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ABSTRACT

A simple approximate method to predict interlaminar -
stresses at straight free edges of symmetric composite
laminates under uniaxial loads has been developed based
on overall force and moment equilibrium and on the principle
of minimum complementary potential energy. Results using .
the present method compare well with other analytical methods.
The present method is considerably more efficient, especially
in its ability to easily analyze thick laminates, and could
be implemented on a personal computer. The solution for
the special cases of angle-plied and cross-plied laminates
is also obtained (in closed form) and is simpler than for
general laminates. This solution for certain cross-plied
laminates coincides with a previous solution derived from
a special version of plate theory. Using the analysis,
the sensitivity of the solution to various parameters such
as different elastic constants and different ways of determin-
ing the longitudinal in-plane normal stress is examined.

In addition, the solution shows that the thin resin layer
which exists between plies does not affect the interlaminar
stresses calculated from the orthotropic and homogeneous
assumption for individual plies. The boundary layer where
the interlaminar stresses are significant is defined and
discussed and the concept of the "effective ply thickness"
introduced. Finally, an experimental technique to measure
in-plane displacement at the top surface of the laminate
inside the boundary layer was developed. The experimental
results are in good agreement with the predictions from
theory. ' :

Thesis Supervisor: Paul A. Lagace

Title: Draper Assistant Professor of Aeronautics
and Astronautics
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1 . 1
(3=1,...n)
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NOMENCLATURE (Continued)
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CHAPTER ONE

INTRODUCTION

The failure of composite laminates can be classified into
two basic modes: (1) In-plane fracture and (2) Out of plane
delémination. Both types of fracture have been the object of
extensive research [1-3,4-27] in recent years. However, even
though significant progress has been made 1in the case of
in-plane fracture, little is still known abou£ the mechanisms
that govern delamination and the interaction between these two
failure types. Delamination is a very important type of fail-
ure because it may occur at loads appreciably lower than the
loads at which in-plane fracture would occur.

At the free edges of composite laminates, interlaminar
stresses Oy, , Op,, and o3, develop due to mismatch in elastic
properties between adjécent plies. However, between adjacent
plies, there existé only a thin resin layer where no fibers
are present [3]. This is a relatively weak layer and, depend-
ing on the stacking seguence and the applied loading, the
interlaminar stresses present in that layer may cause delami-
nation. |

The Classical Laminated-Plate Theory, (CLPT), which is
commonly used- to analyze composite léminatesv[4], predicts

that interlaminar stresses are zero everyvwhere in a laminate.
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Therefore, near the £free edges of a laminate, where the
interlaminar stresses are most important, CLPT must.be modi-
fied to account for the existence of the interiaminar
stresses,

Many methods have been proposed for the determination of
these stresses but most of these analyses are complicated and
have severe computational 1limitations. The present investi-
gation proposeé a simple approximate scheme to compute these
stresses for symmetric laminates under tensile loads. Lami-
nates of any number of plies including hybrid laminates can be
analyzed. In addition, an experimental method is used to meas-
ure in-plane displacements at the top surface of a laminate
near the free edge in order to compare with theoretical pred-
ictions.

In the second chapter, a summary of the previous analyses
of the problem 1is presented along with a brief discussion.
The governing eguations and boundary conditions are presented
in the third chapter. In the fourth chapter, the force-balance
method 1is presented in detail. This method resorts to force
and moment equilibrium in a laminate in order to obtain the
basic behavior of the stress field. The éolution details are
given in <chapter five. The final equations are solved iter-
atively with the use of a computer. The solution for two
imporfant special cases, angle-plied laminates and cross-plied

laminates, is given and discussed in chapter six. Results and
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comparisons with other analyses are given in chapter seven.
The experimental method used to measure the displacements at
the top of a laminate 1s described in chapter eight. Exper-
imental results are compared with the theoretical predictions
in chapter nine. Finally, chapter ten contains the conclu-
sions and some suggestions for further work.

Appendix 5 contains the listing of the computer program

that was used to solve the resulting equations.



23

CHAPTER TWO

Previous Work

2.1 Laminate geometry and basic characteristics

A symmetric laminate loaded in tension is illustrated in
Figure 2.1. The origin of the axis system is at the center of
the laminate.  Throughout this investigation, stresses,
strains, displacements, and elastic constants correspond to an
individual ply and not to the entire laminate unless so noted.
Interlaminar stresses will have z as one of the subscripts to
emphasize that they are out of plaﬁe guantities. All stresses
and strains are in laminate axes. The strip region near the
free edge, where interlaminar stresses are important, is com-

monly referred to as the boundary layer.

2.2 Analytical methods

The wunderlying assumptions common to almost all of the
works to be presented are: 1. Each ply can be treated as
macroscopically homogeneous "and orthotropic; and 2. Stresses
do not vary in the longitudinal (xl) direction.

One of the firét solutions to the interlaminar stress

problem was developed by Pipes and Pagano [5]. Their analysis
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Figure 2.l. Composite laminate under uniaxial tension
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led to three coupled partial differential equations in the
three displacements u, v, and w. The eguations were solved
using a finite difference (FD) scheme. They applied their sol-
ution to a [%45]s laminate and observed that, as fhe FD grid
was made finer, the maximum value of the interlaminar shear
-stfess oy, at the +45/-45 1interface increased, apparently
without bound. This led them to suggest that g, MY be singu-
lar at the free edge. They also found that the interlaminar

stresses o and o,, were only appreciable in a small

zz' %2z !
region close to the free edge (the boundary layer). Its size
was found to be on the order of one laminate thickness.

It should be noted that the solution by Pipes and Pagano
involves a 1?00 x 1200 system of linear algebraic equations
for a four-ply .laminate. Also, the stress values at the ply
interfaces were found by extrapolation.

At about the same time, Puppo and Evensen [6], proposed
another method of analysis to calculate the shear stresses
0o, and Oy, They modelled the laminate as a set of
anisotropic iayers separated by isotropic adheéive layers. A
set of ordinary differential equations was obtained by consid-
ering the equilibrium of an infinitesimal element consisting
of two anisotropic layers separated by an isotropiﬁ layer. The

interlaminar normal stress o,, Was neglected and the shear

stress o, was found to be finite at the free edge.
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Several other solutions followed. Rybicki [7] used a
three dimensional finite element (FE) analysis based on the
complementary energy formulation. Stanton et al [8] used a
tri-cubic isoparametric solid element. Another FE method was
used by Wang and Crossman [8]. Due to the very large number
of elements required, they used the sky-line storage technique
for the stiffness matrix. Even then, the working vector in the
computer program had 27000 elements for a four ply laminate.
To further improve their method, the same investigators [10],
introduced a substructuring scheme so that laminates with a
larger number of plies could be analyzed. They pointed out
that the guidelines used to determine which part of the lami-
nate should be treate@ as a substructure and which should be
analyzed iﬁ detail, were unclear and subject to discussion,

A three-dimensional FD scheme was proposed by Altus et al
[11]. Pagano [12], based on a theory developed by Whitney and
- Sun [13], determined. a closed-form solution for o, at the
midplane of a [0/90)s laminate. The method was a modified
plate theory‘that included shear deformations~and through the-
thickness stretching.

Tang [14], and Tang and Levy [15], treated the problem as
a combination of plane strain and torsion. They solved sepa-
rately for the boundary layer region and for the interior of
the laminate. Their solution at the interior regién coincided

with the CLPT. The solution in the boundary layer region was



27

in good agreement with the solution of Pipes and Pagano [5],
but the stress-free condition (ozz=o) was not satisfied at the
free edge.

A perturbation method was suggested by Hsu and Herakovich
[16]. One major problem with this method is the fact that the
solution is 1in terms of an unknown parameter, the value of
which can only be estimated in an indirect way by making sure
that, for the particular value assumed for that parameter,
‘stresses do not exceed "elastic limits",

Another method was suggested by Pagano [17,18] based on
Reissner's variational principle. A solution can be obtained
by solving a system of 13N ordinary differential equations,
where N is the number of sublayers (not necessarily coinciding
with the plies) into which the laminate is.divided. However,
N is 1limited to 6-10 because any higher N values result in
intermediate numerical results that are much higher than the.
highest number most computers can store.

Fracture mechanics principles were applied by Wang and
Crossman [1§] in order to determine the onset of
delamiﬁétion. Bar-Yoseph and Pian [20] proposed a perturba-
tion and assumed-stress approach for the determination of the
interlaminar stresses.

In most of the analyses presented so far, the results

suggested that 01, and, possibly, o may be singular at fhe

Z2z

free edge of a laminate [5,7,9,17]. The approximate nature of
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these methods however, does not permit a reliable determi-
nation of such a singularity.

Complete elasticity solutions for infinite wedges [21,22]
showed indeed that such a singularity exiéted for isotropic
materials. The corresponding elasticity solution for
anisotropic materials was presented by Wang and Choi [23,24].
Based on. Lekhnitskii's stress potentials [25], two coupled
partial differential equations were obtained, which were
‘'solved by an eigenfunction expansion method using complex var-
iables. It was found that the stress field was indeed singular
at the free edge. However, the strength of the singularity was
not completely determined because, as it was shown by 2Zwiers
et al [26], and Dempsey .and Sinélai; [27], apart from the
singularity predicted by Wang and Choi, other singularities of
different strength may be preseQE;

The existence of a singularity may be considered to
imply that an approximate method wused to compute the
interlaminar stresses should somehow reflect this fact. This
would mean ﬁhat FE schemes should include singular elements
because, as it was shown by Tong and Pian [28], the conver-
gence of the FE solution in problems with a singularity is not
improved by using a finer mesh or higher order elements, if
the FE formulation does not include the singularity.

Wang and Yuan [29) presented a FE method basedAon a

hybrid functional, derived from the Hellinger-Reissner princi-
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ple, that included a singular element to model the singular
region in the laminate. They obtained excellent agreement with
the results of Wang and Choi in [24].

One ©problem associated with FE analyses that incorporate
the stress singularity in the formulation, 1is that the
strength of the singularity must be known beforehand so that
the singular element stiffness matrix can be assembled. This
is a serious drawback because the strength of the singularity
is obtained analytically after a complicated and lengthy proc-
ess [23,26], and 1is different for different interfaces of a
laminate.

A way to overcome that was suggested by Swedlow [30]. In
this analysis, the strength of the singularity is included in
the formulation as an unknown. The displacement interpolation
should therefore include terms of the form rP where r is the
distance from the free edge and p is the unknown strength of
the singularity. Differentiation of the functional with
respect to p gives an additional eguation from which p can be
determined. | |

Another recent solution to the interlaminar stress prob-
lem, without taking into account the existence of the
singularity, was presented by Pagano and Soni [31]. They
divide the laminate in a global and a local region. The global
region is that part of the laminate that is far from the ply

interface of interest and is treated as a substructure with
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equivalent loads. The local region is around the ply interface
of interest and the solution there is more detailed and com-
plicated. It is based on assumed functions for the stresses in
that region. This method can be used to analyze thick lami-
nates but is sensitive to the size of the local region and the
transition from the local region to the global region. There
are no specific guidelines as to how this should be done, and
results reported show that the stress prediction for the same
location in the local region may vary as much as 50% depending
on the particular global-local scheme used.

Whitcomb and Raju [32] proposed another FE method and
solved the problem by superposition. Their method is slightly
more efficient than other FE methods proposed because the
implementation is based on a modified two dimensional analysis
(obtained by imposing that there is no in-plane shear deforma-
tion) rather than a three dimensional analysis. This analysis
cannot be used to predict o;, nor can it be wused for
angle-plied laminates (+8 and -6 fiber orientations only).

In summafy, many different solution methods were proposed
over the years for the determination of interlaminar stresses.
Most of them are limited to thin laminates (less than 6-10
plies) due to large computation times required for the sol-
ution., They also have problems in satisfying some of the con-
ditions of the problem (e.g. stress-free edge or strain

compatibility).
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2.3 Experimental results

Over the years, various efforts have been made to exper-
imentally measure interlaminar stresses in order to determine
which of the analytical methods were more reliable, |

Pipes and Daniel [33] used a moiré method to measure the
displacements at the top of a [(25)4/(—25)4]5 graphite epoxy
(G/E) 1laminate. Their results however, are not accurate since
only three data points were obtained in the boundary layer. A
similar moiré method was used by Oplinger et al [34] to meas-
ure the displacements at the top surface and on the free edge
of [+6/-6]ns and [+en/-6n]s boron epoxy (B/E) laminates. They
too had very few data points (approximately five).

X-rays were used by Lou and Walter [35] to measure
interlaminar shear strains for two-ply cord-rubber laminates.
Two thin narrow radiopague rubber strips were embedded in
two-ply cord rubber laminates. The change in angle between the
two initially aligned strips served as the means to measure
.interlaminar étrains.

A more conventional method was used by Kim and Soni [36].
They used miniature strain gages (.008 in long) to measure
at the midplane of [£30_/90_]s, [(£30) /90]s (n=2,4,6)
graphite/epoxy specimens. They report fair agreement with the
theory in [27] but the size of the strain gages limits the

usefulness of the method to laminates for which 0., does not
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vary appreciably with z at the free edge. Otherwise, if Ot

and hence ¢ has steep gradients, the strain gage will not

zz!
be able to reproduce them.
| More qualitative results were reported by Whitney [37].
The effect of interlaminar stresses on narrow and wide.tensile
coupons is discussed and some differences in the stress field
of sandwich beam specimens are presented. The discussion is
based on stress shapes that are assumed in such a way that
they fit the results of Pipes and Pagano [5]. No experimental
results are presented.
Pipes et al [38] tested Boron/Epoxy laminates to failure.
On the basis of the experimental stress-strain curves of the

two laminates they suggested that large nonlinear strains may

occurvat ply interfaces possibly leading to delamination.

2.4 Discussion

The problem of ;he determination of interlaminar stresses
is complicatéd and hard to solve analytically. The mere fact
that so many different methods of analysis have been published
over the lasf 15 years [5-27], indicates the level of complex-
ity of the problem,

The different methods do not always agree with one anoth-
er. For example, the FE method in [9] and the FD method in

[5], predict a tensile Oy stress at the free edge of the
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+45/;45 interface of a [#45]s laminate while the eigenfunction
expansion method in [23,24] predicts a compressive 0 stress
for the same location. A more detailed comparison of the dif-
ferent FE methods is given in [39].

The major problem that all these methods have (except the
global-local analysis in [31]) 1is that, due to computation
problems, they can not realistically deal with laminates of
more than 10-15 plies. In practice however, the laminates used
may have 100 or 200 plies. The reason for this computation
limitation 1is that the computer storage perrply interface
required for sufficient resolution in the boundary layer is so
large, that the storage required for a practical laminate (say
50 plies thick), 1is so large that the solution would take a
lot of time and would not be cost effective.

The main problems associated with the different analyt-
ical methods can be summarized as follows: a) FE and FD meth-
ods involve the solution of 1large systems of eguations
[5,7,9]; b) The stress free boundary conditions are not.always
satisfied (e.gq. ozz(x=0)#0 [7,9,16]); c) There are no guide-
lines for substructuring or "lumping" parts of a laminate in a
manner that can yield reliable results [10,31]; d) FD methods
involve lengthy extrapolations [5,11]; and e) Different meth-
ods do not agree with one another for the same type of

laminate and loading [5,8,9,24].
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Finally, before discussing experimental methods, a brief
comment on the importance of the stress singularity is in
order. The singularities reported in the literature to date
[23,26] are very weak. That is, they are more than an order of
magnitude smaller than the usual stress singularity of 0.5 at
a crack tip in metals. Simple calculations show that for
graphite/epoxy systems, the stress singularities become impor-
tant over a distance from the free edge which is of the order
of a few fiber diameters. However, over such a distance, the
assumption of material homogeneity made by all analyses breaks
down and the bimaterial nature of the laminate (fiber-resin)
must be taken into account. Hence, the singularity appears to
be important in a region where the assumptions made for the
calculation method break down.,

AS a result, a solution that does not predict a
singularity and a solution that does, are eqgually valid over
the range of interest. Very close to the free edge, (within a
few fiber diameters) both theories fail and a theory taking
into account the properties of the fiber and the matrix sepa-
rately should be used. Furthermore, as it will be shown in
chapter 7, delamination is not a point phenomenon and the
stress values right at the free edge are not as important as
the actual stresé_ distributions over a region close to the
free edge (which is a few fiber diameters wide). Thus, some

averaging of the stresses over that region may be required if
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theories that treat each ply as homogeneous throughout are
used.

The experimental results reported to date are few com-
pared to the number of analytical predictions available, and
inconclusive mainly because the measurement of stresses,
strains, or displacements is made very difficult by the fact
that the boundary layer is very small. So, most methods are
based én few data points at special locations on the laminate,
mainly on the top or at the free edge. More data are needed
and for all interfaces of a laminate in order to establish

which of the available analytical methods are more reliable.
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CHAPTER THREE

FORMULATION OF THE PROBLEM

3.1 Governing equations

Consider the laminate and the axis system shown in Figure

2.1, The complete state of stress of a composite laminate

under tension is described by the 15 equaticns of elasticity.

For any ply, these can be divided into three basic sets of
equations.,

~ The first set consists of the three eguilibrium equations

(neglecting body forces):

3o a0 14
LRIk S (3.1a)
30 ag a0 .
12, 22 [ 2z _g (3.1b)
3Ix X 3z .
1 2
a0 30 1] )
1z + 2z 2z _ g (3.1¢c)
ax] 3x2 ez

where 0117 Ooor O,ur Tpu0 Og,0 Opp arg the stresses in that

ply as shown in Figure 3.1.
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Figure 3.1.Stresses on a section of a ply
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The second set consists of the six stress-strain

equations:

ol T el e 0 o el

1n 11 512 F13 16| {51

°22 Eiz B Bp3 O 0 Epgl lepp |
j"zzr= Bi3 B3 B33 0 0 Egg {zzL (3.2a-f)
992 0 0. 0 Epy Epg O | 1vy,

%1z 0 0 0 Epp Egg 0 | Ivq,

92 Ete Eos E36 O 0 Egel |72

L J L - L o

where  Eij are the stiffness coefficients and €117 €297 €,
€opr €10 and €,, are the strains in that ply. Note that for
convenience, engineering and tensor notations are mixed here.
The tensor notation will be used for sresses and strains with
the subscript 3 changed into z for emphasis. The engineering
notation will be used for elastic stiffnesses and/or compli-
ances.' |

Finally, the last set is made up of the six

strain-displacement relations.

€ = au -Y = _B_v. + .____aw
1 P33 2z 9z X

1 2

av au W . ;
=2y = e b —— .3a-

€22 ax2 : Y12z 9z ax (3.3a-f)
€ = aw = _a_u__. + .a_v_.
zz ~. 32 Y12 T 3x ax]
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where u, v, w are the displacements in that ply.

3.2 Boundary conditions and stress continuity

The above equations are to be solved subject to the fol-
lowing boundary conditions:

a) =clz=0 at the top and bottom of the laminate

o_ =0
zz 22

since there is no load applied on those surfaces.

b) o =g..=0 at the free edges (corresponding to the

22792279712

two stress-free faces that are perpendicular to the X, direc-

tion in Figure 2.1).

g must be

In addition, at every 1nterface,‘czz, g 1z

2z’
continuous.

3.3 Assumptions

The following assumptions are made:

1. Each ply can be modelled as macroscopiéally homogene-
ous. That 'is, the individual properties of fiber
and matrix are "smeared out"”,

2. All six stresses exist. This means that the laminate
is not 1in a state of plane stress as it is in the
case with the CLPT where the three interlaminar

and ¢ are taken to be zero.

stresses Ozz’ 022, 1z
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3. Far from the free edge, i.e. outside the BL, the CLPT
solution 1is recovered. This means that, outside the

BL, the interlaminar stresses o

o o}
,zz! 2z’ and 1z

decay rapidly to zero.

4, Stresses do not depend on X This is a version of the
St. Venant principle saying that the details of load
introduction are only important very close to the
edge at which the load is applied.

5. The laminate is symmetric. This simplifiés the analy-
sis somewhat, in that bending-stretching coupling is

avoided.
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CHAPTER FOUR

THE FORCE-BALANCE METHCD AND SOME OF

ITS IMPLICATIONS

4.1 Basig setup

Any physical body at rest, or any part of it, must be
under force and moment equilibrium. For the particular problem
at hand, the force-balance method requires that every section
of a laminate, sufficiently large so that the assumption of
homogeneity 1is still valid, is under overall force and moment
equilibrium,

Consider the 1laminate section shown in Figure 4.1. The
laminate is assumed wide enough so that the 2~ face (distance
‘b from the free edge) is far from the free edge and the CLPT
solhtion is recovered so that the interlaminar stresses are
zero there. |

The dimensions a and b are taken to be the laminate
half-length and half-width (see Figure 2.1), but they can have
any value as long as the section can still be treated as homo-
geneous and the 2  face is far from the free edge.

For convenience, the foliowing coordinate traﬁsformation
is introduced:

.xcb-xz ' : (4-])
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ot

Figure 4.1.Integral equilibrium of a laminate section



43

so that x is zero at the free edge and equal to b at the cen-
ter of the laminate.

Taking overall summation of forces in the three
directions and setting the result equal to zero, the three

force equilibrium equations read (integrals on x are from b to 0)

zF] = 0:

-/ +o”dxdz+f-_o]]dxdz-fz+o]deldx+fz_c.lzdx

dx-f _o,,dx.dz=0 (4.2)
] 1 2 12771

1

2F2= 0:
-fz_azzdxldz—f]+c]2dxdz+f]_c]dedz-fz+czzdx1@x+Iz_ozzdxldx=0 (4.3)
zF3 =0

- ~ i ~-[. -
fz+ozqulax+fz_ozzdxldx+f]+o]zdx2dz f]_o]zdxzdz—o (4.4)

The moment equilibrium equations have the form:

2M1= 0:

-f]+o]z(b-x)dxdz+[]_o]z(b-x)dxdz+[]+o]22dxdz—f]_o]22dxdz
+f2_0222dx]dz+£+ozztdxdx]-fz+ozz(b—x)dxdx]+lz_ozz(b-x)dxdx]=0 (4.5)
£M2= 0:

—f1+o]]zdxdz+{_o]]zdxdz+[]_o]Zadxdz-é_olzzdx]dzﬂ;+czzx]dx]dx

n, . .
-i_ozzx]dx]dx-£+o]thx]dx=0 (4.6)
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2M3= 0:
f1+°]](b'x)dx°2'f]_°]](b'x)dXdZ'f]+0]2adxdz-f2_022x]dx]dz
-f + 0oy ]dx]ax+ i %o, x]dx]dx+fi (b x)dxaglf )dxdx 0 (4.7)

Eqpations 4,2-4.7 are the general force and moment equi-
librium equations for a laminate section with the 2" face out-
side the boundary layer. The fact that the 2~ face is not
inside the boundary layer, simplifies the equations because
terms involving interlaminar stresses integrated over that
face are zero because the interlaminar stresses are zero
there.

Use of the assumption that stresses do not depend on Xy

(i.e. B/BXTO) yields,

zF]= 0:

-1 dx+f | dx=] _oq,d2=0 o (4.8)
z+]Z 2

ze =0

-/ o, dx+[ _o, dx-[ _o,,dz=0 (4.9)
2t 2z z 2z 2 22

£F3= 0

-/, zzdx+[ dx=0 ‘ (4.10)
2

My = 0

/ + o, Tdx- j (b—x)dx+fz;ozz(b-x)dx+]2_czzzdz=0 , (4.11)
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2M2= 0:
a a N
[ o,.dxdz-[ _o,,zdzts[  o__dx-z[ _o__dx-tf o dx=0 (4.12)
1F 12 om 12 2tz ZTZ zz ;12 o _
zM3= 0

_ a _a a
.f]+c]2dxdz 5 f2_c22dz 7—[Z+czzdx+?—fz_czzdx+fz+c]z(b-x)dx

-fz_ol_éb-x)dx =0 ' (4.13) |

Equations 4.9 and 4.10 can be placed in the last three
equations and the following simplified forms of the moment

equilibrium eguations are obtained:

ZM] = 0:

Y

tf +uzzdx+f +czzxdx-f _czzxdx+f _0222d2=0 , (4.11a)

z z z 2
2M2= 0:
Y

f]+o]zdxdz-é_c]zzdz—t£+clzdx=0 (4.12a)
£M3= 0:

—f]+o]dedz+/z+c]z(b-x)dx - i-olz(b_X)dx =0 (4.13a)

As it will be shown in the next chapter, the assumption
that stresses do not depend on Xy the boundary condition that

requires“ that the 2%

face is stress-free (sections 3.2 and
3.3), and the additional assumption that the X, and z depend-
ence can be separated for each of the stresses (this assump-

tion 1is introduced in the next chapter),fesult in the force
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and moment equilibrium egquations 4.8-4.10 4.11a, 4.12a, and

4.13a being identically satisfied.

4.2 Some implications

. . +
Consider now eguation 4.10. The z face can be made to
coincide with the top surface of the laminate, and equation
4.10 will still be valid. On the z' face however, . is now

- zero. Then, equation 4.10 reduces to,

fz_ozzdx 0 | O (4.14)

which is wvalid for any 2z  location and hence for any ply
interface. Equation 4.14 implies that g, plotted as a func-
tion of distance x from the free edge, must cross the x axis
at least once. Two possible plots for g,, Versus x are shown
in figure 4.2. Note that far §;om the free edge, (x large) Oy
is . zero so that the CLPT solution predicting zero 9 at the
far field is recovered. |

Another conclusion can be drawn for angle-plied laminates
(only +8 of -g fiber orientations), from equation 4.9.

The stress field must recover the CLPT solution far from

the free edge. The CLPT predicts that for angle ply laminates

°;2' [ei] = O (4.15)
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(a) one crossing; and (b) two crossings
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in each ply. This means that the force equilibrium equation

4,9 becomes,

[ o5, dx+ [ o, dx = 0 - (4.16)
z z _

for an angle-plied laminate. Again, by letting the z' face
coincide with the top surface of the laminate, where Oy is

zero, one obtains:

| _op,dx = 0 (4.17)

for any ply interface. This means that Ty, is either iden-

tically =zero 1in each ply, or it crosses the x axis at least

once in angle-ply laminates. Possible shapes for c,, are shown

in figure 4.3. It should be noted that Oy is zero both at the

free edge and far from it, in agreement with the stress-free
boundary condition in section 3.2 and assumption 3 in section
3.3 (which requires that Oy, is zero far from the free edge so

that the CLPT result °2z=o is recovered).

The above result for angle-plied laminates shows that
results - reported for [+45]s laminates in [5,24], where it

appears that o does not cross the x axis, do not satisfy

2z

-integral force. equilibrium 1in the X, direction (see Figure

4.1).
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Figure 4.3. Possible shapes ("lowest modes") for o5y
" for an angle-plied laminate: (a) P
identically equal to zero; and (b)
one crossing
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A very similar result as eguation 4.17 can be found for
cross-plied laminates (only 0° or 90° fiber orientations).
using the force equilibrium in the Xy direction equation 4.8

and based on the fact that o is zero for cross-plied lami-

12

nates:
[ _oq,0%x =0 , | (4.18)

which implies that o z-is either identically zero in every ply

1
of a cross-plied 1laminate, or crosses the x axis at least

once., Note that there 1is a slight difference from the P

case, 1in that 01, does not have to go to zero at the free

edge.
It will be shown in chapter 5 that, under the assumption

that stresses do not depend on x is identically zero for

1’ %1z
a cross-plied laminate.
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CHAPTER FIVE

SOLUTION PROCEDURE

5.1 Bguilibrium eguations and general shape functions for

the stresses

The solution to the problém is based on the principle of
minimum complementary potential energy. According to this
principle [40], out of all admissible stress states, those
which also satisfy the requirements of geometric compatibility
give stationary values to the complementary energy. Here, the
word "admissible™ means that the stress state satisfies the
equations of equilibrium (3.1), the boundary conditions and
the conditions for stress continuity. As an additional
requifement} which will turn out to be very useful, satisfac-
tion of 1integral ?quiiibrium (forée.ahd moment balance) will
be imposed. |

The solution procedure can then be broken up into the
following steps:

1. Choose a stress state.

2. Satisfy integral and differential equilibrium,

3. Satisfy boundary conditions and stress continuity.
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4, Determine the remaining unknown parameters in the
stress expressions by minimizing the cbmplementary
energy in the laminate.

Each ply 1is considered separately (see Figure 5.1) and,
by symmetry, a quarter of a ply is sufficient to describe the
stress field.

Under the assumption that the stresses do not depend on

x,, the differential equilibrium equations 3.1a-3.1c become,

ao]

]2 + z = O ' (5.])
3x 3z
2
30 a0 .
22, 2z _ g (5.2)
X 8Z
2
302 1] .
z 2z _ 4 (5.3)
ax 9z _
2
and using the fact. that 5%—;-—%; (see the coordinate transfor-
e e 5 :
mation of eguation 4.1)¢
90 90 .
12 _ 7z
a0 40
22 _ 2z
X - 3z (5.5)
"2z _ 222 (5.6)

ax 9z
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z FACE

Figure 5.1. Quarter of a single ply of thickness t
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At this point, another assumption is introduced. It will’
be assumed that the x. énd z dependence for each of the
stresses (except Gll) can be separated. Each of these stresses
can then be viewed as being represented by a product‘of two
functions (one in x and one in 2z) together forming an
eigenfunction corresponding to a certain stress state.

Under this assumption, the stresses can be written as:

o7 = F(x,2) | (5.7)
“22 = Ta2(X) 9p,(2) | (5.8)
0, = Fa30%) gaq(2) (5.9)
0y, = f23(x) 923(2) (5.10)
o1, = F13(x) gy3(2) (5.11)
O ICOINEY (5.12)

where fij(x), gij(z) are functions to be determined. Introduc-
ing eqﬁafions 5.8-5.12 into equations 5.4-5.6 yieldé the fol-

lowing set of ordinary differential equations:

df dg
12 _ B 13
o iy @ St
df ' ag
22 _ _ 23 _
af dg
23 _ _ 33
— = f33 (c) Gp3 = —— (f)
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It can be seen that -equation 5.13a decouples. from
equations 5.13b and 5.13c. Similarly, equation 5.133 decouples
from equationsl5.13e and 5.13f. Then, the functions fij(x) and
gi_(z) can be grouped as shown in Table 5.1,

’ Then, if any one of the functions in a group is known,
the other functions in the same group can be determined using
the corresponding equations. This means that the minimum num-
ber of shape functions that must be assumed is 4, two fij and
two

95 5 functions. The remaining 6 functions can be determined

with the use of the equilibrium equations 5.13a-f.

5.2 Assumed functional forms

Consider now the z dependence of the stresses (gij func-
tions). The CLPT predicts that far from the free edge Oss and
0,, are constant. This implies that 955 and g12 must be copf
stant becéuse, if they depended on z, 0on and"-o12 would be
functions of z far from the free edge;

Therefore,

912 © B] . _ (5.14a)

9pp = B3 | (5.14b)

And use of the ordinary differential equations

5.13d-5.13f gives:
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TABLE 5.1

GROUPS OF FUNCTIONS fij and gij

A . Corresponding
Group Functions Equations

1 f'lz, f]3 5.13a

2 f22, f23, f33 5.13b, 5.13¢c

3 9100 913 5.13d

1'1 9o9s 903> 933 5.13e, 5.131"
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913 = By, t B, (5.14c)
9,3 = B3, + By (5.14d)
z2 |
933 = Bg—? + B4z + 85 (5.14e)
where Bi_BS are constants to be determined.

For the x dependence, (fij functions) one must resort to
the conclusions drawn in the previous chapter with the
force-balance. method. Consider the force eguilibrium in the z
direction equation 4.14 and Figure 4.2. It appears that S
shapes with 2 crossings (Figure 4.2b) or more, correspond to a
"higher mode" 1i.e. a state of stress where the energy stored
in the ply and, as a result, in the whole laminate is higher
thﬁn what it would be if the\ozz versus x plot crossed the x
axis once. Some evidence that this is true is given in Appen-
dix 1 where the radius of curvature at an interface of a
cross-plied laminate is calculated.

As a result, since a minimum energy state is always
sought, if a stress shape similar to that of Figure 4.1l1a is
found to satisfy the governing equations, this will be the
minimum energy state and will thus be the required stress
shape. “ For a rapid decay of 0,,+ SO that far from the free

edge O, tends to zero, exponential functions must be used.

z
From table 5.1 it is seen that any of the three functions

f can be assumed and the other two will then be

£ 33

£o0r f33s
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determined from equations 5.13b, 5.13c. It turns out that the
calculations are somewhat simpler 1if the shape of f22 is
assumed.

Hence,

X e‘XQX

+ Ay + Ag (5.15a)

fop = A]e-¢

The two exponentials guarantee that, for a proper choice
of the unknown constants A, and A,, . will cross the x axis
once 1in agreement with equation 4.14 and Figure 4.2a. The
unknown constant A is introduced so that, far from the free
edge, 0,, will approach the usually nonzero CLPT constant val-
ve for Opnpe

The exponents ¢ and ¢ ére also unknown at this point.
Note that ¢ has the dimensions of 1/length and ) is
dimensionless. The reason for writing the exponents in that
form is that the rééulting équations for A and ¢iare simpler
to solve than what they would be if the exponents were ) and ¢
instead of ¢ and A¢. This will be clearer later when the
équations for X and ¢ are obtained by minimizing the comple-
mentary energy of the laminate.

For f12 (or f13) the available information is not as con-
clusive. Since 919 must be zero at the free edge, three possi-
ble shapes for f are shown 1in Figure 5.2 (ﬁor positive

12
far-field wvalue of 012). Again, the argument is made that the
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f
lz‘ (a)
B4
f
12* b)
» X
flz,}
(c)
X

Figure 5.2. Possible shapes ("lowest modes") for f 9t
(a) no stationary point; (b) one stati%nary
point; and {(c) one stationary point with
sign reversal
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cases corresponding to figures 5.2b and 5.2c result in higher
laminate energy and hence, for minimum laminate energy, a
shape similar to that in Figure 5.2a should be used.

Then, the following functional form for f12 is assumed:

_ —ox
f12 = Ay + Age . (5.15b)

The exponential is used so that 0., approaches "rapidly"”
its far field CLPT value. The same exponent ¢ is used as for
f22 in equation 5.15a mainly because a different exponent
would result in an inconsistency in the character of the equi-
librium equations as is shown in Appendix 2.

Using the differential equations 513a-5.13c and the
assumed shapes for f22 and f12 (equations S.iéa and 5.15b),
the remaining fij functions can be obtained:

¢ -AdX

foq = -Ryee” " - Xohse (5.15¢)

faq = Ajele™ ™ + aZy2p 00X (5.15d)
- oX

f]3 = -oAge ¢ (5.15¢e)

where A; 1is an unknown constant. Table 5.2 summarizes the

stress shapes so far.
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TABLE 5.2
STRESS SHAPES

Function Shape
fop A]e—¢X+A2e_X¢X+ Aq
fas A]¢2e_¢x+x2¢2A2e_k¢x
foa -Ajoe” X208 M
fla -oAge %
flo AgAce” ™
922 B3

Z2
933 BS—? + B4z+B5
953 B3z+B4
913 B]Z+B2
912 By
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Using the shape functions in table 5.2 and substituting
into equations 5.8-5.12 gives the expressions for all the

stresses except 0,4, in a ply:

0pp = (Age™®% + Ae™X 4 Al) By B (5.16)
2. "ox 2.2, _—hoX z2 o
o, = (A]¢ e + 2%¢ Aze )(832 + Bz + 85) (5.17)
05, = (-Ayee” ™ = aehse ) (Byz + B)) (5.18)
o1, = -¢A5e—¢x(B]z + BZ) (5.19)
_ ~oX

It should be noted that » and ¢ must be larger than zero

so that the exponentials decay rather than grow.

5.3 Determination of 0.,

Due to the assumption that the stresses do not depend on

o drops out of the eguilibrium equations. Two approaches

17 %911
were used for its determination. The first was to assume that

in each ply o was constant and equal to the CLPT value. The

11
second was to actually determine 019 with the use of the
stress-strain and strain-displacement equations.

The second approach, being somewhat involved will be

described briefly below. The inverted stress-strain equations

3.2a-3.2c have the form:



63

€11 T S11%17 * S12%2 t 51392 * S15%12 (5.21)
€29 = 512911 ¥ S22%92 * Sp3%,; * S96%12 (5.22)
€y = 5130”& 523022 + 533022 + 566012 (5.23)

where Sij are compliances for the particular ply in which the
strains are evaluated,

Integrating the above eguations with respect to Xpr Xy
and z and using the strain-displacement equations 3.3a-3.3c

gives:
U = (Sqq0q7 #+ Sqp09p * Sy30,, * S16912)%) + Flxp,2) (5.24)
v=S]]fo]]dx2+522f022dx2+523f0 dx +SZ,IG]2 2+G(x],z) {5.25)
- ] : 5 {
w-S]3fo]}Gz+523f022dz+533foZZGZ+536IG]2dz+H(x],XZ) (5.26)

where F, G, and H are unknown functions.
Then, using these expressions in the strain-displacement
equations 3.3e and 3.3f, the following expressions are

obtained:

aF 3G

(S t513°,5%516%12) * 5 T

X 11°11%512%22%313%22

S

$16°11%526%22%°36% 2256612 (5.27)
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and
aF _ 8H _
Xy 53(511911512°22%%13%22* 516 o) *a7 * X
= S45%,%555%12 (5.28)

The right hand sides of equations 5.27 and 5.28 are inde-
pendent of Xq because the stresses are assumed to be independ-

ent of «x This implies that the quantities x18 (s

%, 11911751522

3 oH
+5,30,,%51¢0 12)+§§I and x,5-(81707 1451 505%5130, 45160150+ 55— x]

must be independent of Xq o

l.

1t can be seen that in the first of the two guantities

above, %g— is not a function of X, because G is only a func-
1

tion of Xy and z (see equation 5.25). The rest of the first

guantity however is a function of leand therefore, the two

parts separately must be independent of X, - The fact that

) .. . .
X1§§;(Sllcll+812022+SLsz+516012) is independent of.xl implies
that:
“; (511991%512%22*513%22*%16%12) 0 - | (5.29)
Similarly, it can be shown that the fact thatx (Slll1
+812°22+5330zz+516012) is not a function of Xy gives:
d _ .
72 1011122215139 75 16%12) 0 (5.30)
Equation 5.29 implies that
S SnOnntSy,0__+S =R(z) (5.31)

11°11%212%227°13%227>16°12
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and equation 5.30 implies that

S S S (x ) (5.32)

11°117512°22+513%227°16%127¢

where R and Q are unknown functions.
Equations 5.31 and 5.32 are compatible with one another
only if R and Q are independent of z and X, respectively and

are egual to the same constant:

R(z) = Q(xz) = {4 (5.33)

Then, from either eguation 5.31 or 5.32, the following

expression is obtained for o¢,,:

c. S S 5.,
B I A - D [ (5.30)
75 Sy 22 Sy zz Sy e '

The vuknown constant Cl is determined by requiring that,

far from the free edge, 011 is equal to the CLPT value. Let-

t1ng 023[8 i denote CLPT values one obtains:
C S S S
1 12 13 16 .
2im o) Lim 0y ~imo__ - Lim a (5.35)
ses S_' 3'— 3’1 o ZZ S};iX*m 12
or
Lo b S e | (5.36)
° 1 Sy Sy, 22p.:v. Saq . .
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since the 1interlaminar stresses are zero far from the free

edge (x approaching ). From this, C, is obtained as,

1

L L L :
C, = S,40 +S.,0 +S. o (5.37)
1 11 ]][ei] 12 22[61] 16 ]2[911

Finally substituting for C

1 in equation 5.34, the final
expression for 011 is: |
L < L L
S,,0 +S.,054 +S. .0
o 1 ]][ei] 12 24[61] 16 ]2[611 ) S]2 o
1N S]] S]] 22
S S
- _5,1_3 o, - Sjé . (5.38)
1 11
where Ooor O 1 c,, are given by equations 5.16, 5.17, and
5.20.

Equations 5.38 and 5.16—5.20 give the stresses in each
ply. The strains in each ply can_belﬁetermined with the use
of the stress-strain equations 3:2a;£. The displacements in
each ply cannot be determihed exactly because the strain com-
patibility condition is satisfied only on the average by mini-

mizing the laminate complementary energy. '

5.4 Satisfaction of inteqral equilibrium equations

It will be shown now that the assumption that, for each

stress shape, the x and z dependence can be separated along
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with the boundary condition that the 2* face (see Fiqure 4.1)
is stress-free, guarantees that the reguirements of the
force-balance method (eguations 4.8-4.10, 4.11a-4.13a) are
satisfied.

Consider the quarter-ply shown in Figure 5.1. Using the

general expression for 01, in equation 5.11 and integrating

with réspect to x, one obtains:

[, op,x = gy3(t) 1% F 5 (x)dx : (5.39)
Z (0] .

EQuation 5.13a is used to substitute for f13(x). An inte-

gration by parts gives,

b 4F12

ji+o]zdx = 913(t) é = dx = 913(t)(f]2(b) - f]Z(O)) (5.40)
Similarly, if g,, vere integrated over the z~ face,

[Z_clzdx = 91300} (f15(b) - fy5(0)) | (5.41)

Then, subtracting equation 5.41 from equation 5.40,

Now using the general expression for g in eqguation 5.12

12
and integrating yields
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I ong®z = F1pl0) /¥ gq,(2)dz (5.43)
0

Using the equation for 992 (equation 5.13d) to substitute

in equation 5.43 one gets,

/-51292 = Fp(b) (915(8) - gy500))  (5.44)

Now the boundary condition,
O]Z(X =0) =0 (5.45)

implies (see the general expression for 910 equation 5.12)

that,

flz(o) =0 (5.48)

Placing 5.46 into 5.42 and then subtracting equation 5.44

from the resulting equation gives:

- f +o]zdx + f _o]zdx -] _o]de =0 (5.47)
z 2z 2

which is identical to equation 4.8, the first of the six inte-
gral equilibrium equations. Therefore, it is seen that the
assumptions made along with the bounaary cohdition that G149 is
zero at the free edge, are equivalent to the equation of force

equilibrium in the Xq direction (equation 4.8).
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In a similar manner, using the boundary conditions that
055 and O,, are zero at the free edge, it can be shown that
the other two Force-Balance eguations (4.9 and 4.10) are
equivalent to the assumptions made on the stress shapes.

The proof that the three moment eguations(4.1lla-4.13a)
are also equivalent to the boundary conditions on Ooor Ooyt
015 and the particular set of assumptions used is very analo-
gous to that used for the fofce equilibrium equations but,
being somewhat more involved, is . omitted here. A full proof is
given in Appendix 3.

It should be noted that the proof given was for a single
ply of thickness t. The proof for any section of a laminate
with thickness T (see Figure 4;1) is essentially. the same.

This result, that the requirements of the Force-Balance
method (eqpa;ions 4.8-4.13) are automatically satisfied by the
set of assumptions and boundary conditions use? in the current
analysis, does not "limit the importance of the Force-Balance
method. The cohcluﬁions drawn in chapter 4 for general lami-
nates and for angle-plied laminates.are very important and
cannot be deduced without the use of the force-balance method,
Furthefmore, if, for a more réfined analysis, the assumption
that the x and z depéndence.can be separated were relaxed,
equations 4.,8-4.13 would be very useful in furnishing impor-
_tant information on the functional form of the stresses to be

used.
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5.5 Boundary conditions and stress continuity

Before satisfying the boundary conditions, the far field
condition that the stresses approach their CLPT value far from
" the free edge must be satisfied. For o, this condition is
satisfied by construction (see equations 5.35-5.37). For the

interlaminar stresses O,,r O the condition is satisfied

2z" 91z
by the use of decaying exponentials.

It remains to satisfy the far-field condition for Osy and

Oy5. From eqguation 5.16,

- Y .
o = A e¢x-+A e ¢x-+A

29 1 ? 3 (5.48)

The constant B, can be taken to be equal to 1 with no loss of

3
generality. This simply scales the constants Ai in the x
dependence of the stress shapes (see table 5.2) by 1/B;.

Then, the far-field condition

L

iiﬂ Opp = 022[91] . | (5.4?)
implies:
Ay = 052[91] (5.50)
Similarly for 1, the far field condition,
rin o, - 0%2[é1] (5.51)
implies
A, = ob (5.52)

= 0
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Now consider the boundary conditions at the free edge.

The condition that Oy, is zero at the free edge implies,

A] + XAZ =0 ' (5.53)

Similarly, the condition that P is zero at the free

edge implies that,

A] + Az + A3 = O . (5-54)

From equations 5.50, 5.53, 5.54 one obfains:

L
A 622[91]'
S e U (5.55)
oL
22¢ .
A, = _"[ei] (5.56)
A -1
Finally, the condition that 919 is zero at the free edge
gives,
Ag+ Ag=0 (5.57)
and using equation 5.52,
L
Ac = -0 (5.58)
5 ]2[61]

So far, all Ai have been determined. For convenience. they
are summarized in Table 5.3.

Setting B;=1 (for ;he same reason as for Bj) and substi-
tuting for Ai, the following expressions are obtained for the

stresses in a ply:
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TABLE 5.3
CONSTANTS IN THE fij EXPRESSIONS

Ai Value
L
A O
) _ 2frei)
1 x -1
0L
R “2r61]
2 x -1
L
A a
3 22[61]
L
A o
4 12[61]
L
A -g
5 ]Z[Bi]
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L X -¢X 1 -xéx -
022 = 022[61] [] Ff (e - X e )] (5.39)
2
_ G2 A “AOX | _moXy, L z
0,y = . {re e )(022[611?— + §4z + gs) (5.60)
Op, =0 7%# (e”®* - e-x¢x)(052[ _]z + 34) (5.61)
89
0y, = ¢e-¢x(o%2[ ‘]z + gz) (5.62)
67
°1p © “%2 (1 - e %%
. [ei]‘' - © (5.63)
where
L .64
’é4 = 022[81] B4 (5 o) a)
B = ot B (5.64b)
5 22[61] 5 - 2.0
_ L _
8, = O‘Z[eij B (5.64c)

To determine the Bi (or gi), the remaining boundary con-
ditions and the condition of stress continuity at ply inter-
faces are used.

The numbering scheme shown in Figure 5.3 is introduced,
where plies are numbered from top to bottom. The total number
of plies in the laminate is n. Also, for each ply, the coordi-

nate system shown in Figure 5.1 is used and is repeated in
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Figure 5.3. Ply numbering scheme and coordinate system

z
1
2
3
¥
t(:L)
O — —
- X X5
i
n w a
n-1
n
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Figure 5.3 for convenience. To differentiate between plies,
superscripts denoting the corresponding ply are used.
Since Oy, must be zero at the bottom surface,

(N) (z= 0) = (5.65)

which 1mp11es that

(n) _
B4 =0 (5.66)

For the next interface up, continuity of Ty gives:

) (z=t(n)) . (n-1)

o, 0y, - (220) ' (5.67)
or using the expression for 0o, (equation 5.61) at any x
location
ﬁ(" N g {n) (5.68)
22[9 ]

The procedure can be repeated for the other interfaces.

The general expression for ﬁéi)(ith ply) is,
. i+] , .
N (5.69)
J=n “"les1

Knowing %él) and using the condition that O,y is zero at

the bottom surface and continuous at the other ply interfaces,

the same procedure as for Oy, gives:
40 i f ST
= L [ ———r"’ o t ] (5.70)
j=n 22[6 ] 22[631 k= 3 1
with
aé"’ -0 (5.71)



76

and

2

g(n-1) L L(n) )

5 = o5y :;?-- (5.72)
[ep]

In exactly the same way as for ﬁﬁl)and using the condi-

tions on oy,, and equation 5.62 one obtains:

. i+] .
R T (5.73)
j=n [e;]
with
n :
Bé b =0 (5.74)
1t should be noted that in deriving the above expressions
for Bél% ﬁé? Bél% it was assumed that each ply has a different

thickness from its adjacent plies. For the special case where
all the plies have the same thickness t, eguations 5.69, 5.70,

and 5.73 simplify to:

. i+]
Bl -t 1 o, (5.69a)
j=n [eJ] '
. i+1 '
LR L ¥ (-i-1) o5, ] (5.70a)
i i
. i+]
§£1) =tz °%2 ‘ (5.73a)
J=n [ej]

It 1is important to note that all the stacking sequence

effects are "hidden" in the B, terms. If the stacking sequence
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in a laminate is changed, these terms change and, as a result,
the exponents A and ¢ will change.

It can be seen that, with this procedure of determining
%2, %4, and %5, all the unknnown %i will have been determined
right after the conditions of stress continuity are applied at
the- first interface (the one between the first and second
ply). The B; values are summarized in Table 5.4.

All unknowns (except for X and ¢ ) have been determined at
this point. The condition that the top of the laminate is
stress—-free (i.e. O'éi)(z-‘—‘i(,l;:Oéi)(Fél}(j{;)(Félg=0) has not béen sat-
isfied yet, and it cannot be used to determine )} or ¢ because
both A and ¢ cancel out from the corresponding equations. This
condition then, should be identically satisfied and can serve
to check 1if there are any inconsistencies in the stress
shapes.

Since the variable ply_thickness case is algebraically
complicated, only the case with constant ply thickness will be -
deiiofistrated, i.e. it will be shown that for é symmetric lami-
nate where all the plies have the same thickness, the stress
shapes determined so far guarantee that the top surface of the
laminate is stress-free. However, this is still valid for lam-
inates with plies of variable thickness.

At the top of the laminate, the condition that o, is

zero takes the form (see equations 5.60, 5.69a, and 5.70a),
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TABLE

5.4

CONSTANTS IN THE 95 3 EXPRESSIONS

Bj Value
3!} 1
(1) oy .
B I o (3)
e jon Pres1t
(1)
B3 ]
. i+1 .
Bé1) T 052 t(J)
j=n [ej]
. W2
(1) i+ L t(J)
B : [o —— +
° jen - #%[ej]

221457

k=1+1
L t
k=3-1

43
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2
T R T L
Le;] [en] [es)
2 L L 2 L
7 [022 + ... 7T 022 ] + t [(n-Z) 022 +
Le ] Le,] [e,]
+ (n-3) o}, b+, 1=0 (5.75)
n-1 3
or rearranging and cancelling out the thickness terms,
1 L L v L
= Lo + ...+ ¢ 1+ (n-1) ¢ +
¢ P ) L) SO
L L L
(n-2) o + ... + 20 + 0 =0 (5.76)
22[6n_]] 22[93] 22[62]

This equation must be satisfied identically.

The first gquantity in parentheses, however, is zero for a
symmetric laminate loaded only in the x, direction due to the
fact that the forces in the x, direction must add up to zero
by force equilibrium i.e.

L L )

L L
L(022 + + ...

o~ + C© =0 (577)
(6,1 %[o, 4] 221613

Using the fact that for a symmetric laminate,
L : L

[¢] = O
O N ORI (5.78)

the remaining part of the left hand side of equation 5.76 can

be rewritten as:

L L L
(n-1) o + (n-2) o + ... + 20 +
2274 1 2 3 2741
L n-1 L L
+ 0 = —— (o + ...+ o0 ) (5.79)
210,722 2204
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which is valid for n>2. For n=2 the requirement that the lami-
nate be symmetric implies that both plies have the same fiber
orientation and hence there are no interlaminar stresses. Now
the right hand side of 5.79 is equal to zero (see equation
5.77) and, therefore, equation 5.76 is satisfied.

In a similar manner it can be shown that the conditions
that o,, and 0;, are zero at the top surface of the laminate
are also satisfied. Hence the analysis so far has no incon-

sistencies.

5.6 Enerqgy minimization and the determination of » and ¢

Up to now, the equilibrium equations, both in integral
and differential form have been used and the boundary condi-
tions and stress continuity requirements are satisfied. The
stress expressions derived match asymptotically the CLPT sol-
ution. Also, most = of the stress—-strain ana
.strain-displacement equations were used for the determination
of o

11
of the strain-displacement equations since the minimization of

in each ply. Note that there is no need to satisfy any

the complementary energy 1is equivalent to satisfying these
equations on the average. It was convenient to use some of the
strain-displacement egquations however, in order to determine

911°
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All the stress expressions are summarized in Table 5.5.
where %g? %SP and ﬁéiére given by equations 5.73a, 5.6%9a, and
5.70a and the superscript i refers to the ith ply (see Figure
5.3). |

It should be noted that different » and ¢ values could
have been assumed for each ply. However, stress continuity
requires that O pr O, and 0,, are continuous at a ply inter-
face. Then, if different X and ¢ values were uséd, the conti-
nuity conditions would result in equations where the left hand
sides would be expressed in terms of different exponentials
than those in the right hand sides. This would imply that the
coefficients multiplying these exponentials should be zero
and, as a result the interlaminar stresses would be zero in
each ply, which is'impossible. Therefore, » and ¢ must be con-
stant throughout the laminate.

The only remaining wunknowns now are ) and ¢. These are
determined by minimizing the complementary energy of the whole
laminate which is equivalent to éatisfying the compétibility
requirement in an average (vafiational) sense.

The total complementary energy in the laminate is

o)

n_= ¢ I : (5.80)
C 4y ¢

where Hél)is the complementary energy in the ith ply and,

Y gy %~(0TSU) v -/ T G da (5.81)
c v ~ - fo T "
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TABLE 5.5

STRESS EXPRESSIONS FQR EACH PLY

Stress Expression
L L L
S.,0 +S. .0 +S. o
) 11 11[61] 12 22[61] 16 12[61] ) 512 .
11 S]] S]] 22
B |
S;p 22 Sy 12
L A -¢X 1 =xoéx
o g [1 - —(e —e Y]
o ¢2 A (aeTheX e—¢x)(oL 2 + Bz +8.)
&4 -1 22[61] 2 4 5
A | -$X -AoX L
o —(e e ) (o z+8,)
2z A-1 22[91] 4
-ox, L
o oe | z +8)
1z 12[61] 2
L -oX
o o (1 -e )
12 ]2[61]
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where V is the volume of the ith ply,
A 1s the area of the surface over which displacements E
are prescribed, ;T is a vector with the tractions corre-
sponding to j, ;{ is the stress vector, and ;§ is the

compliance tensor for the ith ply given by:

-
B Loy
511 512 13 0 S16
512 S22 573 0 526
S13 53 S33 0 S35
S = , (5.82)
S 0 0 wu Sis O
0 0 0 45 555 0
S.. S S 0 s
RE 26 36 65 |

If the Sij values for a 0° ply are known, the entries in
S can be computed for any ply with the use of the usual tensor
transformation relations.

For a 0° ply,

1

Sy ° T (5.83)
Sy = El; (5.84)
22
Sy = El— (5.85)
33
Suq = T (5.86)
44~ Gyq :
s = (5.87)
55 ° G
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w
"
l_,

66 ~ Gy, (5.88)
\V]
Syp = - EJ_Z_ (5.89)
1
\)~3
S, = - (5.90)
13 0
Vv
23
S = - (5.91)
23 5,

where Ell'E22'E33'G12'G13'623'V12'v13'v23 are unidirectional

ply constants and can be determined from the experimentally
measured values of EL’ ET, VI, GLT' ELz' v
It can be seen that,

Lz’ GLz [4].

I, = nc(x,¢) (5.92)

Then, for Hc to be stationary,

si_ =0 (5.93)

which implies that the equations

ane _ '
=5 0 (5.94)

T 0 (5.95)
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must be satisfied. Terms in the expression of R: that do not
depend on A or ¢ will not appear in equations 5.94 or 5.95 and
hence can be neglected in the HC expression.

Consider now the second term in equation 5.81. 1In
general, far from the points where the load is introduced, the
displacement u is not constant with x. However, at the points
where the 1load is introduced, (say at the loading grips of a
tensile specimen), the displacement u throughout the laminate
is constant. This is the prescribed displacement in the lami-
nate. (Prescribed 1in the sense that at the edges of the
laminate where thé loading is introduced, the entire surface
is forced to have the same displacement).

This displacement will be the same as the displacement of
a center point M at the two ends of the laminate as illus-

trated in Figure 5.4 which can be determined easily

(5.96)

wﬁere the origin is taken at the center of the laminate (see
Figure 5.4).

But the strain at point M will be the same as the strain
€1, at the center-of the laminate. So,

du_ | -
3;(';': 5” i (5.97)
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Figure 5.4. Single ply under tension
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and that €;; is constant. The expression for N in terms of
the stresses 1s given 1in equation 5.21. If the expression

developed for 0,,, equation 5.38, is used to substitute for
p 11

017 in equation 5.21 the following expression for €11 is
obtained:
(i) L il L (i),
4 =5 o] + S
n 11 ]][ei] 12 22[61] 16 12[ i] (5.98)

where 1 corresponds to any ply since the above expression is
constant for all plies and since the interlaminar stresses are
zero in the laminate center.

Therefbre, using eguation 5.96,

(i) L (1) L (i) L - c
u= (S + S + S )xq + C (5.99)
11 11[6 ] 12 22[91] 16 12[91] 1 2

By 'symmetry, at x1=0 u must be zero and therefore C2 is
zero. Hence,
(i) L (i), (i),
= (S + S + S
Um 11 11[61] 12 22 [63] 16 12[61])a (5.100)

Since the stresses are independent of Xy the Xy inte-
gration in the first term of equation 5.81 will simply yield a
factor 2a (the specimen length) multiplying the remaining por-
tion of that term.

Thén, Héi) can be evaluated per wunit of longitudinal

length. Also, by symmetry, only one quarter of the ply needs

to be considered.
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As a result, substituting for 3§, UM'. and 011 (from
equations 5.82, 5.100, and 5.38 respectively) and using the

fact that o0,  integrates to zero when integrated with respect

2

to x (equation 4.14):

; bt ] 2. 2 1 13, 2
it = [ ] {+ (S - ) © + = (S - } o +
c o o 2 22 S]] 22 2 33 §]] zz
2
S S S
a4 2 55 2 1 %6, 2
—— 95, t 5 07, t 5 (Sge T 5] op T KySyp05, *

11

S..S S.,S
. 12°13, 212716y N
K1S16%12 * o3 = 5 22 Taz T (26 T S 12722
(S.. - 513816) 06__0q, + S,.0,_0,_} dxdz (5.101)
36 ' S]] zz 12 4572271z .
where
(1) | (i) L (1) L
S + S5, 07, + 5.0
, 216 O,
() 1 "Tgeq” 712 °2205097 716 T120447 (5.102)
1 (1)
N

and t, Oij’ Sij, kl are guantities corresponding to the ith
ply, and the coordinate system shown in Fiqure 5.1 is used.

If the expressions 5.59-5.63 are used, the integrals in
equation 5.101 can be evaluated. For simplicity the following
assumption is introduced:

-¢b _-x¢b
e ", e =0 | (5.103)
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This implies that the laminate is wide enough so that ¢b
or A¢b is very large. A simple order of magnitude analysis 1is
needed \to determine how large b should be, for eguation 5.103
to be wvalid. Recall that 1/¢ has the dimensions of length.
The length scales of the problem are tﬁ? h, b. Since equation
5.103 reguires that b is essentially infinite, ¢ cannot scale
with b. It cannot scale with txiéither because ¢ is constant
throughout the laminate and the thickness of a single (arbi-
trary) ply cannot determine its magnitude. The only
possibility that remains 1is that ¢ scales with the laminate

thickness h. So,

oh = 0(1) (5.104)

and

ob = % (5.105)

Arbitrarily, one can consider eguation 5.103 to be satis-
fied if b/h>10. Then, ¢ ¥R4.5x107°, Using equation 5.105, the

condition on b can be written,

b > 10h (5.106)

Thus, if equation 5.106 is satisfied, equation 5.103 will

be valid.
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Each of the integrals in equation 5.101 can be evaluated
with the .substitution of the expressions for the stresses from

equations 5.59-5.63.

2
0 0 22 5y 22 er(A-1)% (a+1) 1
2
b t 513 2 . ) 12¢‘3
f f (533 - S ) OZZ dXGZ = _T*'-T d2
0o o 11
b t %44 2 A
[t —o dxdz = 2% 43
o o 2 2z A+ ]
S,
b .
J ft —%§ G%z dxdz = ¢d4
0 o
b S 2 d
t 6, 2 .., __d5
[7]7 e =57 o1 927 7 57 (5.107a-k)
b ,t A+
c 0
b ,t d7
[ [* ky Sqp 0,, dxdz = - —
o o 1 716 12 ¢
S.,S .
bt _ 21213 R
é ({ (523 ‘—ST]-) 022 O'ZZ dXdZ = m d8
S12° 3.2
bt 12°16 S NERRY.
A A ) 0., o,, dxdz = +2) +2
2 S d9
0o 0 % no 12 Ao (A1)
S19S
b ,t _C13716 ¢
é ({ (536 ——S—]]—') OZZ 0]2 dXdZ = m d]O
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where terms independent of A, ¢ have been omitted, and,

t L 2 .4 L 3
= [ 3 (o )e tT + 15 o B t° +
2~ T20 221 441 220657

oo
1

oL 2 2 .2
20 o B, t° + 20(B,)“t“+60B, Bt +
22[g:7 5 4 4 °s

2
S
2 . 13
t L 2 .2 L » 2
d, = = [{o }t° + 30 B, t+3(8)9) S
378 11°22 441 220459 4 4 44
t ,, L 2 .2 L 2
d, = -~ ((o )t + 3 0 Bt + 3(8.)%) S..
478 120 120447 2 2 55
2
S
do = 3 (b 12t (s 16 )

= (0» -
572 120447 66 ~ Sy
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d, = ¢ t ky S {5.108a-k)
6 22[61] 1 712
L
d, = ¢ t ky S
7 12[6,]] ] 16
S.,S

, L t L 2 12713
d, = o [o t“+ 3B, t+681S,., - )
8 22[61] 12 22[6_” 4 5 23 SH

°%2 °;2 t 5..S
9 2 26 S

11

dyn = 0" t [c:L t2 38 t+68 S, - S~I3S]6)
10 ]2[61] T2 22[61’] 4 5 36 5”

L L 2 L

t
dy, = ™ [2 o o t"+3 o0 Bt +

3 oL

B, t+68, 8,15
120047 4 4 24 245
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A1)
In the above, t,cﬁj[e],B are guantities for the ith ply.
It should be noted that in the case where instead of

using equation 5.38, 0y, is taken to be equal too the sec-

ll[e ]
ond term in 5.81 is independent of A and ¢ and the expressions
for di simplify. The di values for this case are given in
Appendix 4. Equations 5.107a-k are still valid but with the di
values as given in Appendix 4.

Substituting these results into equation 5.101 and using

equation 5.80 to obtain the laminate energy I

r

C
S PSUA I HU PR |15 I P
C 67 2/ % Ve T7 Tl e Ty TNy gt
f. £, 23 f f 2
3y Ao 2 2o 4 1 3T+ 4x + 2
+2)m+'2—ﬁ1—+2— ¢‘(-2—+f) DR {5.109)
where
n
fo= I d (5.110)
J=1

Note that for the actual implementation of the method
only half the laminate (in the z direction) is considered
since it is symmetric.

Making . stationary (equations 5.94 and 5.95), results

in the following simultaneous equations for X and ¢:

anc 4 4f 34 2

- 2
- - 2-+2A o T 11¢ + T3

2
9 + A (2f + 2f ¢ 2f10¢

2 = -
- 2f8 -+ 2f9 + Zf]) + A(476 + 8f9 + Sf]) + 2f6 + 4r9 +

(5.111)

"
o

+ 3f
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2 2 2 2

}ile 3.4 l2

2 - -
T 3f2x o+ ¢ (f4x + Zf]] + f3x Zf]ox 2f8x +
2 .
+ f4x) + 2 (2f7 + 2f6 + f5 + 6f9 + 3f]) + A(Zf7 +
+ 4f6 + f5 +_8f9 + Sf]) + 4f9 + 3f] + 2f6 =0 (5.112)

5.7 Solution of the eguations for A and ¢

Both equations 5.111 and 5.112 are biquadratic in ¢. This
results from the fact that ¢ is included in both exponénts in
eguation 5.15a. The fact that the two eguations are
biquadratic in ¢ simplifies their solution greatly since, for
a particular A value, ¢ can readily be obtained. This was the
reason alluded to in section 5.2 for making the two exponents
in equation 5.15a 2 and A¢ rather than } and j.

Equation 5.112 is cubic in A. This means that, for a par-
ticular ¢ value, the system of equations 5.111 and 5.112 has
at least one real X value as a solution. Furthermore, since
5.111 is quartic in 2 and at least one real X value exists,
there must also be another real ) value which satisfies both
equations. 'Otherwise, if there were only one real X value as
a solution, 5.111 would have three complex solutions for X
which is not possible.

In general, the above system of equations has sixteen
pairs of A and ¢ as solutions., All sixteen must be found and
the one that minimizes the complementary energy (equation

5.101) must be chosen as the only acceptable solution.
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The two equations are solved by using the following iter-

ation scheme:

1. A starting ¢ value is assumed (see below).

2. That value of ¢ is substituted in egquation 5.111 which
is solved for A iteratively.

3. Out of the 4 A's that are solutions of 5.111 the ones
that are negative or complex are discarded. Negative
solutions are discarded because the exponentials in
the stress expressions would increase rather than
decay. Complex solutions are discarded because, in
Qeneral, they result in complex laminate energy.
From the remaining )'s the one which, along with the
assumed value of ¢, minimizes Hc is chosen. If there
is only one positive ) value, that one ié the one
used in the next step.

4, The §alue of » found is substituted in 5.112 which is
solved for ¢2 (exactly) from wh?ch ¢ is determined.
1f there is more than one positive ¢ value, the one
which, along with the 2 value found in step 3, mini-
mizes II, is used.

5. This ¢ value found is used as the corrected ¢ value in
step'2.

The proéedure is repeated until some predetermined level

of accuracy on ¢ is acheived (in this case the requirement was
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two successive ¢ values differ by at most one part in a

million).

The above procedure guarantees that no ), ¢ pair of the

possible 16 pairs is "missed".

5.8 Computer implementation

gram

The solution procedure was implemented on a computer pro-

(in FORTRAN) on a PDP-11/34 computer.

The input to the computer program consists of:

1. Laminate information: a) number of plies; b) material
type, ply thicknesses, and fiber orientation for
each ply; and c) the 8 elastic constants for a 0°
ply of each material typé.

2. The CLPT solution which was obtained from another pro-
gram already available,

The output of the program consists of:

1. Compliances Sij for each ply.

2. A and ¢.

3. Half-laminate energy.

4. Boundary layer length (the definition of the boundary
layer is given in chapter 8). |

5. The coefficients multiplying the x dependence in the

" stress expressions for all ply inter-

r O 1z

o o
zZz 2z’

faces.



97

For the initial ¢ value, equation 5.104 can be used.
Actually, for reasons to be explained in chapter 8, the ini-

tial value used 1is,

%init = 3}"—‘3 | (5.113)

The iterative solution for the polynomial in 3 at step 2
of the solution procedure is accomplished by the
Newton-Raphson method. The 1iteration is considered to have
converged when two successive )\ values differ by less than
.00001.

The complete listing of the program code can be found in

Appendix 5.
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CHAPTER SIX

SPECIAL CASES

There are two special cases where the analysis simplifies
greatly: (1) Angle-plied laminates and (2) Cross-plied lami-

nates. The solutions for these two cases are presented below.

6.1 Angle-plied laminates

Angle-plied 1laminates are the laminates in which there
are only +6 or -6 plies and for each +6 ply there is one -§
ply.

For these laminates, the CLPT theory predicts that the

0,5, Ply stresses in laminate axes are zero everywhere:

L
g _ (6.1)
Then, equations 5.38 and 5.59-5.63 for the ply stresses

are greatly simplified to:

(i) L (i) L )
S:.'a + Sy "0 (1)
Gy o' Mreiy 18 T2reiy 316 (1) (6.2)
117 ° S(7 Sl1) 12
1 11
) <o (6.3)
o) 2 g (6.4)
oé;) -0 | (6.5)
ogi) = oo % (0%2 2 + gl (6.6)
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(i) _ L _ o -ox
9y T 012[91] (1 e ) _ (6T7)

1

The result that o(ZLO everywhere is in agreement with the

2
conclusions of chapter 4 (See Figure 4.3a). Also, as a check
that the analysis 1is consistent, it can be shown that, if
equation 6.5 1is true, then equations 6.3 and 6.4 follow from
the equations of differential egquilibrium,

Assume that equation 6.5 is true. Then the differential

equilibrium equation 5.2 gives:

9 .
22 _ (6.8)
8X2

Then, 0,, can only be some function of z:
(i) _ (i) (6.9)
Gpp = M-I (2)

where M&RE) is that unknown function of z. However, the fact

that at the free edge o élo implies that

q
2

M%” (z) = 0 (6.10)

and, as a result, o is zero throughout the ith ply. Thus,

22

equation 6.3 is valid.
Using equation 6.5 to substitute in the differential

equilibrium in the 2z direction equation (equation 5.3) one

obtains,

d0_. . '
2z .
22 =0 : (6.11)

which means that L. is only a function of X,

(i) _ () o
OZZ —N] (Xz) (6.12)
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However, the top surface of a laminate is stress-free and

thus déi%tfo which implies that

(1) . : .
N] (XZ) =0 (6.13)

and o© is therefore zero throughout the first ply. Then,

22
applying equation 5.12 at the first ply interface, where it
was shown that, due to stress continuity oéi%z=t)=géikz=0)=0,

it follows that

(2) _
NS (%) = 0 | (6.14)

which implies that . is zero throughout the second ply.
This procedure can be repeated for all plies to show that O,
will be zero throughout the laminate. Hence, equation 6.4 is
also valid.

It is important to note that in equations 6.3-6.7, only ¢
is unknown as ) does not appear in the formulation. Substitut-

ing the stress expressions 6.3-6.7 in the expression for I
and minimizing, one obtains the following equation for ¢:
2, + £,0° 4+ f. =0 ' (6.15)
7 4 5 :

which can be solved exactly to give

f5 + 2f7 ]

Ta

1/2

¢ =‘[ - (6-]6)
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where £, f7, and £, are gi&en by equation 5.110 with tﬁe use
of equations 5.108d, 5.108e, 5.108g. 1In the case that the
quantity 1in brackets in equation 6.16 is negative, ¢ is com-
plex and the method fails. (No such case was encountered when
sample -cases were solved). Thus, for angle-ply laminates the

solution can be obtained exactly and no iteration is involved.

6.2 Cross—-plied laminates

Cross-plied laminates are the laminates which have only
0° and 90° plies and for each 0° ply there is a 90° ply.

For these laminates the CLPT solution shows that thrbugh-
out the laminate:

L

. -0 | . (6.17)
]2[91]

Substituting this result 1in the stress expressions

5.59-5.63 yields

Ué;) = 0‘2-2 ] [1 - Ti‘_T (e_¢x - _}_ e')\¢x)] ’ . (6.18)
[61
' - - ( () -
o£;)= ¢2 KéT (e 2oX _ ¢x)(022[e1] ?__+ ¥ i) s+ § i), (6.19?
é;) ¢ TéT (e™® - _k¢x)(°22 ozt 3(1)) (6.20)
[ei]
Ny | (6.21)
°1z
oSy - | |  (6.22)

°12



102

Equation 6.22 1is in agreement with the well-known fact
that the 1in-plane shear stress 912 is zero for 0° and 90°
plies. Then, equation 6.21 can be shown to follow from the-
equations of differential equilibrium. |

From equation 5.1 (differential equilibrium in the Xy
directipn),

(i)

1z _ : ' ' .23
Z =9 ‘ (6.23)

3o

yhich means that 0,, is a only a funqtion of Xqe This can be
expressed as
o{1) N;‘) (x,) - - (6.28)
Again, the requirement that the top surface is
stress-free gives N§12x2)=0 from which o,, is found to be zero
in the first ply. Repeating the procedure at each interface as

was done for o, in the previous section, it can be shown that

z
Oy, is zero throughout the entire laminate.

Introducing 6.18-6.22 1in the expression for I and dif-
ferentiating with respect to A and ¢, the following two

equations are obtained:
;

2
x4¢4f2 + 213¢4f2 + A2(2f6 + fg00 - 2fgef 4 2F)) +
A(4fc + 6f]) + 2fg + 3f] =0 (6.25)
and
2 34 2.2 2.2 2
2f6x + 4f6x + 2f6 + 3f2A 6o 4+ f3x ¢ 2f8x o+ 3f]A +

+ Sf]x + 3f] =0 (6.26)
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Note that eguations 6.25 and 6.26 could also be obtained
directly by performing the integrations‘in the Hc expression
(see egquations 5.101, 5.107) and setting 071,=0 (equation
6.22). | |

With some manipulation, equation 6.26 can be rewritten as
3¢4

2f .2

2 2 -
> - 2f8¢ + 2r]) + X(4f6 +

2/ne
+ A (2T6 + f3¢

3.4 2 _ _
+ Gf]) + 2f6 + 3f] + fzx o+ f]x flx =0 (6.26a)

and subtracting equation 6.25 from equation 6.26a one gets:

SRS A RS N L (6.26b)
or rearranging,
M- (F; - 2%e%,) = 0 | (6.26¢)

There are three possible conditions wunder which this

equation will be satisfied. Consider first the case where
- = 6.27
f, - 2% T, =0 ( )
Then, solving for ¢

1 f] 1/2

$ = [-x' (TE)

]1/2 ' (6.28)

which can be substituted in equation 6.25 to obtain an

equation for A:

x2(2f + 3f,) + Aa(4f_. + 8f, + _TT (f, - 2f.))+ 2f
6 1 6 ] T, '3 8

2

6-+3f]= 0 (6.29)
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or rearranging

T |
[T— (f3 - 2fg) + 4f + 8f

2 2

AT+ A

+1=20 (6.30)
2f6 + 3f1

It can be shown that for some cases ([On/90n]s AS1/3501-6
1aminatgs for example) the above equation has complex roots
(See Appendix 6). For such cases, equatiéns 6.30 and 6.28 can-
not be used to determine A and ¢ because these would turn out
to be complex. For such cases, the remaining two possibil-
ities are from equation 6.26c:

either A=0

or A-1=0

For the case where A=0, equations 5.59-5.63 reduce to the
CLPT solution which is not valid close to the free edge. The
oﬁly case that remains is

A= 1 S ' (6.31)

Going back to equatioﬁ 5.15a it can be seen that the twé
eigenfunctions e_¢x,e71¢x, which are used to approximate the
stress shapes; coincide for A=1, However, for o,, to cross the
x axis at least once, at least two eigenfunctions of this fype
are needed. In a manner analogous to the theory of differen-
tial equations where, if the two solutions of a second order
differental equation coincide, one of them must be multipiied
by x, one can assume that the two moaes in the present case

are e ®¥ and xe $X.
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So the -equation corresponding to eguation 5.15a for the

cross—-plied case is
X 5.32)
0py = € P (A] + Ayx) + A (
Following £he procedure described in section 5.1 the non-

zero stresses in a cross-plied laminate are found to be:

22 = gy 10T (6.3
61
(i) _ 2, -ox (i), L
opy’ = ¢°x e P BN 220411 2] (6.34)
: : 2
i) _ 2 -0 (i (1), L 2 -
oy =P e - Bz epgl G2p 01y 2 (6.35)

where 34,>'§5 are the same as before (equationsv5.69, 5.70).

Also, 044 is again given by equation 5.38.

Substituting these into the expression for I .:

2f f ;
Iec N 3 2 .1 6 6 :
ol vl APARS S R 2 (6.36)

Qs

,eNl —h
. —

where fi are the same as in equation 5.107.

The ¢ value that makes I, stationary is given by,

LIS (6.36a)
CX
This is the only equation'sihce A is not prgsent.in this case.

The above equation can be rewritten as
4 _ o 1.2 - '
3f2 o + (f3 2f8)° + llf] + 8f6 0 (6.37)
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from which ¢ is found to be:

_ 1/2
2
- (fy - 2fg) + [(fy - 2fg)" - 12f, (11, + 8fg)]

$ = 3 .3
ofz (6.38)

Again, 1if the quantity in the brackets is negative, ¢ is com-
plex and the method fails. No such cases have been encountered
so far. If such a case were encountered, one would have to
use a different eigenfunction (e.g. x2e_¢x) along with e_=¢)X in
equation 5.15a.

This analysis is used if equation 6.30 has no real sol-
utions, If it does, then equations 6.28 and 6.30 can be used
to determine X and ¢ for cross-plied laminates. A special case
'where equation 6.30 has real roots is presented in chapter 7.
Fof that particular case, the solution obtained using
equations-6.30 and 6.28 is compared with the results obtained
if equations 6.33-6.35, and 6.38 are used (also in chapter 7).

Note that, no matter which of the two methods is used, the )

and ¢ values can be determined exactly without any iterations.

6.3 Comments on the special cases

It is seen that for angle-plied or cross-plied laminates
the solution is greatly simplified. The two unknown parameters

A and ¢ can be determined in closed form and no iterations are
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required. The cross-plied case 1is slightly more involved
because in some cases the original eigenfunctions coincide and
a slightly different analysis is required.

Both of these special cases, angle-ply or cross-plied
laminates, were incoporated 1in the computer program. For
cross-plied laminates the case where both A and ¢ exist is
checked first and, 1if equation 6.30 has complex roots, the

different analysis, where only ¢ is present is used.
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CHAPTER SEVEN

DISCUSSION AND RESULTS

Several applications. of the theory presented in the pre-
vious chapters are discussed in this chapter. The predictions
of the present analysis are compared to the predictions of
other analytical methods. Some further implications of the

stress model are also discussed.

7.1 Typical stress distributions and characteristics

Analyses were performed on a large number of laminates.
The presentation of results of the calculation of interlaminar
stfesses for any particular laminate requires a large number
of graphs to show each of the stresses at each of the ply
interfaces. Therefore, it is not feasible to show the results
of a variety of laminates. Thus, two laminates have been cho-
sen to illustrate the major characteristics of the solution.
These laminates are [i;S/O]s and [0/£15]s laminates
(AS1/3501-6 system) and typical stress plots for these two
laminates are shown 1in this sectioh. The first laminate is
known to fail by delamination [41] and results for the second
‘will befpresented so that some of the effects of changing the

stacking sequence in a laminate can be examined. Plots showing
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stresses as functions of x, the distance from the free edge,
will be presented only at ply interfaces, since these, being
the weakest regions tﬁrough the thickness of a laminate, are
most important for delamination considerations. Solutions for
other z locations can be accomplished just as easily. In addi-
tion, only results for the top half of the laminate are pre-
sented since, at the remaining part, the stresses repeat
symmetrically with respect to the midplane (or antisymmet-
rically in the case of shear stresses).

"The CLPT solution for both laminates is shown in Table
7.1. The same uniaxial ;oading of 889 MPa is used for both.
The interiaminar normal stress . at the first three ply
interfaces 1is shown in Figure 7.1 for the [115/0]s laminate.
The cérresponding plot for the [0/+15]s laminate is shown in
Fiéure 7.2. The interlaﬁinar shear stresses ¢ and o

2z 1z
shown in Figures 7.3 and 7.5 for the [£15/0]s laminate and in

are

Figures 7.4 and 7.6 for the [0/%#15]s laminate respectively.

A number of general comments can be made upon examination
of Figures 7.1 through 7.6. One, the normal stress 0
reaches 1its maximum magnitude at the free edge and then drops
to zero within a few millimeters from the free edge after
crossing the x axis once, in agreement with the predictions of.
chapters 4 and 5. Two, the shear stress Oy, is zero at thé

free edge, 1in agreement with the stress-free boundary condi-

tion, rises to some maximum value and drops to zero within a
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TABLE 7.1
CLPT SOLUTIONS FOR [i]S/O]S AND [0/j15]s LAMINATES

(APPLIED LOAD 811 = 889 MPa)
Stresses [+15/0] [0/+15],
In PTy T Ply 2 Ply 3 PTy 1 Ply 2 Ply 3
[MPa] (+15°) | (-15°) (0°) (0°) (+15°) | (-15°)
o%] 839 839 990 990 839 839
[6i]
052 16.0 16.0 -31.9 -31.9 16.0 16.0
[6i]
0%2 193 -193 0 0 193 -193
[ei]
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few millimeters from the free edge without crossing the x
axis. Three, the shear stress 014 reaches its maximum value
at the free edge and drops to zero within a few millimeters
from- the free edge without crossing the x axis. Four, the
peint at which 0,  crosses the x axis is the same for all
interfaces (see Figures 7.1 and 7.2). Similarly, the point at
which 0,, reaches its maximum value does not change from
interface to interface (see Figures 7.3 and 7.4) This is a
result of the fact that the shape of the interlaminar stresses
is governed only by the values of A énd ¢ which, being lami-
nate constants, do not <change from interface to interface.
Five, all interlaminar stresses drop to zero within a small
distance (about a millimeter) from the free edge (for a dis-
cussion on the boundary layer see section 7.5) thus matching
thé CLPT prediction of zero interlaminar stresses far from the‘
free edge. Six, changing the stacking sequence, thereby hav-
ing the 0> ply on the outside rather than at the midplane,
changes the sign of the o and ¢ stresses but does not

A 22

change -the sign of ¢ 2 This is very important in the case of

1
the normal stress o, because it turns from tensile (for
[£15/0)s) to compressive (for [0/%15]s) at the free edge and.
therefore will not cause delamination 1in the [0/%15]s
laminate. The maximum stress values (absolute magnitudes) are

not the same for the two stacking sequences, that is, moving

the 0° ply on the outside of the laminate changes both the
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sign of S and ozz‘and their shape. On the other hand, o,, at
the +15/-15 1interface remains unaffected. Note that at the
other two interfaces (Figures 7.5 and 7.6) 04, is zero.

The through the thickness wvariation of interlaminar
stresses is shown in Figures 7.7, 7.8, and 7.9 for the
[t15/0]s laminate. Stresses are plotted as a function of z
from the top surface to the midplané of the laminate for
x=,05mm. (This value of x is chosen instead of the free edge
itself becausé,. at that distance £from the free edge, the
assumption of homogeneity is still valid). It is important to
note that the interlaminar shear stresses Ooy and 01, (see
Figures 7.8 and 7.9) are linear within each ply. They are con-
tinuous but their derivatives with respect to 2z are
discontinuous at some ply interfaces. (between ~15 and ( and
—150 and +15° plies in this case). The normal stress S,y is
guadratic within each ply, is continuous, and its derivative
with respect to z is also continuous. The discontinuities in
the z derivatives of the interlaminar shear stresses result in
the "kinks" observed in the stress plots in Figures 7.8 and
7.9 and are due to the faét that the in-plane stresses P and

o are discontinuous at ply interfaces. (The in-plane stress

12
distributions will be presented below). On the other hand, the

derivative of o with respect to =z is continuous at ply

zz

interfaces because (see equilibrium equation 5.6) it is equal

to the x derivative of 0,,+ The partial derivative of 0,, With
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respect to x is continuous in z since (see equation 5.10) it
is proportional to the function g,;(z) which is continuous in
z by construction (see section 5.4 on the continuity of Ooy)e
2ll interlaminar stresses are zero at the top surface of
the laminate (see Figures 7.7-7.9) 1in agreement with the
boundary condition that the top surface of the laminate is
stress-free. The numerical values generated by the computer
program for Ty and 9y,
orders of magnitude smaller than at other interfaces. Thus,

at the midplane are six to seven

the shear stresses P and 0,, are zero at the midplane (see

Figures 7.8 and 7.9) in agreement with the argument made in
[5] that, due to symmetry, these stresses must be zero there.

117 929 304 9y
is guite different from that for the interlaminar stresses.

The situation for the in-plane stresses ¢

Consider the expression for 915 (equation 5.63) which is

repeated here for convenience:
%12 © °%2 (1 - e ¥
reiyft - e ) (5.63)

If, at a ply interface, the two adjacent plies do not

have the same fiber orientations,o is different in the two

L

12161l
plies and 012 is discontinuous at a ply interface. Even if the
fiber orientation 1is +¢ in one ply and -6 in the next,oll"z[aiJ
changes sign at the ply interface and hence 0,, is discontin-
- uous. As a result, the =z derivative of 0., will Dbe

discontinuous (see eguilibrium equation 5.4).



123

For 0,, the éxpression is (equation 5.59)

L [1- 2 “0X _

922 ~ °zz[e1.] e 20Xy (5.59)

>|—

Again, the only part of the expréssion that changes from
one ply to another iscﬁéWif Only if the plies adjacent to the

interface of interest have the same fiber orientations (+6/+8)

L
%22p1
being continuous at

or fiber orientations of opposite sign (+6/-6) will

remain the same, thus resulting in 059

that interface. In all other cases Tso is discontinuous across

a ply interface. As a result, the z derivative of ¢ (see

2z
equilibrium equation 5.5) will be discontinuous except at
+68/+6 or +6/-6 interfaces.

The expression for oy, (equation 5.38) is.

L L L
. S440 +5,.,0 S, .o
nen, Yo, .
. Lo ° Preid 1 lei %12 3 S5 (g g
1 5 S5y %22 TS Czz TR %

This expression does not change across an interface only if
the adjacent plies have the same fiber orientations (+6/+8) or
fiber orientations of opposite sign (+6/-6). The reason is

that 1in these cases Sll' 512' 513,J‘

L
11WiT022mi]d° not change

across an interface and S shift sign so that their

L
16’ 127017 |

product does not change across an interface. For all

L
S16%121011
other cases, 011 will be discontinuous at a ply interface.

It should be pointed out that these discontinuities in

O11r  Too and 0., are a result of the requirement that far
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from the free edge, the CLPT solution is recovered. The CLPT
solution, however, gives SERT Tt and 012 stresses that are
discontinuous at ply interfaces (see for example the stress
values in Table 7.1).

Since the in-plane stresses o

and ¢ are gener-

117 %22 12
ally discontinuous at ply interfaces, the value of these
stresses at the interface will depend upon the ply from which
the 1interface 1is approached in the calculation. This discon-
tinuous nature of the in-plane stresses 1is their only z
dependence. Thué, these: stresses are constant through the
thickness of an individual ply. Therefore, the variation of
the in-plane stresses with distance from the free edge is giv-
en for a particular ply in Figures 7.10-7.15,

All in-plane stresses approach their CLPT value far from
the free edge. Near the free edge they differ radically from

that wvalue and this should be taken into account if these

stresses are included in a stress-based failure criterion.

7.2. Variation of ¢, A¢ with laminate types

The values of ¢, Ap for the [+6/0]}s and [0/+g]s laminate
families are shown in Table 7.2 for various values of the lam-
ination angle 6. These values are plotted as a function of ¢

in Figures 7.16 and 7.17.
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TABLE 7.2
VARIATION OF ¢, » AND a¢ WITH LAMINATE TYPE AND LAMINATION ANGLE

[+e/0] [0/+e],

® A Ad b A Ad
5 12088 0.42637 | 5154.1 12089 0.29128 | 3521.9
10 10358 0.53417 | 5532.8 10354 0.36249 | 3753.3
15 8750.9 | 0.68424 | 5987.7 8730.6 0.46235 | 4036.6
20 7602.4 | 0.84143 | 6396.9 7549.5 0.57011 | 4304.0
25 6901.0 | 0.96886 | 6684.0 6804.3 0.62242 | 4507.1
30 6558.1 1.0396 | 6817.8 6416.3 0.71933 | 4615.4
35 6487.6 1.0486 | 6802.9 6309.3 0.73181 | 4617.2
40 6629.5 1.0046 | 6659.9 6430.9 0.70177 | 4513.1
45 6958.3 | 0.92061 | 6405.9 6761.6 0.63615 | 4301.4
50 7493.0 | 0.80627 | 6041.4 7322.8 0.54045 | 3957.6
55 8317.0 | 0.66431 | 5525.1 8192.9. | 0.41107 | 3367.9
157. 8888.6 | 0.57773 | 5135.3 8792.2 0.32141 | 5135.3
60 9603.5 | 0.42558 | 4087.1 9557.9 0.16948 | 1619.9
61 9943.3 2.8930 | 2876.6 9665.0 8.9940 | 89624
62. 10463 0.56325 | 5893.6 10397 1.09738 | 11409
65 11397 0.44532 | 5975.1 11231 0.53201 | 5975.1
70 12190 0.39358 | 4770.0 12181 0.37053 | 4513.2
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As it is seen from Table 7.2 and Figure 7.16, for a given
angle, ¢ is approximately the same for the two laminate fami-
lies. As the lamination angle ® increases from 0°to 400, o)
decreases. At O approximately egual to 400, ¢ reaches a mini-
mum and then increases with increasing lamination angle. The ¢
values for the [0/+6]s family are always smaller than the ¢
values for the [x6/0]s family except for lamination angles
larger than 65°.

The situation for A¢ is somewhat different as can be seen
in Figure 7.17. The values for the [0/48]s family are about
two thirds of the values for the [+6/0]s family. For both lam-
inate families )¢ 1increases with lamination angle up to
6 ~30°. It then starts decreasing until g reaches approximate-
ly the valvue 60°.At this point, (actually at a 6 value between
60(J and 61°) there is a jump in the curve as shown in Figure
7.17 and the A¢ values become extremely high. For larger lami-
nation angles, A¢ drops rapidly so that for 6 larger than 69°
the A4 values are again comparable to the )¢ values that cor-
respond to lamination angles smaller than 60°. This "jump" in
the A¢ curve is more pronounced in the [0/+6]s family. It can
be explained easily if one considers the CLPT solution for
these laminates. Table 7.3 shows the CLPT solution for the
[tGO/O]s.and [161/0]5 laminates. Thec&éHﬁJvalue is very small.
Also, these values have different signs from one laminate to

the other in plies that have the same z location in the two
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TABLE 7.3

CLPT SOLUTION FOR [360/0]s AND [161/0]s LAMINATES

(APPLIED LOAD 611 = 100 MPa)
[+60/07 [+61/0],
Stresses
[éga] Ply 1 Ply 2 Ply 3 Ply 1 Ply 2 Ply 3
(+60°) (-60°) (0°) (+61°) (-61°) (0°)
o%] 24.4 24.4 251 24.0 24.0 252
[ei]
ok 0.180 0.180 ~0.260 -6.012 | -0.012 | 0.024
22 .
Lei]
0%2 5.08 -5.08 0 4.60 -4.60 0
Lei]
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laminates. This means that for some value of the lamination
angle between 60° and 61° czguﬁ]will'be identically zero and
this then will be the same as the special case presented in
section 6.1. As was shown in that section the X value does not
appear in the solution since the stresses whose expressions
involve A are zero identically. Therefore, the eigenfunction
e %* (see eguations 6.2-6.7) 1is sufficient to describe the
stress shapes. Thus, the solution that involves both XA and ¢
will be consistent with this observation only if the contrib-
ution of Fhe eigenfunction e APX ;g negligible for lamination
angles between 60° and 65°. This means that )¢ must be very
large and positive in that region which is exactly the case as
illustrated by the A¢ values in Table 7.3 and Figure 7.17. Of
course, 1if © is»equal to that critical value between 60° and
. L is exactly zero, ) will be infinite.

22[0i]1 7
Another way to explain this behavior is to note that in

61O for whicho

this region of lamination angles (60°-65°) the solution should
be similar to the solution obtained for angle-ply laminates in
section 6.1. This can be demonstrated by actually determining
the ¢ value for laminates with 6 values between 60° and 65°
using the solution method developed for angle-plied laminates,
'For example, for a [0/+61]s laminate treated as an angle-ply
laminate the ¢ value is found to be 9959f507 mlwhile the gen-
eral metﬁod using both A and ¢ gives a ¢ value of 9965.006 m .

The difference between the two is only .055%.
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It should be noted that an analogous situation may occur
if the stacking seguence and ply orientations in a laminate
are such that the in-plane shear stressofawi]is zero in all
plies. in that case the solution should be very similar to

that obtained for cross-plied laminates in section 6.2.

7.3 Constant versus variable longitudinal stress in each ply

1t was indicated in section 5.2 that, instead of deter-
mining 0,4 in each ply with the use of thg strain-displacement
equations, the CLPT valuecERWi]could be used for cllthrough-
out each ply. This latter procedure is obviously less rigor-
ous and would be preferred only if it gave similar predictions
for the interlaminar stresses since it'simplifies the calcu-
lafions somewhat (see expressions for the constants d; in
equation 5.108 and appendix A4).

This is not the case however. Not only does 0,4 differ in
the boundary layer by as much as 95% as shown in Figure 7.18,
but the o,

Ty and 01, predictions show appreciable differ-

z'
ences (from 5% to 20% in regions close to the free edge)
between the two approaches as illustrated in Figures 7.19,
7.20, and 7.21. Therefore, the more rigorous approach to

determine 911 (equation 5.38) should be used.
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7.4 Sensitivity of the solution to basic ply three dimensional

elastic constants

In all the analyses presented in chapter 2, except the
one in [31], the wvalues for G23 and Vs of the basic
unidirectional ply used are taken to be the same as those of
Gi3 and vy 3 This, however, 1is not the case. These
three-dimensional elastic constants were measured by Knight
and Pagano [42] and were found to be quite different from the
values usuglly assumed. Actually, V,3 Wwas even found to be
larger than 0.5. The elastic constants used in other analyses
as well as those used in this analysis (the measured values)
are shown in Table 7.4.

The interlaminar stresses O 0,, and 0, at the +15/-15

zz'
inferface of the [+x15/0]s laminate obtained using the two dif-
ferent sets of elastic constants, are shown in Figures 7.22,
7.23, and. 7.24. The differences are small and one might be
tempted to say that it is not very important which set of con-
stants is used. However, for other laminates the differences
may be appreciable. Fof example, for a [+60/0])s laminate the
set of elastic constants used by most investigators results in
the discriminant of the ¢ polynomial (equation 5.112) being

negative irrespective of the starting ¢ value. This means that

both A and ¢ are complex in this case which is not allowed. On
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TABLE 7.4

ELASTIC CONSTANTS USED IN THE PRESENT (MEASURED)

AND IN OTHER (ASSUMED) ANALYSES

Constant Measured Assumed
Eqq 130 GPa 138 GPa
E,p 10.5 GPa 14.5 GPa
E33 10.5 GPa 14.5 GPa
G12 6 GPa 5.9 GPa
G]3 6 GPa 5.9 GPa
623 4.8 GPa 5.9 GPa
Vio 0.28 0.21
V13 0.28 0.21
v 0.54 0.21
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the other hand, if the proper set of elastic constants is
used, the solution can be obtained without any problems.

The conclusion 1is that if the three-dimensional elastic
constants have Dbeen measured, they should be used as they do
not add to the complexity of the problem and will result in a
more accurate answer than the use of the assumed constants.
However, if measured three-dimensional elastic constants are
not available, the results show that using the assumed G and

23

Vos for the basic ply results in acceptable answers for most

laminates.

7.5 The boundary layer

The boundary layer is the region, close to the free edge,
in'which the interlaminar stresses are appreciable., The exact
definition of the boundary layer size is rather arbitrary and
there are several possible ways of defining it [5,24]. 1In the
pfesent investigation two possible definitions are used

depending on whether o, exists or not. The simpler one will

z
be presented first.

(a) For laminates in which S is everywhere zero (e.g.
in the case of angle-plied laminates) the boundary layer is
defined 'as the distance from the free edge at which 04, drops

to 1% of its value at the free edge. This can be expressed in

the form

=oX
e BL-0.0 (7.1)
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‘which leads to the expression

_ 4.4 |
Xg| = —o A (7.2)

Actually with this definition, the stress 0j, at a distance
equal to the boundary layer width is exactly equal to 1.2% of
the value at the free edge.

(b) For most laminates, 0,z is generally nonzero and can

be used to define the boundary layer instead. The boundary
layer is thus defined as the distance over which equation 4.14

is "almost" satisfied, i.e. the distance over which 99% of 0,

is counterbalanced. This can be expressed in the form (see

Figure 7.25Db)

XBL
[of

X :
0.99 [ "o _dx=- [
X 2z

dx (7.3)
5 2z :

o

For the special case of a cross-plied laminate, eguation

6.35 the expression for c,., placed into equatioﬁ 7.3 gives:

X o X } _ ‘
0.99 2 (1-ex)e™®=- BL (1 - ox) e dx (7.4)

.0 Xo

where X, is defined as the point where ¢ crosses the x axis
zz

(see Figure 7.25b) and is equal to 1/¢ for this special case.
The following equation for xBL can be obtained from
eqdation’7.4:

: 1
Xg = ;-zn (100 xBL¢e) (7.5)
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and xBL can be solved for by iteration. Convergence (the dif-
ferehce between two successive Xp values being less than
.00001) is achieved after few iterations (four to five) if
X =1/¢ is used as the sfarting value for =xpr. If the
cross-plied 1laminate is such that eqguation 6.30 has real sol-
utions and both A and ¢ exist, the boundary layer size is
determined wusing the expressions derived below for general
laminates.

For a general type laminate, the expression‘for o,

(equation 5.60) placed in equation 7.3 gives

X ThXg

e e = 0.01 (e %0 - e “*%%p) (7.6)
after integration and cancellation of like terms. Note that

X the point at which o, crosses the x axis, is given by

wnx

% = e-TT | (7.7)

This can be determined by setting equation 5.60 equal to zero
and solving for the distance x.

Using X, as the starting value for x equation 7.7 can

BL'
be solved iteratively. However, one should distinguish between
the case where )<1 and the case where A>1, In both cases,

since 'x; is the starting value, the corrected value for xgp
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after each iteration must be larger than the Xar, value for the
previous iteration.

1f A<1, equation 7.6 can be.rewritten as:

-hX
BL
_anf(e - B) '
Xgy = % s A< ] (7.8)
where
B = 0.01 (e ™0 - e ~*%%0) | (7.9)

Equation 7.8 guarantees that, at each iteration, the corrected

value of Xor is larger than the previous Xor value.

I1f A»>1, equation 7.8 cannot be used because each new val-
ve of Xor is smaller than the previous value. So, starting
" with X each corrected XL value is smaller than X and the
scheme will not converge,

Instead, equation 7.6 can be rearranged as follows:

=AdX o
BL :
_anle + B) ,
XgL * % > A> ] (7.10)

where B 1is given by éduation 7.9. This equation guarantees
that, each corrected value of Xp7, is larger than the previous
one énd; if x, is used as the stérting value, after some iter-
ations the scheme will converge.

Some comments on the boundary 1éye: ére in order. One,

these three means for determining'the boundary layer length
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were incorporated into the program. The iteration schemes used
are very efficient (four to five iterations are usually enough
for accuracy up to the fifth decimal place). The only excep-
tion 1is the [+40/0)s laminate for which there was no conver-
gence on the boundary layer length after 300 iterations. It is
suspected that this problem arises from the fact that A is
almost equal to 1 for this laminate (actually A=1.004).

Two, it should be again emphasized that the boundary lay-
er size is not a guantity that can be accurately determined or
measured. It 1is just used as an indicator of the size of the
region over which the interlaminar stresses are important. If
a consistent definition 1is used, then laminates can be com-
pared .on this basis. These definitions of the boundary layer
are also independent of the applied locad since A and ¢ are
independent of the applied load.

Three, the boundary layer is the same for any ply inter-
face of a particular laminate since it depends only on X and ¢
which are constant throughout the laminate. Therefore, the
boundary layer 1is a laminate property. Table 7.5 shows_the
boundary 1layer sizes for the [16/0]s and the [0/%¢]s laminate
families. |

Four, equation 7.2 can be used to obtain a good starting
value for ¢ in order to solve the equations for A and ¢

(equations 5.111 and 5.112). As it was pointed out in equation



153

TABLE 7.5
BOUNDARY LAYER WIDTH FOR [+6/01, AND [0/e]_ LAMINATES

8 [+e/0]¢ [0/+8]

[mm] [om]
5 1.124 1.550
10 1.099 1.501
15 1.091 1.459
20 1.103 1.437
25 1.125 1.434
30 1.143 1.439
35 1.150 1.447
40 * 1.459
45 - 1.146 1.483
50 1.147 1.541
55 . - 1.170 1.708
57.5 1.209 1.957
60 1.417 3.181
61 0.562 0.501
62.5 1.046 0.703
65 1.151 1.017
70 1.197 1.252

*No convergence on the boundary layer width after 300
iterations
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5.104, ¢ is of order 0O(1/h) where h is the laminate thickness.

Comparing equation 7.2 and equation 5.104 one gets:
X = 0(h) (7.11)

Then, . considering Figure 7.25a, and using the definition of

the boundary layer for angle-plied laminates one obtains:

_ 4.4
h-_¢_

(7.12)

which - solved for ¢ gives an order of magnitude estimate for ¢
and can be used as the starting ¢ value. This coincides with

egquation 5.113:

_ 4.4 »

7.6 Concept of "effective ply thickness"

Built into the analysis are the following two basic
facts. One, 1if, in a symmetric laminate, next to each bly
another identical ply (i.e. the same material with the same
fiber orientation) 1is added as illustrated iﬁ Figure 7.26a,
the boundary layer thickness doubles exactly. Two, if a sym-
metric laminate 1is doubled by adding to it, symmetrically,
another laminate, as illustrated in Figure 7.26b, the boundary

layer thickness remains the same. Also, g,, at the mid-plane
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Figure 7.26.Two possible ways to vary the thickness of a
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doubled symmetrically
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is zZero since each individual * sublaminate is
self-equilibrating.

The difference in the boundary layer between these two
cases is that, in the first case, each pair of identical plies
acts as a single ply whose thickness is double the thickness
of the plies in the second case. Thus, in the first case, the
"effective ply thickness" 1is twice what it is in the second
case. Note that 1in both cases the laminate thickness is the
same. This means that the boundary layer size is determined by
the "effec;ive ply thickness" and not just by the laminate
thickness. Unfortunately, a way has not yet been found t§
determine the effective ply thickness of any laminate and only
in special cases 1like the one above can the effective ply
thickness be determined. For this reason, for the time being,
the boundary layer size is assumed to.be a strong function of
the laminate thickness, and equation 7.2 is considered to be a
good starting point for detefmining the starting value of ¢ in
the iteration scheme.

Table 7.6 shows the boundary layer values for these two
cases and the boundary layer length for the "parent" laminate

as determined by the computer program for a [+15/0])s laminate.
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TABLE 7.6
EFFECT OF EFFECTIVE PLY THICKNESS ON BOUNDARY LAYER SIZE

Laminate Effective Ply Boundary

Laminate Thickness Thickness Layer

[mm] [ram] [mm]

[+15/0] 0.804 0.134 1.09054
[(+15)2/(-15)2/02]s 1.608 0.268 2.18108
[+15/0] .2 1.608 0.134 1.09054
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7.7 Comparison with previous analysis techniques

In this section, the present method will be compared to
other methods of analysis. It is important to note that this
is done in order to show the predictions of different methods
of analysis, and not to validate this analysis since there is
no analysis that can be presented as correct due to lack of
conclusive experimental data.

In all the cases that are presented below, the laminate
igs subjected to a wuniaxial load corresponding to an exten-
sional strain of 1000 microstrain. The same elastic properties

are used as those used by other investigators.

7.7.1 [#45]s laminate

The [#45]s laminate has been used by different investi-
gaﬁors as the test case to compare their analysis technigue
with other analyses. For this reason, predictions obtained for
a [#45]}s laminate by the present method of analysis will be
presented first and compared to the predictions of other
investigators. It should be noted that for this laminate, as
for any other angle-plied laminate, the CLPT predicts that

L -
is zero.

922161 ]

Figures 7.27-7.31 show the stresses (except 09 which is
zero for all analyses) as a function of distance from the free
edge at the +45/-45 interface of a [#45]s laminate as pre-

dicted by the finite difference method of Pipes and Pagano,
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the finite element analysis of A.S.D. Wang and Crossman [9],
thé elasticity solution of S.S Wang and Choi [24], and by the
present analysis.

The longitudinal stress 91 is shown in Figure 7.27. All
analyses approach the CLPT solution far from the free edge but
they differ significantly close to the free edge. It should be
recalled that very close to the free edge (within a few fiber
diameters ‘as discussed in chapter 2) the assumptions on mate-
rial homogeneity made in all analyses break down and therefore
no one methqd is expected to be more accurate than the others.
The present investigation 1is closer to the FD analysis by
Pipes and Pagané [5].

The in-plane shear stress o, is shown in Figure 7.28.
Again, all methods approach the CLPT value at the far field.
Neér the free edge, the four methods give different pred-
ictions. The FE solution by Wang and Crossman [9] does not
satisfy the‘ boundary condition that 91, is zero at the free
edge while the 6ther three methods do. The present analysis is
again closest to the FD analysis by Pipes and Pégano [5].

Figure 7.29 shows the negative of the interlaminar shear

stress o} There is excellent agreement among all solution

1z°
methods. There are some differences very close to the free
edge (recall that the analysis in [24] predicts singular o,,

stresses at the free edge but the singularity becomes dominant
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only when the assumption that each ply can be treated as homo-
geneous breaks down).
The interlaminar shear stress Oy is shown in Figure

7.30. The present analysis predicts that o 2 is identically

2
zero. The other analyses predict nonzero but small (compared
to 0yqs 0950 and Glz) stress values and, again, as in the case
of the o,, stress, the FE analysis by Wang and Crossman [9]

does not satisfy the boundary condition that o is zero at

2z
the free edge. All other methods correctly predict that 9y, is
zero at the free edge. Far from the free edge, all methods
match the CLPT which predicts that Gy is zero. An important
difference among the four methods should be pointed out. As

it was shown in section 4.2, ¢ is either identically zero,

2z
which 1s the prediction of the present analysis, or crosses
thé x axis at 1least once which is the prediction of the FE
anélysis in [9]. Therefore, it appears that the analyses in
[5] and [24], where ozz'is nonzero and does not cross the x
axis, do not satisfy integral force equilibrium in the trans-
Qerse direction as expressed by equation 4.9,

The interlaminar normal stress o, is shown in Figure
7.31. Even though all analyses predict stress values that are
small compared to the Gyqr Opor and 01, stfesses, they differ
significantly from one another. The present analysis predicts

that ozzA is identically zero. The other analyses predict that

. is nonzero but the analysis in [9] predicts that o, is
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- tensile at the free edge while the analysis in [24] predicts

that o__ is compressive at the free edge.

7.7.2 [+45/0/90]s laminate

The quasi-isotropic graphite epoxy [+45/0/90]s laminate
was studied by Wang and Crossman [9] using the finite element
method. Interlaminar stresses for this laminate as predicted
by the present analysis and by Wang and Crossman [8] are shown
in Figures 7.32-7.37.

The two methods predict very similar o, stresses for the
three 1interfaces from the midplane to the second interface .
(-45/0) as is shown in Figures 7.32-7.34 . The predictions for
o, at the first interface (Figure 7.35) are quite different.
The present analysis has only one crossing of the x axis while
‘the analysis in [9] has two. Furthermore, the present analysis
predicts that S is tensile at the free edge while the analy-
sis in [9] predicts that o is compressive there.

Figure 7.36 compares the predictions for ¢ at the first

1z
(+45/-45) interface. The two methods differ significantly.

The predictions for o at the third (0/90) interface are

2z
shown in Figure 7.37. In this case the two methods are in very

good agreement except at the free edge where the analysis in

[S9] predicts a nonzero value for o and hence does not satis-

2z
fy the stress-free boundary condition ozz(x/b=0)=0.
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7.7.3 [0/80])s laminate.

The prediction for the s stress in the [0/90]s
cross-plied laminate 1is presented in Figure 7.38. Note that
for this laminate the CLPT predicts that 0?2[61] is zero
.throughout'the laminate and this, (see section 6.2) results in
Oq15 and o1, being zero throughout the laminate.

Figure 7.38 shows the 0,, Stress at the 0/90 interface of
a [0/90]s laminate as predicted by the present anélysis and
the analysgs by Pagano and Pipes in [12]. For the present
analysis, the modified version for cross-plied laminates pre-
sented in section 6.2 had to be used because the original
method (see discussion on equation 6.30 in section 6.2) gave
complex values for A and ¢. There is good agreement between
thé three methods except very close to the free edge where the

present method predicts stresses which are 35% higher than

the prediction of the methods in [12].

7.7.4 Further results and implications for cross-plied

laminates

It was pointed out 1in section 6.2 that there are
cross-plied laminates for which both methods of analysis, as
presented in section 6.2, are valid. Such a case is illus-

trated in Figures 7.39 and 7.40. The laminate is a [0/90]s
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laminate where the material for the first ply is only the
3501-6 resin (with Young's modulus of 3.5 GPa and Poisson's
ratio 0.3) of thickness 0.134mm (chosen arbitrarily). Note
that actually this first ply is isotropic but the laminate can
still be treated as a cross-plied laminate. The second ply is
a 90° ply of AS1/3501-6 material. The laminate is loaded in
tension by a Ell stress of 100 MPa. It turns out that both
solution methods for cross-plied laminates are applicable.
Figure 7.39 shows the c,, Stress as a function of distance
from the ffee' edge at the midplane of the laminate as pre-
dicted by the two methods. There 1is excellent agreement.
Figure 7.40 shows the 0, stress at the 0/90 interface. Again,
the two methods are in very good agreement. This implies that
in cases where the first method of analysis (see section 6.2)
fails and ) and ¢ cannot be used, the alternative method,
where only ¢ is present, is very reliable since for cases
where both methods are valid it gives predictions that are
very close to those obtained by the more accurate method.
Another important conclusion can be drawn using this lam-
inate which may better clarify the role of the two

-A9X_ 1t was shown by Pagano [12]

eigenfunctions e ®® and e
that the modified plate theory by Whitney and Sun [13] can be
used for cross-plied laminates to obtain expressions for o,

at the midplane which can be expressed in terms of two expo-
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nentials. It can be seen that the expression for g, the

interlaminar normal stress i in [12]

AqA

ad PN 2 P SN
e & . A e ])

=M A:_iz (%
is identical with the . expression of the present analysis
(equation 5.60) provided the first method of analysis for
cross-plied 1laminates (both )X and ¢ present) is valid. This'
implies that 1in such special cases, the present analysis
matches the predictions of the plate theory developed by

Pégano [12] and Whitney and Sun [13].

7.8 Significance of the resin layer between plies

It was mentioned in chapter two that between the plies of
a laminate there exists a thin resin layer where no fibers are
présent [3]. This 1layer 1is usually so thin that in all the
analyses( presented 1in chapter two, as well as in the present
analysis, it .is neglected. More specificaliy, each ply is
assumed to be homogeneous in the analysis and half of each
interply layer is treated as part of each of two neighboring
plies. The present analysis however, is versatile enough to
account for that 1layer and efficient enough so fhat the
increase in the number of plies does not affect the computa-

tion time significantly.
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Bach iéminate, therefore, can be considered as composed
of anisotrbpic layers separated by thin isotropic resin
layers. These isotropic layers will be considered as addi-
tional plies. The wunderlying assumption here is that these
plies are thick enough so that the assumption of material
homogeneity is wvalid.

The laminate used to present results is the [#15/0}s lam-
inate (AS1/3501-6 system). If the resin plies are included
(denoted by R) the laminate becomes [+15/R/-15/R/0/R]s where
the resin ply next to the midplane is half as thick as the
other resin plies as denoted by the overbar. Using an Olympus
SZ-III-Tr microscope (160X magnification) the average thick-
ness of the resin layer was found to be 7.5 microns. This is
on the order of one fiber diameter (AS1 fibers). Each resin
lafer was treated as isotropic with a Young's modulus of 3.5
GPa and a Poisson's ratio of 0.3 (the elastic constants of the
3501-6 epoxy resin). The thickness of the graphite/epoxy plies
was kept equal to the nominal thickness of 0.134 mm. The lam-

inate was loaded 1in tension by a o,, stress of 889 MPa (the

11
same as for the cases presented'in Figures 7.1-7.24). The
CLPT solution for the case without the resin layers is given
in Table 7.1. The CLPT solution for the case with the resin
layers is shown in Table 7.7.

The o,  stress at the midplane as predicted by the two

models is shown in Figure 7.41. The 0, stress and the o3,
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TABLE 7.7

CLPT SOLUTION FOR [+15/R/—15/R/0/§]s LAMINATE

(APPLIED LOAD ‘_’11 = 889 MPa)
Stress PLY 1 PLY 2 PLY 3 PLY 4 PLY 5 PLY
[MPa] +15 R -15 R 0 R:
0%1 877 24.7 877 24.7 1034 24.7
[61] ‘
052 17.2 -11.3 17.2 -11.3 -32.9 -11.3
[6i]
0%2 202 0 -202 0 0 0
[ei]
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stress at the +15/-15 interface are shown in Figures 7.42 and
7.43. The two models are in excellent agreement. This implies
that the assumption that the resin layer can be incorporated

into the two neighboring plies is valid.

7.9 Evaluation of the Computer Program

The solution proceaure as implemented on the computer is
very flexible. Hybrid laminates with plies of different thick-
nesses and different materials can be analyzed as easily as a
typical single-material laminate.

The iteration scheme has excellent convergence character-
istics in that no instabilities were encountered in the cases
analyzed so far. Furthermore, in most cases convérgence was
acﬁieved within 10 to 15 iterations. The Newton-Raphson method
~used to determine the four roots of the X polynomial has very
good convergence characteristics as well.

Thick laminates can also be analyzed with relative ease.
So far, up to 100—ply'laminates have been analyzed successful-
| ly. For the 100-ply laminate there were more than 15 differ-
ent ply orientations and the 1layup was such that no

simplifications (e.g. treating part of the laminate as a sub-
structure) could be used in the solution and each of the 100
plies had to be considered separately. The computer pfogram

"was transferred to a VAX-11/782 computer so that actual CPU
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times could be <calculated for different casés. Table 7.8
shows some of the cases run along with the CPU times on the
VAX computer and fhe computation times oﬁ the PDP-11/34, The
computation times on the PDP-11/34 computer are the real times
(determined using a watch) and not CPU times. From Table 7.8,
a number of conclusions can be drawn. One, the éomputation
time does not depend strongly on the number of piies. This is
shown by the last two entries in the table where doubling the
number of plies of a laminate increases'the.computation time
only by 25% (part of which is extra time needed to calculate
stress coefficients for the excess plies). The computation
time will mainly depend on the relative values of the coeffi-
cients in the A and ¢ polynomials. As a result, laminates with
plies well exceeding 100 (possibly up to 500) could be ana-
lyéed without increasing the computation times to a great
extent. Two, the program can be used easily on home
computers. Most home computers of today are more powérful (and
faster) than  a PDP-11/34. So, the computation times on home
computers will be acceptable. Furthermore, the program code is
fairly short (about 650 executable statements) and does not
take up much of memory space (19K).

Computation times have been reported in the literature
for [%45]s laminates [5,9]. These solutions have been accom-
plished ‘on different computers, and hence a direct comparison

cannot be made easily. However, the large (greater than two
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TABLE 7.8
COMPUTATION TIMES FOR DIFFERENT LAMINATES

Number of Number of CPU time Actual time
plies iterations (VAX 11/782) (PDP 11/34)
[sec] [sec]
4 0* 1.00 2
6 8 1.01 15
12 15 2.66 30
50 50 3.29 80
100 69 5.37 120

*Solution is obtained in closed form.
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orders of magnitude) difference between these and the present
analysis technigque 1indicate the efficiency éf the present
method. The finite difference scheme developed by Pipes and
Pagano [5] required 120 seconds of CPU time on an IBM 360-365.
The finite element technigue of Wang and Crossman [9] needed
18 seconds of CPU time on a UNIVAC-1108. The present method
used only 0.2 seconds of CPU time on the VAX-11/782 to analyze
the [+45]s case. Even the analysis of 6-ply laminates as shown
in Table 7.8 required less time (at least an order of magni-
tude) than these previous analysis techniques did for just a

simple laminate.
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CHAPTER EIGHT

SPECIMEN PREPARATION AND EXPERIMENTAL SETUP

It was already indicated in the discussion in chapter 2
that an experimental technique to measure interlaminar
stresses is needed in order to determine which of the analyt-
ical methods available are more reliable. Such a technique
has not yet been devised. The two basic reasons are the fol-
lowing: (1) the boundary layer width 1is very small and
obtaining énough data within the boundary layer is difficult;
and (2) it is hard to take measurements inside the laminate.
The only measurements that can be taken with some ease are on
the top or the boétom surfacé of the laminate (inside the
boundary layer) and at the face of the free edge itself.

With these limitations in mind the following experimental
méthod was used. First high density moiré grids were glued to
the specimen to define points on the top surface of the lami-
nate very close to the free edge (within the boundary layer).
Tﬁen the distances of these points from a reference point
before and after loading were measured thereby determining the
u and v displacements of these points.

1t should be noted thét this method is limited because
only quantities on the top surface of the laminate are meas-

ured and these are only in-plane guantities. However, since
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the in-plane quantities change from their CLPT values in the
boundary layer, the method is expected to give important data
which will be helpful not only in validating analytical meth-
ods but also in furnishing a better understanding for the

mechanisms of delamination.

8.1 The specimens

Three laminates were made, all of the AS1/3501-6
éraphite/epoxy system: [%#15/0]s, [(+15)5/(-15)5/05]s, and
[(+4551((-45%i;s. The first laminate was chosen as a test lam-
inate to check the experimental technique before applying it
to the other laminates which were the actual laminates for the
experiment. The second lamiﬁate was chosen because it is
known to fail by delamination [41]. The third laminate was
chosen because it is the one used as the test case by differ-
ent investigators for the calculation of interlaminar stresses
and the data obtained can be compared to the predictions of
different anélytical methods. The thickness of these 1as£ two
laminates was chosen so as to increase the boundary layer size
without introducing undue complications in the manufacturing
procedure. By increasiﬁg the effective ply thickness (see
section 7.5) the boundary layer'size increases and it is easi-
er to obtain more data points in the boundary layer than with

thinner laminates. For the [(+15)5/(—15)5/05]s laminate, the
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boundary layer width is predicted to be 5.5 mm by the present
analysis (versus 1.09 mm for a [£15/0]s laminate) and for the
[(+45%i/(—453 1s .laminate the boundary layer width is pre-
dicted to be :.27 mm (versus 0.527 mm for a [+45]s laminate).

Standard TELAC manufacturing technigues [43] were used
throughodt the manufacture except for one detail. A smooth
surface was needed for the application of the moiré grid onto
the specimen. For this reason, the laminates were cured with
one side in direct contact with an aluminum cure plate. The
cure plate was sprayed‘with mold release before curing.

As pér standard practice, 300 mm by 350 mm plates as
layed up were cured in an autoclave under a 30 inch Hg vacuum,
85 psi pressure and in a two step temperature cycle: one hour
at 240°F followed by two hours at 350°F. This cure cycle is
shown in Figure 8.1. The laminates wefe postcured in an oven
at 3500F for 8 hours. The resulting laminates had the correct
resin content and their thickness was very close to the nomi-
nal value. The average measured thicknesses for the three
laminates aré given in Table 8.1. There are five coupons per
laminate and six thickness measurements were taken per coupon.
The overall average measured per ply thickness is 0.133 mm
compared to the manufactﬁrer's nominal per ply thickness of
0.134 mm, The surface of the laminates.thaﬁ was in contact

with the aluminum cure plate came out smooth and did not have
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Figure 8.1. Graphite/EpoXYy autoclave cure cycle
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TABLE 8.1

AVERAGE LAMINATE THICKNESSES

Laminate Thickness Nominal Thickness
(mm) {(mm)
[j]S/O]s 0.79 0.802
[(+15)'5/(-15)5/05]S 3.982 4.02
5.69 5.36
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the wavy pattern (with dimples) usually present on surfaces
cured while covered with peel-ply.

Each cured laminated plate was cut into five coupons
using a high speed diamond abrasive rotating disk. Two strain
gages were placed on each of the coupons used for the actual
experiment, on the side which originally had the peel-ply. One
was placed longitudinally in order to measure the longitudinal
modulus and one was placed 1in the transverse direction to
measure the Poisson's ratio. These values are measured in
order to compare them (as some type of guality control) to the
theoretical value obtained from CLPT. The width of the coupons
was chosen to be 54 mm instead of 50 mm, which is the standard
TELAC coupon width, in order to satisfy the reguirement (see
section 5.6) that the width to thickness ratio in each speci-
men be at least 10 for the theory to be valid. The test
section in each coupon was 200 mm long. The measured thick-
nesses and widths of the coupons are summarized in Table 8.2.

The loading tabs were made following the standard TELAC
procedure. For the [+15/0]s laminate, 12-ply thick glass tabs
were used. For the other two laminates 36-ply thick tabs were
used. The laminate configuration for the glass tabs was a
symmetric 0/90 repeating layup with the proper number of
plies. The loading tabs were bonded to the graphite/epoxy cou-
pons in a secondary bond operation using FM-123-2 film

adhesive. This was accomplished at 50 psi and 225°F for two



194

TABLE 8.2

AVERAGE COUPON THICKNESSES AND WIDTHS

Measured |Coef. of |Measured [Coef. of
Laminate Coupon Thickness |Variation |Width Variation
(rmm] (%) [mm] (%)
1 3.79 9.96 53.8 4.71
2 4.01 1.95 53.8 4.71
(155/-15:/0¢ 1 3 4.08 2.54 53.8 0.00
4 3.92 4.24 53.8 0.00
5 4.11 1.38 53.7 8.16
1 5.79 11.1 54.01 0.94
2 5.83 16.1 54.03 6.60
[4510/_451015 3 5.47 15.9 54.05 4.11
4 5.98 6.29 53.78 10.7
5 5.48 11.8 54.09 6.80
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hours. This resulted in the specimen illustrated in Figure

8.2.

8.2 The moire grid

The moiré grids were obtained from Measurement Group Inc.
These were Photolastic Type FTG transferable moiré grids of
two different densities: 200 lines/inch (8 lines/mm) and 500
lines/inch (20 1lines/mm). The grids are supplied in 4x4 inch
(100x100 mm) sheets and can be cut to smaller pieces dependingl
upon the application. Each grid consists of a film of mutual-
ly perpendicular black gelatin lines 0.025 mm thick which are
deposited on a polyester carrier (0.15 mm thick). This results
in the pattern illustrated in the photograph in Figure 8.3.
The carrier is removed after the grid is applied to the speci-
men. Since the displacements of the grid points are measured
directly wusing a microscope, .no haster grid (or grille) is
needed.

To apply the grid, the instructions given by the manufac-
turer were used. The procedure is briefly as follows:

1. An area of the top surface of the specimen slightly
larger than the grid.piece to be used is spray-painted with
silver paint to give-a sharper contrast between the grid lines

and the specimen surface beneath the grid.
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Figure 8.2.Characteristics of the coupon specimen
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Figure 8.3. Moiré grid pattern (200 lines/inch) under
the microscope (40X magnification)
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2. A thin coat of Type VPAC-1 adhesive (also supplied by
the '‘manufacturer) is applied on the specimen surface which is
preheated to approximately 1100F for about 1 minute. The adhe-
sive is also preheated to approximately 120°F before the resin
and hardener are mixed.

3. The grid piece is placed in contact with the adhesive
with the grid surface down (carrier surface up).

4. A sheet of silicon rubber approximately 3 mm thick is
placed over the grid and a pressure of about 35 kPa (5 psi) is
applied.

5. The adhesive 1is either left to cure at room temper-
ature for 36 hours or is put in the autoclave at 180°F for one
hour in order to cure.

6. After curing, the grid carrier is removed tb expose

the grid surface..

Care must be taken so that one of the edges of the grid

piece 1is aligned with one of the free édges of the specimen.

For this, a microscope at 7X magnification is used.

8.3 Test setup

The measurements of surface displacements had to be taken
with the specimen under load. Thus, the specimen was placed in

an MTS 810 testing machine with hydraulic grips.
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An SZ-III-Tr Olympus microscope was used to take the
measurements. This stereo microscope is capable of magnifica-
tions up to 240X, At that magnification, data can be acquired
every 50 microns with the 500 1lines/in grid and every 90
microns with the 200 lines/in grid.

A stand was built to hold the microscope close to the
specimen during testing so that in situ measurements could be
taken. Figure 8.4 shows a schematic drawing of the stand. The
stand consists of four basic parts.

First 1is the base table with four legs whose height can
be adjusted by changing their lower section with extensions of
variable 1length. The height of the table used is 122 cm. The

top of the table 1is 84 cm long by 61 cm wide and the stage
.attachment takes up only a small area (30.5 cm by‘33 cm) so
that a lot of room is left to be used for placing tools or
taking notes during mounting, testing, and dismounting. A
shelf was made between the ground and the top surfaée.of the
table (disténce 67 cm from the top surface of the table) and
parallel to the ground where sandbags are placed during test-
ing to absorb any vibrations transmitted to the stand through
the ground or by sudden movements of the experimenter.

| The second part of the apparatus is a stage attached on a
wooden base vertical to the table. This wooden base is firmly
attached to the table with a Dexion rack. The stage is capable

of horizontal (parallel to the specimen when the specimen is
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gripped in the testing machine) and vertical displacements
accomplished with the wuse of calibrated knobs. These dis-
placements have a range of about 13 cm. This enabled the
microscope which was attached to the stand to scan an area on
the specimen surface which was much larger than the grid area.

The third part is an aluminum rod (2.38 cm in diameter
and 43 cm long) attached to the stage (perpendicular to the
ground) with the use of V-blocks and clamps. Another aluminum
rod (also 2.38 cm in diameter but 76 cm long) is attached to
the first rod through a "T" shaped junction with two holes at
S0 degrees} This second rod was perpendicular to the first
i.e. perpendicular to the specimen surface and parallel to the
ground. The end of the rod that is close to the. specimen sur-
face was milled down to fit exactly a cylindrical slot at the
side of the microscope. A set of four screws is used to firmly
attach the microscope (via the slot) on this horizontal alumi-
num rod. - |

The fourth part is the "T" shaped junction. This junction
is attached to the two rods with the use of four screws (two
per rod). It can slide on both rods making it possible to
place the microscope within a wide range of distances from the
ground or from the testing machine. The junction can also
rotate in a plane parallel to the ground making it possible to
rotate the second (horizontal) rod. In this way, the specimen

in the testing machine may be viewed through the microscope at
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a variety of angles if needed. A groove (27 cm 1ong) was
drilled along the horizontal rod to serve as a guide for the
two screws on the junction corresponding to that rod. An alu-
minum ring with three screws is placed around the vertical rod
right under the "T" junction to serve as a stopper (see Figure
8.4). The entire apparatus with a specimen mounted in the
testing machine is pictured in the photograph in Figure 8.5.

Overall, the stand is very versatile. The height of the
horizontal rod can be adjusted by moving the "T" junction up
or down on the vertical rod. The angle at which the specimen
is viewed .can be changed by rotating the "T" junction (and
hence the horizontal rod). The distance of the microscope from
the specimen can be adjusted by moving the horizontal rod
closer to or‘further from the specimen prior to tightening the
screws in the "T" Jjunction. More accurate movements of the
microscope are possible in all three directions. With respect
to an observer looking at the specimen, more accurate motions
up or down and to the left or to the right are accomplished
through use .of the two stage knobs. Motion towards or away
from the specimen is accomplished by using the focusing knob
of the microscope.

The use of the sandbags decreased the vibrations signif-
icantly. However, there were still some vibratiéns coming
mainly from the rods when the stage or the microscope were

touched 1in order to change the microscope location or during
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Figure 8.5. Experimental setup
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focusing but they subsided quickly each time (within a few

seconds) making it possible to take meaningful data.

8.4 Test procedure

After trying both grid types on coupons of the [+15/0]s
laminate, it was decided to use the 200 lines/inch grid
instead of the 500 lines/inch one mainly be;ause at the par-
ticular magnification (240X) and with the particular silver
bpaint used, the square points on the 200 lines/inch grid were
much brighter and sharper than the sgquare points on the 500
lines/inch'grid making measurements more accurate.

A system of levels was used to verify that the axis of
the microscope was perpendicular to the surface of the speci-
men when it was gripped in the testing machine.

Each coupon was put in the grips of the testing machine
and a verfex of one of the grid squares was chosen as an ori-
gin as close to the free edge as po;sibie (see Figure.8.6).
Then, before loading, the distances of the vertices of the
grid sguares around the origin (originally a 20 grid points by
20 grid points square was covered) were measured by eye using
the scale in one of the eyepieces of the microscope. The pro-
cedure was repeated after loading to a desired stress level
(keeping the same point as origin). Subtracting the original

from the final value for each point in the X4 and the Xy (or
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x) direction gave the u and v displacements of each point at
that pérticular load level. It is interesting to note that a
20 grid points by 20 grid points square gives a total of 6400
data points per 1load 1level per coupon (covering an area of
about 4 square mm) and since all these are read off by the
experimenter without the use of any data taking device, a sin-
gle coupon at a single load level takes more than 6 hours to
test. For . reasons to be discussed below the number of data
points per coupon per load level was eventually decreased to
100 data points. |

Since. it was impossible to mark axes on the grid, meas-
urement of distances from the origin of points that did not
lie in the same row or column of grid points that included the
origin (see Figure 8.6) was very difficult. Distances of
points that were on the same row or column with the origin
were easier to measure. This means that u as a function of Xy
and v as a function of x were much easier to measure than u as
a function of x and v as a function of x,.

This difficulty in measuring u as a function of x and v
“as a function of x; reduced the usefulness of covering a whole
"square of grid points. Eventually, only the displacements of
the points lying on the same row and column as the origin were
measured for each coupon. In each column 20 points were used

and in " each row 30-40 points were used to insure that the
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points further from the free edge were outside the boundary
layer as predicted by the theor& for that particular laminate.

The distances of these points from the origin were meas-
ured by eye wusing a micrometer scale attached to one of the
eyepieces of the microscope. The error in each measurement
(half the width of the smallest division) was *4.15 microns at
240X magnification. This was the highest magnification possi-
ble with the SZ-III-Tr Olympus microscope that was used and no
lower magnification could be used since at lower magnifica-
tions the resolution was so poor that it was very hard to pick
up any difference between the distances of the points from the
origin before and after loading. At that magnification
however, only. five to six grid squares could be seen along a
diameter in each field of vision i.e. only the distances of 10
to 12 points from the origin could be measured (see Figure
8.6). To make the %4.15 microns error in each measurement as
small a fraction of the measured distance as possible, each
point should be as far from the origin as possible. On the
other hand, in order to measure as many distances per field of
vision as possible (to avoidIChanging fields of vision many
times which involved shifting the origin each time and intro-
duding a measurement of the order of 2 microns) each point
should be as far from the origin as possible. A compromise was
found by measuring the distance of every‘other point from the

origin, 1i.e. one point per square of the grid was used (the
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right-most point of each square in a row and the lower point
of each sguare in a column as is shown in Figure 8.7) instead
of the possible two points per measuring direction (horizontal
or vertical). This gave about five data points per field of
vision per direction which means that for 20 data points in
the wvertical direction 4 changes of field of vision were
needed, and for 30 data points in the horizontal direction 6
changes of field of vision were needed. The sampling rate was
approximately 1 data point every 120 microns which means that
a distance of approximately 2400 microns (2.4 mm) was spanned
in the vertical direction (20 data points) and a distance of
3600 microns (3.6 mm) was spanned in the horizontal direction
(30 data points). The error in each measurement was thus 13%
for points closest to the origin, and *0.6% for points far
from the origin (closest to the other end of the field of
vision). Of course, this pattern repeated every time the field
of vision changed and'the origin shifted. Table 8.3 summarizes

all this information.

8.5 Data reduction

The displacements in the x. and x directions were deter-

1
mined as the differences between the unloaded and 1oaded dis-

tances of each point from the origin.
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TABLE 8.3

DATA TAKING INFORMATICN

Number of measurements per coupon

Number of data points in the longitudinal
direction

Distance spanned in the longitudinal
direction

Number of data points in the transverse
direction

Distance spanned in the longitudinal
direction

Sampling rate

Number of data points per field of vision

Fields of vision needed in 10ngitudiﬁa]
direction

Fields of vision needed in transverse
direction

Average error in each measurement
Error induced at each origin shift

Average testing time per coupon
g

100-200

20

2.4 mm
30-40

3.6-5 mm

1 data pt/
120 ¢

5-6

4-5

6-7
1.8%
2 microns

2-3 hours
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To every u or v displacement value thus measured, the u
or v displacement of the origin (which being a point close to
the free edge was not stationary during loading) was added. It
was very difficult to actually measure this displacement of
the origin because, both in the x; and the x direction, the
origin moved a distance of approximately 1-2 mm and three to
six changes of field of vision were required making an accu-
réte measurement difficult. Furthermore, part of this
displacement was rigid body motion of the two grips of thé
testing machine. Thus, even if the distances that the origin
moved in the xi and the x directions could be measured accu-
rately, these values would not represent the u and v
displacements of the origin due to material stretching and
EOntracting. The u displacement of the o?igin-was estimated
by multiplying the far-field €11 strain with the Xy distance
between ”the origin and the lower edge of the loading tab in
the top grip of the testing machine which is stationary during.
loading. The v displacement of the origin was estimated as the
product of the far-field €50 strain and the x, distance
between the qrigin and the center of the laminate which, by
symmetry, 1is also stationary during 1loading. It should be
noted that there 1is some wuncertainty in this estimation
because the origin 1lies in the boundary 1layer where the

in-plane- strains are expected to vary from their far-field

values. However the error is small because the boundary layer
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is a small fraction of the Xq and x. distances used in the

2
estimations. It can be shown using the theoretical expressions
for the u and v displacements that the predicted displacement
of the origin (in either of the two directions) differs from-
the corresponding estimated value by only 1%.

The theoretical predictions for the u and v displacements
were obtainea by integrating the eguations for €11 and €59

- (equations 5.21 and 5.22) with respect to x. and x respective-

1

iy. Note that in general, for any x x and z, these equations

1’
cannot be integrated because the unknown functions F and G
that result (see equations 5.24 and 5.25) cannot be determined
in a consistent way. This is due tb the approximate nature of
£he analytical method used which satisfies strain compatibili-
ty on the average. If however, x2 and z are known humbers, as
is the case of the u displacement which was measured as a
function of-x1 at a fixed x2 and z location, F(xz,z) is a con-
stant and can be determined by requiriﬁg-that u be zero at the
edge 6f the top grip of the testing machine (recall that the
top grip does not move during testing). Similarly, fdr v meas-

2
as was the case during the experiment, G(xl,z) is a constant

ured as a function of x_ (or x) at a fixed xl and z location

and can be determined by requiring that v as given by equation
5.25 is =zero at the center of the laminate (i.e. at x=b).

Then, equations 5.24 and 5.25 give the theoretical predictions
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for the u displacement as a function of x, and the v displace-

ment as a function of x.
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CHAPTER NINE

EXPERIMENTAL RESULTS

The method described in chapter eight was used to obtain
experimental plots for u and v for different coupons. Some
Aproblems were encountered during testing especially for the
thicker laminates. The strain levels reached were low (and
hence the displacement values were also low) because at higher
loads "clicks" indicating some type of damage were heard which
meant that the laminate properties would be different from
those of an undamaged laminate and there was no way to measure

the exact effect of the damage.

8.1 [(+15),/(-1515/95]s laminate

Using coupon number .five of this laminate a monotonic
test was conducted to find that the first "clicks" were heard
at 60% of the failure stress of 624 MPa. This coupon was not
used to take displacement data. The rémaining coupons were
loaded up to approximately 50% of the failure load. Coupoﬁ
number 4 had a grid failure (the grid did not stick well onto
the coupon surface) and was not used to take data.

Using the strain gages on coupons 1, 2, and 3, the

Young's modulus and the Poisson's ratios were determined.
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These, along wifh the corresponding values predicted by CLPT,
are listed in Table 9.1. A typical stress-strain plot for one
of the coupons is shown in Figure 9.1.

The v displacement as a function of x for coupons 1, 2,
and 3 is shown in Figures 9.2, 9.4, and 9.6 respectively. The
theoretical predictions are also shown. The u displacement as
a function of x for coupons 2 and 3 is compared to the the-

oretical predictions in Figures 9.3 and 9.5.

9.2 [+15/0]s laminate

As it was mentioned in chapter eight, this laminate was
used as a test laminate to examine the validity of the exper-
imental technigue at the first stages of the experiment. It is
interesting to note that with this laminate it was possible to
go to a significantly higher strain level (about 5000 micro-
strain) than with the thicker laminates (about 3500
microstrain) which means-that while thicker laminates have the
advantage of a large boundary layer, thin laminates may also
be ﬁseful in obtaining data in the boundary layer because they
.allow higher strain levels (without any audible "clicks") and
hence mofe accuracy in the measurements. The u and v displace-
ments for coupon 3 of this 1laminate are‘cdmpared to the

analytical predictions in Figures 9.7 and 9.8 respéctively.
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TABLE 9.1

COMPARISON OF MZASURED YOUNG'S MODULUS AND
POISSON'S RATIO WITH CLPT PREDICTIONS

Coupon Young's Modulus Poisson's Ratio
[GPa]

Measured CLPT Measured CLPT

1 109.9 115.7 0.84 0.67

2 104.8 115.7 0.80 0.67

3 112.8 115.7 0.62 0.67
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Figure 9.1.Typical stress-sctrain plot for
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9.3 [(+45) /(-45) ]s laminate
I0 10

This laminate exhibits : significant nonlinear
stress-strain behavior [44]. The 1linear region of the
. stress-strain curve is limited to stress levels below 50 MPa.
For this reason, the specimens were loaded only up to 30 MPa.
However, at such 1low stress levels the strains were so low

that no useful displacement measurements were taken,

9.4 Comments on the experimental results

Even thoﬁéﬁ there 1is significant experimental scatter,
the theoretical predictions have the same trends as the meas-
ured data in'all cases. In the case of the v displacement for
coupon 2 of the [+155/—155/05]s laminate (Figure 9.4), the
theory is' in very good agreement with the experimental
results. Only one data point ?s-far from the theoretical pre-
diction and 1is obviously wrong since it corresponds to a
negative value for the displacement at a location whe;e the
displacement should be positive.

The u displacement predictions for c0up§n 3 of the
[+15 5/-155/0515 laminate (Figure. 9.5) and coupon 3 of the
[¥15/0]s laminate (Figure 8.7) are also in good agreement with

the experimental results.
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The differences in the remaining plots (Figures 9.2, 9.3,
and 9.6) are attributed mainly to the changes of field of
vision required during testing. These in some cases induce
significant errors and can be seen as patterns in the data
points. Any error at each change is added to all data points
that follow. Referring to Figures 9.2 and 9.6, this might
explain why after the first change of field of vision in the
first case (corresponding to the fourth data point in Figure
9.2) and after the third change of field of vision in the
second case (corresponding to the fifteenth data point in Fig-
ure 9.6) ‘the measured values are consistently lower than the
predicted values.

In summary, the theoretical predictions compare well with
the experimental resuits even though there is significant
scatter in the data. The plots for the u displacements give an
indication that the assumption that stresses do not depend on

X is valid. The experimental method is successful in produc—.

1
ing many data points ﬁithin very small distances. Some
improvements in the accuracy of the measurements are needed so
that more reliable data can be obtained. A more accurate scale
on the eyepiece of the microscope would improve the accuracy
greatly. It 1is also suggested that laminategfwith stacking
sequences and material types permitting higher stfain levels

(in the linear region of the stress-strain curve and at loads

lower than the loads at which the first "clicks" are heard) be
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used so that the measured displacements are larger and hence

the errors are smaller percentages of the measured values.
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CHAPTER TEN

. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

10.1 Conclusions

A simple approximate method to determine interlaminar
stresses at the straight free edges of symmetric and balanced
composite laminates was presented. The method is based on the
conclusions of the Force-Balance Method and the principie of
minimum complementary potential energy. The boundary condi-
tions are exactly satisfied. Far from the free edge the CLPT
solution 1is' recovered. Due to the fact that strain compat-
ibility 1is satisfied 1in an average (vafiational) éense, the
displacements cannbt be determined exactly. This is not much
of a drawback however, since for failure analysis consider-
ations only the stresses or the strains are used and both can
be determined by the preéent method in closed form. In partic-
ular:

i. The present method predicts in-plane stresses which,
in the boundary layer, differ significantly from the CLPT
predictions, This must be taken into account if in-plane
stress-based failure .criteria are used to predict failure of

composite laminates.
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2. Some effects of changing the stacking sequence were
examined. It was found that if the 0° plies of a [+6/0]s lami-
nate are moved from the midplane to the outside of the lami-
nate (thus forming a [0/+6]s laminate) the interlaminar normal
stress changes from tensile to compressive.

3. In the special cases of angle-plied and cross-plied
laminates the solution simplifies and no iterations are needed
(which are necessary for general laminates). The solution for
these special laminates then can be obtained even faster (in
terms of CPU time) than for general laminates.

4., It was shown that for some cross-plied laminates the
present method of analysis coincides with a method developed
by Pagano [12] which was based on a plate theory presented by
Whitney and Sun [13]. | |

5. The concept of the feffective ply thickness" was
introduced (chapter seven). It was found that the boundary
layer is a ‘strong function of the effective ply thickness.
Doubling the effective ply thickness doubles the boundary lay-
er exéctly. ‘On the other hand, if the laminate thickness is
doubled but the effective ply thickness is kept the same the
boundary layer size remains the same,

6. Modelling the resin layer betwgen plies as a separate
ply. has almost no effect on the stress shépes'for AS1/3501-6
graphite/epoxy systems. Thus, the usual approach of incorpo-

rating it in the adjacent plies is justified.
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7. The results obtained by using the measured out of
plane elastic properties were compared to results obtained
using the out of plane properties assumed by most investi-
gators. The differences were small and slightly more pro-
nounced in the case of interlaminar shear stress On,e

8. Two possible approaches for modelling the in-plane
longitudinal stress were examined. One was to assume that it
is equal to the CLPT value throughout each ply and the other
was to actually determine it using the stress-strain and the
strain-displacement equations. The second approach is more
accurate and does not require any significant additional
effort.

9. The present method was shown to compare well with oth-
er methods of énalysis. It can deal efficiently with thick.
laminates (100 plies or more) which the other methods cannot
do. It can analyze hybrid or variable ply thickness laminates
very effectiQely. T%e method is more efficient than other ana-
lytical methods proposed in the past.

10. An experimental technique to take in-situ displace-
ment measurements at the top surface of a laminate using moire
grids observed under a microscope was also presented. The
results compare well with the theoretical predictions. 1In all
cases the theory shows the same trends as the experiment. Some
improvements in the accuracy of taking data are needed so that

more conclusive experiments can be performed.
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11. The available data on the u displacements inside the
boundary 1layer indicates that the assumption that stresses do

'not depend on Xq is valid.

10.2 Recommendations for further work

1. Some modification of the in-plane (CLPT) solution is
needed so that discontinuities in the in-plane stresses can be
avoided. A possible approach would be to assume that the
in-plane stresses (even at the far field) are functions of =z.

2. The method can easily be generalized to any type of
laminates (unsymmetric and unbalanced) under any type of load-
ing. Also, minor modifications are needed for the analysis to
account for thermal loadings.

3. The analysis should be extended to curved free edges
(e.g. holes).

4. Some improvements in the accuracy of the experimental
technigue are ﬁeeded. A more accurate scale is needed to be
attached on the eyepiece of the microscope so that finer
resolution can be achieved. It is also suggested that differ-
ent materials bé used with such stacking seguences that the
resulting in-plane strains are larger than those measured so
far (but still in the linear region of the stress-strain plot)

so that- the errors in the measurements do not affect the data
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as much. Then, the technigue can be applied to laminates with
holes using polar grids.

5.. The ©possibility of using x-rays to measure strains
inside the laminate and not only at its top or bottom surface
must be investigatéd. Very accurate and thin metallic grids
can be vapor-deposited on the individual plies of a laminate
(cured separately). The resulting plies can then be bonded

together using a secondary bond operation.
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APPENDIX 1

RADIUS OF CURVATURE FOR A CROSS-PLIED LAMINATE

The analysis in this appendix gives some evidence that
O, shapes which cross»the X axis more than 6nce correspond to
‘higher 1laminate energies than S shapes which cross the x
axis only once.

The displacements in a symmetric laminate under tension

are given by Pipes and Pagano [5] as:

u-= Cx] +le2, z) v (A1.1)
v = Vb%, z) | A (A1.2)
WMk, 2) (A1.3)

The 1inverses of the two strain-displacement equations
3.3b and 3.3c can be written as:

2 <
e T N F i S
f2 TSy T T TSy 22 23 75, Tz
S1,5 | - -
1216 |

Yo, = Saq %27 F Sa5 912 (A1.5)

where equation 5.34 was used to substitute for 0110 €4 is giv-

en by eqﬁation 5.37, and all guantities refer to the ith ply.

‘The strain-displacement equations 3.3b, and 3.34d,

Vv vV ow
T Yor = 3z T Ax,
2 _ 2

€22
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can be wused to determine the second derivative of the w dis-
placement with respect to x . Differentiating eguation 3.3d

with respect to x and using equation Al.5 to substitute for

Y2z=
A o0 3o 2
v _ 27 1z 37y
=S + S -
;;;Z 44 Tx, 45 Tax, Xz (A1.6)

Similarly, differentiating equation 3.3b with respect to

z and using équation Al.4 to substitute for ¢

22°
2
4 S 3o 5..5 :
v S 212, %% _ 213212, %2 1216, *°12
3)(232 (522 S-” ) 9z * (523 B S.” ) 9z +(526 = S-” ) 37 (A1.7)

The last equation can be substituted in equation Al.6 to

give: 22 ac 3 S 2 9
W 2 c U 12 999 _
My = Sy '15%5 " 345 (S50 - 5 ) =%
X5 11
S..S., 30 $..5.. 30
12713 zz 127106 12

which is valid for any laminate.
Assume now that the laminate is cross-plied, then, as it

was shown in équations 6.21 and 6.22, olz=olz=0. Also, from

the fact that o.,, is not a function of z,§%§2=0. Thus equation

22
A1.8 simplifies to:

azw : a°Zz

=S, L -
a¥22 44 ax2

'512513) 39,4

B2z - 57 =3 (A1.9)

which is valid for any ply of a cross-plied laminate.
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This equation further simplifies if the equilibrium
equation in the z direction (equation 5.3) is used:
? SynS 3o
3w _ _ 12713 zZ (A].]O)
7= 54 * S5 " 57 THz

Considering figures 4.2a and 4.2b, one finds that two
2

. d . .
possible shapes for -§§%— are the ones shown in figure Al.1,
2

I°wW . . . .
However, —y7— 18 equal to the inverse of one of the principal

radii of curvature. Since (see equation Al1.3) w is not a func-

fy_azw - - ' ..
axfmqaxzo and therefore the other two radii of cur

9%
vature(1/.—°. YW
0X310X2

tion of x,,
and 1/—%;¥_) are infinite. Hence, the out of
plane shape of any interface will be governed by the shape of
1/%;¥-. Examination of Figure Al.1 yields possible shapes for
1/—%;%, the radius of curvature, which are shown in Figure
Al.2. These plots in turn imply the ply interface shapes that
are shown in Figure Al.3.

Clearly, the shape shown in Figure A1.3b is a higher mode
‘shape and corresponds to a higher energy étate than that shown
in ’Figure A1;3a. Therefore, for minimum energy the lower mode
should be chosen., Thus, if a solution based on a 0, shape
that crosses the x axis once can be found (i.e. if a stress
field that satisfies the governing eguations and the boundary
conditions and has . stresseé that cross the x axis once can

be found), that shape is the correct solution since it mini-

mizes the laminate complementary energy.
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Figure Al.l, Possible shapes for 5 for a cross-plied
X
laminate: (a) o croSses the X axis once;

A ) S X
and (b) 9 cros%es the X axis twice

(a) (b)

Figure Al.2. Possible shapes of the radius of curvature
for a cross-plied laminate: (a) o crosses
the x axis once; and (b) o, crossés the x
axis twice

(a) (b)

‘>>—<::::::::==?-r’ e

Figure Al.3. Possible out of plane shapes for a ply
interface of .a cross plied laminate (a) o
crosses the x axis once; and (b) o crosggs
the x axis twice v 22
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It should be noted that the above argument is more of an
indication than an actual proof. It 1is wvalid only for
cross-plied laminates and in the case G55 is not a function of
z, as 1s the case in the present analysis. It also assumes
that the boundary layer is the same for both modes. Further-
more, it does not account for the differences between the two
cases in the stretching part of the energy, treating those
differences as small compared to the differences in the bend-

ing part of the energy.
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APPENDIX 2

CHOICE QOF THE EXPONENT IN THE X DEPENDENCE

OF THE IN-PLANE SHEAR STRESS o3

The reasoning for chosing the exponent ¢ 1in the
expression for flz(#) (eqﬁation 5.15b) to bé the same as one
of the exponents in the expression for f22(x) (equation 5.15a)
is éxplained in this Appendix.

If the assumption that stresses do not depend on X, is
relaxed, (section 3.3) the equilibrium equations 5.1-5.3 are
no longer valid. Instead, the more general form of the equi-
librium equations must be used. (Eguations 3.la-c). In that
‘case howevef, the 01, and 04, stresses do.not decouple from'
the remaining stresses as was the case in the analysis in
chapters 3-5,

Suppose that an effort is made to determine functional
forms for the stresses in such a way that eguations 3.la-c are
satisfied 1instead of the special case of eguations 5.1-5.3.
Also suppose that these stress shapes are in terms of exponen-
tial functions in X, (or x), and that the assumption that the

x., and z dependencies are separable is valid. Consider now

¥10 %2
the equilibrium equations 3.la and 3.1c:

9a X 90 '
11 12 12
+ —= =0 (3.1a)
ax] axz az' ,
8012 302 90

z 22
9%, + aX, 3z 0 , . (3.7c)
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These two equations are coupled because the interlaminar shear

stress o,, 3ppears in both. If the ¢ and g, stresses in

2z
equation 3.1c have x dependencies that match (i.e. there are

no exponents 1in one term only), then 01y cannot have an x

dependence with an exponent that is different from the expo-
nents in thg x dependencies of P and . (i.e. fl3(x) must
have the same exponents as f23(x) or f33(x)) because equation
3.1c could not be satisfied. If this property is to be pre-
served in the special case where.the equilibrium equations

5.1-5.3 are wused, o¢ must have an x dependence that matches

12

that of o so that eguation 5.1 is satisfied. Then, since

1z

o must have an x dependence that matches that of Ty, or ¢

1z zz'
9y, must do the same. Therefore, flz(x) (equation 5.15b) must
have either ¢ or A¢ as an exponent. There is no difference in
which of the two is chosen. In the analysis in chapter 5 ¢ was

used.



244

APPENDIX 3

MOMENT EQUILIBRIUM EQUATIONS AS A CONSEQUENCE

OF THE BOUNDARY CONDITIONS AND ASSUMPTIONS USED

It will be shown in this appendix, that the moment equi-
librium egquations (4.11a-4.13a) are a consequence of the
assumption that the x and z dependence in each stress shape
are separable, and the boundary condition that the side of the
laminate is stress—-free (boundary condition b in section 3.2).

Consider each of the terms in eguation 4.1la (moment
about the x. axis in Figure 2.1) separately. The first term

1

involves the integral of ¢ with respect to x evaluated on

2z
the z% face (top face of the laminate section under consider-

ation). This 1integral can be simplified if ¢ is written in

2z
terms of its individual x and z functions, as in eguation 5.10
and if the x. integration is performed with the use of the

equilibrium equation 5.13b. Then,

[y 9pp8% = Gpa(E) [P Fo0dx = g,a(f) [f,,(b) = £, (001 (A3.T)
z 0 L 7

where b is the width of ﬁhe laminate section in consideration
as shown in Figure 4.1. The fact that Tyo is zero at the free
edge (stress-free boundary condition) implies that its x func-
tion, féz(x), is =zero at the free edge. Then, eguation A3.1

can be rewritten as:

f 4 0,,9% = g,a(t) fzz‘_b) ' (A3.2)



245

The integrals in equation 4.11a that involve o,, can be evalu-
ated in a similar manner. Equation 5.9 is used to express o,
in terms of 1its x and z functions, and f;5 is integrated by

parts to give:
iy b b lb_
£+ o xdx = 933(t) é f33(x)xdx = 933(L) [x [ faqdx .

b
- 1 U fyad0dx] (A3.3)
)
The integrals on f;; can be evaluated as functions of f2

3
if the differential equilibrium equation 5.13c is used. Then:

x b
£+ o, xdx = g35(¥) [bfy3(b) - é 5] (A3.4)

and using the differential eqguilibrium eguation 5.13b to eval-

uate the integral on f,:

[, o ,xdx = ga3(E) [b F,3(b) - f,5(b) + Fpy(0)] (R3.5)
4 .

Again, wusing the fact that f,, is zero when x is zero,
one obtains:
9
£+ o xdx = 933‘t) [b f,5(b) - fzz(b)] (A3.6)
Since now 0J,, is zero outside the boundary layer (recall that

b is outside the boundary layer), f23(b) is zero. Then,

|, ozzxdx = - gg,(t) £,,(b) (A3.7)
Y4

In an exactly analogous way one finds
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Consider now the last integral in equation 4.11a, the one
involving 055 . Expressing oa5o in terms of its x and z func-

tions as in equation 5.8:

IZ_’ GZZZdZ' = f22

t

(b) [ 922(2) zdz (A3.9)
)

The integral in the right hand side of equation A3.9 can be

evaluated wusing 'integration by parts and the differential

‘equilibrium equations 5.13e, 5.13f.

O e+

[ _onn2dz = f,,(b) [2 gy5(2) |~ - ét g,5(z) dz] =

2" 22

= f22(b) [t 923(t) - 933(t) + 933(0)] (A3.10)

All the terms in equation 4.1lla have been evaluated
(equations A3.2, A3.8, A3.9, A3.10) and they can be placed in
equation 4.11a to give

dx - IZ+ o, Xdx + IZ_ o, XdX + fz_ 0,,2dZ =

P
= L

[ 49,
z
- T gy, (0] + ggalt) Fpplb) - gzpl0) Tpp(b) ¢

+ £,,(0) F gpy(B) = F5p(0) gg3l(E) + T55(0) g35(0) (A3.11)

But the right hand side is zero (by cancelling like terms).

Thus, the moment equilibrium equation 4.11a is shown to
follow from the boundary conditions and the set of assumptions
used in the analysis. In a similar manner, the remaining two

moment équilibrium equations (4.12a, 4.13a) can be shown to
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follow from the boundary conditions and the set of the assump-

tions used.
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APPENDIX 4

VALUES FOR d, IF 0., 1S ASSUMED TO BE

EQUAL TO ITS CLPT VALUE

If o0q4 is assumed to be constant throughout each ply and

equal to its CLPT value iﬁiei],the d; expressions (equations

o
5.108) simplify somewhat and are given by the following:

L 2 tS22

d, =. (o )
1 22[61] 7z (R4.1)

d, = 155 S33 [3(052[91])2 t* 4+ 15 052[91] B, 3+ -
20 052[91]‘§5 t°+ 20?2 v 0B, B, 4
60 (B:)21 - | (A4.2)
dy = § Sy [(°;2[61]’2 t8 + 3 052[91] B, t o+ 38,2 (A4.3)
dy =+ Sg [(0%2[91])2 2+ 3 0%2[611 B, t + 3(8,)%) (hd.4)
ds = 3 (°%2[ei]’2 t g6 \A4.5)
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L L

d. = o s t S (A4.6)
6~ °22; 417 T e 12
L L : |
do = o o tS.. (A4.7)
L S5 1L 2 5 5
d_ =o¢ —~7= (o tc + 38, t+68.) (A4.8)
L L .
o o t 5
12. .- %22, . 26
_ [6i]) [ei]
dg = 5 (A4.9)
tS
L 36, L 2
d. =g (o t“ + 38, t +6B.) (A4.10)
107 120444 T2 224, 4 5
d = S45t [2 oL oL t2 + 3 oL B t+
n- "Iz 120047 22[44] _22[91] 2
L
+ 30 B t+6?{2 @5] (A4.11)

12[01] 4
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APPENDIX 5

COMPUTER PROGRAM CODE.

The code of the computer program used to implement

the method on a PDP-11/34 computer is listed below.

COMMON/EL1/ST11(50) sST22(S50)s5T12(50)»ANGLE(SO) s THETA(SO0) sFHI»
+ALAMINNYS(509628) 9 XCOF(S)»F(11)sRODOTR(4)sRODTI(4),COF(S)y
+UCA) sFLAM(4) s T(S0)»FT1+FT2yFT3sALPOLYFHIFOLyFDISCyPHIS1yFHIS2y
+FHI1yFHI2»S11(50)2822¢(50)9533(50)»512(50)»513(50)+523(50)»
+SUH1(JO)rSUH"(SO)vSUHB(JO)1844(50)v855(40)1566(50)r
+FHIS+FK(50)»RROOT(4) sFHIF»ALAMP

COMMON/EL2/M»LT+ITER,IR» ISUERs ISUBR2

COMMON/BL3/INDEX .

DOUBLE FRECISIODN ST11,S5T22sST12yANGLE» THETA»PHI»ALAM Sy XCOF s
+F yROOTRsRODTI»COF sUsFLAMP THFT1sFT2sFT3+,ALPOLYsPHIPOLYFDRISC»
+FHIS19yFHIS2,FHI1»FHIZ2»FEL1LFE22)FE33yFG12,FG13»FG239FNU12y
+FNU23+FNU13»SUM1»SUNM2»SUM3»S44(50)¢8355(50)9866(50)y
+INDEX

DATA F/11%0.0/

ITER=0

INDEX=0

INULT=1

ALAK=0,

ISUBR=0

ISUBR2=0

WRITE (S5+%) “INPUT TOTAL NUMBER OF PLIES’

FREAD (Ss%) NNT2

NN=NNT2/2

URITE(S,x) ‘10 ALL PLIES HAVE THE SAME THICKNESST(YES=1,N0=0)"

READ(Ssx) KK1

IF(KK1,ER.1) GOTD 404

CALL DIFFTH(TsFLTHIKINN)

GOTO 402
401 WRITE(Ss%) ‘INFUT FLY THICLNESS"

READ(S»x) THICK
DO 403 I=1»NN
403 T(I)=THICK
FLTHIK=NNT2XTHICK )
402 WRITE(S.¥%) “INFUT S1GMA11 STRESS VALUES FOR 18T HALF OF
+THE LAMINATE’
READ(Sy %) (ST11(J)sJ=1rNN) .
WRKITE(S»%) °INPUT SIGMA22 STRESS VALUES FOR 1ST HALF OF
1THE LAHINATE’
READ(Srx) (ST22(J1)9J1=19NN)
WRITE(Sy»%) ‘INFUT S8IGMA12 STRESS VALUES FOR 15T HALF OF

aooaono
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416

341t

54z

PR
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+THE LAMINATE”

READ(Sy%) (ST12(J2)»J2=1¢NN)

WRITE (S»%) ‘INFUT ANGLE VALUES FOR 15T HALF OF THE
+tLAMINATE’

READ(Ss%) (ANGLE(J3)»J3=1rNN)

DO S540 I11=1sNN

THETA(TI11)=ANGLE(I11)%3,.,141592654/180

WRITE(S5+%x) ‘SIGMA11 STRESSES ARE (FROM TOP TO MIDFLANE)’
WRITE(SyX) (ST11(J4)»J4a=1,NN)

WRITE(S»%x) ‘THE SIGMA22 STRESSES ARE’

WRITE(Syx) (ST22(L1)sL1=1,NN)

WRITE(S»%) °“THE SIGHA12 STRESSES ARE’

WRITE(Se%) (5T12(L2),L2=1sNN?

WRITE(S»Xx) ‘ANGLE VALUES IN RADIANS’

WRITE(Ss%x) (THETA(LI)»L3=1+NN)

WRITE(Syx) ‘IS YOUR LAMINATEIOTHER(1)rANGLE~FLY(2)s
+DR CROSS-PLY(3)7'

READC(S»xX)LT

IF(LT.EQ.1)607T0 1000

IF(LT.EQ.2)G0TO 1250

CALL LAMIN

FRATIO=F(1)/F(2)

If (FRATIO.GT.0.) GOTO 413

WRITE(Svy%) ‘RATID OF F1 TO F2 IS NEGATIVE.METHOD 1 FAILS.
+FROCEED WITH HETHOD 2.’

GOTOD 414 )

*2=(SORT(FRATIO) R(F(3)-2%F (B))4+2%XF (1)) /(2XF(E)+3IXF (1))
IF((F2.67.0,).0R.(P2.LT+~4.))6G0T0 4135

WRITE(SyX%X) ‘EQUATION FOR LAMBDA HAS COHWFLEX ROOTS. FROCEED
+4ITH METHOD 2.°

LDTO 414

WRITE(S+4) "HETHOD 1 IS USED’

BETA=F242

IF(BETA.LT.0,)G0TH 416 ’
WRKITE(Sy%) ‘LAMBDA 1S NEGATIVE. FROCEED WITH METHOD 2.
GOTO 414

FDISC=BETAREETA-4

ALAM=(~-HETA-SAFT(FLISC))/2

FHI=SART(SQRT(FRATIO) /ALAH)

FHIS=FH1#FHI

WRITE(Ss &) ‘FHI 1S'»FHI

WRITE(Ssx) “LAHMBDA IS’ sALAH

LT=1 .

GOTO 1211

GAMASF (3)-2%F(B)
FOISC=GAHAKGAMA-12%F (203 (11XF(1)4B3F (4))
IF(FDISC.GT.0.)GO0T0 541

WRITE(S»%) ‘DISCRIMINANT OF FHI FOLYHOHIAL 15 NEGATIVE
tQUIT.’

GOTOD 1010

DELTA=64F (2)

ALFA=-0bANA/DELTA

HETA=SART(FDISCI/DELTA

FHISt=ALFA+HETA

FH1S2=ALFA-HRETA

1F(FHIS1.LT.0.)GOTO 542

PH1=SART(FHISY)

GUT0 543

FHI=SQRT(FHIS2)

WRITE(S+%) ‘FH1 EQUALS' sFHI
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1000

1001

1018

1620
1022
1200

1024
1026
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FHIS=FHI¥PHI

GOTO 1211

CALL LAMIN

FHIS=-(F(5)+2%F(7))/F(4)

IF(FHIS.GT.0.,)G0TO0 1190

WRITE(S+.%x) ‘PHI SQUARED IS NEGATIVE. QUIT.’
GOTO0 1010

FHI=SGRT(FHIS)

WRITE(Ss%) ‘THE FHI VALUE 1S ‘sPHI

GOTD 1211

CALL LAMIN

FHI=4,4/FLTHIK

FHIS=FHIXFHI

FHIFP=FHI

ALAHF=ALAN

ITER=ITER+1

CALL FOCOEL

CALL ROOT(XCOFsCOF»H»ROOTR,ROQTIsIER)
IF(INDEX.EQ.1)G07T0 1010

IF(IR.NE.O0)GOTO 1018 -

WRITE(Sex) ‘NO FOSITIVE LAMBDA VALUES.QUIT.’
GOTO 1010 :

WRITE(S»x) °“IN MAIN AFTER ROOT IR IS‘»IR
IF(IR.EQ.1)G0OTO 1020 :

CALL ENERGY

ALAM=RROOT(IR)

GOTD 1022

ALAM=RRO0T (1)

WRITE(S»%) ‘LAMRDA -EQUALS:’»ALAMN

CALL FOCOFH

CALL FHISOL

IF(INDEX.EQ.1)GOTO 1010

IF(PHI.LT.FHIF)GOTO 1024

FRATIO=FHIP/FHI

GOTD 1026

FRATIO=FHI/PHIFP

IF(FRATIO.LT,.?99999)G0TD 1021

WRITE(S»%) *CONVERGENCE AT ITERATION #°,ITER
WRITE(Sv+%) ’FHI 1S’ yFHIs»’AND LAMEDA IS’ sALANH
WRITE(S»%) ‘FREVIOUS FHI WAS’»FHIF»’FREVIOUS LAMELDA
tWAS’ » ALANMP

ISUBR2=0

CALL CHECK

GOTO 1211

IF(ITER.NE.150%IHULT)IGOTO 1001 .
WRITE(SvX) “ND CONVERGENCE AFTER’ITERy ITERATIONS’
WRITE(S,%) 'VALUES OF PHI» LAMBUDA -FOR THE LAST
tTWO ITERATIONS:”

WRITE(S»%) FHIFeALAMP

WRITE(Ss%) PHIsALAN

ISUBR2=0

CALL CHECK

15UBR2=1 .

WKITE(Sy %) "HORE ITERATIONST(YES=1+ND=0)’
READ(S» X )KK1 .

IF(KNLL.EQ.0)GUTD 1029 .
WRITE(S»®) YINFUT FHI VALUE TD CONTI1NHUE ITERATIONS®
READCS» %) FHI

THULT=THULT+}

GDOTO 1001
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1029 -CALL FLFREP

GOTO 1010
1211 CALL FLPREP
1010 STOP

END

SUBROUTINE LAMIN
COMHON/BL1/8T11(50)9ST22(S0)sST12(50) yANGLE(SO) y THETA(S0) yFHI»
+ALAMPNN»S(5096+6)»XCOF(S)sF(11)sRO0OTR(4)yRDOOTI(4)COF(S)y
+UCA) P FLANCA) 2 T(SO) v FT1eFT2,FT3sALPOLYyFHIFOLFUISCyFHIS1FHISZ,
+FHI1»FHIZ2»511(50)»522(50),533(50)r512(50)9S13(50)»523(50)
+SUM1(50)»SUM2(50)»SUM3(50)»544(50)s555(50)+566(50)
+FHIS¢FK(50)sRRO0T(4)»FHIFsALANFP
COMMON/BL2/HyLTH»ITER,IRs ISUKR» ISURR2
DOUELE FRECISION ST11,ST22,ST12+ANGLE+THETA+FHIYALAM+5»XCOF»
+FoROOTRyRODTI»COFSUsFLAMY ToFTL9FT2+sFT3»ALFOLY»FHIFOLSFLISCy
+FHIS1sFHIS2yFHI1»FHIZ2,FE11,FE22/FE33sFG12»FG13sFG23sFNU12>»
+FNU23+FNU13ySUM1»SUN2,5UM3»544(50) rS55(50)+546(50)
+544,53535,566
0 500 Ii=1i,11
F(I1)=0.
WRITE(Ss%) "ARE ALL FLIES MADE OF THE SAME MATERIAL?
+(YES=1sNO=0)"
READ(S»x) KKI1
IF(KK1.EQ.1) GOTO 404
IO 405 IC=1sNN . : :
WRITE(SsX) ‘FOR PLY NUMBER’»IC,»’/INFUT E11+E22/E33,612,G13+G23"’
READ(Sy %) FE11»FEQ2)FE339FG12/FG13/,FG23 .
WRITE(S+%x) ‘FOR FLY NUMBER’»ICs’INFUT NU12,NU13,NU23’
READ(S»%) FNU12,FNU13,FNU23 ’
S11(IC)=1/FE11
S22(IC)=1/FE22
S33(IC)»=1/FE33
S12(IC)=-FNU12/FE11
S13(IC)=-FNU13/FE11}
S23(IC)=~-FNU23/FE22
544(IC)=1/FG23
- 855(IC)=1/FG13
405 S66(IC)=1/FG12
GOTO 404 .
104 WRITE(S»%x) ‘INFUT E11,E22+E33+G12,613+/623°
READ(S»%) FE11+FE22+FE33FG12,FG13,FG23
WURITE(S» &%) “INFUT NU12¢NU13.NU23"
READ(D4) FNUL12,FNU13,FNU23
I'D 407 ID=4sNN
S11(IH=1/FE11
§22(1ID)=1/FE22
S33(IU)=1/FE33
S12(1I=~-FNU12/FE11
- 813¢ID)=~FNU13/FE11
S23C(I=~FNU23I/FE22
544(1D)=1/FG23
SGS(Il=1/FG13
407 S66(ID)=1/FG12
4064 D0 510 I2=1,NN
CALL COMFLI(I2)
CALL SUM(I2)
FOL)=FU1)4ST220T ) x24T (I2)4(S (12,2, 2)-5(12+1,2)%%D/
+S(12+1+1))/72
FO2)=F(2)4TCI2)/120%(3ST22(I2)RX22T(I2) %A +1545T22(12)x
HSUML (I RT(I2) RRI42085T22(I2)XSUM2(I2INTCID)XN2420%

s XzNskaksl

u
(=]
o
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+SUMLCI2) %k 2XT(I2)X%2+60%kSUH1(I2)XSUM2(TI2)%T(I2)+60%
$SUM2(I2)%x2)%(S(I2,3sy3)-S(I2+1+3)X%2/5{(I2+1y1))
FO3)=F(34+TCI2)/76%(ST22(I2)¥X2AT(I2) Xk 243%ST22(I2)%x
+SUMIC(IZ)XT(I2)+3XSUHLI(I2)%Xx2)%8(12,454)
FCAY=F(AI$T(I2) /76X (ST12C(I2)k%2XT(I2) %%k 243XST12(I2) %
+SUHMI(I2)XTCI2)+3%SUNI(I2)%%k2)%X5(J2,5,3) '
F(S)=F(S)+3X(ST12(I2)%XX28T(I2))%(S(I2+6+46)~
+S(I2,1r6)%X%2/5(12+151))/2
FK(IZ)=(S(I2v1+1)%ST11(I2)45(I2+s1,2)%5T22(12)485(I2s1+8)%
+5T12(12))/5(12,1,1)
F(&)=F(&6)+FK(I2)%S(T12s1s2)%ST22(I2)%XT(I2)
F(7)=F(7)+FK(I2)2S(I2,»1y6)%XSTL2(I2)XT(12) .
F(B)=F(8)+ST22(I2)*¥T(I2)/12%(ST22(I2)XT(I2)k¥2+3XSUNL(T2)X
$TCI2)+6%SUN2(I2))%(S(12,293)-5(I2,1s2)%X5(I2+153)/5(120191))
F(P)=F(P)+ST12(I2YRST22(I2)XT(I2)%(5(12+2v6)~
+5(I2s1,2)%5(12s1+16)/5CI2,1+1))/2
FC10)=F(10)+STI12(I2)XT(I2)/12X(ST22(I2)XT(I12)%%243%kSUM1(I2)
+XTC(I2)+6XSUM2(I2))X(S(I2r3+s46)-5(12,193)%S(I251+6)/5(12+1,1))
FC11)=F(11)+TLI2)/12%(2%ST12(I12)XST22(I12)%XT(I2)%%x2+
+3¥ST22(I")tSUH3(12)$T(12)+3¥ST12(12)¥SUH1(IZ)!T(I2)+
+6XSUML (I2)XSUM3I(I2))xS(I2s4»35)

URITE (S»%) ‘F VALUES”

WRITE (S5s%) (F(IS),I5=1r11)

RETURN

END

SUBROUTINE POCOEL
COMMON/BL1/5T11(¢(50)+5T22(50)+ST12¢(50)»ANGLE(50)y THETA(S0? rFHI»
+ALAMYNN»S(500676) 1 XCOF(5)»F(11)9yROOTR(4) »ROOTI(4)COF(S)
4UC4) »FLAMCA) »T(S0)»FT19FT2+FT3»ALFPOLYsFHIFOLsFDISCyFRIS19PHIS2y
4FPHI1»FHI2»S11(50)9522(50)9833(50),512(50),513(50),523(50)»
+SUM1(S0)»SUM2(S0) »ySUNI(S50)9S44(50)9»555(50)»S66(50)y
+FHIS FK(S50) s RROOT(4)FHIPyALANP
COMMDN/EL2/MsLT» ITER'IR» ISUBR» ISUBR2

XCOF(S)=F(2)XPHIS¥k%X2

XCOF (4)=28XCOF (3)

XCOF(3)= 2*(F(6)+F(9)+F(1))+PHIS¥(2*F(11)+F(3) 2%xF(10)~
+2%F(8))

XCOF(2)= 4¥F(6)+8¥F(9)+617(1)

XCOF(1)= XCOF(Z)/Z

M=4

RETURN.

END

SUFROUTINE ROOT(XCOF+COF M, ROOTR!RDDTI:IER)
COMMON/EL1/ST11(50)+5T22(50)»ST12(50)»ANGLE(S50) 1 THETA(S0)»FHI»
+ALAMINNIS(S096r6)9CCLC(S)eF(11),CC3(4)9CCA(A)»CLI(T)»

+UCA) yFLANCA) » T(S0) s FTL1oFT29FT3»ALFOLY yFHIFOLFDISCyFHIS1sFHISy
tFHI1sFHI2»511(50)+8522(50)9533(50)9512(50)+S13(50),523(50)»
+S5UML(50) »SUM2(50) +SUKI(S50)9844(50)9555(50)+566(50) s
+FHISsFK(50) yRROOT (4)sFHIFy ALANF
COMHON/BL2/LC2sLT»ITER»IR»ISURRs 1SURR2

COHHON/EL3/INDEX

DIMENSION XCOF(S)»COF(5) +ROOTR(4),RO0T1(A)

DOUBLE PRECISION ST11,ST22+ST12/,ANGLE» THETAIFHI+ALANIS»XCOF»
+FyRUODTR/RODTYI 2 COF s UrFLAMY ToFTL1oFT29FT3oALFOLY»FHIFOLFLISCy

HFHIS1oFHIS2sFHILsFHI2»FEYLsFER2)FEII»FG12,FG13+FG23sFNUL2Y

+FNU"3-FNU13-SUH1:SUH2-5UH3!S44(50)nS'S(SO)-Sbé(SO)-
+544,5550,546

DOURLE FRECISIDN XDpYDlXoYuXFR'YPR UXsUY sV YT o XTrUUPXT22YT2
+SUNSQI DX [IY » TEMF» ALPHAYABS

IF1T=0
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40
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~0

IR=0
N=M
IER=0

IF(XCOF(N+1))10:25:10

IF(N) 15913932
IER=1
IF(IER.ER.0)GOTO 16

255

WRITE(Ss%) ‘IER IS »IERy’STOF’

INDEX=1
GO70 18
D0 18 I4=1r4

IF(RODTI(14).NE.0O)GOTO 18

IR=IR+1

IF(RBOTR(I4).LT.0)G0OTO 19

RROOT(IR)=ROOTR(I4)
GOTO 18
IR=IR-1
CONTINUE
RETURN

IER=4

GO TO 20

IER=2

GO TO 20
IF(N-36) 25133930
NX=N

NXX=N+1

N2=1

KJ1=N+1

[0 40 L=1,KJ1
HMT=RJ1-L+1
COF (HMT)=XCOF (L)
%0=.00500101
¥0=.01000101
IN=0

xX=X0
X0=-10.0%Y0D
YD=-10.0%X
X=X0

Y=Y0

IN=IN+1

GO TO 59
IFI1=1

XPR=X

YPR=Y

ICT1=0

Ux=0.,0

uy=0.9

V=0.0

Y1=0.0

X7=1.,0
UU=COF(N+1)
IF(UU) 65+130+635
0o 70 I=1»N
LaN-TI+1
TEMF=COF (L)
AT2=XKXT-Y2¥T
TT12=X%Y¥T+YXXT
UU=UU+TENFRXTD
VaV+TEMI'SYT2
Fl=X
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UX=UX+FIXXTXTEMF
UY=UY-FIXYTXTEMP
XT=XT2

Yr=Y72
SUMSQ=UXXUX+UYXUY
IF(SUMSQ) 75,110,275
DX=(VUxUY-UUXUX)/5UMSQ
X=X+DX
DY=-(UUXUY+VXUX)/SUNSQ
Y=Y+DY
IF(AEKS(OY)+ABS(DX)-1.0D-05)100+80,80
ICT=ICT+1

IF(ICT-300) 60:,8%s85
IF(IFIT>100/,90,5100
IF(IN-5) 509925195
IER=3

GOTO 20

DO 103 L=1sNXX
MMT=KJi-L+1

TEMF=XCOF (MMT)

XCOF (HMT)>=COF (L)
COF(L)=TEMP

ITEMF=N

N=NX

NX=ITEMF

IF(IFIT) 120555,120
IF(IFIT) 115950»115
X=XFR

Y=YFR

IFIT=0
IF(ABS(Y)-1.0D-4%XABS(X))135,125,125
ALFHA=X+X
SUMSO=XXkX+YXY:

N=N-2

GO TD 140

X=0.0

NX=NX-1

NXX=NXX-1

¥=0.0

SUMsQ=0.0

ALFHA=X

N=N-1 .
COF(2)=COF(2)+ALPHAXCOF (1)
[0 150 L=2,N
COF(L+1)=COF(L+1)+ALPHAXCOF(L)-SUMSQXCOF(L~-1)
ROOTIC(N2)=Y
"RODTR(N2)=X

N2=N2+1

IF(SUMSA) 160,165,140
Y=-Y

SUMSQO=0. 0

60 10 1%

IF(N) 20v20!45

END

SUEBROUTINE ENERGY
COHHDN/FLl/lel(JO)!ST"2(J°)cSTl“(SO)rﬁNBLE(uO)|THE1h(JO)vPHIv

THALAMINNIS(5096016) s XCOF (S F(11)sROOTR(4)yROOTI(4),COF(S)y

tUCA) »yFLANCAY v TLSO) »FTLeFT29FT39»ALFOLY sFHIFOLSFDISCyFHIS1»FHIS
tFHI1FHI2)»S511(50)»822(50)9S33(50)9S12(50)9513(50)+523(50)»
+SUM1(50) v SUM2(S50)sSUMI(S0) v S44(S0)»S55(50)¢566(50)y

2y
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+FHISsFN(S0) +»RROOT(4A)yPHIF» ALAMP
COMMON/EBL2/MyLT+ITERy IRy ISURR s ISUERD

DOUELE FRECISION ST11:ST22+ST12»ANGLE» THETAYPHIsALAH»S»XCOFy
+F»ROOTRsRODTIsCOFsUsFLAMY T»FTL1sFT2sFT3»ALFOLY yFHIFOLIFHIS1,
+FHIS2,FHI1sFHI2»FEL1L1yFE22sFE33sFGB12+FB13sFG23,FNU12,yFNU13y
$FNU23ySUMLSUNM2ySUM3»FDISCYS44(50)9E55(50)12866(50)y
+t544+85555566

VOUKLE FRECISION S5512+¢5516+s5533,5544+5555+5822,5866+5545y
+553695523955826

1SUBR=1==>0NE LAMEDAr TWD PHI

DIMENSION FHIA(A)

IF(ISUER,EQ.1)G0T0 517

KK4=1IR

g S12 I110=1sKK4

U(ri103y=0.

0 518 II=1vIR

FHIACII)=FHI

FLAM(II)=RROOT(II)

GOTO0 S13

KK4=2

Do 512 I10=1,2

u(I110>=90.

DO S11 II=1,2

FLAM(II)=ALAM"

FHIA(1)=FHI1

FHIA(2)=FHI2

0 20 I5=1,KK4

FL=FLAM(IS)

FL2=FLXFL

FL3=FL2x%FL

FL4=FL3%FL

FLT=FL+1

FH=FHIA(IS)

FH2=FHXFH

FH3=FH2%XFH
VCIS)==F(6)A(FL+1)/(FLXFH)-F(7)/FH+, Sk (F(2)XFL2%
+FPH3/(FL+1)4F () XFLXPH/(FL+1)+FCA)XFHIF (1) X(~3X%
+FL4+FL3+4!FL2+FL-3)/((FL—l)tt2#FL!(FL+1)KPH)—F(5)/
+FHI4F (I RFL¥FH/ (FL41)=F (10 XFLXFH/(FL+1)-F(B) %
F+FLAFH/ (FL3L)+F (PIXN(-3XFLI-FL242%FL+2)/(FLX(FL2-1)%FH)
UF=U((1)

J=1

IF(ISUEK.EQ,1)GOTOD 509

Do 916 I=2,1IR :

IF(UF.GE.,U(I)) GOTOD 514

GOTO S16 ’

UF=uUtI)

J=1

CONTINUE

IR=J

GOTo 507

IF(UCL).,LT.UC2))GOTD 508

FHI=FHI2

GOTO S07

FHl=FHI}

RCTURN

EnD

SUMROUTINE FOCOFH
COMMON/KL1I/ST11(50)»ST22(350)9ST12(50) s ANGLE(SO) » THETA(SO0) sFH T
+ALAMINNoS(S50s698) 1 XCOF(S)sF(11)yRODTR(4)»RODTL(4)»COF(S)y
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FUCA) yFLAMC4)»T(SO) s FT1+FT2 FT3sALFOLY»FHIFOLyFOISCyFHIS1sFHIS2y
+FHI1sFHI29S511(50)+822¢(50)»533(50),512(502,513(50)¢823(350)»
+SUM1(50) ySUM2(50) ySUMI(S0)+S44(50)sS55(50)r566(50)y
+FHISsFRK(S0) »RROOT(4) FHIF+ALAMF

COMMON/EBL2/MsLTyITERs IRy ISUKR s ISURRD

DOUKLE FRECISION ST11,5T722,ST12yANGLEsTHETASFHI»ALAM» Sy XCOF
+FyRODTRYROOTIsCOF»UsFLAM» ToFT19yFT2¢+FT3+ALFOLYyFHIFOLFDISCy
+FHIS1sFHIS2yFHILWFHI2,FEL11,FEQ2,FE33»FG12,FG13,FG23FNUL2,
+FMU23yFNU13¢SUMLsSUM2ySUM3»S44(50)¢SSS5(50)9566(50)
+544,555,566 :

FT1=3%XF(2)¥ALAMXX3

FT2=ALAMXE2X(F(A)+2%XF(11)+4F(3)-2XF (10)-2XF(8))+F (4) XALAM

FT3=ALAMXX2X(F(S5)Y+6XF(2)+3%F(1)+2¥(F(7)+F (&) +
+ALAMX(F(S)4B¥F(P)45RF (1) $2X(F(7)+2XF(6)))+4XF (91 +3XF (1) +
12%xF(6)

RETURN

END

SUBROUTINE CHECK

COMMON/BL1/ST11(50),ST22¢(50)sST12(S0)»ANGLE(S0) s THETA(SO) sFHI
+ALAM I NN»S(50s618)»XCOF(S)sF(11),RO0OTR(A4)yRODTI(4),COF(T)
FUCA) sFLAKC(A) v T(SO0) yFT1sFT2.FT3sALFOLYyFPHIFOLyFDISCyFHIS1,FHIE2,
+FHIL1yFHI2,S11(50)9522(50)9833(50),512(50)»S513(50)+523(50)
+5UML(S0) rSUM2(50)ySUMI(50)1544(50)¢SS5(50)sS66(50)
+FHIS»FR(50) yRROOT(4)yFHIF»ALAMP

COMMON/EL2/Ms LTy ITERs IRy ISUBKRy ISUER2

DOQUELE FRECISION ST115ST229ST12»ANGLE»THETASFHI»ALAMY S, XCOF»
+FyRODTRYROOTISCOFsUsFLAM» ToFT1+sFT2yFT3»ALFOLYYFHIFOL,FLISCy
+FHIS1sFHIS2yFHI1FHI2+FE11yFE22,FE33+FG12,FG13+,FG23sFNUL2,
+FNU23sFNU1395UML1»SUM2ySUM3»S44(50)sS555(50)91566(50)
+544,855,5646

ALFOLY=XCOF(S)XALAMAXA4+XCOF (4)XALAMXX3+XCOF(3)XALAMX X2+
+XCOF(2)kALAM+XCOF (1)

FHIFOL =FT14kFHI1&*3+FT2XFHIXE24F T3
ISUBR2=1==+010 NOT FRINT VALUES OF POLYNOMIALS

IF(ISUER2.,EQ.1)6G0T0 1139 :

WRITE(S+x) ‘THE VALUES OF LAMEDA ANI FHI FOLYNOMIALS ARE’

WRITE(S»®)ALFOLYsFHIFOL
1139 FEREIURN .

END :

SUBROUTINE FHISOL :
COMMUN/BLLI/STI1(S50)»S5T22(50)95T12(50)»ANGLE(S0)» THETA(SO)sFHI
+ALAMINNeS(S0,496) 9 XCOF(S)»F(11)»RO0OTR(4) +ROOTI(A)COF(S)»
$UC4)»FLAMCA) s T(SO0) s FT1sFT2+FT3»ALFOLY »FHIFOLWFDISC»FHISL  FHISD,
FFHILeFHI29S11(50)»S22(S50)9»533(50),512(50)»813(50),S23(50)
+SUML(S50) e SUM2(50) s SUMI(T0) »yS44(50)1555(50)91566(50)
+FHISYFK(S0) »RROOT(4) »FPHIF+ALAMF
COMHMON/RL2/MsLT+ITER» IR» ISUHRY ISUBR2

COMMON/ERL3/ZINIEX

IOUKLE FRECISION ST11/,ST22,ST12+/ANGLEYy THETAYFHI Y ALAMY S XCOF»
+FrRODTR'ROOTIVCOF sU»FLAM» T2 FTL1vFT29FT3»ALFOLYFHIFOLSFDNISCy
4FHISLIsFPHIS2sPHIL FPHI2yFELLI2»FE227FE339FGI12/FG139FG239FNULDY
+FNU23,FNULI3sSUHI»SUM2,SUH31S44(50)¢555(50)9566(50)
+INDEX

FLUISC=FT28k2-4A%FT18FT3

IF(FDISC.GT.0)GOTO 1140

WRITE(Ss%) ‘AT ITERATIDN ND’»ITER»’'THE DLISCRIMINANT
+0F THE FHI FOLYNOMIAL IS NEGATIVE.STOF,*
C IF InlEx=1 QUIT

INDEX=1
GOTO 1031

OO0

OO0 o0n

o0

ocCcoOon
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-1140 FHISI=(-FT24SQRT(FLISC))/(2XFT1)
FHIS2=¢-FT2-SQRT(FDISC))/(2%FT1)
IF((FHIS1%FHIS2).,LT.0)GOTO 1141
IF(FHIS1.LT.0.)6G07T0 1144
FHI1=SQRRT(FHIS1)

FHI2=5QRT(FHIS2)
ISUER=1
GOT0 1031
1144 WRITE(S.%x) ‘AT ITERATION NUMBER‘»ITER» "BOTH FHI
+VALUES ARE NEGATIVE, QUIT.’
INDEX=1
GOTO 1031

1141 IF(FHIS1.LT.0)GOTO 1142
FHI=SQRT(FHIS1)
6070 1143

1142 FHI=SGRT(FHIS2)

1143 WRITE(Sy%x) ‘THE FHI VALUE IS’»FHI
1631 RETURN .

END

SUBROUTINE SUM(INN)

COnMON/EBL1/5T11(50)ST22(50),8T12(50)»ANGLE(S0)yTHETA(S0)»FHI
+ALANINN+S(509696) » XCOF(S5) +F(11)yRO0TR(4)»RO0TI(4)sCOF(S)y
tUC4) »FLAM(A) s T(SO) sFT1+FT2yFT3+ALFOLY »FHIFOLsFDISCyFHIS1sFHIS2y
+FHI1»FHI2,511(50),822(50),833(50)»512(50),513(50)+523(50)>
+SUM1(50) s SUH2(50) » SUM3(S50)+544(50)9535(50)+866(50),
+tFHISYFK(S50) »RROOT(4) »PHIP»ALAMP

COMMON/BL2/MsLT»ITERY IRy ISUERY 1SURR2 :

[OUBLE FRECISION ST11,5T22,ST12,ANGLE» THETAsFHI»ALAMsSS,»XCOF»
+F+RODOTRsROOTI»COFsUrFLAN» T)FT1+FT2,FT3sALFOLY»FPHIFOL,FDISCy
tFHIS1/FHIS2)PHIL»PHI2,FE11,FE22)FEI3IFGL12,FGL3,FG23+FNUL2y
1FNU23yFNU13ySUMLIsSUM2,SUH31S44(50)1SS5(50)1584(50)y
+5449505,566

IOUBLE FRECISION SGHA2ArSGHAZ2R

S56HA1=0.

SGHA2A=0.

SGHAZ2E=0,

SGMA3=0,

IF(INN.EQ.1)G0TO 1050

D0 350 1B=1,INN-1

SGMA1=SGMA1+T(IBIXST22(IB)

SGMA3I=SCGMA3+T(IB)YXST12(1I8)

SGMA2A=SGHA2A+T(IB) x¥2%5T722(18)/2
550 CONTINUE

JF(INN-1.,EQ.1)G0OTO 1050
TEMFOR=0.

II0 560 IP=1+,INN-2

0 561 J=19+1,»INN-1

G261 TENFOR=TEMFOR+T(J)
SGMA2B=SGMAE+S5T22(IMXT(I?)XTENFOK

%00 TEMFOK=0.

1050 SUHLI(INN)=SGMAL
SUM2(INN)=5G6HA2A+SGMA2B
SUM3I(INN)=SCGMA3
WRITE(Ss»%x) °THE SUM VALUES: SUM1,SUM2,SUM3’
WRITE(S»x)SUMICINN) s SUH2CINN) v SUNICINN)

RETURN

ENU

SUKKOUTINE COMFLICIND)
CONAOH/BL1/STL1(S0)»ST22(T0)»ST12(30) vANGLE(SO0) vy THETA(SO) rFHIy
+ALAMINNIS(S509496) » XCOF(S)oF(11)»ROOTR(A)»ROOTI(A)»COF(S)y

ol aloNaNaNal
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+UCA) s FLAM(4) 9 T(S0) vFT19FT2,FT3rALFOLY»FHIFOLsFDISCyFHIS1,FHIS2,
+FHIL1»FHIZ2»S11(50)s822¢(50),S33(50)¢512(50),S13(50)2523(50)
+5UML(30) »SUH2(S0)»SUM3(50)1544(50)1555(50),566(50)y
+FHIS,FN(S50)yRROOT(4)»FHIFsALAMF
COMMON/BL2/HyLT» ITERs IRy ISUBRy ISUBR2

DOURLE FRECISION ST11,8T22+ST12sANGLE» THETArFHI,ALANYS»XCOF
+FsRODTRYROBTIYCOFsUsFLAMY T»FT1sFT2yFT3sALFOLYyFHIFOLSFDISCy
+FHIS1yFHIS2yFHI1»FHIZ2SFEL11+FE22,FE33»FG12,FG13+FG23¢FNI12,
+FNU23,FNU135SUM1 sSUN2sSUM3»544(50)+S55(50)9566(50)»
+5445555:566

DOUBLE FRECISION SI.CO

SI=DSIN(THETA(ININ)

CO=DCOS(THETA{INI))
SCINDy1»1)=S11CIND)¥COX*4+(2%XS12(IND)+S66CIND))IXSIRX2K
1CO¥X2+S22(IND)IX5T1xx4

SCINDs192)=(S11C(IND)+S22(IND)-S66(IND) )XSIXX2%COXX2+
+S12(IND) X (SIX%x4+COX%4)
SCINDY1»3)=S13(INDMXCOXX2+S2I(IND)XSIx%x2
SCIND,s2s2)=S11(IND)XSIRX4+(2XS12(IND)+S66(IND)I%XSIk%2
+XCOXX24S22(CINDIXCO%X4
SCIND»2s3)=S1T(ININXSIXX24S2I(IND)IXCOXX2 .
SCIND»3»3)=SIIC(IND)
S(INDy1»6)=2%512(IND)XCOX&X3IXSI-2%S22(INDIXKSI¥X3%C0+
+(23S12(INDY+S66(INL) )X (STx%3XCO-CO%X%X3%SI)

SCINDs2y6)=2%S511 (IND)XSTX¥x3I¥CO-2%S22(INDYXCOXX3I%XSI+
$(2%512(IND)+S66CIND)IX(COXXIXSI-SI%x*xIXCO)
S({INDy3r6)=2%X(S13C(IND)-S23(IND))I%XSI*CO

S(IND+4»4)=SST(TND)XSIXX245S44 (IND)XCOXX2
S(IND+4»5)=(SSS(IND)-S44(IND)IXSIXCO

SCIND»S»S)=8SS(INDXCOXX24S44 (INDIXSI%x2

S(IND»6s6)=4%(STII(IND)+S22(IND)-2%S12(INDN) ) KSIxk2X%
YCOXX24S66(IND)X(COXXA+STIXXI-2¥STXX2XCOXX2)

WRITE(Ss, %) ‘COMFLIANCES FOR FLY NO.‘»IND

WRITE(S»%) ‘Siisr S12y S13» S22:°
WRITE(S»%)S(IND»31»1)9S(IND»1»2)9SCIND»193)9S(IND2,2)
WRITE(SsXx) “S23» 533y S16» 52637
WRITE(S»%)S(IND»2+3)sS(IND»3I»3)»E(INDs1»6)9SC(IND»2¢6)

WRITE(Ss%) ’S3é» S44» S45y STS5L’

WRITE(S»X)S(INDe3s6) 9 SCIND+4s4)sS(INDY4A»S)»SCINDeS,S)

WRITE(SeX) 566 IS’ vS(INDsbr6)

RETURN

END

SUBROUTINE FLPREP

COHHON/BLI/ST11(50)91ST22(50)95T12(50) s ANGLE(S0) y THETA(S0)yFHI»
TALAMYNN»S(50+ 69 6) s XCOF(S)»F(11)+ROOTR(4) »ROOTI(4)Y)CAF(S),
tUCA) yFLAKCA) v T(SO0)WFT1»FT2¢FT2»ALFOLY»FHIFOLFDISCyFHIBLFHIS2,
+FHI1»FHIZ2»511(50),522(50)s533(50),S12(50),513(50),S23(50)
+SUHL(S0) »SUM2(50) 1 SUMI(S50)+544(50)9855(50)9566(50)

+FHIS Y FK(S0)«RRODT(4) »FHIF ), ALAKP

COMHON/BL2/HsLTy ITER» IRy ISUERs ISURR2

DIHENSION COEF33(50)sCOEF32(S0)sCOEF31(S0)2E1R2(50) yE1HA(S50)
tH1ID1(50)

IF(LT.EQ.3)GOT0 TS69

IF(JSURR2.,EQ.0)GOTO 367

WRITE(Ss%) 'INFUT PH1»LAHEDA TOD PREFARE STRESS COEFFICIENTS’

READ{Ss %) FHI»ALAH

VALUEI=FHI1XALAN/ (ALAH-1)

[0 570 I13=1sNN

WRITE(Syx) 'FLY NUMBER’»I13

CALL SUN(I13)
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"IF(LT.EQ.3)GOTD 568
E1B2(I13)=SUM1(I13)%VALUE}
E1R3(113)=SUM2(I13)%VALUEL
B101(113)=5UHM3{I13)%xPHI
COEF33(113)=FHIXVALUE1XST22(I13)XT(I13)XX2/2+FHIX
+EIR2(II3IXT(I13)+FPHIXEIRI(IL13)
COEF32(I13)=VALUEL1XT(I13)xST22(I13)+E1R2(I13)
COEF31(I13)=FHIXSTI2(I13)XT(I13)4+E1D1(I13)
G60TO S70
348 COEF33(I13)= FHIS*(SUHI(113)*T(113)+ST22(113)*T(113)**"/7+
+SUM2(I13))
COEF32(113)=FHISX(SUMI(I13)+ST22(I13)%xT(I13))
COEF31(113)=0.
570 CONTINUE
WRITE(S»X) ‘THE COEFFICIENTS MULTIFLYING THE X DFFENLENCE
+(FROH LAST INTERFACE 70 MIDFLANE)’
WRITE(S+Xx) ‘FOR S1GHAZZ’
WRITE(Ssx) (COEF33(I14)yI14=1,NN)
WRITE(SsX) ‘FOR SIGMAZ2Z’
WRITE(S,»%) (COEF32(I14)»114=1»NN)
WRITE(Syx) ‘FOR SIGMALZ’
WRITE(Ss %) (COEF31(114)+I14=1sNN)
ALAMFI=ALAMXFHI
WRITE(S»x) ‘LAMBDA TIMES PHI EOUALS’sALAMFI
IF(LT.EQ.1)GOTO 1220
IF(LT.EQ.2)GDOTO 1219
XZERD=1/FHI
URITE(S,%x) “THE VALUE AT WHICH SIGZZ IS ZERO IS’ »XZERO
XOLD=XZEROD ’
BI=100&«FHIX2.718281828
I114=0
1218 XNEW=ALOG(BIXXOLD)/FHI
IF ((XNEW-X0LD) . .LT+1.00-8)GOTO 1160
XOLD=XNEW
114=114+41
1F(I114.,EQ.300)G0OT0 1170
G010 1218
1219 BLA(ER=4,4/FH]
WRITE(Sr %) ‘THE BDUNDARY LAYER WIDTH IS’ »EBLAYER
G0TO 1180
1220 XZERO= ALUG(ALﬂH)/(PH]t(ALAH 1))
BI=.01 % (EXP(-FHIXXZERD)-EXF (-ALAMFIXXZEKD))
WRITE(S» %) ‘THE VALUE AT WHICH SIGZZ IS ZERO 1S’sXZEROD
XOLI=XZERO
114=0
1280 IF(ALAH.LT.1.0)6GDTO0 1150
XNEW=-ALOG(EXF(~-ALAMFIX¥XOLLD)+BI)/FHI
GOTo 1270
1150 XNEW=-ALOG(EXF(-FHIXXOLIN~-RI)/ALANFI
1270  IFC(XNEW-XOLD).LT.1.,00-8) GOTO 1140
YOLDh=XNEW
I14=114+1
IF(114.EG.300)G07D 1170
G0TO 1280
1160 MRITE(Ss4%) ’'THE BOUNDARY LAYER WIDTH 1S‘+XNEW
GOTO 1180
1170 WRITE(S»%) °“NO CONVERGENCE ON BL AFTER 300 ITERATIODNS’
1180 KETURN
END
SUBROUTINE DIFFTH(T,FLTHIK/NN)
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DIMENSION T(S50)
FLTHIK=0,
[0 303 I=1sNN
WRITE(Ss¥) “INFUT FLY THICKNESS FOR FLY NUMEBER’»I
READC(S»%) T(I)
303 FLTHIR=FLTHIK+T{(I)%2
KRETURN
END
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APPENDIX 6

A CRITERION TO ASSESS THE APPLICABILITY

OF THE TWO METHODS FOR CROSS-PLIED LAMINATES

This appendix gives an example where the original sol-
ution method for cross-plied laminates (see section 6.2) fails
and the modified analysis presented in the same section must
be used.

The unmodified analysis for cross-plied laminates leads
to a quadratic eguation in A, expressed in equation 6.30. Let

Pl be the coefficient of }» in equation 6.30, i.e.
f]1/2

Py = = (A6.1)
» 1 2f6 + 3T]
where the fi are given by equations 5.110 and 5,108. P1 can be
rewritten as:
f]1/2
(?—) (f3 - 2f8) + Zf]
Py - 2 +2 (A6.2)
2f6 + .ﬁl]

Now the analysis for cross-plied laminates fails if
equation 6.30 has no real solutions. This means that the

discriminant of equation 6.30 must be negative. Writing

Py =Pyt 2 (A6.3)
where
y
7 (f3 - 2fg) + 2F) ",
) T v 3T '
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the condition for the discriminant of eqguation 6.30 to be neg-

ative takes the form:

(p2-+2)2-4 <0 (A6.5)
Rearranging equation A6.5: '
The above equation is satisfied if A
-4 < P, < 0 ' (A6.7)
or, using equation A6.4 to substitute for PZ:
f
T (f3 - 2f8) + 2f]
2
-4 < 2f6 - 3f;7 <0 (A6.8)

Equation A6.8 can be used as a criterion to check if the
analysis for cross-plied laminates using both ) and ¢ will
fail or not. If equation A6.8 is satisfied, the original anal-
ysis fails and the modified analysis (see section 6;2) must be
used. If equation A6.8 1is not satisfied, both analyses are
valid but the ﬂone which uses both A and ¢ is expected to- be
more accurate since the use of two unknown parameters in the
formulation, X and ¢, can give a better prediction than the
use of only one parameter, ¢. |

ﬁor [On/90n]s G/E laminates (AS1/3501-6 system), P2 has
the value -3.857 (if one substitutes for fi in equation A6.4)

and hence the method using both X and ¢ fails. For that case,

the modified analysis, where only ¢ is present, must be used.
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Equation A6.8 was included 1in the program code and is
used to determine which of the two possible methods for the

analysis of cross-plied laminates should be followed.



