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ABSTRACT .

SE OF STORAGE WATER I A HYDROELECTRIC SYSTEM
by‘
Tohn Dutton Conant Little
Sﬁbmitted to the Department of Physics on October 11,
1954 in partial fulfillment of the requirements for
the degree of doctor of philosophy.

The big water reservoirs of a hydroelectric system collect water
during high river flows for use during low flows. The problem
considered is how to use such stored water in the face of uncertain
future flow. A method for handling the problem has been formulated

and used to obtain numerical results for a simple case on a high

‘speed digital computer.

- Best water use is takeh to be that which minimizes the expected

-cogt of operating the system. The required expected cost functions

are set up and the problem shown to be somewhat like a business

~inventory problem. A solution was calculated on a digital computer

for a modsel of'a one‘dam hydro system patterned after the Granq
Coulee Dam on the Coiumbia River. The solution was used to operate
the model with the historical record of flows for the Columbia
River. The résults are compared with those obtained from a conven-

tional opsration of the system.

The water use determined by the minimum expected cost solution was

-found to give a slightly lower average cost than the conventionsl

operation.

Thesis Supervisor: ZProfessor P. M. Morse
Title: Professor of Physics
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Figs, 1. Grand Coulee Dam, Columbia River, Washington.
(Photograph courtesy of the Department of the Interior)




I. INTRODUCTION

The big watar resorvoirs ofla hydroolectric system“collect

water during high river flows for use during low flows. Tho
problem considered in this paper is how to use such storad water
in the faee of uncortain future flow. A method for handling the
problem has boen formulated and used to obtain numerical resnlts

for a simple case on a high speed digital computer.

. The use of stored water is taken to be an alloeation‘problom

not a dispatching problem; that is, the object is to f£ind out

~how mnch storage water to allot for use during the next waek~6r
month rather thanm to fix the instantsneous generastion of each
plant throughout the day. This latter problem, short range power
 dispatching, is‘not a simple one and has beenvstudied by various
writers (1,2,3). The long range problem considered here supprosseé
the fine details of daily operation but introduces effects ignored
in short range anmalyses, namely, the uncertainty of future stream

flows and the variation of head at big reservoirs over a seascn.

After é}&ear>ié{over‘if is'ﬁéﬁalij possible‘to look ﬁaék aﬁd dig-
cbvor & way of using stbrago that would have been more effective.
Unless weather prediction and.hydrology improve to the point where
future river flow can be exectly known, such offectivannsé is un-

attainable, Until then we cannot speak of maximizing the return
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-from a system but only of mazimizing the average return.

The method of treating the problem, therefore, is to maximize

‘the expeeted (average) return, or, alternatively, minimize the

By

_expected coet of operating. waever, the expected return for a

R

*year depends not on just one decision about using storage but on

a whole set of deo151ons throughout the year. Furthermore, these
decisions mnst depend on the particular conditions prevailing
at the time they are made, at least on the gquantity of water in

storage and the prevailing river flow. Thus we do not seek omne

number for an answer, but, as it will turn out, & set of funetions.

'In performing the maximization, none of the techniques of elemen-

tary caleulus, Lagrange multipliers, calculus of varietione, or
linear programming seem to be easily applicable. There is,
however, a way of setting up the problen 80 that, in moderate

complexity,«itrmay be handled by machine cOmputation. The point

-of view is not novel, having been ueed at least by Dvoretsky,

Kiefer. and wolfowitz (4) in discussions of inventory problems
and by Bellman (5) in studies of dynamic programming. Indeed,
the hydro problem treated here can be coneidered as a epaeial

case of some of the diseuesione of these writers,

The method has been used for numerical caleulations on a one
dam hydro system, eome'of whose characteristics are drawn from

the Grand Coulee plant on the Columbia River. Results are presented



to show the response of the system to the historiecal flows of the
Columbia River in the period 1914-52, when cperation is determined
so as to optimize the expected return as judged by a given cri-
terion. These are compared with the results of operation deter-
mined by & simple example of current methods. Extremes of .
criteria are tried to show quantitatively the conflict between

the requirements of maximum energy and minimum risk of power
shortage. N »

A siﬁple hydro system was deliberately chosen for the numerical
work in order bettg: to gnderstand whgt was going on phyaically.
Ths result ;s, howavsr, that the particular numbersvdo not necés-
sarily apply to amy real situation.in thg Northwest. This
qifficulty is not inherent in the theory; its gppligability is
1im1ted primar;;y by the degree of complexity which can be handled

.computationally,

The computer used to calculgte the numbers in this peper is the
Whirlwind I digital computer at M.I.T. As compared tb other
‘fcurrent computers, it has the property of being very fast for _
manipulating low accuracy (45 decimel digits) £ixed point numbers.
By somewhat more elaborate programmiﬂg than might ordinarily

be used, this property was utilized to make the computation
rather fast. Tebles for determining optimum system opera@ion
were caléulated'in timesrrahging>from 5 minutes‘to-% hour,

depending on the accuracy sought.
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Throughout the discussion, illustrative examples are drawn from
the hydroelectric system of the Pacific Northwest. The. back-
ground for these resulted from two valuable trips the writer
mede to Portland, Oregon where he talked at length with personnel
of the Bonneville Power Administration (BPA) and briefly with
personnel of the ‘qu_-thwersjt :Eowgr Pool Coordinating Groups The
at_lthor hopes »th;t{ he properly understood ell he was to»ld. and in
any case assumes responsibility for the statements in this

paper.,
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II. DESCRIPTION OF THE PROBIEM

This section discueeee.uater use in hydroeiectric'systeme‘uith

specific rererence to the Pacific Northwest. The'purpoee is to
sketch enough of a picture of a hydro system to find the storage
problem, put it in relation to the reet of hydro operation, end

lead towerd a ueeful model for making celoulations.

Hydro Slstems

A hydroelectric syetem is a device for providing electric energy
to customers. It ooneists, roughly, of one or more generating
plants run by weter power, none or more other sources of power,
wires to transport the energy, the cuetomere, end some persen

or persons who operate the system.'

- The load of the system is the anount of power ite customers are
-taking at a given instant, or in oertain cantexte, the amount

,of energy they require in a given interval of time. In regions
heavily dependent on hydro, the amount of energy aveilable is
uncertain because future river flow is unknown. The 1oad_is ‘then
divided into firm and interruptible parts.' Customers contract-
ing for interruptible power can‘be reouired'to'stop using it on
~short notice. Firm power customers can ezpect to receive power

unless water conditions become worse than those used in calculating



‘the amount of firm ‘energy to be contracted.

Hydro plants ean‘bﬁ divided into two classes: run-of-thgfrive:
plants and storage plants. Run-of-the-river plants camnot store
any’qpprééiablg'émSngts of water but must use the river.flaw as
it'cpmgs alqng.'fThéy may have what 1s known as pondage; that
is, they havpnen¢ugh Of a pond behind them so that during the |
‘peak load hours of the day they can drew down a little and during
'the 5léék'h1ght hours refill. Storage plants have reservoirs

big enough to collect seasonal high flows for subsequeﬁt use.
foﬁ'the cblﬁﬁbia“kiier;"annevillo'is a typicel run-of-the;rive:
ﬁlant}”eréﬁd‘ﬂbﬁieb a large storagé plant, During a low winter
flow Bormeville could easily draft its maximum permitted draw-
down Of 4 ft iu & day. Grend Coulee when filled could dis-

chgrge‘at rullvggtebfor gﬂgggth wiﬁhout }nflow.

‘Most big hydro systems havG”étbah~plantg for génerating»hdditional
energy. Indeed a system with more hydro than steam is a rarity.
:TEQ'PECifiE'Nﬁfiﬁhipt, where the growth of industry has not yet
»qutstrippod?%he'wt%br‘p6iét iotential,‘istone of these, supply-
'ing 90% of its losd with hydro in an average yéar. Besides
sﬁeaﬁ”piantb, there is of@en auxiliary power from inperchange
‘with other syﬁtems; an&;fihft;mzs of ‘severe shortage, amall

amounts can be obtained from diverse sources. For instance,
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in the 1952-53 Nortuuest power shortage a Navy Power Train tied

10 MW into the system.

Since customers want to rely on their source or’electrieity, y
an 1mportant property of a hydro system is how much energy 1t ;
can produce in ‘the dry season of a dry year.- Glearly, however,’
if the region load gears itself to using no more energy than
this, water will go to waste in wet and even average years...
The 1nput of the system, water, fluctuates widely, whereas the'.
output, energy to the load is desired to be smooth. Storage
reservoirs help by(filtering out some of the seasonal fluotusw '
tiogsland‘;n:certain‘eases, part of the fluctuetions having

periods more than a year.

Tuo'other;uéis of making use of high water are by interrupt-
ible loe@sﬂendvauxiliary power. Interruptible loads are a means
of=fitting tho,loed_to,the vagaries of the water, but only a
certain class of customers ean use ite Auxiliary power, for
instunco stean generetion,wmaymoost.more to operate thanihydro,
but in high water years need not be run. Itsﬂezistence mekes |
possible the ,o.mtraotiug of more firm energy tham othe_rwise.
More of the water power is utilized but because steam plants

must be built and occasionally run, the average cost is higher,

The Pacific Northwest is not a single system. There are more
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than ;.?O;-size.b_le"h:ydro‘__.plants on various rivers divided among
local public utilities, private utilities, and the federal
system. The biggest plants are on the Columbia River and are
federal. The various syeteaxs are independently»managed, but they
are interconnected e,lectrically and associated together in the
Northwest. Power Pool. The Pool is a voluntary organization .
which coordinates the neoes'sari‘ly interdependent generations

of its members. For instance, detailed studies are made of how

t0 meet the lead in a critically dry year.

The money collected from the sale of energy in a b,ig hydro system
- comes to many million dollars, Therefore, improvements in opera-
tion on the order of fractions of a percent can be fipencially

significant,

The nert paragraphs discuss water uge under the headings of the
short range and long range probleme. ‘I'he short range problem
is defined as that of daily dispatching of power and is muoh |
concerned with peaking and with 1oed variatione. By the leng
range problem is meant th.e allocation of etored water for use
in some period on the order of a week to a month. Here the un-
oertainty of river flow in coming weeks and the variation of

head with drawdown become important.



=] 5w

The Short Range Problem

As customers throw switches the hydro system_mnst respond by
increasing or decreasing the power generated. Wheﬁ there are
many plants in the system, there are generally good and bad ways
of dividing the generat ion among them. The problem of optimum
dispatching has been worked on by various writers (1;2,5)'and

will only be outlined hére in its main features.

First of all, peaking 1is expénsive. During certaiﬁ hqurs of '
the day the load is on the order of 40% greater than the average,
‘Facilities must bé avallable to meet it and inefficiencies in
operation will bébﬁolerated in order to deliver the energy when
it is wanted. _qu examplé, the Bonneville plant peaks by draw- _
ing down its‘pond duringrthe day and letting it fill up at night,
The résult is a hegd_averaging perhaps one foot lower than the
maximum of 64 fest. Thus more than 1% of the energy is sacri-
ficed in order to peak. It might therefore seem desirable to
take more peaking at Grand COulse where the large reservoir
prevents much daily fluctuation of head., But Grand Coulee is
further from the heevy load centers, and transmission losses go
up about as the square of the power. Besides, Grand Coulee has
an operating limitation on its rate of changg of dischargé be=~

cause of river bank erosion by its tailrace.
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Such operating limitatiens hem in the short range problem.
There are many ethers: A plant has only so many generators.

Transmission lines can carry only so much power. The Bomneville

© pool can only be dropped 4 feet before ferryboats upstream mey

go aground, Where flood cnntrol is important, 1t always has
priority over electric generation. Too low discharge may make
riverside wells go dry or impede navigation. At the Ksrr plant
in Montana it is said that generation is not allowed to drop
below a certain valne because low discherge expeses islands in |
the river downstream, whereupon fishermen g0 out on them and nay

be drowned when the plant peaks.

Another complication of»the short range problem is the routing
of the water down a stream with several plants. The cut back
of generation on Sunday at Grand Goulee Puts a hole in the
Golumbia River that reaches Bonneville in the middle'of the
week when it is least desired; The Rock Island plant which

follows Grand Coulsee on the river, has not Grand Coulee 8

v generating capacity and if Grand Coulee is wide open, Rock

Island is forced to spill water.

Uncertainty of river flow is not a difficnlty‘in the short

range problem. The water a plant uses tomorrow is in the river

‘today somewhere upstream. Certain flashy streams are exceptions
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but big rivers rise and fall slowly and if there is appreciable
storage in plants along a river, the plants themselves diectate

the flow.

The load on the other hand is subject to considerable short

term variation. Cloud cover causes people to turn on their
lights; cold weather, their heaters. Whether or not the small
and medium user of power turns on his equipment is up»to him and
a statistical variétion of ioad results. The aggregate is fairly
regular, depends on the time of day,‘and is predictable within

a few per cent'from day to day. To allow for fluctuations a

certain amount of spinning reserve is maintained.

The difficulty of finding the best short range oﬁeration‘probably
debends stroﬁgly on the system. Best operation may be obviocus.
For instance, the marginal cost of steam may increase so rapidly
that taking the peak with Steam is prohibitively exrensive.

Then it may happen that a given_hydro plant is the best for taking
the peék and so, as much as fits the operating restrictions is
taken there, the rest in other plents in order of efficiency.
Bbttlenecks in transmission may make it impossible to get more
than a certain amount of power from a desirable source and so the
maximum is taken, Thus, the best operation may be some combina-

tion of extremes determined by operating restrictions and fairly
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easily discernible to some one familiar with the system. However,
if a system is complicated and at the same time has flexibility
of operation, the determination of best dispatching may be

difficult,

The lLong Range Problem

The long range problem is to decide how much stored water to
use in the next week or month, taking into account the effect this
may have on operation several weeks or months away., It is a

problem of balancing present against future benefits.

There maey not always be a problem. If the hydro generating
plant has the cepacity to use phe‘highest flows the river pro-
- duces and meximum energy is desired, it will be obtained ﬁy
keeping the reservoir full at all times. In some cases flood
lédntrol regulations may almost completely dictate reservoir
operation. Also, if there is no flexibility in the loasd seen
by a plant, in other words, if there is no interruptible power
to switch on or off, or no steem or other hydro Plants to take
over the load, or if there is an unsellable power surplus,
then the plant just generates the load it sees and the reser-

voir may be forgotten.

An example of a reservoir where good water use requires a
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balance between present and future needs is Grand Coulee on the
Columbia River. There the high spring flow ﬁlways fills the
reservoir, In winter the natural flow falls off sharply and

80 the stored water is drafted. If this is started too early
in the fall, the head is soon materially reduced and the

natural flow gives aﬁpreciably decreased power. If, in addi-
tion, the winter flows are low, storage may'run cut and a power
shortage result. On the other hand, if the high water of spring
_'arrives_and thqre is water remaining in storage, it is too late
to put that water.to use. Best results require a balance between
the advantages of egrly and late water use in the face of un-

certain future flow.

Sqeh‘uncertainty is an essential feature of the long range pro-
blem. During the 1952-53 season in the Northwest, for instances,
thé river flow in the fall was so low that in November part of
the firm load was curtailed (6). There was water in storage
which could have been used to‘carry the load but, if that water
lhad been used and the flow had continued to decrease, much
greater curtailments would have been forced later in the season.
Ag it turned out, January brought large amounts of warm rain,
Using hindsight the curtailment could have been avoided. But
there was not then and there is not now any way to be sure of

the size of future flow. In deciding the magnitude and timing



~20=-

of the curtailment it was necesszry to balarmee the desire to put
off curtailment as long as possible in hopes of rain against the
seriousness of greater curtailment later on in case flows dec~
reased. Bach of these possibilities had to be weighed, at least
‘cualitatively, by the brobabilities of the corresponding occur-
rences of stream flows. In many less dramatic problems of watér
use, thé same balancing problems arise. The research reported
here sought.ways for getting the flow probabilities into deci-

sions in a quantitative way.

The future load as well as Tlow is uncertain. The weather hes
some effect and perhaps more substantial, economic fluctuations
affect the load. However, estimations of load six months in
advance are usually correct to within 10% whereas the flow six
months in advance is not known within a factor of two or more.
Conseguently, in this work the load has been aésumed known,
while the flow has been characterized by probability distri-

butions.

With respect to uncertainty in river flow, Grand Coqlee is for=-
tunate in having a seemingly guaranteed annual refill. So lusty
is the Columbia ig spring and early summer that the minimum
spring runoff on record would easily refill the usable gtorage
of Grand Coulee's 150 mile long reservoir even with the plant
generating at full gate. ﬁungry Horse Dam on the South Fork of

the Flathead River, on the other hand, which has soméwhat more
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then half as much storage as Grand Coulee, could not be filled
in one season if completely drawn down. Therefore, decisions
about using this water have to take account of the needs of a

year or more later.

The longbrénge problem for multiple reservoirs is likely to involve
water rout;ng. The water from Hungry Horse eventually reaches
the Columbia and is used at Grand Coulee and various downstream
plants. Before it geﬁs £here, however, it passes through two
large natural lakes. These lakes have dams at their outletsr
which éan regulate the watér level a few feet. Because of the
large area of the lakes, these few feet represent a considerable
and desirable addition to the storage of the system. On the
other hand natural lakes have the property that it is hard to

get ths water out of them when they are low. This is not sur-
prising for it‘helps explain their existence. ‘Rivers, too,‘when
low, will not carry water as fast as when high. This means that
water released from Hungry Horse when the lakes and rivers are
kléw may not get down where it will do the most good for an appre-
ciabie number of days., Such considerations as these can make
determination of good operation of interconnected reservoirs
complicated. Ome rule that often applies is that upstream
reservoirs should be drafted before downstream so that head will

be kept up downstream where the natural flow is usually larger.
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Among the principal operating limitations that affect the long
range problem are restrictions on maximum generation and minimum
discharge. Flood control often dictates reservoir levels at
cértain times of year. NMiscellaneous restrictions arise:
Kootenai Lake'just over the border in Canada is regulated by
international agreement to protect some dike formed land at the
heed of the lake which is afflicted with excessive seepage at
.high lake levels. At another lake, the water level is being
‘held within certain limits in an experiment to find out whether

fluctuations are killing fish eg28.

- Although allocating store@ water is primarily an energy problem,
peaking sannot be ignored. It is possible to have the energy
available in the river'or in storage but not be able to supply
it for lack ofvpeaking. The average energy can be available

but during heavy load hours the generating capacity may not

be available to meet the peak load. A more subtle situation

13 one Where both peaking and energy are available but the

load cannot be met. At a run-of-the-river plant, for instance,
it may be possible to reach the peak but not hold i£ long enough
before the allowed pondagg runs out, even though the ngxt night's
refill would replenish it. Peaking requirements, then, can

limit the use of available water.
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To summarize: the 1ong range problem is defined as that of
allocating stored water for use over the next week or month,

The advantages of immediate use of the energy must be balanced
against those of future use, taking into aceount the uncertainty
of future river flow, Generation and reservoir regﬁlation are
restricted by various operating limitations. Multiple reser-
voir systems increase the number of variables and introduce

water routing to the problem. Peaking must be taken 1nto account

in so far as it'restricts the use of available energy.
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IIT. THE MODEL

Mathématical mode; is a term currently applied to a quantitative
description of an actual situation. The word model emphasizes
that the deseription usually does not take into aceount every
ramification of the real problem but that certain details
thought unimportant or too difficult are omitted. The term
also has the healthy effect of forecing a discrimination between
whether a method is a good way to solve a modgl and whether

8 model and its solution are appliéable to the real problem.

A éimple model of a hydro‘system was picked for making a study
of the_long range problem. If the results are considered to
warrant it, many additional factors can be introduced. The
basic model is Qésentially an idealization and simplification

of Grand Coulee,

A single reservoir is considered. It has a volume of usable
storage about equal to that of Grand Coulee, 2,500 Kefs days,
The unit of volume used, Kcfs day; is the volume of water

represented by 1000 cubic feet per second flowing for a day,

The reservoir is idealized to have vertical sides and so the
vdlume of water in storage is proportional to its depth. The

_total usable draft in the model is 80 feet as is Grand Coulee's,
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There is an additional head at Grand Coulee whose value varies
a few percent with discharge because the tailrace»elevation
changes. The model takes the additional head as a constant

264 ft. To show what a massive block of concrete Grand Coulee
is, we note that it is more than twice as high as Niagara

Falls,

The maximum discharge through the turbines is taken as 70

Kefs and constant. The real maximum at Grand Coulee varies with
head and ranges from about 75 to 90 Kefs. However, in the

long range problem we wish to talk about the average discharge
over perhaps two weeks or a month. As mentioned earlier, if a
‘plant has to supply peaking, the maximum average énergy it can
deliver is lower than that implied by its full gate discharge.
Further, peaking is more a problem of good times than bad times
because‘when water is low, there is usually unused_hydro |
capgcity standing by which can take the daily peak. In the
interests of simplicity, them, the maximum discharge was téken
as a constant, somewhat less than the real maximum at low head

and considerably lower than the maximum at high head.

Minimum discharge is taken as 20 Kefs. This is only half the
figure usually quoted for Grand Coulee, but was picked for

reasons discussed below.
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The energy generated in a time interval is taken as_the product
of the volume'discharged,'the averagé of the heads at the begin~
niﬁg‘and end of the interval, and a constant., The constant is
approximate@ from tgbles for Grand Coulee and neglggts,varia-

tions of turbine efficiency with head and discharge.

The load is taken conmstant and equal to the generation at
maximum discharge with full head. The load in most regiouns

is not constant throughout the'year. In the Northwest the

" load goesvup 10 or 15% in winter. Choosing the loed as the
maximum hydro generation means thé system is'dominated-by hydro
but that water will not go to waste until the flpw éxcoeds the-

maximum discharge.

A variable must be selected which determines storage use and
thereby system operation. It may be called the decision variable.
In this work, it is denoted by’s and is the volume of storage |
water planned for use in the next time intefval. A negative
‘volume implies_filling the reservoir. The volume does not
necessarily have to be uégd because its magnitude is fixed
before the flow actually comes. When the flow does come it may
be discovered that use of the volume s would violate operating
restrictions. For instance, if the flow is high, it may.not

be possible to use all the water planned because discharge

would then be greater than permitted,
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4 different quantity could have been selected as decision variable,
A tempting one is plannegd generation at a plant._ The planned
generation would determine the stored ﬁater used. Whether

the planned gencration was actuaily generated would depend on

the actual flow that came and the operating restrictions.

The planned gemeration was not used as the decision variable

_ because storage use is quite convenient, and perheps a little

more conservative in that the amount of reserve being committed

is directly under control.

A eource of supplemental energy is assumed. It is taken to
include the dropping of the interruptible load. In other words,
as the water supply becomes tight and interrupt1ble customers
are cut off, we choose to think of the load as unchanged but a
block of snpplemental generation equal to the dropped load as
added. The effect is the same. Beyond the interruptlble load,
the supplemental energy may be thought of as including steam
generat1on, ezchange with other areas, miscellaneous sources,

and, if necessary, curtailment.

The performance of the system is to be judged by the cost of
the supplemental energy. This cost may or may not be dollars
that someone is paying, but 1s designed as an index to tell

whether the results for one way of operating are better than
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for another. The cost as a function of supplemental energy
might behave as follows: it could have a constant slope in the
range where the interruptible load is being cut off. This cost
bwoula represent the revenue lost by the dropping of the inter-
ruptible load, Thereaffer the slope would increase slowly as
steam energy was added to the generation, the most economical
plant first; next, second and so om. After the steam and
miscellaneous sources are e;haustegglthe cost o; sqpplemeptal
eénergy presumably rises very rapidly. This would represent

the loss to the region of having a power shortage. It might
not repfesent much finanecial loss to the management of the hydro
system but there would be strong reasons for avoiding drastic
sbortages and it is assumed that these reasons could be put in
some approximate quantitative form. It would be desirable to
a§oid all shortages but nature decides this so that it is only
possible to operate with a»given risk of shortage. The only
way to decide what risk can be tolerated is to have a quant-

itative estimate of the consequences of shortage.

A power series was chosen to represent the cost of supplemental
energy. The constant term, representing fixed costs, can have
no effect on operation and is omitted. Forvsimplicity, onlyv
first and second power terms are_gonsideréd. The cost fupction

as sgpecified requires no rigid division between dropping the
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interruptible load, adding steam generatiop, and curtailment.'
It turned out in making calculations that considerably more
supplemental generation was sometimes required than would be
available if the resources of the quthwest were scaled down
into a system the size of the model. The implication is that
the load selected is somewhat large for comparison with real

operation of Grand Coulse.

The historical record of fhe flow of the Columbie River at
Grand Coulee is used for deducing probability distrihutions

of flow and for simulating system operation. Records ffom the
U.S. Geological Survey, Bureau of Reclamation, and BPA for

the daily flow in the years i914-55 were made into rqugh weekly
avereges. These flows have drawbacks. In'recent years an
inereasing amount of upstream storage has been developed

and put intd use. Wintef releases of water from stofage
materially increased the flow at Grand Coulee at least during
1952-52 end perhaps for some earlier years, The task of finding
out what upstream storage releases were made and separating

out the flow which cofresponds to those of earlier years was
not undertaken. The result is that the interesting year 1952-53

is rather ordinary in the set of flows used.

The release of the upstream storage in winter adds enough water



B30

to the flow at Grand Coulee to make the current 40 Kefs minimum
on discharge a relatively innocuous restriction. This is nét
true for the flows used in this study.v In operating with the
low flow years of record; the feservoir is forced_merely to dole
out the minimum discharge until the water is gone. This may be
legitimate but it tells little about how a particular scheme of
water use reacts under the important situation of low flow.
Therefore, to produce more interesting and realistiec results,

the minimum discherge was reduced to 20 Kefs.,

We wish to characterize the river flows by rrobability densities.
Future river flow is nof completely predietable nor is it com~
Pletely random. A river will keep flowing for a long time even
if there is no rain. It is fed from water in the ground. Rain

recharges the ground water and also contributes to river flow
by direct overland runoff. Direct rﬁnoff and ground weter dep-
letion are distinct énough and measurable enough properties of
a basin_to be vefy’useful in river flow predigtion. A basin
as big as that of the Columbia River, however, must be broken
up into sub-Basins for good results. Snowmelt has different
characteristics from rainfall. In particular it is sensitive

to temperature.

River flow probability densities in consecutive time intervals



are(clearly not independent. The shorter the intgrvals; the
more correlated the flows. As a first approximation the flows
are considered to have simple Markov Probability densities.,
That is, the probability density of flow in one 1nterva1‘is
determined by the flow of the rreceding interval. Prediction
is involved in the sense that knowledge of the last interval's
flow greatly.cuts down the range of sensible possibilities for
this 1nterfa1's flow. Prediction is not involved in the sense
that the exact flow is guessed. The probability demsity tells

the range of possibilities that must be considered.
The following notation is introduced to describe the model:

i = 1index of time intervals,
t = length of a time interval,

44 = volume of discharge through turbinesin the
. ith interval,

Dmax = meximum volume of discharge in an interval.

Dmin = minimum volume of discharge in an interval,

v = volume of usable storage of the reservoir.

H = head corresponding to V.r

Hy = additioﬁal head of plant.

hi = head due to volume in usable storage at
beginning of ith interval.

A = area of reservoir,



Vi = Ahj = volume in storage at beginning of ith
- interval.,

ej = hydro energy gemerated in ith interval,
L = energy load in an interval.

€1

supplemental energy generated in ith interval,

Ci = cost of supplemental energy in ith interval.

The model is summarized:

V = 2600 Kefs days.

H = 80 ft.
H,= 264 ft.

= (70 Kefs) x te

{20 Kets) x t.

=p4d + hi+ hi+l
P d; (He A__..1r___)
where p = 0,074 megawatts/Kefs ft.

Lo: P Dpax (HotH).

g1 L-ei.

Ci - &igi+328§0

In speaking about system §peration, we often discuss the volume_
of water used and the amount of energy generated. However, thé
volume and the energy as numbers are not meaningful until the
length of time involved is specified. Since the time is not

the same in all discussions, it is often useful to speak of



the average flow rate in Kefs and the average power in mega-

watts (MW) when comparative numbers are given.



IV. THEORY

In this section various approaches to the problem of water uée
in hydre systems are discussed. Thereafter the method used for
the calculations of thisg paper is developed and applied to the

model of the previous section.

Current Methods

Reservoiré in the Northwgst and elsewhere are often operated
according to Tule curves. A rule curve is a graph which speci-
fies the amount of water in a reservoir aé & function of time
throughout the year. They may be drawn up in such a way that,
if the lowest flows in the historical record recur, the reser-
voirs will be operated so that the firm load can be met. In
fact it is on the basis of such an apalysis that firm load
contracts are mﬁde. For the Columbia River the lowest winter

flow on record is for 1936-37,

If the lowest flow on fecord does not recur, the rule curve
based on it may not provide best use of the reservoir water.»
In the Northﬁest, the Power Pool makgs median year Tule curves
as well as critical year rule curves. Neither of the flqws
used in making these studies will occur exactly as assumed,

but the curves can be used as an operating guide. In addition
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to taking these curves into account, BPA makes studies through-
out the drawdown season based on the Possibility that current
flows will taper off toward critical flows aceording to the
known hydrologic behavior of the river basin. Rule cﬁrves

are then made which spread any energy surplus or deficiency

uniformly over the rest of the drawdown season.

The determination of rule curves in the above manner is
concrete and computationally not too difficult. Their use

has peen shown by experience to lead to good operation. How=
ever, since the flow is never exactly the same as that used in
vmaking the rule curves, most final decisions contain substan-
tial elements of managerial Judgment. Often final decisions
may pfoperly subordinate that which earlie: was considered best

water use to some pressing current problem,

The big advantage of a rule curve based on the lowest flow in
the historicel record is that the firm load is protécted in

case of recurrence of that flow. Small wonder, for thet is how
the firm load is defined. This did mot prevemt curtailment of
firm power in the Northwest ip 1952-53, however, when the winter
run-off was considerably greater than the worst of record.

This seqming paradox was the result ofvautumn flows bqlow the

historical worst, alleviated by heavy rain in January. No

-
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criticism of the 1952 curtailment is intended. The only point
is that the use of any particular fixed flow for determining
rule curves and firm power 15 necessarily arbitrary and tends
to give a misleading conecreteness to a system operatiqn which

is really intimately involved with flow probabilities.

Basing the firm load and rule curves on the 1936=-37 low flow
‘dceé not imply that that firm loed can always be met., What

it should imply is that based on the best available analysis of
stream flows and the objectives of the hydro system, opera-
tiqn based on 1936-37 rule curves will be serve these 6bjec?

tives in the long run.

Viewed this way,_however, finding best operation is a rather
complicated expected value problem involving the probabilities
of stream flow. It is felt that methods for handling such
problems have not. been widely kmown in the hydro industry.
With the help of machine pomputation it should be possible to
bring river flow probabilities into aecisions_of storage water

use in a quantitative way,

Other Methods

Cypser (7) bhas proposed and done some computing with a ealculus

of variations scheme for determining rule curves of interdependent
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reservoirs when the river flow is known in advancs. Johannessen
(8), in a study of transmission losses, has used this method
with a differentiélranalyzer and has determined‘some rule curves
for a specific case. However, these are fixed flow studiés

and so in an important respect are like those currently made

and discussed above.

Lane (9) in a 1944 TVa report discusses reservoir operation
taking into account flow probabilities. lHe_does not give many
details as to the theory behind the work and how he performs
calculations. It appears, however, that certain computational
decisions are aided by rules of thumb conside:ed consistent
with good operation. The paper has qualitative discussions

;°f some important hydrologic and storage use problems in-

volved in hydro operation.

The Monte Carlo method may be applied to the problem. Using
the historical flows or synthetic flows made up using random
numbers, the system may be operatéd on paper according to
different rules of water use and the best selected. For in-
stance the rule curve which minimizes the average cost of
system operation could be found. This method is conceptuglly
simple and good for f£inding quick rough answers. However,

it is believed to require much more éomputation than the



-38-

-method used below, if the same accuracy of answers is required.

Simon and Holt (10) haﬁe studied the inventory problem from the
point of view of servoﬁechanism theorj. Work of this sort might
be useful in the water uge problem. There are emough non-
linearities which seem @ssential to the problem so that analytié
wprk would probably be difficult. Another possibi;ity is the
simulation of a hydro System on an analog computer, It 13,
likely that rather complex systems could be set up. Different
ways of operating them could be tried experimentally. However,
if changes in energy of the order of fractions of a per cent

are considered important, accuracy might be a problem.

Expected Value Method

It is assumed that there is some objective way of judging the
performance of a system. The index of performance is called
the cost of operating the system and operating decisions about
using stored water are made so as to minimize the expected cost

of future operation.

For purposes of the problem, time is broken up into intervals
of some arbitrery length, two weeks, for example. At the
beginning of each a decision is to be made about storage use in

that interval. The decision is to be méde knowing the current

i —————. ¢ " i m 2
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reservoir head and the preceding two weeks flow. It is to be
made in such a way that the expected cost of the rest of the

year's operation is & minimum.

The mathematical treatment begins by setting up an expression
for expected value of the cost. Manipulation of the expression
shows that the only information lacking for finding optimum
operation in one interval is an expected cost function for the
succeeding interval. By assuming or knowing this function

for the final interval, one may work backward to any interval.
At each step functions are found which tell the proper use of
stored water under the conditions that may arise in that

interval.

Thus the theory reduces to setting up a considerable number of
expected value functions and finding their minima. In this it
is similar to many other stochastic problems. With proper
labeling of variﬁbles the stofage use problem may be considered
an inventory proplem and a special case of the rather genefal
work of Dvoretsky, Kiefer and Wolfowitz (4). It differs from
the usual business.inventory-problem in that the input, not

ﬁhe output, is the random variaeble. Furthermore reservoirs,
unlike most warehouses, have the property that the more nearly

they are filled, the more valuable is a unit in them because



the head is higher.

The hydro problem also fits into the g@nergl framework of qptimi—
zation in multistage processes discussed by Bellman (5) in his
papérs on dynamic Programming theory. Equation (4.186) be;ow

is a functional equation somewhat like those he discusses.
Bellman points out that working with functional equations

often has computational advantages over classical techniques

for optimal allocation problems.

Setting Up The Equations

The expected cost expressions for determining best storége
water’use in a one reéervoir hydroelectric system are'set up
below. The extension to multiple reservoirs increases thé
numbe: of variabies and the camputational difficulty. However,
the ideas involved do not change and so to simplify the ex-
pressions, the one reservoir case is treated. The first part

is kept general emough to include the one commodity inventbry

problem,
Let: i =0,1,2,040ee,N ; an index of time intervals.
vy = amount of commodity in storage at the beginning
of the ith interval. The commodity is water
in the hydro problem.
Xy = random varieble. This is the volume of river

flow in the ith interval for the hydro problem.
It would be amount of sales in g business
inventory problem,
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8j = decision variable. In the hydro problem as set
up here, this will be the volume of stored
waker planned for use in the ith interval,
In a business inventory case, this could be
the amount of the commodity ordered.

it

Joint probability density of Xy, xj_l,......xi
given the values of Xicy yeeey Xp ©

Q-
(=X
]

cost of operating the system in the ith interval
as a function of any pertinent variables of
ith and preceding intervals, in particular,
Xi’ Vi, Si,o )

tal
[y
n

N .
32?5= total cost from ith interval to end of
time period considered. -

expected value of Kj. It can be a function of
various variables whose values are known at
the beginning of the ith interval,

=
[ors
]

First we make an observation about conditional Probability
densities.MJThe definition (11) of the conditional probability
of an event A given the 6qcurrence of an event ﬁ, depoted

Pr {4l B}, 1s statea in terms of the joint probebility of the
events, denoﬁed’Pr {AH} » and the probability of the event H,

’

denoted P, fH} :
| PPfAHY = P TAIN] P §H] (u.1)

From this it follows that:

"F(xﬂ)"‘, xi;o' X;lx;.,l vy x.) ‘bx‘.__ )X"“ in -_- (q. l\

) "(xn e | xi‘n‘\ x;, X¢o ,---,xa)bxu--- &m. ‘C(x;‘ x;_.'.'-IXo\AX"_
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Now by the definition ‘of an expected value:
b

Ei.'-' guu' g K; $(x"’ vy xi..'x‘-_‘!;..‘.-- ,10\)2“...&1; (4.3)
-od

where it is assumed that there is a way to pick sj in each

interval. ZExpanding:

E. =

o0 ' (4.4)
g ot g [cl', + ki!-l] ":(‘ﬂ‘--, Xoel l x\"':—l. . -,”o\Al“ ...Jx‘.“'-‘ (‘il l;.-’ -y !o\ «h;

Since C; is a function only of variables in the ith interval or

sarlier,
R

R R R I AT A (2.5)

This is a recurrence equation for Ej. If we know Ey, we can

work backward and find any E4.

It has;beenlassumed that there is some way to pick the decision
variable sj. This quantity is controllable and, with the random
variable xj and the cou&itions in the system at the start of the
interval,‘determines the outcome of the interval, namely the
cost and the conditions which start the next interval. The more

variables that help determine sy, presumably the lower the cost,



but on the other hand, the greater the computational complexity
in finding Bye Almost certainly 8i should depend on the amount
of the commodity in stock, very 1ikély on preceding values of
the random variable, because they are harbingers of the future,
and perhaps on other variables past or present. The future
values of pertinent variables, being unkmown when the value of
s8j is decided upon, cannot help. If, for simplicity, we restrict
ourselves to making decisions on the basié of the current amount
in stock and préceding values of the random variable, we can
write
Sc= S ( "’i; X, x:-:, e, Xo)

(4.6)
The outcome of system operation during an interval is the cost
for the interval and the amount of stock for starting the next
interval. - It is assumed that these are determined by starting
stqck; decigion variable, random variable, and by constant

system parameters. Thus, the functions
Via = Vu (v, xi) sy)

C.

(4.7)

C; ( do, X, S;)

are knowne.

Conceivebly past values of some of these variables could enter

but this will not be considered here,



Rewriting equation (4.5) to exhibit functional dependence,
E: (v Xi-o, Xion, -v--,xko 5 S¢) ¢

Py (4.8)

-S’gc;(«u,x;,sc\ + E_‘-h(,,‘-“5 X2, Xeur, ,_,,,‘,\2 -Y.(x.-\ Ao, -, %0) v
Assuming that we know Ej 7, we pick |

Si= Sc (v xw, X0, ooe, Xo )

such that Ei' the expected cost for the rest of the time period,
- is minimum. This in turn determines Ei(o;;xb,.yaql...,x;) )
which is what is needed to find sj_j and E4_j3. Knowing Ey wé
can thus work backward to find any sj. By taking N far enough

into the future, Ey can usually be considered constent or zero.

Hydro Case
The expressions above are now applied to the simple hydro model

presented earlier.

River flow is the random variable Xqe. Since it is assumed to

heve a simple Markov probability density,

£Ox Vot %) = £ lalen) (4.9)

These functions are to be determined by analysis of the historical

flows,

The quantity s; 1s the amount of storage water allocated for
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possible use in the ith interval at the beginning of that interval.

Its value is limited by the size of the reservoir:
v;~-V & S, = v (4.10)
The discharge through the turbines will 5é
&; = X:4+S; | (4.11)

unless this would violate some operating restriction. Because
inequalities are involved, the camplete functions 44 and vy .y

are best specified by a teble:

Table 1, The functions di=di(vi’xi’si) and Vi+1=Vi+1(Visxi:si)'

X4 dg vi+1
Vevi+Dyax £ Xj & o  Dpax v
Dpax~Si € X1 € V=vy+Dpa4 Dhax VX3 =Dpax
Dmin-si $X3 % Dmax"si X4{+84 vi=sy
Dmin‘vi < X4 < Dmin-si ‘ Dmin vyt xi-Dl’ﬂin

=00 $X3 8 Dpipmvy Vi 0
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Knowing dj, vi, v{,], we can calculate the energy generated in

the interval

YV + Vi
e; = a[n + = L
T F l 2A (4.12)
The supplemental énérgy needed to make up the load I is
= l—l - e
kL (4.13)
The cost of the supplemental energy is |
. s |
C;= a9 * 2, 9; . (4.14)
Now, having specified the functions
Vi ¥ Vg ("c‘j X, s:) _
' 4,15
C. = C; (v, x:, s;) { )
we must, for each i, find the function
sc: s: (g, x:n)
such that
B (v, xar s.) =
(o2, xes 52 (4.16)

°§ S C. ("-',X-‘, s;) + E;.. (\’;u, X;\I -F(X;‘,x;-.) cix;

is a minimum for eack pair (vj, xj.7), and therefrom determine

E.'. (‘U; ’ x;--)
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for use in the preceding time interval. Since in our model
the summer flow always fills the reservoir and completely meets
the load, we may set E, = O where N, the final interval, is taken

in summer.



V. NUMERICAT. METHODS

Calculations to find best use of stored water were performed

on an’autgmatic digital computer. The numerical techmiques,
therefore, stress generality. It is undesirable to have much
manual intervention between the introduction of the data and
program to the machine and the ogtput of final results. Any
changé in the way numbers are processed whichvdepends‘on how

the numbers "look" must be expressed quantitatively and programmed

into the calculation,

The computation consists of three parts: the calculation of
river flow probabilities; ~the calculation of tables of best
storage water use; and the calculation of actual system be-
havior with the historical flows. Some of the teqhniques and
problems of the first two parts will be discussed. The last
calculation is straightfqrwgrd. At the end a short discussion

of the programming is given.

Probabilities

Standerd techniques were used in calculating the conditional
probabilities. Beyond recognizing that the distributions were
skew and assuming that the flows in sudcessive intervels were

simple Markov, no detsilsd knowledge of the hydrology of the
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river basin was introduced.

In practice the probabilities were not calculated as density func-
tions but as ééﬁditional»probability tables, For each interval, i,
there was a table whose elements were of the following form:
e "
won p. = Prob g"‘x-‘%ﬁ X;s"x+‘=;f\ Xia * xz
h (% .

(541)

In words, "™@p; is the probebility that, in the ith interval, the

value of the flow, Xj, will lie in the rangeax about some value my,
given the fact‘that the flow, Xj.], in the preceding interval was
ny, For discussion purﬁdses, we shall agsume that the time interval

is ajmonth.

It is necessary to finﬂ>thechrrelqtion between tﬁe fLows in suec-
cessivg_months. However, if werconsider a frequency curve made from
the forty years of data for, say, January, we find the distribution -
of flows is very skew. Furthermore the mean flow for January is
different from thatkfor December. It is therefore necessary to
trensform the data to get reliable correlétions. The flows are

put into unit normal form by an empiricai transformation which we

can represent by

U, =2 W (Xc) | (542)

If i is Jenuary, any January flow, Xxj, has a unit normal counter-

part uje If there are N years of record, and the cumuletive fre-

quency curve for the January flows is denoted Fj(xj), then
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u; is defined by:

u -t* : y :
] -: F'(l(
—e - el 1 (543)
S Jaw' e , N : ;

- ad

The expression at the left is the cumulative distribution of the

normal probability function and is tabulated (12)., In practice.

- the raw frequency curve is smoothed somewhat in forming Fi(x;).

The correlation between months i and i~1 is now:

&_ S — : (5¢4)
vy z ,“;2:‘ : .
where the summation is over the years of record. The flows are

assumed to be simple Markov in a manner defined by

where €; is a random variable assumed to uncorrelated with uj_j.

For each year of record we may calculate values of €. from the

above expression and thereby obtain sets of €;. These will have
some cumulative frequency distributions ‘G;(e;) . Physically, we
have taken uy, last mopth's flow in unit nqrmal form, _predigt-ed

this month's flow to be ., u;- , and found, by doing this for

e
all years of record, the cumulative frequency distribution of the

errors, €. , to be (;(&) . The distribution is skew because, know-
ing last month's flow, this month has a faiq.‘ly rigid low flow limit

but a wide range of high flow possibilities.

Having the functions uj(xj) and G; (&) we may calculate the
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conditional probabilities MOp;, The pogsible range of flows is
, dividéd up inpo ipteryals centered about a series of inereasing
flows, °x,‘1;,‘2x, coey Jx.., « Because small flows are more
important than large flows, the spacing is made to incérease as

j increases.

We let
ix = () o« >l (5.6)
Now
e . L 5 G. (™ er) - G- (‘“‘-)3 (5.7)
< N . ‘; . .
where
—n (';* = “;(“" + -‘?' - Dt:.’;.-- ui-l (") o o (g-'s)
TteT o+ wi(Ux- o2f) - I";,:-- b (x)
ax = 2(33) ™

The prqbabi;ify ﬁgé tékgp zerohfpxbhaving'gny f;qwslgrgatg: thanvqr
less tggn the_extfemgsﬂpf tpq“pig£6ripal flowé for that monph,p This
was dgne forﬁsimpiiqity,/ ?he:e ig sﬁi;; a non zero g;obability of
obtaining a year drier than eny on record. The reason is that the
driest year of record does not contain the lowest flows on record for

every month. The same situation holds for large flows.

After these probability tables had been calculated and used, two
changes seemed desirable and were made. The first change concerned
the mean flow. It was discovered that the mean flow for a month

as calculated from the probabilities differed at times up to 9%
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from the mean of the historical flows. 'Also it was feund‘that the
mean of next month's flow as a function of this month's flow did not
vary smoothly. Neither fact is surprising, considering the amall
number of years of record and the empirical transformations involved
in the calculation of the probabilities. However, since the expected
energy in winter is closely proportional to the mean flow, seme func-
tions in 1ater calculations became not smooth. In order to be sure
that the reason 1ay in the probabilities and not in the later cal-
culations, the flow means were smoothed, The mean of,next month's
flow as a function of this month's flow was fit to a cubic equation
by least aquaree; The mean flow for a monthyﬁas adjusted to be

the same as that of the historical recerd. The changes in mean were

made by shifting the probability distributions along the x azis.

Examples of the reaults ef probability computations are shown in

Fig. 2 and Table 2. Tig. 2a shows the mean flow by two week inter-
vals from the historical record.” Fig. 2b shows the correlatiens for ‘
unit normal flows between successive intervals through the year for b
two week and four week intervals. Table 2 shows a set of conditionall

probabilities. For this case, Ox = 17.0 Kefs and ©€ = 1,181.

The other change in the probabilities was one of smoothing the pro-
bability densities. 6ne:interpretatien of a column of a probability
table is the histogram shown in solid line in Fig. 3. Howejer, the

dashed line was teken as the probability density in the calculations.
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Fig. 2. Characteristics of the Columbia River at Grand Coulee.
a) Mean flow, 1914-1953, by two week intervals.
b) Correlations between unit normal flows in
successive Intervals,
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Fig. 3. An example of a conditional probablility density,

f(xy]x;_1). The solid curve is a rectangular
probabil}ty density representing a column in the
probabllity tables. The dashed curve is the

continuous density used. For the case shown,

X{-1=39 Kefs, and 1= the interval from Dec. 30
to Jan. 13.
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The ordinates at the end points of its straight line segments are
given by: ‘
W

: “_¥' b] 2 P

—
w,

ot X L (5.9)

In this expression the n and i subscripts have been suppressed. The
mean and area under the curve are unchanged. The new probabllity

den51ty is contlnnous, which property is desirable.

In retrospect, it might have been sensible to have foreced the

probabil;ty densities into a amooth analytic form. This would -
make it somewhat easier to program the optimization ealculation.

',Any lack of smoothness in functiocns calculated there could then

be tracked down in that program.

The.idigsyﬁcracies of the pfobabiiities calculated by the ﬁethods
abové’a¥e presumably caﬁsed by the historical data. One might expeet
that such idiosyncracies would therero:e-be an advantage when evaluat-
ing system operation with the historical flows. However, such smooth-
ing‘as was done seemed, if anything, to 1mprove'the'results of later

calculations.

Ogtimization Galculation

1 Using equations (4.16) of section IV, the calculation proceeds as
follows: Assume that the expected cost function'Ei+1(v1+1, xi)

is stored in the machine as a two dimensionel table. For a given



pair (vi,xi_l) the expected cost function

E. Gy Xy s0) \\4-

. _& 5(:'.( , X5, s\ + B, (o, x0) ? ;(%\“ﬂ\ I ;‘; (5.10)

is calculated for & number of Sj and the smallest Ej chosen. The
corresponding value of s4 is'storeu in a table, sj(vi, xj-1). This
table;ieprescnts theloutuut of the calculation for the 1th interval,
since 1t specifies the usé of stored water which-uill_uiniuize the
expected cost under any combination of conditions of vy and xj.3 that
may arise in the ith interval. The value of Ej found at the saume
time is stored in a table of Ei(vi, Ii-l) for use in the calculatlons
for the preceding interval. When values of tabulated functions are

' required which are not directly in the tables, linear 1nterpolation

is used.'

Thus, the basiec task is the 91mple procedure of calculating con=.
siderable numbers of functions and picking out their minima. This
would be a formidable job by haud but, on the other hand, is the sort
of thing uachines are built for; The remainder of this section will

deal with some problems that arise in computing the functions,

In practice thé;integ;al of equation (5.10) is replaced by a sum
using the trapézoidal rule. To simplify discussion, we shall as-

sume we are working with a particular (vy, xy_1) pair and so will
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not indicate functional dependence on them. ZLet us also drop the

subscripts denoting the 1nterva1 and replace the quantity in the

braces by the 51ngle letter I, Then equation (5.10) is

Ec¢s =' X I(x,s)-‘-(-) S x ‘ (5.11)

and the trapezoidal rule approximation is

Eeo) = | |
g &['1 L.__‘!‘s\ ey TR s) -f][ ....] (5.12)

where there are (li+l) discrete values of x considered in the finite
sum. ‘When it is necessary to distinguish betweep a functien and an
appreximation'to it, we shall write a (~ ) over the latter. Since
we can always make the range of x such that f(x) goes to zero at
the ends, the above can be rewritten

M-\

: ‘E’(s\ = Z A I("‘x,s] "‘_F [-.ux _ u-‘x] | (5.13)

ezt

R

which, by equation (5.9) can be written

-\ ' .
Z I(7x,s) Tp (5.14)

wAs
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e seek the s such’ that E(s) is minimum. This will come when

dE
s ° (5.15)
unless, as often happens, E has its smallest value when s is at an

extreme end of its limited range. Such a case is sometimes called

corner minimume.

If E(s) is‘cal;ulated‘for a nﬁmber of s and the smallest one is
picked, it wpuld‘seem'thgf we need not worry about the slope.
Provided that E(s) is a fairly slowl& varying function, a plausible
way to seareh for ﬁhe ﬁinimnm.is‘toisample E(s) with a coarse grid
in s and theﬁAsearch more carfeully about the best value. Howevaf;
calculating E for values ofvs close together is tantamount to ap-
proximating fhe slope there by finite differences. Consequently,
we can 1nvestigate hgw closq;y phis technique finds thg minimum of

‘E(s) by seeing what sort of slope the calculated E(s) has.

It is next observed that

AT | (5.16)

unless X, € X € Xp  where

7o : | (5.17)



This follows from the model., Physically it happens because if you
try to use more stdrage water than a certain amount, no change in
outcome occurs. This is because the discharge is limited to Dmax°

A

4 similar situation occurs in trying to use too little water,

Now we discover that %% resulting from equation (5.11)
d ¢ 4 I(xs)
X, S
dE S 155 €y dx (5.18)
s as ‘
Xy

is not well approximated by the ‘af implied by equation (5.14):

3 ST (" 3)
%__F, = Z S As 2 " P P ‘ E : (EJQ)
e 'x’xt

'Theireason is that, as s changes, so do Xy and x¢. Expression
(5.18) changes smoothly. ZExpression (5.19) undergoes a discontinuous
change of magnitude (JiI)mp whenever xb or xt ¢rosses an Mx, For the
mesh of x used in the calculation here the term added or dropped may
be one of only ;eur‘or‘five iz the sum. Thps, delicate detection of

minima is not possible.

The discontinuity can be reduced by decreasing the mesh size for x
since this reduces the size of the individual Mp and thereby the
discontinuity. Howevar, it also inereases the time required for

the calculation.
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A different method was used. The derivative was approximated from a

difference of the function. However, the two values of the function

involved were calculated in sueh a way that the difference was sz

vetter approximation than found above.

Let
E (s) =

2 n Tt ™ v T~ ][ -
m2pq

5 IT 0% 4 I(x,s-29) 3] [ - P

: (5.20)
s iz Xp, S+ %) §(x) + T (P s) '] [ Py -Xh]
*‘ ‘/a.‘-I ("—"‘.S) ""5 +I("£,5"‘f) "'("tﬂ‘_"t ‘1.‘11 '

+ ‘/:(}I("exs‘%)‘“"t‘ 4 I(‘x,S) ¢ ] [1::-"-&-]

This is egain a trapé'zcidal rule epproximation to equation {5.11),

However, the number of intervals hag been increased by taking extra

ordinates at xj and xg. Also, at these points the exsct s has been

replaced by (s-4%) on the low side and (s+ &%) on the high side.

Now let

s

(35)- 5[ Eees - - (5.21)
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where the same xp and xy are used for both E's. Then let
L

(& Tles %) - Tls-49) -
as = S
or in certain cases: = @ - T(s-e9) (5.22)
As
_ Tsras) - T(s)
or T —
AS
ﬁon using equations (5. 15), (5.20), (5.21), and (5.28),
dE ar % '
(as}. V,[ TR RSO s}g(n,s\ '4]{",:-“]
wm<g-y _" :
‘.I we! Y Ao LI O
zh DRSS $1 [~ "] (5.23)
wop

v [ AL (MY .--txt O CAYIEER

which is a trepezoidal rule spproximation to the egquation (5.18}. It
is similar to ecuatibn (5.19) except for the underlined terms., These

terms meks 3E yary smoothly as S causes Xy Or Xy to pass &n My,
o) T

[
The slope (%};) may be used to find minima, The best s is that for
which & slightly smaller value gives a negative slope, & slightly larger
value, a positive slop=. In case of more then one minimum, including

corner minima, the value of ® will tell which is smaller.
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The notation above became somewhat involved but the essential point
is that considerable caere had to be taken to avoid calculating an

incorrect discontinuity into the slope of the funetion Z{s)e

4s a final comment in connection with numerical methods, the formal

derivetive of equation {5.10) could have been taken,

4 E

e S:) o=
EYT U X )

S_g .‘3% * é;E-’:U x:) ""'" z 06| x:) X x;

By using this expression we can evaluste the derivative directly

: ac Ve
instead of by differences. The functions 3% i ~'can be expressed

analytically in our model., Thus assuming "E“‘ is known, we can
' ' A 0;0 1
find 83 and then, since

A

E;
—— (4—'.‘, X)) =

Vv

=

—8

T men e )
a— + cé . . |,|.‘ ) (59“5)
- a0 g 4 v a"i‘l(d...l x‘) S‘(‘ ‘.x--t) &x
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4 E: '
we can Tind Z:ﬁ and so forth., However, there is an added compli=~

+

cation in that

o>
g
e

— = _S.:' + )__C. A ¢
A v >s: Xo:
(B.88)
Ve :
‘g__‘: - IN:n * dVin s
4 > P
although having found 84, %%’ can be found. By assuming
A€, )

“a function for ]r__ we can work backward as before but this
Vv

time conducting the calculation in terms of thg derivatives in-
stead of theexpected cost functions themselves. After all it is the
functions s;(vy, x;_1) which are the desired output of the calcula-
tion, One troutlesome situatioﬁ is the possibility of multiple
minisa. This could be hendled by integrating ‘,:_E_o over sy to find
out which was loweste. k

The reason for mentioning this method of calculation is that it
avoids the differencing,found in the methods above and therefore

seems to put less stringent requirements on the accuracy required

of the machine. Perhaps too, the above expressions would give more
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accurate values ofg-f tha:’: the differencing of E(s)- for the same mesh

of dependent variables.

The reasons for not using the method are the multiple minime pos-
sibility, the increased complication, and 2 curiosity to compsre the

expected cost with the average cost of operating with the historical

flows.

Erogramming
The éurrent state of the art of computer programming is such that a
progran is rather specific to the computer being used. The calcula-
t10n= were made on the Whlrlwind I computer at M 1. T. The machine
| is, by present standards, very fast for handllng 45 declmal digit
fixed point numbers, but it is considerably eas;er to program when 1ts
slower, more accurate floating point interpretétive subroutines are
used. It wés decided at the outset to undertake the more canplicated
programming and risk some difficulty with accuragy in order to avoid
worry over the time reguired for the calculation. As it turned out,
the times involved were on ‘the order of five minutes for calculating
the probabilities, five to thlrty minutes depending on the mash for
ecaleulating the operating tables, and one to five minutes to cperate the
system with the historicél flows, depending on the amount of computer
Qutput desired. Thege times were in a renge which made it fairly

easy to debug and experiment with the DT OETEM,




It was early discovered that although 4% decimal digits might be
sufficient for accuracy, they did not cover a sufficient range

of magnitude to accomodate the numbers encountered., Rather than
revert to floating point computation, @ device was used which
might occasionally be useful elsewhere. It was found that in the
most fep§£itive énd thefefore most time consuming paris éf the
pfogram, it was only necessary to pick up numbers from the tables.
The pﬁtting away occurred much less freaquently. By storing not a
number but its sguare root, the range of numbers handled could»be
increased to 9 decimal digits with negligible loss of accuracy. Re=
constructing the number reguired but squaring the value in the
tables., Taking the square Toot required more time but occurred

relatively infrequently.

During the calculation, tables of functions were computed, stored,
and then used in further calculations. The time for the whole
calculation depends strongly on the size of the tables. It was
therefore worth some effort to eliminate unnecessary values.

An example of this is»the way the tables depend upon the range

of flows. The range of the historical flow of the Columbia River
at Grand‘conlee is from about 17 to 570 Kefs but for any given time
of year it is much less than this. From the programming point of
view it would be easiest to compute and store tables Qovering the

full range, even if the values were useless. However, considerable
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time and storage can be saved by making the start and finish of the
tables flexible. While this is not too difficult to do, it is the
kind of complication which is not undertzken unless, as in this

case; it is justified,

The combined length of the final programs used was about 4000
single address instructions, exclusive of tables and subroutines

provided by the Digital Computer Laboratory.
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VI. RESUILTS OF THE CALCUILATIONS

Calculations were made to try out the theory of section IV
on the hydro model of gection III. Solutions of the problem
of storage water use were found for two different cost func-
tions. They take the form of sets of tables for determining
reservolir operation.A In addition, for comparative purposes,'
a rule cufve was computed by standard methods. However,

the tables and rule curve are rather sterile when it comes
tovunderstanding how the system would behave under real
flows. Consequently,ithg 3¢ year record of historical

flows was made the input for the syspeh énd operation was
computed for each of the three cases., The results will be

discussed.

Kinds of Operation

Calculations were made for three cases,

Cage 1. Minimum expected cost, linear cost fupnction,

The basic model assumes a cost function of the form:

L9

C - O, 3;’ + &: 3(1 (6°1)




where gi is the supplemental energy required in the ith
interval. Case 1 corresponds to
Q:.:O
(6.2)

The particular value of a; makes no difference in determining
besgt operation provided fthat it is greater fhan Z8T0,

This is because decisions are m:ids on the basis of rela-
tive cost. In the_calculaticn it is only_necessary to

knoﬁ whethér one deéiéion is 1essiexpensive than another,
not exactly how much in dollérs. |

When cost is linear, mirvimum cost is the same as maximum
hydro energy. This foilows because cost is then propor-
tional to thé total supﬁlemental energy demanded, irres-
peétive of the size of the individual chunks and the way
they are spread out in time, Case 1 is thersfore not

too realistic, and certainly does not epply in the North-
west. However, since it represents maximum expected energy,

it is an. important reference point.
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Case 2, Minimum expscted cost, pure guadratic cost function.

This case corresponds to

O.‘zo
{643)

in equation (6.1). Here too the particular value of as does
 not affect operatiqn provided it is greater than zero. A4 quad-
ratic cost fuﬁétion means that the cost of a unit of supplemental
epergy incrsases with the amount regquired. Such an increase
wsually occurs in practice, either because less efficient steam
plants must be used or in extreme situations because load is
curtailed, Whereas a real hydro system might have & much more
complicated cost function, the pure quadratie assumed for case
2 is in keeping with the simplicity of our model,

Case 3, Rule curve operation.

A rule curve was Pashioned for the model from the lowest flow on
record, 1956-37. Water will be used from storage down to but

not below the rule curve level specified for the particular

time of year. The curve is construéted sc that for the 1936-37
flow the supplemental energy reguired will be cons;ant.through—
out the drawdown seascm. An exception is ﬁade at the beginning
and end of the season. A% these times rational water use demends
somewhat lower supplemental generation. The rule curve is

taken ag ap example of a simple reservoir operation which has

been shown by experience to be g0o0od.




Weter Use Tables

The output of the optimization caleulation is a set of tsbles
of the functioms sy(Vy, Xj-1)» They determine the volume of
storage water which is to be used in each time interval. Once
calculated they need not be recalculated unless the model is

changed.,

In Fig. 4 a tabls for a given i1 ig plotted as = f&ﬁily of
curves. Also plotted is the corresﬁon@ing data for a rule
cgurve, The curves Jdetermine operation as follows: If the Tlow
in the preceding 'nterval‘was 46 ¥efs and if the reservoir at
the_start of the interval contains a volume of weter O.EO 7,
then sj, the volume of storage water planne& for use is 0.077 7V,
This repfesents an average flow of about 14.3 Xefs over the two
week interval. As the interval unfolds, the watsr ig edded %o
the natural rivef flow to vrovide the discharge for power.

if the sum of g4 and the natural flow implies the violation of
an operating limitation, the proposed storagze use must bs
rmodified. For instance, if the sum exceeds Dpax> Only Dpay

can be discherged apnd if the sum is less than Dpyp, Dpin Must

be discharged anyway, provided that it is available,

The same procedure applies for determining operation for the

rule curve, Case 3, Here, however, the flow in the preceding
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interval is immaterial. TFor vj = 0.80 V, s3 = 0.094 V.
_This‘corresponds to a discharge of 17.5 Kefs to be added to the

natural flow during the interval,

The line shown for rule curve operatlon is not the rule curve
itself but the point for the 1th 1nterval translated into a form
comparable ;o the curves‘of Se The rule curve 1ine is decep-

tive in that rule curve operatlon does not ordlnarily permit the
reservoir level to fall below some glven value which for the
beginnlng of th1s 1nterval happens to be vy = 0.80 V. lhus

the line shown for rule curve ope:atlon is used almost exclusively

to'the right of 0.80 on the graph.

A few further_comments may»be ma@erabout the curves_of‘Fig. 4,
First it is seen. that for vi = 0.80 V, the rule ecurve value,
the Case ? curves. do not recommend using as much water as the
rule curve in this interval unless the flow, Xi-1, is rather

low, about 28 chs. Second, the volume of water alloted from

storage in this 1nterval decreases as xi 1 increases. This is
a move to preserve water and head and does not happen in all
intervals, In particular, situations arise toward the end of
the drawdown season where good flow means that the danger of
powér.shortage is past and water should be pulled out of storage

rapidly. Finally, some of the unevenness of the points in the
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T ‘ ‘ Case 2 curves may be valid, but some is brobably due to the limited

accuracy of the calculation.

Results of Opsration with the Historical Flows

The princlpal features of the results are:

l. The differences between the varlousyﬁethods of‘operatlon,
as judged by the criteria used, were falrly small. Variations
range from tenths of a percent to & few percent. This was to
some extent expectéa. The amoupt bf wgtgr which actually comes
down the rifer is thé first ordérrcffect.i fhe ﬁanipulétion of
the water, prov1ded it is sensible, will have a smaller effect.
Its economlc importance stems from the amount of money 1n—

volved in a big operatlon.

2."The”differencéS“althqugh small do exlst. .The expected

value method for dgtermining reservoir operation did»what‘it

was supposed to do. That is, the results of operation, as
judged by a given criterion, were best for operation Qetermined

by an expected value calculation using that criterion.

3. Some effeets become apparent only when averagéd over a
pumber of years. A method of operation which, compared to
another, decreases cost in the long run may increase cost for

some of the individual years. This possibility is basic to

the concept of expected value and arises from the probabilistic
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nature of the flows. The operation which in retrospect would
have besn best is attainable in practice ohly when future flow

is perfectly known.

4, Operation was often at an extreme determined by operat-
ing limitations., That is, for much of the year, the reser-

yoir was full, or empty, or discharge was maximum or minimum.

Curves of System Behavior

In Fig. 6 and continued in the Appendix are curves relating to the
system behavior under the imput Qf the historical flows. The curves
are composed of dots on an oscilloscope plotted and photographed

by the Whirlwind I computer. Reading across the page are sets

for the same flow year for cases 1,2, and 3 respectively. The
Acurves show the historieal flow, the volume of storage water

planned for use in the interval, the supplemental energy, and the

reservoir volume, all as functions of time through the year.

Further details are explained in Fig. 5.

The pictures are too gross to show up fine differences in opera-
tion but are excellent for seeing what the‘system is doing macro=-
scopleally. Characteristic are: the decreasing flow in winter
follbwed by spring flood, the drawdown of the reservoir in winter
and refill ih gpring, and the hump of supp;emental snergy regquired

in winter,
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- Flg. 5. Explanation for oscilloscope pictures.

: x4 = natural river flow in Kcfs.
sy = planned volume of storage water use.
g1 = supplemental generation.

volume of water In storage.

Vi:

1 = 1Index of two week intervals.

V = volume of full reservoir, 2600 Kcfs days.
L = full load, 1780 megawatts.

Flows greater than 100 Kcfs are off scale.
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In‘comparing the three‘methods of determining use‘of the stored
water, the following distinguishing features appear., In Case 1,
linear cost and maximum expected energy, the supplemental genera-
tion veries considerably from interval to interval. There is

no penalty for this and so it is not surprising. Cases 2 and 3
on the other hand show more even generation. In case 2 this is
caused by the guadratic cost of supplemental energy. In Case 3
tﬂe rule curve doles out the water'fairly evenly through the

winter season.

The rule curve, of course, does a fine job of smoothing out
36-37, However, in other years the supplemental generation is

- much more uneven.

Cage 1 trieg to get the most hydro energy out by doing two things:
holding thé head late into the fall, and trying tc empty the
regervolr early in the spring. The result is often large sup=

plemental generation in the fall and late winter.

bLverage Costs

The thres cases of operation with the historical flows are com=-
pared on the basgis of two criteria, The first is the 39 year
average supplemental power 2. This number is obtained from the

supplemental énergy total of the 39 years of operation. If the




cost function is linear, the average cost may be found by multiply-
ing g by some constant. If the cost function is quadretic, g

is not direetly proportional to cost but still is proportional

to the avefage supplemental energy required. The other critsrion
is éé, the average of the supplemental power squared. If the cost
function is pure quadratie, the average cost may be found by
multiplying éé by some constant. If the cost 15 not quadratie,

;é is not proportional to cost but may be regarded as a meésure of
the variability of the supplehental generation, In fact, in
mathematical terminology éé is proportional to the second moment"
about the origin of the set of all biweekly supplemsntal energies.

Similarly g is proportional to the first moment.

The quantities g and éé are proportional to average cost‘if the
éost functions are, respectively, linear and gquadratic, Another
interesting interpretation of these guantities can be made., It

is found that as g is minimized éﬁ increases and vice versa, Ls
g decreases, more hydro energy is obtained from the system. On
the other hand, as éé correspondingly inecreases, it implies an
increase in fhe'nnmber of cccasiong when the supplemental genera-
tion is large. If we call periods of large supplemental genera-
tion power shortages, the‘conflict between minimum'g and éé may be
regarded asya gonflict between maximum hydro energy}and minimam

risk of shortage. In order to have a dasis for operation some
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weighing of the two fectors must be decided upon. Thia, of course,
is just what a cost function does. As stated earlier, a much
greater variety of cost functions is possible then the pure

linear and pure cuadratic ceses considered here.

Teble % shows what happens to g end éé in the three cases of
operation caleculated, Consider first Case 1, 1igear cost. When
operation is such as to minimize expected cost, the 39 year
average power required from supplemental generation,'g, is &
fraction, 0,1520, of the total load of 1780 M. This is 1.4%

" less than required for’the Qperatibn of Case 2, and 1f4% less
than reguired by the ruls curve operation, Case 3, If cosgt is
linear, these chenges are changes in cost. Thus when Case 1
is judged by the criterion used in determining its water use,

its operation is superior to the others.

%e have talked of cost but not in terms of dollars., As stated
above, the exact value of ag does not make any difference to
aperation. HoWever, to find what order of magnitude of money

ig involved in this model, we miéht take the ceét of supplemental
energy 4s % mils/kilowatt-hour. This would mean an.average
annual supplemental energy bill of about‘%7,000,000, 1% of which
is $70;OOQ. As discussed earlier, the model does not represent

any actusl situation in the Northwest and the same must be seid

for any dollar cost presented.
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Case 1 Case 2 Case 3
g o 1520 - 1542 . 1542
o2 05522 | .04910 | .04956
(a)
Case 1 Case 2 Case 3
Ghange of F
from Case 2 ~1.4% v O 0
L value :
Change of?ﬁg
from Case 2 12.4% o 0.9%
value

(b

Table 3. The 39 year averages of supplemental power
and supplemental power squared (g and ggjv
for the three cases of operstion.

a) Averages E‘and-gg expressed as fractions
of full load values {1780 MW and 3.17
x10€ WWe respectively). :

b) The same dats expressed as rercentage changs
from Case 2 results,
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A discussion similar to the above applies to Case 2; guadratic
cost function. Using this operation, éé, the average value of
the power squared over the 39 year historical recordAis &
fractidn, 0.,04910, of the value it would have if ali power
came from supplemental gensration., ©On the other hand for the
operation defined by Case 1, éé would be 12,4% ereater, and,
for the rule curve, 0.9% greater. If the cost function is
qua&ratic, these changes are differences in cost., Again we
might take the dollar wvalue of a 1%_change to be about 70,000,
Although the cost is not linear, this number is consistent with
the idea that, whatever the sghape of»the cogt function, there
is only a certain range of average, long term costs that will
keep a hydro system in business and that 1% of this is somén-

" where in the indicated range.

Case 3 is the rule curve. The criterion on which it is based
is that thefe‘should berconstant supplemental generation inrthe
draﬁdown period of 1936-37, This criterion is certainly ful=-
filled, However, the rule curve results are the same or worse
than Case 2 by both linear and quadratic cost criteria, The

differences, however, are small,

- The averages, z and g2 over theVBQ year record have been used

for judging system performance. Two related numbers, the

- expected values of g and g2, can be obtained from the optimization
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caleulations involved in Cases 1 emd 2. If the probabilities
used in the calculztiocn were psrfect, the calculation itself
very apcurate, and the number of years ih the histbrical
recorﬁ many more than 39, then the expected values from the
calculétiqn should agree closély with the averages from the
historical record. These cohﬁitions are not well satisfied,.
The result is that the corresponding numbers differ by é few
percent. They are shpwn in'Table 4, It is noted that the
changes in the expected values for the two cases are similar

td the changes found in the average values of Table Be

Other Kesults

Figure 7a shows frequency histograms made up‘from the sets of
the 59 values of g, the average.supplemental generation for the
year. The three cases are seen to be quite similar. The réason
is thet the niche into which each year falls in this plot ie
determined mostly by the first order effsct, the amount of
winter runoff for the year. Vet years-have low averags
supplenental power and fallineér the origin; dry years appear
out at the right. The effect of different reservoir operation
is to shiftbthe meen a few percent and doss not show up @uch
on this plot. Figure 7b shows similar histograms for 52, the
averageISQuare of the supplemental gene:ation. Thebabseissas

of Fig. 7a may be read as cost if cost is linear; the abscissas




Case 1 Case 2
E({g) | .l488 1517
E{g®) .05618 .04827
{a)
Cass 1 Case 2

Change of
E{g) from ~1.9% O
Cage 2 valiue
Change of ,
H{ggj from 16.4% 0
Case 2 valie

(b)

Table 4. The expected values of supplemental power
and supplemental power squared as calculsted
from the probabilities, o

. . - &

a) Expected values E{g) and E(g2) as
fractions of full load values (1730 MW
and 3,17x10€ MW respectively).

b) The same dats expressed as percentage
change from Case 2 results,
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No. of years

No. of years

No. of years

| S N

0 2 4 6 &8 o .2 4 & .8 0 2 4 .6
(gi)mox . (gi)mnl : (gi)mo:

Case 1 Case 2 Case 3

Linear cost function Quadratic cost function Rule curve

T

i, 7. Frequency hlsloprams of g, ge, and (£{)puy Trom trhe 39 yeurs
-of flow [cr tre Lnree ceses of operatlon., The ordlrnatle is the
ruroels of years [or abilch Lhe particular quantity had o value
between adjincent marks on Lhe wtgcelissa. Olstrivuticons sre
glven i'or g) F, Lhe averwre stptdenenilal power doring euach
yeuly, b)) pe, averuzpge squoare of supplerenlal power, and c¢)

(£ )max, larpest g¢ dur'ng each yeur. the quant!ties ure
mlvern ga frasticons of treir full load values.
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of Fig. 7b as cost if cost is quadratic.

Thesge plots show the variabllity in energy and cost due to
randommess in river flow. The wide range of possibilities
which nature can produce rather dwarfs the effects of dif-

ferent resgervoir operations.

Wigure 7c¢ shows frequency histograms for (gi)max» the largest
value of supplemental generation during a ysar. Here the rule
curve operation gives somewhat lower values than the quadratic
cost operabion. Perheps then the rule curve in this model

best correspbnds to a cost function which rises more steeply
than a quadfatic. However, since the rule curve is not made up
on the basis of & specific cost function, and since no calcula-
tions have been made.with functions containing highexr powers

then second, we cannot conclude much.

An interesting characteristic of the operation of the model is
the fraction of time that operation is not at an extreme limited
by restrictions. The operating limitations are maxiﬁum dig=
charge, minimum discharge, full reservoir, and empty reservoir.
The reason for interest in the fraction is that it is some
indication of how much of the time water use is difficult to

determine. OFf course, it is not necessarily easy to decide

that operation should be at a limiting restriction, but, for




instance, in spring and summer the only rational thing to do is
to maintain meximum discharge. The_fragtion of time during =a

vear that operation was not at an extreme ranged from 0 to 0,42
and‘averaged 0.19, 0.28, and 0.31 for Cages 1, 2, and 3 respec-
tively. The differences betwsen cases are due in part to suc-

ceseively earlier times for starting drawdown.

Accuracy of fhe Calculation

Once the numbefs which represent the model and the historical
flows are put into the computer they may be invested with almost
any desired degree of aceuracys This is advantageous for com~
puting differences. Differences can be significant even though
they come from numbsrs artificially increased in accurasey. Xor
instance, the product of the head and the volume of flow is pro=-
portional to ehergy. A real flow may noﬁ be known to better
then 5%, a real hesd to 1%, However, if the héad can somehow
be increased by s foot, the energy will bevinéreased.' By
consistently attribdting extra significant figures to hesd and
Tlow, the energy before and after can he caleulated and the

difference made = valid meaaure of the zains

In operating the system with the historical flows it is only

necessary 4o carry that accuracy bsyond which any differences

detected would be of doubtful significance,




“B58m

The accurazey of_the cptimization célculation is a somewhat
different.problem; The question is whether the caleculation
can be improved. There 1g some reason to believe'that-the
calculations presented here can be. In the first place all
the knowledge of the flows which is available to the optimi~
zation calculation must be embodied in the probabilities,
Thesé were calculated in a way which stressed generality
over hydrological niceties. In particular the correlation
between low flows is greater than between high flows, a

fact not well teken into'account. Fgrthermore the probabilitiss,
onee calculated, were then subjected to a smoothing which,
although'éonsiaered_beﬁeficial, might_better have been

Planned into the original caleculation.

Another accuracy problem in the optimization concerns the

approximation of differentials by differences. We write

A€ ae . Elss &) E(s- %) (61)
s v as as
e seek %% = 0 , except when best operation is at either

the largest or smallest s, in which case the accuracy problem
is not so acute. Since A s is a constant of the calculation,
comparisons are made on the basis of A E. By decrsasing A s

we should obtain increasingly good approximations to the
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derivative at s. However, the differences A E decrease at the
same time and, for a range about the minimum, may become smeller
than the smallest numbers the computer is detecting. Within

this renge, A E equals zero, and the best s is indeterminate,

"In the computations reported above, the compromise was to take

A 8 to be a volume of water about 33% of D ...

Stability

Related tq'the problem of finding the minima accurately is the
quéstion of what haprens when operation is not at the minimum,
This can easily ocecur. Eor one thing, the calculations may not
have been perfect so that the recommended coperation does not
bring about true minimgm cost for the model. Then again, even
a good model will differ from a real situation so that its
best operatipn may not be exactlyﬂright for the real case.
Finally, ip real operation disturbances ;nevitably arise which

cause the best laid plans tc be modified.

Therefore we want to krow how flat the minimum of the expected

cost curve is as a function of changes in operation.

Unfortunately, for each of the many values of s3(vys %4.7)
in the tables, there corresponds a different curve whose minimum

hes been found. These different minima vary in character.




Some are npt even true minima but ¢orner minima. Thus no
single curve ié répresentative of the lot whereas it would

be desirable to characterizé the whols optimization.»_The
following rough way of doing so was used. The cost of

system oPe:ation was calculatgd from the historical flowe
but, as vglues of s were selected fiom ﬁhe tables for
deciding_the‘storage use in each time interval, a small
numbey was added to s, This bias made a congistent chénge

in favor of greater discharge, or, if negative, less discharge.
The bias i3 a forced deviation from recommended water uss.
However, to force an added amount of drawdown early in the
fall whan thevrgservoir d1ou1d be_held fﬁll would be conbtrary
to common sense. Conseauently, wﬁen the tables called for an
axtreme value of g implying a corner mimimum, the bias was

not applied,

By caleulating the 39 year average cost for & humber of waluss
of bies, the solid curve of Fig. 8a was congtructed for Case

2. It shows that a small positive bias seéms £0 improve opera—'
tion slightly. Thus, at least with respect to the hjsto:ical
flows, the operating tgbles can be improved somewhat.. As
larger bias, positive or negative, was appllied, the average

cost increased as is shown quantitatively by the curve,

The same blas treatment was given the ruls curve operation.
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Flg. 8. The effect on g2 of departure from recommended wat use
in Cases 2 and 3. For a quadratic cost function, g< 1is
proportional to average cost. a) Blas conslstently added
to recomnended storage use. b) Blas alternately added
and subtracted from recommended storage use.




'The result 1s the dashed curve of Fig. 8a. The cost ié decrsased
for some values of negative Dbias. It is seen that, although
the Case 2 cost iz lower than rule cqrve cost near zero bilas,
'thé latter is less sensitive to the bias and does ndﬁ rise so

rapidly with bias,

The reason for the differsnce mey be found by considering how
the two cases handle the bias. For the rule curve the Tirst
application of thevbias, if pogitive, pulls the reservoir
below the rule curve level. In the next interval, the rule
curve calls for that storage use which will bring the reger=
volr back onto the curve by the end of ths interval, This
volume is again chenged by the bias and the interval again
ends with the reservoir dbelow the Tule curve by & volume
equal to the bias. Thus water use 1s very similar to thet

of ruie curve lowered by an amount.equal to the bias. Except
for the first end last interval of the drawdown season, the
volume of water planned for ﬁsevis the same with and without
bias. The,result, shown in‘Fig. Ba is that the average cost

is not changed much.

The bias is treated differently by the minimum expected cost
operation of Case 2, Once again a positive bias pushes the

reservoir below a level which might be considered appropriate

for the time of year. However, instead of trying to correct
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all the trouble by the end of the next interval, the tables
call for & water use that implies spreading the correction over
the rest of the year. This is done under the assunption that
in future intervals water use will be such as to minimiie
expected cost, i.e,, according to the later tables, Therefors,
when the bias continues to be applied in subsequent intervals,
the water use continues to be changed fairly stronglylby the

bias. The graph shows the resulting inereass in cost,

Suppose, however, that bias is not consistently applied in

the same direetion. For instance, in rulg curve operation

this might result from a decision to draft the reservoir a
Jlittle below the rule cgrve-in‘one interval and then to build
up above it in the next. While such alternation would pro-
bably not continus long in practice, it is a concrete departure
from recommended operation with which to meke calculations.,

The results are shown in Eig. 8h fpr a bias ﬁhich, starting
with the first time interval, is alternately added to and
subtractgdvfrom ﬁhelvolume‘of storage water planned_for s,
Corner minime values are excepted. Cése 2 operation behaves
almdst as before. On the cther hand the rigid operation called
for by the rule curve fares badly., After a positive bias
causes excessive drawdown, the rule curve sutomatically calls

for cutback of water use in the next interval and, since this




is then coupled with a negative bias, a certain amount of

oscillation is introduced and with it high coste.

In'pragtica regervoirs are drawn below rule curvés only rarely
sé that the sbove might ssem too hypotheticgl. In fact, there
is some tendency'in controlling reservoirs to keéb a2 safety
cushion of Watef above the rule curve. However, if such
opération of the reservoir implies the existence of an YUne-
written rule curve a little higher and a 1ittle more flexible
- than the written one, then the above discussion and curves

are pertinént.

Another point concerns the curves for Case 2, In the course
of experimenting with the calculation a nupber of such curves
were made., As the calculations were improved and the minimum
decreased? the bottom of the curve was pushed down more than
the sidés. The improved calculation then gave a less flat
curve but’sinee, near the minimum, it'lay wholly below the old
curve, deviations from recommended operation were still &
little lower in cost than formerly. Thus it is plausible to
assume that, if the calculations can be further improved, the
flatness of the minimum may decrease, but that this will not

‘cause higher costs than before for corresponding deviations

from recommended operation.
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The curves of Fig. 8 may give an exaggerated impression of the
seriousness of deviations from recommended water use because the
curves represent the results of applying the bias at every per-
misgible opportunity. If deviations oceur less frequently, the
increase in average cpst»will be less. Furthermore the range of

bias plotted is large. A deviation of 10% of D

A% is a drastic

change when it occurs in a dry month of winter. Thus departures
from fecommended operation are most likely to come in the flatter
portiona of the curves and should havg the cost sighificance

shovm only if consistently maintained.



VII. POSSIBLE GENERALIZATIONS CF THZ WMODET

Some of the simplifications of a real system which were made
in the model may easily be removed. For instance, the compll-
catlons of non vertical reservoir walls, variation of tailrace
ith dischargs, change of maximum discharge with head, and
variation of turbine efficiency with head can be caleculated
by the machine without difficulty by putting them in tabular
or funetional form, However, in forming such fﬁnctions, it
mst bé remembered that it is not the instantansous varie-
tion of tailrace with discharge that comes irto the long range
problem but an average value which takes into account daily
fluetuations. Similarly maximnm discharge réfers to maximum
a#erage discharge fof ensrgy over the time interval and may bs
limited by peaking capacity. It can vary with the time of year.

The load can also vary during the year,

The complications which increase the difficulty of the problem
are those which introduce new variables into the decision. In
the model used here the decision depended upon three variables:
the time of year, the volume in storage, and the -flow in the
Preeeding interval. A complication that would seem to require
ansther variable is the fact that interruptible customsrs do

not like to be cut off and on in rapid alternation. If they are




B

g7

coming én, they wish to know that they can stay on long enough
to defray start-up costs. By making the amount of interruptible

load a variable, this could probvably be taken into aceount .

The difficulty which arises when more veriables are introduced

~is that the time required for the computation becomes large,

The addition of a new variable adds a new dimension to the tables
being calculated and means just that many more points to be

computed,

The load may be introduced as a random variable if deemsd neces-
sary. This would add an integration to the ezpected value exe
Pression and therefore adds about the Sanme complication asz a

new varisble,

Multiple reservoir problems introduce new variables ard also
interdependent decision functions. The theory as presented is
casy enough to extend to multiple reservoirs, However, the cale-
culations implied by a several reservoir system would be for=-
midable if dome in the same way as those of this paper. These
methods stressed simplicity and generality. The complets range
of rermissible valuss for s was exgmined at least coarsely even
though many of the points could have been predicted in advance
no£ to be'minima. Such brute force methods were in keeping with

the desire to reduce programming and eliminste manual intervention
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2s long as the machine time did not beeome too large. However,
for a bigger job, the machine time could probably be materially
reduced by alwayé starting the search at a value of o thought

to imply sensible operation. A multiple ressrvoir problem

must be thought out carefully in setting up the model to be

sure each reservoir has enough flexibility of operation to
warrant optimization. Névertheless, it is likely that imagine=
tion will be re_uired er finding practicable ways to handle

multiple reservoir problems.

An interesting use may be made of the generality of the expected
value formulation of the problem. In the model of this paper

the criterion of performsnce was a Power series cost function.
Other criteria are possible and in some weys desirsble, For
instance, it is 2 difficult task to evaluate the loss to 2 region
due 0 & power shortase, Rather than express such a loss as a
cost 1t might be desireble tc determine operation in the following
monner: minimize the expected cost, provided that the probability

88

w

of requiring a supplemental generation greater than ¢ is 1
then P.  If the probability is grester than P, minimize the

probability.

The calculation to do this can be set up from ecquation (4.8),
Bxpected value functions have been worked out there for cost,

and the same procedure can be applied to probability.‘ Let us




denote the expected cost by Ey as before and the probability of
supplemental generation greater than G by E4's Then the cal-

culation is to pick

S': < S.'(,";I ’(z-.)

(7.1}
such tﬁat
E; ("hx:")’ s:) =
@
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is min

nimam, provided that
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(23)
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¢ P

If not, minimize B4,

Another interesting possibility involves flood control. Zquations

similar to those above could be worked out for minimizing the
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cost of hydro operation as long as the probability of #lood

was less than P and, at other times, minimizing the probabil-

ity of flood,
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VIII. CSIMARY

The problem has beeﬁ: how should the stored water in a
hydroelectric system be used when future river flow is uncer-
tain, Best water use was taken to be that which minimized the
expected cost ofyoperating tﬁe system. Expressions for the ex-
pected cost functions were set up. The problem WES then solved
for a simple hydro system.byAfinding the minima of the expected
cbst functions on a digital computer. The sblution consists of
tébles of storége water use which were sto:ed in ths computer
and used to operate the system under the input of the 38 vears
of nistorical flow., Thse :esults were comjared to these coming

from a simple rule curve operatione

From the point qf view of the general problem of the optimi-
zation of expectsd return in multistage'processes, the following
features have been interesting. First, sensible numerical
results required that the probability distributions for succes-
sive time intervals could not be assumed to be the same nor
”could they be assumed independent, Second, the soluticn contains
some "true"minima and some "corner" minima. ‘The latier arise
from operating restfictions in the form of inequalities and lead

to an operation held back at some point by a restriction. Some.

optimization problems involve minimae of only one type and the
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techniques used to deal with them ofﬁen mske use of this fact.
In the problem here the minima are found essentially by cale-
culating the functions and picking out the minima 50 that both
kinds can be treated about the same, Another feature of the
problem has been the ability of the digital coniputer to handle

a considerable amount of the complexity of the real problem.

From the point of view of determining water use in hydro sys-
tems, the method presented here differs materially from those
in currert use. The expected value method brings in the uncer-
tainty of future river flow by probability distributions and
judges system performesnce by a cost function. The rule curve
method, as presented here, takes into account uncertainty of
future flow by breparing for the worst year on record and
Judges that:preparation by the evenness of the supplemental
generation that would result in that year, The fact that this
results in good perfqrmance in other years is perhaps fortui-
tous but, if 1t did not, some other method of determining
operation would probably have been‘developed. However, ths
exact procedure for determining the rule can be controversial.
For instance, it may be argued that the supplémental goneration
in the low flow year should not bve constant but should increase
somewhat throughout the drawdown sesason, because river flow is

almost always better than the recorded worst. Or it may be
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argued that little bumps in the worst recorded flow should be
smoothed out. Such arguments are really concerned with flow
probabilities and expected costs. The expected value method
seeké to avoid such arguments by starting out with the flow

probabilities and a cost function and using them to find the

best operation.

?he tebles of water use calculated here differ from a rule
curve by the addition of another»variable to the decision, The
vblume of sﬁdrage use is picked on the basis of the recent

flow as well as on the volume currently in storage. This was
not mandatory but seemed desirable and feasible, It presumaﬁly

makes better decisions possible,

Comparisons have been made of the results of operating ths
model with the 3% yesrs of nistorical flow for three different
cases. The most interssting cases are minimum expected cost
operetion where the cost funeticon is guadratic and rule curve
nperation., The behavior‘of the systen is found to be very
similar in the two cases. If the cost function is quadratic as
agswned, the expected value method gives en average cost 0,9%

lower than the rule curve.

4 good argument can be made that the differences between the

two methods are not large enough in conaideration of the large
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annual flow fluctuations to warrant use of the more complicated
method. It would be an exesllent result of the caleulation if
1t could be concluded that for this model 2 simple rule curve
Qperation came as close tobest operation as is necessary,

After all in actual system operation qualitative Judgments are

bound to enter at the last minute to mest changing circumstances

80 that water use would rrobably not be exactly as planned,

These arguments are not entirely convincing, Although we have

relied upon the rule curve to show that a hitherto untried

method produces sensible cperation, the techniques conventionally
employed for finding the rule curve do not tell where to look

for improvement. The expected cost method, on the other hand,
reguires a quantitztive index, such ag cost, for judging its
perforﬁance. For the model and cost function used here, the
expected value method doeg bettsr then the simple rule curve

by an amount which is of some interest ana seems capabls of
improvement., Finally, calculafions using the histcrical flows
indicate that expected valpe operation ié stable to departures

from recommended water use,

- The results found are spezific to the model used apd it is

certain that there are meny hydro systems without the flexi-

bility of operation needed to permit much optimization. However,
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it seems likely that there ars systems where expected value
techniques can provide practical information onm the use of

stored water in the face of uncerteain future flow,
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APPENDIX

Fig. 6-'19531119500P6 Piétures of system behsvior
- - with historical flows, 1818-19 through
 1952-58. ‘

(Continued from p. 77)
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