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ABSTRACT

A simple approximate method to predict interlaminar
stresses at straight free edges of symmetric composite
laminates under uniaxial loads has been developed based
on overall force and moment equilibrium and on the principle
of minimum complementary potential energy. Results using .
the present method compare well with other analytical methods.
The present method is considerably more efficient, especially
in its ability to easily analyze thick laminates, and could
be implemented on a personal computer. The solution for
the special cases of angle-plied and cross-plied laminates
is also obtained (in closed form) and is simpler than for
general laminates. This solution for certain cross-plied
laminates coincides with a previous solution derived from
a special version of plate theory. Using the analysis,
the sensitivity of the solution to various parameters such
as different elastic constants and different ways of determin-
ing the longitudinal in-plane normal stress is examined.
In addition, the solution shows that the thin resin layer
which exists between plies does not affect the interlaminar
stresses calculated from the orthotropic and homogeneous
assumption for individual plies. The boundary layer where
the interlaminar stresses are significant is defined and
discussed and the concept of the "effective ply thickness"
introduced. Finally, an experimental technique to measure
in-plane displacement at the top surface of the laminate
inside the boundary layer was developed. The experimental
results are in good agreement with the predictions from
theory.

Thesis Supervisor: Paul A. Lagace

Title: Draper Assistant Professor of Aeronautics
and Astronautics



3

ACKNOWLEDGEMENTS

Throughout the two years that it took me to complete
this work there were quite a few. people whose contribution
and help were very significant. First, and most important,
my advisor:

Learned And Gifted Advice Creating Excellence.

Then professors:

Memorable And Responsive.

Powerful Insight And Novelty.

His Advice Really Is The ONE Indeed Driving Into Success.

Furthermore,

Solving Unforseen Problems PLaguing Experiments.

- Also, the experiment would not have succeeded if it
weren't for Steve Llorente. Tony Vizzini is the one and
only computer expert.

I also wish to thank Carl Varnerin for his help during
the specimen cures and Debra Smith for typing the two
hundred or so equations.

Finally, I am grateful to Professor Williams for accept-
ing to be my second advisor.



4

This work was performed in the Technology Laboratory
for Advanced Composites (TELAC) of the Department of
Aeronautics and Astronautics at the Massachusetts Institute
of Technology. This work was sponsored by the Boeing
Military Airplane Company under Contract No. BMAC P.O. AA0045,
Mr. Robert Waner is the contract monitor.



5

Dass ich nicht mehr mit saurem Schweiss

Rede von dem, was ich nicht weiss.

Dass ich erkenne, was die Welt

Im Innersten zusammenhslt,

Schau alle WUrkungskraft und Samen

Und tu nicht mehr in Worten kramen.

Johann Wolfgang von Goethe Faust



6

TABLE OF CONTENTS

CHAPTER

1

2

3

4

5

INTRODUCTION

PREVIOUS WORK

2.1 Laminate Geometry and Basic
Characteristics

2.2 Analytical Methods

2.3 Experimental Results

2.4 Discussion

FORMULATION OF THE PROBLEM

3.1 Governing equations

3.2 Boundary Conditions and Stress
Continuity

3.3 Assumptions

THE FORCE-BALANCE METHOD AND SOME OF ITS

IMPLICATIONS

4.1 Basic Setup

4.2 Some Implications

SOLUTION PROCEDURE

5.1 Equilibrium Equations and General
Shape Functions for the Stresses

5.2 Assumed Functional Forms

5.3 Determination of a 1

5.4 Satisfaction of Integral Equilibrium

Equations

5.5 Boundary Conditions and Stress
Continuity

5.6 Energy Minimization and the
Determination of x and

5.7 Solution ofthe Equations for N and $

5.8 Computer Implementation

PAGE

20

23

23

23

31

32

36

36

39

39

41

41

46

51

51

55

62

66

70

80

94

96



7

TABLE OF CONTENTS (Continued)

CHAPTER

6

7.

8.

SPECIAL CASES

6.1 Angle-plied Laminates

6.2 Cross-plied Laminates

6.3 Comments on the Special Cases

DISCUSSION AND RESULTS

7.1 Typical Stress Distributions and
Characteristics

7.2 Variation of 4, x With Laminate
Type

7.3 Constant Versus Variable
Longitudinal Stress in Each Ply

7.4 Sensitivity of the Solution to
Basic Ply Three Dimensional Elastic
Constants

7.5 The Boundary Layer

7.6 Concept of "Effective Ply Thickness"

7.7 Comparison With Previous Analysis
Techniques

7.7.1 [+45]s Laminate

7.7.2 [+45/0/90] Laminate

7.7.3 [0/901s Laminate

7.7.4 Further Results and Implica-
tions for' Cross-Plied
Laminates

7.8 Significance of the Resin Layer
Between Plies

7.9 Evaluation of the Computer Program

SPECIMEN PREPARATION AND EXPERIMENTAL SETUP

8.1 The Specimens

PAGE

98

98

101

106

108

108

124

137

142

147

154

158

158

166

173

173

178

182

188

189



8

TABLE OF CONTENTS (Continued)

CHAPTER

8.2 The Moir6 Grid

8.3 Test Setup

8.4 Test Procedure

8.5 Data Reduction

9. EXPERIMENTAL RESULTS

9.1 [(+15)5/(-15)5/05 ] Laminate

9.2 [+15/0] Laminate

9.3 [(+45) 1 0/(-45) 1 0 s Laminate

9.4 Comments on the Experimental Results

10. CONCLUSIONS AND SUGGESTIONS FOR FURTHER

WORK

10.1 Conclusions

10.2 Recommendations for Further Work

REFERENCES

APPENDIX 1 - RADIUS OF CURVATURE FOR A CROSS-PLIED

LAMINATE

APPENDIX 2 - CHOICE OF THE EXPONENT IN THE x

DEPENDENCE OF THE IN-PLANE SHEAR STRESS

a 1 2

APPENDIX 3 - MOMENT- EQUILIBRIUM EQUATIONS AS A
CONSEQUENCE OF THE BOUNDARY CONDITIONS

AND ASSUMPTIONS USED

APPENDIX 4 - VALUES FOR d IF a IS ASSUMED TO BE

EQUAL TO ITS CLPT VALUE.

APPENDIX 5 - PROGRAM CODE LISTING

APPENDIX 6 - A CRITERION TO ASSESS THE APPLICABILITY
OF THE TWO METHODS FOR CROSS-PLIED
LAMINATES

PAGE

195

198

204

208

214

214

215

225

225

228

228

231

233

237

242

244

248

250

263



9

LIST OF FIGURES

FIGURE PAGE

2.1 Composite laminate under uniaxial tension 24

3.1 Stresses on a section of a ply 37

4.1 Integral equilibrium of a laminate section 42

4.2 Possible shapes ("lowest modes") for a zz:
(a) one crossing; and (b) two crossings 47

4.3 Possible shapes ("lowest modes") for a2z
for an angle-plied laminate: (a) a2 zidentically equal to zero; and (b)
one crossing 49

5.1 Quarter of a single ply of thickness t 53

5.2 Possible shapes ("lowest modes") for f12
(a) no stationary point; (b) one stationary
point; and (c) one stationary point with
sign reversal 59

5.3 Ply numbering scheme and coordinate system 74

5.4 Single ply under tension 86

7.1 Calculated interlaminar normal stress a
for [+15/0]s laminate ZZ

7.2 Calculated interlaminar normal stress azz*
for [0/+15]s laminate 112

7.3 Calculated interlaminar shear stress a
for [415/0]s laminate. 2z 113

7.4 Calculated interlaminar shear stress a
for [0/+15]s laminate 2z 114

7.5 Calculated interlaminar shear stress a
for [+15/0]s laminate at +15/-15 lz
interface (alz = 0 at the other two
interfaces) 115

7.6 Calculated interlaminar shear stress a1
for [0/+15] laminate at +15/-15 inter-
face (a z = 0 at the other two interfaces) 116

7.7 Through the thickness variation of a z
(from top surface to midplane for
[+15/0]s laminate 119



10

LIST OF FIGURES (Continued)

FIGURE PAGE

7.8 Through the thickness variation of a 2z
(from top surface to midplane) for
[+15/0]s laminate 120

7.9 Through the thickness variation of alz
(from top surface to midplane) for
[+15/0]s laminate 121

7.10 Calculated in-plane normal stress a in
+150 and -150 plies of a [ 15/0 1s
laminate 125

7.11 Calculated in-plane normal stress a in
a 00 ply of a [+15/0]s laminate 126

7.12 Calculated in-plane normal stress a 22 in
+15* and -15* plies of a [+15/01 2
laminate 127

7.13 Calculated in plane normal stress a 22 in a
00 ply of a [+15/0] laminate 128

7.14 In-plane shear stress a 12 in +15* and -15*
plies of a [+15/0]s laminate 129

7.15 In-plane shear stress a12 in a 00 ply of
a [+15/0] laminate 130

7.16 Distribution of $ as a function of p for
[ e/0]s and [0/+e ] laminate families 132

7.17 Distribution of X, as a function of e
for [+e/0 ] and [0/+e]s laminate families 133

7.18 Calculated in-plane normal stress a at
[15/-15 interface for [+15/0] 1
laminate for the two methods of determining
Ga1 1  138

7.19 Calculated interlaminar normal stress a
at 15/-15 interface for [+15/0] z
laminate for the two methods of Edetermining
0 11 139

7.20 Calculated interlaminar shear stress a
at +15/-15 interface for [+15/0] laminate
for the two methods of determining a 140



11

LIST OF FIGURES (Continued)

FIGURE PAGE

7.21 Calculated interlaminar shear stress alz
at +15/-15 interface for [+15/0]
laminate for the two methoas of Retermin-
ing a11 141

7.22 Calculated interlaminar normal stress a
for [+15/0] laminate at +15/-15 interface
using two different sets of elastic
constants 144

7.23 Calculated interlaminar shear stress a2z
for [+15/0] laminate at +15/-15
interface using two different sets of
elastic constants 145

7.24 Calculated interlaminar shearstress al

for [+15/0] laminate at +15/-15 interiace
using two different sets of elastic
constants 146

7.25 Boundary layer definitions for (a) angle-
plied laminates; and (b) all other laminates 149

7.26 Two possible ways to vary the thickness of a
laminate: (a) each individual ply is
doubled; and (b) laminate as a whole is
doubled symmetrically 155

7.27 In-plane Cl stress at +45/-45 interface
for [+45] laminate calculated by various
methoas 159

7.28 In-plane shear stress a 2 at +45/-45 inter-
face for [+45] laminatl calculated by
various methods 160

7.29 Interlaminar shear stress -az at +45/-45
interface for [+45] laminat calculated by
various methods 161

7.30 Interlaminar shear stress az at +45/-45
interface for [ 45]s laminade calculated by
various methods 162

7.31 Interlaminar normal stress a at +45/-45
interface for [+45] laminatE calculated
by various methods 163



12

LIST OF FIGURES (Continued)

FIGURE PAGE

7.32 Interlaminar normal stress a at midplane
of [+45/0/90] laminate calcu ated by
present methog and Wang and Crossman
(ref. 9) 167

7.33 Interlaminar normal stress azz at 0/90
interface for [+45/0/901 laminate
calculated by present me~hod and Wang
and Grossman (Ref. 9) 168

7.34 Interlaminar normal stress azz at -45/0
interface for [+45/0/90] laminate
calculated by present me~hod and Wang
and Crossman (Ref. 9) 169

7.35 Interlaminar normal stress azz at +45/-45
interface for [+45/0/90] laminate
calculated by present me~hod and Wang and
Crossman (Ref. 9) 170

7.36 Interlaminar shear stress alz at +45/-45
interface for [+45/0/90] laminate
calculated by present me~hod and Wang
and Crossman (Ref. 9) 171

7.37 Interlaminar shear stress a 2z at 0/90
interface for [+45/0/90] laminate
calculated by present me~hod and Wang
and Crossman (Ref. 9) 172

7.38 Interlaminar normal stress a at 0/90
interface for [0/90] laminaH calculated
by present method an8 Pagano and Pipes
(Ref. 12) 174

7.39 Interlaminar normal stress a at the mid-
plane of a [0(resin only)/901Z laminate
as predicted by the two metho~s for cross-
plied laminates 175

7.40 Interlaminar shear stress a at the 0/90
interface of a [0(resin only /90]
laminate as predicted by the two methods
for cross-plied laminates. 176

7.41 Effect of the resin layer between plies on
the predictions for the a stress at the mid-
plane of a [+15/0] laminNe 181



13

LIST OF FIGURES (Continued)

FIGURE PAGE

7.42 Effect of the resin layer between plies on
the predictions for the a stress at the
+15/-15 interface of a [+i /0]s laminate 183

7.43 Effect of the resin layer between plies on
the predictions for a0l stress at the
[15/-15 interface of a [+15/0]s laminate 184

8.1 Graphite/Epoxy autoclave cure cycle 191

8.2 Characteristics of the coupon specimen 196

8.3 Moir6 grid pattern (200 lines/inch) under
the microscope (40X magnification) 197

8.4 Microscope stand (not to scale) 200

8.5 Experimental setup 203

8.6 Grid pattern under the microscope. Dots
at the vertices of squares denote original
data point locations 205

8.7 Data points (dots at vertices of squares)
per field of vision 209

9.1 Typical stress-strain plot for
[(+15)5/(-15)5 /05 s laminate (coupon 3) 217

9.2 Calculated versus measured transverse
(v) displacement at the top surface of
a [(+15)5/(-15)5 05 S laminate (coupon 1) 218

9.3 Calculated versus measured longitudinal
(u) displacement at the top surface of a
[(+15)5/(-15)5/05 s laminate (coupon 2) 219

9.4 Calculated versus measured transverse
(v) displacement at the top surface of a
[(+15)5/(-15)5/05]s laminate (coupon 2) 220

9.5 Calculated versus measured longitudinal
(u) displacement at the top surface of a
[(+15) 5 /(-15) 5/05 s laminate (coupon 3) 221

9.6 Calculated versus measured transverse (v)
displacement at the top surface of a
[(+15)5/(-15)5/051s laminate (coupon 3) 222



14

LIST OF FIGURES (Continued)

FIGURE PAGE

9.7 Calculated versus measured longitudinal
(u) displacement at the top surface of a
[+15/0]s laminate (coupon 3) 223

9.8 Calculated versus measured transverse
(v) displacement at the top surface of
a [+15/01s laminate (coupon 3) 224

;2W

Al.l Possible shapes for 2 for a cross-plied

2
laminate: (a) a crosses the x axis once;
and (b) azz crosses the x axis twice 240

Al.2 Possible shapes of the radius of curvature
for a cross-plied laminate: (a) a crosses
the x axis once; and (b) azz crosses the x
axis twice 240

A1.3 Possible out of plane shapes for a ply
interface of a cross plied laminate (a) a
crosses the x axis once; and (b) a crosses
the x axis twice ZZ 240



15

LIST OF TABLES

TABLE PAGE

5.1 Groups of Functions f and gjj 56

5.2 Stress Shapes 61

5.3 Constants in the f Expressions 72

5.4 Constants in the gij Expressions 78

5.5 Stress Expressions for Each Ply 82

7.1 CLPT Solutions for [+15/0] and [0/+15]
Laminates (Applied Load ll = 889 MPa) 110

7.2 Variation of 0, x and X4 With Laminate
Type and Lamination Angle 131

7.3 CLPT Solution [+60/0] and [+61/0]
Laminates (Applied Load l = 100 APa) 135

7.4 Elastic Constants Used in the Present
(Measured) And In Other (Assumed) Analyses 143

7.5 Boundary Layer Width For [+e/0] and
[0/+e ] Laminates 153

7.6 Effect Of Effective Ply Thickness On
Boundary Layer Size 157

7.7 CLPT Solution For [+15/R/-15/R/0/R]5
Laminate (Applied Load U = 889 MPa) 180

7.8 Computation Times For Different Laminates 186

8.1 Average Laminate Thicknesses 192

8.2 Average Coupon Thicknesses and Widths 194

8.3 Data Taking Information 210

9.1 Young's Modulus and Poisson's Ratio 216



16

NOMENCLATURE

a

A. (i=l,2,. .. 6)

A

A

b

B

B. (i=l,2,3,4)

B. (i=2,4,5)

B (i=2,4,5;
(j=l,...n)

C

CLPT

C

d.

f.

f..(x) (i=1,2,3;
.3 j=1,2,3)

F(X
2 ,z)

FD

FE

g.. (z) (i=1,2,3;
3 j=1,2,3)

G(x ,z)

h

Half laminate length.

Coefficients in the x dependencies of the
stresses.

Area over which displacements of the
laminate are prescribed.

Half laminate width.

1% of f (x) when x=x 0  Intermediate
term us~a in the determination of the
boundary layer width.

Coefficients in the z dependencies of the
stresses.

L
B. multiplied by 022

1 [2 i

B. for the jth ply.

Classical Laminated-Plate Theory.

Coefficients in the expressions for f .

Stiffnesses.

Coefficients in the energy expression

Functions describing the x dependence of
the stresses.

Unknown function in the expression for the
u displacement.

Finite differences.

Finite elements.

Functions describing the z dependence of
the stresses

Unknown function in the expression for the
v displacement.

Laminate thickness.



17

NOMENCLATURE (Continued)

H(x x2 )

k

M

M (z)

n

N (x2)

N (x2)

p

Q(x 2 )

r

R(z)

S

S.. (i=l,. .. 6;

j =l,...6;
k=l,n)

t

Unknown function in the expression for
the w displacement.

Longitudinal strain normalized by
compliance S for the ith ply.

Center point at the ends (1 + 1- face)
of the laminate.

a 22 for the ith ply for angle-plied
laminates

Number of plies in the laminate.

a 2Z for the ith ply for angle-plied
laminates.

z for the ith ply for cross-plied
1 minates.

Strength of the stress singularity at the
free edge.

Unknown function equal to el.

Distance from the free edge.

Unknown function equal to e .

Compliance matrix.

Compliances.

Compliances for the kth ply.

Ply thickness.

Thickness of the ith ply.

Thickness of he section of the laminate
between the z and the z- face.

Traction vector corresponding to the
prescribed displacements of the laminate.

T



18

NOMENCLATURE (Continued)

u

um

U

U (x 2 ,z)

V

V(X2' "z)

w

W(X 2 z)

x

x

0

xX2

xBL

z

z+ z

E.. (i=1,2,z;
j=l, 2, Z-)

e.
1

V 12' V13' '2 3

Longitudinal displacement.

Displacement of center point M at the two
ends of the laminate.

Vector of prescribed displacements.

Function describing the, dependence of
the u displacement on x2 and z.

Transverse displacement.

Volume of the laminate.

Function describing the dependence of the
w displacement on x2 and z.

Out of plane displacement.

Function describing the dependence of the
w displacement on x2 and z.

Transverse direction with the origin at
the laminate free edge.

Value of x at which a is zerozz

Longitudinal direction.

Transverse direction with the o igin at
the center of the laminate.

Boundary layer width.

Out of plane direction

Faces created by cuts made perpendicular
to the out of plane direction.

Strains in any ply in laminate axes.

Lamination angle.

Lamination angle for the ith ply.

Exponent used in the eigenfunctions
describing the stresses.

Poisson's ratios.



19

NOMENCLATURE (Continued)

ci

c

a. (i=1,2,z;
J j=l,2,z)

L
Gi. (hlj=1,2;

3[ak]I k=l,n)

all

IF. (i=l,2,3)

IM. (i=1,2,3)

Oinit

1+ 1 
-

2+

2~

Complementary energy for the laminate.

Complementary energy for the ith ply.

Stresses in any ply in laminate axes.

CLPT stresses in laminate axes for the

kth ply.

Average applied longitudinal stress.

Summation of forces in the ith direction..

Summation of moments about the xi axis.

Exponent used in the eigenfuntions.;
describing the stresses.

Initial value for used to start the
iterations.

End faces of the laminate, perpendicular
to the longitudinal direction.

Free edge face.

Face parallel to the free edge, inside
the.laminate.



20

CHAPTER ONE

INTRODUCTION

The failure of composite laminates can be classified into

two basic modes: (1) In-plane fracture and (2) Out of plane

delamination. Both types of fracture have been the object of

extensive research [1-3,4-27] in recent years. However, even

though significant progress has been made in the case of

in-plane fracture, little is still known about the mechanisms

that govern delamination and the interaction between these two

failure types. Delamination is a very important type of fail-

ure because it may occur at loads appreciably lower than the

loads at which in-plane fracture would occur.

At the free edges of composite laminates, interlaminar

stresses azz , 02z, and alz develop due to mismatch in elastic

properties between adjacent plies. However, between adjacent

plies, there exists only a thin resin layer where no fibers

are present [3]. This is a relatively weak layer and, depend-

ing on the stacking sequence and the applied loading, the

interlaminar stresses present in that layer may cause delami-

nation.

The Classical Laminated-Plate Theory, (CLPT), which is

commonly used to analyze composite laminates [4], predicts

that interlaminar stresses are zero everywhere in a laminate.
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Therefore, near the free edges of a laminate, where the

interlaminar stresses are most important, CLPT must be modi-

fied to account for the existence of the interlaminar

stresses.

Many methods have been proposed for the determination of

these stresses but most of these analyses are complicated and

have severe computational limitations. The present investi-

gation proposes a simple approximate scheme to compute these

stresses for symmetric laminates under tensile loads. Lami-

nates of any number of plies including hybrid laminates can be

analyzed. In addition, an experimental method is used to meas-

ure in-plane displacements at the top surface of a laminate

near the free edge in order to compare with theoretical pred-

ictions.

In the second chapter, a summary of the previous analyses

of the problem is presented along with a brief discussion.

The governing equations and boundary conditions are presented

in the third chapter. In the fourth chapter, the force-balance

method is presented in detail. This method resorts to force

and moment equilibrium in a laminate in order to obtain the

basic behavior of the stress field. The solution details are

given in chapter five. The final equations are solved iter-

atively with the use of a computer. The solution for two

important special cases, angle-plied laminates and cross-plied

laminates, is given and discussed in chapter six. Results and
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comparisons with other analyses are given in chapter seven.

The experimental method used to measure the displacements at

the top of a laminate is described in chapter eight. Exper-

imental results are compared with the theoretical predictions

in chapter nine. Finally, chapter ten contains the conclu-

sions and some suggestions for further work.

Appendix 5 contains the listing of the computer program

that was used to solve the resulting equations.
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CHAPTER TWO

Previous Work

2.1 Laminate qeometrv and basic characteristics

A symmetric laminate loaded in tension is illustrated in

Figure 2.1. The origin of the axis system is at the center of

the laminate. Throughout this investigation, stresses,

strains, displacements, and elastic constants correspond to an

individual ply and not to the entire laminate unless so noted.

Interlaminar stresses will have z as one of the subscripts to

emphasize that they are out of plane quantities. All stresses

and strains are in laminate axes. The strip region near the

free edge, where interlaminar stresses are important, is com-

monly referred to as the boundary layer.

2.2 Analytical methods

The underlying assumptions common to almost all of the

works to be presented are: 1. Each ply can be treated as

macroscopically homogeneous and orthotropic; and 2. Stresses

do not vary in the longitudinal (xl) direction.

One of the first solutions to the interlaminar stress

problem was developed.by Pipes and Pagano [5]. Their analysis
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TOP SURFACE

2b
x1

z 1

h

2 2

FREE EDGE

(NOTE: NOT TO SCALE)

Figure 2.1. Composite laminate under uniaxial tension
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led to three coupled partial differential equations in the

three displacements u, v, and w. The equations were solved

using a finite difference (FD) scheme. They applied their sol-

ution to a [ 45]s laminate and observed that, as the FD grid

was made finer, the maximum value of the interlaminar shear

stress alz at the +45/-45 interface increased, apparently

without bound. This led them to suggest that alz may be singu-

lar at the free edge. They also found that the interlaminar

stresses azz' a2z, and alz were only appreciable in a small

region close to the free edge (the boundary layer). Its size

was found to be on the order of one laminate thickness.

It should be noted that the solution by Pipes and Pagano

involves a 1200 x 1200 system of linear algebraic equations

for a four-ply laminate. Also, the stress values at the ply

interfaces were found by extrapolation.

At about the same time, Puppo and Evensen [6], proposed

another method of analysis to calculate the shear stresses

02z and alz. They modelled the laminate as a set of

anisotropic layers separated by isotropic adhesive layers. A

set of ordinary differential equations was obtained by consid-

ering the equilibrium of an infinitesimal element consisting

of two anisotropic layers separated by an isotropic layer. The

interlaminar normal stress azz was neglected and the shear

stress c-z was found to be finite at the free edge.
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Several other solutions followed. Rybicki [7] used a

three dimensional finite element (FE) analysis based on the

complementary energy formulation. Stanton et al [8] used a

tri-cubic isoparametric solid element. Another FE method was

used by Wang and Crossman [9). Due to the very large number

of elements required, they used the sky-line storage technique

for the stiffness matrix. Even then, the working vector in the

computer program had 27000 elements for a four ply laminate.

To further improve their method, the same investigators [10],

introduced a substructuring scheme so that laminates with a

larger number of plies could be analyzed. They pointed out

that the guidelines used to determine which part of the lami-

nate should be treated as a substructure and which should be

analyzed in detail, were unclear and subject to discussion.

A three-dimensional FD scheme was proposed by Altus et al

[11]. Pagano [12], based on a theory developed by Whitney and

Sun [13], determined a closed-form solution for a at the

midplane of a [0/90)s laminate. The method was a modified

plate theory that included shear deformations and through the

thickness stretching.

Tang [14], and Tang and Levy [15), treated the problem as

a combination of plane strain and torsion. They solved sepa-

rately for the boundary layer region and for the interior of

the laminate. Their solution at the interior region coincided

with the CLPT. The solution in the boundary layer region was



27

in good agreement with the solution of Pipes and Pagano [5],

but the stress-free condition (a 2z=0) was not satisfied at the

free edge.

A perturbation method was suggested by Hsu and Herakovich

[16]. One major problem with this method is the fact that the

solution is in terms of an unknown parameter, the value of

which can only be estimated in an indirect way by making sure

that, for the particular value assumed for that parameter,

stresses do not exceed "elastic limits".

Another method was suggested by Pagano [17,18) based on

Reissner's variational principle. A solution can be obtained

by solving a system of 13N ordinary differential equations,

where N is the number of sublayers (not necessarily coinciding

with the plies) into which the laminate is divided. However,

N is limited to 6-10 because any higher N values result in

intermediate numerical results that are much higher than the

highest number most computers can store.

Fracture mechanics principles were applied by Wang and

Crossman [19] in order to determine the onset of

delamination. Bar-Yoseph and Pian [20] proposed a perturba-

tion and assumed-stress approach for the determination of the

interlaminar stresses.

In most of the analyses presented so far, the results

suggested that Glz and, possibly, azz may be singular at the

free edge of a laminate [5,7,9,17]. The approximate nature of
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these methods however, does not permit a reliable determi-

nation of such a singularity.

Complete elasticity solutions for infinite wedges [21,22]

showed indeed that such a singularity existed for isotropic

materials. The corresponding elasticity solution for

anisotropic materials was presented by Wang and Choi [23,24].

Based on. Lekhnitskii's stress potentials [25], two coupled

partial differential equations were obtained, which were

solved by an eigenfunction expansion method using complex var-

iables. It was found that the stress field was indeed singular

at the free edge. However, the strength of the singularity was

not completely determined because, as it was shown by Zwiers

et al [26], and Dempsey and Sinclair [27], apart from the

singularity predicted by Wang and Choi, other singularities of

different strength may be present.

The existence of a singularity may be considered to

imply that an approximate method used to compute the

interlaminar stresses should somehow reflect this fact. This

would mean that FE schemes should include singular elements

because, as it was shown by Tong and Pian [28], the conver-

gence of the FE solution in problems with a singularity is not

improved by using a finer mesh or higher order elements, if

the FE formulation does not include the singularity.

Wang and Yuan [29] presented a FE method based on a

hybrid functional, derived from the Hellinger-Reissner princi-
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pie, that included a singular element to model the singular

region in the laminate. They obtained excellent agreement with

the results of Wang and Choi in [24].

One problem associated with FE analyses that incorporate

the stress singularity in the formulation, is that the

strength of the singularity must be known beforehand so that

the singular element stiffness matrix can be assembled. This

is a serious drawback because the strength of the singularity

is obtained analytically after a complicated and lengthy proc-

ess [23,26], and is different for different interfaces of a

laminate.

A way to overcome that was suggested by Swedlow [30]. In

this analysis, the strength of the singularity is included in

the formulation as an unknown. The displacement interpolation

should therefore include terms of the form rp where r is the

distance from the free edge and p is the unknown strength of

the singularity. Differentiation of the functional with

respect to p gives an additional equation from which p can be

determined.

Another recent solution to the interlaminar stress prob-

lem, without taking into account the existence of the

singularity, was presented by Pagano and Soni [31]. They

divide the laminate in a global and a local region. The global

region is that part of the laminate that is far from the ply

interface of interest and is treated as a substructure with
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equivalent loads. The local region is around the ply interface

of interest and the solution there is more detailed and com-

plicated. It is based on assumed functions for the stresses in

that region. This method can be used to analyze thick lami-

nates but is sensitive to the size of the local region and the

transition from the local region to the global region. There

are no specific guidelines as to how this should be done, and

results reported show that the stress prediction for the same

location in the local region may vary as much as 50% depending

on the particular global-local scheme used.

Whitcomb and Raju [32] proposed another FE method and

solved the problem by superposition. Their method is slightly

more efficient than other FE methods proposed because the

implementation is based on a modified two dimensional analysis

(obtained by imposing that there is no in-plane shear deforma-

tion) rather than a three dimensional analysis. This analysis

cannot be used to predict alz nor can it be used for

angle-plied laminates (+6 and -e fiber orientations only).

In summary, many different solution methods were proposed

over the years for the determination of interlaminar stresses.

Most of them are limited to thin laminates (less than 6-10

plies) due to large computation times required for the sol-

ution. They also have problems in satisfying some of the con-

ditions of the problem (e.g. stress-free edge or strain

compatibility).
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2.3 Experimental results

Over the years, various efforts have been made to exper-

imentally measure interlaminar stresses in order to determine

which of the analytical methods were more reliable.

Pipes and Daniel [33] used a moir6 method to measure the

displacements at the top of a [(25)4/(-25)4]s graphite epoxy

(G/E) laminate. Their results however, are not accurate since

only three data points were obtained in the boundary layer. A

similar moire method was used by Oplinger et al [34] to meas-

ure the displacements at the top surface and on the free edge

of [+e/-e]ns and [+e /-e n]s boron epoxy (B/E) laminates. They

too had very few data points (approximately five).

X-rays were used by Lou and Walter [35] to measure

interlaminar shear strains for two-ply cord-rubber laminates.

Two thin narrow radiopaque rubber strips were embedded in

two-ply cord rubber laminates. The change in angle between the

two initially aligned strips served as the means to measure

interlaminar strains.

A more conventional method was used by Kim and Soni [36].

They used miniature strain gages (.008 in long) to measure

at the midplane of [ 3 0n/ 9 0nls, [( 30)n/ 9 0]s (n=2,4,6)

graphite/epoxy specimens. They report fair agreement with the

theory in [27] but the size of the strain gages limits the

usefulness of the method to laminates for which azz does not
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vary appreciably with z at the free edge. Otherwise, if azz'

and hence ezz' has steep gradients, the strain gage will not

be able to reproduce them.

More qualitative results were reported by Whitney [37].

The effect of interlaminar stresses on narrow and wide tensile

coupons is discussed and some differences in the stress field

of sandwich beam specimens are presented. The discussion is

based on stress shapes that are assumed in such a way that

they fit the results of Pipes and Pagano [5]. No experimental

results are presented.

Pipes et al [38] tested Boron/Epoxy laminates to failure.

On the basis of the experimental stress-strain curves of the

two laminates they suggested that large nonlinear strains may

occur at ply interfaces possibly leading to delamination.

2.4 Discussion

The problem of the determination of interlaminar stresses

is complicated and hard to solve analytically. The mere fact

that so many different methods of analysis have been published

over the last 15 years [5-27], indicates the level of complex-

ity of the problem.

The different methods do not always agree with one anoth-

er. For example, the FE method in [9] and the FD method in

[5], predict a tensile azz stress at the free edge of the
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+45/-45 interface of a [ 45]s laminate while the eigenfunction

expansion method in [23,24] predicts a compressive azz stress

for the same location. A more detailed comparison of the dif-

ferent FE methods is given in [39].

The major problem that all these methods have (except the

global-local analysis in [31]) is that, due to computation

problems, they can not realistically deal with laminates of

more than 10-15 plies. In practice however, the laminates used

may have 100 or 200 plies. The reason for this computation

limitation is that the computer storage per ply interface

required for sufficient resolution in the boundary layer is so

large, that the storage required for a practical laminate (say

50 plies thick), is so large that the solution would take a

lot of time and would not be cost effective.

The main problems associated with the different analyt-

ical methods can be summarized as follows: a) FE and FD meth-

ods involve the solution of large systems of equations

[5,7,9]; b) The stress free boundary conditions are not always

satisfied (e.g. a2z(x=O)f0 [7,9,16]); c) There are no guide-

lines for substructuring or "lumping" parts of a laminate in a

manner that can yield reliable results [10,31]; d) FD methods

involve lengthy extrapolations [5,11]; and e) Different meth-

ods do not agree with one another for the same type of

laminate and loading [5,8,9,24].
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Finally, before discussing experimental methods, a brief

comment on the importance of the stress singularity is in

order. The singularities reported in the literature to date

[23,26] are very weak. That is, they are more than an order of

magnitude smaller than the usual stress singularity of 0.5 at

a crack tip in metals. Simple calculations show that for

graphite/epoxy systems, the stress singularities become impor-

tant over a distance from the free edge which is of the order

of a few fiber diameters. However, over such a distance, the

assumption of material homogeneity made by all analyses breaks

down and the bimaterial nature of the laminate (fiber-resin)

must be taken into account. Hence, the singularity appears to

be important in a region where the assumptions made for the

calculation method break down.

As a result, a solution that does not predict a

singularity and a solution that does, are equally valid over

the range of interest. Very close to the free edge, (within a

few fiber diameters) both theories fail and a theory taking

into account the properties of the fiber and the matrix sepa-

rately should be used. Furthermore, as it will be shown in

chapter 7, delamination is not a point phenomenon and the

stress values right at the free edge are not as important as

the actual stress distributions over a region close to the

free edge (which is a few fiber diameters wide). Thus, some

averaging of the stresses over that region may be required if
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theories that treat each ply as homogeneous throughout are

used.

The experimental results reported to date are few com-

pared to the number of analytical predictions available, and

inconclusive mainly because the measurement of stresses,

strains, or displacements is made very difficult by the fact

that the boundary layer is very small. So, most methods are

based on few data points at special locations on the laminate,

mainly on the top or at the free edge. More data are needed

and for all interfaces of a laminate in order to establish

which of the available analytical methods are more reliable.
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CHAPTER THREE

FORMULATION OF THE PROBLEM

3.1 Governing equations

Consider the laminate and the axis system shown in Figure

2.1. The complete state of stress of a composite laminate

under tension is described by the 15 equations of elasticity.

For any ply, these can be divided into three basic sets of

equations.

The first set consists of the three equilibrium equations

(neglecting.body for.ces):

aa11
II +

ax1

a.
1 2

ax1

a 1 z
ax I

12
ax

2

22

ax 2

a2z
ax 2

aa1
+ 0z 0

az

+ zz 0az

(3.la)

(3.lb)

(3.lc)

where all,

ply as shown

a2 2 ' zz' a2z' Clz' (12 are the stresses in that

in Figure 3.1.
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Figure 3.1. Stresses on a section of a ply
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The

equations:

011

022

zz

02z

"1z

012]

second set consists of the six stress-strain

E11

E13

0

0

E16

E 12

E22

E 23

0

0

E26

E13

E23

E
33

0

0

E36

0

0

0

E 4 4

E4 5

0

0

0

0

E45

E55

0

E16

E26

E36

0

0

E66

C22

"2z

i z

(3. 2a-f)

where- Eij are the stiffness coefficients and c i, E22' Czz

E 2, C1z, and c12 are the strains in that ply. Note that for

convenience, engineering and tensor notations are mixed here.

The tensor notation will be used for sresses and strains with

the subscript 3 changed into z for emphasis. The engineering

notation will be used for elastic stiffnesses and/or compli-

ances.

Finally, the last s

strain-displacement relations.

au
11 a2z

9v
22 ax2  1z

zz z T12

et is made up of the six

av aw
z ax 2

= + aw
=Z ax

au + v
X 2 axI

(3.3a-f)
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where u, v, w are the displacements in that ply.

3.2 Boundary conditions and stress continuity

The above equations are to be solved subject to the fol-

lowing boundary conditions:

a) a z a z=a 1=0 at the top and bottom of the laminate

since there is no load applied on those surfaces.

b) a2 2 =a 2z" a 12=0 at the free edges (corresponding to the

two stress-free faces that are perpendicular to the x2 direc-

tion in Figure 2.1).

In addition, at every interface, a zz a2 z ' alz must be

continuous.

3.3 Assumptions

The following assumptions are made:

1. Each ply can be modelled as macroscopically homogene-

ous. That is, the individual properties of fiber

and matrix are "smeared out".

2. All six stresses exist. This means that the laminate

is not in a state of plane stress as it is in the

case with the CLPT where the three interlaminar

stresses a zz a 2z' and alz are taken to be zero.
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3. Far from the free edge, i.e. outside the BL, the CLPT

solution is recovered. This means that, outside the

BL, the interlaminar stresses a 2z and azz, and lz

decay rapidly to zero.

4.-Stresses do not depend on x . This is a version of the

St. Venant principle saying that the details of load

introduction are only important very close to the

edge at which the load is applied.

5. The laminate is symmetric. This simplifies the analy-

sis somewhat, in that bending-stretching coupling is

avoided.
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CHAPTER FOUR

THE FORCE-BALANCE METHOD AND SOME OF

ITS IMPLICATIONS

4.1 Basic setup

Any physical body at rest, or any part of it, must be

under force and moment equilibrium. For the particular problem

at hand, the force-balance method requires that every section

of a laminate, sufficiently large so that the assumption of

homogeneity is still valid, is under overall force and moment

equilibrium.

Consider the laminate section shown in Figure 4.1. The

laminate is assumed wide enough so that the 2 face (distance

-b from the free edge) is far from the free edge and the CLPT

solution is recovered so that the interlaminar stresses are

zero there.

The dimensions a and b are taken to be the laminate

half-length and half-width (see Figure 2.1), but they can have

any value as long as the section can still be treated as homo-

geneous and the 2 face is far from the free edge.

For convenience, the following coordinate transformation

is introduced:

x - b - x2 (4.1)
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so that x is zero at the free edge and equal to b at the cen-

ter of the laminate.

Taking overall summation of forces in the three

directions and setting the result equal to zero, the three

force equilibrium equations read (integrals on x are from b to 0)

rF = 0:

-f I+ dxdz+fa dxdz-f +za dx dx+f _aZdx 1dx-f _a 12dx1dz=0 (4.2)
1+1 z z 2~xd-

EF2 = 0:

-f 2-a22dx 1 dz-f 1a12dxdz+f _a 12dxdz-fz +a2zdx1dx+fz a2Zdx1 dx=O (4.3)

zF 3 = 0:

-f +azzdx dx+f _azzdxldx+f +
0alzdx2dz-f-_a1 Zdx2dz=0 (4.4)

z z 1 1

The moment equilibrium equations have the form:

IN1= 0:

-f a z(b-x)dxdz+f _a Z(b-x)dxdz+f a 2zdxdz-f _a12zdxdz

+1-o22zdxidz+f a2 ztdxdx f z+azz(b-x)dxdxz+f- az(b-x)dxdx =0 (4.5)

2 Z Z

EM2 = 0:

-f + 11 zdxdz+f a zdxdz+f 1zadxdz-f_a 2 zxd+f+ZZX 1x 1dx

-ZZ Idx Idx-f + o dx dx=0 (4.6)
Z z
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EM = 0

f o (b-x)dxdz-f _r (b-x)dxdz-f a adxdz-f a22x1dx d
+ 1 1 i+12 2-2x I

-f +a2 zldx dx+ fa2zxIdx Idx+f -+a1Z(b-x)dxd2Tf _ az (b-x)dxdx=0 (4.7)

Equations 4.2-4.7 are the general force and moment equi-

librium equations for a laminate section with the 2 face out-

side the boundary layer. The fact that the 2 face is not

inside the boundary layer, simplifies the equations because

terms involving interlaminar stresses integrated over that

face are zero because the interlaminar stresses are zero

there.

Use of the assumption that stresses do not depend on x

(i.e. 9/3x=0) yields,
1

zF = 0:

-f +a izdx+f Za1 zdx-f 2 a1 2 dz=
0  (4.8)

F2

-f +a2 zdx+f _ a2zdx-f _a 22dz=0 
(4.9)

EF 3 = 0:

-f a dx+f a dx=O (4.10)
z+zz z-zz

EM = 0:

I a tdx-f a (b-x)dx+f a (b-x)dx+f a22 zdz=O (4.11)
Z+ 2z z+ zz z zz 2~
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EM2  0:

aa
f dxdz-f a 2 zdz+ .f +a dx-z -f a dx-tf a dx=0 (4.12)
1 2 z z z lz

IM3 = 0:

-+ a 12 dxdz- --f2 a22dz--f z+a2zdx+-f Z2zdx+fz +a1 (bx)dx

-f a (b-x)dx =0 (4.13)
z- z

Equations 4.9 and 4.10 can be placed in the last three

equations and the following simplified forms of the moment

equilibrium equations are obtained:

EM I = 0:

tf +a2zdx+f +a zzxdx-f _a zzxdx+f _a22zdz=0 (4.11a)
z z z 2

EM2 = 0:

f +a 1zdxdz-f_a1 2zdz-f+aIzdx=O 
(4.12a)

1 2 z

EM3 = 0:

-f +;12dxdz+f + 1z(b-x)dx - f.a1 z(b-x)dx =0 (4.13a)

1 z .z

As it will be shown in the next chapter, the assumption

that stresses do not depend on xi, the boundary condition that

requires that the 2+ face is stress-free (sections 3.2 and

3.3), and the additional assumption that the x2. and z depend-

ence can be separated for each of the stresses (this assump-

tion is introduced in the next chapter),result in the force
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and moment equilibrium equations 4.8-4.10 4.11a, 4.12a, and

4.13a being identically satisfied.

4.2 Some imrlications

Consider now equation 4.10. The z+ face can be made to

coincide with the top surface of the laminate, and equation

4.10 will still be valid. On the z+ face however, a is now

zero. Then, equation 4.10 reduces to,

f Za zzdx = 0 (4.14)

which is valid for any z location and hence for any ply

interface. Equation 4.14 implies that azz plotted as a func-

tion of distance x from the free edge, must cross the x axis

at least once. Two possible plots for a versus x are shown

in figure 4.2. Note that far from the free edge, (x large) a

is zero so that the CLPT solution predicting zero azz at the

far field is recovered.

Another conclusion can be drawn for angle-plied laminates

(only +8 or -e fiber orientations), from equation 4.9.

The stress field must recover the CLPT solution far from

the free edge. The CLPT predicts that for angle ply laminates

L 0 (4.15)022' [oil-
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in each ply. This means that the force equilibrium equation

4.9 becomes,

-+ 2z dx+ Lo2zdx = 0 (4.16)
Z z

for an angle-plied laminate. Again, by letting the z+ face

coincide with the top surface of the laminate, where a 2z is

zero, one obtains:

f z-2zdx = 0 (4.17)

for any ply interface. This means that a 2z is either iden-

tically zero in each ply,-or it crosses the x axis at least

once in angle-ply laminates. Possible shapes for a2z are shown

in figure 4.3. It should be noted that a2z is zero both at the

free edge and far from it, in agreement with the stress-free

boundary condition in section-3.2 and assumption 3 in section

3.3 (which requires that a2z is zero far from the free edge so

that the CLPT result a 2z= is recovered).

The above result for angle-plied laminates shows that

results reported for [ 45]s laminates in [5,24], where it

appears that a2 z does not cross the x axis, do not satisfy

.integral force. equilibrium in the x 2 direction (see Figure

4.1).
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Figure 4.3. Possible shapes ("lowest modes") for a2z
for an angle-plied laminate: (a) a 2z
identically equal to zero; and (b)
one crossing
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A very similar result as equation 4.17 can be found for

cross-plied laminates (only 00 or 900 fiber orientations).

using the force equilibrium in the x1 direction equation 4.8

and based on the fact that a1 2 is zero for cross-plied lami-

nates:

f _a 1zdx = 0 (4.18)
z

which

of a

once.

case,

edge.

implies that alz is either identically zero in every ply

cross-plied laminate, or crosses the x axis at least

Note that there is a slight difference from the a2z

in that alz does not have to go to zero at the free

It will be shown in chapter 5 that, under the assumption

that stresses do not depend on x1 , a1z is identically zero for

a cross-plied laminate.
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CHAPTER FIVE

SOLUTION PROCEDURE

5.1 Equilibrium eauations and aeneral shaDe functions for

the stresses

The solution to the problem is based on the principle of

minimum complementary potential energy. According to this

principle [40], out of all admissible stress states, those

which also'satisfy the requirements of geometric compatibility

give stationary values to the complementary energy. Here, the

word "admissible" means that the stress state satisfies the

equations of equilibrium (3.1), the boundary conditions and

the conditions for stress continuity. As an additional

requirement, which will turn out to be very useful, satisfac-

tion of integral equilibrium (force and moment balance) will

be imposed.

The solution procedure. can then be broken up into the

following steps:

1. Choose a stress state.

2. Satisfy integral and differential equilibrium.

3. Satisfy boundary conditions and stress continuity.



52

4. Determine the remaining unknown parameters in the

stress expressions by minimizing the complementary

energy in the laminate.

Each ply is considered separately (see Figure 5.1) and,

by symmetry, a quarter of a ply is sufficient to describe the

stress field.

Under the assumption that the stresses do not depend on

xl, the differential equilibrium equations 3.1a-3.1c become,

1112 + aalz = 0 (5.1)
ax2  az

B22 + a2z = 0 (5.2)
ax az

2z + zz = 0 (5.3)
ax2  az

and using the fact.. that (see the coordinate transfor-

mation of equation 4.1): .

a12  a z 
(5.4)ax az

22 2z
ax aZ

2z. ZZ (5.6)
ax az
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At this point, another assumption is introduced. It will

be assumed that the x and z dependence for each of the

stresses (except ) can be separated. Each of these stresses

can then be viewed as being represented by a product of two

functions (one in x and one in z) together forming an

eigenfunction corresponding to a certain stress state.

Under this assumption, the stresses can be written as:

a = f(x,z) (5.7)

422 f 29(x) 922 (z) (5.8)

"zz 33(X) 933 (z) 
(5.9)

2z f2 3(X) 923 (z) (5.10)

1lz ~ 13(X) 913 (z) 
(5.11)

12 = 2f 9 12(z) (5.12)

where f. (x), g. (z) are functions to be determined. Introduc-

ing equations 5.8-5.12 into. equations 5.4-5.6 yields the fol-

lowing set of ordinary differential equations:

df 12 f()dg, 3 (d
2 _ 13 (9)1g 2 dz (

df2  dg2
df22 23 (b M2 623 (e) (5.13a-f)

-TT 23 Oz G

df23 dg 33
T= f33 (c) g2 3 - M
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It can be seen that equation 5.13a decouples from

equations 5.13b and 5.13c. Similarly, equation 5.13d decouples

from equations 5.13e and 5.13f. Then, the functions f. (x) and

g..(z) can be grouped as shown in Table 5.1.
1J

Then, if any one of the functions in a group is known,

the other functions in the same group can be determined using

the corresponding equations. This means that the minimum num-

ber of shape functions that must be assumed is 4, two f.. and

two g functions. The remain'ing 6 functions can be determined

with the use of the equilibrium equations 5.13a-f.

5.2 Assumed functional forms

Consider now the z dependence of the stresses (gij func-

tions). The CLPT predicts that far from the free edge a2 2 and

a2 are constant. This implies that g22 and g1 2 must be con-

stant because, if they depended on z, a22 and- 1 2 would be

functions of z far from the free edge.

Therefore,

912 = B1  (5.14a)

g2 2  = B 3  
(5.14b)

And use of the ordinary differential equations

5.13d-5.13f gives:
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TABLE 5.1

GROUPS OF FUNCTIONS f and gq

Group Functions Corresponding
Equations

f2' f1 3  
5.13a

2 f22' f23' f33 5.13b, 5.13c

3 g12' 913  5.13d

4 g22' 923' 933 5.13e, 5.13f
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g13 = BZ + B2  
(5.14c)

g2 3 = B3z + B4  
(5.14d)

= B 2+ B z + B5  (5.14e)

where B 1-B5 are constants to be determined.

For the x dependence, (f., functions) one must resort to

the conclusions drawn in the previous chapter with the

force-balance method. Consider the force equilibrium in the z

direction equation 4.14 and Figure 4.2. It appears that azz

shapes with 2 crossings (Figure 4.2b) or more, correspond to a

"higher mode" i.e. a state of stress where the energy stored

in the ply and, as a result, in the whole laminate is higher

than what it would be if the a versus x plot crossed the x

axis once. Some evidence that this is true is given in Appen-

dix 1 where the radius of curvature at an interface of a

cross-plied laminate is calculated.

As a result, since a minimum energy state is always

sought, if a stress shape similar to that of Figure 4.la is

found to satisfy the governing equations, this will be the

minimum energy state and will thus be the required stress

shape. For a rapid decay of azz, so that far from the free

edge azz tends to zero, exponential functions must be used.

From table 5.1 it is seen that any of the three functions

f 2 2 ' f2 3 ' f33 can be assumed and the other two will then be
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determined from equations 5.13b, 5.13c. It turns out that the

calculations are somewhat simpler if the shape of f22 is

assumed.

Hence,

f22 = A1 e O + A2 eXX + A3 (5.15a)

The two exponentials guarantee that, for a proper choice

of the unknown constants A, and A2, azz will cross the x axis

once in agreement with equation 4.14 and Figure 4.2a. The

unknown constant A3 is introduced so that, far from the free

edge, a2 2 will approach the usually nonzero CLPT constant val-

ue for a 22'

The exponents $ and Aq are also unknown at this point.

Note that $ has the dimensions of 1/length and x is

dimensionless. The reason for writing th.e exponents in that

form is that the resulting equations for A and 4 are simpler

to solve than what they would be if the exponents were A and $

instead of $ and X . This will be clearer later when the

equations for A and are obtained by minimizing the comple-

mentary energy of the laminate.

For f1 2 (or f1 3 ) the available information is not as con-

clusive. Since a12 must be zero at the free edge, three possi-

ble shapes for f12 are shown in Figure 5.2 (for positive

far-field value of 012). Again, the argument is made that the
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(a)

f121

(b)

f1 2

(c)

x

Figure 5.2. Possible shapes ("lowest modes") for f
(a) no stationary point; (b) one stati nary
point; and (c) one stationary point with
sign reversal
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cases corresponding to figures 5.2b and 5.2c result in higher

laminate energy and hence, for minimum laminate energy, a

shape similar to that in Figure 5.2a should be used.

Then, the following functional form for f1 2 is assumed:

f12 = A 4 + A 5e (5.15b)

The exponential is used so that a1 2 approaches "rapidly"

its far field CLPT value. The same exponent # is used as for

f22 in equation 5.15a mainly because a different exponent

would result in an inconsistency in the character of the equi-

librium equations as is shown in Appendix 2.

Using the differential equations 513a-5.13c and the

assumed shapes for f2 2 and f1 2 (equations 5.15a and 5.15b),

the remaining f functions can be obtained:

f = -A, oeX- AA2e (5.15c)

f33= ApO 2 e-Ox + X 2 0 2 A 2eXOX (5.15d)

f13 =-A5e OX (5.15e)

where A is an unknown constant. Table 5.2 summarizes the

stress shapes so far.
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TABLE 5.2

STRESS SHAPES

Function Shape

f 22 . A I e~ 4+A2e~ X + A3

f33 A 2 -x +X2 2A2e

f23 -Aee - 2 -XX

f13  - A5eX

f12 A4+A5e -

922  B3
2

933  B3 + B 4z+B5

923  B 3z+B4

913 B3 Iz+B2

912 B1
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Using the shape functions in table 5.2 and substituting

into equations 5.8-5.12 gives the expressions for all the

stresses except all, in a ply:

022 = (Ale- X + A2e- XO + A3 ) B3 (5.16)

zz = (Ale-OX + 2 2A e X )(B3-2 + B z + B (5.17)

02z = (-A1 oe OX - A4A2e ) (B3z + B4 ) (5.18)

*lz = - A5e ~X(Biz + B2 ) (5.19)

012 .= (A 4  + A 5e~ x) B1  (5.20)

It should be noted that ?L and $ must be larger than zero

so that the exponentials decay rather than grow.

5.3 Determination of al,

Due to the assumption that the stresses do not depend on

x1 , a drops out of the equilibrium equations. Two approaches

were used for its determination. The first was to assume that

in each ply a was constant and equal to the CLPT value. The

second was to actually determine a with the use of the

stress-strain and strain-displacement equations.

The second approach, being somewhat involved will be

described briefly below. The inverted stress-strain equations

3.2a-3.2c have the form:
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S 1 1 0 1 1 + 512a22 + S 13azz + S 116a12 (5.21)

22 S12 11 + S22 22 + S23 zz 26 12 (5.22)

Ea S r +S L a(.3
zz S 13 1 1  23 22 + 533zz 66 12 (5.23)

where Sij are compliances for the particular ply in which the

strains are evaluated.

Integrating the above equations with respect to x1 , x2 '

and z and using the strain-displacement equations 3.3a-3.3c

gives:

U = (S11 a11 + S12a22 + S1 3 yzz + S16a12 )X1 + F(x2,z) (5.24)

v=SjjfajGdx2+S22!o22dx2+S23f zzdx2+S26f 12dx2+G(x,z) (5.25)

W=S13 f 11dz+S23f 22dz+S33 fzzdz+S36 fa1 2dz+H(x ,x2) (5.26)

where F, G, and H are unknown functions.

Then, using these expressions in the strain-displacement

equations 3.3e and 3.3f, the following expressions are

obtained:

S+ + =
1 x X2 2Z 2

= S16o1i+S 26a22+S36azz+S660 12
(5.27)
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and

x -(S a +S 12 22+S 3az+S 6  +2  + + -

= S45G2z+S55 a lz (5.28)

The right hand sides of equations 5.27 and 5.28 are inde-

pendent of x because the stresses are assumed to be independ-

ent of x This implies that the quantities x1 x2

13 zz 16 12)x and x 1(S 1 120 22+ 13 zz+S 16 12) +

must be independent of x1 .

It can be seen that in the first of the two quantities

above, 'G_ is not a function of x because G is only a func-
x12

tion of xi and z (see equation 5.25). The rest of the first

quantity however is a function of x2 and therefore, the two

parts separately must be independent of x . The fact that

x1  (S a+S 1 2 022 +S13a+S 16 12 is independent of x implies

that:

(S d +S 22+S 3z+S 2)=O (5.29)

Similarly, it can be shown that the fact that x1 Z( 11 a11

+S2 a 22+S 33a zz +S1612) is not a function of x gives:

T 11112 '22 3 zz 1602
(SN a ~1 S1 2 a22+S3z+ 61)0(5.30)

Equation 5.29 implies that

S 11 11 +S 12a 22+S13azz-t+S 1 601 2=R(z) 
(5.31)
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and equation 5.30 implies that

S 11 11+S 12 a22+S13a z +S 16012 Q( 2 ) (5.32)

where R and Q are unknown functions.

Equations 5.31 and 5.32 are compatible with one another

only if R and Q are independent of z and x2 respectively and

are equal to the same constant:

R(z) = Q(x2) 1 (5.33)

Then, from either equation 5.31 or 5.32, the following

expression is obtained for all:

Cl Si S1 S1CT 1 12 913 0l (5.34)
"11 022 ~ "zz ~ S 12

The uknown constant C is determined by requiring that,

far from the free edge, a is equal to the CLPT value. Let-

L
ting a denote CLPT values one obtains:

C 1 S12  S S13  S16
i

0Z 1~ 22m z 0I 1
m - - - ---- -m 22 - m z2

or

L C1  S12 L Sl6 L (5.36)011 7,-, ~2 2 (1.36
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since the interlaminar stresses are zero far from the free

edge (x approaching co). From this, C1 is obtained as,

C = S +S2 . +S6 2 (5.37)
1 11 11 [eil 12 22[e] 16 12 li[ei] [ei] [ei]

Finally substituting for C in equation 5.34, the final

expression for all is:

L L LS11o1  +S2 22 +16 12 - S
11 11[ei] [ei] [ei] - 12

S11  1 21

- S 3  S1
13 1 2 (5.38)

-
0 Z '12~ *~11 11

where a2 2 ' , zz, a12 are given by equations 5.16, 5.17, and

5.20.

Equations 5.38 and 5.16-5.20 give the stresses in each

ply. The strains- in each ply can be determined with the use

of the stress-strain equations 3.2a-f. The displacements in

each ply cannot be determined exactly because the strain com-

patibility condition is satisfied only on the average by mini-

mizing the laminate complementary energy.

5.4 Satisfaction of integral equilibrium equations

It will be shown now that the assumption that, for each

stress shape, the x and z dependence can be separated along
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with the boundary condition that the 2+ face (see Figure 4.1)

is stress-free, guarantees that the requirements of the

force-balance method (equations 4.8-4.10, 4.11a-4.13a) are

satisfied.

Consider the quarter-ply shown in Figure 5.1. Using the

general expression for alz in equation 5.11 and integrating

with respect to x, one obtains:

+ a 1zdx = g13 (t) b f13 (x)dx (5.39)
z0

Equation 5.13a is used to substitute for f1 3 (x). An inte-

gration by parts gives,

f +a .dx = g 3  12 dx = g 3(t) b)- (5.40)+ z 01(t f _d g3t(f 12(b f!2(0))

Similarly, if al were integrated over the z- face,

f a1zdx =g1 3(o)(f 12 (b) - f12 (o)) (5.41)
z

Then, subtracting equation 5.41 from equation 5.40,

- a 1zdx + f_ a 1 dx = (g13(0) - 913 (t))(f12 (b) - f12 (o)) (5.42)
z z

Now using the general expression for a1 2 in equation 5.12

and integrating yields
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f _a12dz = f12 (b) ft g12 (z)dz (5.43)
2 o

Using the equation for g1 2 (equation 5.13d) to substitute

in equation.5.43 one gets,

f 2- 12dz = f1 2 (b) (g13 (t) - g 3 (o)) (5.44)

Now the boundary condition,

1 2 (x = 0) = 0 (5.45)

implies (see the general expression for a1 2 equation 5.12)

that,

f12 (0) = 0 (5.46)

Placing 5.46 into 5.42 and then subtracting equation 5.44

from the resulting equation gives:

f +az1dx + f Z_aZdx - f 2o 12dx = 0 (5.47)

which is identical to equation 4.8, the first of the six inte-

gral equilibrium equations. Therefore, it is seen that the

assumptions made along with the boundary condition that al2 is

zero at the free edge, are equivalent to the equation of force

equilibrium in the x1 direction (equation 4.8).
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In a similar manner, using the boundary conditions that

022 and 0 2z are zero at the free edge, it can be shown that

the other two Force-Balance equations (4.9 and 4.10) are

equivalent to the assumptions made on the stress shapes.

The proof that the three moment equations(4.11a-4.13a)

are also equivalent to the boundary conditions on a22' a2z'

C12 and the particular set of assumptions used is very analo-

gous to that used for the force equilibrium equations but,

being somewhat more involved, is omitted here. A full proof is

given in Appendix 3.

It should be noted that the proof given was for a single

ply of thickness t. The proof for any section of a laminate

with thickness t (see Figure 4.1) is essentially, the same.

This result, that the requirements of the Force-Balance

method (equations 4.8-4.13) are automatically satisfied by the

set of assumptions and boundary conditions used in the current

analysis, does not limit the importance 'of the Force-Balance

method. The conclusions drawn in chapter 4 for general lami-

nates and for angle-plied laminates are very important and

cannot be deduced without the use of the force-balance method.

Furthermore, if, for a more refined analysis, the assumption

that the x and z dependence .can be separated were relaxed,

equations 4.8-4.13 would be very useful in furnishing impor-

tant information on the functional form of the stresses to be

used.
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5.5 Boundary conditions and stress continuity

Before satisfying the boundary conditions, the far field

condition that the stresses approach their CLPT value far from

the free edge must be satisfied. For a 1 this condition is

satisfied by construction (see equations 5.35-5.37). For the

interlaminar stresses azz, a2z alz the condition is satisfied

by the use of decaying exponentials.

It remains to satisfy the far-field condition for a22 and

a12. From equation 5.16,

022 =A1e~ x + A2e~xOX + A3 (5.48)

The constant B3 can be taken to be equal to 1 with no loss of

generality. This simply scales the constants Ai in the x

dependence of the stress shapes (see table 5.2) by 1/B3 .

Then, the far-field condition

zimi o L (5.49)
x.. 22 22[ei]

implies:

A = oL (5.50)3 22[o

Similarly for a 12 the far field condition,

12 12(5.51)

implies

A = L (5.52)
4 12 [i
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Now consider the boundary conditions at the free edge.

The condition that a 2z is zero at the free edge implies,

A1 + xA 2 = 0 (5.53)

Similarly, the condition that a2 2  is zero at the free

edge implies that,

A + A2 + A3 = 0 (5.54)

From equations 5.50, 5.53, 5.54 one obtains:
L

22 -
A = - [il (5.55)

L

A = 022[6i] (5.56)

Finally, the condition that al2 is zero at the free edge

gives,

A4 + A 5= 0 (5.57)

and using equation 5.52,

A5  ~ L (5.58)
512[ei]

So far, all Ai have been determined. For convenience they

are summarized in Table 5.3.

Setting B1 -=1 (for the same reason as for B3) and substi-

tuting for Ai, the following expressions are obtained for the

stresses in a ply:
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TABLE 5.3

CONSTANTS IN THE f EXPRESSIONS

A Value

L
022

A1  - [i

L
CY22

A 
2

3  22

A TL
4  12

A 
L

5 12
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CL - ' (e -Ox - e -Xx)] (5.59)
22 22T

2
zz 2 -(e x e -ex L2 + e az + $5) (5.60)z T22E~l 2 4 5

x e -O -eiXxL ( 5 .6 1 )
02z )1722 Eiz + 4g 5.1

z ( . + 2) (5.62)

12 12 (1 - e ) (5.63)

where

OL B . (5.64a)
4 22 [el4

= 5 L B (5.64b)
5 22 5

CL (5.64c)2 12[oi] B2

To determine the Bi (or Bi), the remaining boundary con-

ditions and the condition of stress continuity at ply inter-

faces are used.

The numbering scheme shown in Figure 5.3 is introduced,

where plies are numbered from top to bottom. The total number

of plies in the laminate is n. Also, for each ply, the coordi-

nate system shown in Figure 5.1 is used and is repeated in
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1
2

3

IV
n-1
.n

Figure 5.3. Ply numbering scheme and coordinate system

z

x x 2

b
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Figure 5.3 for convenience. To differentiate between plies,

superscripts denoting the corresponding ply are used.

Since a2z must be zero at the bottom surface,

(n) (z=0) = 0 (5.65)

which implies that

B ) = 0 (5.66)4

For the next interface up, continuity of a 2z gives:

n) (z=t ) (n-1) (z=O) (5.67)a2 zt 2z

or using the expression for a2z (equation 5.61) at any x

location

=t n) (5.68)
4 22E[o]

The procedure can be repeated for the other interfaces.

The general expression for i')(ith ply) is,

i+l
4) y t (5.69)

j=n 1e]

Knowing B 4 and using the condition that azz is zero at

the bottom surface and continuous at the other ply interfaces,

the same procedure as for a2z gives:

i+1 L)2 k=i+l
E [GL t + OL t U i) t (k)] (5.70)

5 j=n 22 222[ej] k=j-1

with

A(n) = 0 (5.71)
5
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and

(n-1) ...t(n) 2

5 =OL2 2 (5.72)22[en]

In exactly the same way as for B 4 and using the condi-

tions on ulz, and equation 5.62 one obtains:

2 12 t (5.73)
j=n [ej]

with

B = 0 (5.74)2

It should be noted that in deriving the above expressions

(W (U) (U)for B2 '4, B5 , it was assumed that each ply has a different

thickness from its adjacent plies. For the special case where

all the plies have the same thickness t, equations 5.69, 5.70,

and 5.73 simplify to:

= t i+1 L(.6a
4 E 22 (5.69a)

j=n [6j]

M .2 i+11LL
52 17 22 + (j-i-1) aL22 (5.70a)

j=n [e.J [o.]

i+1 L
2 t E a12 (5.73a)
2 12

It is important to note that all the stacking sequence

effects are "hidden" in the Bi terms. If the stacking sequence
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in a laminate is changed, these terms change and, as a result,

the exponents X and $ will change.

It can be seen that, with this procedure of determining

B2' B4 , and B5, all the unknnown B. will have been determined

right after the conditions of stress continuity are applied at

the first interface (the one between the first and second

ply). The B1 values are summarized in Table 5.4.

All unknowns (except for A and @) have been determined at

this point. The condition that the top of the laminate is

stress-free (i.e. a( =) has not been sat-zz U 2 z( lz

isfied yet, and it cannot be used to determine A or because

both A and $ cancel out from the corresponding equations. This

condition then, should be identically satisfied and can serve

to check if there are any inconsistencies in the stress

shapes.

Since the variable ply thickness case is algebraically

complicated, only the case with Constant ply thickness will be

demonstrated, i.e. it will be shown that for a symmetric lami-

nate where all the plies have the same thickness, the stress

shapes determined so far guarantee that the top surface of the

laminate is stress-free. However, this is still valid for lam-

inates with plies of variable -thickness.

At the top of the laminate, the condition that a zzis

zero takes the form (see equations 5.60, 5.69a, and 5.70a),
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TABLE 5.4

CONSTANTS IN THE g EXPRESSIONS

B Value

B 1

(i) i+1 LB 2 . 012 t
j=n [ji]

BM 13

B i aL (ji)
B4  ~ j=n [22

(i) i+1 L() 2

B5  j 22 [e +

L (j) k=i+1 k

22 [ej] k=j-1
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OL t 2 +CL + . L t
022[ 2- +[22[n + c22 12[81] [en] [82]

2 [ .. + .022 + t2 [(n-2) 022 +
22Ie n] 2[8 2] 2[an]

+ ~ L L(5)
+ (n-3) c22 n + ... + 22 3 = 0 (5.75)

or rearranging and cancelling out the thickness terms,

I [0L + ... + CL + (ri-i) cL +
22[ 22[e 22[e

(n-2) L 2 *. L L =0 (576)
022E+ .. 2022 + 022 = 

+ (5.7[)
[6n-.1] [63] [82]

This equation must be satisfied identically.

The first quantity in parentheses, however, is zero for a

symmetric laminate loaded only in the x, direction due to the

fact that the forces in the x2 direction must add up to zero

by force equilibrium i.e.

L L0 L
t(O + L2 + ... + 22 ) = 0 (5.77)

Using the fact that for a symmetric laminate,

L L0 22 C;22
22 "2 [On-j+1] (5.78)

the remaining part of the left hand side of equation 5.76 can

be rewritten as:

(n-) L + (n-2) cL + ... + 2cL +
22 0n] 22 en-11 22 103

+ OL _ n-1 (L + ... + OL (5.79)
22 21 2 22 an0 22
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which is valid for n>2. For n=2 the requirement that the lami-

nate be symmetric implies that both plies have the same fiber

orientation and hence there are no interlaminar stresses. Now

the right hand side of 5.79 is equal to zero (see equation

5.77) and, therefore, equation 5.76 is satisfied.

In a similar manner it can be shown that the conditions

that 92z and alz are zero at the top surface of the laminate

are also satisfied. Hence the analysis so far has no incon-

sistencies.

5.6 Energy minimization and the determination of ? and ,

Up to now, the equilibrium equations, both in integral

and differential form have been used and the boundary condi-

tions and stress continuity requirements are satisfied. The

stress expressions derived match asymptotically the CLPT sol-

ution. Also, 'most of the stress-strain and

strain-displacement equations were used for the determination

of a in each ply. Note that there is no need to satisfy any

of the strain-displacement equations since the minimization of

the complementary energy is equivalent to satisfying these

equations on the average. It was convenient to use some of the

strain-displacement equations however, in order to determine

a1
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All the stress expressions are summarized in Table 5.5.

where B 2 , B 4, and B 5 are given by equations 5.73a, 5..6 9a, and

5.70a and the superscript i refers to the ith ply (see Figure

5.3).

It should be noted that different X and $ values could

have been assumed for each ply. However, stress continuity

requires that U , a2 z and a are continuous at a ply inter-

face. Then, if different X and $ values were used, the conti-

nuity conditions would result in equations where the left hand

sides would be expressed in terms of different exponentials

than those in the right hand sides. This would imply that the

coefficients multiplying these exponentials should be zero

and, as a result the interlaminar stresses would be zero in

each ply, which is impossible. Therefore, X and p must be con-

stant throughout the laminate.

The only remaining unknowns now are A and $. These are

determined by minimizing the complementary energy of the whole

laminate which is equivalent to satisfying the compatibility

requirement in an average (variational) sense.

The total complementary energy in the laminate is

n
C = 1 11  i (5.80)

where (i) is the complementary energy in the ith ply and,c

.1 = (oTSo) dV - ff TT u dA (5.81)
C V 7 ~ ~~ Ao ~ ~
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TABLE 5.5

STRESS EXPRESSIONS FQR EACH PLY

Stress Expression

aL +S a L L
11 11 +12 22 ]+ 16 12 S12

S S 11 22

- 13  S16
zz a '12

cyL El-X( -px -1 e"~
a22 a22 [ --- e

ay 2 (xe - ~ ex)(L z + )
zzx1 22 4 5

a2z 2 )ay2  z + '4)

2z -1 22[oil 4

0 z oe- q ( aL [oi +
lz 12 le +] 2

02 (L - e-x
2 12oi]
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where V is the volume of the ith ply,

A is the area of the surface over which displacements k

are prescribed, ;T is a vector with the tractions corre-

sponding to i, ;, is the stress vector, and ; is the

compliance tensor for the ith ply given by:

S 11
S

S12

S-13

0

0

S 16

S 1 2

S 2 2

S 2 3

0

0

S 2 6

13

S 2 3

S33

0

0(

S36

0

0

0

S 44

S 45

0

0

0

0

S 4 5

S,55

0

S 16

S26

S36

0

0

S66

(5.82)

If the Sij values for a 00 ply are known, the entries in

g can be computed for any ply

transformation relations.

For a 00 ply,

S -

with the use of the usual tensor

(5.83)

S 22 E--
22

533 E 33

S -
23

555 G G
13

(5.84)

(5.85)

(5.86)

(5.87)
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S66 G

= -12S 12 112

S13
= 3
EII

S "23
23 E22

where E 1 1 ,E 2 2 ,E 3 3 ,G1 2 ,G 1 3,G 2 3 ' V 1 2 1 V1 3 ' V23 are unidirectional

ply constants and can be determined from the experimentally

measured values of EL, ET LT, GLT, E Lz' VLz GL [4].

It can be seen that,

= n (x,o) (5.92)
c C0.

Then, for IIc to be stationary,

cc

6= 0 (5.93)

which implies that the equations

c = 0 (5.94)

C = 0 (5.95)

(5.88)

(5.89)

(5.90)

(5.91)
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must be satisfied. Terms in the expression of H that do not
C

depend on A or 0 will not appear in equations 5.94 or 5.95 and

hence can be neglected in the H c expression.

Consider now the second term in equation 5.81. In

general, far from the points where the load is introduced, the

displacement u is not constant with x. However, at the points

where the load is introduced, (say at the loading grips of a

tensile specimen), the displacement u throughout the laminate

is constant. This is the prescribed displacement in the lami-

nate. (Prescribed in the sense that at the edges of the

laminate where the loading is introduced, the entire surface

is forced to have the same displacement).

This displacement will be the same as the displacement of

a center point M at the two ends of the laminate as illus-

trated in Figure 5.4 which can be determined easily

aum
UM - dx1  (5.96)

1 x1=a

where the origin is taken at the center of the laminate (see

Figure 5.4).

But the strain at point M will be the same as the strain

E 11at the center of the laminate. So,

au
i C (5.97)ax1 1
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la
z ---- ;

22a

,a

Figure 5.4. Single ply under tension
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and that Ell is constant. The expression for E11 in terms of

the stresses is given in equation 5.21. If the expression

developed for all, equation 5.38, is used to substitute for

a 11in equation 5.21 the following expression for E11 is

obtained:

() L (i) L (i) L
- SU 1 + 12 022 + S 1 12 (5.98)[ 1 1 ei] lei] [ei]

where i corresponds to any ply since the above expression is

constant for all plies and since the interlaminar stresses are

zero in the laminate center.

Therefore, using equation 5.96,

U= (S a + S ( 022 + S 1 2 ) 1  + 2 (5.99)S 1 1 . Lei] + 12 L[i 1) 12eL 1 )

By symmetry, at xl=0 u must be zero and therefore C is2

zero. Hence,

(i) L (j) L (i) L
Um = (S11  11 + S12 022 + S16 a12 )a (5.100)

Since the stresses are independent of x1 , the x1 inte-

gration in the first term of equation 5.81 will simply yield a

factor 2a (the specimen length) multiplying the remaining por-

tion of that term.

Then, R( can be evaluated per unit of longitudinal
C

length. Also, by symmetry, only one quarter of the ply needs

to be considered.
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As a result, substituting for u, UM' and a11 (from

equations 5.82, 5.100, and 5.38 respectively) and using the

fact that azz integrates to zero when integrated with respect

to x (equation 4.14):

1 1 i 1  tS l 2 +- 2a+
( b t 12 2 1 13 2
c ff 1(S22 2 22 + 7 (S33 zz +

a2 + 5 + (S6 16 2 + k S 22 +
-2 2Z 2 1z 7 66s jy 12 '112 22

k + (S S 12S 13) ; CT + ( S 12 S16+
S 16'12+ 23 S 11 a22azz + (S26  ~ Sa 12 22 +

(S36  S zz12 2z dxdz (5.101)
36 S11 z1+452cz

where

S(iL + S SaL +S L
k11 11 12 22 16 12(

k()=[i [M LOji (5.102)
1 )

S 11

and t, a., Sij, k are quantities corresponding to the ith

ply, and the coordinate system shown in Figure 5.1 is used.

If the expressions 5.59-5.63 are used, the integrals in

equation 5.101 can be evaluated. For simplicity the following

assumption is introduced:

e-b e 0 (5.103)
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This implies that the laminate is wide enough so that $b

or XAb is very large. A simple order of magnitude analysis is

needed to determine how large b should be, for equation 5.103

to be valid. Recall that 1/$ has the dimensions of length.

The length scales of the problem are t , h, b. Since equation

5.103 requires that b is essentially infinite, $ cannot scale

with b. It cannot scale with t either because $ is constant

throughout the laminate and the thickness of a single (arbi-

trary) ply cannot determine its magnitude. The only

possibility that remains is that $ scales with the laminate

thickness h. So,

oh = 0() (5.104)

and

ob = b (5.105)

Arbitrarily, one can consider equation 5.103 to be satis-

fied if b/h>10. Then, e 44.5x10-5 . Using equation 5.105, the

condition on b can be written,

b > 10h (5.106)

Thus, if equation 5.106 is satisfied, equation 5.103 will

be valid.
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Each of the integrals in equation 5.101 can be evaluated

with the .substitution of the expressions for the stresses from

equations 5.59-5.63.

fb t ( r22 2 -3X 4 + X3 + 4X 2 + x-3 d
o 0 22 22 2xdz d

fb ft 33 2 2 dxdz = 3 d2f~(33  S 1 1 zz XT 2

o 0

fb f 2 2z dxdz= d3

fb t 5 z dxdz =d4

b t 16 2 dvz_ 5
66 57 (6 S 6 a22 dxdz = d5--- (5.107a-k)

0 0 11

fb t k oSk 2 2 dxdz = - d6
I 1 12 22 X

fb ft k _ d7dxz
f I 1 16 012 dcz

0 0

b t k 126 12
f f 23 ( S22 a zz dxdz = -X d8
0 0 11

fb t S12S16  2 22 dxdz = -3x3 X 2 + 2x + 2 d9
0 0 526-S-jy1' 12 022 d(dX 2_ d9

fb t (S 3 16 0 a dxdz = d10
S 36 -3-11--- 12 AI

fb 45- 02z a z dxdz = dli
0 0
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where terms independent of X, $ have been omitted, and,

(OL ) 2t
22[ei

da = [2i (S12

d2 =Z [3(22 li

20 02 
t 2

22 lei] 5

60A 5S

20(52 53

d3 =6 22

S 122

22 12

2 t 4+ 15 L4 t3 +

+ 20( 4)2 t2 + 60 4 $5 t +

2
13

11

2 t2 + 3 cL

lei]22[i

d - ((a L 2 t2  + 3 O2 t + 3(2 )2) S4 6 12[i 12 [ol 2 2 5

2

d- 3  1L 2 S16
5 12[i) 66

4 t + 3( 4)2) S44
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d6  L t k S6 22[ei ] 1 12

d = L
7 2[

(5.108a-k)

t k S 16

L t
8 022[.l

[ L
22[ei] t2 + 3 t + 6 5 ](S2 3

L L
012 022 t

9 2

d 210 12[6i]
t

d t [2 oL
11 T2 [ 12[ei]

2L
[22 i

2S116
26 s 1

t2 + 3 4 t + 6 5 36

L
022
[ ei]

tL2 + 3 2 2 t +022 [i

3 oL 2 t + 6 2 45I312 Lei]64 4 2 S45

_ 12 13

S 11

_ 13 16
11
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I(i)
In the above, t,. ,B are quantities for the ith ply.

It should be noted that in the case where instead of

using equation 5.38, a is taken to be equal to a the sec-

ond term in 5.81 is independent of X and $ and the expressions

for d simplify. The d. values for this case are given in

Appendix 4. Equations 5.107a-k are still valid but with the d

values as given in Appendix 4.

Substituting these results into equation 5.101 and using

equation 5.80 to obtain the laminate energy RI'

+ 6 2 7- 6+ + 2 + -f10 -+

f. f 2 3 f f 3x 2
2 + -- + +1 2 -- ( + f ) ( +1) + (5.109)

where

n
f. = z d. (5.110)

j=1

Note that for the actual implementation of the method

only half the laminate (in the z direction) is considered

since it is symmetric.

Making Hc stationary (equations 5.94 and 5.95), results

in the following simultaneous equations for X and $:

= x4 4 f 2 + 342 + x2 (2f6 + 2f 1 2 + f3,2 - 2f $2

ax2 2 +8f 1

- 2f8 02 + 2f9 + 2fI) + x (4f6 + f9 + 6f 1 ) + 2f6 + 4f 9

+ 3f = 0 (5.111)
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= 3f2 X3 4 + 2 2 + 2f 11 + f3 - 2fx 2 - 2f8 X2 +

+ f4 X) + X2 (2f7 + 2f6 + f5 + 6f9 + 3f1 ) + x(2f7 +

+ 4f6 + f5 + 8f9 + 5f ) + 4f9 + 3f1 + 2f 6 = 0 (5.112)

5.7 Solution of the equations for A and

Both equations 5.111 and 5.112 are biquadratic in $. This

results from the fact that $ is included in both exponents in

equation 5.15a. The fact that the two equations are

biquadratic in $ simplifies their solution greatly since, for

a particular A value, e can readily be obtained. This was the

reason alluded to in section 5.2 for making the two exponents

in equation 5.15a A and Ac rather than A and $.

Equation 5.112 is cubic in A. This means that, for a par-

ticular $ value, the system of equations 5.111 and 5.112 has

at least one real A value as a solution. Furthermore, since

5.111 is quartic in A and at least one real A value exists,

there must also be another real A value which satisfies both

equations. Otherwise, if there were only one real A value as

a solution, 5.111 would have three complex solutions for A

which is not possible.

In general, the above system of equations has sixteen

pairs of A and $ as solutions. All sixteen must be found and

the one that minimizes the complementary energy (equation

5.101) must be chosen as the only acceptable solution.
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The two equations are solved by using the following iter-

ation scheme:

1. A starting q value is assumed (see below).

2. That value of $ is substituted in equation 5.111 which

is solved for A iteratively.

3. Out of the 4 A's that are solutions of 5.111 the ones

that are negative or complex are discarded. Negative

solutions are discarded because the exponentials in

the stress expressions would increase rather than

decay. Complex solutions are discarded because, in

general, they result in complex laminate energy.

From the remaining A's the one which, along with the

assumed value of $, minimizes 11 is chosen. If there

is only one positive A value, that one is the one

used in the next step.

4. The value of A found is substituted in 5.112 which is

solved for $2 (exactly) from which $ is determined.

If there is more than one positive $ value, the one

which, along with the A value found in step 3, mini-

mizes Hc is used.

5. This $ value found is used as the corrected value in

step 2.

The procedure is repeated until some predetermined level

of accuracy on $ is acheived (in this case the requirement was
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that two successive values differ by at most one part in a

million).

The above procedure guarantees that no X, c pair of the

possible 16 pairs is "missed".

5.8 Computer implementation

The solution procedure was implemented on a computer pro-

gram (in FORTRAN) on a PDP-11/34 computer.

The input to the computer program consists of:

1. Laminate information: a) number of plies; b) material

type, ply thicknesses, and fiber orientation for

each ply; and c) the 8 elastic constants for a 00

ply of each material type.

2. The CLPT solution which was obtained from another pro-

gram already available.

The output of the program consists of:

1. Compliances Sij for each ply.

2. A and $.

3. Half-laminate energy.

4. Boundary layer length (the definition of the boundary

layer is given in chapter 8).

5. The coefficients multiplying the x dependence in the

a , a , l stress expressions for all ply inter-
zz 2z fz

faces.
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For the initial value, equation 5.104 can be used.

Actually, for reasons to be explained in chapter 8, the ini-

tial value used is,

*init = (5.113)

The iterative solution for the polynomial in A at step 2

of the solution procedure is accomplished by the

Newton-Raphson method. The iteration is considered to have

converged when two successive A values differ by less than

.00001.

The complete listing of the program code can be found in

Appendix 5.
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CHAPTER SIX

SPECIAL CASES

There are two special cases where the analysis simplifies

greatly: (1) Angle-plied laminates and (2) Cross-plied lami-

nates. The solutions for these two cases are presented below.

6.1 Angle-plied laminates

Angle-plied laminates are the laminates in which there

are only +6 or -0 plies and for each +6 ply there is one -8

ply.

For these laminates, the CLPT theory predicts that the

a 2 2 ply stresses in laminate axes are zero everywhere:

L22 =0 (6.1)
22[ei]

Then, equations 5.38 and 5.59-5.63 for the ply stresses

are greatly simplified to:

S(i) LY (i M

(i) +1S16  012 S16  (i) (6.2)

11 (I,1 012
11 11.

G = 0 (6.3)
22

= 0 (6.4)

2 = 0 (6.5)

= oe O L Z + ()(
1Z e~~X ( 12 lei] 2 (6.6)
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() = L (0 - -Ox) (6.7)
12 12

The result that aL everywhere is in agreement with the
2z

conclusions of chapter 4 (See Figure 4.3a). Also, as a check

that the analysis is consistent, it can be shown that, if

equation 6.5 is true, then equations 6.3 and 6.4 follow from

the equations of differential equilibrium.

Assume that equation 6.5 is true. Then the differential

equilibrium equation 5.2 gives:

a 22 = 0 (6.8)
ax

2

Then, a2 2 can only be some function of z:

22 =M (z) (6.9)
22 1

where M9) is that unknown function of z. However, the fact

that at the free edge a(210 implies that

M (Z) = 0 (6.10)

and, as a result, a22 is zero throughout the ith ply. Thus,

equation 6.3 is valid.

Using equation 6.5 to substitute in the differential

equilibrium in the z direction equation (equation 5.3) one

obtains,

aa

az

which means that a is only a function of x

(i = NM (x2) (6.12)
zz 1 2



100

However, the top surface of a laminate is stress-free and

thus a 1jtrO which implies that
Zz

() (X2 = 0 (6.13)
1 x2)0

and az is therefore zero throughout the first ply. Then,

applying equation 5.12 at the first ply interface, where it

was shown that, due to stress continuity a (2 Nz=t)=a (1 )(z=0)=0,zz zz

it follows that

N (2) X 0 (6.14)1 2

which implies that a is zero throughout the second ply.

This procedure can be repeated for all plies to show that azz

will be zero throughout the laminate. Hence, equation 6.4 is

also valid.

It is important to note that in equations 6.3-6.7, only $

is unknown as X does not appear in the formulation. Substitut-

ing the stress expressions 6.3-6.7 in the expression for c

and minimizing, one obtains the following equation for $:

2f7 + f4 2 + f5 = 0 (6.15)

which can be solved exactly to give

f5 + 2f7 1/2
] (6.16)

14
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where f 5' f7, and f 4 are given by equation 5.110 with the use

of equations 5.108d, 5.108e, 5.108g. In the case that the

quantity in brackets in equation 6.16 is negative, is com-

plex and the method fails. (No such case was encountered when

sample -cases were solved). Thus, for angle-ply laminates the

solution can be obtained exactly and no iteration is involved.

6.2 Cross-plied laminates

Cross-plied laminates are the laminates which have only

00 and 900 plies and for each 00 ply there is a 900 ply.

For these laminates the CLPT solution shows that through-

out the laminate:

L
12[ei]

= 0 (6.17)

Substituting

5.59-5.63 yields

22 22[6i

this result in the stress expressions

(e- O l e- X)3 (6.18)
TT

0 (i) _ 2 x e- )LOX e-OX) (OL z2 z + W )
)zz - X T .22 2 4 5

OM) 4 x (e-O e-'O' - L
2z = ei )(22

1z

(i)
12

z + B )4

(6.19)

(6.20)

(6.21)

(6.22)
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Equation 6.22 is in agreement with the well-known fact

that the in-plane shear stress a1 2 is zero for 00 and 900

plies. Then, equation 6.21 can be shown to follow from the

equations of differential equilibrium.

From equation 5.1 (differential equilibrium in the x

direction),

(i)
1z = (6.23)
az 0

which means that alz is a only a function of x2 . This can be

expressed as

' = N M -(x2  (6.24)
lZ 2 2

Again, the requirement that the top surface is

stress-free gives Nlx2 )=O from which alz is found to be zero

in the first ply. Repeating the procedure at each interface as

was done for azz in the previous section, it can be shown that

a lz is zero throughout the entire laminate.

Introducing 6.18-6.22 in the expression for Hc and dif-

ferentiating with respect to X and p, the following two

equations are obtained:

x4 4f2 + 2 3 4 f2 + X2(2f6 + f3 2 - 2f84 + 2f1 ) +

x(4f6 + 6f ) + 2f6 + if = 0 (6.25)

and

2f 6 2 + 4f6x + 2f 6 + 3f2 3 4 + f3 2 2 - 2f 8 2 2 + 3f 1X2 +

+ 5fIx + 3f = 0 (6.26)
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Note that equations 6.25 and 6.26 could also be obtained

directly by performing the integrations in the IIc expression

(see equations 5.101, 5.107) and setting G1 2 =0 (equation

6.22).

With some manipulation, equation 6.26 can be rewritten as

2f2 3 4 + X2 (2f6 + f 3 2 - 2f8 2 + 2fI) + X(4f6 +

+ 6f1) + 2f6 + 3f1 + f2 X3 4 + f1X2 - f 1X = 0 (6.26a)

and subtracting equation 6.25 from equation 6.26a one gets:

- 04 4 f 2 + f2 X 3 4 + f X2 - f = (6.26b)

or rearranging,

X(X-1)(f X2 4 2) = 0 (6.26c)

There are three possible conditions under which this

equation will be satisfied. Consider first the case where

- X2 04 f2 0 (6.27)

Then, solving for p

S1[ ) 1/2 1/2 (6.28)

2

which can be substituted in equation 6.25 to obtain an

equation for X:

x2 (2f6 + 3f1 ) + X(4f6 + 8f + (f3 - 2f8))+ 2f6 + 3f, =0 (6.29)
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or rearranging

2 + X (f3 -2f8) + 4f6 + 8f +10 (6.30) 12 + x g~26 + 3f3 +I (.

It-can be shown that for some cases ([n/9 0n)s AS1/3501-6

laminates for example) the above equation has complex roots

(See Appendix 6). For such cases, equations 6.30 and 6.28 can-

not be used to determine X and $ because these would turn out

to be complex. For such cases, the remaining two possibil-

ities are from equation 6.26c:

either X=0

or X-l=0

For the case where X=0, equations 5.59-5.63 reduce to the

CLPT solution which is not valid close to the free edge. The

only case that remains is

x = 1 (6.31)

Going back to equation 5.15a it can be seen that the two

eigenfunctions e~X, e~X, which are used to approximate the

stress shapes, coincide for X=1. However, for azz to cross the

x axis at least once, at least two eigenfunctions of this type

are needed. In a manner analogous to the theory of differen-

tial equations where, if the two solutions of a second order

differental equation coincide, one of them must be multiplied

by x, one can assume that the two modes in the present case

are e7" and xe~..
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So the equation corresponding to equation 5.15a for the

cross-plied case is

22 =e (A + A2 x) + A3  (6.32)

Following the procedure described in section 5.1 the non-

zero stresses in a cross-plied laminate are found to be:

1. [1 - (1 + ox)e- OX (6.33)
2Z 22[ei]

GM = 2 x e- ox [ i) + ,L2 z] (6.34)2z 4 22 [oil

(i)= $2 e-Ox ( - ox)(Bi) z + BM + 2 Z) (6.35)
zz 4 +B5  +22 2

where - , are the same as before (equations 5.69, 5.70).

Also, all is again given by equation 5.38.

Substituting these into the expression for Rc:

3 1 l 1 3 2 1 2f 6 (6.36)
~~ 3~ + 3--2- -- (636

where f are the same as in equation 5.107.

The $ value that makes Hc stationary is given by,

0 (6.36a)

This is the only equation since X is not present in this case.

The above equation can be rewritten as

3f2 0 + (f3 - 2f8 ),2 + lfI + 8f6 = 0 (6.37)
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from which $ is found to be:

1/2L (f3 - 2f8 ) + [(f 3 6 2f82  12f2 O 6 )j (6.38)
2

Again, if the quantity in the brackets is negative, $ is com-

plex and the method fails. No such cases have been encountered

so far. If such a case were encountered, one would have to

eiefncin(eg 2 -x $4x.use a different eigenfunction (e.g. x e ) along with e in

equation 5.15a.

This analysis is used if equation 6.30 has no real sol-

utions. If it does, then equations 6.28 and 6.30 can be used

to determine A and $ for cross-plied laminates. A special case

where equation 6.30 has real roots is presented in chapter 7.

For that particular case, the solution obtained using

equations 6.30 and 6.28 is compared with the results obtained

if equations 6.33-6.35, and 6.38 are used (also in chapter 7).

Note that, no matter which of the two methods is used, the X

and 4 values can be determined exactly without any iterations.

6.3 Comments on the special cases

It is seen that for angle-plied or cross-plied laminates

the solution is greatly simplified. The two unknown parameters

A and 4 can be determined in closed form and no iterations are
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required. The cross-plied case is slightly more involved

because in some cases the original eigenfunctions coincide and

a slightly different analysis is required.

Both of these special cases, angle-ply or cross-plied

laminates, were incoporated in the computer program. For

cross-plied laminates the case where both X and c exist is

checked first and, if equation 6.30 has complex roots, the

different analysis, where only $ is present is used.
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CHAPTER SEVEN

DISCUSSION AND RESULTS

Several applications of the theory presented in the pre-

vious chapters are discussed in this chapter. The predictions

of the present analysis are compared to the predictions of

other analytical methods. Some further implications of the

stress model are also discussed.

7.1 Typical stress distributions and characteristics

Analyses were performed on a large number of laminates.

The presentation of results of the calculation of interlaminar

stresses for any particular laminate requires a large number

of graphs to show each of the stresses at each of the ply

interfaces. Therefore, it is not feasible to show the results

of a variety of laminates. Thus, two laminates have been cho-

sen to illustrate the major characteristics of the solution.

These laminates are [ 15/0]s and [0/ 15]s laminates

(AS1/3501-6 system) and typical stress plots for these two

laminates are shown in this section. The first laminate is

known to fail by delamination [41] and results for the second

will be presented so that some of the effects of changing the

stacking sequence in a laminate can be examined. Plots showing
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stresses as functions of x, the distance from the free edge,

will be presented only at ply interfaces, since these, being

the weakest regions through the thickness of a laminate, are

most important for delamination considerations. Solutions for

other z locations can be accomplished just as easily. In addi-

tion, only results for the top half of the laminate are pre-

sented since, at the remaining part, the stresses repeat

symmetrically with respect to the midplane (or antisymmet-

rically in the case of shear stresses).

The CLPT solution for both laminates is shown in Table

7.1. The same uniaxial loading of 889 MPa is used for both.

The interlaminar normal stress a at the first three ply

interfaces is shown in Figure 7.1 for the [ 15/0]s laminate.

The corresponding plot for the [0/ 15]s laminate is shown in

Figure 7.2. The interlaminar shear stresses a2z and alz are

shown in Figures 7.3 and 7.5 for the [ 15/0]s laminate and in

Figures 7.4 and 7.6 for the [0/ 15]s laminate respectively.

A number of general comments can be made upon examination

of Figures 7.1 through 7.6. One, the normal stress a

reaches its maximum magnitude at the free edge and then drops

to zero within a few millimeters from the free edge after

crossing the x axis once, in agreement with the predictions of

chapters 4 and 5. Two, the shear stress a2z is zero at the

free edge, in agreement with the stress-free boundary condi-

tion, rises to some maximum value and drops to zero within a
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TABLE 7.1

CLPT SOLUTIONS FOR [+15/0]s AND [0/+15]s LAMINATES

(APPLIED LOAD = 889 MPa)

Stresses [+15/0]s [0/+151s
In ply T Ply 2 Ply 3 Ply I Ply-2 Ply 3

[MPa] (+15') (-150) (00) (0*) (+150) (-15*)

rL 839 839 990 990 839 8391 1[ei]

L 16.0 16.0 -31.9 -31.9 16.0 16.0
22 lei]

yL 193 -193 0 0 193 -193
12[ E6i
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few millimeters from the free edge without crossing the x

axis. Three, the shear stress alz reaches its maximum value

at the free edge and drops to zero within a few millimeters

from the free edge without crossing the x axis. Four, the

point at which azz crosses the x axis is the same for all

interfaces (see Figures 7.1 and 7.2). Similarly, the point at

which a2 z reaches its maximum value does not change from

interface to interface (see Figures 7.3 and 7.4) This is a

result of the fact that the shape of the interlaminar stresses

is governed only by the values of X and $ which, being lami-

nate constants, do not change from interface to interface.

Five, all interlaminar stresses drop to zero within a small

.distance (about a millimeter) from the free edge (for a dis-

cussion on the boundary layer see section 7.5) thus matching

the CLPT prediction of zero interlaminar stresses far from the

free edge. Six, changing the stacking sequence, thereby hav-

ing the 00 ply on the outside rather than at the midplane,

changes the sign of the a and a 2z stresses but does not

change -the sign of a lz. This is very important in the case of

the normal stress azz because it turns from tensile (for

[ 15/0]s) to compressive (for [0/ 15]s) at the free edge and

therefore will not cause delamination in the [0/ 15]s

laminate. The maximum stress values (absolute magnitudes) are

not the same for the two stacking sequences, that is, moving

the 00 ply on the outside of the laminate changes both the
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sign of a and a2 and their shape. On the other hand, Glz at

the +15/-15 interface remains unaffected. Note that at the

other two interfaces (Figures 7.5 and 7.6) alz is zero.

The through the thickness variation of interlaminar

stresses is shown in Figures 7.7, 7.8, and 7.9 for the

[ 15/0]s laminate. Stresses are plotted as a function of z

from the top surface to the midplane of the laminate for

x=.05mm. (This value of x is chosen instead of the free edge

itself because, at that distance from the free edge, the

assumption of homogeneity is still valid). It is important to

note that the interlaminar shear stresses a2z and alz (see

Figures 7.8 and 7.9) are linear within each ply. They are con-

tinuous but their derivatives with respect to z are

discontinuous at some ply interfaces.(between -1E and 6 and

-150 and +150 plies in this case). The normal stress az is

quadratic within each ply, is continuous, and its derivative

with respect to z is also continuous. The discontinuities in

the z derivatives of the interlaminar shear stresses result in

the "kinks" observed in the stress plots in Figures 7.8 and

7.9 and are due to the fact that the in-plane stresses a22 and

012 are discontinuous at ply interfaces. (The in-plane stress

distributions will be presented below). On the other hand, the

derivative of azz with respect to z is continuous at ply

interfaces because (see equilibrium equation 5.6) it is equal

to the x derivative of a2z. The partial derivative of 0 2z with
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respect to x is continuous in z since (see equation 5.10) it

is proportional to the function g2 3 (z) which is continuous in

z by construction (see section 5.4 on the continuity of a2z)'

All interlaminar stresses are zero at the top surface of

the laminate (see Figures 7.7-7.9) in agreement with the

boundary condition that the top surface of the laminate is

stress-free. The numerical values generated by the computer

program for a 2z and a lz at the midplane are six to seven

orders of magnitude smaller than at other interfaces. Thus,

the shear stresses a 2z and a lz are zero at the midplane (see

Figures 7.8 and 7.9) in agreement with the argument made in

[5] that, due to symmetry, these stresses must be zero there.

The situation for the in-plane stresses a 1 1 , a2 2 , and a1 2

is quite different from that for the interlaminar stresses.

Consider the expression for a1 2  (equation 5.63) which is

repeated here for convenience:

12 12 [ (1 - e~ ) (5.63)

If, at a ply interface, the two adjacent plies do not

have the same fiber orientations,aL is different in the twol2rei]

plies and a1 2 is discontinuous at a ply interface. Even if the

fiber orientation is +e in one ply and -e in the next, oL

changes sign at the ply interface and hence a1 2 is discontin-

uous. As a result, the z derivative of alz will be

discontinuous (see equilibrium equation 5.4).
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For a2 2 the expression is (equation 5.59)

022 '22 - (e - e )] (5.59)

Again, the only part of the expression that changes from

one ply to another is L22[eif Only if the plies adjacent to the

interface of interest have the same fiber orientations (+e/+e)

or fiber orientations of opposite sign (+6/-6) will L

remain the same, thus resulting in a22 being continuous at

that interface. In all other cases a22 is discontinuous across

a ply interface. As a result, the z derivative of a2z (see

equilibrium equation 5.5) will be discontinuous except at

+e/+e or +e/-O interfaces.

The expression for a 11 (equation 5.38) is,

SL S +SCL1 e + 12 22 +S16 12 S S S
01 = [ei] [6i) [ei] 12 S13  6 (.8

a1 22 - 1  
0zz ~ 2 (5.38)

This expression does not change across an interface only if

the adjacent plies have the same fiber orientations (+0/+0) or

fiber orientations of opposite sign (+8/-6). The reason is

that in these cases Sil, S1 2 ' 1 3 ' 1  ' do not changeS121 S11 l[Oi]' 22[ei]

across an interface and S ,aL shift sign so that their
16' 12[ei,

product S16 12[L ]does not change across an interface. For all

other cases, a will be discontinuous at a ply interface.

It should be pointed out that these discontinuities in

a , a22, and 012 are a result of the requirement that far
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from the free edge, the CLPT solution is recovered. The CLPT

solution, however, gives all, 022, and a12 stresses that are

discontinuous at ply interfaces (see for example the stress

values in Table 7.1).

Since the in-plane stresses a11, a22, and a12 are gener-

ally discontinuous at ply interfaces, the value of these

stresses at the interface will depend upon the ply from which

the interface is approached in the calculation. This discon-

tinuous nature of the in-plane stresses is their only z

dependence. Thus, these: stresses are constant through the

thickness of an individual ply. Therefore, the variation of

the in-plane stresses with distance from the free edge is giv-

en for a particular ply in Figures 7.10-7.15.

All in-plane stresses approach their CLPT value far from

the free edge. Near the free edge they differ radically from

that value and this should be taken into account if these

stresses are included in a stress-based failure criterion.

7.2. Variation of $, X$ with laminate types

The values of $, X$ for the [ e/O]s and [0/ e]s laminate

families are shown in Table 7.2 for various values of the lam-

ination angle e. These values are plotted as a function of e

in Figures 7.16 and 7.17.
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TABLE 7.2

VARIATION OF 4, x AND xo WITH LAMINATE TYPE AND LAMINATION ANGLE

[+e/0]s [0/+e]s

e x x

5 12088 0.42637 5154.1 12089 0.29128 3521.9

10 10358 0.53417 5532.8 10354 0.36249 3753.3

15 8750.9 0.68424 5987.7 8730.6 0.46235 4036.6

20 7602.4 0.84143 6396.9 7549.5 0.57011 4304.0

25 6901.0 0.96886 6684.0 6804.3 0.62242 4507.1

30 6558.1 1.0396 6817.8 6416.3 0.71933 4615.4

35 6487.6 1.0486 6802.9 6309.3 0.73181 4617.2

40 6629.5 1.0046 6659.9 6430.9 0.70177 4513.1

45 6958.3 0.92061 6405.9 6761.6 0.63615 4301.4

50 7493.0 0.80627 6041.4 7322.8 0.54045 3957.6

55 8317.0 0.66431 5525.1 8192.9. 0.41107 3367.9

57.5 8888.6 0.57773 5135.3 8792.2 0.32141 5135.3

60 9603.5 0.42558 4087.1 9557.9 0.16948 1619.9

61 9943.3 2.8930 2876.6 9665.0 8.9940 89624

62.5 10463 0.56325 5893.6 10397 1.09738 11409

65 11397 0.44532 5975.1 11231 0.53201 5975.1

70 12190 0.39358 4770.0 12181 0.37053 4513.2
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As it is seen from Table 7.2 and Figure 7.16, for a given

angle, $ is approximately the same for the two laminate fami-

lies. As the lamination angle e increases from 00to 400, $

decreases.. At 0 approximately equal to 400, $ reaches a mini-

mum and then increases with increasing lamination angle. The $

values for the [0/ e]s family are always smaller than the $

values for the [ O/0]s family except for lamination angles

larger than 650.

The situation for X$ is somewhat different as can be seen

in Figure 7.17. The values for the [0/ e]s family are about

two thirds of the values for the [ B/O]s family. For both lam-

inate families X$ increases with lamination angle up to

e ~300. It then starts decreasing until e reaches approximate-

ly the value 60 0 .At this point, (actually at a e value between

600 and 610) there is a jump in the curve as shown in Figure

7.17 and the X$ values become extremely high. For larger lami-

nation angles, X$ drops rapidly so that for e larger than 690

the X$ values are again comparable to the X4 values that cor-

respond to lamination angles smaller than 600. This "jump" in

the 2$ curve is more pronounced in the [0/ O]s family. It can

be explained easily if one considers the CLPT solution for

these laminates. Table 7.3 shows the CLPT solution for the

[ 60/0]s and [ 61/0]s laminates. The a2ivalue is very small.22[OiJ

Also, these values have different signs from one laminate to

the other in plies that have the same z location in the two
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TABLE 7.3

CLPT SOLUTION FOR [+60/0]s AND [+61/0]s LAMINATES

(APPLIED LOAD a = 100 MPa)

Stresses [+60/0]s [+61/0]s

In Ply 1 Ply 2 Ply 3 Ply 1 Ply 2 Ply 3[MPa] (+600) (-60*) (00) (+610) (-610) (00)

CL 24.4 24.4 251 24.0 24.0 252
1l[ei]

CL 0.180 0.180 -0.260 -0.012 -0.012 0.024022[lei

CL 5.08 -5.08 0 4.60 -4.60 0
12
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laminates. This means that for some value of the lamination

angle between 60 and 610, a2[iwill be identically zero and

this then will be the same as the special case presented in

section 6.1. As was shown in that section the X value does not

appear in the solution since the stresses whose expressions

involve X are zero identically. Therefore, the eigenfunction

e (see equations 6.2-6.7) is sufficient to describe the

stress shapes. Thus, the solution that involves both A and $

will be consistent with this observation only if the contrib-

ution of the eigenfunction e~X is negligible for lamination

angles between 600 and 650. This means that A$ must be very

large and positive in that region which is exactly the case as

illustrated by the A$ values in Table 7.3 and Figure 7.17. Of

course, if 0 is equal to that critical value between 600 and

610 for which a 22 10 is exactly zero, X will be infinite.

Another way to explain this behavior is to note that in

this region of lamination angles (60'-65 ) the solution should

be similar to the solution obtained for angle-ply laminates in

section 6.1. This can be demonstrated by actually determining

the $ value for laminates with 0 values between 600 and 650

using the solution method developed for angle-plied laminates.

For example, for a [0/ 61]s laminate treated as an angle-ply

laminate the $ value is found to be 9959.507 mlwhile the gen-

-1
eral method using both X and 4 gives a e value of 9965.006 m

The difference between the two is only .055%.
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It should be noted that an analogous situation may occur

if the stacking sequence and ply orientations in a laminate

are such that the in-plane shear stress L is zero in all

plies. In that case the solution should be very similar to

that obtained for cross-plied laminates in section 6.2.

7.3 Constant versus variable longitudinal stress in each ply

It was indicated in section 5.2 that, instead of deter-

mining all in each ply with the use of the strain-displacement

equations, the CLPT value L could be used for a1 through-

out each ply. This latter procedure is obviously less rigor-

ous and would be preferred only if it gave similar predictions

for the interlaminar stresses since it simplifies the calcu-

lations somewhat (see expressions for the constants di in

equation 5.108 and appendix A4).

This is not the case however. Not only does a1 1 differ in

the boundary layer by as much as 95% as shown in Figure 7.18,

but the a zz' 2z and alz predictions show appreciable differ-

ences (from 5% to 20% in regions close to the free edge)

between the two approaches as illustrated in Figures 7.19,

7.20, and 7.21. Therefore, the more rigorous approach to

determine a11 (equation 5.38) should be used.
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7.4 Sensitivity of the solution to basic ply three dimensional

elastic constants

In all the analyses presented in chapter 2, except the

one in [31], the values for G23 and v23 of the basic

unidirectional ply used are taken to be the same as those of

G13 and V1 3. This, however, is not the case. These

three-dimensional elastic constants were measured by Knight

and Pagano [42] and were found to be quite different from the

values usually assumed. Actually, v2 3 was even found to be

larger than 0.5. The elastic constants used in other analyses

as well as those used in this analysis (the measured values)

are shown in Table 7.4.

The interlaminar stresses azz, 2z and alz at the +15/-15

interface of the [ 15/0]s laminate obtained using the two dif-

ferent sets of elastic constants, are shown in Figures 7.22,

7.23, and 7.24. The differences are small and one might be

tempted to say that it is not very important which set of con-

stants is used. However, for other laminates the differences

may be appreciable. For example, for a [ 60/0]s laminate the

set of elastic constants used by most investigators results in

the discriminant of the p polynomial (equation 5.112) being

negative irrespective of the starting $ value. This means that

both A and $ are complex in this case which is not allowed. On
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TABLE 7.4

ELASTIC CONSTANTS USED IN THE PRESENT (MEASURED)
AND IN OTHER (ASSUMED) ANALYSES

Constant Measured Assumed

E 130 GPa 138 GPa

E22 10.5 GPa 14.5 GPa

E33  10.5 GPa 14.5 GPa

G12 6 GPa 5.9 GPa

G13  6 GPa 5.9 GPa

G23 4.8 GPa 5.9 GPa

v12 0.28 0.21

* 13 0.28 0.21

v23 0.54 0.21
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the other hand, if the proper set of elastic constants is

used, the solution can be obtained without any problems.

The conclusion is that if the three-dimensional elastic

constants have been measured, they should be used as they do

not add to the complexity of the problem and will result in a

more accurate answer than the use of the assumed constants.

However, if measured three-dimensional elastic constants are

not available, the results show that using the assumed G23 and

V23 for the basic ply results in acceptable answers for most

laminates.

7.5 The boundary layer

The boundary layer is the region, close to the free edge,

in which the interlaminar stresses are appreciable. The exact

definition of the boundary layer size is rather arbitrary and

there are several possible ways of defining it [5,24]. In the

present investigation two possible definitions are used

depending on whether azz exists or not. The simpler one will

be presented first.

(a) For laminates in which azz is everywhere zero (e.g.

in the case of angle-plied laminates) the boundary layer is

defined as the distance from the free edge at which a lz drops

to 1% of its value at the free edge. This can be expressed in

the form

e- XBL = 0.01 (7.1)
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which leads to the expression

x = .4 (7.2)

Actually with this definition, the stress alz at a distance

equal to the boundary layer width is exactly equal to 1.2% of

the value at the free edge.

(b) For most laminates, azz is generally nonzero and can

be used to define the boundary layer instead. The boundary

layer is thus defined as the distance over which equation 4.14

is "almost" satisfied, i.e. the distance over which 99% of azz

is counterbalanced. This can be expressed in the form (see

Figure 7.25b)

0.99 Jo azdx = - f BL ozzdx (7.3)
0 x

For the special case of a cross-plied laminate, equation

6.35 the expression for a placed into equation 7.3 gives:

0.99 f (1 - ox)e~Ox = - -xBL 1 - -x) e xdx (7.4)
0 x

where x0 is defined as the point where a crosses the x axis

(see Figure 7.25b) and is equal to 1/p for this special case.

The following equation for x can be obtained from
BL

equation 7.4:

1
XBL I zn (100 xBL e) (7.5)
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Figure 7.25.Boundary layer definitions for (a) angle-
plied laminates; and (b) all other laminates

zz,
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and x BL can be solved for by iteration. Convergence (the dif-

ference between two successive xBL values being less than

.00001) is achieved after few iterations (four to five) if

x =1/ is used as the starting value for x BL* If the

cross-plied laminate is such that equation 6.30 has real sol-

utions and both ? and $ exist, the boundary layer size is

determined using the expressions derived below for general

laminates.

For a general type laminate, the expression for uzz

(equation 5.60) placed in equation 7.3 gives

eBL BL = 0.01 (e o- e o) (7.6)

after integration and cancellation of like terms. Note that

x , the point at which a crosses the x axis, is given by

X0= *1 (7.7)

This can be determined by setting equation 5.60 equal to zero

and solving for the distance x.

Using x0 as the starting value for xBL, equation 7.7 can

be solved iteratively. However, one should distinguish between

the case where A<1 and the case where X>1. In both cases,

since x is the starting value, the corrected value for xBL
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after each iteration must be larger than the XBL value for the

previous iteration.

If X<1, equation 7.6 can be rewritten as:

-exBL
xBL n(e - B) < (7.8)

where

B = 0.01 (e~0o - e ~ xo) (7.9)

Equation 7.8 guarantees that, at each iteration, the corrected

value of x - is larger than the previous x value.
BL BL

If X>1, equation 7.8 cannot be used because each new val-

ue of xBL is smaller than the previous value. So, starting

with x , each corrected x value is smaller than x and the
0 BL0

scheme will not converge.

Instead, equation 7.6 can be rearranged as follows:

-4XxBL
x n(e BL+ B) >

XBL ~ e (7.10)

where B is given by equation 7.9. This equation guarantees

that, each corrected value of xBL is larger than the previous

one and, if x0 is used as the starting value, after some iter-

ations the scheme will converge.

Some comments on the boundary layer are in order. One,

these three means for determining the boundary layer length
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were incorporated into the program. The iteration schemes used

are very efficient (four to five iterations are usually enough

for accuracy up to the fifth decimal place). The only excep-

tion is the [ 40/0)s laminate for which there was no conver-

gence on the boundary layer length after 300 iterations. It is

suspected that this problem arises from the fact that A is

almost equal to 1 for this laminate (actually X=1.004).

Two, it should be again emphasized that the boundary lay-

er size is not a quantity that can be accurately determined or

measured. It is just used as an indicator of the size of the

region over which the interlaminar stresses are important. If

a consistent definition is used, then laminates can be com-

pared on this basis. These definitions of the boundary layer

are also independent of the applied load since A and $ are

independent of the applied load.

Three, the boundary layer is the same for any ply inter-

face of a particular laminate since it depends only on A and $

which are constant throughout the laminate. Therefore, the

boundary layer is a laminate property. Table 7.5 shows the

boundary layer sizes for the [ O/O]s and the [0/ o]s laminate

families.

Four, equation 7.2 can be used to obtain a good starting

value for $ in order to solve the equations for A and 4

(equations 5.111 and 5.112). As it was pointed out in equation
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TABLE 7.5

BOUNDARY LAYER WIDTH FOR [+e/0]s AND [0/+e]s LAMINATES

e [+e/0]s [0/+e]s
[mm] [mm]

5 1.124 1.550

10 1.099 1.501

15 1.091 1.459

20 1.103 1.437

25 1.125 1.434

30 1.143 1.439

35 1.150 1.447

40 * 1.459

45 1.146 1.483

50 1.147 1.541

55 . 1.170 1.708

57.5 1.209 1.957

60 1.417 3.181

61 0.562 0.501

62.5 1.046 0.703

65 1.151 1.017

70 1.197 1.252

*No convergence on the
iterations

boundary layer width after 300
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5.104, $ is of order 0(1/h) where h is the laminate thickness.

Comparing equation 7.2 and equation 5.104 one gets:

XBL = 0(h) (7.11)

Then, considering Figure 7.25a, and using the definition of

the boundary layer for angle-plied laminates one obtains:

h ~-= - (7.12)

which solved for $ gives an order of magnitude estimate for $

and can be used as the starting $ value. This coincides with

equation 5.113:

4.4
Oinit - (5.113)

7.6 Concept of "effective ply thickness"

Built into the analysis are the following two basic

facts. One, if, in a symmetric laminate, next to each ply

another identical ply (i.e. the same material with the same

fiber orientation) is added as illustrated in Figure 7.26a,

the boundary layer thickness doubles exactly. Two, if a sym-

metric laminate is doubled by adding to it, symmetrically,

another laminate, as illustrated in Figure 7.26b, the boundary

layer thickness remains the same. Also, azz at the mid-plane
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Figure 7.26.Two possible ways to vary the thickness of a
laminate: (a) each individual ply is
doubled; and (b) laminate as a whole is
doubled symmetrically
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is zero since each individual sublaminate is

self-equilibrating.

The difference in the boundary layer between these two

cases is that, in the first case, each pair of identical plies

acts as a single ply whose thickness is double the thickness

of the plies in the second case. Thus, in the first case, the

"effective ply thickness" is twice what it is in the second

case. Note that in both cases the laminate thickness is the

same. This means that the boundary layer size is determined by

the "effective ply thickness" and not just by the laminate

thickness. Unfortunately, a way has not yet been found to

determine the effective ply thickness of any laminate and only

in special cases like the one above can the effective ply

thickness be determined. For this reason, for the time being,

the boundary layer size is assumed to be a strong function of

the laminate thickness, and equation 7.2 is considered to be a

good starting point for determining the starting value of $ in

the iteration scheme.

Table 7.6 shows the boundary layer values for these two

cases and the boundary layer length for the "parent" laminate

as determined by the computer program for a [ 15/0]s laminate.
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TABLE 7.6

EFFECT OF EFFECTIVE PLY THICKNESS ON BOUNDARY LAYER SIZE

Laminate Effective Ply Boundary
Laminate Thickness Thickness Layer

[mm] [mm] [mm]

[+15/0]. 0.804 0.134 1.09054

[(+15)2/(-15)2/02 s 1.608 0.268 2.18108

[+15/0]s2 1.608 0.134 1.09054
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7.7 comparison with previous analysis techniques

In this section, the present method will be compared to

other methods of analysis. It is important to note that this

is done in order to show the predictions of different methods

of analysis, and not to validate this analysis since there is

no analysis that can be presented as correct due to lack of

conclusive experimental data.

In all the cases that are presented below, the laminate

is subjected to a uniaxial load corresponding to an exten-

sional strain of 1000 microstrain. The same elastic properties

are used as those used by other investigators.

7.7.1 [ 45]s laminate

The [ 45]s laminate has been used by different investi-

gators as the test case to compare their analysis technique

with other analyses. For this reason, predictions obtained for

a [ 45]s laminate by the present method of analysis will be

presented first and compared to the predictions of other

investigators. It should be noted that for this laminate, as

for any other angle-plied laminate, the CLPT predicts that

L
0 is zero.

22[0i]

Figures 7.27-7.31 show the stresses (except a22 which is

zero for all analyses) as a function of distance from the free

edge at the +45/-45 interface of a t 45)s laminate as pre-

dicted by the finite difference method of Pipes and Pagano,
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Figure 7.27 In-plane a stress at +45/-45 interface
for [+45] laminate calculated by various
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2.0 [ 45]

----Present\

--- Piples & Pagano, Ref [51

0.5 -
0.-- Wang & Crossman, Ref 191

Wang & Choi, Ref [241

0.2 0.4 0.8 0.8 1.0
X2 /b

Figure 7.28 In-plane shear stress a 2 at +45/-45 inter-
face for [+45] laminat alculated by
various methoda
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o -- Wang & Crossman, Ref 191

1.0 - 0--- Wang & Choi, Ref 124.
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0.2 0.4 0.6 0.8 1.0

x2 /b

Figure 7.29 Interlaminar shear stress -a at +45/-45
interface for [+45]s laminat zcalculated by
various methods
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Figure 7.30 Interlaminar shear stress a at +45/-45
interface for [ 45]s lamina$i calculated by
various methods
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0.4- [ 45]

0.2-
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--- Pipes & Pagano, Ref [5]

-0.4 - -- Wang a Crossman, Ref [91

Wang a Choi, Ref [24]

0.2 0.4 0.0 0.8 1.0

2/ b

Figure 7.31 Interlaminar normal stress a at +45/-45
interface for [+45]1 laminatiZcalculated
by various methods
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the finite element analysis of A.S.D. Wang and Crossman [9],

the elasticity solution of S.S Wang and Choi [24], and by the

present analysis.

The longitudinal stress a is shown in Figure 7.27. All

analyses approach the CLPT solution far from the free edge but

they differ significantly close to the free edge. It should be

recalled that very close to the free edge (within a few fiber

diameters -as discussed in chapter 2) the assumptions on mate-

rial homogeneity made in all analyses break down and therefore

no one method is expected to be more accurate than the others.

The present investigation is closer to the FD analysis by

Pipes and Pagano [5].

The in-plane shear stress a1 2 .is shown in Figure 7.28.

Again, all methods approach the CLPT value at the far field.

Near the free edge, the four methods give different pred-

ictions. -The FE solution by Wang and Crossman [9] does not

satisfy the boundary condition that a1 2 is zero at the free

edge while the other three methods do. The present analysis is

again closest to the FD analysis by Pipes and Pagano [5).

Figure 7.29 shows the negative of the interlaminar shear

stress a lz* There is excellent agreement among all solution

methods. There are some differences very close to the free

edge (recall that the analysis in [24] predicts singular alz

stresses at the free edge but the singularity becomes dominant
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only when the assumption that each ply can be treated as homo-

geneous breaks down).

The interlaminar shear stress a2z is shown in Figure

7.30. The present analysis predicts that a2z is identically

zero. The other analyses predict nonzero but small (compared

to al 121 and a1z) stress values and, again, as in the case

of the a12 stress, the FE analysis by Wang and Crossman [9]

does not satisfy the boundary condition that a2z is zero at

the free edge. All other methods correctly predict that a2z is

zero at the free edge. Far from the free edge, all methods

match the CLPT which predicts that a2z is zero. An important

difference among the four methods should be pointed out. As

it was shown in section 4.2, a2z is either identically zero,

which is the prediction of the present analysis, or crosses

the x axis at least once which is the prediction of the FE

analysis in [9]. Therefore, it appears that the analyses in

[5] and [24], where a 2z. is nonzero and does not cross the x

axis, do not satisfy integral force equilibrium in the trans-

verse direction as expressed by equation 4.9.

The interlaminar normal stress azz is shown in Figure

7.31. Even though all analyses predict stress values that are

small compared to the al, a12' and alz stresses, they differ

significantly from one another. The present analysis predicts

that z is identically zero. The other analyses predict that

azz is nonzero but the analysis in [9] predicts that azz is
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tensile at the free edge while the analysis in [24] predicts

that azz is compressive at the free edge.

7.7.2 [ 45/0/90]s laminate

The quasi-isotropic graphite epoxy [ 45/0/90]s laminate

was studied by Wang and Crossman [9] using the finite element

method. Interlaminar stresses for this laminate as predicted

by the present analysis and by Wang and Crossman [9] are shown

in Figures 7.32-7.37.

The two methods predict very similar azz stresses for the

three interfaces from the midplane to the second interface

(-45/0) as is shown in Figures 7.32-7.34 . The predictions for

azz at the first interface (Figure 7.35) are quite different.

The present analysis has only one crossing of the x axis while

the analysis in [9] has two. Furthermore, the present analysis

predicts that azz is tensile at the free edge while the analy-

sis in [9] predicts that azz is compressive there.

Figure 7.36 compares the predictions for alz at the first

(+45/-45) interface. The two methods differ significantly.

The predictions for a2 z at the third (0/90) interface are

shown in Figure 7.37. In this case the two methods are in very

good agreement except at the free edge where the analysis in

[9] predicts a nonzero value for a2z and hence does not satis-

fy the stress-free boundary condition a2z (x/b=0)=0.
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Figure 7.35 Interlaminar normal stress o at +45/-45
inter face f or [+45/0/90]} lad nate
calculated Dy present me~hod and Wang and
Crossman (Ref. 9R
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Figure 7.36 Interlaminar shear stress a at +45/-45
interface for [+45/0/90] 1A inate
calculated by present meEhod and Wang
and Crossinan (Ref. 9)
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Figure 7.37 Interlaminar shear stress a2z at 0/90
interface for [+45/0/90] laminate
calculated by present meEhod and Wang
and Crossman (Ref. 9)
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7.7.3 [0/90]s laminate.

The prediction for the azz stress in the [0/90]s

cross-plied laminate is presented in Figure 7.38. Note that

for this laminate the CLPT predicts that a12 [L ] is zero

throughout the laminate and this, (see section 6.2) results in

*12 and lz being zero throughout the laminate.

Figure 7.38 shows the azz stress at the 0/90 interface of

a [0/90]s laminate as predicted by the present analysis and

the analyses by Pagano and Pipes in [12]. For the present

analysis, the modified version for cross-plied laminates pre-

sented in section 6.2 had to be used because the original

method (see discussion on equation 6.30 in section 6.2) gave

complex values for X and 5. There is good agreement between

the three methods except very close to the free edge where the

present method predicts stresses which are 35% higher than

the prediction of the methods in [12].

7.7.4 Further results and implications for cross-plied

laminates

It was pointed out in section 6.2 that there are

cross-plied laminates for which both methods of analysis, as

presented in section 6.2, are valid. Such a case is illus-

trated in Figures 7.39 and 7.40. The laminate is a [0/90]s
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laminate where the material for the first ply is only the

3501-6 resin (with Young's modulus of 3.5 GPa and Poisson's

ratio 0.3) of thickness 0.134mm (chosen arbitrarily). Note

that actually this first ply is isotropic but the laminate can

still be treated as a cross-plied laminate. The second ply is

a 900 ply of AS1/3501-6 material. The laminate is loaded in

tension by a all stress of 100 MPa. It turns out that both

solution methods for cross-plied laminates are applicable.

Figure 7.39 shows the azz stress as a function of distance

from the free edge at the midplane of the laminate as pre-

dicted by the two methods. There is excellent agreement.

Figure 7.40 shows the a2z stress at the 0/90 interface. Again,

the two methods are in very good agreement. This implies that

in cases where the first method of analysis (see section 6.2)

fails and A and $ cannot be used, the alternative method,

where only $ is present, is very reliable since for cases

where both methods are valid it gives predictions that are

very close to those obtained by the more accurate method.

Another important conclusion can be drawn using this lam-

inate which may better clarify the role of the two

eigenfunctions e~ and e x. It was shown by Pagano [12]

that the modified plate theory by Whitney and Sun [13] can be

used for cross-plied laminates to obtain expressions for azz

at the midplane which can be expressed in terms of two expo-
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nentials. It can be seen that the expression for q, the

interlaminar normal stress a zz in [12]

q = M* (Xe x2  X
0X1- x2 2  1 1

is identical with the azz expression of the present analysis

(equation 5.60) provided the first method of analysis for

cross-plied laminates (both A and 4 present) is valid. This

implies that in such special cases, the present analysis

matches the predictions of the plate theory developed by

Pagano [12] and Whitney and Sun [13].

7.8 Significance of the resin layer between plies-

It was mentioned in chapter two that between the plies of

a laminate there exists a thin resin layer where no fibers are

present [3]. This layer is usually so thin that in all the

analyses presented in chapter two, as well as in the present

analysis, it is neglected. More specifically, each ply is

assumed to be homogeneous in the analysis and half of each

interply layer is treated as part of each of two neighboring

plies. The present analysis however, is versatile enough to

account for that layer and efficient enough so that the

increase in the number of plies does not affect the computa-

tion time significantly.
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Each laminate, therefore, can be considered as composed

of anisotropic layers separated by thin isotropic resin

layers. These isotropic layers will be considered as addi-

tional plies. The underlying assumption here is that these

plies are thick enough so that the assumption of material

homogeneity is valid.

The laminate used to present results is the [ 15/0]s lam-

inate (AS1/3501-6 system). If the resin plies are included

(denoted by R) the laminate becomes [+15/R/-15/R/O/R]s where

the resin ply next to the midplane is half as thick as the

other resin plies as denoted by the overbar. Using an Olympus

SZ-III-Tr microscope (160X magnification) the average thick-

ness of the resin layer was fo.und to be 7.5 microns. This is

on the order of one fiber diameter (AS1 fibers). Each resin

layer was treated as isotropic with a Young's modulus of 3.5

GPa and a Poisson's ratio of 0.3 (the elastic constants of the

3501-6 epoxy resin). The thickness of the graphite/epoxy plies

was kept equal to the nominal thickness of 0.134 mm. The lam-

inate was loaded in tension by a a1 1 stress of 889 MPa (the

same as for the cases presented in Figures 7.1-7.24). The

CLPT solution for the case without the resin layers is given

in Table 7.1. The CLPT solution for the case with the resin

layers is shown in Table 7.7.

The a stress at the midplane as predicted by the two
zz

models is shown in Figure 7.41. The 02z stress and the al
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TABLE 7.7

CLPT SOLUTION FOR [+15/R/-15/R/O/R] LAMINATEs
(APPLIED LOAD =y1 889 MPa)

Stress PLY 1 PLY 2 PLY 3 PLY 4 PLY 5 PLY 6
[MPa] +15 R -15 R 0 R

GL 877 24.7 877 24.7 1034 24.7
1 1 [j6]

YL 17.2 -11.3 17.2 -11.3 -32.9 -11.3
22[oil

UL 202 0 -202 0 0 0012 [i
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Figure 7.41.Effect of the resin layer between plies on
the predictions for the a stress at the mid-

plane of a [+15/0]s laminEe
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stress at the +15/-15 interface are shown in Figures 7.42 and

7.43. The two models are in excellent agreement. This implies

that the assumption that the resin layer can be incorporated

into the two neighboring plies is valid.

7.9 Evaluation of the Computer Program

The solution procedure as -implemented on the computer is

very flexible. Hybrid laminates with plies of different thick-

nesses and different materials can be analyzed as easily as a

typical single-material laminate.

The iteration scheme has excellent convergence character-

istics in that no instabilities were encountered in the cases

analyzed so far. Furthermore, in most cases convergence was

achieved within 10 to 15 iterations. The Newton-Raphson method

used to determine the four roots of the A polynomial has very

good convergence characteristics as well.

Thick laminates can also be analyzed with relative ease.

So far, up to 100-ply laminates have been analyzed successful-

ly. For the 100-ply laminate there were more than 15 differ-

ent ply orientations and the layup was such that no

simplifications (e.g. treating part of the laminate as a sub-

structure) could be used in the solution and each of the 100

plies had to be considered separately. The computer program

was transferred to a VAX-11/782 computer so that actual CPU
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times could be calculated for different cases. Table 7.8

shows some of the cases run along with the CPU times on the

VAX computer and the computation times on the PDP-11/34. The

computation times on the PDP-11/34 computer are the real times

(determined using a watch) and not CPU times. From Table 7.8,

a number of conclusions can be drawn. One, the computation

time does not depend strongly on the number of plies. This is

shown by the last two entries in the table where doubling the

number of plies of a laminate increases the computation time

only by 25% (part of which is extra time needed to calculate

stress coefficients for the excess plies). The computation

time will mainly depend on the relative values of the coeffi-

cients in the A and $ polynomials. As a result, laminates with

plies well exceeding 100 (possibly up to 500) could be ana-

lyzed without increasing the computation times to a great

extent. Two, the program can be used easily on home

computers. Most home computers of today are more powerful (and

faster) than .a PDP-11/34. So, the computation times on home

computers will be acceptable. Furthermore, the program code is

fairly short (about 650 executable.statements) and does not

take up much of memory space (19K).

Computation times have been reported in the literature

for [ 45]s laminates [5,9]. These solutions have been accom-

plished on different computers, and hence a direct comparison

cannot be made easily. However, the large (greater than two
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TABLE 7.8

COMPUTATION TIMES FOR DIFFERENT LAMINATES

*Solution is obtained in closed form.

Number of Number of CPU time Actual time
plies iterations (VAX 11/782) (PDP 11/34)

[sec] [sec]

4 0* 1.00 2

6 8 1.01 15

12 15 2.66 30

50 50 3.29 80

100 69 5.37 120
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orders of magnitude) difference between these and the present

analysis technique indicate the efficiency of the present

method. The finite difference scheme developed by Pipes and

Pagano [5] required 120 seconds of CPU time on an IBM 360-365.

The finite element technique of Wang and Crossman [9] needed

18 seconds of CPU time on a UNIVAC-1108. The present method

used only 0.2 seconds of CPU time on the VAX-11/782 to analyze

the [ 45]s case. Even the analysis of 6-ply laminates as shown

in Table 7.8 required less time (at least an order of magni-

tude) than these previous analysis techniques did for just a

simple laminate.
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CHAPTER EIGHT

SPECIMEN PREPARATION AND EXPERIMENTAL SETUP

It was already indicated in the discussion in chapter 2

that an experimental technique to measure interlaminar

stresses is needed in order to determine which of the analyt-

ical methods available are more reliable. Such a technique

has not yet been devised. The two basic reasons are the fol-

lowing: (1) the boundary layer width is very small and

obtaining enough data within the boundary layer is difficult;

and (2) it is hard to take measurements inside the laminate.

The only measurements that can be taken with some ease are on

the top or the bottom surface of the laminate (inside the

boundary layer) and at the face of the free edge itself.

With these limitations in mind the following experimental

method was used. First high density moir6 grids were glued to

the specimen to define points on the top surface of the lami-

nate very close to the free edge (within the boundary layer).

Then the distances of these points from a reference point

before and after loading were measured thereby determining the

u and v displacements of these points.

It should be noted that this method is limited because

only quantities on the top surface of the laminate are meas-

ured and these are only in-plane quantities. However, since
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the in-plane quantities change from their CLPT values in the

boundary layer, the method is expected to give important data

which will be helpful not only in validating analytical meth-

ods but also in furnishing a better understanding for the

mechanisms of delamination.

8.1 The specimens

Three laminates were made, all of the AS1/3501-6

graphite/epoxy system: [ 15/0]s, [(+15)5/(-15)5/05]s, and

[(+45) (- 45) s. The first laminate was chosen as a test lam-

inate to check the experimental technique before applying it

to the other laminates which were the actual laminates for the

experiment. The second laminate was chosen because it is

known to fail by delamination [41]. The third laminate was

chosen because it is the one used as the test case by differ-

ent investigators for the calculation of interlaminar stresses

and the data obtained can be compared to the predictions of

different analytical methods. The thickness of these last two

laminates was chosen so as to increase the boundary layer size

without introducing undue complications in the manufacturing

procedure. By increasing the effective ply thickness (see

section 7.5) the boundary layer size increases and it is easi-

er to obtain more data points in the boundary layer than with

thinner laminates. For the [(+15) 5/(-15)5 /0 5]s laminate, the
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boundary layer width is predicted to be 5.5 mm by the present

analysis (versus 1.09 mm for a [ 15/0]s laminate) and for the

[(+45) /(-45) ]s laminate the boundary layer width is pre-
10 10

dicted to be 5.27 mm (versus 0.527 mm for a [ 45]s laminate).

Standard TELAC manufacturing techniques [43] were used

throughout the manufacture except for one detail. A smooth

surface was needed for the application of the moir6 grid onto

the specimen. For this reason, the laminates were cured with

one side in direct contact with an aluminum cure plate. The

cure plate was sprayed with mold release before curing.

As per standard practice, 300 mm by 350 mm plates as

layed up were cured in an autoclave under a 30 inch Hg vacuum,

85 psi pressure and in a two step temperature- cycle: one hour

at 240 0 F followed by two hours at 3500 F. This cure cycle is

shown in Figure 8.1. The laminates were postcured in an oven

at 350OF for 8 hours. The resulting laminates had the correct

resin content and their thickness was very close to the nomi-

nal value. The average measured thicknesses for the three

laminates are given in Table 8.1. There are five coupons per

laminate and six thickness measurements were taken per coupon.

The overall average measured per ply thickness is 0.133 mm

compared to the manufacturer's nominal per ply thickness of

0.134 mm. The surface of the laminates. that was in contact

with the aluminum cure plate came out smooth and did not have
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TABLE 8.1

AVERAGE LAMINATE THICKNESSES

Laminate Thickness Nominal Thickness
(mm) (mm)

[+15/0]s 0.79 0.802

[(+15)5/(-15)5/051s 3.982 4.02

[(+45)10/(-45)101s 5.69 5.36
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the wavy pattern (with dimples) usually present on surfaces

cured while covered with peel-ply.

Each cured laminated plate was cut into five coupons

using a high speed diamond abrasive rotating disk. Two strain

gages were placed on each of the coupons used for the actual

experiment, on the side which originally had the peel-ply. One

was placed longitudinally in order to measure the longitudinal

modulus and one was placed in the transverse direction to

measure the Poisson's ratio. These values are measured in

order to compare them (as some type of quality control) to the

theoretical value obtained from CLPT. The width of the coupons

was chosen to be 54 mm instead of 50 mm, which is the standard

TELAC coupon width, in order to satisfy the- requirement (see

section 5.6) that the width to thickness ratio in each speci-

men be at least 10 for the theory to be valid. The test

section in each coupon was 200 mm long. The measured thick-

nesses and widths of the coupons are summarized in Table 8.2.

The loading tabs were made following the standard TELAC

procedure. For the [ 15/0]s laminate, 12-ply thick glass tabs

were used. For the other two laminates 36-ply thick tabs were

used. The laminate configuration for the glass tabs was a

symmetric 0/90 repeating layup with the proper number of

plies. The loading tabs were bonded to the graphite/epoxy cou-

pons in- a secondary bond operation using FM-123-2 film

adhesive. This was accomplished at 50 psi and 2250F for two
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TABLE 8.2

AVERAGE COUPON THICKNESSES AND WIDTHS

Measured Coef. of Measured Coef. of

Laminate Coupon Thickness Variation Width Variation
[mm] (%) [mm] (%)

1 3.79 9.96 53.8 4.71

2 4.01 1.95 53.8 4.71

(155/-155/0 s 3 4.08 2.54 53.8 0.00

4 3.92 4.24 53.8 0.00

5 4.11 1.38 53.7 8.16

1 5.79 11.1 54.01 0.94

2 5.83 16.1 54.03 6.60

[4510/-450 s 3 5.47 15.9 54.05 4.11

4 5.98 6.29 53.78 10.7

5 5.48 11.8 54.09 6.80
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hours. This resulted in the specimen illustrated in Figure

8.2.

8.2 The moirg grid

The moir6 grids were obtained from Measurement Group Inc.

These were Photolastic Type FTG transferable moir6 grids of

two different densities: 200 lines/inch (8 lines/mm) and 500

lines/inch (20 lines/mm). The grids are supplied in 4x4 inch

(100x10 mm) sheets and can be cut to smaller pieces depending

upon the application. Each grid consists of a film of mutual-

ly perpendicular black gelatin lines 0.025 mm thick which are

deposited on a polyester carrier (0.15 mm thick). This results

in the pattern illustrated in the photograph in Figure 8.3.

The carrier is removed after the grid is applied to the speci-

men. Since the displacements of the grid points are measured

directly using a microscope, ..no master grid (or grille) is

needed.

To apply the grid, the instructions given by the manufac-

turer were used. The procedure is briefly as follows:

1. An area of the top surface of the specimen slightly

larger than the grid.piece to be used is spray-painted with

silver paint to give a sharper contrast between the grid lines

and the specimen surface beneath the grid.
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Figure 8.3. Moire grid pattern (200 lines/inch) under
the microscope (40X magnification)
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2. A thin coat of Type VPAC-1 adhesive (also supplied by

the 'manufacturer) is applied on the specimen surface which is

preheated to approximately 110 F for about 1 minute. The adhe-

sive is also preheated to approximately 120 0F before the resin

and hardener are mixed.

3. The grid piece is placed in contact with the adhesive

with the grid surface down (carrier surface up).

4. A sheet of silicon rubber approximately 3 mm thick is

placed over the grid and a pressure of about 35 kPa (5 psi) is

applied.

5. The adhesive is either left to cure at room temper-

ature for 36 hours or is put in the autoclave at 180UF for one

hour in order to cure.

6. After curing, the grid carrier is removed to expose

the grid surface.,

Care must be taken so that one of the edges of the grid

piece is aligned with one of the free edges of the specimen.

For this, a microscope at 7X magnification is used.

8.3 Test setup

The measurements of surface displacements had to be taken

with the specimen under load. Thus, the specimen was placed in

an MTS 810 testing machine with hydraulic grips.
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An SZ-III-Tr Olympus microscope was used to take the

measurements. This stereo microscope is capable of magnifica-

tions up to 240X. At that magnification, data can be acquired

every 50 microns with the 500 lines/in grid and every 90

microns with the 200 lines/in grid.

A stand was built to hold the microscope close to the

specimen during testing so that in situ measurements could be

taken. Figure 8.4 shows a schematic drawing of the stand. The

stand consists of four basic parts.

First is the base table with four legs whose height can

be adjusted by changing their lower section with extensions of

variable length. The height of the table used is 122 cm. The

top of the table is 84 cm long by 61 cm wide and the stage

attachment takes up only a small area (30.5 cm by 33 cm) so

that a lot of room is left to be used for placing tools or

taking notes during mounting, testing, and dismounting. A

shelf was made between the ground and the top surface of the

table (distance 67 cm from the top surface of the table) and

parallel to the ground where sandbags are placed during test-

ing to absorb any vibrations transmitted to the stand through

the ground or by sudden movements of the experimenter.

The second part of the apparatus is a stage attached on a

wooden base vertical to the table. This wooden base is firmly

attached- to the table with a Dexion rack. The stage is capable

of horizontal (parallel to the specimen when the specimen is
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gripped in the testing machine) and vertical displacements

accomplished with the use of calibrated knobs. These dis-

placements have a range of about 13 cm. This enabled the

microscope which was attached to the stand to scan an area on

the specimen surface which was much larger than the grid area.

The third part is an aluminum rod (2.38 cm in diameter

and 43 cm long) attached to the stage (perpendicular to the

ground) with the use of V-blocks and clamps. Another aluminum

rod (also 2.38 cm in diameter but 76 cm long) is attached to

the first rod through a "T" shaped junction with two holes at

90 degrees. This second rod was perpendicular to the first

i.e. perpendicular to the specimen surface and parallel to the

ground. The end of the rod that is close to thespecimen sur-

face was milled down to fit exactly a cylindrical slot at the

side of the microscope. A set of four screws is used to firmly

attach the microscope (via the slot) on this horizontal alumi-

num rod. -

The fourth part is the "T" shaped junction. This junction

is attached to the two rods with the use of four screws (two

per rod). It can slide on both rods making it possible to

place the microscope within a wide range of distances from the

ground or from the testing machine. The junction can also

rotate in a plane parallel to the ground making it possible to

rotate the second (horizontal) rod. In this way, the specimen

in the testing machine may be viewed through the microscope at
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a variety of angles if needed. A groove (27 cm long) was

drilled along the horizontal rod to serve as a guide for the

two screws on the junction corresponding to that rod. An alu-

minum ring with three screws is placed around the vertical rod

right under the "T" junction to serve as a stopper (see Figure

8.4). The entire apparatus with a specimen mounted in the

testing machine is pictured in the photograph in Figure 8.5.

Overall, the stand is very versatile. The height of the

horizontal rod can be adjusted by moving the "T" junction up

or down on the vertical rod. The angle at which the specimen

is viewed can be changed by rotating the "T" junction (and

hence the horizontal rod). The distance of the microscope from

the specimen can be adjusted by moving the horizontal rod

closer to or further from the specimen prior to tightening the

screws in the "T" junction. More accurate movements of- the

microscope are possible in all three directions. With respect

to an observer looking at the specimen, more accurate motions

up or down and to the left or to the right are accomplished

through use of the two stage knobs. Motion towards or away

from the specimen is accomplished by using the focusing knob

of the microscope.

The use of the sandbags decreased the vibrations signif-

icantly. However, there were still some vibrations coming

mainly from the rods when the stage or the microscope were

touched in order to change the microscope location or during
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Figure 8.5. Experimental setup
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focusing but they subsided quickly each time (within a few

seconds) making it possible to take meaningful data.

8.4 Test procedure

After trying both grid types on coupons of the [ 15/0]s

laminate, it was decided to use the 200 lines/inch grid

instead of the 500 lines/inch one mainly because at the par-

ticular magnification (240X) and with the particular silver

paint used, the square points on the 200 lines/inch grid were

much brighter and sharper than the square points on the 500

lines/inch grid making measurements more accurate.

A system of levels was used to verify that the axis of

the microscope was perpendicular to the surface of the speci-

men when it was gripped in the testing machine.

Each coupon was put in the grips of the testing machine

and a vertex of one of the grid squares was chosen as an ori-

gin as close to the free edge as possible (see Figure 8.6).

Then, before loading, the distances of the vertices of the

grid squares around the origin (originally a 20 grid points by

20 grid points square was covered) were measured by eye using

the scale in one of the eyepieces of the microscope. The pro-

cedure was repeated after loading to a desired stress level

(keeping the same point as origin). Subtracting the original

from the final value for each point in the x1 and the x2 (or
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x) direction gave the u and v displacements of each point at

that particular load level. It is interesting to note that a

20 grid points by 20 grid points square gives a total of 6400

data points per load level per coupon (covering an area of

about 4 square mm) and since all these are read off by the

experimenter without the use of any data taking device, a sin-

gle coupon at a single load level takes more than 6 hours to

test. For reasons to be discussed below the number of data

points per coupon per load level was eventually decreased to

100 data points.

Since it was impossible to mark axes on the grid, meas-

urement of distances from the origin of points that did not

lie in the same row or column of grid points that included the

origin (see Figure 8.6) was very difficult.-Distances of

points that were on the same row or column with the origin

were easier to measure. This means that u as a function of x

and v as a function of x were much easier to measure than u as

a function of x and v as a function of xi.

This difficulty in measuring u as a function of x and v

as a function of x, reduced the usefulness of covering a whole

square of grid points. Eventually, only the displacements of

the points lying on the same row and column as the origin were

measured for each coupon. In each column 20 points were used

and in *each row 30-40 points were used to insure that the
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points further from the free edge were outside the boundary

layer as predicted by the theory for that particular laminate.

The distances of these points from the origin were meas-

ured by eye using a micrometer scale attached to one of the

eyepieces of the microscope. The error in each measurement

(half the width of the smallest division) was 4.15 microns at

240X magnification. This was the highest magnification possi-

ble with the SZ-III-Tr Olympus microscope that was used and no

lower magnification could be used since at lower magnifica-

tions the resolution was so poor that it was very hard to pick

up any difference between the distances of the points from the

origin before and after loading. At that magnification

however, only five to six grid squares could be seen along a

diameter in each field of vision i.e. only the distances of 10

to 12 points from the origin could be measured (see Figure

8.6). To make the E4.15 microns error in each measurement as

small a fraction of the measured distance as possible, each

point should be as far from the origin as possible. On the

other hand, in order to measure as many distances per field of

vision as possible (to avoid changing fields of vision many

times which involved shifting the origin each time and intro-

ducing a measurement of the order of 2 microns) each point

should be as far from the origin as possible. A compromise was

found by measuring the distance of every other point from the

origin, i.e. one point per square of the grid was used (the
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right-most point of each square in a row and the lower point

of each square in a column as is shown in Figure 8.7) instead

of the possible two points per measuring direction (horizontal

or vertical). This gave about five data points per field of

vision per direction which means that for 20 data points in

the vertical direction 4 changes of field of vision were

needed, and for 30 data points in the horizontal direction 6

changes of field of vision were needed. The sampling rate was

approximately 1 data point every 120 microns which means that

a distance of approximately 2400 microns (2.4 mm) was spanned

in the vertical direction (20 data points) and a distance of

3600 microns (3.6 mm) was spanned in the horizontal direction

(30 data points). The error in each measurement was thus 13%

for points closest to the origin, and +0.6% for points far

from the origin (closest to the other end of the field of

vision). Of course, this pattern repeated every time the field

of vision changed and the origin shifted. Table 8.3 summarizes

all this information.

8.5 Data reduction

The displacements in the x1 and x directions were deter-

mined as the differences between the unloaded and loaded dis-

tances of each point from the origin.
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TABLE 8.3

DATA TAKING INFORMATION

Number of measurements per coupon

Number of data points in the longitudinal
direction

Distance spanned in the longitudinal
direction

Number of data points in the transverse
direction

Distance spanned in the longitudinal
direction

Sampling rate

Number of data points per field of vision

Fields of vision needed in longitudinal
direction

Fields of vision needed in transverse
direction

Average error in each measurement

Error induced at each origin shift

Average testing time per coupon

100-200

20

2.4 mm

30-40

3.6-5 mm

1 data pt/
120 i

5-6

4-5

6-7

1.8%

2 microns

2-3 hours
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To every u or v displacement value thus measured, the u

or v displacement of the origin (which being a point close to

the free edge was not stationary during loading) was added. It

was very difficult to actually measure this displacement of

the origin because, both in the xi and the x direction, the

origin moved a distance of approximately 1-2 mm and three to

six changes of field of vision were required making an accu-

rate measurement difficult. Furthermore, part of this

displacement was rigid body motion of the two grips of the

testing machine. Thus, even if the distances that the origin

moved in the x and the x directions could be measured accu-

rately, these values would not represent the u and v

displacements of the origin due to material stretching and

contracting. The u displacement of the origin was estimated

by' multiplying the far-field c11 strain with the x1 distance

between the origin and the lower edge of the loading tab in

the top grip of the testing machine which is stationary during

loading. The v displacement of the origin was estimated as the

product of the far-field c 22 strain and the x2 distance

between the origin and the center of the laminate which, by

symmetry, is also stationary during loading. It should be

noted that there is some uncertainty in this estimation

because the origin lies in the boundary layer where the

in-plane- strains are expected to vary from their far-field

values. However the error is small because the boundary layer
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is a small fraction of the x, and x2 distances used in the

estimations. It can be shown using the theoretical expressions

for the- u and v displacements that the predicted displacement

of the origin (in either of the two directions) differs from

the corresponding estimated value by only 1%.

The theoretical predictions for the u and v displacements

were obtained by integrating the equations for c and E 22

(equations 5.21 and 5.22) with respect to x1 and x respective-

ly. Note that in general, for any x1 , x and z, these equations

cannot be integrated because the unknown functions F and G

that result (see equations 5.24 and 5.25) cannot be determined

in a consistent way. This is due to the approximate nature of

the analytical method used which satisfies strain compatibili-

ty on the average. If however, x2 and z are known numbers, as

is the case of the u displacement which was measured as a

function of x at a fixed x and z location, F(x ,z) is a con-
1 2 2

stant and can be determined by requiring that u be zero at the

edge of the top grip of the testing machine (recall that the

top grip does not move during testing). Similarly, for v meas-

ured as a function of x2 (or x) at a fixed x and z location
21

as was the case during the experiment, G(x1 ,z) is a constant

and can be determined by requiring that v as given by equation

5.25 is zero at the center of the laminate (i.e. at x=b).

Then, equations 5.24 and 5.25 give the theoretical predictions
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for the u displacement as a function of x and the v displace-

ment as a function of x.
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CHAPTER NINE

EXPERIMENTAL RESULTS

The method described in chapter eight was used to obtain

experimental plots for u and v for different coupons. Some

problems were encountered during testing especially for the

thicker laminates. The strain levels reached were low (and

hence the displacement values were also low) because at higher

loads "clicks" indicating some type of damage were heard which

meant that the laminate properties would be different from

those of an undamaged laminate and there was no way to measure

the exact effect of the damage.

9.1 [(+15) /(-15)/)s laminate

Using coupon number .five of this laminate a monotonic

test was conducted to find that the first "clicks" were heard

at 60% of the failure stress of 624 MPa. This coupon was not

used to take displacement data. The remaining coupons were

loaded up to approximately 50% of the failure load. Coupon

number 4 had a grid failure (the grid did not stick well onto

the coupon surface) and was not used to take data.

Using the strain gages on coupons 1, 2, and 3, the

Young's modulus and the Poisson's ratios were determined.
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These, along with the corresponding values predicted by CLPT,

are listed in Table 9.1. A typical stress-strain plot for one

of the coupons is shown in Figure 9.1.

The v displacement as a function of x for coupons 1, 2,

and 3 is shown in Figures 9.2, 9.4, and 9.6 respectively. The

theoretical predictions are also shown. The u displacement as

a function of x for coupons 2 and 3 is compared to the the-

oretical predictions in Figures 9.3 and 9.5.

9.2 [ 15/0]s laminate

As it was mentioned in chapter eight, this laminate was

used as a test laminate to examine the validity of the exper-

imental technique at the first stages of the experiment. It is

interesting to note that with this laminate it was possible to

go to a significantly higher strain level (about 5000 micro-

strain) than with the thicker laminates (about 3500

microstrain) which means that while thicker laminates have the

advantage of a large boundary layer, thin laminates may also

be useful in obtaining data in the boundary layer because they

allow higher strain levels (without any audible "clicks") and

hence more accuracy in the measurements. The u and v displace-

ments for coupon 3 of this laminate are compared to the

analytical predictions in Figures 9.7 and 9.8 respectively.
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TABLE 9.1

COMPARISON OF MEASURED YOUNG'S MODULUS AND
POISSON'S RATIO WITH CLPT PREDICTIONS

Coupon Young's Modulus Poisson's Ratio
[GPa]

Measured CLPT Measured CLPT

1 109.9 115.7 0.84 0.67

2 104.8 115.7 0.80 0.67

3 112.8 115.7 0.62 0.67
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9.3 [(+45) /(-45) ]s laminate

This laminate exhibits significant nonlinear

stress-strain behavior [44]. The linear region of the

stress-strain curve is limited to stress levels below 50 MPa.

For this reason, the specimens were loaded only up to 30 MPa.

However, at such low stress levels the strains were so low

that no useful displacement measurements were taken.

9.4 Comments on the experimental results

Even though there is significant experimental scatter,

the theoretical predictions have the same trends as the meas-

ured data in all cases. In the case of the v displacement for

coupon 2 of the [+15 5/-15 5 /0 5 ]s laminate (Figure 9.4), the

theory is in very good agreement with the experimental

results. Only one data point is far from the theoretical pre-

diction and is obviously wrong since it corresponds to a

negative value for the displacement at a location where the

displacement should be positive.

The u displacement predictions for coupon 3 of the

[+15 5/-155/05]s laminate (Figure. 9.5) and coupon 3 of the

[ 15/0]s laminate (Figure 9.7) are also in good agreement with

the expe-rimental results.
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The differences in the remaining plots (Figures 9.2, 9.3,

and 9.6) are attributed mainly to the changes of field of

vision required during testing. These in some cases induce

significant errors and can be seen as patterns in the data

points. Any error at each change is added to all data points

that follow. Referring to Figures 9.2 and 9.6, this might

explain why after the first change of field of vision in the

first case (corresponding to the fourth data point in Figure

9.2) and after the third change of field of vision in the

second case (corresponding to the fifteenth data point in Fig-

ure 9.6) the measured values are consistently lower than the

predicted values.

In summary, the theoretical predictions compare well with

the experimental results even though there is significant

scatter in the data. The plots for the u displacements give an

indication that the assumption that stresses do not depend on

xi is valid. The experimental method is successful in produc-

ing many data points within very small distances. Some

improvements in the accuracy of the measurements are needed so

that more reliable data can be obtained. A more accurate scale

on the eyepiece of the microscope would improve the accuracy

greatly. It is also suggested that laminates with stacking

sequences and material types permitting higher strain levels

(in the linear region of the stress-strain curve and at loads

lower than the loads at which the first "clicks" are heard) be
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used so that the measured displacements are larger and hence

the errors are smaller percentages of the measured values.
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CHAPTER TEN

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

10.1 Conclusions

A simple approximate method to determine interlaminar

stresses at the straight free edges of symmetric and balanced

composite laminates was presented. The method is based on the

conclusions of the Force-Balance Method and the principle of

minimum complementary potential energy. The boundary condi-

tions are exactly satisfied. Far from the free edge the CLPT

solution is- recovered. Due to the fact that. strain compat-

ibility is satisfied in an average (variational) sense, the

displacements cannot be determined exactly. This is not much

of a drawback however, since for failure analysis consider-

ations only the stresses or the strains.are used and both can

be determined by the present method in closed form. In partic-

ular:

1. The present method predicts in-plane stresses which,

in the boundary layer, differ significantly from the CLPT

predictions. This must be taken into account if in-plane

stress-based failure .criteria are used to predict failure of

composite laminates.
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2. Some effects of changing the stacking sequence were

examined. It was found that if the 00 plies of a [ e/0]s lami-

nate are moved from the midplane to the outside of the lami-

nate (thus forming a [0/ e]s laminate) the interlaminar normal

stress changes from tensile to compressive.

3. In the special cases of angle-plied and cross-plied

laminates the solution simplifies and no iterations are needed

(which are necessary for general laminates). The solution for

these special laminates then can be obtained even faster (in

terms of CPU time) than for general laminates.

4. It was shown that for some cross-plied laminates the

present method of analysis coincides with a method developed

by Pagano [12] which was based on a plate theory presented by

Whitney and Sun [13].

5. The concept of the "effective ply thickness" was

introduced (chapter seven). It was found that the boundary

layer is a -strong function of the effective.,ply thickness.

Doubling the effective ply thickness doubles the boundary lay-

er exactly. On the other hand, if the laminate thickness is

doubled but the effective ply thickness is kept the same the

boundary layer size remains the same.

6. Modelling the resin layer between plies as a separate

ply has almost no effect on the stress shapes for AS1/3501-6

graphite/epoxy systems. Thus, the usual approach of incorpo-

rating it in the adjacent plies is justified.
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7. The results obtained by using the measured out of

plane elastic properties were compared to results obtained

using the out of plane properties assumed by most investi-

gators. The differences were small and slightly more pro-

nounced in the case of interlaminar shear stress G2z*

8. Two possible approaches for modelling the in-plane

longitudinal stress were examined. One was to assume that it

is equal to the CLPT value throughout each ply and the other

was to actually determine it using the stress-strain and the

strain-displacement equations. The second approach is more

accurate and does not require any significant additional

effort.

9. The present method was shown to compare well with oth-

er methods of analysis. It can deal efficiently with thick

laminates (100 plies or more) which the other methods cannot

do. It can analyze hybrid or variable ply thickness laminates

very effectively. The method is more efficient than other ana-

lytical methods proposed in the past.

10. An experimental technique to take in-situ displace-

ment measurements at the top surface of a laminate using moir4

grids observed under a microscope was also presented. The

results compare well with the theoretical predictions. In all

cases the theory shows the same trends as the experiment. Some

improvements in the accuracy of taking data are needed so that

more conclusive experiments can be performed.
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11. The available data on the u displacements inside the

boundary layer indicates that the assumption that stresses do

not depend on xi is valid.

10.2 Recommendations for further work

1. Some modification of the in-plane (CLPT) solution is

needed so that discontinuities in the in-plane stresses can be

avoided. A possible approach would be to assume that the

in-plane stresses (even at the far field) are functions of z.

2. The method can easily be generalized to any type of

laminates (unsymmetric and unbalanced) under any type of load-

ing. Also, minor modifications are needed for the analysis to

account for thermal loadings.

3. The analysis should be extended to curved free edges

(e.g. holes).

4. Some improvements in the accuracy of the experimental

technique are needed. A more accurate scale is needed to be

attached on the eyepiece of the microscope so that finer

resolution can be achieved. It is also suggested that differ-

ent materials be used with such stacking sequences that the

resulting in-plane strains are larger than those measured so

far (but still in the linear region of the stress-strain plot)

so that- the errors in the measurements do not affect the data
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as much. Then, the technique can be applied to laminates with

holes using polar grids.

5.- The possibility of using x-rays to measure strains

inside the laminate and not only at its top or bottom surface

must be investigated. Very accurate and thin metallic grids

can be vapor-deposited on the individual plies of a laminate

(cured separately). The resulting plies can then be bonded

together using a secondary bond operation.
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APPENDIX 1

RADIUS OF CURVATURE FOR A CROSS-PLIED LAMINATE

The analysis in this appendix gives some evidence that

azz shapes which cross the x axis more than once correspond to

higher laminate energies than azz shapes which cross the x

axis only once.

The displacements in a symmetric laminate under tension

are given by Pipes and Pagano [5] as:

u-= Cx1  + U(x2,z) (A1.1)

v =V(x2, z) (A .2)

w = W(x 2, z) (A1.3)

The inverses of the two strain-displacement equations

3.3b and 3.3c can be written as:

C 1S12  S 12  s 13s12

C22 = S + (S22 ~ s 022 + (S23 -- )zz +

(S - 912  16  (Al.4)
26 S 11 12

Y2z S 44  O2 ''+ S45  0rz 
(Al.5)

where equation 5.34 was used to substitute for o il, C1 is giv-

en by equation 5.37, and all quantities refer to the ith ply.

The strain-displacement equations 3.3b, and 3.3d,

F 22 = 72z 3z 2
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can be used to determine the second derivative of the w dis-

placement with respect to x . Differentiating equation 3.3d

with respect to x and using equation A1.5 to substitute for

Y22z z

aw = S 2z S Iz V
2 ~ 44 ax2  45 ax2  a2az (Al.6)ax 2 2  2 x 2

Similarly, differentiating equation 3.3b with respect to

z and using equation A1.4 to substitute for E2 2 :

av - S122  22 3l~ 12
a _ _2 aa22  + 13S12 z +(O12.16 __12
2 az 2 2  -z 2 3  S . z + (S2 6  ~ 2-az (Al.7)

The last equation can be substituted in equation A1.6 to

give: 2 S 2

w _S 2 + S lz -(S - 2 ) 22 -
S2 44 x2 45 ax2 22 zax 2d2 2  22 1 2

( S12S13  azz (S S12S1 6  '12
23 z- 26 S az

11 11

which is valid for any laminate.

Assume now that the laminate is cross-plied, then, as it

was shown in equations 6.21 and 6.22, a lz= 12=0. Also, from

the fact that a2 2 is not a function of z, .Z2-0. Thus equation

A1.8 simplifies to:

32w 2Z S12 S13 )ZZ (A1.9)
a 22 -44 ax2  23  S 1 az

which is valid for any ply of a cross-plied laminate.
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This equation further simplifies if the equilibrium

equation in the z direction (equation 5.3) is used:

S2 =W (S + S S 12 S13  zz (A1.10)

.9 2 44 23 . Sg 1 3z

Considering figures 4.2a and 4.2b, one finds that two

possible shapes for Tx are the ones shown in figure A1.1.

32w
However, 3x is equal to the inverse of one of the principal

radii of curvature. Since (see equation A1.3) w is not a func-

tion of x , 0 and therefore the other two radii of cur-

vature(1/ . w and 1/-T4--9-) are infinite. Hence, the out of
dXa X2 dxl

plane shape of any interface will be governed by the shape of

1/32. Examination of Figure A1.1 yields possible shapes for

1/ 92W, the radius of curvature, which are shown in Figure

A1.2. These plots in turn imply the ply interface shapes that

are shown in Figure A1.3.

Clearly, the shape shown in Figure A1.3b is a higher mode

shape and corresponds to a higher energy state than that shown

in Figure A1.3a. Therefore, for minimum energy the lower mode

should be chosen. Thus, if a solution based on a azz shape

that crosses the x axis once can be found (i.e. if a stress

field that satisfies the governing equations and the boundary

conditions and has 0 stresses that cross the x axis once can

be found), that shape is the correct solution since it mini-

mizes the laminate complementary energy.
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a2 2W3 Xw

(a) (b)

2
Figure Al.l. Possible shapes for 2 for a cross-plied

ax2
laminate: (a) a crosses the x axis once;
and (b) a crosEes the x -axis twice

;2W 
(

1 -1

ix 
-d

(a) (b)

Figure A1.2. Possible shapes of the radius of curvature
for a cross-plied laminate: (a) a crosses
the x axis once; and (b) a crosses the x
axis twice

(a) (b)

Figure Al.3. Possible out of plane shapes for a ply
interface of-a cross plied laminate (a) a
crosses the x axis once; and (b) a crosEs
the x axis twice ZZ
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It should be noted that the above argument is more of an

indication than an actual proof. It is valid only for

cross-plied laminates and in the case a22 is not a function of

z, as is the case in the present analysis. It also assumes

that the boundary layer is the same for both modes. Further-

more, it does not account for the differences between the two

cases in the stretching part of the energy, treating those

differences as small compared to the differences in the bend-

ing part of the energy.
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APPENDIX 2

CHOICE OF THE EXPONENT IN THE X DEPENDENCE

OF THE IN-PLANE SHEAR STRESS a12

The reasoning for chosing the exponent $ in the

expression for fl 2 (x) (equation 5.15b) to be the same as one

of the exponents in the expression for f2 2 (x) (equation 5.15a)

is explained in this Appendix.

If the assumption that stresses do not depend on x1 is

relaxed, (section 3.3) the equilibrium equations 5.1-5.3 are

no longer valid. Instead, the more general form of the equi-

librium equations must be used. (Equations 3.la-c). In that

case however, the a 12 and a lz stresses do not decouple from

the remaining stresses as was the case in the analysis in

chapters 3-5.

Suppose that an effort is made to determine functional

forms for the stresses in such a way that equations 3.1a-c are

satisfied instead of the special case of equations 5.1-5.3.

Also suppose that these stress shapes are in terms of exponen-

tial functions in x2 (or x), and that the assumption that the

x., x2 and z dependencies are separable is valid. Consider now

the equilibrium equations 3.1a and 3.1c:

aQaf 3'12 ao lz
+ + - = 0 (3.la)

D z + 02z + Zz =0 (3lc)
ax 1 x 2 az -31c
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These two equations are coupled because the interlaminar shear

stress a1 z appears in both. If the a2z and azz stresses in

equation- 3.1c have x dependencies that match (i.e. there are

no exponents in one term only), then alz cannot have an x

dependence with an exponent that is different from the expo-

nents in the x dependencies of a 2z and azz (i.e. f1 3(x) must

have the same exponents as f2 3(x) or f3 3 (x)) because equation

3.1c could not be satisfied. If this property is to be pre-

served in the special case where-the equilibrium equations

5.1-5.3 are used, a1 2 must have an x dependence that matches

that of alz so that equation 5.1 is satisfied. Then, since

a must have an x dependence that matches that of a 2z or a ,

a1 2 must do the same. Therefore, f12 (x) (equation 5.15b) must

have either or x4 as an exponent. There is no difference in

which of the two is chosen. In the analysis in chapter 5 $ was

used.



244

APPENDIX 3

MOMENT EQUILIBRIUM EQUATIONS AS A CONSEQUENCE

OF THE BOUNDARY CONDITIONS AND ASSUMPTIONS USED

It will be shown in this appendix, that the moment equi-

librium equations (4.11a-4.13a) are a consequence of the

assumption that the x and z dependence in each stress shape

are separable, and the boundary condition that the side of the

laminate is stress-free (boundary condition b in section 3.2).

Consider each of the terms in equation 4.11a (moment

about the x axis in Figure 2.1) separately. The first term

involves the integral of a2z with respect to x evaluated on

the z + face (top face of the laminate section under consider-

ation). This integral can be simplified if a2z is written in

terms of its individual x and z functions, as in equation 5.10

and if the x integration is performed with the use of the

equilibrium equation 5.13b. Then,

S b

f+ 2zdx = g2 3 t b f23dx = g23(t) [f22 (b) - f22 (0)] (A3.1)

where b is the width of the laminate section in consideration

as shown in Figure 4.1. The fact that a22 is zero at the free

edge (stress-free boundary condition) implies that its x func-

tion, f2 2 (x), is zero at the free edge. Then, equation A3.1

can be rewritten as:

fZ+ 2zdx = g23(t) f22 (b) (A3.2)
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The integrals in equation 4.11a that involve azz can be evalu-

ated in a similar manner. Equation 5.9 is used to express azz

in terms of its x and z functions, and f3 3 is integrated by

parts to give:

ru b b

f+= g3 3  b 33(x)xdx = g33(t) [x f 33dx -

- fb (f f33dx)dx] (A3.3)
0

The integrals on f3 3 can be evaluated as functions of f23

if the differential equilibrium equation 5.13c is used. Then:

f+ azzxdx = g3 3(t) [bf2 3 (b) - fb f2 3dx] (A3.4)

Z 0

and using the differential equilibrium equation 5.13b to eval-

uate the integral on f23:

f+ zzxdx = 93 3 (t) [b f23(b) - f22(b) + f22 (o)] (A3.5)
Z

Again, using the fact that f2 2 is zero when x is zero,

one obtains:

f+ a ~xdx 933 (t) [b f2 3(b) - f22 (b)] 
(A3.6)

Z

Since now a2z is zero outside the boundary layer (recall that

b is outside the boundary layer), f2 3 (b) is zero. Then,

f + a o xdx 93 3 M f22 (b) (A3.7)

In an exactly analogous way one finds

f _ azzx = - g33(0) f22(b) (A3.8)

z
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Consider now the last integral in equation 4.11a, the one

involving G22 . Expressing c2 2 in terms of its x and z func-

tions as in equation 5.8:

c22 zdz = 2 2 (b) f g22 (z) zdz (A3.9)

20

The integral in the right hand side of equation A3.9 can be

evaluated using integration by parts and the differential

equilibrium equations 5.13e, 5.13f.

f2- a2 2zdz = f22(b) [z g2 3 (z) I - f g23(z) dz] =

2- 0 0

= f2 2(b) [t g23 (t) - g33(t) + g33 (O)] (A3.10)

All the terms in equation 4.11a have been evaluated

(equations A3.2, A3.8, A3.9, A3.10) and they can be placed in

equation 4.11a to give

- f dx -f xdx + f xdx + f zdz=
+ 2z Z+ ZZ ZZZ 2- 22
z zz

- g2 3 M f22(b) + g33(t) f22(b) - g33  22(b) +

+ f22(b) t g23 ) - f2 2(b) g33() + f22(b) g33 (O) (A3.1l)

But the right hand side is zero (by cancelling like terms).

Thus, the moment equilibrium equation 4.11a is shown to

follow from the boundary conditions and the set of assumptions

used in the analysis. In a similar manner, the remaining two

moment equilibrium equations (4.12a, 4.13a) can be shown to
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follow from the boundary conditions and the set of the assump-

tions used.
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APPENDIX 4

VALUES FOR di IF aGi IS ASSUMED TO BE

EQUAL TO ITS CLPT VALUE

If a1 1 is assumed to be constant throughout each ply and

equal to its CLPT value 0lI , the di expressions (equationsUre i
5.108) simplify somewhat and are given by the following:

L 2 tS22
S= 22 lei] -7 (A4. 1)

2 M 33 [3(022
2 t + 15022 4 3 +

2[eil 4

20022 5 t2 + 20(t )2 t2 + 6 0 t +
[2 li1 4 4 5

60 0 52

3 44 22t +3022 t+342 ]

d L )2 t2 + 3 a L t + ( 22
4 6 55 ~12 [ol1[i 2 2

d 3 (OL )2 t S 65 ~7 412[i 66

(A4.2)

(A4.3)

(A4.4)

(A4.5)



d0 L
2 2[ei]

d =L
12 [ei]

d8 = 0 L
22[ei] T2 (022

t2 + 3 t + 6 A5)

L L

d 12 22 26

9 2

d L0
10 2

d 4 5 t
11 z-

tS36

L 2

L
22

L
22 [ o

t2 + 3 4 t + 6 '5)

t2 + 3 L 2 t +
22[oil]

+ 3 o L t + 6 2 5]+ 12 [ol4 2 5
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[ei]
(A4.6)

L
a11[ 6iI

t S16 (A4.7)

(A4.8)

(A4.9)

(A4.10)

(A4.11)
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APPENDIX 5

COMPUTER PROGRAM CODE

The code of the computer program used to implement

the method on a PDP-ll/34 computer is listed below.

COMMON/BL1/ST11 (50) FST22(50) PST 12(50) PANGLE (50) PTHETA (50) F'H IF
+ALAMYNNPS(5O,6p6),XCDF(5),F(11)vRODTR(4),ROTI(4),COF(5),
+U(4),FLAM(4),T(50) PFT1 FT2,FT3.,ALPOLYPFHIPOLPFDISCPHIS1PPHIS2,
+FHI1PFHI2,S11(50),S22(50),S33(50)iS12(50),S13(50),S23(50),
tSUM1(50),SUM2(5O),SUM3(50)rS44(50),S55(50)iS66(50) .

+PHISFK(50).RROtT(4),PHIPPALAMP
COMMON/BL2/MLTITERIRiISUBRPISUBR2
COMMON/BL3/INDEX

C DOUBLE PRECISION ST11,ST22, ST12,ANGLETHETAPHIPALAMSXCOFt
C +F ROOTRuROOTICOFUFLAMtTvFTliFT2pFT3.ALPOLYrPHIPLFDISC,
C +PHIS1,PHIS2,PHI1 PHI2,FE11 FE229FE33,FG12,FG13PFG23,FNU12,
C +FNU23PFNU13PSUMl.SUM2pSUM3pS44(50)PS55(50) S66(50),
C +INDEX

DATA F/11*0.0/
ITER=O
INDEX=0
IMULT=1
ALAM=0.
ISUBR=0
ISUBR2=0
WRITE (5,*) 'INPUT TOTAL NUMBER OF PLIES'
READ (5p*) NNT2
NN=NNT2/2
WRITE(5p*) 'DO ALL PLIES HAVE THE SAME THICKNESS?(YES=1NO=0)'
READ(5v*) KKI
IF(KK1.EQ.1) GOTO 401
CALL DIFFTH(TPFLTHIKPNN)
GOTO 402

401 WRITE(5v*) 'INPUT PLY THICKNESS'
READ(5P*) THICK
DO 403 Ia1PNN

403 T(I)=THICK
FLTHIK=NNT2*THICK

402 WRITE(C.*) 'INPUT SIGMAI1 STRESS VALUES FOR 1ST HALF OF
+THE LAMINATE'
READ(Sv*) (ST11(J)PJ-lPNN).
WRITE(5p*) 'INPUT SIUMA22 STRESS VALUES FOR 1ST HALF OF
4THE LAMINATE'
READ(5p*) (ST22(J1)PJ1-IeNN)
WRITE(5,*) 'INPUT SIGMA12 STRESS VALUES FOR 1ST HALF OF
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+THE LAMINATE'
READ(5,*) (ST12(J2)PJ2=1PNN)
WRITE (5,*) 'INPUT ANGLE VALUES FOR 1ST HALF OF THE

+LAMINATE'
READ(5,*) (ANGLECJ3),J3=1iNN)
DO 540 I11=19NN

540 THETA(I11)=ANGLE(I1I)*3.141592654/180
WRITE(5p*) 'SIGMAll STRESSES ARE (FROM TOP TO MIDPLANE)'
WRITE(5p*) (ST11(J4),J4=1.NN)
WRITE(5*) 'THE SIGMA22 STRESSES ARE'
WRITE(5p*) (ST22(L1),Ll=1,NN)
WRITE(59*) 'THE SIGMA12 STRESSES ARE'

WRITE(5,*) (ST12(L2),L2=1,NN)
WRITE(5p*) 'ANGLE VALUES IN RADIANS'
WRITE(5,*) (THETA(L3),L3=1.NN)
WRITE(5,*) 'IS YOUR LAMINATE:OTHER(1),ANGLE-PLY(2),

+OR CROSS-PLY(3)?'
READ(5r*)LT
IF(LT.E0.1)6OTO 1000
IF(LT.EQ.2)GOTO 1250
CALL LAMIN
FRATID=F(l)/F(2)
IF (FRATIO.GT.O.) GOTO 413
WRITE(5;*) 'RATIO OF Fl TO F2 IS NEGATIVE.METHOD 1 FAILS.
+FROCEED WITH METHOD 2.'
GOTO 414

413 P2=(SORT(FRATIO)*(F(3)-2*F(8))+2*F(1))/(2*F(6)+3*F(1))
IF( (P2.GT.O.).OR.(P2.LT.-4.))GOTO 415
WFIlE(5,*) 'EQUATION FOR LAMBDA HAS COMPLEX ROOTS. PROCEED
+WITH METHOD 2.'

GOTO 414
415 WRITE(5t*) 'METHOD 1 IS USED'

BET A=PF242
IF(BETA.LT.O.)GOTI) 416
WRITE(5y*) 'LAMBDA IS NEGATIVE. PROCEED WITH METHOD 2.'
GOTO 414

416 FDISC=BETA*BETA-4
ALAM(-BETA-S0F(FISC))/2
PHI=SORT(SORT(FRATIO)/ALAM)
PHI5=PHI*PHI
WRITE(5,*) 'PHI IS',FHI
WRITE(5,*) 'LAMBDA IS',ALAM
LT=1
GOTO 1211

414 GAMAmF(3)-2*F(8)
FDISC=GAMA*GAMA-12*F(2)*(11*F(1)+O*F(6))
IF(FDISC.GT.0.)GOTO 541
WRIlE(5p*) 'DISCRIMINANT OF PHI POLYNOMIAL IS NEDATIVE

fQUIT.'
GOTO )010

541 DEL1A=64F(2)
ALFA=-bAMA/DELTA
BEl A-SORT(FDISC)/DELTA
PHIS1=ALFA+$ETA
PHIS2=ALFA-HETA
IF(PHIS1.LT.0.)GO TO 542
liii. ORT(FPIIS1)
(010 543

42 PHIvSORT(PHIS2)
743 WRITE(5.*) 'PHI EQUALS'PPHI
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PHIS=PHI*PHI
GOTO 1211

1250 CALL LAMIN
PHIS=-(F(5)+2*F(7))/F(4)
IF(PHIS.GT.0.)GOTO 1190
WRITE(5v*) 'PHI SQUARED IS NEGATIVE. QUIT.'
GOTO 101.0

1190 PHI=SORT(PHIS)
WRITE(5,*) 'THE PHI VALUE IS ',PHI
GOTO 1211

1000 CALL LAMIN
FHI=4.4/FLTHIK

1001 PHIS=FHI*PHI
PHI F= PH I
ALAMP=ALAM
ITER=ITER+t
CALL POCOEL
CALL ROOT(XCOF.COFM.ROOTRPROTIuIER)
IF(INDEX.EG.1)GOTO 1010
IF(IR.NE.0)GOTO 1018
WRITE(5v*) 'NO POSITIVE LAMBDA VALUES.OUIT.'
GOTO 1010-

1018 WRITE(5p*) 'IN MAIN AFTER ROOT IR IS'.IR
IF(IR.EO.1)GOTO 1020
CALL ENERGY
ALAM=RROOTCIR)
GOTO 1022

1020 ALAM=RROOT(1)
1022 WRITE(5.*) 'LAMBDA-EUALS)'vALAM
1200 CALL POCOPH

CALL PHISOL
IF(INDEX.EO.1)GOTO 1010
IF(PHI.LT.PHIP)GOTO 1024
F'RATID=PHIP/PHI
GOTO 1026

1024 FRATIO=PHI/PHIP
1026 IF(PRATIO.LT..999999)GOTO 1021

WRITEC5I*) 'CONVERGENCE AT ITERATION #',ITER
WRITE(5'*) 'PHI IS',PHI,'AND LAMBDA IS'PALAM
WRITE(5*) 'PREVIDUS PHI WAS'vPHIP.'PREVIOUS LAMPDA

IWAS'PALAMP
ISUBR2=0
CALL CHECK
GOTO 1211

1021 IF(ITER.NE.150*IMULT)GOTO 1001
WRITE(5*) 'NO CONVERGENCE AFTER'vITER,'ITERATIONS'
WRITE(5*) 'VALUES OF PHI, LAMBDA FOR THE LAST

ITWO ITERATIONS:'
WRITE(S*) PHIPvALAMP

* WRITE(5,*) PHIPALAM
ISU[4R2 0
CALL CHECK
1SUBR2=1
WFITE(5p*) 'MORE ITERATIONST(YES-1,NO-0)'
READ(5,*)KK1
IF(KI1.EO.0)GU1O 1029
WRITE(5.*) 'INPUT PHI VALUE TO CONT1NUE ITERATIONS'
REAII(5m*) PHI
IMULT=IMULT+1
GOTO 1001
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1029 -CALL PLPREP
GOTO 1010

1211 CALL PLPREP
1010 STOP

END
SUBROUTINE LAMIN
COMMON/BL1/ST11(50),ST22(50),ST12(50),ANGLE(50),THETAC50) PHI,
+ALAMrNNPS(50,6,6)vXCOF(5),F(11),ROOTR(4)PRDOTI(4)PCOF(5),
+U(4),FLAM(4),T(50),FTiFT2PFT3,ALPOLYPHIPOLrFDISCrPHISlPHIS2,
+PHI1,PHI2pS11(50),S22(50) 533(50)1 S12(50),S13(50),S23(50),
+SUMI(50)iSUM2(50)SUM3(50),S44(50),S55(50),S66(50),
+PHISrFK(50)YRRO0T(4),FHIPALAMP
COMMON/BL2/MLTiITERIRPISUBRISUBR2

C DOUBLE PRECISION ST11,ST22,ST12pANGLETHETAPHIALAM.SPXCOFr
C +FROTRROOTIiCOFUFLAMvTFT1,FT2,FT3PALFOLYPFHIPOLFDISC.
C +PHIS1,FHIS2iPHI1,PHI2,FE1I FE22vFE33,FG12iFG13PFG23,FNU12,
C +FNU23iFNU13,SUMISUM2,SUH3rS44(50)rS55(50),S66(50),
C +844,555,66

DO 500 I1=1,11
500 F(I1)=O.

WRITE(5,*) 'ARE*ALL PLIES MADE OF THE SAME MATERIAL?
+CYES=1 NO=0)'
READ(5,*) KK1
IF(KKI.EQ.1) GOTO 404
DO 405 IC=1,NN
WRITE(5,*) 'FOR PLY NUMBER',IC,'INPUT E1uE22,E33 1 612,G133 G23'
READ(5,*) FEll FE22rFE33,FG12,FG13rFO23
WRITE(5,*) 'FOR PLY NUMBER',IC,'INPUT NUl2vNUl3rNU23'
READ(59*) FNU12vFNU13PFNU23
S1I(IC)=1/FE11
S22(IC)=1/FE22
S33(IC)=1/FE33
512(IC)=-FNU12/FEI1
Si3(IC)=-FNU13/FE11
323(IC)=-FNU23/FE22
S44(IC)=1/FG23

SS55(IC)=1/FG13
405 S66(IC)sl/FG12

GOTO 406
404 WRITE(5,*) 'INPUT E11E22vE33,G12,G13rG23'

READ(5,*) FEIlFE22.FE33.FG12,FG13,FG23
WRITE(5,*) 'INPUT NU12pNU13,NU23'
READ(5u*) FNUI2,FNU13,FNU23
ID 407 ID=1NN
SI1(I)=1l/FEl1
522(ID)=1/FE22
533(ID)=1/FE33
S12(ID)=-FNU12/FEI1
S13(ID)--FNU13/FEII
S23(ID)=-FNU23/FE22
S44(ID)=l/FG23
S55(11)-l/FG13

407 S66(ID)u1/FU12
406 DO 510 12m1,NN

CALL COMPLI(12)
CALL SUM(I2)
F(t)=F(1)+ST22(12 )**2*T(12)*(S(12.2,2)-S(12.12)**2/

+S(12,1i1))/2
F(2)SF(2)4T(12)/120*C3*sT22(12)**2*1cI2)**4+15*ST

2 2z( 2 )*
+SUM1C 2)*T(I2)**3420*ST22(12)*SUM2(I2)*TC 12)**2+20*
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+SUMI(I2)**2*TCI2)**2+60*SUM1(I2)*SUM2(I2)*T(12)+60*
+SUM2(I2)**2)*(S(I2,3,3)-S(I2,1,3)**2/SCI2,l,1))
F(3)=FC3)+T(I2)/6*(ST22(I2)**2*T(I2)**2+3*ST22(I2)*
+SUM1(I2)*T(I2)+3*SUMI(I2)**2)*S(I2,4,4)
F(4)=F(4)+TCI2)/6*(ST12(I2)**2*T(I2)**2+3*ST12(I2)*
+SUM3(I2)*T(I2)+3*SUM3(I2)**2)*S(I2,5p5)
F(5)=F(5)+3*(ST12I2)**2*TCI2))*(SCI2,6,6)-

S+S(I2plr6)**2/S(I2rlpl))/2
FK(12)=(SCI2,1,)*ST11(I2)+SCI2,i,2)*ST22(I2)+S(121,6)*
+ST12(I2))/5(12p1'1)
F(6)=F(6)+FK(I2)*S(I2,12)*ST22(I2)*T(I2)
FC7)=F(7)+FK(I2)*SCI2,l,6)*ST12(I2)*T(12)
F(B)=F(B)+ST22(I2)*TCI2)/12*(ST22(I2)*T(12)**2+3*SUM1(I2)*
+T(12)+6*SUM2(I2))*(S(I2,2,3)-S(I2,12)*S(l21,3)/S(I211l))
F(V)=F(9)+ST12(I2)*ST22(I2)*T(12)*CS(I2,2,6)-
+S(12p12)*S(12t1,6)/S(I2,1,1))/2
F(10)=F(10)+ST12(I2)*TCI2)/12*(ST22(I2)*T(I2)**2+3*SUM1(I2)
+*TCI2)+6*SUM2(I2))*(S(I2,3,6)-SCI2,1,3)*S(I21,6)/S(I2,1,1))

510 F(11)=F(11)+TCI2)/12*C2*ST12CI2)*ST22(I2)*T(I2)**2+
+3*ST22(12)*SUM3(I2)*TCI2)+3*ST12(I2)*SUM1(I2)*TCI2)+
+6*SUM1(12)*SUM3(I2))*S(I2t4p5)
WRITE (5pt) 'F VALUES'
WRITE (5,*) (F(IS)PIS=1,11)

RETURN
END
SUBROUTINE POCOEL
COMMON/BLI/ST11(50),ST22(50),ST12(50),ANGLE(50)THETA(50),PHI,
+ALAMNNPS(50,6,6),XCOF(5),FC11)tROOTR(4'),ROOTI(4),CF(5),
+U(4),FLAM(4),T(50),FTlFT2,FT3,ALPOLYPHIPLFDISCPHIS1,PHIS2
+PHI1,FHI2,Sl1(50),S22(50),S33(50),S12(50),S13(50),S23(50),
+SUM1(50) SUM2(50),SUM3(50),S44(50),S55C50) S66(50),
+PHISPFK(50)PRROOT(4)PPHIPALAMP
COMMON/BL2/MLTrITERIRPISUBRISUBR2
XCOF(5)=F(2)*PHIS**2
XCOF(4)=2*XCOF(5)
XCOF(3)=2*(F(6)+F(9)+F(l))+PHIS*(2*F(11)+F(3)-2*F(10)-
+2*F(B))
XCOF(2)=4*F(6)+8*F(9)+6*F(1)
XCOF(1)=XCOFC2)/2
M=4

1240 RETURN.
END
SUBROUTINE ROOTCXCOF.COFiMIROOTRiROOTIiIER)
COMMON/BL1/STl1(50),ST22(50),ST12(50),ANGLE(50),THETA(50)PPHI
tALAMPNNpS(50,6r6)PCC1(5),F(11),CC3(4),CC4(4)CC(5):

+U(4),FLAM(4),T(50),FT1FT2,FT3pALPOLYpPHIP0LFDI SCrPHISIPHIS2,
fPII oPHI2v511(50)YS22(50)oS33(50)PS12(50)tS13(50)PS23(50)p
+SUM1(50),SUM2(50),SIM3(50),S44(50),S55(!O),S66(50),
+PHISFK(50),RROOT(4),FHIPPALAMP
COMMON/BL2/LC2tLTsITERiIRvISUBRPISUBR2
COMMON/BL3/INDEX
DIMENSION XCOF(5) ,CF(5),ROOTR(4) RDOTI(4)

C DOUBLE PRECISION STIIPST22IST12PANGLEPIHETAPHIALAMSXCOF
C 4FROOTRRHOTI COFPUFLAMPTiFTIPFT2tFT3eALPOLYPFHIP0LFDISC
C +FHISItPHIS2,PHI 1FHI2,FEI1IFE22,FE33rF012,F013.FG23,FNU12,
C *FNU23,FNU13SUMlSUM2,SUM3,S44(50) S55(50)S,66(50),
C +S44,S55PS66
C DOUBLE PRECISION XDOYOXPYeXFRYPRUXUYVPYTXTPUUPXT2UYT2,
C +SUMSOIXrIYpTEMPALPHApABS

IFIT-0
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IR=0
N=M
IER=O
IF(XCOF(Ntl))I0P25910

10 IFNN) 15915P32
15 IER=1
20 IF(IER.EO.0)GOTO 16

WRITE(5*) 'IER IS'PIERP'STOP'
INDEX=1
GOTO 18

16 DO 18 14=1,4
IF(RODTI(14).NE.0)GOTO 18
IR=IR+l
IF(ROOTR(14).LT.0)GOTO 19
RROOT(IR)=ROOTR(I4)
GOTO 18

19 IR=IR-1
18 CONTINUE

RETURN
25 IER=4

GO TO 20
30 IER=2

GO TO 20
32 IF(N-36) 35.35,30
35 NX=N

NXX=N+1
N2=1
KJI=N+1
DO 40 L=1KJ1
NMT=KJ1-L+1

40 COF(MMT)=XCOFCL)
45 XO=.00500101

Y0=.01000101
IN=0

50 X=XO
XO=-10.0*Y0
YO=-10.0*X

Y=YO
I = INT -
GO TO 59

55 IFIT-1
X PR =X

YPR.Y
I7 ICT-*0

60 UX-0.0
UYr0 .)
V=0.0
YT=0.0
XF=l.0
UU-COF(Nt1)
IF(UU) 65,130965

65 DO 70 I-ILN
LN-I+l
TEMF=COF(L)
XT2=X*XT-Y*YT
Yl2=X*T+Y*XT
ULIUU+ 1 EMIF*X12
VM+TEMI'*YT2
FI-I



256

- UX=UX+FI*XT*TEMP
UY=UY-FI*YT*TEMP
XT=XT2

70 YT=YT2
SUMSQ=UX*UX+UY*UY
IF(SUMSQ) 75,110,75

75 DX=(V*UY-UU*UX)/SUMSQ
X=X+DX
IiY=-(LIU*UY+V*UX)/SUMSO
Y=Y+E'Y

76 IF(ABS(IY)+ABS(DX)-1.OD-05)100,B0,60
80 ICT=ICT+1

IF(ICT-500) 60,65,85
85 IF(IFIT)l00,90,100
90 IF(IN-5) 50,95,95
95 IER=3

GOTO 20
100 DO 105 L=IPNXX

MMT=KJI-L+1
TEMP=XCOF(MMT)
XCOF(MMT)=COF(L)

105 COF(L)=TEMP
IT EMP=N
N = N X
NX=ITEMP
IF(IFIT) 120F55,120

110 IF(IFIT) 115,50,115
115 X=XPR

Y=YPR
120 IFIT=0
122 IF(ABS(Y)-1.0D-4*ABSCX))135,125,125
125 ALFHA=X+X

SUMSQ=X*X+Y*Y
N=N-2
GO TO 140

130 X=0.0
NX=NX-1
NXX=NXX-1

135 Y=0.0
SUMBQ=0.0
AL FHAt=X
N=N-1

140 COF(2)=COF(2)4ALPHA*COF(1)
145 DO 150 L=2,N
150 COF(LtI)=COFCL+1)+ALPHA*COF(L)-SUMSO*COF(L-1)
155 RDOTI(N2)=Y

SROOTR(N2)-X
N2=N2+1
IF(SUMSO) 160,165P160

160 Y=-Y
SUMSO=0.0
GO TO 155

165 IF(N) 20P20v45
END
SUBROUTINE ENEROY
COMMON/BL1/ST1I(50),ST22(50) ST12 (50), iNGLE(50),THEIA(50)PPHI;

+ALAMNNS(50,6,6),XCOF(5)F(11),ROUTR(4),RDOTI(4),COF(5),
tU(4)PFLAM(4),T(50)FTFT2FT3ALPOLYPFHIP'OLFISC,F.HI1,piIS2,
+FHIIPFHI2IS1I(50),S22(50),533(50),S12(50),S13(50),S23(50),
+SUM1(50),SUM2(50),SUM3(50),S44(50),S(5o),866(50),
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- +PHISFK(50)PRROOT(4),PHIPPALAMP
COMMON/BL2/MLTITERIR'ISUBRISUBR2

C DOUBLE PRECISION STllST22rST12vANGLEPTHETAiPHIrALAISPXCOF,
C +FROOTRROOTICOFPUpFLAMTFT1,FT2,FT3,ALPOLYPHIPOLPHIS1'
C +PHIS2,PHI1 ,PHI2,FEliFE22,FE33,FG12.FG13,FG23,FNU12,FNU13,
C iFNU23pSUMlSUM2,SUM3,FDISCS44(50),S55(50) 566(50),
C tS44vS55,566
C DOUBLE PRECISION SS12,SS16,SS33,SS44,9SS55SS22,SS66SS45,
C +5S36,SS23,SS26
C. ISUBR=l==>ONE LAMBDA, TWO PHI

DIMENSION PHIA(4)
IF(ISUBR.EO.1)GOTO 517
KK4=IR
DO 519 I10=iKK4

519 U(I1O)=0.
DO 518 II=1YIR
PHIA( II)=PH3

518 FLAM(II)=RROOT(II)
GOTO 513

517 KK4=2
D' 512 I10=1i2

512 U(I10)=0.
DO 511 I=1,2

511 FLAM(II)=ALAM
PHIAC1)=PHI1
PH IA (2) =PHI 2

513 DO 520 I5=1uKK4
FL=FLAM(IS)
FL2=FL*FL
FL3=FL2*FL
FL4=FL3*FL
FLT=FL+1
PH=PH IA (IS)
FPH 2=F'H*F'H
PH3=PH2*PH

520 U(I5)=-F(6)*(FL+1)/(FL*PH)-F(7)/PH+.5*(F(2-)*FL2*
+PH3/ ( FL+1 ) +F(3 )*FL*PH/(FL+1 ) +F( 4 )*PH+F (1 )*( -3*
+FL4+FL3+4*FL2+FL.-3)/((FL-i)**2*FL*(FL+1)*PH)-F(5)/
+PH)+F(11)*FL*PH/(FL+I)-F(10)*FL*PH/(FL+1)-F(8)*
+FL*PH/(FL+1)+F(9)*(-3*FL3-FL2+2*FL+2)/(FL*(FL2-1)*PH)
UF=U( 1)
J=1
IF(ISUBR.EQ.1)GOTO 509
DO 516 I=2PIR
IF(UF.GE.U(I)) GOTO 514
GOTO 516

514 UF=U(I)
J= 1

516 CONTINUE
IR=J
GOTO 507

509 IF(U(1).L.U(2))GOTO 508
PHI *P HI 2
GOT6 507

508 PHI FPHI1
507 RETURN

END
SUIRUUT INE POCOPH
LOMMON/BL/5111(50),ST22(50),ST12(50),ANGLE(50),THETA(50),F'HI,

4ALAMNNpS(506,6),XCOF(S)F(11),ROOTR(4)PRODT(4),CDF(5),
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+U(4),FLAM(4),T(50),FT1,FT2,FT3,ALPOLYPHIPDLFDISCPHIS1,PHIS2,
+PHIlFHI2,S11(50),S22(50),533(50)rS12(50)vS13(50)rS23(50),
+SU1(50),SUM2(50),SUM3(50)S44(50),55(50),S66(50),
+FHISFK(50),RRDOT(4),PHIPALAMP
COMMON/BL2/MPLT ITERIRISUBRISUBR2

C DOUBLE PRECISION ST11,ST22,ST12,ANGLETHETAPHIALAMSXCOF,
C +FPRO0TRRDOTICOFUFLAMTFT1,FT2,FT3,ALPOLYPHIPOLFDISC,
C +PHIS1,PHIS2PPHIIPHI2TFE11 ,FE22,FE33,FG12vFG13'FG23PFNU129
C +FNU23,FNU139SUM1,SUM2,SUM3,S44(50),S55(50),S66(50),
C +S44,S55,S66

FT1=3*F(2)*ALAM**3
FT2=ALAM**2*(F(4)+2*F(11)+F(3)-2*F(10)-2*F(S))+F(4)*ALAM
FT3=ALAM**2*(F(5)+6*F(9)+3*F(1)+2*(F(7)+F(6)))+

+ALAM*(F(5)+8*F(9)+5*F(1)+2*(F(7)+2*F (6)))+4*F(9)+3*F(1)+
+2*F(6)
RETURN
END
SUBROUTINE CHECK
COMMON/BL1/ST11(50),ST22(50),ST12(50),ANGLE(50),1HETA(50),PHI,
+ALAMNNS(50,6r6),XCOF(5),F(11),ROOTR(4),ROOTI(4),COF(5),
+U(4),FLAM(4),T(50),FT1,FT2,FT3,ALPOLYPHIPOLFDISCPHIS1,PHIS2,
+FHIiPHI2,S1O(50)PS22( 50),S33(50),512(50),S13(50),S23(50),
+SUM1(50) SUM2(50),SUM3(50) S44(50),S55(50),S66(50)p
+FHISFK(50),RROOT(4),PFHIPPALAMP
COMMON/BL2/MLTITERIRISUBR ISUBR2

C DOUBLE PRECISION ST11,ST22,ST12,ANGLEPTHETAFHIALAMSrXCOFr
C +FRODTRROOTICOFUPFLAMTrFT1,FT2,FT3,ALPOLYPFHIPDLF'ISCr
C +F'HISlPFHIS2,PHI1F'HI2,FEliFE22,FE33PFG12vFG13PFG23iFNU12P
C +FNU23,FNU13,SUM1,SUM2vSUM3,S44(50),S55(50),S66(50),
C +S44,S55,S66

ALFDLY=XCDF(5)*ALAM**4+XCDF(4)*ALAM**3+XCOF(3)*ALAM**2+
+XCOF(2)*ALAM+XCOF(1)

PHIP0 =FT1*PHIl*4+FT2*FHI**2+FT3
C ISUBR21==>DD NOT PRINT VALUES OF POLYNOMIALS
C IF(ISUBR2.EG.1)GOTO 1139

WRITE(5,*) 'THE VALUES OF LAMBDA AND PHI POLYNOMIALS ARE'
WRITE(Sp*)ALPOLYPHIPOL

1139 REIURN
END
SUBROUTINE PHISOL
COMMUN/BL1/ST11(50),ST22(50),ST12(50),ANGLE(50),THETA(50),PHI;
fALAMPNNPS(50,6p6)PXCOF(5),F(11)PROOTR(4)PRDOTI(4)PCOF(5),
+U44)PFLAM(4)p1(50),FT1PFT2,FT3,ALPOLYPHIPOLFDISCPHIS1,FHIS2,
iFHIIPHI2,S11(50),S22(50),S33(50)pS12(50)PS13(50)PS23(50)
+SUM1(50),SUM2(50),SUM3(50),S44(50),S55(5O)PS66(50),
+PHIS rFK (50) 9RRDOT (4) PHIP 9ALAMP
COMMON/BL2/MLTITERIRISUBRISUBR2
COMMON/BL3/INDEX

C DOUBLE PRECISION STIIPST22,S112,ANGLETHETAPHIPALAMSXCOF,
C +FPRD IR.ROOTICOFUpFLAMP I FT1FT2vF 3PALPOLY PHIPOL EDISCO
C +PHIS1,PFHIS2@PHI1IPHI2,FE11,FE22,FE33PFO12,FG13,FG23,FNU12,
L +FNU23rFNU13;SUMiPSUM2rSUM3,544(90)P555(50)rS66(50).
C 41NDEX

FDiISC=FT2**2-4*FTI*FT3
IF(FiISC.DT.0)GOTO 1140
WFITE(5,*) 'AT ITERATION NO',ITER,'1HE DISCRIMINANT

+OF THE PHI POLYNOMIAL IS NEGATIVE.STOP.'
C IF INDEX=1 QUIT

INDEX=1
GT 1031
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-1140 FHISI=(-FT2SoRT(FIIISC))/(2*FT1)
FHIS2=(-FT2-SRT(FDIISC))/(2*FT1)
IF((F'HIS1*PHIS2) .LT.0)GOTO 1141
IF(PHIS1.LT.O.)GOTO 1144
PHI1=SQRTCPHIS1)
PH I2=SQRT (PH IS 2)
ISUBR=1
GOTO 1031

1144 WRITE(5,*) 'AT ITERATION NUMBER',ITER,'BOTH PHI
+VALUES ARE NEGATIVE, QUIT.'
INDEX=1
GOTO 1031

1141 IF(FHIS1.LT.O)GOTO 1142
PHI=S0RT(PHISX)
GOTO 1143

1142 FHI=SORT(PHIS2)
1143 WRITE(59*) 'THE PHI VALUE IS'PPHI
1031 RETURN

END
SUBROUTINE SUM(INN)
COMtON/BL1/ST11(50),ST22(50),ST12(50),ANGLE(50),THETA(50),PHI,
+ALAMNNS(50,6,6),XCOF(5).F(11)PR00TR(4),R0OTI(4).COF(5),
iU(4),FLAM(4),T(50),FT1,FT2#FT3,ALPOLYvPHIPOLFD'ISC PFHIS1,PHIS2,
+PHI1,PHI2,S11(50),522(50),S33(50)FS12(50)P513(50),523(50)P
1SUM1(50),SUM2(50)tSUM3(50)iS44(50)eS55(50)PS66(50)
+PHISPFK(50)PRROOT(4)PHIPvALAMP
COMMON/BL2/MLTITERIRISUBR9ISUBR2

C DOUBLE PRECISION ST11PST22,ST12PANGLETHETAPPHIALAMvSXCOF,
C +F ROOTRROOTI COFUvFLANMTFT1,FT2,rFT3,ALPOLYPFHIPOLFDISC,
C fFHIS1,PHIS2pPHI1,PHI2,FE11,FE229FE33,FG12,FG13,FG23tFNU12,
C iFNU23vFNU13,SUMNISUM2,SUK3iS44(50)55(5O),866(50),
C +544,S55PS66
C DOUBLE PRECISION SGMA2ASGMA2B

nGMA=O.
SGMA2A=0.
SGMA2B=0.
SGMA3=0.
IF(INN.EO.1)GOTO 1050
DO 550 18=1,INN-1
SGMA1=SGMAI+T(IB)*ST22(IB)
SGMA3=SGMA3+T(I2)*ST12(18)
SGMA2A=SGMA2A+T(IB)**2*ST22(IB)/2

50 CONTINUE
IF(INN-1.EQ.1)GOTO 1050
1 EMFOR=0.
DO 560 19=1,INN-2
DO 561 J=I9+1,INN-1

561 1EMFOR'IEMPOR+T(J)
SGMA2S=SGMA2B+ST22(19)*T(I9)*TEMPOR

560 - TEMP.OR0.
1050 SUM1(ItJN)-SGMAI

SUM2(I1N)=SGMA2AtSGMA2B
SUM3(INN)=SGMA3
WRITE(5*) 'THE SUM VALUES: SUM1rSUM2,SUM3'
WRITE(5,*)SUM1(INN)PSUM2(INN),SUM3(INN)
RETURN

5UL)RUUTINE COMFLI(IN')
CUMMO/D1L1/T11(50).ST22(50),ST12(50),ANGLE(50),THETA(50),PHI,
tALAMNNS(509.A6).XC0F(5).F(11).ROOTR(4),ROOTI(4),CaF(5),
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+U(4),FLAM(4),T(50) ,FT1,FT2,FT3,ALPOLYPHIPOLFDISCPHISIPHIS2,
+PHIIPHI2, S1(50) S22(50) S33(50)rS12(50) S13(50) ,S23(50)f
+SUM1(50),SUM2(50) SUM3(50)7S44(50) S55(50) S66(50),
+PHISPFK(50),RROOT(4),PHIPALAMP
COMMON/BL2/MLTITERrIRISUBRISUBR2

C DOUBLE PRECISION ST11,ST22,ST12,ANGLETHETAYPHIPALAMPSXCOF,
C +FROOTRROOTIrCOFUFLAMTFTl FT2pFT3,ALFOLYPHIPOLFIISC
C +PHISIrPHIS2rPHIlPFHI2,FE11,FE22,FE33,FG12,FG13,FG23FNIJ12,
C +FNU23rFNUl3tSUMl SUM2,SUM3vS44(5O) S55(50) S66(50)v
C +S44,SS5S66
C DOUBLE PRECISION SIrCO

SI=DSIN(THETA(IND))
CO=DCOS(THETA(INI)
SCINDvI1,)=Sll(IND)*C**4+(2*S12(IND')+S66(IND))*SI**2*

+CO**2+S22(IND)*SI**4
E(INDE,12)=(S11(IND)+S22(INDI)-S66(IND))*SI**2*CO**2+

+S12(IND)*(SI**4+CO**4)
S(INL I 3)=S13( IND)*CO**2+S23( INEI) *SI**2
S(INDr2,2)=Sll(IND)*SIt*4+(2*S12(IND)+S66(IND))*SI**2

4*CO**2+S22(IND)*CO**4
S(IND,2,3)=SI3(IND)*SI**2+S23(IND)*CO**2-
S(INDv3,3)=S33(INI)
S( IND P1, 6)=2*SII(IND) *CO**3*SI-2*S22( I ND)*SI**3*CO+

+(2*S12(IND)+S66(INI:))*(SI**3*CO-CO**3*SI)
SCINED 2,6)=2*S11(IN')*SI**3*CD-2*S22(IND)*CO**3*SI+

+(2*S12(IND)+S66(IND))*(CO**3*SI-SI**3*CO)
S(IND93r6)=2*(S13(IND)-S23(IND))*SI*CO
SCIND,4 4)=S55(IND')*SI**2+544(IND)*CO**2
S(INDo4,5)=(S55(IND)-S44(IND))*SI*CO
S(INDr5v5)=S55(INI)*CO**2+S44(IND)*SI**2
S(IND66)=4*( Sl(IND)+S22(INDI)-2*S12(IND'))*SI**2*

+CO**2+S66(IND)*(CO**4+SI**4-2*SI**2*CO**2)
WRITE(5p*) 'COMPLIANCES FOR PLY NO.',IND
WRITE(5p*) 'S11r 512, S13, S22:'
WRITE(5,*)SCINLrIPI1),S(IND,1,2),S(IND,1,3),S(INlI,2,2)
WRITE(5,*) 'S23, S33F S16, S26:'
WRITE(5,*)S(IND92r3),,tS(INDv3p3)PSCINDP1#6)tS(INDp2p6)
WRITE(5#*) 'S36, 544, S45, S55'
WRITE(5,*)SCIND3,6),SCIND',4,4),S(IND,4,5),S(IND,5,S)
WRITE(5*) 'S66 IS:'PSCIND,6,6)
RETURN
ED .,
SUBROUTINE PLPREP
COMMON/BL1/ST11(50),ST22(50),ST12(50),ANGLE(50),THETA(50),PHI
+ALAMNNPS(5O,6p6)PXCOF(5),F(11) ROOTR(4) ROOTI(4) COF(5),
+ U(4),FLAM (4)T(50),FTIFT2,FT3rALPOLYPHIPOL,F1ISCPHIS1,PHIS2,
+F'HI1,F'HI2S11(50),S22(50)1 S33(50),S12(50),S13(O),S23(0),
4SUM1(50),SUM2(50),SUM3(50),S44(50),9S55(50),566(50),
+PHIS P FK (50).RR0DT ( 4) r PHIF', ALAMP
COMMON/BL2/M LTITERIRISUBRISUBR2
IiIMENSION COEF33C50) rCOEF32 CS) 5 COEF31C50) EIB2(50) ,EIP3(50),

i B 1 11 ( 50)
IF(LT.EO.3)GOTO 569
IF(ISUBR2.EO.0)GOTO 567
WRITE(5,*) 'INPUT PHILAMBEIA TO PREPARE STRESS COEFFICIENTS'
READ(p*) PHIPALAM

567 - VALUE1=PHI*ALAM/(ALAM-1)
569 IDo 570 Il3=1NN

WRITE(5y*) 'FLY NUMBER',113
CALL SUM(113)
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IF(LT.EG.3)GOTO 56B
E1B2(113)=SUM1(I13)*VALUE1
E1B3(113)=SUM2(113)*VALUE1
B1,i(113)=S1M3(I13)*PHI
COEF33(113)=PHI*VALUE1*ST22CI13)*T(I13)**'2/2+PHI*

+E1B2(I13)*T(1l3)+PHI*E1Et3(I13)
COEF32(I13)=VALUE1*T(113)*ST22(113)+ElB2(I13)
COEF31 (I 13)=PHI*ST12 (I 13)*T(I113)+B IDl( I13)
GOTO 570

568 COEF33(113)=PHIS*(SUM1(I13)*T(I13)+ST22(I13)*T(I13)**2/2+
+SUM2(I13))
COEF32( 113)=FHIS*(SUMI(113)+ST22(113)*T(I13))
COEF31(113)=0.

570 CONTINUE
WRITE(5,*) 'THE COEFFICIENTS MULTIPLYING THE X DFPENDENCE
+(FROM LAST INTERFACE TO MIDPLANE)'
WRITE(59*) 'FOR SIGMAZZ'
WRITE(5,*) (COEF33(I14),I14=1,NN)
WRITE(59*) 'FOR SIGMA2Z'
WRITE(5,*) (COEF32(I14)vi14=1pNN)
WRITE(5p*) 'FOR SIGMA1Z'
WRITE(59*) (COEF31(I14),I14=1,NN)
ALAMFI=ALAM*PHI
WRITE(5r*) 'LAMBDA TIMES PHI EOUALS',ALAMFI
IF(LT.EO.1)GOTO 1220
IF(LT.EQ.2)GOTO 1219
XZERO=1/PHI
WRITE(5,*) 'THE VALUE AT WHICH SIGZZ IS ZERO IS',XZERO
XOLD=XZERO
BI=100*PHI*2.718281828
I14=0

1218 XNEW=ALOG(BI*XOLD)/PHI
1F((XNEW-XOLD).LT.1.0D-8)GOTO 1160
X0LI=XNEW
114=114+1
IF(I14.ED.300)GOTO 1170
G010 1218

1219 BLA(ER=4.4/PHI
WRITE(5,*) 'THE BOUNDARY LAYER WIDTH IS',BLAYER
GOTO 1180

1220 XZERO=ALOG(ALAM)/(PHI*(ALAM-1))
1=.01*(EXP(-FHI*XZERO)-EXF(-ALAMFI*XZERO))
WR'ITE(5,*) 'THE VALUE AT WHICH SIGZZ IS ZERO IS'vXZERO
XOLii=XZERO
114=0

1280 IF(ALAM.LT.1.0)(3OTO 1150
XNEW=-ALOG(EXP(-ALAMFI*XOL)+11I )/PHI
GOTO 1270

1150 XNEW=-ALOG(EXF(-F'HI*XOLV)-BI)/ALAMFI
1270 IF((XNEW-XOLD).LT.1.0b-8) 00TO 1160

XOLD=XNEW
114=114+1
IF(114.EO.300)GOTD 1170
GOTO 1290

1160 WRITE(5,*) 'THE BOUNDARY LAYER WIDTH IS',XNEW
GOTO 1180

1170 WRIlE(Sp*) 'NO CONVERGENCE ON DL AFTER 300 IIERATIONS'
1180 RETURN

EN1'
ciU;iROUTINE IDIFFTH(TFLTHIKNN)
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DIMENSION T(50)
FLTHIK=0.
DO 303 I=lPNN
WRITE(5,*) 'INPUT PLY THICKNESS FOR PLY NUMBER',I
REAE'(5,*) T(I)

303 FLTHIK=FLTHIK+T(I)*2
TETURN
END
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APPENDIX 6

A CRITERION TO ASSESS THE APPLICABILITY

OF THE TWO METHODS FOR CROSS-PLIED LAMINATES

This appendix gives an example where the original sol-

ution method for cross-plied laminates (see section 6.2) fails

and the modified analysis presented in the same section must

be used.

The unmodified analysis for cross-plied laminates leads

to a quadratic equation in A, expressed in equation 6.30. Let

P1 be the coefficient of A in equation 6.30, i.e.

fa1/2
(f 1 (f3  - 2f8) + 4f6  + 8f1

P = 2 2f6 + 3f (A6.1)

where the fi are given by equations 5.110 and 5.108. P can be

rewritten as:

( ) (f3  - 2f8 ) + 2f

P = 2 + 2 (A6.2)

2f6 + 3f
Now the analysis for cross-plied laminates fails if

equation 6.30 has no real solutions. This means that the

discriminant of equation 6.30 must be negative. Writing

p1  = P2  + 2 (A6.3)

where

1f3 - 2f8 + 2f1
= 2 (A6.4)

2 26 +3f 1
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the condition for the discriminant of equation 6.30 to be neg-

ative takes the form:

( 2 + 2)2 - 4 < 0 (A6.5)

Rearranging equation A6.5:

P2 2 + 4) < 0 (A6.6)

The above equation is satisfied if

-4 < P2 < 0 (A6.7)

or, using equation A6.4 to substitute for P

S(f3 - 2f 8 ) + 2f1
-4 < 2f + 3f < 0 (A6.8)

Equation A6.8 can be used as a criterion to check if the

analysis for cross-plied- laminates using both X and will

fail or not. If equation A6.8 is satisfied, the original anal-

ysis fails and the modified analysis (see section 6.2) must be

used. If equation A6.8 is not satisfied, both analyses are

valid but the one which uses both A and $ is expected to-be

more accurate since the use of two unknown parameters in the

formulation, A and $, can give a better prediction than the

use of only one parameter, $.

For [On/90n]s G/E laminates (AS1/3501-6 system), P2 has

the value -3.857 (if one substitutes for fi in equation A6.4)

and hence the method using both A and q fails. For that case,

the modified analysis, where only q is present, must be used.
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Equation A6.8 was included in the program code and is

used to determine which of the two possible methods for the

analysis of cross-plied laminates should be followed.


