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Abstract

Dynamic analysis, which involves gathering information about a program as it is

executing, is becoming increasingly common as reverse engineers attempt to more

efficiently analyze complex software systems. In this thesis, I implement a technique
called dynamic slicing, which determines how values in a program's register or mem-

ory, such as strings, are computed as a function of the program's initial state. This

technique is then evaluated on sets of programs of interest to reverse engineers: string

generation and string encoding/decoding algorithms.
A common source of these algorithms is malware, which often employs these mech-

anisms to obfuscate and to make human-driven reverse engineering more difficult. In

particular, malware will use Domain Generation Algorithms (DGAs) to construct

seemingly randomized domain names to contact their control servers. We demon-
strate that metrics and graphs produced with dynamic slicing can be successfully

employed on these algorithm classes, elucidating interesting features from different
families of malware and reducing the manual workload of malware reverse engineers.

Thesis Supervisor: Tim Leek
Title: Technical Staff, MIT Lincoln Laboratory
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Chapter 1

Introduction

Those who reverse engineer software systems have the goal of expending a minimum

of man-hours to gain a maximal understanding of the piece of software they are

analyzing. As software systems grow larger, human-driven program understanding

becomes increasingly difficult, and automated techniques become essential.

There are two broad categories of automated program analysis - dynamic and

static - each with certain strengths and weaknesses. Static analysis is a class of

methods to understand the program without executing it, ex. manual disassembly of

a compiled binary or static source code analyzers that look for violations of safe pro-

gramming patterns. Dynamic analysis, as the name suggests, involves instrumenting

the execution of the program itself, gathering information from the program as it is

running.

One advantage of static analysis is that even rarely-used branches of code or pos-

sible exceptional cases can be detected and analyzed statically, that would otherwise

never be tested dynamically. Static analysis often involves manual understanding by

humans that are better at synthesizing information about complex code than ma-

chines. However, dynamic analysis is more powerful overall, as it is a much richer

source of program understanding, enabling access to call stacks, execution traces, code

coverage, memory information, etc. Dynamic analysis can also handle types of re-

versing tasks that static methods cannot - in particular, obfuscated code. Dynamic

analysis does have its disadvantages - it can be more computationally expensive
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and have a higher rate of false positives and negatives. Often, a combination of both

approaches is used to understand an unfamiliar piece of software or codebase.

This thesis explores a dynamic analysis technique called dynamic slicing. Dynamic

slicing takes as input a list of executed instructions (a "trace") and some internal

quantity of interest in a program's state, such as a variable. As output, it produces

the subset of the instructions that computed that quantity (the "slice"), as well as

the variables that were modified as part of the slice. Dynamic slicing is essentially

a reverse engineering tool - it works backwards from the end of the instruction

trace, eventually determining what initial state of the system was important to the

computation of some final state.

We first design and implement the dynamic slicing algorithm at the full operating

system level, meaning that we operate in terms of memory and registers as part of our

internal state, and assembly instructions as the slice. This is unique in that most other

work on dynamic slicing has been performed at the level of source code. Working on

the CPU level with zero higher-level information allows us to avoid any abstractions

about libraries, kernel, etc. and produce a pure slice based on data computation alone.

We then evaluate the performance and effectiveness of dynamic slicing for facilitating

reverse engineering on a set of string encoding and string generation algorithms, as

commonly employed by malware writers.

The contents of this thesis are organized as follows:

Chapter 2 discusses prior related work on the several areas that are explored in

this thesis: dynamic slicing theory and implementations, data dependency graphing,

and string manipulation algorithms used by malware.

Chapter 3 details the design and implementation of our dynamic slicing, which is

built upon the PANDA full-system emulator developed by Lincoln Lab [7]. We also

discuss technical challenges that were encountered over the course of implementing

the system and their solutions.

Chapter 4 introduces various metrics and visualizations devised to better under-

stand and evaluate the benefits of slicing. In particular, the goals of this chapter are

to demonstrate how we can extract useful information from slice output to facilitate
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the task of reverse engineers when facing an unfamiliar algorithm in a complex piece

of software.

Chapter 5 documents the results of applying the above techniques to the most

challenging reversing task, malware. Malware is, by nature, heavily obfuscated to de-

ter reverse engineers. One way in which it attempts to circumvent security researchers

is by using custom string encoding and decoding algorithms for two main purposes:

first, Domain Generation, or producing large numbers of randomized domain names

that can be used as potential command and control servers, and secondly, static string

obfuscation, or concealing the presence of interesting strings within the binary, such

as filepaths. We apply the tools and techniques discussed in this thesis to some char-

acteristic examples of Domain Generation Algorithms used by malware observed in

the wild, describing the benefit afforded by our work on malware understanding.

1.1 Objectives of Dynamic Analysis

There are many forms of dynamic analysis that have been developed to aid in program

understanding. In all cases, the objective is to reduce the manual workload of a reverse

engineer when debugging or analyzing a particular program - even as programs get

more complex, the human workload should scale at a much slower pace. By contrast,

manual static analysis that involves visually inspecting source code or disassembled

binary code, while much more precise and less prone to false positives/negatives,

requires great skill on the part of an experienced researcher, and quickly becomes

infeasible as programs increase in size. Thus, where dynamic techniques seek to

outperform static ones is scalability and throughput of program testing.

For instance, consider several common techniques in dynamic analysis: fuzzing

and taint analysis. Taint analysis is essentially backward slicing in reverse - labels

are applied to some input state, such as user data or the bytes of an input file, and then

computations propagate those labels elsewhere into the program. This can determine,

for example, whether a program is exploitable via user input 115]. Fuzzing involves

mutating program input in a way that increases code coverage and potentially triggers
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exceptional branches or rarely-touched areas of code where bugs might lie. Both of

these techniques afford reversers a huge benefit - otherwise, a reverser would need

to manually construct mutations and manually trace all possible uses of user input.

In addition, dynamic analysis can circumvent many of the issues that static anal-

ysis struggles with, particularly in the case of obfuscated code. Malware will often

employ techniques such as disassembler confusion and code packing to make static

analysis orders of magnitude more difficult. In order to be effective, dynamic analysis

should be able to succeed where static methods fail entirely.

11



Chapter 2

Related Work

2.1 Dynamic Slicing in Theory and Practice

Dynamic slicing is a well-known technique in the program analysis space, and there

have been several papers on both theory and implementations of it.

The concept was first introduced in a static context on high-level programs by

Weiser [17]. There, a static slice was defined as the subset of all statements or

instructions in a program that could potentially affect a certain variable in question.

Then, Korel and Laski extended this idea to a dynamic slice on a program, in which

the slice makes use of information about a particular execution of the program and

contains the subset of statements/instructions that 1) is executable and 2) computes

the same result as the full program [9].
Agrawal and Horgan further developed the theory of slicing by introducing tech-

niques for generating a non-executable Dynamic Dependence Graph that is smaller

in size than a full executable slice, because it does not contain all occurrences of a

statement that is involved in the computation of the target value, but rather only

the specific occurrences (say, one iteration out of many loop iterations) that affect

the value. Later, Agrawal demonstrated the first practical application of slicing by

incorporating it into an application to debug high-level code [4, 3].

In a relatively recent advance, Sahoo et. al implemented Giri, a dynamic program

slicer that works on the LLVM Intermediate Representation (IR) [14]. LLVM is a
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compiler framework and instruction set with an API to instrument its IR, allowing

information to be collected during runtime [10]. This is useful for slicing because

such instrumentation can augment an instruction trace with data that is not available

statically. In addition, LLVM is a good choice because it has more straightforward

semantics than source code or machine code, simplifying the task of slicing with a

smaller instruction set.

This most closely resembles our system, discussed in the next chapter, which is

also LLVM-based. However, the major difference between this system and ours is

that Giri requires high-level source code, as it uses the LLVM compiler along with

debugging symbols to generate the LLVM IR bitcode that it slices on. PANDA, and

thus, our dynamic slicer, operates on a much lower semantic level - the full CPU,

running pure assembly code. Kernel and library code is handled implicitly, as well as

unusual or complex machine instructions - all machine instructions are translated to

a small subset of the LLVM IR, and we need no higher-level information to generate

a complete slice.

2.1.1 Data dependency graphing

Dynamic slicing has generally gone hand-in-hand with program graphing techniques

based on data dependencies. Here we discuss various related work in program graph-

ing.

A common type of graph is a Program Dependence Graph (PDG), in which nodes

represent variables within a program and directed edges represent a dependence of one

value on another. This dependence is referred to as "data flow dependency", or just

"data dependency", and the graphs are sometimes referred to as "data flow graphs".

Early theory on program dependency graphing was centered around its useful-

ness in code optimization - that is, generating PDGs that could be used to detect

parallelism and vectorize code, loop fusion, constant expression folding, etc. [81.
More recently, Redux [12], was created by the same author as the Valgrind memory

profiling and binary instrumentation toolkit. Like our system, it can operate without

source code, converting binary code to its RISC-like IR called UCode to construct
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a dependence graph. The fundamental method of constructing the graphs is very

similar to ours - Redux generates new graph nodes for each system call or arithmetic

instruction and connects them via directed edges when data is transferred.

Redux then takes the extra step of performing many compaction and "prettifying"

passes on the produced graph, substantially reducing the number of nodes and edges.

This results in PDGs like that of a simple "Hello World" program in Figure 2-1. In

this graph, system calls and arithmetic instructions are each given a node. Arrows

from one node to another denote that the target node uses the value in the source

node. Note that the Redux authors have heavily post-processed the graph to prettify

it: chains of "increment" nodes are abbreviated, with the dashed edges indicating

elided nodes, and non-shared constants are inlined into nodes. The figure in the top-

right is an even more abstracted version of the "Hello World" program, obtained by

condensing the larger graph into the _IO-printf and _IOcleanup symbols, which

are found by looking in the glibc source code.

While Redux produces very visually appealing and simple graphs due to its ag-

gressive pruning and graph rewriting, it does nothing of note with it. Redux raises

the ideas of some potential applications of its dependency graphing, including de-

obfuscation and program equivalence, but does not go as far as to explore them. The

PDGs that we produce are a direct product of a dynamic slice, and thus have direct

value tied to the reverse engineering task, whether it is de-obfuscation or program

understanding, at hand.

2.2 Malware

The field of malware analysis is perhaps the greatest challenge to program analysis

techniques because of the heavily obfuscated nature of most malware observed in the

wild. For instance, malware might obfuscate itself to hide itself from static analysis,

to thwart antivirus software, to evade sandboxes that attempt to analyze it, etc. This

often involves a custom combination of techniques including code packing, multi-stage

payloads, self-modification and mutation, etc. [181.
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.

Figure 2-1: Hello World PDG produced by Redux
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The common malware features that we study in this thesis are the Domain Gener-

ation Algorithms (DGAs) described previously, used by malware in generating seem-

ingly random domains for C&C servers. The malware authors register some small

subset of all possible domains, and the malware will attempt to contact some of the

random domains, ensuring that at least some small percentage of connections suc-

ceed. If a malware is able to contact its C&C server, it can be updated or commands

to further compromise the system can be received.

Attempts have been made to classify and compare DGAs [13]. Plohmann et.

al. analyzed the DGAs of several dozen malware families and variants, proposing

a taxonomy based on the seed - time-based deterministic or non-deterministic

and the generation scheme - arithmetic, hash-based, wordlist, or permutation-based.

More on this is given in Chapter 5, when these categorizations are used to guide our

own understanding of different DGA malware.

An example of using static and dynamic analysis techniques on malware is from

Barabosch et. al., who employ data flow techniques to extract the DGA functions

from malware [6]. As part of their "extraction phase", the authors claim to apply

a use-defs algorithm similar to what we use in Chapter 3 for data flow analysis. A

use-def chain of some variable consists of a target variable and all the variables that

contributed data to it, or "defined" it.

However, the authors do not describe their algorithm except at a high level, leaving

many questions as to how they perform the data flow analysis. What is said is

that they require an external database of knowledge about Windows API calls. By

contrast, our dynamic slicer does not need or use high-level information about API

libraries, relying solely on pure assembly data flow analysis. Also, the architecture

of the framework requires that the underlying disassembler, in this case the popular

IDA Pro, correctly disassembles the code and recognizes all functions, which is a

very tenuous assumption for anything more than simple, nonobfuscated malware. By

contrast, we don't require such a static disassembler because we work on emulated

code which disassembles a basic block at a time, on demand, and cannot be fooled

by tricks that break static tools like IDA Pro.

16
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Chapter 3

Dynamic Slicing

3.1 Slicing Algorithm

This section presents the variation of the backwards dynamic slicing algorithm that

we implemented. The inputs to the dynamic slicing algorithm are, at a high level,

an "instruction trace" plus some internal machine quantities on which to slice. These

quantities can be registers or memory addresses, in the context of a full OS. This set

is termed the worklist. The slice will operate backwards through the instruction trace

from the internal machine quantities, outputting the initial state of the system that

must be specified to produce those internal machine quantities, as well as the subset

of instructions that are part of the computation of the worklist. The initial machine

values are, essentially, "free variables" of the slice with respect to the worklist.

At a high level, the algorithm is as follows:

Algorithm 1 Usedefs algorithm
1: procedure SLICETRACE (instruction trace)
2: worklist +- {initial state}
3: for all inst E reversed(instruction trace) do
4: uses, defs +- GETUSEsANDDEFS(inst)

5: for all def E defs do
6: if def C worklist then
7: worklist +- worklist \ def
8: worklist <- worklist U uses

return worklist;
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The exact nature of the inputs and outputs of this procedure, as well as imple-

mentation details, are described in the following sections.

3.2 Design and implementation

3.2.1 PANDA and LLVM translation

Much of this work is built upon PANDA, the Platform for Architecture-Neutral Dy-

namic Analysis, which is itself based on the QEMU full-system emulator. Emulation

is the ability for a host operating system to run a guest system of a potentially differ-

ent architecture. The guest being emulated is often referred to as a virtual machine

(VM), since the emulator creates virtual objects to represent a physical CPU, mem-

ory layout, hardware peripherals, etc. QEMU executes the VM by means of "lifting"

guest assembly instructions to an intermediate representation called TCG (Tiny Code

Generator), which is then translated to the host machine's assembly set [2].

PANDA extends QEMU to enable a programmer to make a recording of a guest

VM doing any variety of tasks, then replay it back deterministically. This is done by

saving all sources of nondeterminism, such as hardware interrupts or timestamp reads,

in a nondeterminism log. For the purposes of a slice, record/replay is crucial because

a slice must be performed on a single execution of the program, which PANDA can

guarantee will exist in a reliable replay. However, the true power of PANDA is that

the replay can then be augmented with plugins that can be written to perform a

variety of dynamic analyses.

For dynamic slicing, we employ another translation from TCG to the LLVM IR

[10], which is the representation that the slicing algorithm operates on. All the guest

architectures that PANDA supports (currently x86/64, ARM, and PowerPC) can

be lifted to a common set of LLVM bitcode, composed of only binary operators (Add,

Sub, Mul, etc.), bitwise operators (And, Not, Shl, etc.), control flow instructions (Call,

Branch, etc.), and conversion operators (IntToPtr, Trunc, ZExt, SExt). The LLVM

18



Language contains dozens more opcodes 1, but only a small subset suffices to fully

emulate guest systems.

Again, the ability of PANDA to translate guest assembly to LLVM is essential to

slicing. The LLVM IR allows us to ignore the complex and wildly varying semantics

of machine code on different architectures and potentially unusual instructions that

would otherwise be unhandled - all machine code is translated into LLVM in the

form of LLVM basic blocks, and, for special instructions, LLVM helper functions.

Also, the full instrumentation toolkit provided by LLVM allows us to collect all the

necessary information that the slice requires during runtime.

After lifting to the LLVM IR, there are two phases to dynamic slicing: in the first,

dynamic information about the execution of the program (the exact requirements of

which are described below) is recorded in a log file that we term the trace log. This

is implemented as a plugin that operates on the PANDA recording during a replay,

using an LLVM instrumentation pass that allows the insertion of logging functions

that are called during runtime. The dynamic information collected in the trace log

is important because it exactly specifies the updates to the system state, such as

memory and registers, made during a single execution of a program. By having a log

of all computation done on all machine state, we can then isolate which instructions

are part of our slice.

Second, the trace log and the generated LLVM bitcode are passed to the dynamic

slicing algorithm above, along with an initial set of elements in the worklist. The

slicer aligns the log and the bitcode, then performs the backwards dynamic slice.

LLVM Trace Logging

One requirement of dynamic slicing is having access to runtime information about

dynamic values, such as the source/destination and values of loads and stores. This

involves instrumenting certain LLVM instructions with functions that, when executed

at runtime, record dynamic values to a log file, that can later be recalled during the

dynamic slicing.

LLVM Language Reference - https: //llvm. org/docs/LangRef . html
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For example, the non-instrumented LLVM IR for the x86 instruction push ebp

may be represented by

%tmp2_v = sub i32 /oesp_v , 4

%10 = add i64 %2, 20 // Offset in QEMU's X86CPUState structure

%ebpptr = inttoptr i64 %10 to i32*

/oebpv = load 132* %ebp ptr

call void @helper_le_ stl _ mmu panda(%struct . CPUX86State* %0, i32 %tmp2_v,

i32 /oebp_v, i32 1, 164 3735928559)

As can be seen in the vanilla LLVM code, the push ebp is translated into the

following sequence: the value of ebp is loaded from a QEMU CPU object. Then, the

value is stored at the top of the stack, esp, by way of a QEMU helper function to

write emulated memory.

The corresponding instrumented version would look like:

%tmp2_v = sub i32 /oesp_v, 4

/oebpv = load 132* %ebpptr

call void @recordLoad(i8* %ebpptr, i64 %ebp_v, i64 4), !host !0

ttoptr i32 %tmp2_v to i8*%ebp v80 = zext i32 /oebpv to 164
call void @recordStore(i8* %tmp2_v, i64 /oebpv, i64 4)

call void @helper_le_stl _ mmu panda(%struct . CPUX86State* %0, i32 %tmp2_v,

i32 /oebp_v, i32 1, i64 3735928559)

In the instrumented version, both the load and store are instrumented with calls to

logging functions, that are passed the location and value loaded/stored. As described

above, we must record any updates to system state, such as memory loads/stores, so

that the dynamic slicer can correctly evaluate whether or not a certain load or store

is part of the use-defs chain of the worklist.

In addition to memory loads and stores, several other dynamic values require such

logging - those having to do with control flow. Because we are isolating a single

execution path of a system, the trace log must contain information on exactly which

path was taken at every branch. The LLVM instructions that determine control flow,

such as Select, Branch, and Switch, are instrumented with a function that records

the condition that determines which branch is taken.

20

I



The log is serialized using Google's Protocol Buffers [16], which takes a schema

for a serialization format, similar to a C struct, and provides an API for generating

and consuming a stream of serialized entries. A full description of all the information

that must be logged can be seen in the Protobuf schema for the log 2

Slice alignment and slicing

The inputs to the slicer are specified in a criteria file - this contains the instruction

range that we want to slice within, the virtual memory areas (VMAs)3 that are

relevant to us, and the memory addresses/registers that are part of our initial worklist.

An example criteria file is shown in Listing 3.2.1. As part of the string slicing

workflow described in the next chapter, this file will usually be automatically gener-

ated by another plugin.

rr sta rt :975034

VMA: single -byte-xor

MEM_804a03c-804a04a

rr end:1034893

As a first step during slicing, the LLVM instructions must be aligned with the

trace log entries. Each executed LLVM instruction is represented in the generated

LLVM bitcode file, and certain instructions willl also have a corresponding trace log

entry that it must be matched with. This combined array of trace entries, consisting

of instructions + their corresponding dynamic log data, is then passed to the slicing

algorithm.

3.2.2 Performance

Trace generation

The overwhelming majority of time is spent in the dynamic trace logging step. LLVM

translation and execution causes a significant performance hit during replay. The
2https://github.com/panda-re/panda/pull/207
3 A VMA refers to a region of named mapped memory in a program; ex. text section of program,

shared library, stack, heap
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simple act of running a replay incurs about a 10x reduction in speed from the real-

time execution. Turning on LLVM execution, by itself, incurs a slowdown of around

40x over the replay. If the LLVM tracing instrumentation is added to the code, this

could increase the slowdown to nearly 300x over the replay, or 3000x over real-time

execution. Thus, performance is a large consideration in the usability of the system

(see Table 3.1). Note that this is a one-time cost - once the trace is generated, the

slicing algorithm can be performed offline on any part of the system's state with no

overhead.

We use several techniques to alleviate the cost of generating a trace log: First,

noting that most of a program's execution time is spent inside the kernel handling

hardware interrupts, page faults, etc. We do not translate to LLVM inside these

sections, under the assumption that there is no data dependency to these portions of

the system and they are thus irrelevant to the slice. Our claim is that page faults and

hardware interrupts are essentially bookkeeping operations by the kernel that should

be transparent to the program being analyzed, and thus should not contribute to the

data flow of the program. We have not verified this to always be the case, but we

expect that there are only rare instances where this assumption does not hold. We can

identify when the CPU is executing an interrupt inside the kernel via architecture-

specific techniques - on x86, for instance, we can insert a callback inside the QEMU

hardware interrupt handler code to mark when we have entered an interrupt, and

another callback on the iret, or "interrupt return" instruction, to know when we

have exited the interrupt.

Second, we allow the user to specify a certain range of addresses or instruction

counts that they would like to generate a trace for. The instruction count is simply

a counter for the number of guest assembly instructions executed at any point in the

PANDA replay. Typically, for a single program, the starting address or instruction

count would be the beginning of the main function of a program, and the end would be

at the return of main. If a range is specified, LLVM translation and trace generation

is only activated for this set of instructions. This subset of instructions is likely

to be a tiny fraction of the whole system's execution. In our use case, which is
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Table 3.1: Replay execution times

# of instructions plain replay w/ LLVM w/ LLVM +
trace logging

10.2 million 1.9s 76s 551s

string encoding/decoding algorithms, we know that the program will be small enough

to merit this level of truncation. For larger programs that may involve millions of

instructions or many system calls, we would need better ways of determining whether

this sort of truncation does not suffice to capture trace log, which we leave for Future

Work.

Trace generation

In the next chapter, we discuss evaluating the slicing system on representative string

decoding functions that provide a first look at the effectiveness of dynamic slicing.
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Chapter 4

Slice Visualization and Evaluation

The slicing algorithm, by itself, does not produce results that are very interpretable.

In this chapter, we discuss various methods that were devised to visualize and under-

stand the output of our dynamic slice.

4.1 Evaluation

4.1.1 String decoding/encoding

One set of test cases we use to evaluate a slice is from FireEye Labs, which has

compiled a set of string generation programs originally for evaluating a malware

deobfuscation tool 1.

These tests perform a range of string encode/decode operations, from simple

single-byte XOR to RC4 and Base64 decoding. Each produces a known string ("Hello

world") that is located at some memory address, potentially on the stack or the heap.

The general testing workflow is as follows: For each test, we create a PANDA

recording of the program running on a 32-bit Debian QCOW. Then, we replay the

recording along with a plugin called stringsearch, which monitors memory accesses

and outputs all locations where a certain string was observed. The address and

instruction count of the first observed occurrence of the "Hello world" string is saved

lhttps://github.com/fireeye/flare-floss
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to a file, which will later be given to the dynamic slicer as the initial worklist. The

assumption is that the first instance of the string is the point immediately after it

has been decoded, which would be the natural starting point to slice from.

The server for all tests contains an Intel Xeon E5 CPU at 3.10GHz with 63GB of

RAM and 24 CPU cores running Ubuntu 16.04.

4.2 Slice analysis

The results of the slicing algorithm are of multiple varieties. A bitarray is generated

for the LLVM instructions, where a bit is 1 if the instruction is marked as part of the

slice, and 0 if not.

4.2.1 Disassembler Visualization

The most immediately useful method of visualizing the slice is via drawing the reverse

engineer's attention to the sliced instructions from within a disassembler. Parsing the

bitarray of marked instructions leads directly to slice visualization in this fashion for

the popular disassemblers Binary Ninja and IDA Pro. To do this, we add metadata

to each LLVM instruction that corresponds to its guest opcode bytes.

Figure 4-1 shows the slice visualization for a simple single-byte xor operation

on a string of length 11. The corresponding C code for the decode function can

be found in Listing A.1. The decode function takes five arguments on the stack:

outbuf, a pointer to the decoded string, outlen, inbuf, a pointer to the encoded

string, injlen, and the XOR key. As seen in the figure, the highlighted instructions

are deemed relevant to the slice output, and the number of times each basic block is

executed is labeled in a comment. The dataflow slice on the out _buf correctly deduces

the dependency on in-buf and key arguments, as well as the XOR operation.

As another example, we look at the source code (Listing A.2) and corresponding

slice disassembler visualization (Figure 4-2) for a custom substitution cipher. The

cipher decode routine indexes each byte of the input string into a lookup key using

the memchr function, then performs a series of conditional checks on the byte to
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Figure 4-1: Single-byte XOR slice visualization in Binary Ninja
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determine the final transform into the output byte. The memchr function, from the

string.h header in the C standard library, simply returns the location of the first

instance of a byte in the lookup key.

In the slice for this program, the dataflow analysis identifies that the argument

to memchr, key, is the source of the bytes in the decoded string. We also detect how

many times each branch of the cipher decode routine is observed in the slice - for

the 11-byte input string xzhhKDmKjhT, 8 bytes take the outermost else branch, 2 take

the middle else branch, and 1 takes the innermost if branch. The number of times

each branch is executed is annotated in a comment that we add to the disassembly

via our slice visualization plugin.

It is intended that reverse engineers can incorporate offline slicing into common

disassembly or static debugging workflows - they can generate a slice on memory,

registers, or other program values of interest in a piece of unfamiliar software for which

there is no source available, and quickly focus on the portions of the disassembly that

are part of the slice. In Future Work (6.1), we discuss more complex and featureful

applications of the slice, such as reverse debugging.
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Figure 4-2: Substitution cipher slice visualization in Binary Ninja
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4.2.2 Program Dependence Graphing

Another means of visualization enabled by dynamic slicing is data flow, or program

dependence graphing. We can leverage the Boost graphing library [1] to construct

program dependence graphs concurrently with the slicing algorithm.

Each vertex is represented by the following struct:

struct Vertex {
std :: string slicevar; // string representation of slice variable
int slice var type; // type of slice variable

I unsigned opcode; // LLVM Instruction opcode
uint64_t value; // value that is loaded or stored

}

This is the complete explanation for reading the graphs: First, the vertices - each

vertex in the graph is associated with a slice variable, which has one of several defined

types: LLVM intermediate values (essentially an infinite set of registers, denoted by

LLVM_*), target register values (denoted by TGT_*, ex. TGTEAX), guest memory

addresses (MEMOxxxx), etc. The integer opcode of the LLVM Instruction (Load,

Store, Xor, etc.) is recorded in the vertex as well, along with the hex-encoded value

loaded from or stored to that vertex. Note that constants are not shown on this

graph; therefore, binary operators that have only one input should be assumed to

have a constant as the second input.

Each directed edge (an arrow in the graph) connects a source vertex to one target

vertex. This edge means that the target value depends on the source value - in the

terminology of dynamic slicing, the source is the use value that defines the target

def value. Each edge usually corresponds to one byte of data - thus, 11 bytes of

data that pass through a vertex would be represented by 11 edges exiting the vertex.

When the slicing algorithm identifies that a certain instruction is part of the use-defs

chain, the Boost library adds a graph edge from the use vertex to the def vertex.

The Boost library outputs the graph in Graphviz DOT format, which can then

be rendered with the dot command-line tool or Python's graphviz package.

The program dependence graph for the single-byte XOR example (slightly cropped

to fit) is rendered in Figure 4-3. In this graph, the inputs to the slicer (the outputted

decoded bytes) are colored green, guest registers yellow, and memory addresses are
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colored gray. Red nodes are discussed in the following section, and correspond to

nodes that are part of the slice compute number (SCN) chain. To interpret the graph,

one can follow the path of input bytes at the top of the graph to output bytes at the

bottom, tracing values through memory loads/stores and arithmetic instructions. For

instance, at the bottom of the graph, we can see individual bytes being stored to the

decoded buffer in Figure 4-4. At the top of the graph, the ultimate source of data is

the input buffer from which the encoded bytes are loaded (Figure 4-5).

From these several graphs, it's clear that LLVM is much noisier than guest assem-

bly, generating up to 10x more intermediate registers, and hence vertices, for each

instruction. However, these graphs, while overlarge, do contain complete information

on data flow dependencies.

There are ways to refine the graph further - one can remove some unnecessary

edges by condensing those nodes that are simply LLVM conversion operations (Trunc,

SExt, ZExt), which do not have any effect on the data computation flow. This

generates slightly more condensed graphs, as seen in Figure 4-6.

There are several other pruning methods that could be employed to compact the

graph and make it more readable, but these ideas are not implemented in this paper.

For instance, one could condense straight-line data flow that passes through a linear

sequence of node-edge-node into a single node. One could also rewrite nodes based

on how many times each is used as input to other nodes - the goal would be that

rarely used nodes be aggressively pruned to reduce superfluity. As for the edges, one

could reduce the overall number of edges by replacing multiple parallel edges with

a single edge that is either labeled with the number of bytes transferred along that

edge, or a thickness that corresponds to how frequently it is used.

Similarly, the PDG for the substitution cipher is show in Figure 4-7. The same

color conventions apply as above. In addition, the intermediate values corresponding

to the different decoding branches taken by each byte are highlighted in blue, to show

where the control flow branching dictates the data flow graph.

Even for relatively simple programs, it is already starting to get difficult to inter-

pret these results in the form of full data dependence graphs.
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(zet)LLM_5559f6b8(mem load) LLVM_55555191:1fif'918
(zex) LLM55559Of9b8val: 69

(xor) LLVM_555559Of6e6O

(and) LLVM_5555590f79dO

(shl) LLVM_5555590f7a6O

(or) LLVM-5555590fPb8O

(memstore) MEM804981a
val: 77

(mem-store) MEM804981b
val: 6f

(memstore) MEM804981c
val: 72

Figure 4-4: Storing decoded bytes at output of single-byte XOR

0 MEM_8048618 # 0 MEM-S048619 0 O MEM_804861a 0 MEM_80486b

(mem-load) LLVM_-55555836bMf
val: 656d73

(store) TGTEAX g (mem.store) MEMjbffffc7c b
val: 656d73 val: 656d73 W

Figure 4-5: Loading encoded bytes at input of single-byte XOR
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Figure 4-6: PDG for single-byte XOR, after removing LLVM conversions



Figure 4-7: PDG for substitution cipher



4.2.3 Slice Compute Number

Given the program dependence graph generated during a slice, we can compute a

metric for understanding and comparing computation that we term a slice compute

number (SCN). The use-defs chain of computation can be represented as a tree, in

which the root of the tree is an element in the initial worklist, and the leaves of the

tree are the "free variables" associated with the-computation of that element.

The maximal depth of the tree is the slice compute number. A distinguishing

feature of this computation tree from the PDG is that only a small subset of instruc-

tions actually increase the depth of the tree. Non-computation-related instructions,

such as memory loads and stores, LLVM conversion operators, etc. do not affect the

computation tree or the SCN, effectively distilling down the graph to just the signifi-

cant vertices. This metric is influenced by the taint compute number that is used by

the taint analysis of PANDA [7], which is an analogous computation in the forward

direction.

The SCN is implemented as follows: Each element in the worklist is associated

with an SCN of 0 initially. Each trace entry is also associated with a depth that

corresponds to its depth in the computation tree, which is initialized to 0. When

the slicing algorithm is updating the worklist by replacing a definition of some vari-

able with its inputs, it checks whether the instruction it is processing is a signif-

icant computation instruction such as an XOR. If so, it updates the SCN to be

max(def .depth+1, previousscn). Then, the depth of each of the inputs is up-

dated to this new SCN.

For instance, in the case of the single-byte XOR, the relevant computation in-

structions that contribute to the SCN are highlighted in red from the PDG in Figure

in 4-8. The red vertex at the bottom of the graph is the LLVM intermediate value

that is eventually stored into the decoded string outbuf, and the vertices at the

top of the graph are the two inputs to the XOR operation - the key and inbuf.

The slice compute number for each byte is 4. The reason the SCN is not 1 is a

consequence of how single-byte operations are translated from x86 to TCG to LLVM
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4 (zext) LLVM 555590f69b8 (memnload) LLVM 55555905198

(,or) LLVM-5555590f6e6O

4 (aid) LLVM_555590f79d0

(shl) LLVM_5555590f7a60

-- - (or) LLVM_55555907b80

(memstore) MEM_80498 Ia (mem-store) MEM_80498lb
val 77 val: 6f

Figure 4-8: Computation tree for single-byte XOR

the x86 instruction movb or mov Xreg, byte is encoded as a sequence of several

bitwise operations with constant operands (not shown).

The slice compute numbers for several other operations in the FireEye test set are

shown in Table 4.1. The number of instructions executed in the program is obtained

with the callgrind code profiler, and the number of instructions executed in the

replay is obtained from the PANDA log. What ths table shows is that, while there

are a large number of instructions executed by a full system, the relevant portion to

a reverse engineer seeking to understand string decoding can be reduced to several

dozen instructions as part of a slice. Furthermore, if considering only the instructions

that are computationally significant, it can be seen that in each of these cases, the
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Table 4.1: Slice compute numbers

program name median SCN # guest assem- # guest assem- # guest assem-
bly instructions bly instructions bly instructions
executed in pro- in decode rou- in slice
gram tine

RC4 4 212,023 13,952 42
Base64 5 194,092 383 63
substitution cipher 9 199,422 426 28
single-byte XOR 4 195,464 227 18

SCN is less than 10, demonstrating that very little actual computation on the bytes

is actually being performed as part of the decoding.

While it serves as an overall measure of complexity, the SCN turns out to not be a

very useful point of comparison for the purposes of understanding string algorithms.

The SCN doesn't reveal anything about the specific structure of the algorithm - two

algorithms with the same SCN may have vastly different graphs and different modes

of computation. Only when two algorithms vary greatly in how much computation

they actually perform would an SCN be able to distinguish them. In the next chapter,

we do not rely on the SCN to help analyze malware domain generation algorithms,

instead focusing solely on slicing and program dependence graphing.

4.2.4 Implementation details

All slicing code is written in C++ as a PANDA plugin or standalone binary. The

LLVM trace plugin is 1200 lines of code, the standalone dynamic slicer is 1400 (not

including the graph generation subset), and the slice analyzer that produces the slice

disassembly is 250 LoC.

All visualization, such as slice disassembly highlighting and graphing, was per-

formed in a combination of C++ and Python. Constructing the dot graphs involved

300 LoC in C++ using the Boost AdjacencyList graphing class. The IDA Pro and

Binary Ninja plugins to highlight a slice are around 100 lines of Python each. The
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code can be found in the PANDA repository on Github in the footnote 2
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Chapter 5

Malware

Malicious software tends to pose significant challenges to reverse engineers. Malware

employs many obfuscation techniques to deter and confuse security researchers. For

example, most malware will attempt to hide any nontrivial strings from the reverser

by employing custom-made string encoding and decoding algorithms.

There are also many classes of malware that communicate with command-and-

control (C&C) servers as part of their functionality; for instance, to exfiltrate infor-

mation from an infected system, or to receive updates and activation/deactivation

commands. Malware authors must combat not just reverse engineers attempting to

understand their program, but also researchers and law enforcement trying to take

down the network by disrupting communications with C&C servers, often by black-

listing them. To do this, they generate large amounts of possible domain names for

their server, of which only a small subset are registered as C&C servers. However, for

law enforcement to be able to preempt the malware authors, they must register every

possible domain name first, which is an infeasible task. These Domain Generation

Algorithms are employed by many classes of malware - among them, ransomware

(Cryptolocker), banking trojans (Zeus, Pushdo, Torpig, Tinba, Ranbyus), computer

worms (Conficker/Kido), and bootkits (Rovnix). The original malware to use a DGA

was the Kraken botnet in 2008 15], followed closely by Conficker A.

Just ransomware alone caused $5 billion in damages in 2017, and that number is

expected to increase to $11.5 billion this year [111. Thus, it is of great interest to
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security researchers to develop a better understanding of DGAs and create new tools

to combat them.

5.0.1 Domain Generation Algorithms

We focus on using the capabilities afforded by dynamic slicing to analyze different

families of DGA malware.

5.0.2 Classification

As a first step, we attempt to identify DGA features and families via dynamic slicing.

As sources of ground truth, we leverage several existing repositories of domain gener-

ation algorithms extracted from malware 1 2 3, as well as prior work from Plohmann

et. al. on classifying DGAs [131. There are several distinguishing traits of DGAs that

we can attempt to categorize: origin of the seed and generation scheme for producing

domain names; namely, the alphabet or arithmetic algorithm employed.

We choose several pieces of malware represented in the DGA database for testing.

DGA seeds

The first, Ramdo, is a click-fraud malware that, once installed, silently clicks online

advertisements for financial gain. It uses a DGA to generate some number of 16-

character domains with the . com TLD. The corresponding C++ code for the DGA

is given in Listing A.3.

In the case of Ramdo, we can perform a slice on a single domain name that is

output from the program. When running live malware under PANDA, one would

have to capture the domain names using the network plugin, which dumps observed

network traffic to a PCAP file.

A slice on this modest DGA is already quite large, with the program dependence

graph containing 216 nodes and . The full graph is shown in Figure 5-1, following the

'https://github.com/pchaigno/dga-collection
2https://github.com/baderj/domain_ generation_algorithms/
3https://github.com/andrewaeva/DGA
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same color scheme as the graphs in Chapter 4. While the computation of the graph

is difficult to grasp in its entirety, inspecting the topmost portion of the graph reveals

the root of the data flow tree: the 4-byte hard-coded seed of the DGA, Oxdeadbeef

(Figure 5-2).

In reality, the 4-byte seed of Ramdo is configurable and predefined by the mal-

ware author, so the PDG of a sample of Ramdo seen in the wild would have similar

structure, but different values along its computation tree.

In this case, the malware can be identified as deterministic and time-independent.

Furthermore, the seed itself is never modified during the execution of the program.

As another analysis, we look at Ranbyus, a banking trojan that collects financial

information and personal data from an infected victim's computer.

Unlike with Ramdo, it's not immediately obvious what the seeds for the DGA

are, just by visual inspection of the PDG. Instead, the PDG of Ranbyus shows us

why that might be: its most prominent feature distinct from Ramdo is the presence

of several large loops. Loops in the PDG signify that an algorithm has some internal

state that it is reusing/updating. These types of loops are also observed in common

hash functions such as MD5 and SHAl, which are calculated by repeatedly operating

on an internal state that is 16 bytes and 20 bytes, respectively.

There are four large cycles in this graph - this can be determined by a graph

analysis library such as Python's networkx. The cycles are boxed in red in Figure

5-3 and enlarged in the following figures.. In each case, the initial value of the state

is displayed at the root of the loop - 0 (Figure 5-4), Oxb (Figure 5-5), Ox74 (5-6),

and Oxdeadbeef (Figure 5-7). These values correspond to the local day, month, and

year (offset from 1900) on the guest VM, as well as the initial seed to the DGA.

Without knowing what the guest system's time is, it would be difficult to determine

that these bytes are time-dependent, however. With this information, it's possible

to see that Ranbyus is time-dependent, but also contains a configurable 4-byte seed.

Time-dependence is perhaps the most common type of malware DGA - 25 of 43

malware families studied by Plohmann et. al. were of this form.

The full DGA is given in Listing A.4, where it can be seen that the local time and
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Figure 5-2: Ramdo PDG input seed

Table 5.1: Time spent to produce slice

malware name generate recording generate trace perform slice + total time
graph genera-
tion

Ramdo 3s 55s 16s 74s
Ranbyus 4s 82s los 96s

seed are updated upon producing each byte of the domain. This leads to a heuristic

for identifying DGA internal state from data flow graphs: the presence of loops in

the PDG that are repeatedly involved in the computation of the output domain.

The total time to produce the PDG from the malware DGA sample trace is under

two minutes. Table 5.1 shows the time taken to execute each phase of slicing for

Ranbyus and Ramdo - for Ranbyus, 4s to generate the recording, 82 seconds for

trace generation, and 10s to perform the slicing algorithm/graph generation.

By comparison, manually reversing each piece of malware is much more difficult.

Plohmann et. al., presumably very experienced reverse engineers/malware analysts,

spent one day on each piece of malware. From past experience, it's expected that much

of this time is spent defeating malware's layers of static obfuscation - code packers,

disassembler confusion, etc. With a dynamic slicing system, all of the difficulties in

static reversing can be bypassed, as well as many dynamic obfuscation techniques such

as dead code insertion. Thus, the manual effort of reversing DGAs can be drastically

reduced.
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Figure 5-4: Leftmost cycle: byte containing day

Figure 5-5: Middle cycle: byte containing month

Figure 5-6: Rightmost cycle: byte containing year
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Figure 5-7: Bottom cycle: byte containing seed
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Chapter 6

Conclusion

In this thesis, we have demonstrated a compelling use of dynamic analysis for program

understanding in the form of dynamic slicing. We implemented a dynamic slicer

using data collected from a PANDA full-system recording and LLVM instrumentation.

Then, we take steps to analyze this output via traditional disassembler tools, as well

as Program Dependence Graphing. We first apply this analysis to string decoding

routines, such as common substitution ciphers and Base64. Then, we investigate the

Domain Generation Algorithms employed by malware to produce Internet domain

names for C&C, attempting to determine the structure and state of DGAs based on

a dynamic slice of the observed domain names.

The results demonstrate that dynamic slicing captures a full picture of a system's

computation of some result state, but requires the correct visualizations to be useful

to reverse engineers. The goal is always to reduce the human effort that malware

analysts and reverse engineers need to manually understand complex programs, and

dynamic slicing is just one powerful tool in the toolkit of automated program analysis.
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6.1 Future work

6.1.1 Further exploration of malware

The DGAs studied in this paper are far from the most complex observed in the wild.

Malware have been known to use very unique sources of entropy for its seed, such as

foreign exchange rates and Twitter trends, etc. [131. In addition, some malware draw

from a distinctive alphabet, such as text files downloaded from NASA, the Ninety-

Five Theses by Martin Luther, and the DNS RFC (Gozi). While we did not perform

slicing or program visualization on these samples, it would be interesting to see what

benefit slicing can provide in these unique cases.

Another rich area of study for malware string manipulation is obfuscation of func-

tionally significant strings in the program, such as filepaths, to deter reverse engineers

from determining the true functionality of all or part of the binary. There are many

techniques that malware employ to this effect - custom string decoding algorithms,

or redundant computations that drown out significant instructions, etc. It's expected

that dynamic slicing would be able to both locate key features of such decoding

algorithms and pinpoint the relevant code among the chaff.

6.1.2 Expanding dynamic analysis

Dynamic analysis is a fast-growing field in the security space.

There are many possible further applications of dynamic slicing, particularly in

conjunction with other types of dynamic analysis. A large challenge for fuzz testing,

a common dynamic vulnerability discovery technique, is creating a test harness from

which to begin exploration of the program by mutating inputs. Dynamic slicing could

be used to determine the initial system state to create the test harness, allowing faster

fuzzing with less overhead.

Another potential application of a slice could be in dynamic reverse debugging.

PANDA supports time-travel debugging in which the user can step backwards, as well

as forward, when debugging a replay in a debugger such as GDB. Setting temporary
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breakpoints at the instructions that are part of a dynamic slice would allow the reverse

engineer to reverse-continue the system to points of interest and inspect live system

state.

While we didn't find the plain SCN metric useful for malware, we imagine that

it has applications elsewhere, if it were combined with other information gathered

from the system. The SCN would benefit from including a temporal component,

in which one can see whether the heavy SCN computation is spread out across the

whole program, or clustered in a small region at the beginning or end, which may

help differentiate different algorithms.

6.1.3 Program Dependency Graphing

Much work can be done in reducing the clutter of our current graphs and extracting

useful information in both a visual and automated fashion. Increased graph pruning

and compaction would make the graphs more pleasing to the eye and easier to follow

manually. More graph analysis enabled by graph libraries such as networkx could

also help to distill these large graphs into a more readily comparable set of metrics,

such as connectedness and vertex cover, which can help detect free variables, DGA

seeds, etc.

While there is still a vast amount to explore, this thesis lays the preliminary

groundwork for slicing-driven program understanding.
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Appendix A

Code Listings

int decode(void *outbuf , size_ t outlen , const void *inbuf , size t

in len , unsigned char key) {
if (out_ len != in len) {

return -1;

}

for (unsigned int i = 0; i < out len ; i++) {
((char *)out_ buf)[iI = ((char *)in buf) [i] key;

}
if (out_len > 0) {

((char *)outbuf)[out-len - 1] = 0;

I

return 0;

}

Listing A. 1: Single-byte XOR
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char * key = "dRSTzVefgHlhUJK2tjpLqru. yOislvwOPxEF314kcWXn/
o7Ym9BCD5MN6GQa8AbZ";

void __ cdecl substitution _cipher(char * encoded , int len) {
int i;
int keyoffset
char *pEncodedChar;
int C;

for (i = 0; i < len; i++)
{
keyoffset = 0;
pEncodedChar = &encoded [i;
c = encoded [i];

keyoffset = ((char *)memchr(key, c, 64) - (char *)key);

if (
if
if

c

keyoffset >= 26 )
( keyoffset >= 52
( keyoffset < 64
= ( keyoffset - 6)

{

)

}
else {
c = (keyoffset + 39);

}
}
else {
c = (keyoffset + 97);

}

*pEncodedChar =c

}
}
int main(int argc, char **argv){

char in-out [] = "xzhhKDmKjhT"
substitution _cipher (inout, st

}
ren (inout));

Listing A.2: Substitution cipher
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char domain [17];

int main(int argc, const char * argv[]) {
unsigned int initial _ seed = OxDEADBEEF;
int domain _iterator = 0;
int numdoms = 0;

while (numdoms < NUMITERATIONS) {
unsigned int xorl = 0;
unsigned int shi = initialseed << 1;
domain_ iterator += 1;
unsigned int stepi = domain _ iterator * shi
unsigned int step1b = domainiterator * initial_ seed
domain_ iterator -= 1;
unsigned int iter _ seed = domain _ iterator * initial-seed
unsigned int imul _ edx = iterseed * 0xia;
xorl = stepi ^ imul _edx;

int domain length = 0;
while(domain_ length < Ox10)

{
unsigned int xorl _divide = xorl / 0xia;
unsigned int xorl remainder = xorl % Oxia
unsigned int xol_ rem_20 = xorlremainder + Ox20;
unsigned int xol_step2 = xol _rem_20 Oxal;
unsigned int dom_byte = 0x41 + (Oxal xol_ step2)
char dom[3];
sprintf(dom, "%c", (uint8 t) dombyte);
strcat(domain, dom);
unsigned int imul iter = domain_length * stepi;
unsigned int imul _ result = domain_length * imul iter;
unsigned int imul la = 0xia * imul result
unsigned int xor2 = xorl ^ imulla;
xorl = xorl + xor2;
domain_ length += 1;

}
strcat(domain , ". com");
printf("%s\n", domain);
domain iterator +=1;
numdoms += 1;

}

return 0;
}

Listing A.3: Ramdo DGA
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char domain [15];
unsigned int seed = Oxdeadbeef;

int genDate(unsigned int date []){
unsigned int year;
unsigned int month;
unsigned int day;

time _ t currTime = time(NULL);
struct tm *IocalTime;
localTime = localtime(&currTime);
year = localTime->tmyear & Oxff;
month = localTime->tm mon + 1; /7

months since January + 1
day = (localTime->tmmday / 7) * 7

date [01 =
date [1] =
date [2] =
return 1;

Just plain ol ' month - Number of

day;
month
year ;

char* dga(unsigned int day , unsigned
unsigned int nr)

{
printf("/od,u0/od,u0/od\n", day, month,
char *tlds[] = {"in", "me", "cc"

org"};
int d;
int tid index = day;
for(d = 0; d < 1; d++)
{

unsigned int i
for(i = 0; i < 14; i++)
{

}
pri

I

int month , u

year);
"1s u"1, "1tw ",

nsigned int year ,

"net", "com", "pw,

day = (day >> 15) ^ 16 * (day & Ox1FFF ^ * (seed ^ day));
year = ((year & OxFFFFFFFO) << 17) ((year (7 * year)) >

11);
month = 14 * (month & OxFFFFFFFE) ((month (4 * month))

>> 8);
seed = (seed >> 6) ((day + 8 * seed) << 8) & Ox3FFFFOO;
int x = ((day ^ month ^ year) % 25) + 97;
domain [i] = x;

ntf ( "%s.%s\n" , domain , tids [tidindex++ % 8]) ;

main ( int argc , char *argv[])

unsigned int date [3];

genDate( date) ;
//dga(atoi(argv[1])
dga(date [0], date [1]
return 0;

I

atoi(argv[2]) , atoi(argv[3]) , 1);
date [2], 1);
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Listing A.4: Ranbyus DGA

}

}

int

{
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