a coded aperture design with existing compact spectrometer technology

such as the Hamamatsu C12666MA micro-spectrometer [31], shown in Figure 1-4,

can be a viable solution for small footprint and high throughput spectrometer for

diffused light sources, although the current resolution achievable with Hamamatsu

C12666MA is relatively coarse (~ 15 nm) at the moment. Computational spectrome-

ters and wavemeters can be used in situations where extremely high resolution might

be required and recalibration is allowed. Alternatively, high-precision closed-loop

temperature control and stable mechanical housing can be incorporated to mitigate

the influences from environmental factors on the calibration matrix. However, the

quest for compact spectroscopy solutions with high performance metrics without the

need to perform any full-spectrum calibration is still far from completion.

1.3 Algorithms for Spectral Data Analysis

With the many novel concepts in realizing compact and high-performance spectrometers

and wavemeters discussed in the previous section, we turn our discussions to the

other end of applied spectroscopy problems. This is spectral data processing or

chemometric analysis. Common to the core of any optical spectroscopy techniques,

chemometric analysis aims at developing robust and statistically-sound methods to

extract quantitative information related to the material or substance of interest from
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the spectral signals. As shown in Figure 1-1, the information flow of spectral data

analysis is opposite to that of the signal generation and acquisition process. We start

our discussions on this topic by introducing mixture problems in spectroscopy in the

following part.

1.3.1 Mixture Problems in Spectroscopy

(a) Physical Mixture
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Figure 1-5: (a) The Raman spectrum contains quantitative information from the
mixture molecules under examination. (b) An example Raman spectrum for a physical
mixture containing four compositions in (c) at a molar concentration ratio of 1 : 0.47 :
0.66 : 0.35. (c) Raman spectra for the four composition materials in the mixture in
(b) measured independently at equal concentrations.

Most chemometric problems involve analyzing spectral signals from a physical

mixture of chemicals and materials. Figure 1-5 shows example spontaneous Raman

spectra of a physical mixture as well as its four composition materials, namely glucose,
lactic acid, L-lysine, and sodium pyruvate. Concentration or quantity estimation for

any or all the composition materials from a set of mixture spectra can be performed

with or without any prior knowledge on the Raman spectra of the composition

materials. Alternatively, decision making based on the composition materials can be

the direct outcome without the need to explicitly estimate their concentrations or

quantities.

Broadly speaking, linear mixture models are the most fundamental and predomi-

nantly used modeling assumptions in chemometric research. Assuming that a discrete
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spectral signal y is collected with N spectral data points for a mixture substance with

K components, we can model y = [iY, Y2, - - ,YN] E RN as

K

y = Z cai+c= a, a2 .. a aK] c E'=Ac+E,
i=1[7 1

where ai = [ai,1, ai,2 , .. . , aj,N] E RN is the spectral signal for the i-th component at

unit concentration, A is the component spectra matrix, c = [c1 , c2 ,... , CK] E RK

correspond to the concentrations or quantities for all the components in the mixture,

and c = [61, 62, ... , 6N] E RN is the noise in the recorded spectrum. The fundamental

assumption for this model is that signal strength from each component is linear to

its abundance in the mixture and the overall signal is a linear addition from all the

constitute component signals. For a set of mixture measurements Y, where each

column is a spectral measurement from an independent mixture sample, we have

Y = (1) y (2 ) (M-1) Y(Mj = AC + E. (1.3)

Here, M is the number of mixture samples, Y E RNxM, A E RNxK, C E RKxM

and E E RNxM. For optical spectroscopy problems, Equation 1.3 is in general an

over-determined problem with N > K, meaning that the number of spectral data

points (typically ( 100) is much greater than the resolvable number of chemical

components in the mixtures.

Given Y and possibly information about A and C through physical domain

knowledge or reference measurements, for spectroscopy applications, the goal is to

infer either the complete A or C, partial entries in A or C, or some functional

mappings of A or C. Although our modeling is based on linear assumptions, it is

standard to extend the functionality of the associated algorithms into the nonlinear

regime through techniques such as the kernel method [32]. In the following parts, we
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briefly discuss several canonical approaches for dealing with various facets involving

Equation 1.3.

1.3.2 Explicit Modeling through Reference Measurements

For mixtures with fixed and known compositions, A in Equation 1.3 may be explicitly

measured through independent experiments. This can be performed by measuring

the components in pure form at high concentrations or quantities, and construct

the A matrix accordingly. Similar to estimating S from I in Equation 1.2 in the

computational spectrometer and wavemeter approaches, the problem then becomes

what is typically encountered in mathematical inverse problems, and many techniques

exist that are able to solve it efficiently and accurately [29]. For example, the classical

least squares (CLS) estimation can be used to directly calculate the pseudo-inverse of

the A matrix such as the ones described in Lee et al. [33], Miller and Miller [34], Feng

et al. [4]. For measurements with considerable noise that may corrupt the pseudo-

inversion, techniques based on singular value decomposition (SVD) or ridge regression

can be performed to regularize the solution.

In order for explicit modeling to perform well with high accuracy, it is desirable

to obtain the A matrix with the exact components in the mixture. In CLS, this is

typically obtained by selecting library spectra in A carefully with domain knowledge

until the point where the residue from the pseudo-inversion reconstruction does not

contain any distinguishable spectral shapes. This process can be labor-intensive,

and may be prone to human judgment bias. A slightly different approach can be

to construct a large library spectra set that covers all the component spectra, plus

additional spectra from substances that may not present in the mixture, and use

regularizers with sparsity constraints for component selection. Popular choices such as

the 11 regularization can be solved with extremely efficient algorithms for these types

of problems [35].

In general, other than instances where the mixture components are known with

high confidence and are easy to measure in pure form, explicit modeling is not used

as often as some of the supervised learning algorithms as will be discussed next.
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However, the process of explicit modeling with CLS-like algorithms can lead to

mixture understanding from a physical level, which is often missed with the alternative

approaches.

1.3.3 Supervised and Unsupervised Learning Algorithms

Supervised Learning

The linear mixture model assumed above implies that the concentration or quantity

information pertaining to any mixture component can be obtained with a linear

operation for a given mixture spectrum y. This means that a multivariate calibration

model can be constructed without the need to measure the spectrum from any

constitute component in the mixture. This type of approach falls under the supervised

learning catalog. In regression settings, assuming that there are M independent

mixture samples, we have

c() y()T -

C - b + c' = Yb + E', (1.4)

c(M) _ MT

where c E RM represent the concentration or quantity information for the component

of interest in the M mixture samples, Y E RMxN is the mixture spectra matrix

where each row corresponds to spectrum from a mixture sample (a constant term

can be appended to each row for offset modeling, which we omit here for simplicity),

b E RN is the regression vector, and c' E RM is the estimation noise. Here, c are

typically obtained through separate reference measurements with standard chemical

assays such as high performance liquid chromatography (HPLC). For models involving

quantification for multiple components in the mixture, assuming that there are L
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components of interest, we have

- CMT -

-- C(2T -
C= .YB+E',

- C(M)T -

where C E RMxL, B E RNxL, and E' E RMXL. Rows in C correspond to the

concentrations or quantities for all the components of interest in the mixture sample.

Meanwhile, columns in B are the regression vectors for the corresponding components

of interest.

Depending on the application scenario, the dimensionality of the mixture spectra

matrix can be drastically different. For example, for hyper-spectral image datasets,
it can often be the case that M N, meaning that the number of independent

measurements can be greater than the number of spectral data points in each measure-

ment. On the other hand, for bio-medical spectroscopy applications, where spectra

are taken at high resolutions and spectral samples and reference measurements can be

labor-intensive or expensive to acquire, M g N, or even M < N, meaning that the

number of independent measurements is usually smaller than the number of spectral

data points. However, regardless of the dimensionality of the mixture spectra matrix,
as indicated in Equation 1.4, Y is often of much lower rank than either M or N. This

means that the number of resolvable chemical components in mixtures is much less

than the number of independent measurements or the number of spectral data points.

As a result, the multicollinearity issue in multivariate regression analysis is extremely

common amongst spectroscopy datasets.

There have been many algorithms and their variants being developed and perfected

over the years for multivariate regression analysis, some of which have been widely

used with spectroscopy datasets. Examples include partial least squares regression

(PLSR) [36], principle component regression (PCR) [37], artificial neural networks

(ANNs) [38], support vector regression (SVR) [39] amongst others [34]. With all

these algorithms, a training process, which is called "calibration" in the chemometrics
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community, is first carried out for model construction and hyperparameter selection.

The resulting model is subsequently evaluated with cross-validation, bootstrap, or

independent test sets. For these algorithms, the model construction and selection

process essentially tries to search the optimal subspace that represents the mixture

spectra training data, and performs predictions based on projections onto the trained

subspace. For supervised classification tasks, the general treatment is similar to that

of the regression methods, which we do not discuss in further details.

Unsupervised Learning

Another family of algorithms that has found wide usage in spectral data analysis,

especially in the hyper-spectral unmixing community, falls into the unsupervised

learning catalog. In these algorithms, A and C from Equation 1.3 are estimated

directly from the observed mixture data Y. Afterwards, the estimated spectral

bases in A are often compared to a spectral library for component (which are called

"endmembers" in the hyper-spectral unmixing community) identification [40]. These

unsupervised learning techniques are often of the form of matrix factorization, where

the individual algorithms are the results of the different factorization criteria. For

example, independent component analysis (ICA) is based on assumptions of the

statistical properties of the underlying subcomponents [41], whereas the popular

vertex component analysis (VCA) for hyper-spectral unmixing comes as a result of

geometric constraints [42].

The successful application and convenience of these unsupervised learning al-

gorithms for spectral data unmixing come with relatively strong requirements on

the spectral dataset. As an example, many geometric constraint-based unmixing

algorithms assume that the simplex formed by the spectra from the pure mixture

components has the minimum volume amongst all the possible simplexes that enclose

the spectral data cloud [43]. A natural premise for the validity of this assumption

is that there needs to be significant variations for the the component abundances in

the mixtures, which is often the case for hyper-spectral geological remote sensing,

but may fail in other spectroscopy applications, where spectral signals from certain
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components only have small variations across the mixtures. As a result, compared to

the supervised learning algorithms discussed in the previous part, the application of

unsupervised learning algorithms for spectral data unmixing is generally more limited.

However, many of the canonical unsupervised learning algorithms such as the principle

component analysis (PCA) and non-negative matrix factorization (NMF) can be used

for dimensionality reduction purpose in conjunction with other supervised regression

or classification algorithm. In addition, these techniques can also be applied for other

purposes such as spectral artifact removal [44]. Therefore, it is not uncommon to see

them playing a significant role in a spectral processing pipeline for any spectroscopy

field.

1.3.4 Spectral Shape Modeling

Despite the general popularity of the above-mentioned training-based multivariate

learning algorithms for spectral data analysis, there are limitations that prevent them

from being effective or optimal for certain applications. The dependence on the training

process means that sufficient mixture spectral data together with the ground truth

measurement need to be collected first, possibly in large volume, before a reliable model

is built. The process of training data collection itself could be prohibitively expensive

or labor-intensive. For example, when using Raman spectroscopy as an on-line tool for

monitoring the nutrient and metabolite concentrations in biopharmaceutical processes,
the performance of PLSR improves significantly with more training samples at the

expense of running the process multiple times [45]. In addition, one might need to

rerun the training data collection process if certain aspects of the experiment is later

modified, e.g. if the growth medium composition is changed in the biopharmaceutical

process monitoring example. In these situations, it is therefore preferable to have an

analytical method that can directly perform analyte quantification from the mixture

spectrum without a large training pool to begin with in these situations.

Generally speaking, the optical spectrum exhibits spectral features originating

from the underlying physical light-matter interactions as shown in Figure 1-1. These

spectral features can often be modeled explicitly using mathematical profile functions.
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For example, the Gaussian, Lorentzian, and Voigt (which is the result of convolution

from the Gaussian and Lorentzian profile) profile functions have long been used to

model the spectral shapes in vibrational spectroscopy [46, 47, 48]. More recently,

other forms of line shapes such as exponential [49] and asymmetric [50] curves have

also been used to model absorption spectra for various applications. Direct spectral

shape modeling connects the spectral data to the energy transitions induced through

optical probing and therefore can be an effective way for quantitative analysis and

decision making.

For complex spectra that may contain a multitude of spectral lines and peaks with

additional background or baseline signals, statistical tools such as Bayesian inference

and modeling can be used for accurate spectral shape modeling. Bayesian inference

and modeling has been extensively used for curve shape modeling and fitting [51].

Its adaptation in spectral signal analysis has found a wide range of applications in

mixture study [52], peak identification and quantification [53, 54], and noise analysis

[55] amongst others. For complex spectra modeling, one of the key issues is to correctly

identify and assign an unknown number of spectral lines and peaks in the presence

of noise. This is an instance where model selection has to be performed in order

to optimally assign the peak and line signals. In the literature, approaches such as

reversible jump Markov chain Monte Carlo (RJMCMC) [56, 57], exchange Monte

Carlo [53] and sequential Monte Carlo [54] coupled with suitable model selection

criteria have been used for this purpose.

Spectral shape modeling represents one of the approach methodologies where

physical domain knowledge is directly used for spectral data analysis. This is different

from the machine learning-like or data-driven approaches, where the underlying

physical nature of optical spectroscopy is more or less ignored in the modeling process

(with the exception of linear or non-linear signal mixing). With spectral shape

modeling, the spectral signal for every spectrum can be modeled independently. This

can drastically reduce algorithm dependency on data volume, which can be crucial

for resource-intensive applications as mentioned earlier. In addition, prior knowledge

can be incorporated in the modeling process, allowing task-specific algorithms to be
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designed that maximumly utilize available information in a resource-optimal manner.

On the other hand, learning-based approaches are generally much easier to apply and

can achieve near-optimal performance with large-volume and high-quality datasets.

Similar to many other statistical disciplines, the algorithm choice for quantitative

spectral data processing and analysis is a highly task-dependent problem. Although

algorithms such as PLSR and PCA have had wide success in chemometrics research

and in many cases are the default go-to algorithms for a new spectral dataset, there

is still room for algorithm development and experimental design when it comes

to a specific problem. As mentioned earlier, taking advantages of the intertwined

nature of physical domain knowledge and its implications on experimental design and

statistical treatment can often lead to novel processing algorithms with fewer resource

requirements and more robust outcomes than the standard processing algorithms. This

can sometimes be crucial for either verifying an experimental idea or demonstrating

statistical robustness for a certain spectroscopic application. On the other hand,

even with standard processing algorithms such as PLSR, the success of designing

a generalizable processing pipeline and validation scheme for a particular dataset

and application often relies on good understanding of the statistical nature of the

dataset as well as the instrument limits. In the age where machine learning algorithms

with efficient implementations are extremely accessible, this is especially important

as careless usage of these algorithms can easily lead to over-optimistic results due

to issues such as overfitting. It is worth noting that unlike many other statistical

disciplines, algorithm choice can impact experimental design and data collection in

significant ways in applied spectroscopy and chemometric analysis. As a result, the

optimal solution to a spectroscopic application often involves heavily interconnected

elements from instrument selection, experiment design, and quantitative analysis. This

highlights the unique position of chemometrics at the crossroad of physical science

and modern statistical disciplines.
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1.4 Case Study: Skin Raman Spectroscopy and Its

Biomedical Applications

Out of the large optical spectroscopy family, Raman spectroscopy is perhaps one of

the most chemically specific and instrumentally demanding techniques. With recent

technological advances in compact and high-power single-mode diode lasers, thin-film

optical filters with high suppression properties, high-precision holographic gratings with

strong diffraction strengths, and sensitive and low-noise CCD and CMOS detector

arrays, Raman spectroscopy has experienced a tremendous boost in application

proposals and realizations, especially in the biomedical domain [58, 591. Figure 1-6

shows the energy transition diagrams for the various light-matter interactions occurred

in Raman spectroscopy with biological sample and material. Owning to inelastic photon

scattering, Raman spectroscopy is able to directly probe the vibrational and rotational

states of molecules in the spectral domain. However, the inelastic photon scattering is

much less likely to occur than elastic (Rayleigh) photon scattering, resulting in weak

spontaneous Raman signal strengths in a typical scenario. With biological tissues and

materials, sample autofluorescence due to intrinsic fluorophores such as NADH, flavin

and aromatic amino acids [60, 61] is ubiquitous and often accompanies the Raman

light [62]. The shot noise associated with the autofluorescence may overshadow the

Raman signal and complicates the analysis [63]. This is one of the main issues faced

by spontaneous Raman spectroscopy for sensitive measurements. On the positive

side, unlike spectroscopic techniques such as near-infrared absorption spectroscopy,

the Raman spectrum of a chemical usually exhibits distinct and highly specific sharp

spectral peaks in the probing region corresponding to various energy transition levels,

which some would refer to as the "Raman fingerprint" of the chemical. Such high

specificity enables universal molecular identification and quantification across a wide

range of biomarkers of interest in a label-free fashion. In addition, the excitation

wavelength for Raman spectroscopy can be chosen to either resonantly enhance the

interaction strength from certain molecules of interest, or to achieve high penetration

depth by avoiding absorption from water and other tissue materials. These features

44

M



are perhaps the main reasons for the popularity of Raman spectroscopy despite of its

weak signal strength relative to other optical spectroscopy techniques.

Excited State Vibrational Modes

Virtual State :::::..- -- : -::::

Ground State Vibrational Modes

Rayleigh Stoke Anti-Stoke Fluorescence

Figure 1-6: Energy transition diagrams for the various light-matter interactions
occurred in Raman spectroscopy with biological sample and material. The arrow
width for each process corresponds to its relative interaction strength.

1.4.1 Raman and Autofluorescence Signals from Skin

For non-invasive diagnostic and monitoring applications with optical techniques, skin

is the most easily accessible human organ for probing. As shown in Figure 1-7

[64], human skin consists of three layers: the epidermis, dermis, and hypodermis

(subcutaneous) layer. The outermost epidermis layer is human body's main protection

barrier against dehydration and environmental factors such as microbial, chemical,

and UV light. It ranges from ; 50 Pm to 2 mm in thickness for different parts of the

body. It is composed of 4 to 5 stratified layers with the outermost being the stratum

corneum. The stratum corneum is usually ~ 10 to 20 pam in thickness and mostly

contains dead and flattened cells filled with keratin. The dermis lays beneath the

epidermis layer and mainly consists of collagen, elastin, extrafibrillar matrix, as well

as cells like fibroblasts, macrophages, and adipocytes. It supports the epidermis layer

with both strength and elasticity. At last, the hypodermis, or the subcutaneous layer,

supports all the functional skin layers and acts as the main energy store and insulating

layer.
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Figure 1-7: Skin layers and structures [64]. Human skin consists of three layers: the

epidermis, dermis, and hypodermis (subcutaneous) layer.

Despite the highly heterogeneous composition structure of human skin as discussed

above, light transport in these layers across different wavelengths has been well char-

acterized and modeled [65]. For example, multi-layer photon transport models, where

absorption and scattering properties for each individual layer can be specified, have

been extensively used to study light-tissue interaction [66]. In Raman spectroscopy,

photons generated through the inelastic scattering process during the light-tissue

interaction contain molecular information of the corresponding interaction region.

In the meantime, autofluorescence due to intrinsic fluorophores in the tissue is also

present alongside the Raman signal in a collected spectrum. These optical signals

encode the underlying physical and biochemical interaction process and can be used

to infer the molecular composition and concentration. For example, Figure 1-8 shows

in vitro and in vivo Raman spectra measured from different layers and depths in skin
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using confocal geometries [67, 68]. An application where water content profile in the

stratum corneum is estimated based on the Raman measurement is also shown in

the same figure [68]. It is not difficult to imagine that these spectral signals, once

equipped with suitable analytical and quantitative tools, can be used to construct a

full skin molecular profile in an non-invasive and label-free manner. Several diagnostic

applications based on skin Raman and autofluorescence signals will be discussed in

the next part.
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Figure 1-8: In vitro and in vivo Raman spectra from different layers and depths in
skin and their application in water content profiling. (a) In vitro Raman spectra for
(A) stratum corneum, (B) epidermis, and (C) dermis. (D) is for Type I collagen [67].
(b) In vivo Raman spectra for (A) stratum corneum at - 0 Mm depth and (B) dermis
at ~ 85 prm depth [67]. (c) In vivo Raman spectra of stratum corneum at various
depths showing the differences in water content [68]. (d) Water profiles based on the
Raman measurements in the stratum corneum [68].

1.4.2 Skin Raman and Autofluorescence as Diagnostic Tools

There have been numerous pursuits trying to utilize the non-invasive and label-free

characteristics of skin Raman and autofluorescence spectroscopy for fast disease

diagnostics and wellness monitoring applications. One of the most promising examples

is to use the Raman signals for skin cancer diagnostics and classification. Zhao et al. [69]
developed a real-time Raman spectroscopy system with an off-axis excitation geometry

47

(0

03

M



(a)

PC Computer

Diode Single Fiber
Laser

CCD Camera riber

V P T r
rating Fiber

Bundle 
Raman
Probe

Calir tion Skin
Fiber

BP filter Single fiber to diode laser

Lens Collimator

Skin Lens Lens
Fiber bundle to spectrometer

Window LP fibter
Fiber bundle

(b)
110

Celibreted Raw Ramanr
100 -Freed Autofiaoreeoence

90
so
60

70

500 1000 1600
Raman shift (cm

1
)

10 Pure Raman
-ModeFFit

at Real d i I

0

-2

So0 7000 1500
Reman shift (on)

.d

(d)

C0o* A ft benio lelIms

0.0I. ~
0. ACee500(ACt

. a ;Am"0 -

0.0

0.2 AUC - * 0.06 (95% 01)

0.0 0 0.4 0.6 0.2 1.0
I-Sec"s

I
I
I

0.7-.0.7

g0 .3

31 20,

MA 41: L
0 500 S9- eM M

100
0.8

0 

.

/

0.0

0.2 O.OA- . O.M (95% 

0.0 0.2 0A 08 08 1.0

I-SpeoS0w

Figure 1-9: A real-time clinical Raman system and its applications in skin analysis
and skin cancer diagnostics [69, 70]. (a) Configuration and setup for the real-time
clinical Raman system [69]. (b) Raman spectrum from skin and its model fitting
with oleic acid, palmitic acid, collagen I, keratin, and hemoglobin [69]. (c) Raman
spectra for various skin lesion samples with benign or malignant conditions with the
real-time clinical Raman system [70]. (d) Lesion classification posterior probabilities
and receiver operating characteristic (ROC) curves based on Raman spectra [70].

for in vivo skin diagnostics and analysis applications. In their work, Raman spectra

from human volar forearm were modeled with linear mixing from reference Raman

measurements of oleic acid, palmitic acid, collagen I, keratin, and hemoglobin. These

are shown in Figure 1-9 (a) and (b). In a follow-up study, they used this instrument to
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demonstrate in vivo skin cancer diagnosis with 518 benign and malignant skin lesion

samples from 453 patients [70]. Principle component with generalized discriminant

analysis (PC-GDA) and PLS were used for classification analysis. Their results

show that successful differentiation between (1) malignant/pre-malignant cancers and

benign lesions, (2) melanomas and benign pigmented lesions, and (3) melanomas and

seborrheic keratoses are achievable with non-invasive and real-time spectral acquisition

and analysis (Figure 1-9 (c) and (d)).
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Figure 1-10: (a) A biophysical model based on Raman spectrum from skin and its
application in skin cancer Raman spectrum modeling [4]. (b) In vivo Raman features
from carotenoids beta-carotene and lycopene from human skin with resonance Raman
excitation [71].

Through physical modeling of the active components in skin Raman spectra, the
composition and its abundance differences can be visualized for various cancer and
normal tissue samples. Feng et al. [4] developed a Raman biophysical model based on
in vivo skin cancer screening data and in situ skin constituent measurements. They

concluded that collagen, elastin, keratin, cell nucleus, triolein, ceramide, melanin and

water were the most important model components of skin Raman spectra. Their

relative abundances in skin Raman spectra can be used to help identify normal,

benign, and malignant skin tissue samples, owning to their biochemical and structural

differences (Figure 1-10 (a)). In addition to the above-mentioned literatures, there are

a number of other reports on successful identification and classification of skin cancer
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with in vivo Raman spectroscopy such as Gniadecka et al. [72], Lieber et al. [73].

Other than skin cancer-related applications, resonance Raman spectroscopy in

the visible range has been applied.to evaluate carotenoids such as beta-carotene and

lycopene levels in vivo from human subjects (Figure 1-10 (b)) [74, 71]. Carotenoids

are believed to play important roles in the anti-oxidant defense system of the skin,

and some of them have been proposed to be potential biomarkers for diseases such

as prostate cancer [74]. In addition, the carotenoid level in an individual is also a

reflection of his/her lifestyle. As a result, non-invasive Raman skin measurement

has been proposed as an assistive tool for medical evaluation and therapy control in

cosmetic treatments [75].
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Figure 1-11: Evidence of skin autofluorescence as biomarkers for mortality in hemodial-
ysis and diabetic patients. (a) Mortality of hemodialysis patients as a function of
follow-up years with respect to the skin autofluorescence (AF) level and presence of
cardiovascular disease (CVD) at baseline [76]. (b) Mortality of diabetic patients as a
function of follow-up years with respect to the skin autofluorescence (AF) level [77].

Apart from the Raman signal, the autofluorescence signal from skin has also been

proposed as biomarkers for disease monitoring and prediction. Meerwaldt et al. [76]

suggested to use skin autofluorescence measurements as biomarkers for cumulative

metabolic stress and advanced glycation end products (AGE), which are believed to

link to chronic complications in diabetes and end-stage renal disease. They monitored

the mortality rate of 29 dialysis patients in a period of 3 years and concluded that the

skin autofluorescence can be an independent predictor of mortality in these situations

(Figure 1-11 (a)). The same research group also evaluated skin autofluorescence as

predictor for cardiac damage and mortality in diabetic patients. In one study, they
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conducted clinical assessments with 973 Type II diabetic patients and 231 control

subjects, and concluded that skin autofluorescence is a biomarker for vascular damage

in Type II diabetic patients [78]. In another work, they studied 48 Type I and 69 Type

II diabetic patients and 43 control subjects, and followed up in a period of 5 years.

They concluded that strong associations can be found between skin autofluorescence

and cardiac mortality in diabetic patients (Figure 1-11 (b)) [77]. They linked skin

autofluorescence with cumulative metabolic burden and suggested to use it for risk

assessment and control.
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Figure 1-12: The gen2-SCA system from RiverD International B.V. for skin analysis
and diagnostics [79].

The above examples just represent a small portion of the overall landscape for the

biomedical applications for with Raman and autofluorescence spectroscopy. Commer-

cially, the gen2-SCA system from RiverD International B.V., shown in Figure 1-12, is

a confocal Raman system specifically for in vivo skin diagnostics and analysis 1. More

broadly, the application for Raman and autofluorescence spectroscopy in biomedical

research in general has been rapidly expanding. Ellis et al. [58], Kong et al. [59] are

excellent recent review articles on this general topic.

'Company link: https: //www.riverd. com/
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1.4.3 Skin Raman Spectroscopy for Non-Invasive Glucose Es-

timation

With the several skin condition monitoring and diagnostic applications discussed in

the previous part, we turn our attention to the area of skin Raman spectroscopy for

non-invasive glucose estimation in this part. Non-invasive and continuous glucose

measurement is perhaps one of the most heavily sought-after non-invasive health

monitoring domains in the modern era [80, 81]. The ability to non-invasively measure

blood glucose level not only has transformative impact on diabetic patients that

need to constantly monitor their blood glucose level through minimally invasive

techniques such as fingerstick measurements or completely invasive techniques such

as transplantable devices, but also has tremendous potential with the non-diabetic

community in terms of lifestyle control, wellness monitoring, and diabetes prevention.

However, despite having an estimated market size on the order of ten billion dollars

and at least millions of potential consumer pool, there is still no successful commercial

device in the market [82]. This is not due to a lack of innovative and ingenious efforts

from the research community, but rather reflects the highly complex nature of this

problem. Smith [82] provides a critical review in this area that highlights the many

challenges associated with this problem. As many proposed sensing techniques require

multivariate calibration and analysis for glucose concentration estimation, it is no

surprise that statistical processing and validation schemes play crucial roles alongside

the detection scheme itself in these approaches.

Being one of the most promising non-intrusive optical techniques with high speci-

ficity, it is expected that the problem of non-invasive glucose estimation has attracted

considerable attentions from the Raman spectroscopy community. The earliest report

of in vivo non-invasive glucose measurement with Raman spectroscopy was by Enejder

et al. [1] in 2005. In this pioneering work, Raman signals with 830 nm excitation

were collected from the forearms of 20 healthy volunteers in oral glucose tolerance test

(OGTT) experiments. 17 of the 20 measurement sessions were used for performance

evaluation. PLSR was used for leave-one-out cross validation. Individual-specific as
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Figure 1-13: Non-invasive Raman glucose estimation results from Enejder et al. [1].
(a) Clarke Error Grid Analysis plot for leave-one-out cross validation and individually
calibrated models. (b) Glucose Raman spectrum and regression vector for the individ-
ual session with the highest validation accuracy in (a). (c) Clarke Error Grid Analysis
plot for leave-one-out cross validation and a globally calibrated model with 9 selected
volunteers.

well as universal calibration models were both reported. Overall, the validation results

showed promising signs (Figure 1-13). However, in a truly predictive setting, data from

an entire session should be left out for model testing to minimize spurious correlations

and to reduce the chance of overfitting. Their model performance under this setting

was not reported. In addition, their regression vector, shown in Figure 1-13 (b), did

not show convincing features from glucose Raman spectrum. After this work, the

group followed up with a number of incremental improvements with superb correlation

results from the same dataset in the next decade, yet no satisfactory performance in a

truly predictive setting was ever reported. The dataset was also not made publicly

available for any third-party to explore this area. It is also worth pointing out that

most literature in non-invasive glucose measurement with Raman spectroscopy were

from members in the same group on the same dataset.

In 2009, C8 MediSensors, a then startup company in Los Gatos, California,

published a study on non-invasive glucose measurement with Raman spectroscopy [2].

Shifted laser excitation was used for fluorescence rejection and water Raman signal

with a visible laser at 670 nm was used for normalization (Figure 1-14 (a)). Instead of

the OGTT experiments, they performed 58 glucose clamp studies with 30 diabetic

patients. This resulted in much wider glucose variations as compared to the case in

Enejder et al. [1]. A linear analytical model with the inclusion of a single-pole delay

element was used for data analysis. In their test scheme, a true predictive setting

53



(a)

(P(PinunaQMmmuznwx l F I4:

(Powr Mesur4=4Q- CUA *

Figure 1-14: Non-invasive Raman glucose estimation experimental setup and results
from Lipson et al. [21. (a) Schematic diagram for the experimental setup. (b) Clarke
Error Grid Analysis plot with leave-one-session-out cross validation and a globally
calibrated model. (d) The net analyte spectrum and glucose Raman spectrum.

was used where in each test iteration, data from an entire experimental session was

left out for performance test. Their predictive results are shown in Figure 1-14 (b)

with a median absolute error of ~1.7 mM. While a clear correlation can be observed

with their dataset, it is still considered too low by medical professionals in terms of

estimation accuracy [82]. Unfortunately, the company filed for bankruptcy in 2013

after a series of misfortunes and departures from leading roles [82], and is no longer in

existence.
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Figure 1-15: Non-invasive Raman glucose estimation experimental setup and results
with a dog model from Shih et al. [3]. (a) Schematic diagram for the experimental
setup. (b) Validation results with leave-one-level-out cross validation and the regression
vector plot.
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In addition to human experiments, in vivo experiments have also been carried out

on animal models. In a recent experiment [3], a beagle was put in anesthesia and its

blood glucose concentrations were clamped at various levels in the range from 5.6 to

25.6 mM. The experimental setup was similar to Enejder et al. [1] and is shown in

Figure 1-15 (a). The laser power in this study was undisclosed. The CCD integration

time per frame was 1.8 s. This was much shorter than those used in similar studies.

Leave-one-level-out cross validation was carried out with PLSR and the results are

shown in Figure 1-15 (b). Overall, a validation error on the order of ~ 1.5 to 2

mM was obtained. The regression vector plotted in Figure 1-15 (b) shows distinct

glucose Raman features. This is in strong contrast compared with the one shown in

Figure 1-13 (c). The reported estimation error, however, was worse in this study than

those in Enejder et al. [1] and its follow-ups (though they were under slightly different

test schemes).

Overall, while there is evidence that it is possible to detect glucose signals from

transcutaneous in vivo Raman measurements in the literature, the overall quantitative

results and their operating conditions reported by different authors are mixed. On the

quantitative data analysis side, the details on the training and calibration process, such

as how the cross validation process was carried out, were left vague by some authors,

making it difficult to evaluate. The closed source nature of the existing datasets in

the community significantly hinders collective understanding and exploration of the

problem. This is different from many modern data analysis-intensive fields, where

data and algorithm sharing have become standard procedures. Similar observations

have also been noted by authors in related Raman areas [83]. In addition, few authors

have associated estimation and quantification results with key system performance

metrics such as glucose signal-to-noise ratio (SNR). This makes result reproduction and

verification difficult. Non-invasive glucose estimation with Raman spectroscopy is a

problem where in addition to multivariate statistical analysis, there are interconnected

elements from optics, device and instrument engineering, biochemistry, and physiology.

With such a highly complex nature, it is especially important for the community to

address related issues in a more quantifiable and verifiable manner.
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1.5 Thesis Overview

In this thesis, we aim to address some of the challenges mentioned in this chapter

by combining modern computational and statistical techniques with physical domain

knowledge. In particular, we focus on three aspects where computational or statistical

knowledge have either enabled realization of a new instrument (with a compact form

factor yet still maintaining a competitive performance) or deepened statistical insights

on analyte detection and quantification in highly mixed or heterogeneous environments.

In Chapter 2 of the thesis, we utilize the non-paraxial Talbot effect to build compact and

high performance spectrometers and wavemeters that use computational processing for

spectral information retrieval without the need of a full-spectrum calibration process.

In Chapter 3, we develop an analyte quantification algorithm for Raman spectroscopy

based on spectral shaping modeling using a hierarchical Bayesian inference model and

RJMCMC computation with minimum training sample size requirement. In Chapter 4,

we numerically investigate the spectral characteristics and signal requirements for

universal and predictive non-invasive glucose estimation using an in vivo skin Raman

spectroscopy dataset. At last, concluding remarks and recommendations for future

work are provided in Chapter 5.

1.5.1 Compact and High Performance Computational Spec-

trometers and Wavemeters Using the Talbot Effect

Starting with spectroscopy instrumentation, a compact and high performance compu-

tational spectrometer and wavemeter configuration based on the non-paraxial Talbot

effect is proposed and realized in Chapter 2. The Talbot effect refers to the self-imaging

phenomenon observed with coherent light after passing through period structures

such as diffraction gratings [84]. Owning to its interferometric nature with invertible

spatio-spectral response, it has been previously proposed as the building component for

realizing spectrometers [85, 86]. However, only coarse resolutions have been reported

(- 42 nm in Kung et al. [85] and ~ 20 nm in De Nicola et al. [86]) with non-compact

geometries. As shown in Figure 1-16, the Talbot effect uses a diffraction grating to
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discriminate the spectral components - but as opposed to dispersive grating spectrom-

eters that sample the diffraction pattern in the far field, the Talbot spectrometers

sample in the near/mid field where the diffraction orders are not spatially separated.

Computational inversion is therefore required for spectrum retrieval. With recent

technological advances in CCD and CMOS image sensors, the sensor pixel sizes have

reached to a point where direct sampling of the Talbot pattern is achievable without

any external imaging optics like the ones in previous studies [85]. In addition, oper-

ating the spectrometer configuration in the non-paraxial regime with a tilted image

sensor allows full-frame interferogram capture without any moving parts, as strong

diffractions in the non-paraxial regime limit the Talbot region to be within several

millimeters after the diffraction grating. Compared with the recent compact and com-

putational spectrometer solutions discussed in Section 1.2.2, the Talbot spectrometer

and wavemeter do not require any full-spectrum calibration, which is a significant

advantage for practical adoption. There are two different applications for the compact

Talbot spectroscopy that will be discussed. The first one considers spectroscopy in the

context of broadband light sources that can be temporally and/or spatially incoherent.

The second one considers spectroscopy for the precise determination of the wavelength

from a coherent signal, i.e. in the case of a wavemeter. Again, this wavemeter is useful

for multiple spectroscopy applications where the laser wavelength is intentionally

swept - e.g. for tunable diode laser absorption spectroscopy (TDLAS) discussed in

Section 1.2.1.

There are several computational problems that naturally present themselves in

the miniaturized Talbot spectroscopy solution. First and foremost, understanding the

Talbot image formation through the scalar diffraction theory provides the physics-level

foundation. This is provided in Section 2.1, where the generalized Talbot image

formation under different incidence situations is investigated in depth through both

analytical derivations as well as numerical simulations. The interferometric nature of

the Talbot effect is also discussed. Next, direct sampling of the Talbot pattern for

high-resolution discrimination of the spectral components not only is a computational

processing problem but also dictates the choice of the sensor and its pixel dimension,
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Figure 1-16: Rayleigh-Sommerfeld diffraction solution of a sinusoidal phase grating
illustrating the near/mid field Talbot image formation as well as the far field diffraction.

the grating pitch, as well as the orientation of the sensor with respect to the grating.

Section 2.2 presents related discussions as a hardware design problem coupled with

computational processing of the sampled pattern. Afterwards, calculations and simu-

lations showing the spectrometer performance under temporally incoherent light and

incidence angular spread are presented respectively. Section 2.3 shows the experiments

for Talbot spectrometer realization and the characterization results. Investigations

into resolution tuning, response span, as well as spectrum reconstruction under dif-

ferent inputs are explored and discussed. The result represents the best resolution

(sub-nanometer) seen with the Talbot spectrometer under the most compact form

factor [87, 88]. Section 2.4 discusses using the Talbot effect specifically for compact

and high performance wavemeter applications. Both theoretical performance estima-

tion bounds as well as experimental results are presented and discussed. Here, tone

parameter extraction algorithms are used to accurately retrieve the frequency of the

periodic signal obtained in the Talbot interferogram. We experimentally demonstrate a

compact and high performance wavemeter with below 10 pm estimation uncertainty

with the 1-o- criterion. The chapter ends with conclusions in Section 2.5.
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1.5.2 Bayesian Modeling and Computation for Analyte Quan-

tification in Complex Mixtures Using Raman Spectroscopy

Motivated by the shortcomings of training-based multivariate regression algorithms

due to their requirements on training data volume mentioned in Section 1.3.4, in Chap-

ter 3 we propose an alternative technique to these algorithms for analyte quantification

in complex mixtures using Raman spectroscopy with a Bayesian modeling and compu-

tation approach. More specifically, given a priori the Raman spectrum measurement

of an analyte of interest, which we term as the target analyte in our text, our goal is

to quantify its concentration or quantity in a complex mixture spectrum without the

need of acquiring additional mixture training data, a scenario that frequently arises in

various applications. In addition, the Bayesian approach allows us to simultaneously

estimate both the peak and baseline signals. This is different from previous approaches

in automatic baseline estimation and correction [89, 90, 91, 92, 93, 94], where baseline

estimations were performed without jointly estimating the peak signals. As mentioned

in Moores et al. [54], the isolated baseline estimation in these approaches may bring

in potential risks of introducing bias and errors due to the fact that the actual Raman

signals were ignored during the estimation and correction process.

There exist several publications aiming at bringing the Bayesian modeling frame-

work to spectral data analysis. Razul et al. [56], Fischer and Dose [52], Wang et al.

[57], Nagata et al. [53], Tokuda et al. [55] used Bayesian modeling combined with

computational methods such as RJMCMC or the exchange Monte Carlo method for

accurate spectrum variable estimation in various areas such as nuclear emission spec-

troscopy and mass spectrometry. For Raman spectral data analysis, Zhong et al. [95]

used the Bayesian framework and a combined Gibbs and RJMCMC sampler to infer

mixture information from a set of multiplexed surface-enhanced Raman spectroscopy

(SERS) measurements. Moores et al. [54] used a sequential Monte Carlo sampler

for optimal baseline correction and low-concentration analyte quantification. While

building upon the common Bayesian modeling and computation principles, our work

differs from these prior work due to the fact that our algorithm employs a two-stage
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processing for quantifying target analyte concentrations in complex mixtures as an

alternative to multivariate regression methods such as PLSR with no requirement on

pre-existing mixture training data [96]. In Section 3.1, we provide the hierarchical

Bayesian modeling framework and RJMCMC computation procedure for our two-stage

algorithm, where the first stage is used to learn the peak information for the pure

target analyte spectrum and the second stage is for quantifying its concentrations

in mixtures. In Section 3.2, we demonstrate the utility of this algorithm by testing

its performance on a wide range of numerically generated datasets and compare

its results with several multivariate regression algorithms. The advantages of our

algorithm over conventional multivariate regression algorithms are established under

the small training sample size regime. In Section 3.3, we report its estimation results

on two experimental Raman spectroscopy datasets. The first one is a four-component

aqueous mixture study. The second one is for glucose concentration estimation in

biopharmaceutical process with Chinese hamster ovary (CHO) cells, which are the

most widely used expression systems for industry production of recombinant protein

therapeutics such as monoclonal antibodies used in cancer therapy. The chapter is

then concluded in Section 3.4.

1.5.3 Numerical Investigations of Non-invasive Glucose Esti-

mation with Raman Spectroscopy

As discussed in details in Section 1.4.3, there are many issues, either technical or

non-technical, surrounding the problem of non-invasive glucose estimation with Raman

spectroscopy. While the resources required for a complete and comprehensive solution

to the problem are beyond what is typically available to small-to-medium research

groups and startup companies [82], important questions can still be answered that

can significantly contribute to the collective understanding of the problem in the

research community. Our lab has developed a portable clinical Raman spectroscopy

system, similar to Zhao et al. [69], for skin analysis and diagnostics applications. An in

vivo skin Raman spectroscopy dataset from healthy volunteers in OGTT experiments
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was collected with the goal of non-invasive glucose detection and estimation. While

no correlation could be detected from the skin Raman spectra to the corresponding

fingerstick glucose reference measurements, we use this dataset as a testbed for

numerical investigations into the signal requirements for universal and predictive

glucose estimation models, by manually adding glucose Raman signals at different

strengths to the skin Raman spectra. With this approach, quantitative conclusions can

be obtained that can serve as important references for future technology development

and experimental design.

In Section 4.1, the portable clinical Raman instrument and the data collection

experiments are introduced. In addition, the characteristics of skin Raman spectra,

including the variations observed across different individuals, the autofluorescence

background and its photo-bleaching, and practical issues such as measurement move-

ment artifacts and ambient light leakage, are presented and discussed in details. In

Section 4.2, spectral signal analysis and processing methodologies are introduced and

discussed. The signal generation process and variants of the training, validation, and

testing schemes under our universal and predictive spectral processing pipeline are

presented. Section 4.3 presents the main results on the estimation performance of

our universal processing pipeline under different signal generation conditions, and

their implications on signal requirements for universal prediction with skin Raman

spectroscopy data. Several spectral processing variants are also discussed with recom-

mendations provided for future clinical data analysis. At last, Section 4.4 concludes the

chapter with discussions on the implications of our numerical investigations. Through

our investigations, we focus on truly predictive modeling in the presence of both

cross-individual variations as well as internal spectral correlation structures observed

in our dataset. It is worth mentioning that while our investigation focus is on glucose

estimation, our signal generation process, methodology and processing recommenda-

tions translate naturally to any potential biomarkers measurable from skin Raman

and autofluorescence spectroscopy. Given the general spectral characteristics and

variabilities observed from skin Raman and autofluorescence spectra across population,

these information can be extremely valuable for universal and predictive non-invasive
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biomarker detection and estimation with skin Raman spectroscopy on a broad scale.
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Chapter 2

Compact and High Performance

Computational Spectrometers and

Wavemeters Using the Talbot

Effect

This chapter presents a comprehensive study on utilizing the Talbot effect under

non-paraxial situations for building compact and high performance spectrometers and

wavemeters. Section 2.1 starts with a brief review of the scalar diffraction theory,

and then introduces the Talbot effect and its generalizations under tilted incidence

angles. Its interferometric nature is also discussed. Section 2.2 first connects Talbot

spectroscopy with Fourier spectrometers. It then presents the Talbot interferogram

sampling task as a hardware selection and optimization problem with computational

processing and correction for spectrum retrieval. Importantly, the effects of source

temporal incoherence and angular spread incidence are numerically investigated with

recommendations provided for general spectroscopy. Section 2.3 provides the experi-

mental details for realizing and characterizing the Talbot spectroscopy system. System

performances for resolution determination, geometry optimization, and response char-

acterization under different light sources are investigated experimentally. At last,
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Section 2.4 discusses using the Talbot effect specifically for realizing compact and high

precision wavemeters. The Cramer-Rao lower bound (CRLB) for frequency estimation

with interferogram-like signals is provided. The estimation results with two different

processing algorithms are presented and discussed. The chapter is finally concluded in

Section 2.5.

2.1 The Talbot Effect - Theory and Simulations

2.1.1 Brief Review of the Scalar Diffraction Theory

X

U2 (X, Y)

Y

Figure 2-1: The input and output plane for scalar diffraction study.

We start our discussions with a brief review of scalar diffraction theory. For

optical waves propagating through space, diffraction occurs when the light wave

encounters lateral confinement or disturbance. While the exact solution of diffraction

is fundamentally governed by the Maxwell's equations, accurate solutions can be

obtained with the much more tractable scalar diffraction theory under mild conditions

pertaining to many free-space optical systems [97]. Under the scalar diffraction theory,

the propagation of optical wave is described through a scalar optical field U(x, y, z)

in three-dimensional space. Amongst several diffraction formulations as described in

more details in Goodman [98], the Rayleigh-Sommerfeld diffraction solution states
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that

U2(x, y) = 2 U1( j) d d7, (2.1)

where as shown in Figure 2-1, Ui(x, y) = U(x, y, z)1= 0 is the two-dimensional input

field, U2 (x, y) = U(x, y, z)Iz=2 is the two-dimensional output field, E defines the input

field domain, r = l(x - )2 + (y - ?)2 + z2 , A is the wavelength, and k is the wave

vector. The Rayleigh-Sommerfeld diffraction in Equation 2.1 is an embodiment of the

Huygens-Fresnel principle, which states that every point on the input plane acts like

a spherical point source and the observation is a superposition of all the contributions

from these point sources. This principle is at the heart of the wave propagation

treatment employed in Fourier optics. The optical impulse response h(x, y) and the

optical transfer function H(fx, fy) for the Rayleigh-Sommerfeld diffraction are

z eikr
h(x, y) = 2

and

H(fx, fy) = exp [jkz 1 - (Afx) 2 - (Afy)21. (2.2)

Two assumptions are inherent to the Rayleigh-Sommerfeld diffraction solution. The

first one is the scalar diffraction treatment and the second one is that r > A [98]. An

underlying assumption to propagating wave in Equation 2.2 is that (Afx) 2 +(Afy) 2 <1,

otherwise the wave becomes evanescent in the z direction.

With modern computing resources, the Rayleigh-Sommerfeld diffraction solution

can be readily applied to many scenarios without any problems. For analytical

tractability and historical reasons, we introduce the Fresnel approximation to the

Rayleigh-Sommerfeld diffraction solution. With Newton's generalized binomial ex-

pansion, under the paraxial approximation, r in Equation 2.1 can be approximated
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as

r Z 1 + - )2+ - .Y_

2 Z 2 z

By keeping the quadratic expansion terms in the exponent and dropping them in the

denominator in Equation 2.1, we reach to the Fresnel approximation as

U2 (x, y) = U1( , n) exp k [(x - )2 + (y -)2] d dr. (2.3)

The Fresnel approximation in Equation 2.3 essentially replaces the spherical wavefronts

of the Huygens-Fresnel principle with quadratic wavefronts. The optical impulse

response h(x, y) and the corresponding transfer function H(fx, fy) for the Fresnel

approximation are

ejkz k 2 (4
h(x, y) = .exp J- (x +Y2), (2.4)

AZ 2z

and

H(fx, fy) =ejkzexp [-j7rAz (fk + fy).

As a rough criterion for approximation accuracy, the Fresnel number is defined as

NF - -,
Az'

with s being the characteristic size (such as the half width or radius) of the input

aperture. It is generally accepted that with a uniform plane wave input, Fresnel

approximation can provide reasonable results when NF is less than ~ 1.

When the propagation distance is very long such that diffraction is observed

in the so-called far field or Fraunhofer regime, further simplification to the Fresnel

approximation in Equation 2.3 can be made as the Fraunhofer approximation, which

states that

U2 (x, Y) = exp k (x2 + y2) U1(, q) exp [ 7r (x + Yq) d dr,. (2.5)
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This is obtained by expanding the quadratic exponent terms in Equation 2.3 and

approximating the exponential terms with quadratic exponents in and 71 inside the

integral as unity. The first half of Equation 2.5 is the same as the optical impulse

response for the Fresnel diffraction as shown in Equation 2.4, whereas the second

half is essentially the Fourier transform of the input filed evaluated at fx = ! and

fy = . The Fraunhofer approximation typically requires NF « 1.

2.1.2 Mid/Near Field Grating Diffraction - The Talbot Ef-

fect

Periodic diffraction grating plays a central role in spatially dispersive spectroscopy

as well as the computational Talbot spectrometer work in this thesis. Theoretical

analysis on wave propagation through a sinusoidal phase grating in the far field regime

with Fraunhofer diffraction is provided in Appendix A. This is the foundation for

the spatially dispersive grating spectroscopy as discussed in Section 1.2.1. Here, we

analyze wave propagation in the near/mid field regime after the diffraction grating,

where the diffracted beams are not yet spatially separated.

Assuming that the grating area is large enough such that diffraction due to the

grating aperture is negligible, for a sinusoidal phase grating, the input field U1 ( , 2I)

with uniform plane wave incidence can be modeled as the grating transmission function

tG( , T1):

U = tG ( , 77)= exp Ja sin 2-rF ,

where a is the phase modulation amplitude and P is the grating period. Its Fourier

transform is shown in Equation A.2. Under the Rayleigh-Sommerfeld diffraction solu-

tion, the diffraction transfer function is shown in Equation 2.2, which is H(fx, fy) =

exp [jkz 1 - (Afx) 2
- (Afy)2]. This means that the Fourier transform of the optical
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field at the observation x-y plane with location z can be written as

00 F /\2
Y{U2(x, y)} = F{Ui(x, y)}H(fx, fy) -- Jq (a) exp jk 1- q z 6 (fx - , fy) .

(2.6)

Here, Jq(-) is the Bessel function of the first kind and order q, originating from the

Fourier transform of the sinusoidal phase term as shown in Equation A.1. Subsequently,

the optical field is

00 A)N 21

U2 (X, y) = Jq (a) exp jk 1 q- z exp j21rq . (2.7)
q=-oo L exp -

The exponential term in Equation 2.6 and Equation 2.7 suggests that propagating

waves exist only when qA < P. This means that in reality only a finite number of

diffraction orders exists after the grating. For simplicity of analysis, we assume that a

strongly diffractive grating is used where only the -1, 0, and +1 diffractive orders

exist. Using the relation that J-q(x) = (1)qJ,(X), we have

U2(x, y) = Jo (a) exp(jkz) + j2J1 (a) sin (2r exp jk 1 - z.

The intensity 12 (x, y) can then be obtained as

I2(x, y) = J02 (a) + 4J (a) sin2 27r x +

4JO (a) J1 (a) sin (27r) sin k [ - - 1 z

At z locations where k I - - ( ) z = 2mir + . with m being an integer,

we obtain that

12 (x, y) = [J, (a) + 2J1 (a) sin (27r

which can be regarded as the self images of the grating function. On the other hand,
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at z locations where k I - 1- (f) z = 2mir + 2, we have

I2(x, y) [ JO (a) - 2J (a) sin (27r ) 2

This still represents the self images of the grating function, except for that now there

is a 7r phase shift compared to the previous plane. Further sub-images can exist

on various planes, which we do not discuss in more details [99]. The extension of

the analysis to amplitude gratings or gratings with non-sinusoidal phase/amplitude

modulation is straightforward. A plot showing a simulated Talbot pattern after a

diffraction grating with 0 and 1 diffractive orders is shown in Figure 2-2.

1.0

0.8

(D0.6 :

0.4 QO

0.2

0.0

zGrating
Figure 2-2: Simulated Talbot pattern with a sinusoidal phase grating for a grating
pitch of 1.035 pm and incidence wavelength of 700 nm. The power diffraction efficiency
is assumed to be 16.7% for the 1 diffractive orders.

The above grating self images are historically referred to as the Talbot effect after

its discovery in 1836 by Talbot [84]. Nearly half a century later, the longitudinal

distance over which the self images repeat was provided by Lord Rayleigh [100]. This

distance is called the Talbot distance. Lord Rayleigh suggested that the Talbot
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distance is given as

z 1 , (2.9)

which we re-derived above with the sinusoidal phase grating. A popular approximation

to the Talbot distance in Equation 2.9 is

2P 2

ZT = .

This is derived under the paraxial approximation with the Fresnel diffraction solution

in Equation 2.3.

2.1.3 The Talbot Effect Under Tilted Incidence Angles

Now we investigate the Talbot image formation under tilted incidence angles. This

will be important for analysis of the Talbot spectrometer performance under spread

angular incidence later, as incidence angular spread can be represented as the ensemble

of tilted incidences. Two tilted incidence situations are considered analytically. The

first one is tilted incidence in the y-z plane as shown in Figure 2-3, and the second one

is tilted incidence in the x-z plane as shown in Figure 2-4. The Talbot image formation

leads to different formulations for these two tilted incidence cases. Afterwards, the

general tilted incidence formula is given for numerical simulations. The derivations

for these results are shown in Appendix B.

Tilted Incidence in y-z Plane

We first consider tilted plane wave incidence in the y-z plane as shown in Figure 2-3.

Assume that the tilt angle is 0 with respect to the z axis, the transmission function

due to the angle tilt is

tT (, 'q) = exp [jk sin(0) ] .
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Figure 2-3: Illustration for tilted incidence angle 6 in the y-z plane.

With the sinusoidal phase grating, considering only the 0 and 1 diffractive orders

under strongly diffractive cases, the intensity at the observation plane is

12(x, y) = J02 (a) + 4J, (a) sin 2 2,x +

4Jo (a) J1 (a) sin (27r sin k cos(O) - cos 2 (O) - ( .)2 Z
(2.10)

Equation 2.10 is very similar to Equation 2.8, except for that the Talbot distance

here is modified as

ZT =
A

cos(O) - cos2 (9) - ( P)2
(2.11)

Tilted Incidence in x-z Plane

Next we consider the case where the tilted plane wave incidence is in the x-z plane

as shown in Figure 2-4. In this case, the diffraction solution is more complicated

than that from the previous section. The transmission function for tilted plane wave

incidence with tilt angle # with respect to the z axis is

tT (, r7) = exp [jk sin(/)().
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Figure 2-4: Illustration for tilted incidence angle # in the x-z plane.

Correspondingly, the intensity at the observation plane is

12(x, y) = J2 (a) + 2J1 (a) +

2Jo (a) J, (a) cos

2Jo (a) J1 (a) cos

{

{
{

k cos(O) - 1 - sin(#) + A2}z

k cos(O) - 1 - sin(#) - z

k {sin(#) -

The above result is slightly more convoluted than the ones from Equation 2.8 and

Equation 2.11. Three Talbot distances exist in this solution, with them being

ZT,+1 =

ZT,-1 =

ZT, 1 =

A

cos(#) - 1 - [sin(#) +

A

cos(O) - 1 sin(O) - 7

A

1 - [sin(#) - - 1- [sin(Ob) + . 2
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2Jj2 (a) cos

x
27-

P} (2.12)
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-474 -

P

(2.13)

I -rilsin(O) + A ] 2 z

P



Figure 2-5 shows the simulated Talbot patterns for normal incidence as well as

tilted incidences with respect to both 0 and #. With incidence angle tilt in 0, a slight

change in the Talbot distance is observed in (b), whereas an incidence angle tilt in 4
results in more dramatic change in the pattern formation in (c).
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(c)
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Normal 8=100 (p = 100

Figure 2-5: Simulated Talbot patterns for (a) normal incidence, (b) tilted incidence

with 0 = 100, and (c) tilted incidence with # = 100 with a sinusoidal phase grating for
a grating pitch of 1.035 pm and incidence wavelength of 700 nm. The power diffraction
efficiency is assumed to be 16.7% for the 1 diffractive orders.

General Tilt
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Figure 2-6: Illustration for general tilted incidence with both 0 and 0.

The individual results for tilt in the y-z and x-z plane demonstrate the different

pattern formation response towards incidence angle tilt for the Talbot effect. For the
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case of general tilt with both 0 and #, which is illustrated in Figure 2-6, we have

tT( , 7) = exp [jk sin(#) + jk sin(0)q].

Similar as before, the intensity at the observation plane is

12(x, y) = Jo (a) exp [jk cos2 (6) - sin2 ()z] +

J (a) exp jk/cos2() - [sin(#) + j z exp (j2wr) - (2.14)

2

J1 (a) exp jk cos2(0) - [sin(o) - A2 z exp (j247r .

Although further analytical simplifications exist for the above equation, we resort

to direct numerical evaluation for simulations involving general tilt or spread angle

incidences.

2.1.4 The Talbot Effect as Interferometry

Behind the mathematics of image formation for the Talbot effect, a much simpler

interpretation is to treat the Talbot effect from an interferometric perspective. For

normal plane wave incidence, the wave vectors for the 0 and 1 diffractive orders

are shown in Figure 2-7. For the 1 diffractive orders, the grating essentially adds a

lateral wave vector kg = Z to the diffracted beams. The Talbot distance zT shown inA

Equation 2.9 results from the interference between the 1 and the 0 diffracted beams,

and corresponds exactly to the longitudinal spatial periodicity for k, in Figure 2-7.

For tilted incidence plane wave with 0 and # from Section 2.1.3, similar analysis

can also lead to the exact Talbot distance calculation. For incidence angle of 0, the

wave vector along the y direction is essentially unaltered when transmitting through

the grating. One can therefore project the original k onto the x-z plane and calculate

the diffracted beams as shown in Figure 2-8. The longitudinal wave interference results
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Figure 2-7: k-space diagram showing the diffracted beams with respect to the incidence
beam under the normal incidence. The grating adds a lateral wave vector kg to the
diffracted beams.

in kz, which corresponds to the spatial periodicity in the z direction exactly as the

Talbot distance calculated in Equation 2.11.

For incidence angle of # shown in Figure 2-8, k, from the +1 diffractive orders no

longer equal to each other as in previous cases. As a result, 3 longitudinally interfering

terms appear in the solution. These three terms can be calculated from the geometry

implied in Figure 2-8 and they match with the three Talbot distances calculated in

Equation 2.13.

+1 kz
kcos(e)

x k_ kg

Tilt Angle E

kz,+1

k+1
k

X ~........ .(P-. kx kg
k-1

zz,-

Tilt Angle (p

Figure 2-8: k-space diagrams showing the diffracted beams with respect to the incidence
beam under tilted incidences for (left) tilt in 0 and (right) tilt in #. The grating adds
a lateral wave vector k_ to the diffracted beams.

Treating the Talbot effect as the result from interference from the various diffracted

75



beams greatly simplifies the analysis on the Talbot distance. Extension to multiple

diffractive orders is straightforward. The periodic self images and sub-images of the

diffraction grating in the x direction can also be interpreted as the interference amongst

various diffraction orders in the x dimension in Figure 2-7 and Figure 2-8.

2.2 Spectrometer Design and Simulations with the

Talbot Effect

With the theoretical foundations for the Talbot effect described in the previous section,

we explore the design space for building spectrometers with the Talbot effect with

simple 1-D diffraction gratings and modern image sensors in this section. Various

considerations such as grating and sensor selection, geometrical configuration, and

design trade-offs are discussed in details. Simulations of temporally incoherent sources

and the effect of incidence angle spread on spectral resolution are also explored in

depth in this section.

2.2.1 The Talbot Effect for Fourier Spectrometers

We first return to the intensity distribution for normal plane wave incidence in

Equation 2.8. This has a high resemblance with the Michelson interferometer intensity

response with normal plane wave incidence [101], which means that the power spectral

density S(A) for the optical signal can be retrieved from the Talbot interferogram

along the z direction with a Fourier transform. Diving into more details, we first

express the intensity as a function of the Talbot wave vector kT as

I(kT; x, y, z) = D2 + 4D2 sin2 (2.4) + 4D0 D1 sin (2r -) sin (kTz)

= Ao(x) + A,(x) sin (kTz) ,

where we use Do and D1 to represent the Fourier coefficients in the expansion for the

grating transmission function, and Ao(x) and A,(x) to represent the constant terms

with respect to kT and z in Equation 2.8. Assume that the power spectral density
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with respect to the transformed Talbot wave vector is S(kT), we can then express the

overall intensity I(x, y, z) as

+00 +00

I(x, y, z) = S(kT)I(kT; x, y, z) dkT = Ao(x) J S(kT) dkT+
0 0

+00 +00 +00

A1(x) J S(kT) sin (kTz) dkT = Ao(x) J S(kT) dkT+ Aj) J S(kT)e jkTz dkT,
o 0 -00

(2.15)

where we have assumed that S(kT) is anti-symmetric around kT = 0. Denoting

______ [+00
I'(z) = 2 ) I(x, y, z) - Ao(x) / S(kT) dkTjit()=v/'- 7A 1(x) J

L 0

this means that I'(z) = F-- {S(kT)} and S(kT) = F {I'(z)}, with the assumption

that I'(z) is anti-symmetric around z = 0.
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Figure 2-9: kT as a function of A for the 0 and 1 diffractive orders with a grating
pitch of P = 1.035 pm.

Based on the fact that the Talbot wave vector kT relates to the input wavelength
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as

1 - 1 - (A ) 2

kT = - = 21r (2.16)
ZT A

and
47rkTP 2

47 2 +k P2 '

we can get S(A) from S(kT) with the following transformation

S(A) = S(k T) = S(kT) 2 
1- (

dA A2  i- _ ) 2

Figure 2-9 shows kT as a function of A for wavelengths smaller than the grating

period for the 0 and 1 diffractive orders at P = 1.035 pm. For shorter wavelengths,

higher diffractive orders may exist, which can result in additional Talbot periods that

introduce wavelength ambiguity. We will cover design considerations on this subject

in the next part.

2.2.2 Talbot Interferogram Sampling - Design Considerations

With recent technological advances in CCD and CMOS image sensors, the sensor

pixel sizes have reached a point where direct sampling of the Talbot interferogram

is achievable without any external imaging optics like the ones in previous studies

[85]. In addition, operating the spectrometer configuration in the non-paraxial regime

with a tilted image sensor allows full-frame interferogram capture without any moving

parts, as strong diffractions in the non-paraxial regime limit the Talbot region to

be within several millimeters after the diffraction grating. To sample the Talbot

interferogram intensity along the z direction as shown in Equation 2.15, we use a tilted

2D image sensor in close proximity to the grating as shown in Figure 2-10. A sample

simulated 1-D Talbot interferogram for a single-frequency laser source at 700 nm

wavelength captured by an image sensor with 1.67 pm pixel size is shown in Figure 2-11.
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Discussions on component selection and system configuration are provided in this

section for optimizing the Talbot interferogram sampling. We note here that just as

in the design for conventional grating spectrometers, the actual component selection

is highly dependent on the target application at hand - wavelength span, resolution

requirement, light throughput, dynamic range, form factor, and cost considerations all

play important roles in building a system for a particular application. The versatility of

design choices of the Talbot spectrometer also highlights its potential broad appealing

in terms of application domains.

Grating Tilt Angle
-1.0

-0.8

-0.6 (D

-0.2

-0.0

/
Z

Sensor

Figure 2-10: Illustration of Talbot interferogram sampling with a tilted image sensor
in close proximity to the grating.

Tilt Axis

Two ways exist to sample the Talbot interferogram across the z axis with a tilted

image sensor, the first one is to tilt the image sensor around the x axis and the

second one is to tilt around the y axis. Tilting around the y axis is more complicated

as x cannot be kept as a constant with respect to z in this situation, resulting in

non-constant Ao(x) and A1(x) in Equation 2.15. The situation is further exacerbated

with tilted # incidence as in Equation 2.12, where x appears inside the cosine terms
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Figure 2-11: Simulation of a sampled interferogram for a single-frequency laser source

at 700 nm captured by an image sensor with 1.67 pm pixel size tilted at 30'. (b) is a

closer look at the interferogram pattern in (a) within 80 pim distance.

for all the three periodic terms. Therefore, it is more desirable to tilt around the x

axis such that x can be kept as constant across each interferogram recording row. As

a result, this is the system geometry we choose for this study.

Tilt Angle - Tuning the Spectral Resolution and Bandwidth

(a) (b)
1800 - - -- - 25 - -jptffiMT9703 -E iT.6 VbiR .35

E E - sony ICX834 A 3.1 pm, =P 1.8 pri
. 1600 - -2- -- -------- -- -

.c--- --2-- --- ---- - - - -- - - - -
2 
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400 - So-yX -34 = .- - P 1 -pm
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Figure 2-12: Plots showing the wavelength bandwidth and resolution as a function of

image sensor tilt angle ca for two image sensor and grating combinations.

An image sensor has a fixed sampling budget determined by the number of spatial

samples one can obtain along the sampling direction. This imposes an inherent space-

bandwidth product limit to our optical system. Assume that the length of the image
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sensor is L, the pixel pitch size is A, the number of pixels along L is N = , and the

tilt angle is a, the total 1-D sampling depth is L sin(a) and the sampling periodicity

is A sin(a). According to the Nyquist-Shannon sampling theorem, this means that in

the reciprocal k space, the sampling spacing 6k and half-bandwidth Bk are

2ir

L sin(ce)'

and

7r
Bk - (2.17)

A sin(a)

Subsequently, the resolution 6A and bandwidth BA in the wavelength domain can be

obtained through Equation 2.16 or from the plot in Figure 2-9. The above equations

mean that one can change the operating resolution and bandwidth by changing the

image sensor tilt angle a. Two plots showing the bandwidth and resolution change

as a function of the tilt angle a for two image sensors in Table 2.1 are shown in

Figure 2-12. The corresponding grating pitch P is indicated in the plot legend. As the

operating wavelength cannot exceed the grating pitch P, the wavelength bandwidth is

constant as P for smaller tilt angles as shown in Figure 2-12 (a). In this region, tilting

the image sensor more results in higher resolution without sacrificing the operating

bandwidth. After this region, a trade-off between resolution and bandwidth with

respect to the tilt angle exists, which means that one might need to select an optimal

tilt angle based on the design requirement, especially for the smaller pixel sensor as

the bandwidth limitation starts to impact optical wavelengths with higher tilt angles.

Image Sensor Selection - Balancing the Visibility and Sensitivity

The self imaging nature of the Talbot phenomenon implies that pattern sampling has

to occur on the grating period scale. For optical frequencies of range around 300 to

1000 nm, this means that the sampling unit, namely the pixel size, has to be on the

order of micrometers. As a result, modern CMOS and CCD image sensors come as
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Sensor Aptina MT9PO31 Aptina MT9J003 Samsung S.LSI Sony ICX834

Type CMOS CMOS CMOS CCD
Pixel Size (pm) 2.2 1.67 1.12 3.1
Pixel Number 2592 x 1944 3856 x 2764 4208 x 3120 4250 x 2838

Dimensions (mm) 5.70 x 4.28 6.440 x 4.616 4.713 x 3.494 13.2 x 8.8
Dynamic Range (dB) 70.1 65.2 61.9 75

Table 2.1: Specifications for several image sensors for consideration with the Talbot
spectrometer.

natural choices for capturing the Talbot interferogram.

Smartphone and compact camera sensors typically have an optical format of below

1/1.8 inches, and a pixel size of ~ 1 to 2.5 Pm [102]. These sensors are attractive

because of their small pixel size and form factor, ubiquitous usage, and low cost.

Although a majority of them employ a back-illuminated structure to enhance light

collection [103], their major disadvantage is low sensitivity due to small light collection

area. However, many applications involving relatively strong light signals do not have

stringent requirement on sensor sensitivity. For example, portable white light and

fluorescence microscopes have been realized with smartphone cameras and are capable

of disease diagnostics applications [104, 105, 106]. Therefore, there is still a large

application domain where portability and low cost are the major factors driving the

popularity for these types of sensors.

Moving up the frame size ladder, image sensors of around ~1 inch optical format

up till full-frame size for premium compact cameras and digital LSR cameras can

have pixel sizes of ~ 2.4 to 8 pm [102]. The much improved sensitivity for these

sensors coupled with potential cooling systems can be adequate for scientific imaging

and astrophotography. Consequently, these sensors are more suitable for low light

spectroscopy applications such as Raman spectroscopy. Large pixel sizes in these

sensors may impose limitations on interferogram visibility and grating selection, which

will be discussed later in this section. Specifications for several image sensors are

shown in Table 2.1, out of which three of them (the Aptina and Samsung sensors) have

been used to realize Talbot spectrometer systems in this study. The Sony ICX834

sensor is attractive since commercial scientific-grade cameras have been built with this
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sensor with TEC cooling for low-light applications, yet it has a relatively small pixel

size compared to other image sensors with similar functionalities, which is important

for building a Talbot spectrometer for reasons that will be discussed in the following

part. It is therefore a potential candidate for realizing a Talbot spectrometer system

for sensitive measurements.

For any interferometric measurements, the fringe visibility, which is defined as

imax - Imin

V max + Imin

is useful as it is related to the sensor dynamic range required for retrieving the spectral

signal. Assume that a sensor pixel size of A is used and the sensor sampling function is

a square function with a pixel fill factor of 100%, we denote the sensor dimensions as

and 7, where is along the same axis as x and r7 is the dimension for the interferogram

row. The sampled pixel reading at discrete pixel locations m and n can be written as

I(m, n) = J J I[x, y = r cos(a), z = r sin(a)] d dr=

J JD~ + 4D~ sin 2 (27) + 4D0 D1 sin (2w) sin [{kT sin(a jr] d{ dr =+rn 77" +

2 2+

D2 2 + 4D D sin 2 (2D14 d + 4DD1  sin 27r4 d sin [kT sin(a rul] d<d.

(2.18)

The middle term is constant with respect to r/, and can be simplified as

4D f sin 2 27r d= 2DA + cos (47< sin 2 srd

0J P iFP _

71

This is a term that has a linear-like increasing trend with A. The last term in

Equation 2.18 depends on sensor readings from the r7 dimension, which we further
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simplify as follows

+A A

4DoD1  sin 2i4) d sin [kT sin(a)7] d77 =
2P

8DoDP ksin(a)A sin A sin[kTSin()l (2.19)

kT sin(Ce)T P 1 2 1 (P)
4DoDIPA sin sjm (7rkT sin -F ( sin[kTsin(a)qf]

7T P ) 2Bk) P)

This is a periodic term in q,, which we expect as the interferogram signal. Several

terms constant with respect to ?, appear as the amplitude for the interferogram signal.

The sin (!) term indicates that the interferogram signal can have zero amplitude

when A = NP, where N is a positive integer. Further, the interferogram visibility

has a local maximum when

A = N + P for N = 1, 2,... (2.20)

Smaller N leads to lower overall DC bias term in I(m, n), which results in higher

interferogram visibility v. Figure 2-13 (a) shows how the fringe visibility changes as a

function of A/P for a grating with P = 1.035 pm and power diffraction efficiency for

the t1 diffractive orders as 16.7%. Figure 2-13 (b) shows the corresponding sampled

interferogram along the z direction. As mentioned earlier, image sensors with a larger

pixel size in general have better sensitivity. However, as revealed in Figure 2-13 (a),

this can lead to small fringe visibility. Therefore, balancing sensitivity and visibility is

one of the major design challenges in Talbot spectrometer system realization.

Another term in Equation 2.19, which is sin [k 7 sin(a)A , also deserves some atten-

tions. With the bandwidth definition for Bk in Equation 2.17, we get sin kT sin(a)A

sin (k, and can transform this into an unnormalized sinc function as shown in the

equation. This means that with a fixed A, the visibility for different wavelengths are

different due to the sampling process. Therefore calibration is needed for accurate

spectrum reconstruction. Figure 2-14 shows the effect of calibrating the FFT-inverted
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Figure 2-13: (a) Simulated results showing the interferogram fringe visibility change as
a function of pixel size to grating pitch ratio. (b) Simulated Talbot interferograms in z
direction for image sensors with various pixel sizes. The wavelength for the simulation
is 700 nm.

spectrum by point-wise division with sincu y which results in a flat spectral

response as desired.

(a)
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Figure 2-14: Illustration of spectral calibration for a test spectrum with flat-amplitude
peaks across a wide spectral range.

As revealed in Figure 2-13 (a), overall small pixel sensors should be preferred for

higher visibility, with some caution to avoid the zero visibility spots in theory. For

smartphone and compact camera sensors with a pixel size of A ~ 1 to 2.5 pm, this

means that we can use a grating pitch size of P 0 2A ~ 0.6 to 1.7 pm with N = 1,

which can provide efficient +1 order diffraction for optical wavelengths. For more

sensitive image sensors having a pixel size of A | 3 pm, two directions exist. The

first one is to still use a grating with a pitch size of ~ 0.6 to 1.7 pm. However, since
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now N > 2 from Equation 2.20, fringe visibility suffers. The second one is to use a

larger grating pitch size with N = 1 from Equation 2.20, which means that now the

grating pitch P & 2 pm. Higher diffractive orders may exist for such grating pitch

for optical wavelengths, which may introduce wavelength ambiguity due to Talbot

patterns formed from higher diffractive orders. Grating selection will be discussed in

more details in the next part.

We note here that for small pixel sensors, the actual fringe visibility in experiment

can deviate from what's theoretically depicted in Figure 2-13 (a). Practical issues

such as grating-sensor alignment, pixel fill factor, effective pixel sampling function,

and response function of micro-lens array under extreme oblique incidence angles can

change the overall response function significantly as compared to that in Figure 2-13

(a). However, the overall trend of reduced visibility with larger pixel sizes is an

important consideration when selecting the image sensor. In general, there are more

design constraints for image sensors with pixel sizes 2 3 pm for Talbot spectrometer

design with optical wavelengths. In addition, one of the the major advantages of the

Talbot spectrometer, which is its compact form factor for competitive performance

metrics in resolution and bandwidth, starts to wither with large image sensors and

the associated optical components. We leave the Talbot spectrometer design with

large pixel image sensors as a potential future research direction and instead focus on

compact systems with smartphone and compact camera sensors in this study.

Grating Selection - Operating Wavelength Considerations

Once the image sensor is decided based on the light condition, a grating can be selected

accordingly with the visibility constraints in mind. Design flexibility can still exist at

this stage due to the balancing of interferogram visibility and operating wavelength

considerations.

Transmission gratings are the most straightforward types of gratings to use for

the Talbot spectrometer configuration, which is what we focus on in our discussions.

In general, a phase grating is preferred over an amplitude grating due to higher light

throughput as well as higher diffraction efficiency in general.
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Our theoretical analysis uses sinusoidal phase gratings, which are relatively easy to

fabricate with interference lithography techniques. For sinusoidal phase gratings with

a grating pitch of P, the operating wavelength range where only 0 and +1 diffractive

orders exist for normal incidence is [!f, P]. For wavelengths below ;, wavelength

ambiguity may exist due to Talbot pattern formed with higher diffractive orders. An

alternative is to use square-wave phase gratings, where even diffractive orders do

not exist [107]. Therefore, they have a wider higher-diffractive-order-free wavelength

range of [1, P]. For image sensors with a pixel size of 1 3 pm with a grating pitch

P ~ 1.8 pm, this means that only one pair of higher diffractive order can exist above

600 nm for normal incidence. For narrowband spectroscopy applications such as

Raman spectroscopy at 632 nm excitation wavelength, a compact Talbot spectroscopy

system is possible with the Sony ICX834 sensor at its peak quantum efficiency range

above 60% from 600 to 700 nm. On the other hand, for smartphone sensors with

a pixel pitch of 1.5 pm and a grating pitch of ~ 1 pm, the operating wavelength

range covers almost the entire visible spectrum, which will be useful for broadband

spectroscopy applications.

Even with the existence of higher diffractive orders, they are typically much weaker

than that of the 0 and 1 diffractive orders. For example, with square-wave phase

gratings, the power diffraction efficiency is DEmodd = -DE 1 [107]. Therefore, the

third diffractive order efficiency is around an order of magnitude lower than that of

the first diffractive order. As a result, spectral artifacts due to the higher diffractive

orders can be small compared to the main signal, or may be easy to remove for

narrowband applications. Other types of gratings such as blazed gratings, which can

be optimized for a narrow spectral range with high diffraction efficiency, can also be

used for building the Talbot spectrometer at oblique incidence angles. This can be

advantageous over the current configuration with normal incidence due to potentially

cleaner interfering pattern with less interfering beams.

Table 2.2 provides a summary of image sensors and gratings either used in this

study or suggested for possible future work. The gratings for the Aptina sensors

are chosen such that the grating pitches are roughly 2/3 of the pixel sizes of the
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image sensors. The grating for the Samsung S.LSI sensor is chosen to achieve high

resolution with availability constraint from the vendor. These three systems have all

been experimentally realized in this study. The grating for the Sony ICX834 sensor

is chosen aiming at sensitive measurements with Raman spectroscopy at 632 nm

excitation wavelength. This is a potential system for future research.

Sensor Pixel Size Dimension Grating Size

Aptina MT9PO31 2.2 pm 5.70 mm x 4.28 mm 1.608 pm
Aptina MT9J003 1.67 pm 6.440 mm x 4.616 mm 1.035 pm
Samsung S.LSI 1.12 pm 4.713 mm x 3.494 mm 1.035 pm
Sony ICX834 3.1 pm 13.2 mm x 8.8 mm 1.900 pm

Table 2.2: Summary for several image sensors and gratings either used in this study
or suggested for possible future work.

2.2.3 Temporal Incoherence and Angular Spread Incidence

Study

In this section, we study the Talbot spectrometer response with temporally incoherent

light sources as well as sources with incidence angular spread. These aspects have

important implications for realizing the system experimentally as well as revealing the

performance expectations for practical diffuse light sources. Simulations in this section

are performed based on the Rayleigh-Sommerfeld diffraction solutions for sinusoidal

phase gratings as discussed in Section 2.1.3.

Temporal Incoherence

We proceed with partial temporal coherence simulations to characterize the Talbot

spectrometer with broadband spectra. Our simulation approach for partial temporal

coherence is to discretize the power spectral density S(A) and sum over the spectral

intensity responses from the spectral components as [97]

I(x, y, z) ~ S(Ai)I(Ai; x, y, z)A.
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Figure 2-15: Simulation illustrations for spectrum reconstruction with the sampled
Talbot interferogram for a broadband mercury arc lamp source. The simulated image
sensor is Aptina MT9JO03 as in Table 2.2. (a) The input light spectrum for the
mercury arc lamp source spanning across ~ 450 nm in the visible spectral range. (b)
Reconstructed spectrum from the sampled interferogram with the sensor tilting at
300. (c) Simulated 1-D interferogram sampled by the image sensor. (d) Simulated 2-D
Talbot pattern after the grating.

This approach effectively ignores any spectral cross-correlations amongst the various

spectral components, which is reasonable for many light sources such as thermal,
fluorescence, and Raman sources. Figure 2-15 shows the simulation results where

a broadband Mercury arc lamp spectrum is used as the input light source, and the

Aptina MT9JO03 system as in Table 2.2 is used in the simulated system. The Mercury

arc lamp source covers over ~ 450 nm in the visible spectral range and the spectrum

is obtained digitally from Thorlabs [108]. The image sensor tilt angle is assumed to be

300 in the simulation and the sensor is assumed to be in contact with the grating on
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Figure 2-16: Simulation illustrations for spectrum reconstruction with the sampled
Talbot interferogram for Raman spectrum of glucose solution at 400 g/L concentration.
The simulated image sensor is Aptina MT9J003 as in Table 2.2. (a) The input light
spectrum as the Raman spectrum of glucose solution at 400 g/L concentration. (b)
and (c) The 1-D Talbot interferogram sampled by the image sensor tilting at 10' and
30'. (d) and (e) The reconstructed spectra for the two tilt angles. The resolution
enhancement with a larger tilt angle results in resolving the doublet peak at ~~ 656
nm in (e).
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the pivot axis such that the Talbot interferogram in the near-field is sampled. As can

be seen from Figure 2-15 (b), almost exact spectral reconstruction can be obtained in

this case. The sampled 1-D interferogram and the 2-D Talbot pattern are also shown

in the figure.

We further simulate the system response with a relatively narrowband spectral

source with fine spectral features, which is the Raman spectrum of glucose solution at

400 g/L concentration collected in our lab. The excitation wavelength is at 632 nm

and the Raman spectrum covers around 70 nm in the visible range. The plot is shown

in Figure 2-16. The sensor and grating are the same as in the previous simulation.

We simulate the collected Talbot interferograms and reconstructed spectra with two

camera tilt angles at 10* and 30'. The spectrometer resolution at 100 tilt angle is

worse than 1 nm and should not be able to resolve the doublet peak at ~ 656nm.

This is what we can observe in the reconstructed spectra as shown in Figure 2-16 (d)

and (e). This further corroborates our design guidelines for the relationship between

image sensor tilt angle and spectral resolution.

For any light source with finite temporal coherence, fringes in the interferogram

start to wash out after the coherence length of the light source. This is illustrated

in Figure 2-17, where spectral sources with a Gaussian line shape at various Full

width at half maximums (FWHMs) are used. The coherence length can be roughly

characterized as

-A 
2

with A being the center wavelength and JA being the FWHM. 1, for the various

input spectra plotted in Figure 2-17 correspond well with the length scales of the

interferogram fringes in the plots. This is expected due to the interferometric nature

of the Talbot effect.

For Fourier spectrometers like the Michelson interferometer, it is crucial to sample

around the zero path-length delay region, especially for broadband sources. The

same is true for the Talbot spectrometer, which means that interferogram needs

to be collected starting right after the grating. From a practical system-building
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perspective, this means that the grating has to touch the surface of the image sensor.

We illustrate this point by investigating how the reconstructed spectrum evolves as

the grating-sensor distance changes, which is defined as the closest distance in the

z direction between the grating and the sensor surface. The results are plotted in

Figure 2-18. Several popular spectral similarity measures [109] are used to quantify

the distances between the reference spectrum, which is the glucose Raman spectrum

that we choose as the input light source, and the reconstructed spectra under different

grating-sensor distances. Assume that there are N spectral points for the reference

spectrum p and the reconstructed spectrum q, the spectral correlation measure (SCM)

is defined as

SCM= N j= 1 piq - ( P) (z- 1 qi)

N FT i FN - -( p _ q qi)

The spectral angular measure (SAM) is defined as

N

SAM = cos-- [z ~ j ( 1q )

Lastly, the spectral information divergence (SID) is defined as

SID = DKL(01I4) + DKL (41 P),

where p and q are the normalized spectral signals and the Kullback-Leibler (KL)

divergence DKL(P 14) from p to 4 is

N

DKL(P14) A log .

The plot showing how these spectral measure changes as a function of grating-sensor

distance is shown in Figure 2-18 (a), and the corresponding reconstructed spectra

are shown in Figure 2-18 (b) -- (e). As can be seen from the plot, almost-perfect
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reconstruction is only possible when the sampling happens right after the grating

surface at the zero distance. As the grating-sensor distance increases, more spectral

reconstruction distortion is observed, especially for the slowly varying content in the

original spectrum. This is expected as the sharp spectral peaks in the input Raman

signal have longer coherence lengths and are more resistant towards sampling loss

closer to the zero path-length difference region. All the spectral similarity measures

become worse as the grating-sensor distance increases, with a strong decrease in

similarity measure even when the grating-sensor distance is around ~-10 im. This

highlights the importance of minimizing the grating-sensor distance for temporally

incoherent signals.

Incidence with Angular Spread

An important specification for any spectrometer is its light throughput, which can be

characterized with its response function towards diffuse light with an incidence angle

spread. In this part we investigate the system response of the Talbot spectrometer

under spread incidences. An illustration for incidence angle spread on the grating

surface is shown in Figure 2-20. We consider incidence beam angular spread over two

directions, namely 0 and #, which are both defined in the previous sections.

Grating

Incidence Spread

Figure 2-19: Illustration for incidence angle spread on the grating surface.

To quantify and visualize the effect of angular spread on spectral reconstruction,
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we perform simulations similar to the previous part, where an input spectrum of

Raman glucose solution is assumed and the reconstructed spectrum is obtained from

the sampled interferogram. Equation 2.14 for Talbot pattern calculation under general

incidence with tilt in 9 and # is used in this simulation. In addition to discretizing the

power in the wavelength domain, we also discretize the incidence power for different

angular tilt in 9 and # within the angular spread and add the contributions from all

the discretizations in the intensity domain as

I J K

I (X, y, z) ~_ E E [ S (Ai, Oy, $ O) I(Ai, Oj, #k; X, Y, Z)6# 60 6A.
i=1 j=1 k=1

The underlying assumption for this treatment is that the worst-case spatial incoherence

is assumed such that all the intensity fields from different incidence angles are added

incoherently. This can be a reasonable assumption for diffuse sources such as thermal

light but may be violated for other types of light sources. For more tailored simulations,

stochastic transmission screen methods can be used for partial spatial coherence studies

[97], which we do not explore in this study.

Figure 2-20 shows the results where the reconstructed spectra are obtained through

various incidence angle spread in either 9 or #. Different spectral similarity measures

including the SCM, SAM and SID are plotted for both cases. As can be seen from the

plots, angular spread effectively blurs the reconstructed spectra with the worst-case

spatial incoherence assumption. However, the tolerance for the two directions are

different. 9 spread is much more tolerable than # spread in terms of preserving the

spectral resolution. This is due to the fact that spectral dispersion is mainly introduced

in the x direction, which corresponds to the # tilt. As a result, small disturbance in #
can result in significant pattern response change as discussed in Section 2.1.3. This

angular spread characteristics is similar to that of conventional grating spectrometers,

which use slits to restrict the incidence angle spread onto the grating more in one

direction than the other. The similarity should come as no surprise since the same

dispersive element is used in both types of spectrometers. The difference for the

two spectrometer types are in terms of sample collection region, where the grating
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spectrometers collect diffraction images in the far field and the Talbot spectrometers

capture interferogram patterns in the near/mid field.
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We further theoretically characterize the achievable resolution in terms of incidence

angle spread. This is based on the fact that the Talbot wave vector is a result of the

interference amongst various diffractive orders as discussed in Section 2.1.4. A tilted

incidence results in a shift in the Talbot wave vector and a spread incidence results in

a blur in the wave vector domain. Therefore, the effect of incidence angular spread

can be characterized by considering the Talbot wave vector blurring with varying

spread in both 0 and #. Figure 2-21 shows the effective resolution change for all the

Talbot systems in Table 2.2 as a function of angular spread in both 0 and #. The

light throughput, in terms of the etendue, for a set wavelength resolution can also be

calculated from the plot. For example, for the Aptina MT9JO03 sensor, the calculated
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etendue for ~ 1 nm resolution is 1 130 pm2 . This is around half of that from a

commercial compact spectrometer like the Ibsen FREEDOM spectrometer with a

much larger image sensor. However, as the Talbot spectrometer utilizes near/mid field

pattern sampling, it can be of considerably smaller footprint than that of the Ibsen

FREEDOM system (which is built upon a dispersive system with far field imaging).

2.3 Experimental Setup and Results for Talbot Spec-

trometers

2.3.1 Experimental Setup

Over the course of this work, three Talbot spectrometer systems had been built with

the Aptina and Samsung sensors as shown in Table 2.2. Characterization had been

performed from ~ 780 nm to 950 nm with a tunable Ti:Sapphire laser. All the image

sensors did not have any color filters but did have the micro-lens array on top of the

pixels. The fused silica surface relief gratings used in the study were produced as

holographic masterpieces by Ibsen Photonics.

The experimental setup for characterizing the Talbot spectrometer systems is

shown in Figure 2-22. In the top plot, the Aptina CMOS image sensor is shown behind

the diffraction grating. In the bottom plot, a complete system with the Samsung S.LSI

CMOS sensor is shown. A single-mode optical fiber was used to deliver the input light.

Afterwards, a fiber collimation lens and a 10X beam expander were used to expand

the beam to fill the entire grating surface with normal incidence. Translational and

rotational stages were used to host the image sensor in order to provide the necessary

alignment for maximizing the visibility and also to tilt the image sensor for resolution

characterization. The Aptina CMOS sensor had an integrated readout board for data

acquisition and transfer, whereas the Samsung S.LSI CMOS sensor was controlled by

an independent readout board. Both sensors are shown in Figure 2-22.

In additional to the experimental setups we built to characterize the Talbot

spectrometer systems, we also built prototypes for portable systems, where the frames
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Figure 2-22: Experimental setup for characterizing the Talbot spectrometer systems.
(top) The diffraction grating and the Aptina CMOS image sensor. (bottom) The setup
used to characterize the relationship between spectral resolution and sensor tilt angle
with the Samsung S.LSI sensor.

were built from 3D printed parts to demonstrate the compactness of our systems.

Figure 2-23 shows images of the instruments with the Aptina sensors. Some of the

experimental work, such as the high resolution wavemeter characterization that will

be detailed later, were carried out with the portable systems.

Figure 2-24 shows a series of plots for simulated and experimentally captured
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Figure 2-23: Prototypes for the portable Talbot spectrometer systems with the Aptina
CMOS image sensors.

Talbot images from the Aptina MT9JO03 sensor at various tilt angles with 830 nm

laser light input. The images under the experiment column are raw data from the

image sensor and are scaled for display. As can be seen from the plots, the experiment

agrees very well with the simulation. Tilting the sensor results in periodicity change

in the row direction. This means that more periods can be sampled with a larger

tilt angle and as a result, a finer resolution can be achieved. After the images are

captured, row-wise FFT can be performed to retrieve the spectral information, which

will be discussed in the coming parts.

2.3.2 Resolution Characterization with Angle Tilt

An important experimental characterization is to verify the spectral resolution change

as a function of image sensor tilt angle. We experimentally verified this with all the

three image sensors from Aptina and Samsung. Figure 2-25 shows example plots of

FFT-inverted spectra as the tilt angle changes for the Samsung S.LSI sensor with 830

nm laser incidence (Ondax SureLock). We used the Hanning window for apodization

prior to the FFT inversion. The FWHM decreases as more tilt is introduced as can

be seen from the plot. Since the laser source has ~ 250 MHz linewidth, its spectral

shape can be safely regarded as a delta function at 830 nm for our application. This

means that the spectral resolution can be characterized approximately as the FWHM
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With this in mind, we quantitatively characterized the FWHM of the laser line at

various tilt angles from 3' to 30* for the three smartphone and compact camera sensor
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systems, namely the Aptina MT9PO31, the Aptina MT9JO03 and the Samsung S.LSI

sensors. The results are plotted in Figure 2-26. In addition to the experimentally

obtained data, we also plot the theoretical resolution as a function of tilt angle in

the same plots. Overall the experiment agrees well with the theory, with the best

match for the Aptina MT9PO31 sensor system with a 2.2 pm pixel size and a 1.608 pm

grating pitch size. The greater deviation from the other two systems can be due to the

fact that the gratings used for the Aptina MT9JO03 and Samsung S.LSI systems had

a smaller pitch than that used with the Aptina MT9PO31 system, and therefore can

result in more deflection for the 1 diffractive orders. This means that the incidence

beams for the Aptina MT9JO03 and Samsung S.LSI systems had more tilted incidence

angles, and therefore can have more unpredictable sensor sampling responses. In

addition, the micro-lens arrays can also introduce more sampling function distortions

with smaller-sized pixels and more incidence angle tilt. As a result, some differences

are observed from the experiment compared to the theory for the smaller pixel sensors

with smaller grating pitches. However, the overall trend of higher resolution with

more tilt angle is well preserved, indicating that our theory is able to provide useful

guidelines in terms of designing the spectrometer configuration for target resolution

requirements.

We further characterized the spectral response with two mutually-incoherent lasers

as the input source. One laser was the Ondax laser at 830 nm as before and the

other laser was the tunable Ti:Sapphire laser. The light from these two sources

were combined by a fiber coupler and the output was fed into the fiber collimator

as in Figure 2-22. We fine-tuned the Ti:Sapphire emission wavelength such that

the spectral spacing between the Ti:Sapphire and the Ondax laser was varied, and

the corresponding spectra were reconstructed as shown in Figure 2-27. The data

was collected with the Aptina MT9JO03 sensor tilting at 200 that had a theoretical

resolution of ~ 0.5 nm and a measured FWHM of ~ 1 nm. As can be seen from

the plot, wavelength separation of down till 0.9 nm can be resolved by the Rayleigh

criterion. At a wavelength separation of 0.3 nm, which is below both the theoretical

resolution limit and the measured FWHM of the laser linewidth with our system,
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resolved.

the two peaks can no longer be resolved. This result further confirms our resolution

theory with a different experimental resolution criterion in addition to the FWHM of

the laser line that was discussed previously.

2.3.3 Response Span with Tunable Laser Characterizations

Next, we characterized the bandwidth response of the Talbot spectrometer with the

broadly tunable Ti:Sapphire laser. We tuned the Ti:Sapphire laser from 780 nm

to 950 nm in steps of 10 nm, and recorded the sensor response with the Aptina

MT9JO03 image sensor system at 200 tilt angle. The reconstructed spectra are shown

in Figure 2-28. There are several aspects worth noticing with this characterization.

Firstly, the Talbot spectrometer was able to reconstruct spectral signal over a broad
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Figure 2-28: (a) Calibration curve used for spectral wavelength estimation. (b)
Reconstructed spectra across 780 nm to 950 nm with the tunable Ti:Sapphire laser
for the Talbot spectrometer system built with the Aptina MT9JO03 image sensor.

spectral range across ~ 170 nm as shown in Figure 2-28 (b). This should come as

no surprise. Our demonstration over even broader spectral range is only limited by

the availability and tunability of our source at optical wavelengths. Secondly, due to

the fact that the incidence angle cannot be controlled as perfectly normal, two major

Talbot peaks are shown in the reconstructed spectra, which is caused by incidence tilt

in # as discussed in Section 2.1.3. Thirdly, also due to the imperfect incidence angle

control, the reconstructed wavelengths have some offset compared to the reference

wavelength. This means that a wavelength calibration needs to be performed for

accurate wavelength estimation. Precise wavelength calibration can be performed

with Equation 2.8 for general tilt in both 6 and 0 based on the spacing between the

two Talbot peaks and their offset to the reference wavelength. Here, we adopted a

simpler linear regression approach which is able to provide good calibration results as

shown in Figure 2-28 (a).

Problems associated with having more than one peak in the reconstructed spectrum

can be solved in two practical ways. The first one is to place the sensor carefully such

that it is mostly sampling the Talbot pattern from the interference of the 0 and +1

diffractive orders. The second one is to tilt the incidence angle in the 4 direction

such that only one 1 diffractive order can exist. We demonstrate the first approach
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Figure 2-29: (a) Calibration curve used for spectral wavelength estimation. (b)
Reconstructed spectra across 790 nm to 890 nm with the tunable Ti:Sapphire laser
for the Talbot spectrometer system built with the Samsung S.LSI image sensor.

with Figure 2-29, where we used the translational stage as in Figure 2-22 (b) to only

sample the Talbot pattern from two diffractive orders. The image sensor used in this

case is the Samsung S.LSI sensor at 300 tilt angle. Figure 2-30 shows the simulated

and captured Talbot pattern from this system. As opposed to the chessboard-like

patterns obtained in Figure 2-24, the Talbot pattern in Figure 2-30 shows tilted

stripe-like patterns due to the two-beam-interference nature. In Figure 2-29, the

spectral wavelength calibration curve is provided in (a), and the FFT-inverted spectra

spanning across ~ 100 nm in steps of 5 nm are provided in (b). Due to the careful

placement of the image sensor, the reconstructed spectra are much cleaner than that

from Figure 2-28. The wavelength span is smaller than that from the Aptina sensor

due to the fact that the Samsung S.LSI sensor has a worse quantum efficiency above

900 nm than that of the Aptina sensor, and the control board was not able to

perform long integrations required to capture images with good SNR. Due to the fact

that some part of the image sensor still captured both 1 diffractive orders, smaller

secondary peaks can be observed in the figure. They can be eliminated by using a

larger-area grating that has a bigger two-beam-interference region.

The effective dynamic range of the Samsung S.LSI Talbot spectrometer system can

also be characterized. We plot the normalized intensity in terms of dB in Figure 2-31.
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Simulation Experiment

LL
Figure 2-30: Simulated and experimentally captured Talbot images with the Samsung
S.LSI sensor. The system geometry is set such that the Talbot pattern from only the
0 and +1 diffractive orders are captured by the image sensor.

The artifact peak at ~ 828 nm is due to auto-focus pixels on the image sensor. The

plot shows ~ 20 dB dynamic range above the noise floor, which is descent but not in

matching terms with conventional spectrometers. This reveals a potential challenge

for the Talbot spectrometer for general purpose spectroscopy applications. As implied

in the discussions in Section 2.2.2, current image sensors with the available pixel

sizes may have a difficult time getting high visibility with the Talbot interferogram

sampling. This issue can be further aggravated for practical image sensors due to the

fact that they are generally not optimized for extremely tilted incidence angles as in

the case for the Talbot spectrometer. Therefore, a large portion of the captured signal

does not contain any useful spectral information. In addition, limitations in ADC bit

depth on the image sensor can also potentially impact its ability to resolve fine changes

in spectral reconstruction. Some of these limitations are shared with recent imaging

modalities such as digital holography with smartphone and compact camera sensors

[110], and may be solved or partially resolved as the image sensor technology develops.

However, given the current sensor technology, these are important considerations that

should be scrutinized carefully before realizing systems for practical applications.
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Figure 2-31: Reconstructed spectra in log scale across 790 nm to 890 nm with the
tunable Ti:Sapphire laser for the Talbot spectrometer system built with the Samsung
S.LSI image sensor.

2.4 Compact and High Precision Wavemeters Us-

ing the Talbot Effect and Signal Processing

2.4.1 Frequency Analysis and Estimation with Periodic Sig-

nals

For coherent light signals such as a laser source, the sampled interferogram rows

(across the depth dimension) with the Talbot spectrometer essentially contain periodic

signals where the spatial periodicity corresponds to the laser frequency according

to Equation 2.9. Extracting the frequency (and possibly amplitude and phase)

information for a periodic signal, which some term as the tone parameter estimation

problem [111], can be achieved with precision1 much higher than that from direct FFT

or the spectrogram [111]. This problem has a long history in the signal processing

'While "super-resolution" has been used in certain fields for high accuracy peak or signal
localization, we here use "high precision" to refer to this operation. In general, "resolution" is used to
refer to the FFT-defined frequency separation under the sampling theorem or the Rayleigh resolution
criterion in our text.
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community with applications ranging from radar and sonar systems [112, 113], audio

and acoustics [114, 115], astronomy [116] and many more. As a direct result of its

immense presence in engineering and scientific problems, many algorithms such as

the maximum likelihood estimation [111], MUSIC (MUltiple SIgnal Classification)

[117, 112], and ESPRIT (Estimation of Signal Parameters via Rotational Invariance

Technique) [113] amongst others [118] have been proposed and realized to solve it

with extremely fine precisions.
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Figure 2-32: (a) Reconstructed spectra using direct FFT for laser wavelengths in steps
of ; 200 pm with a tunable external cavity diode laser. (b) Reconstructed spectra
using FFT with prior zero-padding for the spectral sources in (a).

While direct FFT has been used for spectrum retrieval with the Talbot spectrometer,

for laser wavelength estimation, similar tone parameter extraction ideas can be

applied to achieve much higher laser wavelength estimation precisions. The idea is

illustrated in Figure 2-32, which shows example plots for reconstructed spectra for

laser wavelengths in steps of ~ 200 pm with a tunable external cavity diode laser

from Sacher Lasertechnik. Figure 2-32 (a) uses direct FFT for spectral processing,

whereas Figure 2-32 (b) zero-pads the interferogram rows prior to the FFT operation

for precision enhancement. As can be seen from the figure, with zero-padding, much

finer interpolated spectral shapes can be achieved, resulting in much more accurate

center frequency estimation than that from the direct FFT estimation.

For real sinusoidal parameter estimation, assume that the underlying periodic
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signal y[n] is

y[n] = A cos(27rfoAn + 4),

for n = 0, 1, 2, ... , N - 1, where A is the amplitude for the periodic signal, fo is its

frequency, A is the sampling interval, and # is the phase. The observed discrete noisy

signal x[n] is

x[n] = y[n] + w[n],

where w[n] is the white Gaussian noise with variance a,2. The Cramdr-Rao lower bound

(CRLB), which is the theoretical lowest error bound achievable with an unbiased

estimator, for the various parameters in the model is therefore [119]

20r2
var[A] > -- ,

N'

var[fo] ; 7r2 A2 A2N(N2 
- 1)'

4(2N - 1)o2

- A2N(N+ 1)

The most relevant one for our application is var[fo]. The model SNR, which is usually

defined as the ratio between the variance of the signal and the variance of the noise, is

= var[y] _ A 2

var[w] 2a 2

Rewriting the CRLB for frequency estimation, we have

3 3N(jf)2 3 (jf)2
var[fo] >~.

r2SNR A2N(N 2 - 1) 7r2 SNR (N2 - 1) ir2 SNRN

Here, 6f is the FFT-defined frequency domain spacing. The standard deviation for

the frequency estimation error is therefore

if
std[fo] ,>_.

\/3S NR N

Based on experimentally captured Talbot images from single-frequency laser sources,
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the SNR from the above definition for the main Talbot peak in a single interferogram

row is estimated to be ~ 0.2 to 1.2 depending on the obtained interferogram visibility.

This means that for an image sensor like the Aptina MT9J003, which has a sensor

dimension of 3856 x 2764, the standard deviation of single-row (across the larger

dimension) frequency estimation can be ~ 0.85% to 2.08% of that obtained from the

FFT bin size 6f. If ensemble estimation such as aggregated mean based on row-wise

estimations is performed, a further reduction of V/2764 ~ 53 in terms of standard

deviation of the estimation error is possible, assuming negligible effects from issues

like the wavefront aberration, which may cause potential systematic estimation bias.

This means an estimation error standard deviation of ~~ 0.016% to 0.040% of 6f is

possible. With 6f below 1 nm for most geometries tested under optical wavelengths,

this corresponds to sub-picometer precision based on the 1-0r criterion and around

picometer precision with the 3-a criterion.

2.4.2 Experimental Realization, Algorithm, and Result Dis-

cussions

Experiments aiming at exploring the performance limits for the Talbot wavemeter

with signal processing for wavelength estimation were carried out. Compact Talbot

wavemeter setup using 3-D printed parts similar to the one shown in Figure 2-23 was

used for device characterization. A tunable Ti:Sapphire laser (SolsTiS, M Squared

Lasers) was used as the light source. A high-precision wavemeter (Bristol Instruments)

was used to provide the reference wavelength measurements with sub-picometer

precisions. Single-mode optical fiber was used for light delivery. A fiber collimation

lens and a 1oX beam expander were used to fill the image sensor area. In addition,

a linear polarizer was used after the fiber collimation lens for polarization clean-up.

The Talbot system used was the Aptina MT9J003 sensor with 1.035 pm grating pitch

size. The laser source was tuned in steps of ~ 100 to 200 pm. For each wavelength,

consecutive images were obtained for estimation variance analysis.

For estimating the wavelength from the Talbot interferogram image, row-wise

112



wavelength estimation was carried out for all the image rows across which depth

samplings were performed. Afterwards, the mean of all the wavelength estimations was

used as the final aggregated estimation result. Two algorithms have been extensively

tested. The first one is an algorithm based on peak localization with zero-padded FFT

[114]. The interferogram rows are first zero-padded to augment the array dimension

by one to two orders of magnitude. FFT is then applied on the signal for spectrum

retrieval. Afterwards, the maximum of the spectral peak is identified, and a parabolic

approximation based on this point and its adjacent points is used for peak maximum

localization. The second one is the MUSIC algorithm [117, 112], which is an eigenspace

method to identify a known number of sinusoidal signals in the presence of Gaussian

white noise. It is considered by many as one of the most promising algorithms

for frequency estimation tasks [120]. For this algorithm, we used the MATLAB

implementation (rootmusic) for our numerical processing.
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Figure 2-33: (a) Wavelength estimation results for a laser source tuned across ~~ 4
nm with 200 pm step sizes. The algorithm used here is the FFT peak localization
algorithm. (b) Wavelength estimation results for a laser source tuned with 100 pm
step sizes. The algorithm used here is the MUSIC algorithm. The dots in the plots
are the means from 10 consecutive acquisitions. The error bars represent the standard
deviations from the 10 measurements.

Overall, both algorithms were able to provide accurate wavelength estimations

much better than those obtained through direct FFT inversion. Figure 2-33 shows

plots for wavelength estimations across a narrow wavelength span. Figure 2-33 (a)
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shows wavelength estimations with the FFT peak localization algorithm for steps

of 200 pm across - 4 nm. In Figure 2-33 (b), the means as well as the standard

deviations across 10 consecutive acquisitions are shown for wavelength steps of 100

pm with the MUSIC estimation algorithm. Wavelength calibrations were performed

prior to the plot to account for the non-perfect incidence angle control in our setup

as mentioned in Section 2.3.3. To quantify the estimation uncertainty, which defines

the resolution achievable with our approach, we used 10 wavelength measurements,

each with 10 consecutive acquisitions, to calculate the estimator standard deviation.

The mean standard deviation for the FFT peak localization algorithm was ~ 8.5 pm,

whereas the mean standard deviation for the MUSIC algorithm was ~ 6.6 pm. Both

algorithms were able to provide sub-10 picometer estimation standard deviation, with

the MUSIC algorithm having a slightly more accurate estimation.

The effect of mean aggregation across different interferogram rows is investigated

next. This is shown in Figure 2-34, where we varied the number of averaging rows

from 1 to 2701 in steps of 100. Figure 2-34 (a) shows the results for the FFT peak

localization algorithm and Figure 2-34 (b) shows the results for the MUSIC algorithm.

As can be seen from the plots, mean aggregation across the interferogram rows can

enhance the estimation accuracy significantly. For both estimation algorithms, close to

an order of magnitude estimation precision improvement can be achieved by averaging

all the available rows from the image sensor. The most significant improvement

is across the first ~ 1000 rows, with plateaued performance after the first = 1000

rows. The plateaued performance improvement is likely caused by the fact that in

our experiment, aberrations with the collimation setup as well as the non-ideal pixel

sampling either due to the oblique incidence or the micro-lens array can introduce

phase errors in our interferogram signal. This causes Fourier-domain spectral peak

distortions as well as peak position misalignment across different interferogram rows,

weakening the efficacy of mean aggregation in terms of uncertainty reduction. This

can likely be improved by better collimation setup for aberration reduction or by using

algorithms that can correct systematic phase errors during estimation.

While the MUSIC algorithm yielded better accuracies in terms of estimation
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Figure 2-34: Estimation standard deviation as a function of the number of averaging
rows for (a) the FFT peak localization algorithm, and (b) the MUSIC algorithm. The
standard deviations were calculated from 100 acquisitions with 10 different wavelength
points around 780 nm.

consistency, a significant advantage for the FFT peak localization algorithm is its

computational speed. While extra memory is needed for storing the zero-padded image,

row-wise FFT across a two-dimensional image has vectorized and well-optimized code

executions [121]. The remaining operations generally have linear time complexity and

are easily vectorized. As discussed earlier, aggregating row-wise estimation results is

one of the keys to achieve an accurate estimation, therefore being able to perform

fast and parallel frequency estimations across several thousand interferogram rows

can be extremely advantageous. In general, our experiments suggested at least 20

times faster computational speed for the FFT localization algorithm as compared to

the MUSIC algorithm. In addition, the MUSIC algorithm requires the number of

sinusoidal signals to be known in advance. In our numerical study, this was taken care

of by spectrally filtering the wavelength region of interest prior to MUSIC estimation

to ensure the estimation robustness. This aspect can be handled more easily with

the FFT localization algorithm, as one can incorporate a heuristic approach for peak

identification and thresholding within the FFT localization steps in a straightforward

manner.
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2.5 Conclusions

In conclusion, we have demonstrated using the non-paraxial Talbot effect with modern

image sensors to build high performance spectrometers and wavemeters. Due to the

dimensions of the relevant elements, sampling and processing the Talbot interferogram

for high spectral discrimination not only is a computational problem but also involves

hardware selection and optimization. Strategies and recommendations for dealing

with source temporal incoherence and angular spread incidence have been provided.

By experimentally realizing several Talbot spectroscopy systems with different image

sensor and grating selections, we verified our design theory and demonstrated the

compact and high performance Talbot spectroscopy solution with nanometer resolu-

tion across a broad wavelength bandwidth. With further statistical signal processing,

we demonstrated high precision wavemeters using our device with estimation reso-

lution below 10 picometers (using the 1-a criterion). Unlike the recent advances in

computationally-enabled compact spectroscopy solutions, our Talbot spectroscopy

solution does not require any full-spectrum calibration process, which is a significant

advantage for practical adoptions. While the visibility of the interferogram is sub-

optimal at the moment, we envision that the general performance of Talbot-based

spectroscopy systems will improve as the image sensor technology advances with more

densely packed pixel arrays. As discussed in this chapter, using the Talbot effect for

general spectroscopy can have stringent requirements on issues like sensor-grating

positioning. Significant further effort might be required to demonstrate its performance

limits. However, for coherent light sources, Talbot wavemeters based on the existing

approach are already having operating bandwidths and precisions close to those offered

in the commercial domain. With further engineering and optimization, it is foreseeable

that the compact Talbot wavemeter solution can take off in the near future.
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Chapter 3

Bayesian Modeling and

Computation for Analyte

Quantification in Complex

Mixtures Using Raman

Spectroscopy

This chapter discusses our development in an analyte quantification algorithm for com-

plex mixtures using Raman spectroscopy. We use a Bayesian inference and modeling

approach with reversible jump Markov chain Monte Carlo (RJMCMC) computation

for spectral shape modeling. This framework is introduced in Section 3.1 with detailed

discussions on functional modeling, prior selection, the Bayesian computation pro-

cess, and our two-stage algorithm. Section 3.2 introduces numerical experiments for

performance validation and exploration with our algorithm. The mixture interfering

environment and noise condition, as well as algorithm performance comparison with

several popular multivariate regression algorithms are explored. Section 3.3 presents

the estimation results of our algorithm on two experimental datasets. The first one is

a physical mixture dataset and the second one is a dataset for nutrient monitoring
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with mammalian cell culture processes. At last, Section 3.4 provides the conclusions

for this chapter.

3.1 Bayesian Formulation and Monte Carlo Com-

putation for Spectral Data Analysis

3.1.1 Functional Model for Spectral Signal

Raman spectra are typically collected as one-dimensional signals from a CCD or CMOS

detector placed after a dispersive element such as a diffraction grating. Assuming that

there are N spectral data points, we model the discrete Raman signal as

y = fp(V) + fB(v) + E, (3.1)

where y E RN represents the spectrum array, v E RN represents the corresponding

Raman shift in wavenumbers, fp(v) and fB(v) are the functional arrays describing

the shape for the Raman peaks and baseline of the signal, and E E RN is the noise

term. fp(v) is modeled as the sum of individual Raman peaks each corresponding to

an energy transition level as

kp

fp(v) = OP'jg(V; O9,),
j=1

where g(v; Opj) is the functional form for the shape of the j-th peak with 6 Pj containing

the shape variables, and /p3 j is the corresponding amplitude variable. Depending

on the relative contributions from the amplitude correlation time and the coherence

lifetime to the effective lifetime of the excited energy states, the functional line shape of

a Raman peak can be of the Gaussian profile, the Lorentzian profile, or a combination

of both, in which case it can be represented by the Voigt profile [48]. As a popular

approximation to the computationally-expensive Voigt profile, the pseudo-Voigt profile

uses a linear combination of the Gaussian profile and the Lorentzian profile controlled
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by a weight factor to adjust their relative contributions [122]. This is what we choose

to model the line shape of the Raman peaks in our study. With 1j as the centroid

location, w. as the full width at half maximum (FWHM), and p3 as the weight factor

for the j-th peak, we denote the peak variables for the j-th peak as pj= (Ij, w, p).

This leads to

9(v; gpj) = pj exp 4n2(V - j)2 + (1 - P) (3.2)

Meanwhile, the baseline signal fB(v) is modeled with a B-spline function, which can

be represented as
kB

AB(V) = Bj~dj;t (V)-
j=1

Here, Bd,j;t(v) is the j-th basis function with degree d and knots t, and can be

derived from the Cox-de Boor recursive formula [123]. kB is the number of spline basis

functions and 3 B,J is the amplitude coefficient for the j-th basis. In our modeling, the

knots t E Rkt are chosen as equally-spaced locations in the wavenumber domain and

the number of knots kt satisfies the constraint that kt = kB + d + 1. In addition, we

choose to have a fixed number of spline basis with kB = 4 and set the degree d of the

basis function as 3. For Raman spectroscopy, the noise E may come from a variety

of sources including signal shot noise, detector dark current shot noise, temperature

and environment fluctuations, laser instability, and so on. With the contributions

from these independent sources, we approximate the noise in the observed signal as

independent and identically distributed (i.i.d.) Gaussian random noise across the

spectral domain.

With the above formulation, Equation 3.1 can be expressed in a typical Bayesian

linear regression form as

Y = Xk(p)k + EB (33)

with y E R N, E c R N, 3 k = (OP,/13 B) c IRk , k = kp + kB as the overall model
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dimension, and Xk(6P) E kNxk as

9(V1; OP,1) .. - (V1 OP,) Bd,1 t(vi) . .. Bda ,;(11)

Xk(OP) g(V2; OP,) -.. g( 2; P,kp) Bd,1;t (/2) . . .Bd (V2)

XL(N; -P . (N ~p d ~ V)..B~BtV~

With the Gaussian random noise assumption mentioned above, we have

C ~ A(0, 2 IN),

where a2 is the noise variance and IN is the identity matrix with dimension N.

Given an observed Raman spectrum y, we can jointly estimate the signal decom-

position matrix Xk(Op) as well as the corresponding regression coefficients 3 k in

Equation 3.3. As the number of Raman peaks kp is in general not known ahead of the

time, model selection is required. We solve this estimation problem by incorporating

a hierarchical Bayesian model and using trans-dimensional MCMC computation for

model selection and variable estimation.

3.1.2 Prior Selection

We start solving our model by incorporating Zellner's g-prior [124], which is a popular

choice in Bayesian linear regression and variable selection due to its computational

efficiency and the convenience of forming the prior covariance structure from the

design matrix itself, into our formulation. The prior for /k is

/3 IXk(OP), g, A2 ~ (3k,o, go 2 (Xk(OP)Xk(OP))- , (3.4)

with prior mean #kO and a positive scale variable g. Meanwhile, we impose an

improper Jeffery's prior on a2 as

P(,2) OC a-2.
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Various strategies exist for the modeling of g such as empirical Bayes and fully Bayesian

[125], here we put an uninformative diffuse inverse-gamma(E, E) prior to g as

g ~ 19 (a,, b,),

with ag, b. -+ 0 similar to Razul et al. [56]. This allows a convenient Gibbs update for

g due to its conditional conjugacy property.

The number of Raman peaks kp present in the spectrum is modeled with a Poisson

distribution with rate or mean variable A as 1

kpIA ~ Poisson(A),

and we further model A with a weak and uninformative conjugate gamma(c, E) prior

as

A - ga(aA, bA),

with aA, bA -+ 0.

Given kp Raman peaks, we assume conditional independence for the prior dis-

tributions for the peak variables in 6p. With the wavenumber region spanning

across [lmin, lmax] and Al = imax - lmin, we assign a uniform flat prior to the locations

1 E [Imin, lmax]kp of the peaks, which leads to

11p kp =(,)kp kp

lk p ~fJU (li; min lmax) = 1[in,lma (1)

For the widths of the peaks w C RkP, it is desirable to obtain prior information in

order to design a suitable prior distribution. As will be described in more details

in Section 3.2.1, we surveyed around 100 Raman peak widths found in common

materials and fitted these samples with an inverse-gamma distribution. To account

for the limited sample space that we have surveyed and to adopt a conservative

'Although it is more precise to model it as a truncated Poisson distribution due to the finite
number of components allowed in our computation, the choice of an untruncated Poisson distribution
results in a cleaner conditional posterior distribution without losing much accuracy.
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approach [126], we intentionally weaken this prior knowledge by scaling the variance

of the inverse-gamma distribution by a factor of 4 while keeping the mode of the

distribution fixed. With a, and b, denoting the parameters corresponding to the

scaled inverse-gamma distribution, we have the prior distribution for w as

kP baw kp k kp 1

wIkp ~ 9 J (wi; aw, bw) = 1F Fw - exp -bw -.

As noted in Bradley [48], the line shape of the Raman peak can depend on the state of

matter of the material due to the impact of the environment on the effective lifetime of

the excited energy states for the molecules. For example, solids tend to have Gaussian

profiles, gases tend to have Lorentzian profiles, and liquids tend to have features of

both. It is therefore possible to assign specific priors for the relative weights p E [0, 1]kp

between the Gaussian and Lorentzian profile for the Raman peaks based on knowledge

of the material. Here for general purpose, we assign another uninformative flat prior

in the range of [Pmin, Pmax] with pmin = 0, Pmax = 1, and AP = Pmax - Pmin for p, which

leads to
kP kp kP

pIkp ~ U(pi; pmi, pm.) 171 [PinPmax] (pi).

The graphical model representing the hierarchical Bayesian structure of the spectral

signal is shown in Figure 3-1. With the likelihood function of our model as

1 ri
P (yIXk (6p), , 0 2 ) = exp 2 (Y - Xk(Op)Ok) (y - Xk(OP)3) ,

we can express the joint posterior distribution for all the variables as

p(g, a2 , A, kp, 6p, Iy) a

p(g)p(a 2 )p(A)p(kpIA)p(llkp)p(wlkp)p(plkp)p (/3k|Xk(Op), g, 02) p (yIXk(6P), 3 , a2 ).

(3.5)
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kP a b 9

\V~

aA, bA: Hyper-parameters for A.
A: Rate variable for Poisson distribution with kp.
kp: Number of Raman peaks.
1, w, p: Peak locations, widths, and relative shape weights.
Xk: Signal decomposition matrix.
ag, bg: Hyper-parameters for g.
g: Scale variable for the g-prior.
Ok: Amplitude variables for the signal decomposition matrix Xk.
j2: Noise variance.
y: Observed spectral array.

Figure 3-1: Graphical model for the hierarchical Bayesian structure of the spectral
signal.

3.1.3 Bayesian Computation

No closed-form solution exists for evaluating the joint posterior distribution from

Equation 3.5, we resort to numerical approximation with statistical sampling. In

addition, the number of Raman peaks kp is generally not known beforehand and

affects the dimensionality of the variable space Xk, for the model. Therefore, model

selection across the model space with different kp is required. A diversity of criteria

and methodologies exists for Bayesian model selection [127]. Here, we adopt a

unified approach for joint variable estimation and model selection with the RJMCMC

technique introduced by Green [128], Richardson and Green [129]. The RJMCMC

method samples from the union space X = UkeK({kp} x Xk,) for the potential
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models, where IC in our case is a countable set containing all the possible Raman peak

number in the spectrum, by constructing a reversible Markov chain in the general

state space. The trans-dimensional moves across the models in RJMCMC can be

incorporated inside the general Metropolis-Hastings paradigm in a straightforward

manner. With marginalization, the posterior probability of being in any variable space

Xk, can be obtained, and model selection can be performed accordingly. For more

in-depth discussions on the model determination aspects with RJMCMC, Hastie and

Green [130] serves as an excellent reference.

With the hierarchical Bayesian structure imposed by our model, several variables

can be conveniently updated with Gibbs sampling. In the following text, we use I ...

to denote conditioning on all other random variables. With Gibbs sampling, g can be

updated with an inverse-gamma distribution as

k I
g| - 9 -- (ag + , bg + 2'. Tk /3kO) Xk(OP)Xk(OP)(/ 3k - 13,O).

A can be updated as

Al -- a(aA+ kp, bA + 1).

Denoting 13k = (X(6P)Xk(6P)- Xk (p)y as the maximum likelihood (ML) estima-

tion of /k and S2 = (y - Xk(6p),k)T(y - Xk(Op)fk) as the squared residue of the

ML estimation, we define

~ 2 1
b 22 = -+ (IA - k,O Xk(OP)Xk(P)(/3k - OkO).2 2(g +1)'

With this definition, our posterior for o 2 and /k can be updated as

N ~62
2

and

Oklo 2 ,... - ( 13k,O + Ak , 0 2 (XT(6P)Xk(6P)--) . (3.6)
g + g+1 k
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The conditional posterior distribution for the rest of the variables Op and kp does

not admit a tractable form. To sample Op and kp, we first integrate out a 2 and 1k

from the full joint posterior distribution for simplification. This leaves the conditional

posterior probability for Op and kp known to a proportionality as

A kp~ 1 1 )' kp
p(Op, kp0.. C b 1 (2 ,r I(g + 1)Ik| 17 [lmin lmax]'<i)

b p k( kp kp! Vr kp k3k)

W awa- 1) eXp -bw ( > )k k p ., _ i
( (aw) Wi AP R } (pinPmax(Pi)

Samples of Op and kp can be obtained with the RJMCMC method, which can be

viewed as a generalization of the Metropolis-Hastings algorithm with additional trans-

dimensional moves. Denoting the current variable state as x = (Op, kp), for any

proposed variable state x' = (O'p, k' ), we can calculate the corresponding Metropolis-

Hastings acceptance probability a(x, x') = min{1, A(x, x')}, where A(x, x') can be

calculated for each move type respectively.

For within-dimensional moves where the dimensionality of the variable space stays

the same and k' = kp, we can use symmetric random walks in Op to generate 0'p.

This is essentially the Metropolis algorithm and A(x, x') is the ratio between the

posterior density function for the proposed state x' and the current state x as

Awithin (X X b, -lmax pa(

k ka-U kp kp

Wi exp -b -& Wi PnP ,x (p').

For trans-dimensional moves, pairs of reversible moves need to be devised. With

proper engineering, by generating assistive random variable u from proposal density

g(u), the proposed state x' can be constructed by a deterministic function h(-) as

(x', u') = h(x, u), where u' is a random variable that can be generated from proposal

density g'(u') so that one can reversely jump from x' back to x based on the inverse of

h(-). The transformation h(.) needs to be a diffeomorphism with matching dimensions
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for (x, u) and (x', u'), which means n. + nu = nx, + nu, with n being the variable

dimension. Let m and m' be the indices for reversible move pairs across the dimensions

of x and x' in set M containing all the possible moves and q(m ix) be the probability

of taking move m at state x, we can calculate A(x, x') as

= p(x')q(m'Ix')g'(u') &(x', u')
' p(x)q(max)g(u) O(x, u)

where denotes the determinant of the transformation Jacobian.

Here, we design four trans-dimensional moves to facilitate cross model mixing, where

similar strategies can be found in applications such as Bayesian mixture estimation

[129]. These moves are:

1. Birth of a new peak.

2. Death of an existing peak.

3. Split of an existing peak.

4. Merge of two adjacent peaks.

For the birth move with k' = kp+1, a peak is generated with 9 b = (1b, Wb, Pb), where

lb is randomly drawn from [1min, lmax], Wb is randomly drawn from density function

Pw, (Wb), and Pb is randomly drawn from [Pmin, Pmax]. ForPWb (w), we choose to use

the empirically fitted inverse-gamma distribution that is described in Section 3.2.1.

With this, Abirth(x, x') can be shown as

,2' 2 A _1 ba; _a,_1 _b= 1 1
b 1 ,_a_ k2 pwb(wb)Abith (X X' b, (k1) j7( + 1 a) Wb aweIL 1'

Meanwhile, for the reversed process of randomly killing an existing peak with peak

variables 6d = (1d, Wd, Pd), we have k', =k - 1 and

A0aeth(X, 2 = .1 +~w a+1 k Adeth X)b)2 Wd ewd kppwb (Wd).
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For the split move, a random peak is selected and split into two adjacent peaks.

Assume that the selected peak has the peak variables as 0, = (ls, wS, Ps), we split the

peak into two peaks with 0+ = (l, w+, ps4) and 0- = (1;, w;, p-) as

w = is + 6"'I, I; = IS - KJUJ,

W+ = + U W, =is - = w wnvw,

pp; ~- U(0, 1),

where 61 and 6, are the hyper-parameters to specify the variable split ranges, u~

(0, 1), and uw ~ (-1, 1). The corresponding Asplit(x, x') with k' = kp + 1 is

N

b' 2 A I ba -. ( 1 +
Asplit(x, x') = ~ , 1) 866.

b,2 k1 (g + l (aw ) ws

For the reversed merge move, the peak variables 0+ = (1j, w+, p+) and 0- -

(l, w-, p-) from the two selected adjacent peaks are merged into 0 m = (Im, Wim, Pm)

as

m = (1 + 1),Wm= (W+ + W-), Pm ~ U(O, 1).

With k' = k- 1, Arerge(x, x') can be calculated as

N

, b 2 kp (gaw +w1iwA a,+ bw +--6 1
Amerge (X,) = (~) A 2(g +) 1)W n) - 836

For the trans-dimensional move pairs, we make sure that the moves within each

pair are reversible. For the split and merge move pair, this means that if a split move

creates two peaks that are not adjacent in the current spectrum, or if the selected

adjacent peaks in the merge move have larger variable differences in I and w than

those that are allowed in the split move, we would discard the proposal to ensure

reversibility.

With the hybrid Gibbs and RJMCMC sampling schedules described above, we can

describe an algorithm for joint peak variable and baseline estimation with a Raman
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spectrum. At each sampling iteration, the RJMCMC move for this iteration is first

determined with a categorical random variable m with the support corresponding to

the indices of the available moves in M. Op and kp are updated subsequently based

on the move type m. This essentially creates a combined mixture MCMC transition

kernel for the update of 6p and kp. Afterwards, (g, A, 07,2 0k) are updated with Gibbs

sampling. Once the Markov chain is fully mixed, model selection based on kp can be

performed. For example, the maximum a posteriori (MAP) estimation for kp can be

obtained as

Yp = arg maXk p(kP Iy)

For spectra having visually distinct and well-spaced peaks, the above Bayesian

sampling schedule works well with a fixed and equally-likely move proposal distribution

for m. However, for more complex spectra having a large number of peaks that may

have tightly spaced or partially overlapping peaks, we notice that frequent label

switching caused by trans-dimensional moves in steady state can become problematic

for variable estimation [131]. In addition, in these situations, during the early inter-

state mixing iterations, negative amplitudes can be assigned to some peaks (while

still maintaining an overall spectral signal match with the observed spectrum). These

peaks with negative amplitudes may stay throughout the iterations, which create

unphysical decomposition results. We address these two problems with the following

approaches.

As a solution to the first problem, we employ a heuristic approach by gradually

decreasing the probability of taking trans-dimensional moves throughout the iterations.

At iteration i, the move type is determined from m( sampling from the categorical

proposal distribution Pm (m) with probability mass as (P$ , W P W , Pp)) for each

move - p$ corresponds to the within move, pb and pf) correspond to the birth and

death moves, and p. and pm correspond to the split and merge moves. Using pb as

an example, we adjust its value in each iteration as

Pb Pb
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with pm = Pb = Pd = P Pm, T(O = , limi,& T() = 0, and a linearly

decreasing cooling schedule for T(i. We perform this adjustment for all the trans-

dimensional moves. Meanwhile, we increase the within-dimensional move probability

accordingly with the constraint that pW + p) + pW + pW + (i) = 1. This treatment

is similar to simulated annealing, and effectively creates a non-homogeneous Markov

chain in the general state space [132]. Convergence results can be obtained with

simulated annealing-like algorithms [133], which we do not pursue in this work. Once

the steady state is reached, all samples are effectively drawn from the same model

with kf. Therefore, variable values can be estimated without explicitly performing

model selection.

For the second problem, we enforce a non-negativity constraint on the amplitude

coefficients Op for the peaks. During the sampling iterations, if any peak with a

negative amplitude is generated, we discard the sample and restart the current iteration

step until all peaks are of non-negative values. This emulates rejection sampling and

effectively adds a non-negative support constraint on Op for the prior and posterior

probability distributions in Equation 3.4 and Equation 3.6. We note here that even

without the annealing schedule described above, this re-sampling operation is only

mostly required during early iterations where the computation is rapidly converging

in the model domain. Once the model dimension is reasonably converged, negative

peak amplitude generation seldomly occurs.

Denoting Of, = (g, A, a2 , fk, Op) for the variables associated with kp, we can

estimate the conditional posterior expected values for Ok, as

E P [ M k (3.8)
i=1

with 050 being the i-th sample drawn from the conditional posterior distributionkp

p(okJy, kp) and M being the total number of samples. Alternative estimation

criterion such as the MAP estimator can also be used here.
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3.1.4 Two-Stage Algorithm for Analyte Quantification

The above Bayesian formulation and computation provide a framework to simulta-

neously estimate the peak and baseline signal in a Raman spectrum. In order to

further it into a quantification algorithm applicable to practical scenarios, we propose

a two-stage algorithm built upon this framework.

In many analyte quantification tasks involving Raman spectroscopy, the goal is to

quantify one or more target analyte in mixture spectra. For simplicity of presentation

we restrict our attentions to one target analyte but note that the extension to multiple

target analytes is straightforward. We also assume an aqueous mixture environment

in our analysis. While not required by many multivariate regression techniques such

as PLSR, the actual spectrum of the target analyte is often easy to acquire through

a separate reference measurement. Our algorithm takes advantage of this aspect by

first learning the peak representation for the target analyte at a known concentration.

This can be achieved through the Bayesian computation process described above

working on the reference target analyte spectrum. Once the peak variables for the

target analyte are learned in this first stage, we move on to the second stage with the

mixture spectrum where the concentration for the target analyte in the mixture needs

to be determined. In this stage, the processing is slightly modified relative to the first

stage to take into account of the learned representation of the target analyte. The

modifications are described as follows.

With the peak and baseline decomposition for the reference target analyte spectrum

in the first stage as in Equation 3.1, and Op and f3p corresponding to the estimated

peak variables for the target analyte according to Equation 3.8, we define the Raman

peak signal at unit concentration for the target analyte as

kpI

fp(v) - ' g(vj ; Opj), (3.9)
cpure 1 cpure

where cpure is the target analyte concentration in the reference measurement.

In the second stage, the observed signal in the mixture spectrum now can be
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First stage
Input Reference spectrum of the target analyte
Initialize TOt), Pb, N s( 0), p()), and the spectrum variables
for i +- 1 to I do

Determine move type m() with (p , Pb , Pd , pS, pm)
Based on move type m(i, sample Op with RJMCMC and update kp
Sample g, A, o2, /3k = (f3 P, 3B) with Gibbs sampling
if 3

1
3pj E 3p s.t. 3Pj < 0 then

I Discard current samples and restart current iteration
end

Update i, T(), (p I bp (IPP)
end

Estimate 6p, /p, and calculate fp(v)

Second stage
Input Mixture spectrum

(0) (0) (0) (0) (0Initialize T(0 ), (pw , P , Pd , Ps , Pm), and the spectrum variables
for i +- 1 to I do

Wi (i)WDetermine move type m() with (p), Pb , Pd , P, I P)
Based on move type m(), sample 0, with RJMCMC and update k,
Sample g, A, a2 , 3 k = (Cmix, 3 /B) with Gibbs sampling
if A 3,j E /3 s.t. f1,j < 0 then
I Discard current samples and restart current iteration

end

Update i, T(), (p) I pIpd1  ,psI)
end
Estimate mix

Algorithm 1: The two-stage algorithm for analyte quantification in mixture spec-
trum with Bayesian modeling and computation.

modeled as

y = fT(V) + fl(v) + fB(v) + E,

where here fT(v) represents peaks originating from the target analyte, fi(v) represents

peaks from the other analytes in the mixture, which we call the interfering analytes,

and the rest follows as previous. The target analyte signal fT(v) is related to its

concentration in the mixture cmix as

fT(v) = cm ixfp(v)-
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In order to solve for cmix, a similar Bayesian computation process relative to the

first stage can be carried out except for that fp(v) is kept as a fixed basis with

estimated bp and /p as in Equation 3.9. With 6 as the peak variables for the

interfering analytes, this means that Xk(6I) E RNxk, now depends on 61, is

fP(V1) 9(V1; 01,1) ..-. 9(V130^,kj) Bd,1;t(VI) ... Bd,kB (V1)

Xk(01) = IP(V2) g(v2 O1 ,1 ) ... g(v2; O,k,) Bd,1;t(V2) ... Bd,kB;t(V12)

to take into consideration of the target analyte spectrum. Correspondingly, /k =

(Cmix, 1 I3 B) C Rk, k, represents the number of peaks coming from the interfering

analytes in the mixture, and k = k, + kB + 1. Afterwards, all the variable sampling

schedule and estimation procedure from the previous section can be directly applied

to estimate rmix and the rest of the variables. The overall algorithm is shown in

Algorithm 1.

3.2 Simulation Study

3.2.1 Numerical Experiment Setup

We first set up the numerical experiment environment for exploring the performance

of our algorithm under various situations. For all the simulated spectra, the Raman

shift wavenumber range spanned across 400 cm- 1 to 1600 cm- 1 and contained 300

equally-spaced spectral points. We simulated our studies under the same use case

as in actual practice where a reference measurement of the Raman spectrum for the

target analyte at a known concentration was first given and our goal was to quantify

its concentration in mixture measurements in the presence of other interfering analytes

at unknown concentrations.

For any simulated analyte including the target analyte, we modeled its Raman

spectrum at unit concentration by explicitly generating the Raman peaks. The
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Figure 3-2: (a) Histogram for the widths of around 100 Raman peaks surveyed in
common materials and the PDF plot for an inverse-gamma probability distribution
fit. This PDF was used to generate the simulated Raman spectra in our studies. (b)
Examples of the simulated target analyte spectrum and 5 mixture spectra each with 5
randomly generated interfering analytes. a = 1 for all these simulated measurements.

number of Raman peaks kp for the analyte was first determined. Afterwards, we

generated the corresponding peak random variables Op = (1, w, p, a) from predefined

probability distributions. Here, 1, w, and p are defined in the previous section and

a c [0, 1 ]kP are the peak amplitudes at unit concentration. For all the peaks, I were

independently and uniformly generated across the available spectrum span, and p and

a were both independently and uniformly generated from range [0, 1]. For w to be

representable to actual Raman peaks encountered in practice, we surveyed around

100 Raman peaks from 11 common materials including phenylalanine, tryptophan,

tyrosine, alanine, glycine, glucose, lactic acid, acetic acid, succinic acid, ethanol and

water. We extracted the Raman peaks and their widths and fitted these width samples

with an inverse-gamma distribution. The histogram for the peak width samples and

the fitted probability density function (PDF) are shown in Figure 3-2 (a). We denote

this PDF as pg(w) and sampled w independently from this probability distribution in

our simulations. Once kp and Op were both determined, the Raman spectrum at unit
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concentration could be represented as

kp

fp(v) =L ajg(v; OPpj)
j=1

with g(v; Opj) defined in Equation 3.2. Given fp(v) for each analyte, we could

generate any mixture spectrum by adding together the spectral signals from all the

constituent analytes adjusted linearly by their respective concentrations in the mixture.

In addition, we also added the baseline signal represented by a low-order polynomial

curve, where for each baseline curve, small random perturbations were added to the

fitting points used to generate the polynomial curve to ensure a varying baseline

across all the spectra. At last, we added independent and additive Gaussian random

noise with standard deviation a across the array to generate the final spectra. For

the reference target analyte spectrum, no spectral signal from any other analyte was

added, but we still included the baseline signal and the noise to resemble an actual

measurement.

In the following numerical experiments, we fixed the target analyte spectrum with

kp = 10 randomly generated Raman peaks across all the mixture studies. For each

mixture, the number of co-existing interfering analytes is denoted as NI. The number

of Raman peaks was set as 10 for each interfering analyte similar to that of the target

analyte. The concentration for each analyte in the mixture including the target analyte

was uniformly and randomly generated from range [0,60]. For the reference target

analyte spectrum generation, we set its concentration at 30 and noise scale a at 1.

The mixture spectra were all randomly and independently generated from the process

described above. Sample plots for the target analyte spectrum as well as 5 mixture

spectra each with 5 random interfering analytes are shown in Figure 3-2 (b). 0 = 1

for all the spectra in the figure.
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Figure 3-3: (a) and (b) Example plots for a simulated target analyte spectrum, and
its baseline estimation and peak decomposition results with our algorithm. (c) and
(d) Example plots for analyte assignment and peak decomposition for a mixture
spectrum based on peak variables obtained from (a) and (b) for the target analyte.
The resulting spectrum amplitude for the target analyte was subsequently used to
estimate its concentration in the mixture. In this simulation, a = 1 for the target
analyte spectrum, N, = 5 and o- = 1 for the mixture spectrum. The concentration
for the target analyte in the mixture was 5 and the estimated concentration from our
algorithm was 4.6

3.2.2 Mixture Environment Study

With the above settings, we were able to validate our algorithm with simulated target

analyte and mixture spectra. As an illustrative example, we show an estimation

result in Figure 3-3. Figure 3-3 (a) and (b) show the baseline estimation and peak

decomposition results for a simulated reference target analyte spectrum. The estimated

peak variables obtained in this step were further used to quantify the target analyte

concentrations in mixtures, as shown in Figure 3-3 (c) and (d). With the mixture
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Figure 3-4: Example plots showing the baseline estimation and analyte assignment in

mixture spectra for various target analyte concentrations. The concentrations for the

target analyte in the mixtures decrease as we move from the top row to the bottom

row. In all plots, N, = 5 and o- = 1.
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spectrum, other than the amplitude coefficient of the learned target analyte, a variable

number of Raman peaks were also fitted with the RJMCMC computation to explain

the peak signals from the rest of the interfering analytes. This ensured that all the

peaks appearing in the mixture spectrum were properly assigned to either the target

analyte or the interfering analytes, resulting in the most likely amplitude estimation

for the target analyte peaks in the mixture spectrum. This in turn corresponded to

the concentration of the target analyte in the mixture. In the simulation as shown in

Figure 3-3, = 1 for the target analyte spectrum, N, = 5 and a = 1 for the mixture

spectrum. The concentration for the target analyte in the mixture was 5 and the

estimated concentration from our algorithm was 4.6.

In addition to Figure 3-3, Figure 3-4 shows more mixture spectra decomposition

examples. The concentrations for the target analyte in the mixtures decrease as we

move from the top row to the bottom row. In all plots, N, = 5 and a = 1. While 60

Raman peaks were being randomly generated for each plot, many of them overlapped

as can be seen from the plots. Due to the fact that the spectrum for the target analyte

was already learned in the first stage, the algorithm was able to properly decompose

wider peaks into narrower partially overlapping peaks that were associated with the

target analyte, despite of heavy peak degeneracies in the mixture spectra. A closer

examination of the plots also reveals that the success of our algorithm in quantification

tasks relies heavily on the number of Raman peaks in the target analyte spectrum.

For a target analyte with ; 10 Raman peaks, even in a highly mixed environment

like the ones generated in Figure 3-4, there is a high probability that at least several

target analyte Raman peaks are not clouded by any interfering peaks. As a result,

this would likely result in proper analyte assignment and in turn, accurate target

analyte concentration estimation. In practice, many analytes of interest in analytical

chemistry and biology have a respectable number of distinct Raman peaks like the

ones shown in Figure 1-5. This validates the general usage of our algorithm.

Plots of the sampling process for all the modeling variables for a simulation run

are shown in Figure 3-5 through Figure 3-8. In this simulation, N, = 5, and o = 1 for

both the target analyte spectrum and the mixture spectrum. Figure 3-5 and Figure 3-6
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Figure 3-5: Variable samples for kp, A, g, and a2 for an example target analyte

spectrum. kp is plotted for the entire iteration whereas the rest are plotted for the
last 1000 iterations.

show the simulation variables for the first stage with the target analyte spectrum. The

evolution of the number of Raman peaks kp, which dictates the variable dimension of

the model, throughout the entire iteration process is shown in Figure 3-5 (a). Our

annealing schedule ensured that the algorithm converged to a single posterior model

space as can be seen from this plot. All the peak variable evolutions are shown

in Figure 3-6 for the last 1000 iterations. Due to our annealing schedule, no label

switching is observed, which greatly facilitates the variable estimation step. After this

stage, all variables can be estimated through the samples shown in Figure 3-5 and

Figure 3-6.

Figure 3-7 and Figure 3-8 show similar plots for a mixture spectrum. In Figure 3-

8 (f), #T,mix is defined as mix/cpure in our computation. The estimated value of this

variable was used to compute the target analyte concentration in this mixture spectrum.
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spectrum. All variables are plotted for the last 1000 iterations.
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Figure 3-7: Variable samples for kp, A, g, and a2 for an example mixture spectrum.
kp is plotted for the entire iteration whereas the rest are plotted for the last 1000
iterations.

From Figure 3-8 (a), it can be seen that the model converged to kp = 17, which was

below the number of interfering Raman peaks (50) in this simulation. This was due to

the peak overlapping phenomenon mentioned earlier - a significant portion of Raman

peaks from the composition analytes overlapped, and without any prior information

such as the ones obtained from the target analyte spectrum decomposition, it would

be extremely difficult to perform finer peak assignments. However, once the target

analyte spectrum representation is given as fp(v), the breakdown and decomposition

of broader mixture peaks can become more likely, if they overlap with peaks from the

target analyte spectrum. As a result, peak decomposition and analyte assignment

in this stage are more physically rooted. For an extreme case, if the spectra from

all the constituent analytes are provided as prior information, the mixture spectrum

decomposition will most likely result in perfect analyte assignment and becomes more
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like the case in CLS as discussed in Section 1.3.2.

(a) RMSE

0'4

-'t

LO

(b)

LU
U)

LU

10.

4.*

10.

8

9.0

7.5

6.0

4.5

3.0

1.5

1 2 3 4 5 6 7
NI

-- --- ----- -- -- --- - --- - - -- - ----- -- ---- ----- ---- ------- -- -- --

1 2 3 4 5 6 7
N1

--- -------------- -- - -------- ----------- -------------
---- ---------- ------

-- ---- -- -- I- ---

0= 1
a=2

03

=4

05

N1 = 1
N1 = 2
N, 3
N1 4
N, 5

N, 6
N, 7

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

Figure 3-9: (a) RMSE heatmap plot with varying N, and o. (b) 1D plots showing
the RMSE change with fixed a (above) and fixed N, (below). N, is the number
of co-existing interfering analytes in the mixture and a is the standard deviation
of the additive Gaussian random noise. All RMSEs were calculated based on 1000
independently generated random mixtures.

Next, we evaluated the generalized performance of our algorithm when the number

of co-existing interfering analytes N, and the additive Gaussian noise scale a varied.

The noise scale a was kept as 1 for the reference target analyte spectrum. For each

mixture test set with a fixed N, and o, we generated 1000 mixture spectra with

randomly generated interfering analytes and randomly generated concentrations for

all the constituent analytes as described previously. We used the root mean squared

error (RMSE) between our estimations and the ground truth values across all the 1000

measurements as the performance metric. In total, we generated 35 test sets where we
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N 1 2 3 4 5 6 7

a = 1 1.0 1.4 2.2 3.3 4.1 5.5 6.4
a = 2 1.6 1.9 2.9 4.0 4.8 6.1 7.5
a= 3 1.9 2.6 3.9 5.0 6.2 7.3 8.1
a = 4 2.2 3.4 4.8 5.9 7.2 7.9 9.3
a = 5 3.0 4.3 5.4 6.7 7.7 8.5 9.9

Table 3.1: RMSE values with varying N, and a (also plotted in Figure 3-9). N, is
the number of co-existing interfering analytes in the mixture and 0- is the standard
deviation of the additive Gaussian random noise. All RMSEs were calculated based
on 1000 independently generated random mixtures.
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varied NJ from 1 to 7 and a from 1 to 5, both in steps of 1. The resulting RMSE across

the 1000 test spectra for each set is shown in Table 3.1 and the corresponding 2D

heatmap is shown in Figure 3-2 (a). In addition, ID plots showing how RMSE changes
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with N, under fixed a (and vice versa) are shown in Figure 3-2 (b). Scatter plots

with 100 samples for visualizing the estimation variabilities under different interfering

analyte settings are shown in Figure 3-10 through Figure 3-12. a = 1 for Figure 3-10,

a = 3 for Figure 3-11, and a = 5 for Figure 3-12.

As seen from these results, overall our algorithm was able to provide a consistent

and reliable estimation for the target analyte concentration over a wide range of test

conditions. The RMSEs under all test cases were below ~ 17% of the concentration

variation from 0 to 60 for the target analyte. As the measurement became noisier

or more interfering analytes were added to the mixture, more estimation error was

observed. This is expected as the effect of more noise or more interfering analytes

increases the uncertainty of correct analyte peak assignment and peak amplitude
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estimation. A closer examination of error change with fixed Nr or fixed o in Figure 3-9

(b) indicates a linear increase of error with the other variable. This suggests that a

simple linear model with RMSE being the dependent variable, and N1 and a being

the independent variables may be able to predict our algorithm's performance in a

more generalized scenario. However, further research is needed to rigorously analyze

the error bound of our algorithm under these situations.

3.2.3 Comparison Study

We further compared the performance of our algorithm against several popular mul-

tivariate regression quantification algorithms in chemometrics. Three algorithms

including partial least squares regression (PLSR), principle component regression
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(PCR) and ridge regression (RR) were selected for this comparison study. The im-

plementations for these algorithms were from the scikit-learn 0.19.1 package with

Python 3.6. An important distinction between these multivariate regression algorithms

and our algorithm is that they are typically built based on a mixture training set

with cross validation for model selection. This requires pre-existing mixture spectra

as well as the corresponding ground truth reference measurements for the target

analyte in the mixtures. In practice, the ground truth reference measurements are

usually obtained through a separate chemical assay such as high performance liquid

chromatography (HPLC). On the contrary, our algorithm only requires the reference

spectrum of the target analyte at a known concentration as prior information before

the actual estimation.

Our focus in this study is to investigate how the quantification results compare

across the different algorithms as the number of mixture training data varies. This

comparison study is relevant for practical applications as mixture training data itself

is often labor or resource intensive to acquire in large volume since in addition to

spectral data collection, special sample handling or additional analytical measurement

like HPLC is usually required. In contrast, the reference spectrum of the target

analyte required by our algorithm is much easier to prepare in practice. For the three

multivariate regression algorithms, we created training and test sets with a randomized

process similar to previously described, except for that now we kept the same fixed

mixture components across each training/test set with randomized concentrations.

This is to ensure the proper settings for the multivariate regression algorithms. For

each dataset, we generated 100 samples in the test set and varied the sample size in

the training set from 6 to 24 in steps of 3. During model training, we first performed

3-fold cross validation and parameter grid search within the training set to choose

the optimal hyper-parameters for each algorithm (i.e., number of loading vectors

in PLS, number of retaining principle components in PCR, and the regularization

parameter value in RR respectively). We then refitted the model with the optimal

hyper-parameter on the entire training set and applied the resulting model on the

test set to calculate the RMSE for the dataset. Since these multivariate regression
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Figure 3-13: Error plots for our algorithm and three other multivariate regression
algorithms with various mixture training data sizes for different N, with o = 3. The
error bars in the bar plots indicate the standard deviation of RMSE for the multivariate
regression algorithms across 100 independently simulated datasets each consisting of
100 test spectra. The horizontal shaded area around the dotted line indicates the
standard deviation of RMSE for our algorithm across 10 independently simulated
datasets each consisting of 100 test spectra. N, is the number of co-existing interfering
analytes in the mixture in our simulations.
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algorithms have a high variance under the small training sample size regime, we

repeated this process a number of times on independently generated training and test

sets and report its performance based on aggregated statistics across these independent

runs. In Figure 3-13, we show the average RMSE across 100 independently simulated

datasets for the three multivariate regression algorithms as the number of mixture

training data varies for different N, at u- 3. The error bars in the plots represent the

standard deviation of RMSE across the 100 independent runs. As comparison, we also

show the average RMSE for our algorithm across 10 test sets each consisting of 100

mixture spectra in the same plots. The shaded area around the error line indicates

the standard deviation of RMSE across the 10 test sets. Since our algorithm does not

use the mixture data for training, the error line stays horizontal across the axis for

mixture training sample size.

As shown in these plots, for all the three multivariate regression algorithms, the

prediction error for the test set decreases monotonically as a function of the number

of mixture training data. This is expected as with more training data, it is more

likely for these algorithms to effectively capture the sample subspace of the mixture

data during the training process, thereby increasing the regression accuracy. Under

small training sample size regime with less than ~ 15 training spectra, there is a

clear advantage of our algorithm in terms of both estimation accuracy and consistency

under all testing situations. On the contrary, once there are enough training data

to accurately construct the regression models, our algorithm is unable to match

their performance and the accuracy gap widens with more training data. Under

low interfering conditions, our algorithm remains competitive across the range of

the training sample size change. This is due to the fact that with low interfering

conditions, it is more likely to unambiguously resolve analyte peak assignment and

accurately estimate peak amplitudes, resulting in near-optimal quantification.

Although a non-negligible accuracy gap is present for the high interfering conditions

in Figure 3-13, we note here that with perfect linearity and fixed mixture components

with concentrations generated from uniform distributions in both the training and test

sets, our numerical experiment was constructed such that the conventional multivariate
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Training Data Size 6 9 12 15 18 21 24

N, = 1

This Work 1.9 0.3
PLSR 16.4 4.4 10.2 4.0 7.1 3.2 4.8 1.5 3.6 1.0 3.1 0.7 2.6 0.7
PCR 14.1 4.0 8.4 t 4.5 4.5 1.8 3.1 1.1 2.6 0.7 2.2 0.5 1.9 0.4
RR 11.0 3.6 6.1 2.4 4.2 1.5 3.0 0.9 2.5 0.8 2.1 0.4 1.9 0.4

N1 = 3

This Work 3.8 0.4
PLSR 17.7 4.0 13.7 4.1 8.9 3.7 6.2 2.9 4.1 1.4 3.5 1.0 3.1 0.9
PCR 18.4 2.9 13.4 4.8 6.9 3.9 4.1 1.3 3.2 1.2 2.5 0.6 2.3 0.6
RR 14.5 4.4 8.2 i 3.0 5.2 1.9 3.8 1.3 3.0 1.0 2.4 0.6 2.1 t 0.5

N1 = 5
This Work 6.2 0.7

PLSR 19.2 4.0 16.5 4.2 11.9 4.8 7.6 3.8 5.0 1.7 4.2 1.3 3.5 0.9
PCR 19.2 2.5 18.0 3.6 11.6 5.4 5.4 2.7 3.8 1.1 3.1 1.0 2.7 0.8
RR 17.3 4.6 11.9 t 4.2 7.5 3.1 4.9 1.7 3.7 1.3 3.0 0.9 2.5 0.6

N1 = 7

This Work 8.1 0.8
PLSR 20.7 3.9 17.4 4.4 15.5 4.1 10.3 4.7 7.3 4.0 5.2 2.4 4.1 1.2
PCR 19.6 2.4 19.0 2.6 15.3 4.1 10.5 4.3 5.5 2.6 3.8 1.2 3.3 1.1
RR 19.1 3.7 13.7 3.9 9.4 3.2 6.6 2.4 4.9 1.5 3.7 1.1 2.9 0.7

N1 = 9

This Work 10.1 0.9
PLSR 20.8 3.4 19.0 3.3 15.8 3.8 13.0 4.1 8.5 4.1 6.7 3.5 4.6 1.7
PCR 20.2 2.6 19.1 2.3 18.1 3.3 14.6 4.4 9.7 5.0 5.7 2.8 4.0 2.0
RR 20.6 4.0 16.9 3.8 12.0 3.3 8.7 3.0 6.0 2.1 4.6 1.4 3.6 1.0

Table 3.2: RMSE values for our algorithm and three other multivariate regression
algorithms with various mixture training data sizes for different N, (also plotted
in Figure 3-13). The number before/after the sign indicates the mean/standard
deviation of RMSE across independent runs. N, is the number of co-existing interfering
analytes in the mixture in our simulations.

regression algorithms were set to achieve near-optimal performance under situations

with moderate-to-large training data volume. In practice, apart from experimentation

and instrumentation-related issues as described in Wolthuis et al. [1341, the performance

of these multivariate regression algorithms are more critically dependent on the quality

of the training data, including the size of the training data as well as the measurement

conditions for the training and test data. In general it is desirable to select training

data that are most representable to the mixture conditions of the test data with

sufficient concentration variabilities for critical analytes [45]. These requirements can

be difficult to satisfy without substantial resources being allocated to the training data
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collection and verification process. In addition, mixture environment may introduce

undesirable effect to the spectral signal. For example, it is known that the Raman peak

may shift with environmental pH for many chemicals such as certain amino acids [135].

Peak shifts introduce non-linearity into the spectral basis and may reduce estimation

accuracy for linear regression algorithms. It is therefore desirable to maintain the pH

of the environment for both the training and test data during the measurement for

PLSR-like linear regression algorithms [33]. In contrast, our algorithm is less sensitive

to these various requirements so long as the target analyte spectrum stays the same

in the mixture comparing to its reference measurement in native form. Therefore, in

practice our algorithm may still be comparable or even outperform these multivariate

regression algorithms with larger training data volume depending on the nature of the

measurement.

3.3 Experimental Data Study

3.3.1 Physical Mixture Raman Spectroscopy Data

Following the numerical experiments, we further tested our algorithm on experimental

Raman spectroscopy datasets collected in our lab. The first dataset was a four-

component aqueous mixture study with Raman spectroscopy. The four components

were glucose, lactic acid, L-lysine, and sodium pyruvate. Four mixture solutions

were made where the concentrations for these components varied across the mixtures.

These concentrations are shown in Table 3.3. In addition, the spectra for all the pure

components were measured at 500 mM concentrations. For each set of the Raman

measurement, 5 repeated spectra were collected in sequence. As spectral preprocessing,

we first took the median across the 5 measurements for each spectral data point for

cosmic ray removal and noise reduction. Afterwards, a 21-point Savitzky-Golay filter

with a polynomial order of 3 was applied across the spectral dimension to further

enhance the spectral signal-to-noise ratio (SNR). Finally, a direct subtraction of Raman

spectrum measured with water was carried out to remove background Raman signals
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from water as well as the optical components along the light path. The Raman spectra

for all the four mixtures as well as all the pure components after the pre-processings

are shown in Figure 3-14.

Glucose (mM) Lactic Acid (mM) L-Lysine (mM) Sodium Pyruvate (mM)
True Estimation Error True Estimation Error True Estimation Error True Estimation Error

Mixture 1 71.4 78.6 7.2 147.1 156.6 9.5 145.8 120.5 25.3 111.1 136.4 25.3
Mixture 2 142.9 139.9 3.0 205.9 211.2 5.3 104.2 72.5 31.7 83.3 85.1 1.8
Mixture 3 178.6 176.4 2.2 117.6 140.9 23.3 62.5 42.8 19.7 83.3 110.2 26.9
Mixture 4 107.1 107.7 0.6 29.4 28.3 1.1 187.5 133.9 53.6 222.2 240.7 18.5

Table 3.3: Constituent compositions and their respective concentrations for all the
mixtures in this study. The estimated concentrations with our algorithm are also
shown alongside their true values.

(a) (b)
- Glucose Mixt

Lactic Acid

- Sodium Pyruvate 
Mitr 4l

400 600 800 1000 1200 1400 1600 1800 400 600 800 1000 1200 1400 1600 1800Raman Shift (cm-
1

) Raman Shift (cm-1)

Figure 3-14: (a) Raman spectra for the four composition materials in pure form
measured at equal concentrations at 500 mM. (b) Raman spectra for the four mixture
samples used in this study. Preprocessings described in the text have been applied to
the raw spectra data prior to the plots.

We ran our algorithm on each one of the four components, and estimated its

concentrations in all the four mixtures in turn. The estimation results, which are the

average of 10 independent computation runs, are shown in Table 3.3. In addition, an

estimation scatter plot is shown in Figure 3-15. Overall, despite the fact that only

the reference spectrum for the target analyte was provided, our algorithm was able to

perform accurate estimations for most of the test analytes, with the estimation for

glucose closest to the reference values. The largest estimation errors were for L-lysine.

Figure 3-15 suggests that the estimated concentrations for L-lysine seem to be off by
some constant offset values from the reference concentrations. It is therefore possible
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to perform a post-estimation calibration with linear regression to further improve the

estimation accuracy. The Raman spectrum for L-lysine in Figure 3-14 (a) indicates

that among the four composition materials, L-lysine has the most peak overlaps with

the rest of the composition materials, which is perhaps why its estimation results were

the worst among the four materials.

2 5 0 - -- ------------

t Lactic Acid
+ L Lysine

200 - S -d-- --- -- t- -

EA
150 -- - - --- -- -- ------- - -

0 -

5100 X5- 2- - 2--
41-J

4'f

0 50 100 150 200 250
Reference (mM)

Figure 3-15: Estimation scatter plot for all the constituent materials in the four
mixture samples used in this study. The reference and estimated concentrations are
shown in Table 3.3. The estimated values were obtained as the mean of 10 independent

algorithm runs. The error bars indicate the standard error of the mean (SEM) for the

estimations across the runs.

It is worth pointing out that the experimental measurements for this dataset

were not taken to maximumly optimize the estimation performance of our algorithm.

The target analyte reference spectra measurements were all performed at 500 mM

concentrations, which were much larger than the actual expected concentrations in

the mixtures. In practice, we suggest to measure the target analyte spectrum at

concentrations around the same neighborhood of its concentrations in mixtures, to

minimize potential errors introduced by signal non-linearity in terms of analyte con-

centration and its spectral peak strength (with the exception for low SNR situations).

In addition, the measurements were performed where the liquid samples were directly
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on top of a cover slip without any specialized sample holders. This may introduce

extra measurement variance from our experience. Nonetheless, our estimations shown

in Figure 3-15 are promising with only small relative errors compared to the reference

measurements for all the four composition materials.

3.3.2 Raman Spectroscopy Data for CHO Cell Culture

(a)
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Glucose Raman Spectrum
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Raman Shift (cm- 1)
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Raman Shift (cm-1)

1400 1600

1400 1600

Figure 3-16: (a) Glucose Raman spectrum measured at 40 mM with our system. (b)
Peak decomposition for the glucose Raman spectrum in (a).

Next, we further tested our algorithm on experimental Raman spectroscopy data

collected for biopharmaceutical applications. Raman spectra were collected to monitor

the concentration of the main carbon source, glucose, in the growth environment

during the fermentation process of Chinese hamster ovary (CHO) cells, which are the

most widely used expression systems for industry production of recombinant protein

therapeutics. The initial CHO growth medium included all the nutrients required by
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Figure 3-17: Raman spectra of the CHO culture supernatant for the Invitrogen and
Sanofi CHO cell lines. (a) Spectra without any background subtraction. (b) Processed
spectra after background subtraction with the water Raman spectrum.

the cells such as the necessary carbon sources, nitrogen sources, salts and trace elements.

As the fermentation advanced, nutrients were consumed by the cells and metabolites

were being produced and released into the growth environment. Therefore, the culture

environment represented a complex aqueous mixture and was changing constantly

over the fermentation process. Knowledge of key nutrients such as glucose during the

fermentation process through an on-line measurement such as Raman spectroscopy
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can help regulate the fermentation condition for better yield or reproducibility [45].
During our experiment, supernatant from the culture material was collected on a daily

basis. Raman spectra of the collected supernatant were immediately measured with a

confocal Raman spectroscopy system at 830 nm excitation wavelength. Meanwhile,

HPLC measurement was used to obtain the reference concentrations for glucose in

the supernatant samples. The instrumentation and experimental setup are described

in more details in Singh et al. [136]. Two independent experiments with different

CHO cell lines from Invitrogen Inc. and Sanofi-Aventis Deutschland GmbH Inc. were

carried out respectively. In addition to Raman spectra from the supernatant samples,

Raman spectrum for pure glucose dissolved in solution was also collected with the

same instrument.

The fermentation experiments lasted a total of 10 days for the Invitrogen CHO cell

line and 13 days for the Sanofi CHO cell line. Therefore, 10 and 13 supernatant Raman

measurements were collected for these two cell lines respectively. The reference Raman

spectrum for pure glucose solution was taken at 40 mM concentration. For each

set of the Raman measurement, 10 repeated spectra were collected in sequence. As

spectral preprocessing, we first took the median across the 10 measurements for each

spectral data point for cosmic ray removal and noise reduction. Afterwards, a 21-point

Savitzky-Golay filter with a polynomial order of 3 was applied across the spectral

dimension to further enhance the spectral signal-to-noise ratio (SNR). A spectral

window from 350 cm 1 to 1650 cm- 1, which covered all the major Raman peaks

in glucose and CHO Raman spectra, was selected for further processing. Finally, a

direct subtraction of Raman spectrum measured with water was carried out to remove

background Raman signals from water as well as the optical components along the

light path. The processed spectra for glucose and its peak decomposition from the first

stage of our algorithm are shown in Figure 3-16. The Raman spectra from the CHO

cell line measurements are shown in Figure 3-17, where spectra without any water

background subtraction are shown in in Figure 3-17 (a) and spectra with the water

background subtraction are shown in Figure 3-17 (b). As can be seen from the figure,

after the water background subtraction, Raman peaks from the underlying composition
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materials start to show up on the relevant scale. The mixture environments for the

two cell lines were different due to the fact that the growth media for these two cell

lines had different compositions. This results in the differences in the corresponding

Raman spectra shown in Figure 3-17. The overall baseline drifts over days for each

cell line were likely caused by the changing refractive index of the supernatant due to

its composition change over the course of the fermentation process.
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Figure 3-18: Plots for glucose estimation with Raman spectroscopy for the Invitrogen
(left) and Sanofi (right) CHO cell line measurements. The estimated values were
obtained as the mean of 10 independent algorithm runs. The error bars indicate the
standard error of the mean (SEM) for the estimations across the runs. The reference
values were obtained with independent HPLC measurements.

We applied our algorithm with the same modeling parameter settings as with

the previous tests on the measured glucose and CHO Raman spectra. The average
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Cell Line RMSE (mM) MAE (mM) R2

Invitrogen CHO 3.5 2.9 0.94
Sanofi CHO 4.2 3.3 0.89

Table 3.4: Estimation results for our algorithm with Raman spectroscopy for the
Invitrogen and Sanofi CHO cell line measurements.

of 10 algorithm runs is plotted in Figure 3-18 together with the HPLC reference

measurements for both cell lines. The error bars in the plots indicate the standard

error of the mean (SEM) of the estimation runs. The HPLC measurements were

estimated to have 0.5 mM accuracy. Overall our algorithm shows a consistent

and reliable estimation of glucose, as shown in Table 3.4, with RMSE of 3.5 mM,
mean absolute error (MAE) of 2.9 mM, and R2 of 0.94 for the Invitrogen CHO

measurement, and RMSE of 4.2 mM, MAE of 3.3 mM, and R2 of 0.89 for the Sanofi

CHO measurement. The error is comparable with the 3-- limit of detection for

pure glucose solution with our measurement system, which was ~ 6 mM based on

peak-SNR estimation. Comparing with conventional PLSR-like multivariate regression

algorithms, our algorithm only requires additional measurements of pure glucose

solution and water. Otherwise additional experimental runs need to be planned in

order to accumulate enough data for model training and validation. With resource-

intensive applications like industrial fermentation, a sample-efficient approach like

our algorithm can significantly reduce the research cost and development cycle. It is

worth noting that it is also possible to explicitly measure spectra for all constituent

analytes in the mixture and use classical least squares (CLS) regression to quantify

analyte concentrations without acquiring additional mixture training data [33, 136].

However, the library spectra collection process can be labor-intensive. In addition, it is

usually difficult to know all the mixture constituents ahead of time in a general setting.

Therefore, in practice, our algorithm has advantages in terms of both performance

competitiveness as well as looser requirement on training or additional measurements.

157



3.4 Conclusions

In summary, we have developed a two-stage quantification algorithm with the Bayesian

modeling framework and the RJMCMC computation. We tested our algorithm on

both simulated as well as experimentally collected Raman spectroscopy datasets to

validate its usage. The successful quantification of glucose concentration in a complex

aqueous cell culture environment without any mixture training data suggests its

promising potential for applications involving Raman spectral analysis.

In practice, collecting high quality Raman spectroscopy training datasets with

reference measurements in sufficient volume for multivariate regression algorithms

can be a long, challenging, and labor/resource-intensive process for many application

disciplines. In addition, due to the intertwined nature of statistical data analysis

and experimental design in chemometrics, timely quantitative feedback can often

impact aspects of experimental design in a significant way. An analyte quantification

algorithm without any requirement on mixture training data such as the one developed

in this work is therefore desirable in many scenarios. From this aspect, we envision

our algorithm to be an important complementary tool to the multivariate regression

algorithms for quantification analysis with Raman spectroscopy datasets.
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Chapter 4

Numerical Investigations of

Non-invasive Glucose Estimation

with Raman Spectroscopy

In this chapter, numerical investigations of the signal requirement for non-invasive

glucose estimation with Raman spectroscopy based on an experimentally collected

Raman dataset are provided. Section 4.1 provides the experimental background,

the data collection process, as well as a comprehensive presentation on the acquired

spectral dataset from our experiment. Many practical issues with medical spectroscopy

datasets are discussed in details. Section 4.2 first discusses the spectral noise analysis

and its implications for the collected dataset. It then provides our signal generation

methodology, the validation and test scheme, and the algorithm processing pipeline.

Afterwards, Section 4.3 discusses our investigation results for the signal requirement

of universal and predictive glucose estimation based on Raman spectroscopy. Various

assessment approaches are presented for both the overall model performance as well

as the model performances from individual sessions. Different processing variations

and their results are also presented and discussed. At last, the chapter is concluded

with Section 4.4.
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4.1 Experiment and Data Collection

4.1.1 Raman Instrument

(a)

High NA
Spectrometer Coupling Collection

Filter

Low NA

Laser

(b)

Top View

Figure 4-1: (a) A schematic diagram showing the off-line illumination Raman spec-

troscopy system used for in vivo volunteer study. (b) A picture showing the actual

Raman spectroscopy system beside a volunteer forearm.

All experimental data for this study were obtained from a portable Raman spec-

troscopy system built in-house designed for clinical skin analysis and diagnostics

applications similar to Zhao et al. [69]. Figure 4-1 shows the schematic diagram for

the off-line illumination geometry of the system and a picture for the actual Raman

instrument. The laser light from a 785 nm laser (SureLock, Ondax) was first expanded

and then passed through a bandpass filter (MaxLine, Semrock). A low NA lens (40

mm focal length, 12.5 mm diameter, Thorlabs) was then used to focus the laser light

onto the sample with an excitation spot area of ~1 mm2 . The sample was kept

behind an anti-reflection coated 0.5 mm thick quartz window (Polysciences). For

all the clinical studies, the excitation laser power was set as 60 mW. This gives an

excitation power density of ~~ 6000 mW/cm 2 , which is above the ANSI maximum

permissible level (MPE) of skin to 785 nm laser exposure at ~~ 295 mW/cm 2 [137],

but lower than previous studies (~~ 30000 mW/cm 2 in Enejder et al. [1] and ~ 22000

mW/cm 2 in Lipson et al. [2]). Light scattered in the sample and a high NA lens (16
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mm focal length, 25 mm diameter, Thorlabs) was then used to collect the Raman

signal. It then passed through a long pass edge filter (RazorEdge, Semrock), which

blocked the the laser light. Finally, a 40 mm focal length cylindrical lens (Thorlabs)

and another 12.5 mm focal length cylindrical lens (Thorlabs) were used to focus the

collected light into the 2.5 mm long and 25 pm wide slit of the spectrometer (EAGLE,

Ibsen). The collected light through the spectrometer slit was then diffracted with a

fused silica-based transmission grating and was detected on the one-stage TEC cooled

1024 x 122 pixels CCD detector (S7031-1007S, Hamamatsu) with 24 pm pixel sizes.

The TEC cooling can reach down to -10*C. A flip mirror was also used to help obtain

the bright-field image of the sample area before Raman data acquisition. At last, the

entire Raman instrument was optically enclosed. Figure 4-2 shows the final clinical

study-ready instrument.

Figure 4-2: A picture showing the portable Raman instrument with optical enclosure.
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4.1.2 In vivo Skin Raman Spectrum Collection

With the portable clinical Raman spectroscopy system described above, experiments

aiming at investigating the feasibility of non-invasive glucose estimation with skin

Raman spectroscopy for healthy volunteers were carried out. After approval from

the Institutional Review Board at MIT (COUHES), a series of oral glucose tolerance

test (OGTT) experiments were performed on 15 healthy volunteers at the MIT/IMES

Clinical Research Center on MIT Cambridge Campus. For the OGTT, the fasting

volunteers drank a solution containing 75 g of D-glucose over a short period of time,

typically less than 10 minutes. In a healthy volunteer, consuming the glucose drink will

cause his/her blood glucose level to rise and then fall due to the natural body insulin

response. This happens over a period of about two hours. Throughout the clinical

session, the subject's blood glucose levels were measured using a Nova biomedical Stat

Strip glucose meter. This method of glucose measurement required a small drop of

capillary blood obtained by fingerstick. The fingerstick blood draws and Stat Strip

glucose measurements were performed by trained healthcare professionals. Before the

start of each day's measurements, the meters used were put through a quality control

check using high and low concentration glucose solutions. Additionally, the meters

used are checked for calibration by MIT Medical department twice a year. Raman

measurements from the subject's volar forearm were collected continuously during the

OGTT experiment, with a 30 s integration time per spectrum frame. Meanwhile, the

fingerstick glucose measurement occurred approximately every 10 mins since before the

volunteer consumed the glucose beverage. The full experiment required volunteers to

return for a second OGTT experiment. A small subset of the volunteers repeated the

experiment consuming a water-only drink of the same volume as the glucose beverage

to provide a long period of near constant glucose level for comparison study.

In total, 29 distinct clinical sessions were carried out over the period of three

months. Out of these 29 distinct visits, spectra from one session exhibited excessive

ambient light leakage and poor spectral quality due to excessive arm adjustment and

movement. As a result, data from this session were removed from any future analysis.
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Figure 4-3: Example skin Raman spectra collected from 6 different clinical visits with 6
distinct volunteers. Spectra in each plot are color-coded in terms of collection sequence.
Adjacent spectra in display were collected ~ 10 mins apart, each corresponding to a
fingerstick glucose measurement.

No other session data were taken out despite some visual SNR differences observed

from visit to visit and some minor ambient light contamination for certain visits.

A very small amount of spectra were unusable due to volunteers re-adjusting their

positions, these spectra were treated as missing data and were substituted with the

mean of the previous and next uncontaminated spectra available in the same clinical

session.
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Figure 4-4: (a) Glucose fingerstick measurement profiles for 6 distinct volunteers

showing the diverse body insulin responses volunteers had due to glucose consumption.
(b) Histogram of the 390 fingerstick glucose measurements collected from 28 clinical

visits.

Figure 4-3 shows example skin Raman spectra from 6 different clinical visits for

6 distinct volunteers. For spectral preprocessing, we first took the median across 10

adjacent acquisition frames (where each acquisition had an integration time of 30 s)

for each spectral data point for cosmic ray removal and noise reduction. Afterwards,

an 11-point Savitzky-Golay filter with a polynomial order of 2 was applied across the

spectral dimension to further enhance the spectral SNR. In Figure 4-3, spectra in each

plot are color-coded in terms of collection sequence. Adjacent spectra in display were

collected ~ 10 mins apart, each corresponding to a fingerstick glucose measurement.

The overall reduction in signal strength is due to autofluorescence photobleaching,

which will be discussed in more detail later.

For the fingerstick measurements, Figure 4-4 (a) shows example OGTT fingerstick

glucose measurement profiles for 6 distinct volunteers. The diverse response profiles

shown in the plot reflect the different body insulin responses volunteers had due

to glucose consumption. Figure 4-4 (b) shows the histogram for all the fingerstick

measurements across the 28 visits. In total there were 390 measurements, with glucose

concentrations ranging from ~ 3.2 to 12.7 mM. Some main sample statistics for the

fingerstick glucose measurements are shown in Table 4.1.
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Summary (Measurement Number = 390) Min Max Mean Median Standard Deviation

Value (mM) 3.2 12.7 6.9 6.8 2.1

Table 4.1: Sample statistics for the 390 fingerstick glucose measurements from 28
clinical sessions.

4.1.3 Spectral Characteristics

As can be observed from Figure 4-3, the skin Raman spectra collected from volunteers'

forearms exhibit distinct Raman features on top of varying background signals. While

the spectral signals contain rich information regarding the tissue composition and

environment under examination thanks to the high specificity, label-free, and multi-

analyte nature of Raman spectroscopy, nonidealities exist with practical in vivo

spectral datasets like the one collected in this study. In this part, we discuss in

details the spectral characteristics observed in our dataset. Certain aspects of the data

acquisition process may be improved experimentally in future trials to alleviate some

of the issues seen here, whereas others are more fundamental and have implications

for signal detection in general for biological and medical Raman spectroscopy.

Autofluorescence Background

One of the most significant obstacles to many for non-invasive skin Raman analysis

and diagnostics, and more broadly for biological and medical Raman spectroscopy, is

the strong background signal in Raman spectrum. This has been one of the longest-

standing problems in the community where numerous techniques, either instrumentally

or computationally, have been proposed yet there is no consensus solution in terms

of satisfactory performance and ease of adoption up to date. Instrumental solutions

include shifted excitation [138], time-domain gating [139], frequency-domain methods

[140], amongst others that are discussed in Wei et al. [141]. Examples of compu-

tational removal include Lieber and Mahadevan-Jansen [90], Zhao et al. [91] and

the technique discussed in Chapter 3. The implications of the strong background

signal add complications in two ways. Firstly, it is extremely difficult to precisely

determine the boundary between the background and the Raman peak signals only
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from information available in the raw spectral data, especially when broad Raman

peaks are present. Therefore, any computational evaluation algorithm for the back-

ground signal would most likely either underfit or overfit the true underlying signal

in certain ways, thereby introducing bias into any following estimation algorithms.

Secondly and more importantly, the shot noise from the dominant background can

dwarf the already-weak Raman signal from potential biological analyte of interest.

This imposes a more fundamental limit on the detectability of analytes in biological

tissues and materials. Instrumentation modifications such as time or frequency-domain

techniques have shown promises of enhanced SNR with fluorescence suppression [63].

However, a full comparison with state-of-the-art CCD-based Raman spectroscopy

systems needs to be performed in order to formally establish their SNR performance,

counting factors such as photon detection efficiency and time integration. For the

foreseeable future however, the problem caused by the dominant background signal

from biological tissues and materials in Rama spectroscopy is likely to persist. As

a result, the optimal background rejection or removal technique will continue to be

problem or application-specific like the case in the past decade [62].

For skin Raman spectrum, it is generally believed that the origin of the background

signal comes from the autofluorescence from intrinsic fluorophores such as NADH,

collagen, flavins, and melanin amongst others, which are ubiquitous in biological

skins and tissues [60, 61, 142]. Even with near-infrared laser excitation, considerable

autofluorescence still exists. With prolonged light exposure, the autofluorescence signal

typically experiences an overall reduction in intensity as shown in Figure 4-3. This is

usually referred to as autofluorescence photobleaching, which adds additional dynamics

to the overall signal on top of any potential changes from physiological attributes.

The origin of autofluorescence photobleaching with near-infrared excitation is not yet

fully understood and research efforts have been carried out for endogenous fluorophore

assignment [142, 143]. It is worth noting that debate still exists on the exact physical

origin of the background signal from skin tissue Raman spectra with near-infrared

excitation. Bonnier et al. [144] suggested that as opposed to the photochemical root,

the background signal from skin tissue Raman spectrum under near-infrared excitation
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Figure 4-5: The means and standard deviations for the Raman spectral data plotted
in Figure 4-3. The spectral line in each subplot indicates the mean and the grey area
around the spectral line indicates the standard deviation for each spectral data point.

is caused by scattering due to morphology. Despite the true underlying physical
origin, their results highlight the complications associated with the chemical and
physical inhomogeneities in biological tissues and materials. In our work, we refer
to the background signal in the Raman spectrum as autofluorescence in line with
the mainstream opinion in the research community, noting that this assumption of
physical origin does not affect our statistical signal analysis and model construction
framework in any particular way.
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Figure 4-6: The mean and standard deviation for all the Raman spectral data across

28 clinical sessions. Major Raman peaks are associated with their chemical origins

according to Feng et al. [4]. The spectral line in the plot indicates the mean and the

grey area around the spectral line indicates the standard deviation for each spectral

data point.

Figure 4-5 replots data in Figure 4-3 such that the spectral line in each subplot

indicates the mean of the collected spectral data and the grey area around the

spectral line indicates the standard deviation. The plots show that the degree of the

photobleaching effect can vary significantly amongst different volunteers and visits.

This is likely due to the disparities for the abundances of the endogenous fluorophores

inside the skin tissues for different volunteers or different probing spots. In addition,

we plot the total spectral mean and standard deviation across all the 28 sessions in a

similar fashion in Figure 4-6. The spectral line in display is a general representation of

skin Raman spectrum collected with our instrument. In general, despite the variations

associated with the autofluorescence background within each collection session, the

Raman peaks in the spectra are visually stable, as can be seen from Figure 4-3.

This should be expected as the majority of the Raman peaks come from skin tissue
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constituents such as collagen, elastin, triolein, nucleus, keratin, and ceramide amongst

others [4], which are not expected to change during the two-hour OGTT session. Some

of these major Raman peaks are labeled with their chemical origins in Figure 4-6

according to Feng et al. [4]. Although the variations in glucose level are higher in

the OGTT experiments compared to normal glucose variation range in such a time

window, direct change in the glucose signal is expected to be very small in comparison

to the visually discernible Raman peaks in our plots. Related discussions will be

presented in more details in Section 4.2.2.

Movement Artifacts

With long-duration in vivo experiments, the background signal and its photobleaching

can also exhibit time-dependent dynamic behavior due to body movement. This is

illustrated in Figure 4-7, where we define spectral signal mean (SSM) as the mean of

spectral data points in an acquisition frame. The plots in the left column are examples

where the arms of the volunteers were relatively stationary throughout the two-hour

sessions. As a result, no major movement artifacts are observed in these plots. On the

contrary, the plots in the right column have significant overall background changes

due to arm adjustment and movement. The arm movement essentially introduced

a new spot under light exposure. Subsequently, a sudden increase in the overall

background occurred, followed by restarted photobleaching. During all the clinical

visits, our Raman instrument was standing vertical such that volunteers can rest their

arms comfortably directly on top of the probe window. Volunteers' arms were also

strapped to the instrument to minimize major arm movement. At the beginning of

the sessions, volunteers were told to try their best not move their arms during the

OGTT experiments. However, minor arm movement and adjustment, which were the

cause for these movement artifacts, can be inevitable for certain volunteers depending

on their comfortable levels during the two-hour-long experiments.

Experimental improvements can be made to potentially resolve this problem in

future trials. A specially designed Raman probe [145] with stable mechanical strap

can be used to minimize problems associated with probing spot mis-alignment due
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Figure 4-7: The time evolution of spectral signal mean (SSM) for selected clinical
sessions with ~ 10 mins spectral acquisition spacings. (left column) Example data
plots showing the autofluorescence photobleaching with no arm movement disruptions.
(right column) Example data plots showing the SSM evolution with arm movement
artifacts.

to body movement. In addition, extensive light exposure over a large area has been

proposed to pre-bleach the skin to improve spectral quality [142, 146]. This has the

added benefits of further increasing the spectral SNR with lower overall background

shot noise. One potential future experimental direction is therefore to establish a safe,

robust, and repeatable skin pre-bleach protocol for future in vivo clinical studies.
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Ambient Light Leakage

One other issue that is worth bringing up is the ambient light leakage problem during

the two-hour-long experiment. In addition to the optical enclosure as shown in

Figure 4-2, volunteers' arms were covered with a black optical cloth for ambient light

blockage during the experiments. However, for certain visits, spectral bands from

the fluorescence light bulb in the room were shown in the collected Raman spectra,

roughly on the same intensity order as the main Raman features in the spectra. An

example is shown in Figure 4-8. Examinations into the system suggested that this was

most likely caused by the non-perfect contact between volunteer's arm and the probe

window in Figure 4-2. Volunteers with smaller arm circumferences were more likely

to have ambient light leakage with their recording sessions compared to those with

larger arm circumferences, which had better contact with the probe window. Overall,
out of the 28 clinical sessions, a small fractions of them (around 8) exhibited some

degree of ambient light leakage in a subset of the recorded spectra.

1 4 0 0 0 - -- -- - - -- - --- - --- ----- - --- -- -- - --- -- -- - ---- -- -

1 2 0 0 0 -- -- -- --- - -- -- - ----I --- --- --- --- ---- - -- -- -

0 10000 -- -- --- --- - - - - --- - - - - - - - --- - ------ --- - -- --

8000 ---- ---- - - ----- -im
LIn

6000 - ---- - ---
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Ambient Light Spectral Bands

Figure 4-8: Raman spectra from a clinical session where some ambient light leakages
are observed in the recorded spectra. The Raman spectra in display were not smoothed
with the Savitzky-Golay filter.

In our experimental settings, the ambient light exhibited narrow discrete spectral

bands that do not impose much interference to the glucose Raman spectrum (shown
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in Figure 4-11 (b)). As a result, no special processing was implemented to account

for these spectral artifacts. When there is significant ambient light presence from

various light sources that may interfere with the analytical results, algorithmic pro-

cessings can be implemented to improve detection performance [147]. Experimentally,

future improvements can be carried out for the optical interface between the Raman

instrument and the probing region on volunteer to eliminate the ambient light leakage

problem. For example, a smaller probing window or special Raman probe that is

tightly strapped onto volunteer's forearm are potential solutions.

4.2 Signal Analysis and Processing Methodology

4.2.1 Spectral Means and Variations

Session 1 2 3 4 5 6 7
Mean (counts) 5101 5658 5309 5159 5630 4035 6072

Standard Deviation (counts) 506 1685 1406 384 859 269 1710
Coefficient of Variation 9.9% 29.8% 26.5% 7.4% 15.3% 6.7% 28.2%

Session 8 9 10 11 12 13 14
Mean (counts) 4732 7904 7537 7765 6389 10547 6805

Standard Deviation (counts) 657 2504 2124 1756 1103 2856 1688
Coefficient of Variation 13.9% 31.7% 28.2% 22.6% 17.3% 27.1% 24.8%

Session 15 16 17 18 19 20 21
Mean (counts) 5433 6270 5152 5950 5454 5662 8032

Standard Deviation (counts) 1082 720 1102 1312 590 896 1954
Coefficient of Variation 19.9% 11.5% 21.4% 22.1% 10.8% 15.8% 24.3%

Session 22 23 24 25 26 27 28
Mean (counts) 7796 5553 4647 4153 5798 5735 4581

Standard Deviation (counts) 2330 786 829 1257 864 1304 465
Coefficient of Variation 29.9% 14.1% 17.8% 30.3% 14.9% 22.7% 10.2%

Table 4.2: The mean, standard deviation, and coefficient of variation for the spectral
signal mean (SSM) within each of the 28 clinical visits. The mean of SSM ranges from

~ 4000 to 10600 counts. The standard deviation of SSM ranges from ~ 270 to 2860
counts. The coefficient of variation ranges from ~~ 7% to 32%.

With the sources of background signal variations discussed in Section 4.1.3, we

first calculated certain statistical quantities associated with the spectral dataset for

signal characterization. The calculations are based on Raman spectra taken ~ 10
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mins apart in each session, same as the ones displayed in Figure 4-3. The overall

mean signal level for spectra from a clinical session is important as it is directly

related to the Poisson shot noise in the spectra, which is the dominant noise source

in our measurements. The mean of the spectral signal mean (SSM) for the spectra

taken in a clinical session is used to represent this quantity. Meanwhile, the effect of

autofluorescence photobleaching and arm movement artifact can be roughly estimated

by calculating the overall SSM variation in a session. This can be represented by

statistical quantities such as the standard deviation of SSM within the session. Lastly,

the relative SSM variation can be characterized by the coefficient of variation of SSM,

which is defined as the ratio between its standard deviation and mean. A summary

table showing the mean, standard deviation, and coefficient of variation for the SSM

within each of the 28 clinical sessions is shown in Table 4.2. Meanwhile, Figure 4-9

shows the sample histograms for these three quantities. Within our dataset, the mean

of SSM ranges from 4000 to 10600 counts. The standard deviation of SSM ranges

from ~ 270 to 2860 counts. The coefficient of variation ranges from ~~ 7% to 32%.

These quantities indicate that a substantial change in the overall signal level, mostly

due to the background autofluorescence signal change, should be expected from a

cohort of volunteers or test subjects with skin Raman spectroscopy.
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Figure 4-9: Sample histograms for the mean (left), standard deviation (middle), and
coefficient of variation (right) of the SSM from all the 28 sessions.

In general, it can be observed that spectral data with higher overall intensity levels

experience more photobleaching (which also means more movement artifacts if the

arm is not stable throughout the session). This can be visualized in Figure 4-10, where
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in the left subplot, the SSM means and standard deviations are plotted for all the 28

sessions. The correlation coefficient for these two quantities is ~ 0.85. In the right

subplot of Figure 4-10, the SSM coefficient of variation for all the sessions is plotted.

This quantity has a correlation coefficient of ~ 0.52 with the SSM mean and ~ 0.88

with the SSM standard deviation. The quantities and their relationships shown in

this figure indicate that pre-bleach of the probe area should be an effective way to

lower down the overall background signal for skin Raman analysis and diagnostics

applications. This is especially true for volunteers with high background levels, as

they experienced more background drops (and hence higher SSM variations) with

light exposure in our experiments. However, more investigation into this topic needs

to be carried to establish a safe operating condition for the pre-bleach protocol with

robust, repeatable and quantifiable outcomes.
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Figure 4-10: (left) Plot for the SSM mean and standard deviation across the 28
sessions. The correlation coefficient between these two quantities is ~ 0.85. (right)
Plot for the SSM coefficient of variation across the 28 sessions. This quantity has
a correlation coefficient of ~ 0.52 with the SSM mean and ~ 0.88 with the SSM
standard deviation.

4.2.2 Noise Analysis and Its Implications

For any optical detection modalities, the fundamental detectability and quantification

accuracy depend on the specificity and the SNR of the detection scheme. While
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the highly specific molecular fingerprint of Raman spectroscopy is often cited for its

potential for sensing applications, the signal and noise requirement is usually the

bottleneck for Raman sensing due to the fact that often the Raman signal is within

orders of the noise limit. For optical detection with CCD or CMOS sensors, various

noise sources exist in the signal acquisition process. These include sensor readout noise,

signal shot noise, dark current shot noise, sensor fixed pattern noise, and quantization

noise amongst others. The electrons generated in the pixels follow Poisson statistics

where the variance equals to the expected number of electrons. The electrons are then

converted to digital counts through a series of signal amplification, on-chip operations

such as binning, and analog-to-digital conversion. In order to estimate and quantify

the shot noise from the signal count in the acquired spectra, we first carried out CCD

gain calibration for our clinical instrument.

We define the effective gain of the CCD sensor as G, which corresponds to the

conversion between electrons generated inside the pixels and the CCD readout in

terms of CCD counts. This is in the unit of e~/count. To obtain the effective gain

G, we acquired dark current spectra with various acquisition times. We calculated

the mean and variance of the signal counts with these acquisition levels through

repeated measurements and generated the mean-variance plot in Figure 4-11 (a). The

count mean and variance follow a linear relationship and the slope of the regression

curve corresponds to the inverse of the effective gain G [148]. This is so that after

converting to electron number, the incremental variance equals to the incremental

mean to account for the noise contribution from the shot noise alone, assuming that

the rest of the noise sources do not vary with the signal count. From the regression

curve, G is calculated as ~ 7 e-/count for our CCD sensor 1.

Knowledge of the effective gain G helps translating the CCD count into electron

number. This can facilitate noise analysis, as the electron number follows Poisson

statistics. From Table 4.2, it can be seen that the mean overall signal level from our

clinical Raman spectra ranges from ~~ 4000 to 10600 counts per spectral data point.

'Notice that this conversion coefficient accounts for factors such as line binning in our calculation.
As a result, it is not directly comparable to the gain obtained from the sensor datasheet.
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Figure 4-11: (a) Calibration curve for characterizing the effective gain G for electron to

digital count conversion coefficient. Counts in this plot were obtained through various

integration times with just the dark current. (b) Glucose Raman spectrum measured
at 100 mM concentration in water with the clinical instrument. The spectrum in

display was obtained through averaging of 50 consecutive spectral acquisitions. Water

background was subtracted prior to display. All settings were the same as those in

the clinical experiments.

On the other hand, the mean dark current count in our CCD with 30 s integration

time is ~6300 counts per spectral data point. Counting these two sources as the

dominant shot noise origin, this suggests the the shot noise standard deviation ranges

from 38 to 49 counts per spectral data point given the effective gain G as calculated

above. In the mean time, in Figure 4-11 (b), we plot the Raman spectrum of 100 mM

glucose in solution, measured with the same system under the same excitation power

and integration time settings. The plot was obtained as the average of 50 consecutive

acquisitions with 30 s integration times. The water background was subtracted for

display purpose. This gives ~70 counts of signal for the main Raman peak of

glucose. With our OGTT experiments, the average fingerstick glucose measurement

concentration was ~7 mM. With a perfect linearity assumption, this corresponds to

~5 counts for the main Raman peak, measured in clear solution. Assuming that the

in vivo Raman measurement is background (which includes both the autofluorescence

signal and dark current) shot noise limited, this means that for the average glucose

concentration expected to be present in volunteer's body fluid, the expected peak
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SNR2 is at most ~ 0.10 to 0.13. While peak SNR alone is not enough for determining

quantifiability, given the high variabilities observed in skin Raman spectra, this is

most likely too low for direct estimation. Averaging consecutive acquisition frames

can improve the SNR. However, the benefit is limited due to the fact that SNR only

increases proportional to the square root of the overall integration time with shot

noise limited measurements. As a result, we do not believe that the current system

as it stands is able to perform direct glucose measurement in vivo for physiologically

relevant glucose levels.

While this Raman instrument is not equipped with the sensitivity required for

in vivo glucose measurement as indicated by the calculations above, instrumental

improvements can be made to increase its light throughput, though this will likely result

in a larger overall instrument size with limited portability. For example, spectrometers

that are further cooled down with negligible dark currents with larger input slit sizes

can be used with modified collection optics for higher light gathering power [149].

Larger slit sizes will require longer optical propagation lengths in order to maintain the

resolution target. Alternatively, the coded aperture design discussed in Section 1.2.2

can be used for light throughput improvement without sacrificing instrument size and

portability. While potential instrument improvement is outside of the scope for this

study, the spectral dataset already collected in the OGTT experiments still presents

many opportunities for studying the skin Raman spectral characteristics and the

signal requirements and implications for universal and predictive chemometric models

for Raman skin analysis and diagnostics applications. This in turn can inform the

requirements for future instrument improvement and provide valuable experiment

design guidelines for future trials. For many applied chemometric applications, the

predictive capability of an algorithm processing pipeline often relies on key factors such

as the SNR, training data sample size, interfering conditions, and spectral conditions

of the training and test datasets. These factors are often difficult to assess alone

without experimental inputs. As a result, the skin Raman spectral dataset with a

2 Here, the peak SNR definition is different from the SNR defined in Section 2.4.1 for ease of
analysis in this context.
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moderate sample size collected in this study is highly desirable for such evaluation

and analysis tasks. In particular, given the large variabilities, overall signal changes

both within-session and cross-session, and internal structures in skin Raman spectra

as discussed earlier in this chapter, the glucose signal requirement for a universal and

predictive chemometric model remains to be a key open question that needs to be

addressed. As a result, this will be the main objective for the statistical data analysis

in this chapter.

4.2.3 Signal Generation, Validation and Test Scheme, and

Algorithm Pipeline

Signal Generation Approach

To numerically investigate the glucose signal requirement for a universal and predictive

chemometric model with skin Raman spectra, we adopted a signal generation procedure

where glucose signal was manually added to the raw skin Raman spectra from the

clinical studies. With numerical control over signal generation, the signal strength of the

glucose spectral signal can be varied such that quantitative conclusions can be drawn

in terms of the relationship between prediction accuracy and glucose signal strength

amongst other related issues. For signal generation, we first interpolated the fingerstick

glucose measurements down to 30 s acquisition spacings, such that all Raman spectra

acquired during a session (which all had 30 s integration times and acquisition spacings

with adjacent frames) have corresponding glucose measurements in time vicinities of

less than 30 s. Afterwards, for each acquired raw Raman spectrum, a glucose Raman

signal was determined. The shape of the glucose Raman signal was obtained from

the glucose solution measurement shown in Figure 4-11 (b). The amplitude of the

glucose Raman signal was determined by the corresponding original or interpolated

fingerstick glucose measurement at the same acquisition time and a multiplicative

amplification factor. This means that for a fingerstick glucose measurement level of c

mM and an amplification factor of A, the added glucose signal strength is equivalent

to Ac mM concentration glucose in clear solution, assuming perfect linearity. Before
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the generated glucose signal was added to the skin Raman spectrum, Poisson noise

was added to it for every spectral data point in the electron number domain based

on the effective gain G calculated from Section 4.2.2. In addition, quantization into

discrete digital counts was performed to resemble the actual signal acquisition levels.

Several intrinsic assumptions were made in the above process. Firstly, perfect lin-

earity was assumed in terms of glucose signal strength and its concentration. This is in

general a reasonable assumption in most situations. However, when the concentration

variation is large, nonlinear signal changes introduced by factors such as refractive

index variations can introduce a non-negligible effect. Secondly, interpolation was

used to obtain virtual fingerstick measurements such that all Raman spectra have

corresponding glucose concentration labels. This is so that the effect of averaging

consecutive acquisition frames can be numerically explored. Lastly and most im-

portantly, light absorption and scattering due to the turbidity of skin tissue were

neglected with this treatment. The chemical and physical inhomogeneities inside skin

tissues can introduce significant perturbations to photon transport in comparison

to the case of clear solution measurements [66]. This may require spectral signal

correction and calibration for quantitative analysis, with the help from additional

optical measurements such as reflectance measurement or Monte Carlo light transport

simulations [150, 151, 152]. While it is possible to take the turbidity-induced photon

transport phenomenon from skin tissues into our signal generation process, this would

require assumptions of the absorption and scattering properties for the skin tissues

from the volunteers, which adds complications to our model and may cloud judgment

over our investigation purpose. As a result, this is not pursued in the current work.

With these assumptions, we note that the actual signal requirement for predictive

chemometric modeling is likely higher than the results obtained from our numerical

experiments. Nonetheless, our investigation should provide a reasonable lower-bound

check (in terms of the signal requirement) for predictive analysis. With further

experimental modifications and investigations, additional modeling attributes can be

incorporated to more fully account for the physical and biochemical conditions and

environments of the measurements. For example, tissue phantom with known optical
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properties can be studied with and without glucose to cross compare the natural signal

generation process and the numerical approach presented in this study [152]. This can

help determine any potential signal correction function for analysis involving more

detailed physical modeling.

Training, Validation, and Test

In supervised machine learning, the process of model training, selection, and evaluation

typically requires partition of the available dataset into three subsets, the training

set, validation set, and the test set [321. The training and validation set are used

to construct the training model and perform hyperparameter optimization. The

test set is generally used to evaluate the model performance. With a finite dataset

sample size, techniques such as holdout set, cross-validation (CV), and bootstrapping

can be used in model validation and test [153]. While this process is a standard

practice in machine learning and applied statistics research, it has not always been

followed by practitioners in the applied spectroscopy community [83]. Due to the high

dimensionality nature of spectral arrays, generally limited sample sizes, and potential

internal correlation structures common in spectral datasets, extra caution must be

paid in designing the validation and test scheme for spectral data analysis. Otherwise

overfitting or spurious correlations caused by potential confounding factors can lead to

overly optimistic results. This is especially true if model training, validation and test

are performed with a single CV scheme, where hyperparameter selection and model

performance evaluation are both performed within this single CV iteration [154]. We

note here that unfortunately this approach has a rather regular appearance in the

applied spectroscopy literature.

In our numerical study, all spectral data with actual fingerstick glucose measure-

ments were used in model training, validation and test. This corresponds to 390

spectra from 28 independent sessions. A nested CV scheme has been used for model

training and evaluation. The inner CV was used for algorithm pipeline preprocessing,

training and hyperparameter selection. This was 10-fold CV in our study. The

outer CV was used for comparing Raman-predicted glucose levels and the fingerstick
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measurements. This was used to obtain the generalized prediction accuracy for our

processing pipeline. In our approach, as opposed to a volunteer-specific training

schedule [1], spectral data from different sessions or volunteers were used together

for model construction. There are several reasons for this choice of training. Firstly,

such a universal training approach is based on the fact that skin autofluorescence

and Raman signals are from common tissue and cellular constituents shared by all

volunteers. As a result, a universal model with enough training data should be able to

capture the sample subspace necessary for glucose prediction. In addition, in practical

scenarios, measurement schemes that require constant volunteer-specific training or

calibration is likely unfavorable in comparison to those that are universally trained or

calibrated. Secondly, combining data from different sessions or voluntcers allows a

much larger pool of training data to be constructed. In general, estimator variance

is expected to decrease as the training sample size increases [155]. This allows most

training algorithms to generalize better and have higher prediction accuracy. This also

enables more efficient usage of the data from a cost perspective, as collecting medical

spectroscopy data is generally resource-intensive. Lastly, using all the spectral data

across sessions allows session-wise test schemes that minimize confounding factors

such as the internal correlation structures within spectral data collected in a single

session. Session-wise test scheme is also the only way to measure the true predictive

performance of the model. This aspect will be discussed next in details.

Test Scheme

Within the glucose Raman sensing community, leave-one-out-cross-validation (LOOCV)

has been the dominant test scheme with OGTT-like experiments. However, there are

subtle but important differences under the common terminology. We summarize them

as follows.

Local Test Scheme [1]: Spectral calibration models are built completely from spectral

data collected in a single clinical session. LOOCV in this case means leaving out one

Raman spectrum per test from the current clinical session.

Global Test Scheme [1]: Spectral calibration models are built from spectral data
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collected from all clinical sessions. LOOCV in this case means leaving out one Raman

spectrum per test from the global spectral set containing spectra from all clinical

sessions.

Session- Wise Test Scheme [2]: Spectral calibration models are built from spectral

data collected from all clinical sessions. LOOCV in this case refers to leaving out

Raman spectra from an entire clinical session from the global spectral set containing

spectra from all clinical sessions.

For spectral datasets like the one collected in this study, care must be paid in terms

of recognizing the internal correlation structure of the spectral signal. For our dataset,

this can be observed in Figure 4-3, where Raman spectra from a single session exhibit

higher internal spectral correlations compared to spectral correlations amongst data

across different sessions. This is due to the fact that other than the autofluorescence

background, the vast portion of the spectral signal does not change during a clinical

session. For many machine learning and chemometric algorithms, the derivations

are based on the assumption that samples are independently and identically drawn

from certain underlying probability distributions. When the overall sample size is

small as with the case in our study, confounding factors such as the internal spectral

correlations within the same session can potentially lead to spurious correlations if

spectral samples from the same session end up in both the training/validation set

and the test set. As a result, we believe that session-wise test scheme should be the

most rigorous test scheme for measuring the predictive capability of any processing

algorithms or pipelines in these situations.

In our work, the outer CV scheme, or the test scheme, was performed with leave-

one-session-out CV (LOSOCV). In this case, for each outer CV iteration, the spectra

and glucose measurements in the test set were from an independent single session that

was not used in the training and validation stage. Completion of the outer CV loop

means that all sessions were left out for test exactly once. The overall test accuracy

performance could then be obtained. This score was subsequently used for comparing

various signal conditions and processing variations.
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Preprocessing and Algorithm Pipeline

With the model training, validation, and test scheme discussed above, we developed

a preprocessing and algorithm pipeline with partial least squares regression (PLSR).

PLSR has been the most widely used regression algorithm in the chemometrics

community due to its effectiveness, simplicity, and computational efficiency [36]. It

is often the default choice for regression applications in spectral data analysis. For

spectral preprocessing, a fixed number of acquisition frames was first determined over

which a median filter along the time domain was applied for all spectral data points

to remove spectral spikes caused by cosmic ray events and also to enhance the SNR of

the spectra. Afterwards, an 11-point Savitzky-Golay filter with a polynomial order of

2 was applied across the spectral dimension to further smoothen the spectral signal.

As mentioned earlier, only preprocessed Raman spectra that have corresponding

experimental fingerstick measurements were used in the model for training, validation

and test.

For training and validation, a grid search for the number of optimal loading vectors

in the PLSR was performed with the inner 10-fold CV scheme. During this stage,

spectral training data were first scaled to have zero mean and unit variance prior to

PLS decomposition. The average of the validation mean squared errors for the 10-fold

CV loop was used for loading vector number optimization. Subsequently, all data in

the training and validation set were used to retrain the PLSR model with the optimal

loading vector number. This retrained model was then used to predict the glucose

levels in the left out session with the outer LOSOCV scheme. The process continued

until all the sessions were tested exactly once.

4.3 Investigations of the Signal Requirement on

Universal Predictive Glucose Estimation

With the strategies laid out in Section 4.2.3, we numerically investigate various aspects

of the signal requirement on universal predictive glucose estimation accuracy with
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Raman spectroscopy for our dataset in this section. Many areas related to the required

signal strength for predictive analysis and its implications on future instrumental and

experimental design are explored and discussed in details. The results obtained in

this section can serve as comprehensive guidelines on the predictive modeling aspect

of non-invasive skin Raman sensing for future studies.

4.3.1 Overall Performance of Predictive Modeling with Am-

plified Glucose Signals
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Figure 4-12: RMSE, MARD, and R2 plots for the overall glucose estimation accuracy

with varying glucose signal amplification factors and LOSOCV predictive test scheme.

The effect of glucose signal amplification on prediction accuracy under the LOSOCV

test scheme was first investigated. As defined in Section 4.2.3, the amplification factor

is the multiplicative coefficient for glucose signal enhancement. The amplification factor

was varied from 0 (which corresponded to the original data) to 100 in steps of 10. The

size of the median filter for spectral smoothing was chosen as 1 for single acquisition

analysis. Figure 4-12 shows the overall root mean squared error (RMSE), mean

absolute relative difference (MARD), and R2 change as a function of the amplification

factor under the LOSOCV test scheme. Table 4.3 shows the corresponding values.

MARD is defined as the mean of the ratio between the relative estimation errors and

the actual measurement values. At an amplification factor of 0, which corresponded to

the case for the original dataset, no predictive behavior was observed. This is in line

with our noise analysis as discussed in Section 4.2.2. Higher accuracies were obtained
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with larger amplification factors, with the most accuracy improvement across the

10 to 20 amplification factor range. The accuracy improvement shows diminishing

returns as the amplification factor increases further. Smith [82] suggested that for

a non-invasive glucose estimation technique, a MARD of 15% and below would be

considered promising3 . This corresponds to an amplification factor of e 20 with

our results. With the noise analysis in Section 4.2.2, an amplification factor of 20

corresponds to an average peak SNR of a 2.0 to 2.6 with our measurements. This

should be interpreted as the minimum peak SNR requirement in order for our system

to produce a competitive and predictive result with universal modeling under all the

assumptions discussed in Section 4.2.3. For our measurements to be comparable to

standard strip test systems such as the fingerstick measurements, the MARD needs to

be within 5 to 10% [82]. This corresponds to an amplification factor of at least - 30

with an average peak SNR of ~ 3.0 to 3.9.

Amplification Factor 0 10 20 30 40 50 60 70 80 90 100
RMSE (mM) 2.14 1.82 1.14 0.78 0.59 0.48 0.41 0.35 0.30 0.27 0.24

MARD 27.3% 23.6% 14.6% 9.9% 7.5% 6.0% 5.1% 4.4% 3.8% 3.3% 3.0%
R2 -0.01 0.27 0.72 0.87 0.92 0.95 0.96 0.97 0.98 0.98 0.99

Table 4.3: RMSE, MARD, and R2 for the overall glucose estimation accuracy with
varying glucose signal amplification factors and LOSOCV predictive test scheme. Data
are also plotted in Figure 4-12.

The Clarke Error Grid Analysis was developed in 1987 and has since been used

extensively by researchers, medical practitioners, and blood glucose monitoring man-

ufacturers for accuracy evaluation based on different risk levels associated with the

instrument estimations [156]. The Clarke Error Grid Analysis plots for amplification

factors of 0, 10, 20, and 30 with our processing under the LOSOCV test scheme are

shown in Figure 4-13. The corresponding region assignment summary is shown in

Table 4.4. While for all the tested cases, more than a 97% of the data points fall

inside the A and B regions, and no data fall into the E region, care must be paid in

interpreting the results. This is because the Clarke Error Grid Analysis alone can lead
3With respect to a robust reference measurement such as the YSI measurement. Here, we make

the assumption that our experimental glucose reference measurements are accurate in our signal
generation approach for simplicity purpose.
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Figure 4-13: Clarke Error Grid Analysis plots for glucose estimations with amplification

factors of 0, 10, 20, and 30 under the LOSOCV test scheme. The region assignment

for each plot is shown in Table 4.4.

to overly-promising conclusions for cases where the glucose variation range is relatively

limited. An example of such situation is the OGTT experiment with healthy volunteers.

In general, the target for a traditional glucose meter is to have 98% data in the A

and B regions and to have less than ~ 0.1% in the E region [82]. This requirement is

met with an amplification factor of 20 from the Clarke Error Grid Analysis, and is

consistent with the conclusion obtained with the MARD evaluation. An amplification
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factor of 30 results in A region assignment to be 88% of the overall data number.

This can be considered as a strong estimation performance. Taking a closer look,

the estimations are especially accurate with glucose reference measurements on the

higher range in our dataset. This is most likely due to the stronger glucose signals

in these situations. Other than the Clarke Error Grid Analysis presented here, the

Consensus Error Grid Analysis [157] has gained increasing adoptions from blood

glucose monitoring manufacturers over the last decade. Similar region assignment and

analysis can be performed with the Consensus Error Grid Analysis, which is omitted

here.

Amplification Factor 0 10 20 30
Region Number Percentage Number Percentage Number Percentage Number Percentage

A 183 46.9% 217 55.6% 298 76.4% 343 87.9%
B 195 50.0% 163 41.8% 87 22.3% 43 11.0%
C 1 0.3% 1 0.3% 0 0% 0 0%
D 11 2.8% 9 2.3% 5 1.3% 4 1.0%
E 0 0% 0 0% 0 0% 0 0%

Table 4.4: Region assignments for the Clarke Error Grid Analysis plots shown in
Figure 4-13 for amplification factors of 0, 10, 20, and 30.

For linear chemometric models like PLSR, many authors have proposed the usage of

regression vector check for confirming the correlation source [158]. In linear models, the

regression vector is the trained product vector, where the prediction value is typically

produced from the inner product of the test spectrum and the regression vector (with

possible additional scaling and offset adjustments). In general, the regression vector

contains strong signatures from the target component spectrum and therefore can

be used to confirm the correlation source. For example, with classical least squares

(CLS) models [33], the regression vector is a linear combination of the model bases or

mixture component spectra, which contains all the potential target spectral signatures.

The regression vectors from our PLSR processing pipeline with amplification factors

of 0, 10, 20, and 30 are plotted in Figure 4-14. As can be observed from the figure,

other than the zero amplification case, strong glucose signatures are observed in the

regression vectors, with more distinct features in more amplified situations. This is

achieved despite the fact that our training data consist of highly disparate spectral
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Figure 4-14: Regression vectors obtained from the PLSR algorithm for the universal

predictive model with amplification factors of 0, 10, 20, and 30. The glucose Raman

spectrum is also shown in the plots. The correlation coefficients between the glucose

Raman spectrum and the regression vectors in the plots are shown in Table 4.5.

shapes from different volunteers, as evidenced in Figure 4-3. For a quantitative

measure, Table 4.5 shows the correlation coefficients between the glucose Raman

spectrum and the regression vectors plotted in Figure 4-14. A substantial increase in

correlation coefficient is observed across the amplification factor improvement from

0 to 10. This suggests that the glucose signal is the main source for the improved

prediction. This feature is similar to the one reported in Shih et al. [3], where all

spectral data were obtained from a single-session in vivo experiment with a dog model

with an undisclosed laser excitation power level. On the other hand, as discussed in

Section 1.4.3, in one of the earliest literatures on in vivo Raman glucose sensing with
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human subjects, only negligible to weak resemblances between the glucose Raman

spectrum and the regression vectors were observed, yet strong R2 values were reported

in a single CV scheme [1]. It is therefore not clear whether the glucose signal was the

true correlation source and whether the CV and test scheme were used properly in

the study. Our results show that despite the large differences observed in skin Raman

spectra from different subjects, with detectable source signals even as low as having

an overall predictive R2 of ~ 0.27 for the case with an amplification factor of 10, a

universal calibration model should show strong features of the source spectral signal

in the regression vector. This should be a routine check for verifying the correlation

source for future related studies.

Amplification Factor 0 10 20 30

Correlation Coefficient -0.08 0.61 0.70 0.72

Table 4.5: Correlation coefficients between the glucose Raman spectrum and the
regression vectors in PLSR for amplification factors of 0, 10, 20, and 30.

4.3.2 Individual Session Performance

We further examined the performance of individual sessions under the LOSOCV

scheme. Figure 4-15 to Figure 4-18 plot the fingerstick glucose measurements and

estimated glucose concentrations from Raman spectra for all the 28 sessions for

amplification factors from 0 to 30 in steps of 10. Meanwhile, Table 4.6 to Table 4.9

summarize the corresponding RMSE, MARD, and R2 for each session under these

situations. Session 2, 4, 5, 6, and 28 were for visits where the volunteer drank only

water without any glucose. As a result, the glucose measurements stayed at the fasting

levels throughout the entire experiment for these sessions.

For an amplification factor of 0, which corresponded to the original dataset, only

5 sessions had a MARD value of less than 15%. These are Session 1, 9, 10, 15, and

22. Other sessions such as 13 and 21 exhibited reasonable glucose trend match with

some overall measurement offsets. Examinations into the spectral shape and quality

or the glucose tolerance response from these sessions do not reflect any particular
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Figure 4-15: Fingerstick glucose measurements and estimated glucose concentrations

from Raman spectra for all the 28 sessions with an amplification factor of 0 and the

LOSOCV test scheme. The first row is for Session 1 to 4, the second row is for Session

5 to 8, and the rest follows similar orders.

noticeable characteristics. Since these sessions only represent a small fraction of the

overall session number, we believe that this is mostly chance correlation and should

not be over-interpreted. It is worth mentioning that some have speculated that for

many positive correlations observed with non-invasive glucose detection techniques

under the OGTT experiments, indirect physiological changes associated with the

OGTT experiments are the true sources for the positive correlations [82]. In our

case, however, no such correlations were captured with our PLSR processing pipeline

under the nested CV scheme and the LOSOCV test method. While it is true that
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Session 1 2 3 4 5 6 7
RMSE (mM) 1.22 3.63 1.64 1.06 2.18 1.39 2.05

MARD 14.6% 70.5% 20.2% 17.4% 52.4% 30.5% 30.9%
R2 -0.10 -171.60 -0.29 -14.31 -63.46 -24.29 -1.96

Session 8 9 10 11 12 13 14
RMSE (mM) 2.58 1.04 1.31 2.61 2.72 2.09 1.44

MARD 23.3% 14.0% 13.6% 24.6% 28.6% 27.5% 16.4%
R2 -0.24 0.09 -0.59 -0.21 -0.23 -1.31 -0.08

Session 15 16 17 18 19 20 21
RMSE (mM) 1.62 3.33 1.69 2.93 2.32 1.72 2.25

MARD 14.1% 35.2% 21.2% 49.3% 40.0% 18.3% 36.3%
R2 0.05 -0.94 0.16 -3.06 0.16 -0.08 -30.42

Session 22 23 24 25 26 27 28
RMSE (mM) 1.26 2.51 1.92 2.56 1.96 1.71 1.81

MARD 12.4% 22.6% 24.9% 26.9% 18.2% 18.3% 38.5%
R2 0.30 -0.67 -0.19 -0.31 0.05 -0.60 -30.67

Table 4.6: RMSE, MARD, and R2 for all the 28 sessions with a glucose signal
amplification factor of 0 and the LOSOCV predictive test scheme. Session 2, 4, 5, 6,
and 28 were for visits where the volunteer drank only water without any glucose.

Session 1 2 3 4 5 6 7
RMSE (mM) 0.91 2.97 1.10 0.86 2.48 1.42 1.71

MARD 10.2% 56.5% 11.5% 14.2% 58.2% 30.6% 26.4%
R2 0.39 -114.48 0.42 -8.94 -83.02 -25.27 -1.05

Session 8 9 10 11 12 13 14
RMSE (mM) 1.81 1.45 1.44 1.61 2.19 2.61 1.89

MARD 16.2% 16.3% 18.2% 17.8% 21.1% 32.8% 20.0%
R2 0.40 -0.78 -0.91 0.54 0.20 -2.60 -0.85

Session 15 16 17 18 19 20 21
RMSE (mM) 1.39 2.46 1.48 1.96 1.55 1.67 1.33

MARD 13.3% 27.0% 19.4% 32.4% 23.9% 19.0% 19.8%
R2 0.30 -0.06 0.35 -0.82 0.62 -0.02 -9.92

Session 22 23 24 25 26 27 28
RMSE (mM) 1.22 1.85 2.33 2.53 2.00 0.99 1.47

MARD 14.3% 18.2% 30.4% 28.7% 22.8% 12.4% 31.5%
R2 0.34 0.10 -0.76 -0.27 0.01 0.46 -19.75

Table 4.7: RMSE, MARD, and R2 for all the 28 sessions with a glucose signal
amplification factor of 10 and the LOSOCV predictive test scheme. Session 2, 4, 5, 6,
and 28 were for visits where the volunteer drank only water without any glucose.

spurious correlations can exist especially for within-session measurements, in general

only predictive test matters when evaluating the performance of any glucose detection
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Figure 4-16: Fingerstick glucose measurements and estimated glucose concentrations
from Raman spectra for all the 28 sessions with an amplification factor of 10 and the

LOSOCV test scheme. The first row is for Session 1 to 4, the second row is for Session

5 to 8, and the rest follows similar orders.

or estimation technology. As a result, one should always be mostly concerned about

predictive testing results as opposed to over-interpreting better non-predictive testing

results, such as those under the local test scheme and global test scheme discussed

in Section 4.2.3, through excessive modeling tuning and parameter fitting. A robust

training, validation, and test scheme like ours should be able to differentiate the effect

of truly detectable and quantifiable signals from potential confounding factors.

An amplification factor of 10 only improved the overall MARD from 27.3% to

23.6% and R2 from -0.01 to 0.27 as previously discussed in Table 4.3. For session-wise
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Figure 4-17: Fingerstick glucose measurements and estimated glucose concentrations
from Raman spectra for all the 28 sessions with an amplification factor of 20 and the
LOSOCV test scheme. The first row is for Session 1 to 4, the second row is for Session
5 to 8, and the rest follows similar orders.

performance, only 6 sessions had a MARD value of less than 15%. While the signal

strength in this case was strong enough to be picked up in the regression vector, it was

not quantifiable for reliable estimations. As the amplification factor increased to 20,
19 sessions had a MARD value of 15% or less as shown in Table 4.8, which represented

- 68% of the overall session number. Most sessions exhibited high correlations

between the fingerstick measurements and the estimated values at this amplification

level. This can be seen in Figure 4-17. At last, an amplification factor of 30, shown

in Figure 4-18 and Table 4.9, illustrates accuracies close to the standard strip test
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Session 1 2 3 4 5 6 7
RMSE (mM) 0.55 1.68 0.96 0.76 1.61 0.72 1.05

MARD 7.0% 31.9% 9.7% 13.2% 36.6% 14.0% 15.8%
R2  0.78 -36.22 0.56 -6.85 -34.34 -5.71 0.23

Session 8 9 10 11 12 13 14
RMSE (mM) 0.93 1.14 1.07 1.02 1.16 1.85 1.39

MARD 8.9% 13.7% 13.2% 11.4% 11.8% 22.7% 14.8%
R2  0.84 -0.09 -0.07 0.81 0.78 -0.81 -0.01

Session 15 16 17 18 19 20 21
RMSE (mM) 0.90 1.39 1.04 0.93 0.87 1.28 0.75

MARD 9.7% 16.2% 13.4% 14.2% 11.0% 15.9% 9.8%
R2 0.70 0.66 0.68 0.60 0.88 0.40 -2.51

Session 22 23 24 25 26 27 28
RMSE (mM) 1.02 1.00 1.36 1.40 1.31 0.80 0.87

MARD 11.7% 10.3% 18.0% 16.8% 14.6% 8.5% 17.4%
R2  0.54 0.74 0.41 0.61 0.57 0.65 -6.36

Table 4.8: RMSE, MARD, and R 2 for all the 28 sessions with a glucose signal
amplification factor of 20 and the LOSOCV predictive test scheme. Session 2, 4, 5, 6,
and 28 were for visits where the volunteer drank only water without any glucose.

techniques based on the overall MARD performance. 25 out of the 28 sessions had a

MARD value of 15% or less. 2 out of the 3 sessions that had a higher MARD value

were the sessions where the volunteer drank the water-only solution. Consequently,

these sessions were more difficult to achieve low MARD values due to the overall low

measurement concentrations.

We next investigated the relationship between the estimation error and the spectral

characteristics across the 28 sessions under different amplification factor conditions.

The estimation RMSE was used to represent the estimation error and the spectral

signal mean (SSM) mean, standard deviation, and coefficient of variation were used

to represent the spectral characteristics as discussed in Section 4.1.3. The correlation

coefficients between the estimation RMSE and the various SSM-derived quantities are

shown in Table 4.10. The correlation coefficients start from close to 0 and increase with

the amplification factor until it reaches 40. In general, higher SSM-derived quantities

correspond to larger overall signal levels and therefore, larger noise backgrounds. This

was established in Section 4.1.3. As a result, it is no surprise that session-wise RMSE

has a non-negligible correlation with the SSM-derived quantities. Interestingly, the
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Figure 4-18: Fingerstick glucose measurements and estimated glucose concentrations
from Raman spectra for all the 28 sessions with an amplification factor of 30 and the
LOSOCV test scheme. The first row is for Session 1 to 4, the second row is for Session
5 to 8, and the rest follows similar orders.

increase of correlation stops when the amplification factor reaches 40. One possible

explanation is that with amplification factors smaller than ~ 40, the limiting factor for

estimation accuracy is the background noise in the measurement. As the amplification

factor goes pass ~ 40 that results in high background-limited SNR, other sources

become the dominant limiting factor for the estimation accuracy. One possible such

source is the interfering spectral signal itself in the skin Raman spectrum. This spectral

signal can have contributions from all the skin constitutes and components, as well

as the (likely nonlinear) spectral signal distortions that are due to the chemical and
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Session 1 2 3 4 5 6 7
RMSE (mM) 0.39 1.05 0.76 0.61 1.08 0.46 0.70

MARD 5.0% 19.8% 7.7% 10.5% 24.5% 8.4% 10.2%
R2 0.89 -13.55 0.73 -4.08 -14.96 -1.78 0.66

Session 8 9 10 11 12 13 14
RMSE (mM) 0.54 0.81 0.77 0.77 0.68 1.31 1.04

MARD 5.3% 10.0% 9.2% 9.1% 7.1% 15.9% 10.8%
R2 0.95 0.44 0.46 0.89 0.92 0.09 0.44

Session 15 16 17 18 19 20 21
RMSE (mM) 0.63 0.85 0.76 0.59 0.59 0.96 0.53

MARD 6.7% 9.8% 9.6% 8.0% 7.0% 11.9% 6.6%
R2 0.86 0.87 0.83 0.84 0.95 0.66 -0.74

Session 22 23 24 25 26 27 28
RMSE (mM) 0.80 0.62 0.86 0.94 0.90 0.64 0.62

MARD 9.1% 7.0% 11.4% 11.3% 9.7% 6.4% 12.0%
R2 0.72 0.90 0.76 0.82 0.80 0.78 -2.72

Table 4.9: RMSE, MARD, and R 2 for all the 28 sessions with a glucose signal
amplification factor of 30 and the LOSOCV predictive test scheme. Session 2, 4, 5, 6,
and 28 were for visits where the volunteer drank only water without any glucose.

SSM Mean SSM Standard Deviation SSM Coefficient of Variation

Amplification Factor 0 -0.05 -0.09 -0.00
Amplification Factor = 10 0.09 0.11 0.16
Amplification Factor 20 0.33 0.37 0.37
Amplification Factor 30 0.43 0.48 0.45
Amplification Factor 40 0.50 0.52 0.45
Amplification Factor 50 0.50 0.51 0.45

Table 4.10: The correlation coefficients between the estimation RMSE and the spectral
signal mean (SSM) mean, standard deviation, and coefficient of variation across the
28 sessions under different amplification factors.

physical inhomogeneities across different volunteers. Unlike the random shot noise that

is intrinsic to the spectral signal, it is not dependent on the overall signal level, and

therefore its effect may not correlate with the SSM-derived quantities. Consequently,

this change of limiting factor for estimation accuracy can be the likely cause for the

behavior change of correlation between the estimation accuracy and the SSM-derived

quantities under different signal amplification conditions.
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4.3.3 Investigations into Processing Variations

In this part, we investigate the estimation performance under different processing

variations on test scheme, frame-based smoothing, background estimation and removal,

and sample size. Processing recommendations are provided based on our observations

and analysis. These can serve as important processing guidelines for future clinical

studies with non-invasive skin Raman spectroscopy.

LOSOCV versus Global 10-Fold CV versus Global LOOCV

As the three potential approaches for universal processing with data from all volunteers,

we compared the LOSOCV, the global 10-fold CV, and the global LOOCV as the

test scheme. More specifically, we quantitatively compared these approaches in the

outer CV scheme as the amplification factor changed from 0 to 100 in steps of 10. The

inner CV was kept as 10-fold CV for hyperparameter optimization like before in all

cases. The RMSE, MARD, and R2 for these studies are shown in Figure 4-19. The

values are also presented in Table 4.11. In general, almost no differences are observed

across the 10-fold CV and the LOOCV. While the overall trend of increasing accuracy

as the glucose signal strength improves is observed for all test schemes, 10-fold CV

and LOOCV consistently provide higher estimation accuracies as compared to the

LOSOCV scheme. The differences are more pronounced under lower amplification

cases, with the largest performance gap at zero amplification factor. This indicates that

the global 10-fold CV and LOOCV scheme can result in more optimistic estimations

than the LOSOCV scheme, especially when the glucose signal is close to negligible as

in the original spectral data.

As explained previously in Section 4.2.3, skin Raman spectral data from different

clinical sessions exhibit strong within-session internal correlation structures. This is

likely the cause for the higher correlations observed with the 10-fold CV and LOOCV

test scheme, as spectral data and glucose reference measurements from the same session

are likely in both the training/validation set and the test set in each test iteration.

Only session-wise test schemes can truly isolate such effect from predictive analysis. It
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Figure 4-19: RMSE, MARD, and R 2 plots for the overall glucose estimation accuracy
with varying glucose signal amplification factors for the LOSOCV, the global 10-fold
CV, and the global LOOCV test scheme.

is worth pointing out that with a different Raman instrument that may have a different

excitation and collection design, the skin Raman spectra and their photobleaching

dynamics may have a drastically different behavior than the ones in this dataset. This

may cause the internal correlation structure to change with unpredictable impact

on the test performance under the global 10-fold CV and LOOCV scheme. While a

non-negligible accuracy performance gap was observed in our dataset, the size of this

gap can go either way with a new dataset from a different instrument. As a result, it

should be advised to always use session-wise test

spurious correlation sources as much as possible.

schemes to exclude such potential

Amplification Factor 0 10 20 30 40 50 60 70 80 90 100

LOSOCV
RMSE (mM) 2.14 1.82 1.14 0.78 0.59 0.48 0.41 0.35 0.30 0.27 0.24

MARD 27.3% 23.6% 14.6% 9.9% 7.5% 6.0% 5.1% 4.4% 3.8% 3.3% 3.0%
R2 -0.01 0.27 0.72 0.87 0.92 0.95 0.96 0.97 0.98 0.98 0.99

10-Fold CV
RMSE (mM) 1.87 1.54 0.98 0.70 0.54 0.43 0.37 0.31 0.28 0.25 0.22

MARD 22.8% 19.3% 12.4% 8.8% 6.8% 5.4% 4.6% 3.9% 3.4% 3.1% 2.7%
R2 0.23 0.47 0.79 0.89 0.94 0.96 0.97 0.98 0.98 0.99 0.99

LOOCV
RMSE (mM) 1.86 1.52 0.98 0.69 0.53 0.43 0.36 0.31 0.28 0.25 0.22

MARD 22.6% 19.0% 12.4% 8.7% 6.7% 5.4% 4.5% 3.9% 3.4% 3.1% 2.8%
R2 0.24 0.49 0.79 0.90 0.94 0.96 0.97 0.98 0.98 0.99 0.99

Table 4.11: RMSE, MARD, and R2 for the overall glucose estimation accuracy with
varying glucose signal amplification factors for the LOSOCV, the global 10-fold CV,
and the global LOOCV test scheme. Data are also plotted in Figure 4-19.
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Figure 4-20: RMSE, MARD, and R2 for the overall glucose estimation accuracy with
varying median filter frame number under the LOSOCV test scheme. The median
filter was applied symmetrically in the time domain to improve the spectral SNR.

As spectral frames were acquired continuously with 30 s acquisition spacings,
spectral smoothing with multiple consecutive frames can be performed to enhance the

spectral SNR. For every session data, a median filter with a fixed frame number was

applied across the time domain symmetrically for all the spectra corresponding to the

fingerstick measurements. These spectra were then selected for future processing. The

rest of the preprocessing and nested CV pipeline were the same as the ones presented

before. The resulting RMSE, MARD, and R2 for various amplification factors are

shown in Figure 4-20.

From the figure, it can be seen that for the case of zero signal amplification, no
increase in prediction accuracy is observed due to the weak glucose signal strength in the

original spectra. On the other hand, substantial accuracy improvement can be achieved

with frame-based smoothing for cases with amplified glucose signals. The accuracy

improvement reaches the highest with 20-frame smoothing. This corresponds to the
~ 10 mins fingerstick measurement spacing. Beyond 20-frame smoothing, the smoothed

spectra contain spectral signals closer to adjacent fingerstick measurements than the
corresponding fingerstick measurements. Such over-smoothing or over-integration

effect is the cause for the reduced prediction accuracy. Overall, frame-based smoothing

provides a simple and viable option to increase the prediction accuracy. However, in
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practical scenarios, one will likely need to balance between the accuracy improvement

and the extra time needed for data acquisition. In addition, the accuracy improvement

can be limited for situations with sudden glucose changes due to the time averaging

aspect of the operation.

Background Estimation and Removal
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Figure 4-21: RMSE, MARD, and R2 for the overall glucose estimation accuracy with
and without separate background estimation and removal using the Lieber algorithm
under the LOSOCV test scheme.

As discussed in details previously from Chapter 3 and Section 4.1.3, handling

of the background and baseline signals in Raman spectra has played a significant

role in spectral data processing. While many strategies exist to estimate and remove

the background and baseline signals, no separate step has been used to explicitly

estimate these signals in our processing. This is because in skin Raman spectra, the

autofluorescence background signal is mostly a smooth curve (shown in Figure 4-3)

that can be represented with a small number of basis functions, such as the polynomial

or the B-spline basis functions. With enough training data that have significant

variations for the background signal, a training-based algorithm such as PLSR will

be able to capture the subspace spanned by the background signal into the model

implicitly. This is an example of data-driven handling of the background signal. For

explicit background estimation, one has to deal with problems such as the order of the

polynomial basis function and the estimation criterion. This can potentially result in

either underfitting or overfitting the background signal and introduce error and bias
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into subsequent training steps. On the contrary, training-based background handling

requires no explicit modeling and criterion selection, and gets asymptotically more

accurate as the training data size increases. Given the respectable data size collected

in our clinical study, we chose this approach for dealing with the autofluorescence

background.

To validate our implicit handling of the background signal, Figure 4-21 shows the

prediction results with and without a separate background estimation and removal step.

The background estimation was performed with the Lieber algorithm with a polynomial

basis order of 5 [90]. As can be seen from the figure, only minor accuracy differences are

observed from the two methods. This indicates that a separate background estimation

step is not necessary for our dataset and processing pipeline. Other than a polynomial

basis order of 5, several other polynomial basis orders were also investigated, which

did not show much effect on the accuracy outcomes. Our results in this part suggest

that for spectroscopy applications with moderate to large amount of spectral data,

separate background estimation can be optional with training-based approaches such

as PLSR. This can lead to simpler algorithm pipelines and more efficient computational

processes.

Sample Size

Amplification Factor = 10 Amplification Factor = 20 Amplification Factor = 30
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Figure 4-22: LOSOCV test results with varying sample sizes for three different
amplification factors, The solid lines and data points are the means of error from 30
independent runs with randomly selected session subsets. The shaded areas around
the lines represent the standard deviations of the error from the 30 runs.
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Lastly, we investigated the effect of sample size variation on the overall prediction

accuracy. For biomedical spectroscopy applications, sample size plays a crucial role

in both approach selection as well as model performance evaluation. In general,

applied spectroscopy practitioners do not have the luxury of collecting datasets in

large volumes due to the often time-consuming and costly nature of the experiments.

Therefore, exploring the application and model performance in the sample size domain

can be extremely valuable. This can help validate the statistical significance of the

conclusion and provide guidelines for future experimental design and budget planning.

Sample Size 6 9 12 15

Amplification Factor = 10
RMSE (mM) 2.91 0.92 2.40 0.66 2.27 0.41 2.00 + 0.22

MARD 36.4% 10.8% 29.5% 7.5% 28.6% i 4.9% 25.5% 3.4%
R2 -1.15 1.35 -0.42 0.73 -0.21 0.45 0.10 0.22

Amplification Factor = 20

RMSE (mM) 2.15 0.60 1.65 t 0.42 1.47 0.23 1.34 0.17
MARD 25.4% 7.6% 20.6% 6.0% 18.5% 3.4% 16.5% 2.5%

R2  -0.17 0.86 0.30 0.43 0.48 0.16 0.58 0.10
Amplification Factor = 30

RMSE (mM) 1.43 t 0.44 1.11 i 0.24 0.95 0.12 0.91 0.10
MARD 17.0% 4.9% 13.7% 2.8% 11.8% 1.8% 11.3% 1.2%

R 2  0.44 0.47 0.73 0.10 0.79 0.07 0.81 0.05

Sample Size 18 21 24 27

Amplification Factor = 10
RMSE (mM) 1.96 0.17 1.93 0.11 1.91 0.08 1.84 0.04

MARD 24.9% 2.4% 24.6% 1.7% 24.5% 1.5% 23.7% 0.6%
R 2  0.15 0.15 0.15 0.12 0.20 0.07 0.25 0.03

Amplification Factor = 20

RMSE (mM) 1.23 0.08 1.22 0.06 1.17 0.05 1.13 0.01
MARD 15.6% 1.1% 15.4% 1.0% 14.9% 0.6% 14.5% t 0.3%

R2  0.65 0.05 0.67 0.03 0.70 0.02 0.72 0.01
Amplification Factor = 30

RMSE (mM) 0.88 0.06 0.82 0.04 0.80 0.03 0.79 0.01
MARD 10.9% 1.1% 10.4% 0.6% 10.1% 0.4% 10.0% 0.2%

R2  0.83 0.03 0.85 0.02 0.86 0.01 0.86 0.01

Table 4.12: RMSE, MARD, and R2 for the overall glucose estimation accuracy

with varying sample sizes for amplification factors of 10, 20, and 30. The number

before/after the sign indicates the mean/standard deviation of the quantity across

the 30 independent runs. The MARD values are also plotted in Figure 4-22.

For this task, we randomly created sub-datasets with predefined data sizes from

the original 28-session dataset. For each data size, we created 30 sub-datasets with

this size by randomly selecting session data without replacement from the original
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dataset. We ran our processing pipeline with LOSOCV for each sub-dataset and

obtained aggregated performance statistics for each dataset size. The MARD values

from our results are plotted in Figure 4-22 for amplification factors of 10, 20, and 30.

The overall RMSE, MARD, and R2 are also shown in Table 4.12. In the figure and

the table, we show both the means as well as the standard deviations for the results

from the 30 independent runs. It is clear that the overall prediction performance

improves with larger dataset sizes. The dependency on the sample size is higher for

situations with lower glucose signal strengths. This can be observed by comparing

the plots in Figure 4-22. Lower estimation variances are in general observed with

larger dataset sizes, though this is partially due to the intrinsic variance property

associated with our data sampling approach with a limited overall dataset size of 28.

Improvement in prediction accuracy and consistency can be expected if more data are

available. However, the increase in prediction accuracy is likely limited for each signal

strength based on the overall performance plot trends. Figure 4-22 and Table 4.12

also illustrate the minimum sample size requirements for skin Raman analysis and

diagnostics applications under the limitation of the current sample size. For example,

with a glucose signal strength equivalent to an amplification factor of 20, at least - 20

sessions are needed to train a model for reliable estimation with MARD lower than

a 15% under the LOSOCV test scheme. A weaker signal strength will most likely

require a larger sample size to achieve similar accuracy. This may serve as useful

reference for future trial design.

4.3.4 Result Implications and Discussions

The investigations performed in this section reveal the many facets related to the signal

and calibration requirements for non-invasive glucose estimation with in vivo Raman

spectroscopy. While the predictive modeling aspect was carried out with manually

enhanced glucose signals, useful conclusions and guidelines for future experimental

improvement can nonetheless be made. Our predictive test modeling suggests that

a signal amplification factor of at least a 20 is needed for reliable estimation of the

glucose signal from skin Raman spectra with 30 s acquisition frames. This corresponds
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to an average glucose peak SNR of ~ 2.0 to 2.6 in our collected dataset. For the

original unamplified glucose signal strength, this means that the light throughput of

the instrument has to increase V 400 times in order to match the equivalent peak

SNR imposed by the amplified glucose signal, assuming that the measurement is

background noise limited. At least ~ 2.25 times more throughput is needed to future

improve the prediction accuracy to match the standard strip test techniques. Such

high improvement requirement means that one has to sacrifice the portability aspect

of the instrument and use spectrometers that have a much larger slit size with a

longer optical path. In addition, excitation and collection optics that are specially

designed for diffused light with definitive throughput improvement will be needed

[149]. At last, computational throughput enhancement techniques such as the coded

aperture design can be used to further increase the spectrometer sensitivity [28]. As any

potential glucose signal is extremely dim under the overwhelming skin autofluorescence

background, it is likely that one has to exhaust all throughput improvement techniques

to meet the stringent SNR requirement target for universal predictive models found

in this study.

As discussed in Section 4.1.3, measurement nonidealities such as movement artifacts

and ambient light leakage exist in our spectral dataset. Upon examination of the

results of our signal generation and processing approach, no noticeable effects were

observed from these nonidealities on individual session's predictive accuracy in general.

This is not a surprise as the spectral signals from these factors can be represented

by a small number of linear spectral bases with limited interfering abilities over the

glucose signal of interest. As a result, the contributions from these factors can be

implicitly learned with our training process. Having said that, efforts to mitigate these

nonidealities are still needed for future experiments. This is because the presence of

these spectral components can increase the sample size and quality requirements for

model training. Given that any potential signals from glucose or any component of

interest are likely to be weak in comparison to the background and interfering spectral

signals, all efforts need to be put in place to acquire high quality spectral signals.

It is worth emphasizing that the calculated peak SNR is merely an absolute
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theoretical lower bound requirement for predictive glucose measurement with Raman

spectroscopy. Simple linear models have been assumed for light scattering and the

physiological aspects of non-invasive Raman glucose sensing with our treatment. Real

in vivo glucose signal likely will have characteristics that are different from the glucose

solution measurement used in our signal generation process. Nonlinear effects due

to light absorption and scattering with the physical and chemical inhomogeneities in

skin tissue will likely introduce non-negligible signal distortion and signal dilution.

Perhaps more crucially, the physiological aspects of Raman glucose sensing also need

careful examinations. It is generally believed that with skin-based Raman glucose

sensing techniques, the glucose signal originates from a mix of the interstitial fluid and

blood in the skin tissue [2]. However, the extent to which how the interstitial fluid

glucose level in different part of the body correlates with the blood glucose level is still

under investigation [82]. Furthermore, in order to rigorously evaluate the accuracy of

the non-invasive glucose measurement techniques, the reference measurement needs

to be performed with venous whole blood samples using standard techniques such

as the YSI measurement. This was not implemented in the current work due to

personnel and cost constraints. While the overall problem may seem complex with all

these complications, modular approaches can be taken to evaluate and investigate the

effect from these individual factors independently. Afterwards, a broad picture of the

solution can be pieced together with these results.

4.4 Conclusions

In summary, we have performed a comprehensive numerical investigation on the signal

requirement for non-invasive glucose sensing with in vivo skin Raman spectroscopy. A

thorough discussion on the spectral data characteristics and practical issues associated

with an experimentally collected skin Raman spectral dataset using a portable clinical

Raman instrument was presented. With a numerical signal generation approach,

we explored in depth on a universal and predictive processing pipeline for glucose

signal estimation from skin Raman spectrum. Processing recommendations as well
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as quantitative specifications were provided for future references. In the author's

opinion, significant technological advances in hardware devices will be required before

the next breakthrough in this field. For example, high-speed and large-area photo-

detector arrays that are able to perform time-gating for fluorescence suppression in

Raman spectroscopy can potentially be the building blocks for next-generation Raman

instruments [63].

While our analysis has focused on non-invasive glucose estimation in this work, the

numerical signal generation framework and the universal and predictive processing

pipeline are directly translatable for any potential biomarker and biological analyte of

interest in the skin tissue. Numerical signal generation can also be compared with

experimental physical signal generation with mixture studies to quantitatively explore

the effects of light scattering and photon transport on spectral signal mixing. This

can provide useful insights like the case in our study for instrument adjustment and

experimental design.
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Chapter 5

Future Work

In this thesis, we have presented solutions and investigations into three problems

in optical spectroscopy, with an emphasis of merging computational and statistical

techniques with physical domain knowledge to break the conventional barriers in spec-

troscopy technology understanding and development. While complete solutions have

been provided for these problems respectively, there are several extension directions

which present significant opportunities and values for further advancing the optical

spectroscopy applications. These future prospects are discussed in this chapter.

Lensless and Ultra-Compact Talbot Spectroscopy Solutions for Spectrum

Sensing and Wavelength Estimation

Due to the near/mid field nature of the Talbot interferogram sampling problem and the

grating-sensor positioning requirement as discussed in details in Chapter 2, the optimal

solution for compact and high performance Talbot spectroscopy is to directly integrate

periodic structures on top of the pixels on the CMOS imager. This sensor-grating

integration can be achieved from a bonding process with independently produced

image sensor and grating structure pieces. A bonded Talbot sampling device ensures

that regions close to the zero path-length difference place are sampled and can enable

general spectroscopy applications. Another interesting possibility is through ingenious

engineering with the metal and dielectric layers in the CMOS imager fabrication

process. This has previously been realized for achieving angle-sensitive image sensors
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with the Talbot effect [159, 1601, where the metal interconnect wire layer was used

as the grating structure. A tilted sampling geometry has to be realized in this case,

which does not have straightforward solutions though. A possibility is to use multiple

metal layers to realize a tilted grating geometry. Regardless of the possible approach,

a high level of device integration not only results in an even smaller form factor as

compared to the current solution, but also naturally resolves issues related to alignment

and positioning. In addition, the resulting mechanical stability from the monolithic

structure can potentially offer high robustness towards environmental perturbations -

a factor highly valued in high precision wavemeter applications in particular.

Row-Wise FFT Image for Input without Collimation

-- 790 nm
1 -791 nm

019 - -792 nm
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20.6 77n

0.5 u -799 m

0.4 
-800 nm

0.3

Z 0.2

-.0.1
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Talbot Peaks

Figure 5-1: (left) A two-dimensional image where each row is the FFT array for an

interferogram row with an input laser source directly from a single-mode fiber without

any collimation optics. (right) The zoomed-in zero-padded FFT spectra from 30

interferogram rows for a tunable laser source from 790 to 800 nm in steps of 1 nm.

The reconstructed spectra show that spectral discrimination is maintained without

any collimation optics.

Another area worth exploring is to directly perform spectrum retrieval without

using any collimation optics. This is especially attractive and applicable for the

Talbot wavemeter work. Figure 5-1 shows a two-dimensional image where each row

is the FFT array for an interferogram row with an input laser source directly from

a single-mode fiber. Due to the spherical wavefront of the light source, the inverted

FFT peaks are not aligned across the column dimension. However, the Talbot peaks

still contain the wavelength information as can be seen from the right plot, where a
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small number of interferogram rows (30) are used for spectra reconstruction across a

10 nm wavelength span in steps of 1 nm. Due to the fact that the input wavefront is

well-defined and analytically tractable, there can be algorithmic ways to correct for

the systematic frequency and phase transformation encountered in this system, while

still maintaining high precision wavelength estimations. The resulting instrument has

a lensless geometry and can be extremely attractive for portable applications.

Bayesian Inference and Modeling for Spectral Data Analysis

For our Bayesian modeling work presented in Chapter 3, several potential future

directions exist to either improve the computational aspect of the proposed algorithm

or to further explore areas of Bayesian modeling for spectral data analysis. While

the current algorithm and its execution are able to provide reliable and accurate

estimations with both simulated and experimental spectral datasets, they are not

able to match the speed performance of regression algorithms such as PLSR. This

can be improved by code optimization that better utilizes the multi-thread, parallel

processing, and cache locality aspects of the computational process, or through

more detailed MCMC computation engineering for speed acceleration [161]. Other

than building from the current RJMCMC computation process, another alternative

approach is to apply approximation techniques such as variational inference [162] with

suitable model selection criteria [127] in the two-stage processing pipeline. Unlike the

MCMC sampling approach, variational inference uses optimization to approximate

the posterior distribution. As a result, it is more computationally efficient and more

applicable for scalable or time-critical applications [163]. However, a rather drastic

statistical treatment change is required for the adoption of variational inference as

compared to the current approach.

Another possible direction is to demonstrate the usage of our algorithm for appli-

cation domains that had been challenging for training-based estimation algorithms

such as PLSR. For example, in areas such as forensic science, spectral signatures from

impurities and backgrounds in the scene can often be problematic for training-based

algorithms [164]. This is due to the fact that it is not practical to generate a training
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dataset that can include all the possibilities for the contents of the impurities and

backgrounds in a scene a priori. Since these tasks often involve identifying and

quantifying spectral signatures from a library of candidate substances of interest

in the presence of unknown impurities and backgrounds, a modified version of this

algorithm that can deal with a multitude of target substance spectra can be devised

for on-the-scene identification and quantification tasks without the need to rely on

training-based algorithms.

At last, the extent of the Bayesian modeling techniques on spectral data analysis

is by no means restricted to the scope of the current work. As optical spectroscopy

datasets are often limited by experimental factors such as sample size and accessibility,

mathematical and statistical modeling tools from the Bayesian modeling and inference

world can be applied to bypass some of the traditional requirements for regression

and classification analysis. For example, Gaussian process has been previously used to

facilitate category classification with unseen classes that are not present in the training

dataset [165]. As an example of a future exploration, Bayesian model selection can be

used for automatic spectral basis identification and selection in CLS-like multi-analyte

tracking applications [125], where spectral basis assignment had traditionally been

performed through iterative examination of the matrix pseudo-inversion reconstruction

residue [33, 4]. While most standard and off-the-shelf conventional tools such as PLSR

and SVM have become extremely accessible and effective for applications where high

quality and large volume datasets are readily available, a large amount of untapped

potential still exists in areas like optical spectroscopy where application-specific and

modeling-based algorithms can be more favorable. In some sense, this type of work

falls into a broad catalog where co-design of algorithmic processing and experimental

protocol can enable reliable target identification and quantification approaches that

are also resource-wise optimized.
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Raman Spectroscopy for Non-invasive Biomarker Identification and Esti-

mation

For Raman spectroscopy with non-invasive skin analysis and diagnostics applications,
the autofluorescence background in the skin Raman spectrum represents a major

challenge for signal analysis. This has been discussed extensively with our data analysis

in Chapter 4. Skin site pre-bleach with prolonged light exposure has previously been

proposed as a way to improve the spectral quality in skin Raman spectroscopy [146].

However, a comprehensive study on developing a robust and universal protocol for a

safe and repeatable pre-bleach procedure with quantifiable SNR improvements has

not yet been performed. As autofluorescence is one of the central issues surrounding

skin Raman spectroscopy, this can be an important topic for future studies.

As discussed in Section 1.4, skin Raman spectroscopy is an extremely attractive

option for non-invasive biomarker and physiological analyte detection and estimation.

While any glucose signal from skin Raman spectrum is extremely weak for detection,
signals from other components or molecules can be much stronger as shown in Figure 4-

6. One of the key challenges in the field is to conduct experiments to associate spectral

changes to underlying physiological measurements, which are often extremely resource-

intensive and costly to obtain, and require professional medical practitioners to conduct

the measurements. In addition, for statistical rigor and the possibility of applying

powerful non-linear algorithms such as the neural networks, data have to be collected

in large volumes. An intensive care unit (ICU) in a hospital is a potential trial

environment where many vital and laboratory measurements for the patients are

constantly conducted by healthcare professionals and recorded in large-volume on a

daily basis. Recently, there has been significant interests from the bio-informatics

and computational physiology community for ICU data mining and analysis [166].

A portable clinical Raman instrument like the one developed in this study can be

a potential tool to be installed in an ICU alongside of the traditional vital signal

monitoring system. This can enable large-volume continuous spectral data collection

with reference physiological and laboratory measurements in a critical care environment,
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where vital signals can have variations much larger than those encountered in healthy

individuals. A dataset like this can be monumentally valuable for discovering the

utility of skin Raman spectroscopy for non-invasive critical biomarker and biological

signal identification and estimation, with the possibility of translatable performance to

the more general population outside of the ICU environment. Such experimental trial

would require a substantial modification to the existing instrument to allow simpler

and more user-friendly light delivery and collection mechanisms with no intervention

or adjustment needs.
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Appendix A

Far Field Grating Diffraction -

Spatially Dispersive Response

Optical field propagation in the far field or Fraunhofer region after passing through a

sinusoidal phase grating with a finite aperture is discussed in this part. Our analysis

mainly follows Goodman [98]. With the input of the optical system being a uniform

plane wave, we assume that the transmission function of the grating tG(, q) introduces

a sinusoidal phase change to the input wave in dimension. Assuming a rectangular

aperture on the grating, we have the input optical field U1 ( , 17) equal to tG(6, 9) as

U = tG(, q) = exp a sin 27r 4 rect rect ( )
where a is the phase modulation amplitude, P is the grating period, W is the grating

half width, L is the grating half length, and rect(-) is the rectangle window function

defined with width 1. According to the Jacobi-Anger expansion, the phase modulation

term can be expressed as

exp a sin 27 = J Jq(a) exp j27rq), (A.1)
Ii )] q=-oo

213



where Jq(-) is the Bessel function of the first kind and order q. The Fourier transform

of this term can then be expressed as

F exp ja sin 27r) J (a) 6(fx , fy). (A.2)

With this, the Fourier transform of the input optical field follows as

00

_F >U, 4WLJq (a) sinc 2W (fx - q)] sinc(2Lfy),

where sinc(.) is the normalized sinc function. Subsequently, the optical field at x-y

plane with location z according to the Fraunhofer diffraction can be written as

4WL k 22W 1Az 2Ly
U2 (x, y) = . ejkz ex - y2 + y2 J (a) sinc [ - q- sinc

jAz 2z Az P Az

Assuming that W > P, which means that the width for the sinc function is much

smaller than the displacement of different diffraction orders, the intensity 12 (x, y) can

then be derived approximately as

I2 (x, y) ( z Jq2 (a) sinc2  x - q sinc2  (A.3)
AzL) c 22 Az ) P2 A zY

Equation A.3 indicates that if multiple diffraction orders exist, the far field displacement

between adjacent orders is L. Moreover, within each diffraction order, the spatial shiftP.

has a one-to-one mapping with the wavelength. This well-formed and well-conditioned

transformation is perhaps one of the main reasons for the popularity of diffraction

gratings as the dispersive elements in spectrometers. In practice, only a finite number

of diffractive orders exist due to the conditions required for propagating waves, which

is discussed in Section 2.1.2.
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Appendix B

Derivations of the Talbot Effect

Under Tilted Incidence Angles

Tilted Incidence in y-z Plane

X

y

k
z

Z

Figure B-1: Illustration for tilted incidence angle 6 in the y-z plane.

We first consider tilted plane wave incidence in the y-z plane as shown in Figure B-1.

Assume that the tilt angle is 9 with respect to the z axis, the transmission function

due to the angle tilt is

tT( , M) = exp [jk sin(6O)] .
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Meanwhile, the transmission function with the sinusoidal phase grating is

tG((, ) = exp [a sin 27r .

The input optical field Ui(,, i,) can then be expressed as

U1(( TI) = tT(, T)tG(, "7) = exp [jk sin(0),q] exp [ja sin

and its Fourier transform is

F {U(, 7)} = f {tT( , 7)} * F{tG(, 77) S q (a) 6 fX
-Co

q fyf 
)P AJ

With the Rayleigh-Sommerfeld diffraction solution, the Fourier transform of the

optical field at the observation plane U2(x, y) can be expressed as

F {U2(x, y)} = .F{U(x, y)}H(fx, fy)

Jq (a) exp Jk cos2() (q )2Z fx - , fy - sin()
-00

With inverse Fourier transform, we have the following equation for the output optical

field

00 [ O2A)

E Jq (a) ex k cs(O) - )z 1

q=-oo ex
exp fj27rq exp j2i7rL A

As in previous treatment, by considering only the -1, 0, and +1 diffractive orders, we

can simplify the optical field as

U2(x, y) = Jo (a'

j2J1 (a) sin 27r- exp

[jk cos(0)z] exp j27r s( I +

cos2(O) (A)2] exp [j27r si]O I
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27r ) ,

U2(x, y) =



and the intensity as

I2(x, y) = JO (a) + 4J, (a) sin 2 (2 ) +

4Jo (a) J1 (a) sin (27r sin k cos(9) - cos 2 (0) - ( )2 z

Tilted Incidence in x-z Plane

X

z

X

k

z

Figure B-2: Illustration for tilted incidence angle 0 in the x-z plane.

Next we consider the case where the tilted plane wave incidence is in the x-z plane

as shown in Figure B-2. In this case, the diffraction solution is more complicated than

that from the previous case. The transmission function for tilted plane wave incidence

with tilt angle # with respect to the z axis is

tT( , r) = exp [jk sin(O)] .

With the same grating transmission function, the input optical field is now

U1(, 7) = tT( ,r/)tG (, rn) = exp [jksin(O)4] exp [a sin 27r ,
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and its Fourier transform is

00F {U1( , r)} = Tf{tT( , r)} I *T{tG (07l = q (a) J fX -i() q f

Similar to previous parts, the Fourier transform of U2 (x, y) and U2 (x, y) are now

F {U2 (x, y)} = F{Ui(x, y)}H(fx, fy)

Jq (a) exp jk 1-[sin() + q ]2Z

U2(x, y) = Jq (a) exp

With similar assumptions as before, we reach to the final solution for U2 (x, y) and

12 (x, y) as

U2(x, y) = Jo (a) exp [jk cos(#)z] exp [Jk sin ()x] +

J1 (a) exp

J1 (a) exp

}exp jk

exp Jk x ,
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jk 1- sin(O) + q z exp j27r
sin () + q] x1}

sin(O) + x -
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jk 1 - sin(O) + A]z
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and

12(x, y) = J2 (a) + 2J2 (a)+

k cos(#) - F,- Isin($) + A2z2Jo (a) J, (a) cos

2JO (a) J (a) cos

k

{
{ k

cos(#)- 1- sin(#) - }
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Figure B-3: Illustration for general tilted incidence with both 9 and q.

The individual results for tilt in the y-z and x-z plane demonstrate the different

pattern formation response towards incidence angle tilt for the Talbot effect. For the

case of general tilt with both 0 and #, which is illustrated in Figure B-3, we have

tT( , ) = exp [jk sin () + jk sin(0)q] .

The input optical field is now

U1 (, r) = tT( , J)tG( , ) = exp [jk sin(O)q + jk sin()>7] exp [ia sin 27r
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and its Fourier transform is

F {Ui(>, r/)} = f {t( , ')} ® T {tG (, q)} I= Jq (a) [fx -
q=-oo

sin(q5)
A

Subsequently, the Fourier transform of U2 (x, y) and U2 (x, y) are

F {U2(x, y)} = Tf{U(x, y)}H(fx, fy)

00(

- J, J(a)exp~
q=-oo I

jk cos2(0) - sin(#) + q A 2Z Y [fx
sin(#)

A
q sin(O)

_ AfY

and

J (a) exp jk cos2 (0) - [sin(#) + q A2z

exp j27r in() + x sin(O)y
A pJf ex [ 2 AJ

With the three major diffractive orders as before, the final solution for U2 (x, y) and

I2(x, y) under general incidence tilt is therefore

U2(x, y) = Jo (a) exp [ jk cos2 (0) - sin2(o)z] exp [ 2 rsin(#)

Ji (a) exp

J (a) exp

jk cos2 (0)

jk cos 2(0) -

sin(#) +

sin(#) - A

z exp

z exp

j27r

{j27r

sin A)

sin(#) 1 1
A F]

x

exp [i27r sijA)y

exp j2 rsin(O)y
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12(x, y)= Jo (a) exp

Ji (a) exp jk cos2 (0) -

Ji (a) exp { jk cos2(0) -

Jk cos 2() - sin2 ()z] +

Lsin(#) +
]2

sin(o) -

z

z
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