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Abstract

The miracle of life is only possible thanks to a wide range of biochemical interactions
between assortments of molecular agents. Amidst these agents, which enable all cel-
lular activities, proteins are undoubtedly among the most important groups. Proteins
facilitate countless intra- and inter-cellular functions, from regulation of gene expres-
sion to immune responses to muscle contraction, but they rarely act in isolation.
These are the interactions between proteins, known as protein-protein interactions or
PPIs, which sustain the fundamental role of proteins in all living organisms.

PPIs are also central to the study of diseases and development of therapeutics.
Aberrant human PPIs are the primary cause of many life-threatening conditions, such
as Alzheimer, Creutzfeldt-Jakob, and cancer; making the regulation of PPI activities
a promising direction for pharmaceutical development. Despite the indisputable im-
portance of PPIs, so far only a tiny fraction of all human PPIs has been discovered,
and our current understanding of the core mechanisms and primary functionalities is
insufficient.

While computational methods in general and machine learning in particular showed
encouraging potential to address this challenge, their application in real-life has been
limited. To mitigate this gap and make sure computational results perform as well
in real-life, we introduce a set of gold-standard machine learning practices called
NetPPI. The contributions of this thesis include NetPPI, a minimally-biased, care-
fully curated dataset of experimentally detected PPIs for training and evaluation
of machine learning models; a comprehensive study of protein sequence representa-
tions for use with discriminative models; and data splitting methodology for machine
learning purposes. We also present the Bilinear PPI model for state-of-the-art PPI
prediction. Finally, we propose fundamental biological insight on the nature of PPIs,
based on performance analysis of different prediction models.

Thesis Supervisor: Joseph M. Jacobson
Title: Associate Professor of Media Arts and Sciences

3



4



Net-PPI: Mapping the Human Interactome with Machine

Learned Models

by

Kfir Schreiber

Submitted to the Program in Media Arts and Sciences
on August 10, 2018, in partial fulfillment of the

requirements for the degree of
MASTER OF SCIENCE

at the
Massachusetts Institute of Technology

The following people served as readers for the thesis:

Academic Adviser....................
Signature redacted

1
Joseph M. Jacobson, PhD

Associate Professor of Media Arts and Sciences, MIT

R eader ..................
Signature redacted

Kevin Esvelt, PhD

Assistant Professor of Media Arts and Sciences, MIT

Reader..................

p I)
Signature redacted

Aditya Khosla, PhD

Visiting Scientist, MIT

Co-Founder and Chief Technology Officer, PathAI

5



6



Acknowledgments

This amazing journey would not have been possible without the help of many people.

First and foremost, I would like to thank my advisor and mentor, Joe Jacobson.

He has created a unique environment where people are encouraged to ask random

questions, go after the greatest problems, and are given the perfect balance of guidance

and independence.

I would like to thank my incredible lab-mates and friends. To Thras, for all the adven-

tures we have and will face together. This wouldn't have been possible without him

paving the way. To Noah, Lisa, Pranam, James, and Maksym for the conversations,

brainstorming, and late-night ping-pong. They have made my days much happier.

I would like to give my gratitude to my readers, Kevin and Aditya, for the mentorship

throughout this work. Their willingness to ask the hard questions was invaluable.

I would like to thank the great people of CBA, Neil, Shuguang, Fillipos, Prashant,

Sam, Will, Ben, Amanda, Grace, Rui, Jake, and Amira. They are the most talented,

driven, and inspirational people I have met. To Joe M., Ryan, and James for running

the show in the best possible way.

My special thanks go to Linda, Keira, and the entire MAS staff, for their unparalleled

devotion.

Last but not least, to my beloved family. My dear Ella, for her unconditional love

and support, even when unconditional means leaving everything behind and moving

to the other side of the world. To Mom and Dad, for giving me the courage to always

pursue my dreams, knowing that their love is always waiting back at home. To Sapir

and Omer, for being a constant inspiration.

7



8



Contents

1 Introduction

1.1 M otivation . . . . . . . . . . . . .

1.2 Related Work . . . . . . . . . . .

1.2.1 Experimental Methods

1.2.2 Computational Methods

1.3 Contributions . . . . . . . . . . .

2 Datasets

2.1 Overview. . . . . . . . . . . . . .

2.2 PPI Databases . . . . . . . . . .

2.3 NetPPI - Curation Methodology .

2.4 Train/Validation/Test Split . . .

3 Data Representation

3.1 Overview . . . . . . . . . . . . . .

3.2 Representations . . . . . . . . . .

3.3 Handling Varying Lengths . . . .

4 Uncovering the Nature of PPIs

4.1 Overview ............

4.2 Baseline Models .........

4.3 Model Designs .........

4.4 Evaluation Metrics . . . . . .

through Predictive

9

15

15

18

18

19

22

23

23

24

26

29

31

31

31

34

37

37

37

40

43

Modeling



4.5 R esults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 D iscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Conclusion and Future Work 51

A Bayesian Hyperband 53

B Methods 57

B.1 BLAST parameters ....... ............................ 57

B.2 Representations .. ... ... ........ ... . . .. . .. . . . . 58

10



List of Figures

1-1 Protein com plex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1-2 Yeast two-hybrid system . . . . . . . . . . . . . . . . . . . . . . . . . 19

2-1 Agreement levels between major PPI databases . . . . . . . . . . . . 25

4-1 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . 38

4-2 B-PPI Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4-3 CoMET Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4-4 NC-CoMET Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 42

4-5 Impact of motif detector size on performance . . . . . . . . . . . . . . 47

11



12



List of Tables

2.1 PPI databases . . . . . . . . . . . . . . .

2.2 PPI record types . . . . . . . . . . . . .

4.1

4.2

4.3

B.1

B.2

B.3

B.4

B.5

Performance of baseline models . . . . .

C2 Performance . . . . . . . . . . . . . .

C1 Performance . . . . . . . . . . . . . .

BLAST-P parameters . . . . . . . . . . .

PSI-BLAST parameters . . . . . . . . .

Amino acids - physiochemical properties

Conjoint Triad Clusters . . . . . . . . . .

BLOSUM62 SMR . . . . . . . . . . . . .

13

24

26

44

45

46

57

57

58

59

59

. . . . . . . . . . . .

. . . . . . . . . . . .



14



Chapter 1

Introduction

1.1 Motivation

Proteins are the molecular machines that enable life. Using recombination of a min-

imal set of only 20 amino-acids, proteins manage to perform a vast diversity of bi-

ological functions, from structural functions to intercellular message delivery to im-

munological activities. However, proteins do not operate in isolation; rather, it is

their tendency to form biochemical complexes with other proteins and various molec-

ular agents that enables the functional diversity seen in living organisms. Proteins

are involved in cellular pathways, working together with sugars, nucleotides, metals,

fatty acids, and other proteins to form a network of biological pathways. Key to

many pathways are interactions between two or more proteins, known as protein-

protein interactions or PPIs. Among the primary roles of PPIs are cell-cycle control,

immune reactions, metabolic catalyzation, transportation, and signal transduction.

Protein-protein interactions are also a fundamental interest for the study of disease

mechanisms and the development of therapeutics. Flawed PPIs, often caused by dys-

functional allosteric changes in one binding partner, are among the common triggers

for a wide range of diseases, such as various types of cancer [1, 2, 3], Alzheimer's

Disease [4], Creutzfeldt-Jakob Disease [5], and Huntington's Disease [6]. Despite the

undeniable importance of PPIs and the vast research in the field, only a tiny fraction

of the hypothesized interactions are known.
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Figure 1-1: Protein complex of Streptococcal Pyrogenic Enterotoxin C (SpeC) with

a human T cell receptor beta chain. Structure downloaded from RCSB (1KTK),

visualized with PyMOL, and colored by chain.

Literature references to PPIs can be classified into two classes: physical PPIs

describe associations between two or more proteins that bind together to a single

macromolecular structure, while functional PPIs refer to proteins which are involved

in the same functional pathway and do not necessarily interact physically. From this

point forward we use the term PPI to describe physical binding or association between

proteins. PPIs also come in various forms and shapes; proteins can interact with sim-

ilar partners to form homodimers or with different partners to form heterodimers;

they can also interact in pairs and multi-protein complexes involving more than two

proteins. Overall, the PPI problem lies in the intersection of three biological fields.

The Systems Biology approach aspires to identify existing interactions and map the

complex Interactome network. Structural Biology is mostly looking to name the set

of amino-acids, within a known pair of interacting proteins, which are critical for the

interaction (also known as hot spots). Finally, Evolutionary Biology is interested in

the fundamental question of how nature created such a diverse set of PPI functional-

ities under the strict cellular constraints and using only a minimal set of amino-acid
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building blocks. These different aspects for the same biophysical phenomena raise

unique challenges and call for different paths to a solution.

For the reasons mentioned above, developing therapeutics to inhibit or activate

PPIs is a long sought-after goal of the pharmaceutical industry. To date, the vast

majority of PPI therapeutics are biologic compounds (e.g., antibodies, peptides),

while small-molecule therapeutics usually fail to perform the required function. Small

molecules, however, have several key advantages that make them extremely valuable.

While, in most cases, biologics require intravenous administration, small molecules

can be administered orally, thanks to their improved delivery mechanisms. Further-

more, small molecules can target intra-cellular therapeutic targets, an impossibility

for most biologics. Therefore, small-molecule PPI inhibitors and activators have im-

mense potential to target many "undruggable" targets and provide a cure to multiple

diseases. However, development of small-molecule PPI therapeutics would have to

address a non-trivial proportions challenge. Protein-protein interactions take place

in large protein surfaces that might contain tens of residues. In most cases, even if a

small-molecule binder existed, it would only block a limited segment of the interaction

surface, leaving enough contact points for the PPI to continue undisturbed. Hot spots

might hold the key to a solution to this problem. We now know that interactions are

mediated by a small subset of critical residues, while the rest of the surface is in-

significant. A small-molecule competitive binder that will block one or more of these

critical residues will disturb the entire PPI (the same is true in the case of activators).

Developing such therapeutics will require an incredibly detailed understanding of the

PPI. Chapter 5 will discuss possible directions for such characterization of PPIs.
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1.2 Related Work

1.2.1 Experimental Methods

Throughout the years, many experimental methods were developed to detect and

characterize protein-protein interactions. Biophysical methods like X-ray crystallog-

raphy, NMR spectroscopy, and atomic force microscopy rely on structural information

to characterize PPIs. While biophysical methods provide comprehensive information

about PPIs (e.g., binding mode, interaction dynamics) and are among the most ac-

curate methods, they are also extremely resource- and time-consuming. Applications

of biophysical methods are usually limited to a single or a few complexes at a time.

More recent in-vitro and in-vivo approaches aim to provide better throughput.

Yeast two-hybrid (Y2H) is a high-throughput in-vivo Fragment Complementation

Assay (Figure 1-2) widely used for PPI detection [7]. Y2H uses the two separable

and functionally essential domains of the GAL4 protein in the yeast Saccharomyces

cerevisiae to identify protein pairs that can form complexes. Although being the

most common experimental technique for PPI detection, Y2H is tedious, limited

in scale, and shows a high false detection rate (FDR). In-vitro techniques such as

affinity purification methods (e.g. GST-pulldown [8, 9], co-immunoprecipitation[IO])

and mass spectrometry suffer from similar disadvantages.

Both Fragment Complementation Assays and Affinity Purification methods can

only provide supporting evidence for the existence of interaction but are not infor-

mative about the binding mechanism or the critical residues (hot spots) within the

interacting proteins. Alanine scans were developed to overcome that gap and detect

the hot spots of known interactions [12]. In Alanine scans, individual amino-acids

are selectively mutated to Alanine. By measuring the AAG of each mutant complex

we can determine which residues are critical to the interaction. Alanine scans pro-

vide useful information about the binding mode of the PPI, but at the same time

are expensive and extremely time-consuming, thus do not scale for more than a few

complexes.
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Figure 1-2: Schematic description of a yeast two-hybrid system. Source: [11]

1.2.2 Computational Methods

As discussed in Section 1.2.1, experimental approaches enable small-scale characteri-

zation and bigger-scale detection of PPIs. Still, experiments can only provide limited

coverage of the complete PPI landscape. Computational methods offer opportunities

to overcome some of the limitations associated with their experimental alternatives,

mostly due to their superior speed and lower cost. Structure-based computational

methods like virtual docking algorithms [13, 14, 15] and computational Alanine scans

[16] apply force fields or estimated score functions to approximate the free bind-

ing energy of a protein complex. This approach applies to both PPI detection and

characterization. Although relatively accurate, these methods are computationally

expensive and have highly limited applicability, due to the need for solved 3D struc-

tures for both the interacting partners.

Due to the limitations of experimental and structure-based computational meth-

ods, many researchers turned to sequence-based, structure-free computational ap-

proaches in the search for an interactome-scale detection algorithm. Recently, a large

body of work has been generated, trying to predict PPIs directly from amino-acid
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sequences or sequence related features. Preliminary methods tried to identify bind-

ing sites in known proteins, independently of the interacting partners, by searching

for known PPI motifs (i.e., known sequences of amino-acids, geometric patterns, and

interacting domains) [17, 18], or by using the physiochemical properties of the amino

acids in the sequence [19]. Succeeding works tried to predict the existence of an in-

teraction by utilizing covariance in sequence mutations between interacting proteins

[20], sequence homology [21], genomic context [221, and similarities in phylogenetic

trees [23]. These approaches failed to deliver a complete and trusted mapping of the

human interactome.

Data-Driven Methods

On a parallel path, in recent years, machine learning (ML) and especially deep neu-

ral networks (DNNs) have shown incredible results. While most ML concepts, like

neural networks, pattern recognition, and backpropagation, trace back to the 1960's,

it is the explosion in available data combined with the rapid growth in GPU-based

computation that pushed learning algorithms to new horizons. Recent deep learning

algorithms, a sub-field of machine learning, showed exceptional results in tasks that

were once believed to be out of reach for machines, especially in pattern recognition

tasks like image classification, natural language processing, and even audio genera-

tion. State-of-the-art image recognition algorithms identify objects in images with

accuracy superior even to the human abilities [24]. Generative models create original

text [25], audio [26], and images [27]. Reinforcement learning techniques are the en-

gine behind machines with superhuman skills in the games of Go [28], Atari [29], and

Dota2. Natural language processing was the core of the Jeopardy winner algorithm

from IBM Watson [30]. Machine learning has had a significant impact on biology as

well. Previous deep learning works were able to predict the sequence specificities of

DNA- and RNA-binding proteins [31], the effects of non-coding variants in the human

genome, and accurate 3D folds of small proteins [32].

The recent success of deep learning (DL) methods in various biological application

raised high expectation for its performance in predicting PPIs. Bock and Gough were
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the first to apply a machine learning approach to the PPI problem, using a Support

Vector Machine (SVM) model with the protein's primary sequence and associated

physiochemical properties [33]. Subsequent works applied fusion of classifiers [341,

hyperplanes [35], SVMs with Conjoint Triad (CT) representation [36], SVMs with

auto-covariance [37], weighted sparse representation combined with discrete cosine

transformation [38], random forests with multi-scale local feature representation [391,

stacked auto-encoders [40], and a combination of a stacked sparse autoencoder with

a probabilistic classification vector machine (PCVM) classifier [41j.

However, impressive as they might be, reported results fail to imply relevance to

real-life scenarios. Although prior works show constant improvement in prediction

results, they all suffer from similar deficiencies, in the form of poor ML practices.

These issues make the results unreliable and, in most cases, non-applicable in practice.

The central issues that prevent reported results from genuine ability to generalize to

utterly unseen proteins and interactions include the introduction of bias in the dataset

construction phase; unfavorable splits into train, validation, and test sets; and the

use of inadequate performance metrics.

Curation and construction of a negative dataset is a critical step in any ML algo-

rithm and the first challenge in the PPI problem. Most of the existing PPI databases

only report positive interactions, which leaves the authors with the task of estimat-

ing which protein pairs are unlikely to interact. A widely practiced approach uses

subcellular localization as the deciding factor, under the very reasonable assumption

that proteins in different subcellular compartments cannot interact. However, this

approach introduces an undesired bias to the dataset, which results in predictions of

protein co-localization rather than PPIs [42, 43, 44]. The next question to be answered

is about splitting the data into training and validation sets. Many papers choose a

random split, which means picking random pairs of proteins to be excluded from the

training set and used as validation. However, protein sequences can be remarkably

similar, which reduces the PPI prediction task to the much easier similarity scoring

task. The algorithm only needs to memorize the training set and, at the validation-

time, search for the most similar case in the memory. Some works try to avoid this
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issue by using a non-redundant dataset (i.e., a dataset where every protein sequence is

unique above some threshold), but while this solves the similarity issue, the training

and validation sets are still highly correlated since the same protein sequences are

used in both (although with different pairings). An even more problematic approach

[40] tries to strengthen the results by using external independent test sets composed

of only positive samples. In all these case, when tested against an independent,

positive and negative mixed, dataset, the prediction accuracy collapses to no more

than a random guess. Lastly, some papers measure their algorithmic performance by

inadequate metrics, like the use of binary accuracy with highly imbalanced datasets.

To address these issues, we follow the foot-steps of ImageNet [45] and MoleculeNet

[46] and introduce NetPPI, a high-confidence, minimally-biased, and properly-split

dataset of experimentally detected PPIs. Moreover, we propose a novel deep learning

model architecture for prediction of PPIs, based on a fundamental hypothesis about

the nature of PPI motifs.

1.3 Contributions

Chapter 2 of this thesis, introduces two versions of the NetPPI dataset: a non-

redundant version, and an augmented version based on sequence homology. Chapter

3 surveys various possible representations for protein primary sequences, for usage

with learning algorithms. Chapter 4 describes deep learning architectures for PPI

detection, their relative performance, and the possible underlying structure of PPIs

emerging from the results. Finally, Chapter 5 offers closing remarks and future re-

search directions.
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Chapter 2

Datasets

On two occasions I have been asked, "Pray, Mr. Babbage, if you put into the

machine wrong figures, will the right answers come out?" ... I am not able rightly

to apprehend the kind of confusion of ideas that could provoke such a question.

BABBAGE, CHARLES. PASSAGES FROM THE LIFE OF A PHILOSOPHER, 1864

Garbage in, garbage out

THE HAMMOND TIMES, 1957

2.1 Overview

Unsurprisingly, the first factor in the success of learned models is the data they rely

on. This is also the first step in the design of machine learning algorithms. Carefully

curated and widely accepted datasets can also set the foundations for rapid progress in

a specific domain, as was seen in the fields of image recognition, after the publication

of ImageNet, and chemoinformatics after the introduction of MoleculeNet. In addition

to data curation, the rise of deep learning models should give a particular focus to

the data splitting methods. Deep neural networks usually contain millions of tunable

parameters, which allow them to display cutting-edge expressive abilities, but also, if

not treated correctly, to memorize and overfit to the training set. Thus, inadequate
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data split into training and test sets might result in performance overestimation for

models that do not have any real predictive power.

In this chapter, we will survey the existing PPI databases, mention past mistakes

in the construction of datasets, and depict the methodology we use for building a

high-confidence, minimally-biased dataset.

2.2 PPI Databases

The recent advancements in high-throughput experimental methods for PPI detection

(e.g., yeast2hybrid) have resulted in a surge of PPI data and databases. At the time

of writing (August 2018), there are 320 primary databases, meta-databases, and pre-

diction databases available [47]. Primary databases curate experimentally detected

PPIs from scientific literature; meta-databases syndicate several primary databases

into a single resource; and prediction databases provide curated prediction from var-

ious experimental and computational methods. Databases also differ by organisms,

level of curation, and level of confidence. Table 2.1 shows a breakdown of the largest

PPI databases by size and type.

Name Proteins Interactions Organism Type References '

STRING 9,643,763 1,380,838,440 various meta & [48], [49], [50], [51],
prediction [52], [53], [54], [55],

[56], [57]
12D N/A 1,279,157 various meta & [58], [59]

prediction
BioGRID 68,848 1,230,943 various primary [60]
IntAct 96,594 851,299 various primary [61]
APID 94,326 754,879 various meta [62]
InWebInBioMap N/A 625,500 Human meta [63]
HIPPIE N/A 325,468 Human meta [64], [65], [66], [67]
MINT 25,181 123,891 various primary [68]
HuRI 13,790 84,656 Human primary
DIP 28,826 81,762 various primary [69], [70], [71], [72]
HPRD 30,047 41,327 Human primary [73], [74], [75]

Table 2.1: PPI databases
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Figure 2-1: Curation overlap across different pairs of databases. Nodes represent

individual databases, with the pie charts illustrating the proportion of shared and

unique PPI records in each database. The edge thickness represents the number of

instances where the two databases curate the same publication, whereas the edge color

represents the average level of agreement (measured as defined above) on recorded

interactions, following the color-coded scale. Source: Turinsky et al. [76]

While all primary databases curate PPIs from peer-reviewed scientific publica-

tions, the agreement among them is far from perfect. Turinsky et al. [76] studied the

agreement levels between all major databases. Their results (shown in Figure 2-1)

demonstrate the challenges in consolidating a single database for all PPIs. When

outlining the dataset construction methodology, it is appropriate to also take into ac-

count the various types of PPI records that exist in all databases. Record types imply

different relationships between the interacting partners, which roughly correlates to

the level of confidence in the existence of a PPI. A full list of interaction types is

shown in Table 2.2.
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Type IMEx ID Definition

colocalization MI:0403 Coincident occurrence of molecules in a given sub-
cellular fraction observed with a low-resolution
methodology from which a physical interaction among
those molecules cannot be inferred.

Functional MI:2286 Binary relationship between biological entities when
association one of them modulates the other in terms of function,

expression, degradation or stability of the other and
the relationship between the partners cannot be ascer-
tained as direct, so intermediate steps are implicitly
present. This relation specifically does not imply a
physical interaction between the entities involved.

genetic inter- MI:0208 An effect in which two genetic perturbations, when
action combined, result in a phenotype that does not appear

to be merely explained by the superimposition or ad-
dition of effects of the original perturbations.

Association MI:0914 Interaction between molecules that may participate
in the formation of one, but possibly more, physi-
cal complexes. Often describes a set of molecules
that are co-purified in a single pull-down or co-
immunoprecipitation but might participate in the for-
mation of distinct physical complexes sharing a com-
mon bait.

Physical asso- MI:0915 Interaction between molecules within the same physi-
ciation cal complex. Often identified under conditions which

suggest that the molecules are in close proximity but
not necessarily in direct contact with each other.

direct interac- MI:0407 Interaction between molecules that are in direct con-
tion tact with each other.
covalent bind- MI:0195 Interaction leading to the formation of covalent bond
ing within an autocatalytic molecule or between partners.

Table 2.2: PPI record types. IDs follow the naming set by The International Molecular
Exchange Consortium (IMEx). Definitions were taken from The European Bioinfor-
matics Institute (EMBL-EBI) website.

2.3 NetPPI - Curation Methodology

In this section, we describe the curation process behind NetPPI, a high-confidence

bias-free dataset for training and validation of learning algorithms. The primary

guideline throughout this section is "quality over quantity." For the first time in the
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history of PPI research, the rapid growth in the available experimental data allows

us to include only very high-confidence data points in our dataset. This is especially

important for deep learning methods, which are known to be data demanding but also

highly susceptible to overfitting. Following this guideline, we do not use information

from prediction databases and focus solely on experimental data. Meta-databases

make it easier to obtain and prepare the data in a centralized way, however, they also

introduce another error-prone step to the pipeline. Therefore, we collect data from

primary databases only. We also filter out proteins that are shorter than 50 amino

acids, since they are likely to be protein fragments.

Positive dataset. Positive PPIs are combined from five primary databases, IN-

struct, Database of Interacting Proteins (DIP), IntAct, The Molecular INTeraction

Database (MINT), and BioGrid. Consecutively, the records are filtered by interaction

type, so only direct interactions are included in the dataset. To guarantee that only

high-confidence PPIs are included in the dataset, we accept a record if and only if

it complies with at least one of the following conditions: (a) there exists a solved

crystal structure of the protein complex, (b) the same PPI was discovered by two

unique experimental methods, (c) the PPI is supported by two separate publications.

Finally, duplicated records were removed. This resulted in a positive set of 240290

interactions across 48834 unique protein sequences.

Negative dataset. Negative samples are exactly as important for discriminative

models as positive ones. Bias introduced during the construction of the negative

dataset might result in a task that is much easier than intended and a model that

is unable to generalize to real-life unseen samples. Therefore, careful attention is re-

quired when choosing the negative sampling methodology for the PPI problem. Prior

publications suggested several approaches:

" Co-localization- protein pairs with different sub-cellular localization.

" Functional annotations- protein pairs with significantly different functional
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annotations.

" Random sampling- random sampling of unobserved interactions.

" Unobserved experimental samples- random sampling among unobserved

pairs after experimental post-processing.

Co-localization and functional annotations were shown to bias the prediction towards

sub-cellular localization and functional classification, respectively, instead of interac-

tion prediction. Therefore, NetPPI takes a hybrid approach between random sam-

pling and unobserved experimental samples. Negative experimental samples were

taken from large-scale two-hybrid assays [77]. Trabuco et al. describe a method for

extracting negative interactions from two-hybrid data, with a confidence score that

is based on the length of the shortest path between the non-interacting proteins. We

choose a minimum confidence score of 5, which results in 15568532 negative interac-

tions among 17650 unique proteins. Since the experimental negatives only cover a

small percentage of the proteins involved in positive interactions, we augment the ex-

perimental negatives with random sampling of additional 15568532 unobserved pairs

of proteins (i.e., where each protein is involved in at least one positive interaction).

According to Launay et al. [78] the expected false negative rate for our random sam-

pling is 0.2%, which sets the overall false negative rate of our dataset at around 0.1%.

Species. The mission of this thesis, as well as other works, is to detect and charac-

terize Human PPIs. However, for some algorithms, it might prove useful to include

in the training set PPIs from other species as well. Therefore we make available two

datasets: NetPPI-NR contains a non-redundant version of the interactions mentioned

above, and NetPPI-HNR contain only the Human interactions described in the pre-

vious sections.

Data augmentation. Data augmentation is a common practice in machine learning

to enrich a dataset with additional synthetic samples. In our case, synthetic samples

can be generated by sequence homology. To find homologs, we use the Basic Local
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Alignment Search Tool(BLAST) [79] provided by the National Center for Biotechnol-

ogy Information (NCBI), and the UniProt database [80]. In the augmented dataset,

all homologous proteins are assumed to facilitate the same interactions.

Overall we described four datasets:

" NetPPI - an augmented version including all species.

" NetPPI-NR - a non-augmented, non-redundant version including all species.

" NetPPI-H - a Human only, augmented version.

" NetPPI-HNR - a Human only, non-augmented, non-redundant version.

2.4 Train/Validation/Test Split

The last preparation step, and the goal of this section, is to split the dataset into

training, validation and test subsets. A correctly performed split will enable a fair

evaluation of prediction models and guarantee that the results indeed imply a true

ability to generalize. We first define three generalization categories:

" Novel proteins (Cl) - detection of interactions between two unseen proteins.

" Novel partners (C2) - detection of interactions between a protein from the

training set and an unseen partner.

" Novel pairings (C3) - detection of interactions between two proteins from the

training set, which were not seen as a pair.

For split purposes in all categories, we consider proteins to be different if and only

if they share less than 25% sequence similarity. For example, in the C2 category,

the unseen partner cannot share more than 25% sequence similarity with any protein

in the training set. Sequence similarity was calculated using the pairwise2 function

from the BioPython package [811.
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Chapter 3

Data Representation

3.1 Overview

The previous chapter discussed the key challenges and opportunities that occur when

choosing which data to use for training and evaluating prediction models. An addi-

tional key parameter in the success of ML models is the data representation. The

goal is to find a set of features that describe the data in a meaningful enough way

for the algorithm to differentiate between positive and negative samples. By nature,

protein sequences are discrete objects with variable length, and these are the main

challenges any representation needs to address. The next sections describe the most

common representations for protein sequences.

3.2 Representations

One-Hot (OH) Encoding is the gold standard for encoding categorical data (e.g.,

amino acid characters). OH encoding requires a specific ordering of the classes, which

we will assume, without loss of generality, to be the alphabetical ordering of the amino

acid characters. Then each character in the sequence is represented as a vector of

binary values, where the only '1' value is in the position which corresponds to the

position of the relevant amino acid in the order. Aggregation of all vectors results in
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a binary matrix of size L * 20, where L is the length of the sequence, and

OH(i, j)= pj = a (3.1)
0 o.w.

where OH is the One-Hot matrix, P = (p1, p2, ... , PL) is the protein sequence, pj is the

j'th residue in the sequence, and ai is the i'th amino-acid by the alphabetical ordering.

For example, the protein sequence MMADRSIMARG will be encoded to the fol-

lowing One-Hot matrix,

0 0 0 0 0 0 00 0 01 0 00000 0 0 0

10 0 0 0 0 0 0 0 0 1 0 0 0000 0 00
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 00 0 0 0 0 0 0 0 1 0 0 0 0 0
00 0 0 00000 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0
0 0 0 0 0000 0 0 000 0 0 0
1 0 0 0 0 000 0 0 0000000 0 0 0
0 0 0 0 0 000 0 0 0000 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Physiochemical Features. OH encoding treats residues as discrete classes with

no implied relations between them. However, amino acids are physical objects with

physiochemical properties, and as such they imply various similarity landscapes. An

amino acid can be more similar to another than to a third. To utilize this additional

information, the Physiochemical Features approach represents a residue as a vector

of real values that correspond to a list of physiochemical properties. For example the

same MMADRSIMARG sequence will be encoded to the following matrix,

0.64 -1.3 0.002683 5.7 0.221 2.034 94.1- T

0.64 -1.3 0.002683 5.7 0.221 2.034 94.1

0.62 -0.5 0.007187 8.1 0.046 1.181 27.5

-0.9 3 -0.02382 13 0.105 1.587 40

-2.53 3 0.043587 10.5 0.291 2.56 105

-0.18 0.3 0.004627 9.2 0.062 1.298 29.3

1.38 -1.8 0.021631 5.2 0.186 1.81 93.5

0.64 -1.3 0.002683 5.7 0.221 2.034 94.1

0.62 -0.5 0.007187 8.1 0.046 1.181 27.5

-2.53 3 0.043587 10.5 0.291 2.56 105

0.48 0 0.179052 9 0 0.881 0
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In this thesis we follow the work of Guo et al. [37] and use seven physiochemi-

cal features, hydrophobicity, hydrophilicity,net charge index of side chains, polarity,

polarizability, solvent accessible surface area, and the volume of side chains. The

physiochemical values used are shown in Table B.3.

Conjoint Triad (CT), first proposed by Shen et al. [361, also incorporates physio-

chemical information, but is doing so by clustering the 20 amino acids into 7 clusters

by side chain volume and dipole (complete list is shown in Table B.4). After replacing

each amino acid with the equivalent cluster, a sliding window of three amino acids

(triads) is used to calculate the occurrence frequency for each of the 343 possible

triads. In this case, our example sequence MMADRSIMARG will be converted to

33165323151, and the feature vector will be 343-dimensional with all values equal to

zero but the corresponding positions to the 331, 316, 165, 653,532, 323, 231, 315, 151

triads (which will be equal to 1/9).

Substitution Matrix Representation (SMR) adds evolutionary information to

the sequence representation. In SMR, each amino acid is replaced by a 20-dimensional

vector, where the i'th value represents the mutation probability between the original

amino acid and ai. This results in a matrix of shape L * 20. It is standard to use

one of the BLOSUM matrices for this purpose, and here we choose the BLOSUM62

(Table B.5). With SMR, MMADRSIMARG will become

1 -1 -2 -3 1 0 -2 -3 -2 1 2 1 5 0 -2 -1 1 1 1 1 -3 1 1 -4T

-1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4

4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4

-2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4

-1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -- 1 -1 -3 -2 -3 -1 0 -1 -4

1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 0 -4

-1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1 -4

-1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4

4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4

-1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -- 1 -1 -3 -2 -3 -1 0 -1 -4

0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4J

Position Specific Scoring Matrix (PSSM) is another evolution-based method,

but while SMR uses mutation probabilities across all existing sequences, PSSM only
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considers homologos of the sequence of interest. In a similar way the final representa-

tion is a matrix of size L * 20, where high PSSM scores correlate to highly preserved

parts of the protein sequence. In this work, we use the PSI-BLAST package (param-

eters specified in Section B.1).

3.3 Handling Varying Lengths

So far, other than Conjoint Triad, all the representations resulted in matrices of vary-

ing lengths. However, most ML algorithms require fixed sized inputs. This section

describes two methods for processing sequences of different length into fixed sized

matrices.

Zero Padding. The sequence or the relevant feature matrix are padded with zeros

at the end until a specific maximal length. For example, using the MADR sequence

with the OH Encoding representation and a maximal length of 7 will result in

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0- T
1 0 0 0 0 000 0 0 0000000 0 0 0
0 0 0 1 0 000 0 0 0000000 0 0 01
0 0 0 0 0 000 0 0 0000 1 0 0 0 0 0
0 0 0 0 0 000 0 0 000 0 000 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0J

_0 0 0 0 0 0 0 0 0 0 0000000 0 0 0

Auto-Covariance (AC) takes a different approach. Instead of adding values to

short sequences, AC compresses variable length sequences into a fixed size matrix. It

is done by only considering the correlations between residues with a specific distance

between them, up to a maximal distance D. AC can be applied to any numeric

representation but is most commonly used with physiochemical features [82, 83, 40].

First, the numeric features are normalized by the following equations,

X(i, k) = A(i, k) - Amin(k) (3.2)
Amax(k) - Amin(k)
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(i, k) A(i, k)X(i, k) = A'i,)(3.3)
Zj 1 X 2 (j, k)

where A is the feature matrix, Amin(k) and Amax(k) are the minimum and maximum

values of the k'th feature, respectively, and X is the normalized feature matrix. Then

AC is defined as

AC(d, k) = L d ((, k) - (j, k))(f(i + d, k) - -I (jk)) ,(3.4)
i=1 j=1 j=1

where AC is the auto-covariance matrix (of shape D*K), L is the sequence length, and

d is the distance along the sequence between a residue and its neighbor. The hyper-

parameter D, the maximal distance, was studied by Guo et al.[37], who suggested

that D = 30 is the optimal value. However their assessment was limited to the

specific model of choice (SVM) and the specific validation set. In this work, we use

the suggested value, as well as the maximal possible value of D = 50 (i.e., the length

of of the shortest sequence).
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Chapter 4

Uncovering the Nature of PPIs

through Predictive Modeling

4.1 Overview

Previous chapters outlined a set of gold-standard machine learning practices for the

PPI problem. This chapter will attempt to bring together prediction algorithms, built

on top of the standards described in Chapters 2 and 3, and the fundamental question

about the underlying structure of PPIs. The core hypothesis is that sequence motifs

are re-used by nature across proteomes to design new PPIs. Here we use the term

'motifs' under its widest definition, and in the next sections, we will show that careful

analysis of the prediction results might shed some light on the real nature of those

PPI motifs.

4.2 Baseline Models

We start by defining a set of baseline models, which will be used to evaluate the

strengths and weaknesses of our architectures. They will also provide intuition about

how much of the predictive power of our algorithms can be attributed to simple

similarities between datasets and representations.
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K-Nearest Neighbor (KNN)

One of the simplest machine learning classifiers, KNN is a non-parametric learning

algorithm that implies a lazy learning approach, which means the training step in-

volves simply memorizing the training data, and the computation is postponed to

the inference step. In the inference step, the algorithm searches for the K closest (by

some distance metric) training samples to the query sample. Subsequently, the K

samples "vote" according to their labels and a weighting schema. Here we use the

Euclidean distance and weight samples by the inverse of their distance. Moreover,

we optimize the hyper-parameter K through a random search and use the physio-

chemical AC representation. To accelerate training and improve predictions, we used

a Bagging approach [841 and trained 32 classifiers, where each was trained on 10%

of the available data. We also applied down-sampling to deal with the imbalance

between positive and negative samples. The scikit-learn package 1851 was used for

implementation.

Support Vector Machines (SVM)

SVM is a supervised discriminative classifier used in many machine learning applica-

tions. During training, a linear SVM algorithm tries to construct single or multiple

hyperplanes that will separate samples from different classes. Non-linear SVMs use

the "kernel trick" to first map the samples to a much higher dimensional space and

then build the separating hyperplanes. The optimal separating hyperplanes are the

"1 0 1P

0

Figure 4-1: Non-linear SVM classifier. Image credit: Alisneaky - Own work,
CCO, https://commons.wikimedia.org/w/index.php?curid=14941564
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ones that achieve the maximal distance to the nearest training sample from each class

(Figure 4-1). Here we use non-linear SVM with a Gaussian Radial Basis Function

kernel. Two representations were tested, Auto-Covariance with physiochemical fea-

tures and Auto-Covariance with physiochemical features and SMR. Like in the KNN

case, we used a Bagging classifier with 32 estimators and down-sampling of negative

samples. The C hyperparameters were chosen by cross-validation. Again, scikit-learn

was used.

Stacked Autoencoder

The final baseline model is the current state-of-the-art stacked autoencoder with

physiochemical AC representation developed by Sun et al. [40]. To make sure we fairly

compare the performance, a new model was trained, using the reported architecture

and hyper-parameters, with the NetPPI datasets.
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4.3 Model Designs

To explore our hypothesis about the structure of PPIs, we introduce the Bilinear-PPI

(B-PPI) model. B-PPIs are Deep Neural Networks (DNNs) following the general

schema outlined by Lin et al. [86] in their work on Bilinear-CNN (B-CNN) models,

which has shown state-of-the-art performance in fine-grained visual recognition tasks.

At the core of the proposed architecture are two DNNs that operate as feature extrac-

tors, each on a different protein sequence. The feature extractors are then followed by

a bilinear aggregation operation, and several fully connected layers (Figure 4-2). We

experiment with several DNN feature extractors, as well as two bilinear aggregation

operations, the cross-product, and concatenation. In case PPIs are indeed recombina-

tions of re-used motifs and assuming a feature extractor capable of identifying them,

we would expect B-PPI to exhibit superior performance compared to the baseline

models. Next, we discuss several DNN feature extractors.

Feature
Extractor

E)

'.4

Feature
Extractor

Figure 4-2:

Bilinear
Aggregation

Fully Connected
Layers Interaction

Probability

K"34. ~

Template architecture for Bilinear-PPI networks.
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Convolutional Motif Extraction Tool (CoMET)

CoMET, developed by Karydis et al. [87], is a data-driven computational tool for

hierarchical decomposition of protein sequences into motifs of arbitrary length. At

its core, CoMET is a Deep Convolutional Neural Network (ConvNet) in an encoder

architecture. It was shown that CoMET can recognize known and novel contiguous

sequence motifs. Here we use the CoMET architecture to assess the hypothesis that

PPIs are mediated mostly through contiguous preserved sequence motifs. Key to the

CoMET profile is the global Max Pooling (gMP) layer that follows the convolutional

layers. The gMP guarantees that each motif detector (i.e., convolutional filter) is

activated by one and only one contiguous part of the protein sequence. The original

work suggests using fully-connected layers after the gMP for various prediction tasks.

However, when even a single fully-connected layer is used, we lose the guarantee that

the model extracts contiguous motifs. Therefore, in this model, we view the output of

the gMP as the extracted motifs. The numbers of motif detectors and convolutional

layers are optimized as hyper-parameters.

Global Max-Pooling -*

Motifs Detectors {
(Convolutional Filters)

A 000000000000000001O10 00100000000
C 00000 000000000000000000000000000

Sequence D 00000 000 00 0 0 0 0 0 1 000 10 0 0 0 0 0 00 0 0
equence E 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0

Representation T 100 B 0B 00B 0000000000BB00B0500BB
V 00000000010000000000000000010001
W 00000 000000000000000000000000000
Y 00000 000000000000000000000000000

... TEQHKLSQGVIGIFGDYAKAHDLAVGEVSKLV ...

Figure 4-3: Network architecture for the CoMET feature extractor.
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Non-Contiguous CoMET (NC-CoMET)

NC-CoMET is an adaptation of the original CoMET architecture, designed to allow

for non-contiguous motifs. First, the global Max Pooling is replaced with a local Max

Pooling of size 2 after each convolutional layer. This change allows for each motif

detector to be partially activated by various parts of the sequence. Additionally, we

apply a set of fully-connected layers to the output of the final local Max Pooling.

Again, the numbers of motif detectors and convolutional and fully-connected layers

were optimized as hyper-parameters.

Fully-Connected
Layers

Local Max-Pooling

Motifs Detectors
(Convolutional Filters )

Local Max-Pooling

Motifs Detectors
(Convolutional Filters )

Sequence
Representation

A
C
D
E

T
V
W
Y

000 0 0000 000000 000 101000 1000 0 00 00
000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
01000000 000 000 000000000000 100000

... .. . .. . ... ...... ... ... ~. ...... .. .. -... ... ... ..... ... .. .. -... ...I. .... ~
10000000000000000000000000000000
00000000010000000000000000010001
00000000000000000000000000000000
00000000000000000000000000000000

... TEQHKLSQGVIGIFGDYAKAHDLAVGEVSKLV

Figure 4-4: Network architecture for the NC-CoMET feature extractor.
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Densely Connected Convolutional Networks (DenseNet)

DenseNet is a state-of-the-art neural network for visual recognition tasks [88]. DenseNets

use inter-layer connections between the convolutional layers, to support substantially

deeper convolutional networks. This approach has shown superior expressive capabil-

ities compared to conventional ConvNets. By choosing to use DenseNets, we hope to

minimize the likelihood of an inadequate feature extractor being the bottleneck for

the model performance.

Hyper-parameter optimization for all models was done using the Bayesian Hy-

perband method described in Appendix A.

4.4 Evaluation Metrics

Performance evaluation will be conducted using the following metrics:

" Balanced Accuracy = I (7FN + NP

" Specificity TN
* TN+FP

" Sensitivity (Recall) = TP+FN

= TPF

" Precision TFP

E F1 Score = 2TP
2TP+FP+FN

* Area Under the Receiver Operating Characteristic Curve (ROC AUC or simply

AUC)

* Matthews correlation coefficient (MCC)

where TP, TN, FP, and FN are true positive, true negative, false positive, and false

negative, respectively.
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4.5 Results

As expected, the results from the KNN and SVM baseline models (Table 4.1) demon-

strate a clear difference between categories of generalization. The KNN model achieved

balanced accuracy scores of 0.546, 0.695, and 0.89; AUC scores of 0.562, 0.768, and

0.956; and MCC scores of 0.025, 0.315, and 0.75 on the C1, C2, and C3 categories,

respectively. The same trend was observed for the SVM models as well. The fact

the simple machine learning models perform so well on the C3 category proves our

assumption that generalization to unseen pairings alone is a straightforward task, and

the random split an inadequate method to evaluate predictive models. Therefore the

next sections will focus on the more challenging C2 and C1 categories.

Model Representation Category Balanced Specificity Sensitivity Precision Fl Score AUC MCC
Type [jAccuracy (Recall) __________ ____I___

Cy 0.546 0.385 0.707 0.020 0.039 0.562 0.025

KNN Auto-Covariance C2 0.695 0.637 0.753 0.342 0.47 0.768 0.315

C3 0.89 0.932 0.848 0.759 0.801 0.956 0.75

Ci 0.506 0.021 0.992 0.017 0.035 0.521 0.012

SvM Auto-Covariance C2 0.681 0.407 0.956 0.021 0.041 0.701 0.084

C3 0.873 0.812 0.934 0.554 0.696 0.96 0.632

Physiochemical Cl 0.556 0.287 0.825 0.020 0.039 0.622 0.032

SvM Auto-Covariance C2 0.693 0.565 0.823 0.321 0.462 0.754 0.31
with SMR C3 0.852 0.86 0.844 0.601 0.702 0.917 0.626

Table 4.1: Performance of baseline models across generalization categories. Cate-
gories: C1 - novel proteins, C2 - novel partners, C3 - novel pairings. Results in bold

represent the best category per model.

C2 - Generalizing to Unseen Partners

Generalization to novel partners (i.e., the C2 category) poses a bigger predictive chal-

lenge and can be of interest in some real-life applications. This section (Table 4.2)

evaluates the ability of our model to identify interactions between proteins from the

training set and proteins outside of it. This can be used to map all interactions of

proteins with partially known interactions. In this category, our NC-CoMET model

with the Physiochemical Auto-Covariance with SMR and physiochemical and SMR
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features with zero-padding representations display the best performance and outper-

form the previous state-of-the-art.

Model Type Representation
I __________ __________ fAccuracy j_____ Ieal ____ ____ ___I___

KNN f PC-AC 0.695 0.637 0.753 0.342 0.47 0.768 0.315

SVM PC-AC 0.681 0.407 0.956 0.021 0.041 0.701 0.084

PC-SMR-AC 0.693 0.565 0.823 0.321 0.462 0.754 0.31

Stackedd PC-AC 0.575 0.992 0.159 0.179 0.168 0.733 0.16

PC-AC 0.701 0.654 0.749 0.309 0.438 0.769 0.308

PC-SMR-AC 0.694 0.753 0.635 0.347 0.449 0.764 0.315

CoMET PC-ZP 0.648 0.613 0.683 0.267 0.384 0.709 0.225

PC-SMR-ZP 0.687 0.692 0.681 0.314 0.43 0.754 0.291

OH-ZP 0.687 0.708 0.665 0.321 0.433 0.754 0.294

OH-SMR-ZP 0.73 0.685 0.775 0.338 0.47 0.8 0.355

PC-AC 0.741 0.845 0.763 0.36 0.489 0.818 0.377

PC-SMR-AC 0.677 0.725 0.63 0.025 0.047 0.75 0.082

NC-CoMET PC-ZP 0.725 0.573 0.877 0.298 0.445 0.825 0.339

PC-SMR-ZP 0.638 0.33 0.947 0.226 0.366 0.835 0.232

OH-ZP 0.645 0.35 0.94 0.23 0.37 0.827 0.239

OH-SMR-ZP 0.674 0.459 0.889 0.254 0.395 0.788 0.268

Table 4.2: Performance on the C2 category. Representations: PC-AC - Physiochem-
ical Auto-Covariance, PC-SMR-AC - Physiochemical Auto-Covariance with SMR,
PC-ZP - Physiochemical features with zero-padding, PC-SMR-ZP - Physiochemical
and SMR features with zero-padding, OH-ZP - One-hot encoding with zero-padding,
OH-SMR-ZP - One-hot encoding and SMR features with zero-padding.

C1 - Generalizing to Unseen Proteins

The greatest goal of a PPI detector is to detect interactions between completely

unseen proteins. It is also the most informative category about the nature of PPI.

In this category, the baseline models (i.e., KNN and SVMs) achieve a balanced-

accuracy of 53 % + 3 %, which suggests that simple similarities are not enough for

the required generalization and that any improvement must indicate on the existence
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of an underlying structure in the data. The performance of the different models

is shown in Table 4.3. Again, our models outperform the state-of-the-art Stacked

Autoencoder, and the CoMET model with the Physiochemical Auto-Covariance with

SMR representation displays the optimal performance.

Model Type Representation Balanced Specificity nsitvity Precision F1 Score AUC MCC
____ ____ Accuracy __ (Recall) _ __ __ _

KNN PC-AC 0.546 0.385 0.707 0.020 0.039 0.562 j 0.025

PC-AC 0.506 0.021 0.992 0.017 0.035 0,521 0.012
SVM

PC-SMR-AC 0.556 0.287 0.825 0.020 0.039 0.622 0.032

Stacked PC-AC 0.636 0.994 0.277 0.433 0.338 0.718 0.339
Autoencoder

PC-AC 0.635 0.599 0.671 0.267 0.383 0.7 0.208

PC-SMR-AC 0.675 0.687 0664 0.316 0.429 0.743 0.278

CoMET PC-ZP 0.596 0.553 0.638 0.238 0.346 0.643 0.147

PC-SMR-ZP 0.618 0.553 0.683 0.245 0.366 0.679 0.181

OH-ZP 0.55 0.33 0.77 0.2 0.318 0.594 0.082

OH-SMR-ZP 0.594 0.322 0.867 0.218 0.348 0.696 0.16

PC-AC 0.577 0.416 0.739 0.216 0.335 0.633 0.122

PC-SMR-AC 0.632 0.536 0.728 0.255 0.378 0.713 0.202

NC-CoMET PC-ZP 0.603 0.398 0.808 0.226 0.354 0.655 0.164

PC-SMR-ZP 0.617 0.655 0.58 0.268 0.366 0.664 0.184

OH-ZP 0.544 0.203 0.885 0.017 0.034 0.613 0.027

OH-SMR-ZP 0.518 0.199 0838 0.185 0.304 0.573 0.036

PC-AC 0.507 0.998 0.016 0.638 0.032 0.507 0.082

PC-SMR-AC 0.494 0.977 0.012 0.097 0.021 0.494 -0.031

DenseNet PC-ZP 0.522 0.401 0.642 0.19 0.293 0.529 0.035

PC-SMR-ZP 0.517 0.329 0.706 0.187 0.295 0.533 0.028

OH-ZP 0.52 0.495 0.545 0.191 0.282 0.528 0.03

OH-SMR-ZP 0.516 0.191 0.842 0.185 0.303 0.553 0.032

Table 4.3: Performance on the CI category. Representations: PC-AC - Physiochem-
ical Auto-Covariance, PC-SMR-AC - Physiochemical Auto-Covariance with SMR,
PC-ZP - Physiochemical features with zero-padding, PC-SMR-ZP - Physiochemical

and SMR features with zero-padding, OH-ZP - One-hot encoding with zero-padding,
OH-SMR-ZP - One-hot encoding and SMR features with zero-padding.
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Motif Length

In order to better understand the structure of PPI motifs, we explored different

configurations of the CoMET architecture. The goal was to map the impact of the

motif detector size on the overall performance. To isolate other effects, we used a

basic architecture with just one convolutional layer, 100 motif detectors (i.e., filters),

and 3 fully-connected layers with 400 units each after the bilinear aggregation. We

experimented with two representations: the physiochemical and SMR features with

one-hot encoding, and the physiochemical and SMR features with Auto-Covariance.

We tested different filter lengths and different D values, respectively. The results are

shown in Figure 4-5.
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Figure 4-5: Impact of motif detector size on performance. (a) AUC and balanced
accuracy scores for different filter lengths, using the physiochemical and SMR features
with one-hot encoding representation. (b) AUC and balanced accuracy scores for
different D values, using the physiochemical and SMR features with Auto-Covariance
representation.
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4.6 Discussion

In this section, we first demonstrated the critical role of a proper data split in designing

and evaluating predictive models. The gold-standard machine learning practices for

PPI prediction described in Chapter 2 guarantee that the trained models perform

in real-life just as well as in training. To the best of our knowledge, this work is

the first to apply rigorous analysis and appropriate validation metrics to the task of

predicting PPIs directly from sequence. The results of the described models on the

C2 and especially the C1 categories suggest that nature is indeed reusing some PPI

motifs to build new interactions.

Further investigation might still be required to asses exactly how much of the

interactome can be explained with the known motifs, but we can use the results de-

scribed in this work to calculate a lower bound. The expected balanced accuracy for

any model on proteins with no PPI motif is 0.5; therefore, any improvement can be

used to bound the number of proteins which contain at least one PPI motif. Con-

sidering the CoMET OH-SMR-ZP model on the C2 category, we observe a balanced

accuracy of 0.73. Therefore, at least 46% of PPIs in the test set can be explained

using PPI motifs learned from the C2 training set alone. This is a conservative esti-

mate since we assume a perfect model that can predict PPI motifs from the training

set with perfect accuracy. We chose to use the CoMET OH-SMR-ZP and not the

superior NC-CoMET PC-AC since it enforces contiguous sequence motifs, thus we

believe provides better intuition about their nature.

The results also show that there is only a small difference between models which

enforce contiguous motifs and those who do not, which implies that at least the ma-

jority of PPI motifs are either contiguous or can be captured in a relatively short

contiguous sequence. We also observed that the Auto-Covariance with physiochem-

ical and SMR features representation showed superior performance throughout the

analysis. The detector length analysis did not show significant differences in per-

formance between models with detectors of various sizes, which suggests that this

short contiguous sequence is not longer than 10-15 residues. Future work will investi-
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gate ways to improve the performance of the individual prediction models including

deeper architectures, data augmentation based on homology, using PSSM features,

and introducing attention mechanisms.
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Chapter 5

Conclusion and Future Work

This thesis investigated the power of Deep Learning in the context of protein-protein

interactions. A field which has suffered from sub-optimal standardization, a fact that

prevented previous results from being translated into practice. We introduced a set

of rigorous techniques for data curation, representation, and splitting, with the hope

that these gold-standards will bridge the gap between computational results and their

experimental and theoretical impact. Moreover, we developed NetPPI, a carefully

curated dataset for development, training, and evaluation of PPI prediction models.

Finally, we presented B-PPI, a novel deep learning approach to PPI predictions, which

outperforms the previous state-of-the-art in a set prediction tasks.

Many opportunities arise from the practices and methods described in this work.

The prediction models presented in this work can be significantly improved through

experimentation with different machine learning techniques like attention networks,

batch normalization, and data augmentation. This is especially important since a

predictive model with very high accuracy is critical for many future applications.

Such high-quality model can be used to perform sequence-based computational Ala-

nine Scans, in which a known pair of interacting proteins will be evaluated multiple

times, each time with a different sequence mutation. By analyzing the score dif-

ferences between mutations, one might discover the most critical residues for the

interactions (i.e., the hot spots). This approach presents vast advantages over experi-

mental Alanine scans and structure-based computational scans. Computational scans
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are remarkably fast and cheap, thus allowing for many more mutations to be tested.

It will also enable testing of multi-point mutations, which might reveal non-linear

behaviors that are still unexplored.

A fascinating next step is a transition from PPI prediction to PPI design. Assum-

ing a high-accuracy prediction model and by incorporating techniques like generative

modeling and reinforcement learning, it should be possible to search and design an

optimal PPI partner for a target of interest. Such capability has clear and immediate

importance to the pharmaceutical industry, as well as other biological applications, as

it offers a way to regulate PPI activities in living organisms through computationally-

designed biological drugs. Finally, improved characterization of PPIs, down to the

single residue resolution, might enable the development of small-molecule PPI regu-

lator drugs.

Another exciting direction is the use of Deep Learning with structural information

to characterize PPIs. At the moment, one of the main challenges is the lack of suffi-

cient high-quality structures. A possible way to address this challenge is by thinking

about interactions between protein domains as PPIs. It has been shown that in many

cases, domains that were cleaved by proteases still come together and perform their

respective function as if they were one protein. The reason for individual domains

can act as a single protein lies in the same kind of interactions between residues that

allow proteins to form complexes. Thus, we can take all known structures with more

than one domain, and after "cutting" the inter-domain covalent bonds, treat them

as PPIs. This approach will generate an order of magnitude more PPI structures

and will support the development of structure-based Deep Learning methods. It will

also help to investigate the hypothesis that PPIs originated in larger proteins that

diverged through evolution into smaller building blocks.
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Appendix A

Bayesian Hyperband

Performance of machine learning algorithms relies heavily on the configuration of

hyperparameters such as learning rate, dropout probabilities, type of optimizer, and

the loss function of choice. These hyperparameters form a complex, non-convex,

multi-dimensional space and confront the designer of the model with a difficult task

of finding an optimal configuration. The situation gets even more complicated for

models that require long training times, as is the case for most deep neural networks.

Hence, hyperparameter optimization is often referred to as the "black art" of machine

learning. Conventional methods like grid and random [89] searches require excessive

computation resources and domain-specific expertise, and produce sub-optimal re-

sults. In recent years, two novel approaches were suggested, Bayesian Optimization

techniques [901 utilize results from historical configurations to inform sampling of

new configurations, and Hyperband [91] improves results of random searches by al-

locating training resources to different configurations based on their performance. It

was currently identified [92, 931 that the two methods are complementary and can

be combined. In this appendix, we improve on Falkner et al. and Wang et al. by

introducing an adaptation to their combined Bayesian Optimization and Hyperband

model. We call this model Bayesian Hyperband (BHB). BHB was used for hyperpa-

rameter optimization of all deep-learning models in this thesis.

53



Algorithm 1 Wang et al. - Combination of Hyperband and Bayesian optimization

input: maximum resource budget that can be allocated to a single configuration R,
and proportion constant r

output: optimal hyperparameter configuration
1: initialization: smax = Llogn(R)j , B = (smax + 1)R
2: for s E {smax, smax - 1,..., 0 do

3: n = f T, IIr =Rr

4: for i E 0, ... , s do
5: ni = Lnr/-ij
6: ri = rrf
7: if i == 0 then
8: X=0,Do=0
9: for t E {1, 2, ... ,ni} do

10: xt+1 = argmaxxu(xjDt)
11: f (xt+1) = run _then__return obj _val(x, ri)
12: X = X U {xt+i}
13: Dt+l = Dt U {(t+i, f(xt+i))}
14: Update probabilistic surrogate model using Dt+1

15: else
16: F = { runthen__return obj _val(x, ri) : x c X}
17: X = top k(X, F, Lnm/r/J)

return optimal conifiguration

The method developed by Wang et al. is shown in Algorithm 1. Here the function

run_then_returnobjval(x, r) evaluates the performance of a model with con-

figuration x and a budget of r. The function topk(trials, objvals, k) is used for

Hyperband's successive halving step. p(xjDt) models the expected improvement in

the following equation:

pi(xIDt) = E(max{0, ft+i(x) - f(x+)}IDt) (A.1)

where x+ is the optimal trial point after the first t steps. Lastly, argmaxxp(xjDt)

is used to sample a new configuration with maximal expected improvement, based

on the historical data. Following [941, a Tree-structured Parzen Estimator (TPE) is

used to model p(xlf(x)) and p(f(x)).
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Algorithm 2 Bayesian Hyperband

input: maximum resource budget that can be allocated to a single configuration R,
proportion constant rI, and constant fraction of random configurations p

output: optimal configuration
1: initialization: smax = [logr,(R)] , B (smax + 1)R, D =0

2: for s E {o, 1, ... smax Ido

3: n = f7 , r = Rrq-s
IR (s+1)

4: for i E 0, ... , s do
5: ni =nr/4]
6: ri =r
7: if i == 0 then
8: X = 0
9: for t E {1, 2, ... ,ni} do

10: if rand() < p then
11: xt = get _random_configuration()
12: else
13: xt = argmaxxu(xjD)

14: f(xt) = run thenreturn _objval(x, ri)
15: X = X U {xt}
16: D = D U {(xt, f (Xt))}
17: Update probabilistic surrogate model using the updated D

18: else
19: F = { run_thenreturn_objval(x, ri) : x C X}
20: X = top k(X, F, [n/rDj)

return optimal configuration

BHB (Algorithm 2) introduces several key improvements to the algorithm described

by Wang et al. First, the constant p (first suggested by Falkner et al.) is used to

uniformly sample random configurations at a given ratio. This provide the same the-

oretical guarantees of Hyperband, by ensuring that the algorithm is at most slower

the Hyperband by a constant factor. Second, instead of resetting the trial dataset D

for every new value of s, we keep a log of all trial configurations for future use, which

allows us to constantly improve our surrogate model. Finally, we invert the order of

training and start with the lowest budgets (i.e., values of s).
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Appendix B

Methods

B.1 BLAST parameters

Parameter Value

database swissprot
E value 0.001
word size 6
gap open cost 11
gap extend cost 1
matrix BLOSUM62
threshold 10
window size 40

Table B.1: BLAST-P parameters.

Parameter Value

database swissprot
E value 10
word size 5
gap open cost 11
gap extend cost 1
matrix BLOSUM62
threshold 11
window size 40

Table B.2: PSI-BLAST parameters.
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B.2 Representations

Amino acid H, H2 ]NCI P1  P2  SASA V
A 0.62 -0.5 0.007187 8.1 0.046 1.181 27.5
C 0.29 -1 -0.03661 5.5 0.128 1.461 44.6
D -0.9 3 -0.02382 13 0.105 1.587 40
E -0.74 3 0.006802 12.3 0.151 1.862 62
F 1.19 -2.5 0.037552 5.2 0.29 2.228 115.5
G 0.48 0 0.179052 9 0 0.881 0
H -0.4 -0.5 -0.01069 10.4 0.23 2.025 79
I 1.38 -1.8 0.021631 5.2 0.186 1.81 93.5
K -1.5 3 0.017708 11.3 0.219 2.258 100
L 1.06 -1.8 0.051672 4.9 0.186 1.931 93.5
M 0.64 -1.3 0.002683 5.7 0.221 2.034 94.1
N -0.78 2 0.005392 11.6 0.134 1.655 58.7
P 0.12 0 0.239531 8 0.131 1.468 41.9

Q -0.85 0.2 0.049211 10.5 0.18 1.932 80.7
R -2.53 3 0.043587 10.5 0.291 2.56 105
S -0.18 0.3 0.004627 9.2 0.062 1.298 29.3
T -0.05 -0.4 0.003352 8.6 0.108 1.525 51.3
V 1.08 -1.5 0.057004 5.9 0.14 1.645 71.5
W 0.81 -3.4 0.037977 5.4 0.409 2.663 145.5
Y 0.26 -2.3 0.023599 6.2 0.298 2.368 117.3

Table B.3: Physiochemical properties of amino acids. H1 : hydrophobicity; H2 : hy-
drophilicity; NCI: net charge index of side chains; P1: polarity; P2 : polarizability;
SASA: solvent accessible surface area; V: volume of side chains; Source: [371.
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Cluster Amino Acids

1 Ala, Gly, Val
2 Ile, Leu, Phe, Pro
3 Tyr, Met, Thr, Ser
4 His, Asn, Gln, Trp
5 Arg, Lys
6 Asp, Glu
7 Cys

Table B.4: Clustering of the 20 amino acids to seven clusters by their dipole and side
chain volume. Source: [401.

A R NDC QEGH IIL KMIF IP SIT W YV BIZIX *j

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4
N-2 -3 1 0 -2 0 -32 - - -2 -1 -1 -3 -2 -3 -1 0 -1 -4
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1 -4
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1 -4

-1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4-3 -1-4
-1 0 -1 -3 1 1 -2 -1 -25-1-3-10-1 -3 -2 -20 1 -1 -4

M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1 -4
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2 -4
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 0 -4
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0 -4
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -2 -4
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1 -4
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4
B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1 -4
Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4
X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1 -4
* -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 1

Table B.5: BLOSUM62 Matrix.
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