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ABSTRACT

This investigetion 1s concerned with the problem of the
detection of weak pulse signals asccompanied by random noise,
with particular emphasis upon the case of radar signals.
This problem is 1lnvestligated both theoretically and experi-
mentally, the experimental investigation being devised so as
tb check the theoretical results in so far as possible.

In the case of radar signals, the information relative
te any one radar target arrives in the form of & train of
pulses--N 1in number} The individusl pulses in the pulse
train are perturbed by noise, assumed to originste within

the receiving system, which cause

o

TN N

s the receilver ou%put pulses E v
to be randomly distributed in amplitude. In the absence of a |
target signal, noise EEEFEF will still be present and hence ,};GJ
can be mistaken as target signals. Based upon the values of e
the recelver output signsl obtained in N successive observa-
tions at a particular range position, the detection system
must make a decision snd report whether a signal or dnly
noise 1s present. It is shown that this decislion can be
based upon the result of a functional operation on the ob-
served recelver output signals, Xl, xz . o . XN, by &n oper-
ator R(Xy, X5 . . . Xy). This operator 1s called the detection
system function. The effect of noise in the system is to cause
two types of errors, as foilows:

Type I - with only noise present, the detection

system reports a signal;

i1
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Type 11 - with a signal present, the detecticn
system reports no signal.

These errors are of a statistlical neture, and hence a prob-
abillty measure of their effect upon detection system per-
formance is required. A probebility measure originally
proposed by D. O. Ncrth is adopted for this investigation.
The performance with respect to type-I errors is expressed
by the noise probability, Py, and with respect to type-II
errors by the signal detection probability, PD.

The system optimization problem considered is the deter-
mination of the detecticn system function that maximizes the
Cetection probabillity subject to the condition that the noise
probability 1is heid constant. Ccnsideration is given first
Lo the analytical representation of the signal as delivered
by the radio-frequency portion of the receiving system (in-
cluding the intermediate-frequency amplifier and filter).

It is shown that when certeln ideslizing assumptions are
mede, & discrete-sample representation of the signel is’pos-

sible in which the semples are all statlistically independent—

a fact which greatly simplifies the analysis.

The optimization theory is developed first for the case
of the detection of a single radlo-frequency pulse of known
phase angle. A geometrical representation of the signal
fsmples 1g given, which in turn suggests & method of repre-
senting geometrically any erbitrary detection process or

detection system function. The problem of choosing the
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optimum detection system function 1s then solved by en appli-
cation of the theory of methemstical stetistics, following
which the velidity of this solution is demonstrated. It 1is
found that the best detection system in this case is one
in which cbservation 1is made of only the component of the
recelver output signal in phase with the pulse signsl to be
detected, the so-called coherent detection system. The per-
formance characteristics of this type of detection system
are analyzed and the results presented in grephical form.
When the phase angle is unknown, the system defined by
the optimization theory requires the observetion of the ampli-
tude of the receiver output signal witnout regerd for its
pnase angle, tinls being the conventional envelcpe detection
process. The resulté of the analysis for this case are found
10 differ but slightly from those for the coherent detector.
When N, the number of'pulses avellable for detection,
ls grester than one and the phase angle of each is known,
the optimum detection process consists of coherent addition
or integrationvof the signals prior to rectification, fdl-
lowed by coherent detection. The minimum signal strength
required fér detection in this case 1= smaller than that
required for the détectibn of a single pulse by the factor N.
When the phase angles of the signals are unknown but constent,
colierent iﬁtegration 1s still cslled for, but envelope detec-

tion 1lg required in place of coherent detection.



Finally, the case of cetection of a trsin of pulses
heving random phases 1s considered. It is found that a
straightforward application of the optimization theory does
not le&d to & unique solution of the problem, the cptimum
detectlion system being defined 1n this case only if the
strength of the target signal to be detected is specified.

In this case, the maximum likelihood principle of mathemat-
lcal statistics is used to obtain & unique solution, although
the detection system thus defined is not an optimum system in
& strict sense. This solutlon requires the addition of the
recelver output pulses following envelope detection. An
approximatie analysis based upoh the central limit theorem
shows that the minimum deteétable signal strength varies in-
versely with‘N for N very small, but as N increases, the de-
pendence approaches asymptotically an inverse square-root law.

Another process of signal integretion is analyzed which
differs from the ideal integrator in that the signels decay
exponentially'with time. It is found that the minimum de-
tectable signal strength for this case is greater than that

for the ideal integrator by approkimately one-half decibel.
‘With the exception of the»coherent integration and detec-
tlon systems, all of the above-mentioned éystems Wefe studied
experimentally. The experimentsl results obtained differ from
ihe theoretical results by less than one-half decibel in ell
but & very few instences. The reﬁge of experimentel condi-
ticns investigated.is considered to be adequate to establish
the validity of the theory to within the limits of the experi-

mentsl accuracy.
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CHAPTER I
INTRODUCTION

1.1 Introductory Discussion of the Optimlzation Problem.

This investigation is concerned with the problem of the de-
tection of weak pulse signals imbedded in a background of
random noise, a proﬁlem of importance in relation to certain
types of comﬁunication systems as well as to radar detection
systems. Although many of the results presented here are
applicable in both cases, the investigation has been planned
primarily with the radar problem in mind. The effects of
noise upon the performence of a radar system is of great
practical significance because 1t is one of the principal
factors that determine the maeximum range at which a speci-
fied object can be detected. This range 1s also influenced
by a number of other factors such as transmitted pulse energy,
operating frequency, antenna size and location, propagation
characteristics of the path between the radar station and the
object to be detected, reflection characteristics of the
object, characteristics of the receiving system, length of
time available for searching the space in which the object
may be located, and, finally, the method by which the sig-
nal at the output of the receiving system is observed or
sensed.ﬁ All of these factors are dealt with to a greater

or lesser éxtent‘in the voluminous literature on the subject
of radar. It is not within the scope of this 1nvestigation

to review even cursorily all of these aspects of the problem.



Therefore, i1t willl be assumed that the reader is familiar
with this subject at least to the extent that it is covered

in a textbook on radar such as Radar System Engineering.(l)

In this investigation, attention is confined to the prob-
lems of ap&lysis and optimization of the detection capa-
bilitles of radar systems with respect to the deleterious
effects of noise disturbances originating within the receiv-
ing system, assuming that the characteristics of the signals
appearing at 1ts input terminels have been determined by
prior considerations.

30 far, the term “"detection" has béen used loosely} how-
ever, it 1s readily appreciatgd that a prepise definition of
the function of a detection system is necessary before a
quantitative investigation 1is possible. This function is to
meke decisions as to the pregenée or absence of objects in
each of a number of volume elements or cells in space which
taken together constitute the volume to be searched. It is
apparent, however, that the character of the signals at the
input terminals of the receiving system will depend upon the
manner in which the space 1s searched or scanned. Because 1t
iz this input signal that is the starting point in the present
lnvestigation, the definition just given 1s not in a conven-
ient form for application.

An alternative form more suitable for present purposes
1s easily deduced by recognizing that the volume elements

scanned by the detection system are scanned in sequence in
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almost every case. Conseéuently there 1s usually a simple
‘correspondence between these vofume elements and points‘on
the time scale. Because of the repetitive charscter of the
rédar signal, information relative to & single object arrives
plecemeal at the receiver. Hence it 1is often more conven-
ient to express the time of occurrence of & received pulse,
not in terms of its position on the usual contlnuous time
scéle with arbitrary origin, but rather in terms of its posi-
tion on a time scale whose origin coincides with the begin-
ning of the transmitted pulse from which the received puise
resulted. Alternatively, becsuse of the correspondence be-
tween points on this latter timé scale and the physical dis-

tance or range of the reflecting object or redar target which

glves rise to the received signal, it is equally satisfactory
to speclfy the range position of the target. The term range
position as used hereafter is to be interpreted in the light
of the foregoing discussion.

AS a resultrof'the azimuth (or‘elevation) scanning ac-
tion of the radar system, the nuﬁber of pulse signals re-
cei&ed from any one radar target is limited, the exact num-
ber depending upon the scanning rate and the antenna béam-
width. Such a successlon of bulse signals will be called é

Pulse train. Denoting this number by N, the required alter-

native definition of the function of the detection system can
now be stated: it is to make decilsions as to the presence or

&bsence of target Signals besed upon N successive observations
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cf ﬁhe recelved signal made at each of 2} nﬁmbér of range
~positions. Mofe specificelly, the radar system must assim-
‘1late this plecemeal information and prcduce & single "yes
or no" report for each range position, this report being
based upon the signal informatlon received within the period
of N pulses. Whatever form it may take, this assimiletion

process will be called integ;ation. It 1s one of the objec-

tives of thils investigation to determine the best method of
signel integration to be used in eny specific case.

In the sbove discussion, the tacit assumption wes made
that the number of pulses per antenna beamwidth was strictly
limited. This 1is equivalent to requiring thet the antenna
radiation psttern be strlctly'confined to a certaln engular
region, with no radiétion occurring outside c¢f these limitis.
This requirement is seldom satisfied in prectice. Further-
more, during the passage of the antenne beam across & rader
target, the received signel amplitude Qill vary in accordé-
ance with the radiastion pattern of the sntenns. Nevertheless,
to avecid undue complication in the ensuing analysis, only the

case of finite pulse trains of constant amplitude is con-

sldered. Even so, the results cbtained are expected to be
appliceble in practice if the antenna beamwidth implied by
this ideslization is properly chosen in relstion to that of
the actual sntenns under cqnsideration.

Beceuse we arerconcerned with the detection of wveak

gignals, the maximum useble receiver amplification 1s %o be



‘desired. For this investigation, the noise originating in

the receiver input amplifier and &assoclated circults as s

result of thermsl agitation and shot effects i1s considered

to be the limiting factor although, in practice, other

sources of'interference, such as electrical interference or

terrain reflections, may be the limiting factors. For a

glven nolse level in the input circuits, the’meximum usable
emplification is that which causes the noise at the output

of the recelver to produce obJectionable effects 1n the indi- Lﬁf i{
cating or sensing element of the system. Here again, a "
. quantitative definition must be formulated to express the

effects of noise on the detection process. The obJection- gfﬂgﬂfjl

able effects are twofold. First, nolse pulses may be mis-

N
s
iy

taken for target signals and give rise to false elarms.
Second, when a signal is present, it may be partially or
totally annulled by the random noise disturbance ancé thus
fail to produce & recognizable response. Because of the
random character of the noise disturbance, it is apparent
that the problem of wesk signal detection can be studiled
adequetely only on a statistical basis.

D. 0. North(z) first advanced a statistical criterion
of radar system performance that recognizes these aspects of
the problem. Because of the somewhat limited availability
of North's feport, and because his criterion 1s used as the

basis for the present lnvestigation, his criterion will be



discussed in detail. However, this discussion is deferred
until the next chapter in order to permit a brief réview of
the background cf the optimization problem to be given first.

1.2 Background of the thimization Problem. The statis-

tical approech in the study of radar system performance ap-

péars to have been first used by A. V. Heeff in experimental
studies conducted at the U. S. Naval Researck Laboratory.(3)*
In these experiments the minimum detectable signal strength
was deflined as that for which an observer was correct one-
half of the time in reporting the position of the signal as
presented upon an A-type cathode-ray oscilldscope display.**
A wide range of experimental condltions was covered in this
investigation, and much informetion useful to the radar sys-
tem designer was obtained. ~Empirical formulas were devel-
oped to represent the experimental results. However, the
euthor 4id not present a theory to explain the observed re-
sults 1n terms of underlying statistical or psychological
factors. ' ’

Experimental investigations conducted at the Massachu-
setts Institute of Technélogy Radiation Laboratory somewhat
dlong the line of‘Haeff's work by Lawson and Ashby consider-
ably extended the scope of the empirical data.(4) .In addi-

tion, they investigated the performance of the Plan Position

*This work, although done in 1941-1942, was not published
until 1946 because of security restrictions.
**Commonly used radar terminology will not be defined here
when it is adequately defined in Reference (1).



.Indicator‘(PPI) over & wide range of experimental conditions.

In all of these exp;fiments‘a human observer was a vital
part of the detection system; hence the psychological char-
acteristics of the observer constituted an important but
. largely unknown factor affecting the results. 1In an attempt
to minimize the randomizing effects of these factors, the
role of the observer was reduced to that of making simple
decisions. 1In the Radlation Leboratory experiments a sig-
nal was presented for a predetermined length of time on the
redar oscllloscope at one of several marked positions. The
Observer was réquired to report at which of the positions he
thought the signal occurred. For any particular set of test
conditions, the fraction of correct statements, after correc-
tion for chance correct guesses, was taken as the detection
probability. The detection threshold was defined as the sig-
nal level at which the detection probability was 90 Percent.
Using this procedure, a wide range of experimental conditions
was covered. It was found that this procedure yielded re-
sults reproduceable both between different obeervers and over
long periods of time.

Along with this experimental work, considerable emphasis
was placed upon the development of a theory of radar detec-
tion to account for the observed results.(4) 1t was neces-
sary, of course, to make certain assumptions concerning the
characteristics of the human obéerver as they affect the de-

tection of signals. The agreement obtained between theory
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and experiment is in most respects qulte satisfactory. 1In
addition, Lawson and Uhlenbeck give a solution to the prob-
lem of determining the optimum detection system according to
the criterion of performance-used in the Radiation Laboratory
research. | |
However, the applicability of'these results for predict-

ing the performance to be expected~of practical redar systems
is open to question on the grouﬁds that thé detection of sig-
nals in practice is not a matter of meking a2 simple selection
of one of a number of possible alternatives (the several pos-
sible range positions at which the signel 1= presented) glven
the a priori knowledge that a signal 1s present at one posi-
tion only; It is the author's belief that‘the approach to
the problem advanced by North and adopted;for this 1lnvesti-
gation 1s conslderably more realistic than that used 1in the‘
Radiation Laboratory work. However, it should be said of the
Radiation Laboratory criterion that it is well adapted to
making subjectivé tests, and a iarge quantity of experimental
datas wes obtained by this method.(4) A

~In some theoretical investigations, including portions
cf the work of Lawson and Uhlenbock, the criterion of detec-
‘tion was formulated only to the extent of assuming that de-
tection was possible if fhe signal-to-noise ratio of the
video signal presented on tﬁe display was of the order of
megnitude of unity.(5:6) on this basis, it is possible to

correlate a substantial portion of the experimental data with



basic statistical4phenomena. HOwevef, such a detection cri-
terion 1s obviously inadeqiate as a basis for a general study

of the detectlion prcblem as it does not provide for the de-

R

terminetion of absolute signal 1evels required for detection.
Whatever the limitations of these earlier methods of
4attack, they have served to bring into pefspective the rela-
tionship between many of the importantvparameters 6f a radar
system and theirveffects upon SIgnal detectablility. This 1s
especlally true of one of the more ilmportant aspects of the
gignal detection pfocess, nameiy that of signal integration.
It is now quite generally appreciated that the ability of
the radar display system, or of the observer, to integrate
the piecemeal information as supplied by the radar receiver
contributes greatly to the performance of a radar detection
system. Signal integration as found in convehtion&l'radar
systems 1s generally thought of as an averaging process
wherein the random nolse fluctuations at each point of the
range scale are "smoothed out" while & recurrent signal
pulse 1is augmentéd, thus producing an improvement in signal-
to-noise ratio. The analysis of the effects of this "aver-
aging" type of signal integration upon signal detectability
on the basis of the signal-to-noise ratic criterion has been
carried out by a number of workers.(4'5’7) However, as
noted above, these results éannot be used to calculate abso- ; ff

lute signal levels required for detection. ;
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1.2 Background of the Development of Electrical Methods

of Signal Integration. Beceause this investigation is ccn-

éerned in part with the experimental study of the perform-
- ance characteristics of signal detection systems employing
certain techniques of electrical signsl integration, a brief
account of the development of such"techniques will be given.
The first form of electrical slgnal integration to be used
appears to have beenvthe go-called range-gated integrator.
In this system, signals occurring in a short range-element
or gate are accumulated in an electrical energy storage de-
vice. In its simplest form, the energy storage device is a
capacltor connected to e high-impedance metering circuit.
The origin of this type of integratcr 1s not known to the
author. This system is capable of extremely long integration
periods and has been developed to a high degree of perfec-
tion.(4’8) However, it 1s of limited utility in search radar
applications because it is capable of observing only a single
range element at a time. The use of a multiplicity of such
elementary 1ntegfators to overcome tnis difficulty was investi-
gated by T. T. Eaton and I. Wolff.(g) However, because of its
complexity, such a system has never found practical application.
Apparently the first suggestion of e method of electrical
signal 1ntegra£ion capable cf integratiﬁg simultanebusly at
each of a large number of range positions was made as early

as 1940 by Ceptain S. M. Tucker, U. S. Navy. 1%} 1n tnis
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method the signal to be integrated is impressed upcn the in-
‘put terminals of a delay line, The output of the delsy line
is fed back regeneratively via an amplifier to the input ter-
minals of the delay line. The delay through the amplifier
and delay line 1s mede exactly equal to the spscing between
the pulses. Hence a pulse from the receiver travels through
the delay line and the amplifier and arrives back at the in-
put at the same time as the next pulse from the receiver.
Thus, properly spaced,fepetitive pulses bulld up according
to the well-known theory of regeneration; whereas noise
pulses, occurring randomly in time, build up less repidly.
Therefore signals are amplified more than the accompanying
noise. | |

Because of the long delay time around the feedback loop,
the system is stable only if the loop gain is less than
unity. With this stabllity requirement satisfied, a single
Pulse applied to the input terminals of the integrator will
be recirculated around the loop but with its amplitude re-
duced by a constant factor each trip around--e decay process
which is exponential in character.

In early experiments with this integration system, con-
ducted by the RCA Laboratories Division of the Radio Corpora-
tion of America, the system showed considerable promise. As
a fesult extensive development work, with the objective of
Producing a system for field tests, was carried cut by the

RCA Labofatories under contract with the National Defense
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Fesearch Committee.(lo) For this purpose a lumped-parameter
lelectrical delay line of 710 sections was ceastructed. This
large humber of sectlons was used in an attempt to minimize
distortlion of the pulse signals resulting from repeated re-
circulation through the delay line. Using this delay line,
it was found in labqratory tests that = feduction of 6 deci-
bels in minimum detectable signal strength was obtalnable
when observing contlnuously-repetitive pulses, i.e., pulse
trains of very long duration such as would bé recelved by a
‘non-scanning radar system. The principal limiting factors
were departures of the delay-frequency and amplitude-frequency
characteristics of the delay line from the ideal. Because of
these limitetions in the delay line, and because it was antic-
ipated that 1t would be very difficult to overcome them, no
field tests were made. No other method of constructing an
electrical delay line of the required fidelity was lmmedisately
available, and the project was terminatéd. However, in the
final report on this project, mention was made of feports from
oﬁher laboratories of promising results obtained with the
ultrasonic delay line as a high-fidelity delay system. It is
this system that was used in the experimental investigations
to be described in latérkchapters.

Suggestions have also been advancedAfor the use of an
electrical or ultrasonic delay line as a signal integrating
device in which no external feedback path is used. 1In 1941

W. W. Hansen Proposed to make use of the reflection properties
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of an electrical delay line open-circuited at both ends.(ll)
'If the attenuation factor of the line is sufficlently small,
a signallapplied at one end will travel back and forth
through the line. When the round-trip delay is made equal
to the spacing between pulses, thlis type of integrator is
equivalent to the feedback type previously described. How-
ever, because of the attenuation of the signal caused by
unavoldable losses in such a line, thils system 1s not prac-
ticable.

The use of two-way repeaters inserted in the line to
overcome the effects of line attenuation was made the subject
of a patent application filed in September, 1942, by T. T.
Eaton and D. G. C. Luck.(lz) Thls system, while workable in
principle, 1s probably more complex to construct than the
feedback integrator because of the need for balancing-coils‘
or transformers in the two-way amplifiers, and hence‘does
not appear to be of practical interest.

The development of electrical signal integration tech-
niques has not been centered entirely around the use of the
delay lines. Techniques for thé storage énd integration of
signals in thé'form of electrical charges deposited upon di-
electric surfaces have been the subject of a number of inves-
tigations. The first experiments aldng this line were re-
ported by T. T. Eaton and I. Wolff,(9) who made use of the
orthicon camera tube as the signal storage device. It was

found, however, that the spatial non-uniformity of the
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orthicon storage surface severely limited its performance as
Van integrator. Moreover, because the slgnal information was
presented to the orthicon via s cathode-ray tube and optical
system rather than in electrical form, this system was suffi-
clently complex as to be of doubtful practical value even if
the orthiéon target uniformity couldlhave been sufficiently
improved.

An electrostatic signal storage tube much better adapted
than the orthicon tube for use as a signal integrator is the
‘barrier-grid storage tube.(13) J. V. Harrington and T. F.
Rogers have reported the results of an investigation of the
use of this tube for signal integration.(7) They found that
this method of signal integration is characterized by the
same exponential decay process that was noted above for the
delayed-feedback integrator. This decay process 1s a result
of the erasure of stored charge by the scanning beam. The
rate of erasure can be controlled, within limits, by adjust-
ment of the scanning-beam current. This erasure factor is
analogous to the loop-gain'factor for the delayed-feedback
integrator. Therefore thisftype of storage-tube integrator
comes within the scope of the anslysis to be presented in
later chapters. However, for the experimental investigation,
the delayed-feedback integrator was chosen because the range
of experimental conditions attainable is greater than would

have been the case with the storage-tube integrator.
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Numerous other types of storage tubes have been described

in the literature. However, none of them possesses the ex-
ponentlal decay characteristic, and therefore they do not

come within the scope of this analysis.
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CHAPTER TII
THEORY OF OPTIMUM SIGNAL DETECTION SYSTEMS

2.1 Mathematicael Formulation of System Optimizetion

Problem. In Chapter I the main features of the signal detec-
tlon problem were discussed in general terms. In this chap-
ter a mathematical formﬁlation of the problem is given, and

& general analyticel solution to the problem of determining
optimum signal detection systems 1s found. This theory is
then applied to several cases of practical interest. In later
chapters the predictions.of the theory are compared with the
results of the experimental phase of this research.

The firstvstep in the development of the theory 1is to
devise a mathematical representation of the detection process.
Each target, as it is scanned, 1s assumed to produce a se-
quence of radio-frequency signal pulses, N in number, at the
input terminals of the detection system. These signal pulses
there become mixed with noise. The range position and the
instant 6f tihe et which they occur are unknown. It is the
function of the detection System toc examine the signals at
each range position and report whether s siénal or only noise
(no signal) is present.* This report will therefore be based

upon &t most N signal samples &t each renge position.

*The meaning of the phfasegﬂéaéh fange poéition" must be
clarified before a quantitative analysis is attempted. This
matter is taken up in the next section.
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A general mathematical representation of the detection
process that 1s consistent with the above idess is then as
follows: Let the N signal (or noise) sampies at any one
range position be completely cheracterized by measurable
quantities Xy, Xo, « . . Xy « « o Xy, and let the detec-
tion system produce s report, R, which 1s s single-valued
function of the sample values X3 « ... Xy, 1.e., define a

detection system function

R =R(X3, X . . . Xy) (2.1)
Then establish a critical level, Ry, and when R { R, accept
the hypothesis that only noise is present; conversely, if
R 7 Ro, accept the hypothesis thst a signel is present.
Beceuse of the presence of noise, there will be two possible
types of error at esch range positlon: .
type I - with only noise present, the detection
system reports a signal;
type II - with a signel present, the detection
syétem reports no signal.

Type I errors are, of course, faslse alarms; and, for
obvious reasons, their average rate of occurrence must be
held to a low value, determined by the operational usebto
which the system is to be put. It will be seen later that,
once the system function R(xl o o e XN) ié chosen, the rate
of occurrence of type I errors cen be controlled by the

cholice of the critical level, Ro. A suitable measure of
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detection system performance with respect to type I errors

is, therefore, the average false glarm rate, hereafter de-

noted by ng.

A measure of sjstem performance with respect to type II
errors must alsc be adopted. It cen be seen at once thst the
rate of occurrence of errors of this type will not be & suit-
able meesure. Because errors of this type can occur only
when target signals are present, their rate of bccurrence
| would depend upon the rate of occurrence of signals and
hence upon factores other tﬁan the psrameters of the detec-
tion system 1tself--an obviously unsatisfactory situation.
If, instead, a probability measure of type II errors is
adopted, this logical difficulty is avolided because the prob-
ability of a type II error is just the fractional part of the
total number of signals that occur which do not produce re-
sponses. The probabllity of detecting & signal is one minus
the probabllity of a type II error, because when a signal is
present elther it will or will not be detected, and these two
possibllities are mutually exclusive. The probébility of de-
tectlon of & signal, denoted by Pp, 1is used as the measure of
system performance with respect to type II errors.

An optimum detection system can now be defined as one
vhich meximizes thé detection probabilitﬁ, Pp, when the false
alarm rate, nf, is scme specified constant value. It remsins
now to discover hov to determine this optimum system but,
before & soclution to this problem is attempted, certein addi-

tional polnts should be clarified.
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2.2 Discrete Sample Representation of Signals and Noise.

In the foregoing discussion, 1t has been stated that the op-
eration R(X; . . . Xy) should be applied at "each range posi-
tion" without having defined the meaning of this phrase. To

clarify this aspect of the problem i1t 1s necessary to con-

sider the nature of the signal delivered by the radio-frequency

portion of the receiver (including the intermediate-frequency
amplifier). The overall amplitude versus frequency response

characteristic, A(f), 1s almost universally‘a curve somewhat

as shoﬁh by the solid-line curve in Fig. 2.1, i1i.e., an approx-

imately symmetrical curve centered at frequency f, and of
width, Ag, small relative to f,. For this case the amplifier
output current resulting from’gglggugziginating in the ampli-
fier input circuits has a power spectrum density, w(f), given
by |
w(f) = a2(¢) | (2.2)

In order to simplify the following discussion, the ac-
tual amplifier 1s assumed‘to have beén replaced by an idesl-
ized emplifier having & uniform response characteristic of
width, A, as shown in Fig. 2.1 by the dashed-line curve.
This 1dealized amplifier will produce & noise current, IN(t),
having the same mean square value,\yo, as that for the orig-

inal amplifier if

_ﬁ%(mf  (2.3)
Af = w ()

i o

i
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Rice hes shown thst thls noise current can be repre-

sented as follows:*

In(t) = Ixt) Cos wet +Iy(t) Smuhst (2.4)
where "
Iy (£) = X cn Cos[(wa-wi) t - Pn]
Py (2.5)
= $ e Sinl(@n-t~ @)
n=\ -
IX and IY can be considered ss modulation factors for the

sinusoidal and cosinuscldal terms and are, of course, random
functions of time. In these expressions the Cn's are con-
stants proportional to A(f) and the Lfn's are randomly dis-
tributed from O to 2T . For any particular set of C,'s and

(en's, it 1s seen that Iy and Iy will be functions of time

defined by & sum of sinusoidal terms having frequenciles
(1/217) (W -9, ), n=1, 2 . . . k, and having amplitudes pro-

- portional to A(f). Hence, Ix and Iy will contain frequency
components lying between zero and (1/2T ) (W - W,) where k is
the largest value of n for which Cp # 0. Hence the highest
frequency component in Iy and Iy 1s A f/2. Furthermore, Rice
has shown that Iy and Iy are statistically independént vari-

ables with normal distributions having zero mean and varl-

ance \VO'

*See Reference (14), especially sections 2.8 and 3.7.
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- Now Shanncn has proved that any function of time, £(t),
limited to & band from zZero to W cycles per second is cém-
pletely determined by glving its ordinates at a series of
discrete points spaced 1/2W seconds apart. (15) Applying this
result to Ix and Iy, it follows that any noise or signal wave-
form delivered.by &n amﬁlifier of the type undér consldera-
tion can be precisely specified by two sets of ordinates,
their respective values being glven at a series of discrete
points spaced 1/A f seconds apart. This representation is
illustrated in Fig. 2.2. 1In the development of the theory
of optimum detection systems, it will be found convenient to
use this discrete sample representation. A further property
of this representation is of importance in relation to the
statistics of these sample values. Rice has derived the auto-
correlation function of the variables Ix(t) anngY(t).(l4)

For the idealized case under consideration, it is

| _ _ Sin (Tof T) 6y
G- o= e e

Hence the autocorrelstion function is zero for T = n/OF,
n any integer. Since this is the spacing between the sample
ordinates, 1t follows that all of the sample values are sta-
tistically independent. This fact greatly simplifies the
statistical analysis.

The meaning that should be assigned to the expression

"each range position" is now quite clear. As used hereafter,
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this expression wlllmean "each of a sequence of points in
time separated by ean interval 1/Af". This 1s not intended
to imply that the detection system must actually bperate on
the basis of sampled information. It merely means that
nothing of value in the original signal would be 1gnored

if 1t did so operate. Hence an anslysis based upon this
sampled informstion is still completely general.

The false alarm rate, ng, can now be expressed very
simply in terms of the statistics of the samples and a hypo-
thetical sampling rate Af = 1/(interval between samples).

. A felse alarm can be considered to occur whenever the sample
values assoclated with any one range position are such as to

meke R(Xy . . . Xy) > Ry. Let Py be the probability of this

event happening, hereafter called simply the noise probability.
Then the false alarm rate is given by |
np =Py x Af/N (2.7)

where N is the number of successive radar repetition periods
over which the received signals are "integrated'. Because
of this simple relationship, 1t is equally satisfactory for
}purpose of analysis to characterize the false alarm perform-
ance by Py as by ne, although the quantity of ultimste inter-
est to the system designer is, of course, ne.

This probability measure of false alerm performance apQ
pears to havé been first used by North.(z) The idea of a

false alarm rate and its connection with the noise probability
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was not introduced until somewhat leter. This alternative
approach has been used in some unpublished work, of which a
paper presented at the 1950 Convention of the Institute of
Radio Engineefs is typical.(lé) Apparently, however, the
equivalence between these two measures of false alarﬁ per-
formance has heretofore been accepted largely on 1ntu1tivé
grounds. | |

It is appropriate at thils point to note the consequences
of replacing the actual receiver filter by a rectangular
filter. Using as a criterion the ratioc of the peak signal
power to average noise power at the output of the receiver
filter, North showed that the optimum filter for the recep-
tion of rectangular pulses could be replaced by a rectan-
gular filter of the proper bandwidth with a loss of only one
decibél in signal-to-noise ratio.(z) If this substitution
were not made in thils investigation, a Very considerable elab-
oration of the theory would be required. In the first place,
1t is to be noted that there would be no definite upper limit
to the frequencles contained in the functions Iy(t) and Iy(t)
since the Cn's appearing in Eqs. 2.5 would approach zero
asymptotically at frequencles widely separated from the band-
center frequency, fo' Hence the representation of IN(t) by
the use of sample ordinates would be exact only 1f the spac-
ing between fhe sampling points were much less than 1/Arf.

As & further result, the sample ordinates would no longer
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be statistically independent, thus greatly complicating the
statistical analysis.

Returning now to the question of system optimizétion,
the probiém éan be formulated as follows: It 1s requlred to
determine the system function R(X; . . . Xy) vwhich maximizes
the detection probability, Pp, while the noise probability,
Py, 1s held constant at some specified value. It appears
that thls problem was first investigated by North by =
method which led to considerable analytical complexity.(17)
He found it necessary to use certain mathematical spproxima-
tions 1in his analysis with the consequence that his results
apply only to_the case of the detection of signals small com-
pared to noise. In the theory developed here, a different
line of approach 1s used which, in addition tc yielding gen-
erael results 1n a straightforward manner, also serves to
throw additional light upon the nature of the signal detec-
tion process. Iurthermore, in this investigation the start-
ing point 1s the signal avallable ét the output of the 1.f.
amplifier prior to rectification, rather than the video signal
after rectification, the starting point in North's analysis.

The basic mathematical and probability theory used in
this new approach 1s an adaptation of the general theory of
tests of statistical hypotheses, as developed by J. Neyman
end E. S. Pearson.(18) 1n this theory one is concerned with

the problem of deciding how best to choose between two
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alternative statistical hypotheses on the basis of a finite
set of sample values or observations obtained by some speci-
fied sampling process. An elementary discussion of this
problem can be found in most introductory texts on mathe-
matical statistics. However, a much more adequate treat-

ment is available in The Advanced Theory of Statistics,

Volume II by M, G. Kendall.(19)
In this chapter the required theory is developed in
terms of the signal detectlon problem. Also, instead of
developing the theory initially in its most general form,
some speclalized cases are first considered in order to illus-

trate the basic ideas.

2.3 Solution of the System Optimization Problem. Con-

sider first the case where onlyva single observation is made
at each range position. This situation arises in the case of
a radar system which scans the fleld of view very rapidly and
in which there 1s no memory from one scan to the next. Let
us suppose that the target signal and accompanyling noise are
observed at the output of a radio-freduency amplifier having
the idealized bandpass characteristic described above. In the
following discussion the unqualified term "signal" is used to
refer to the time-varying receiver output-current without
implying the presence of a target signal. Thus this "signal"
may be entirely a reéulﬁ of noise disturbances. It is the
function of the detectlion system to decide whether or not a

target signal is present.
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It 1s necessary now to decide what characteristics of
the recelver output signal should be measured at each range
positioﬁ to serve as a basls for the detection of target sig-
nals. It-wasunoted above that the signal at the output of the
radio-frequency amplifier can be represented as the sum of two
sinusoidal quantities whose phases are in quadrature and whose
amplitudes are independently and normally distributed. Thies
analytical representation leads to the usual geometrical rep-
resentation, shown in Fig. 2.3, where the two vectors, Ix and
Iy, represent the amplitudes of the two sinusoidal quadrature
components of the noise dis;urbance.(zo) If, in addition, a
target signal of amplitude P is present, it can be represented
by & third vector, P, as shown. Its phase angle, © , is deter-
mined by the time of arrival of the target signal and by the
instant of time chosen as the origin of the time scale. The
resultant receiver output signal is represented by the vector
z.

Because of the presence of noise in the recelver, it is
not possible to measure P and © but, instead, only the mag-
nitude, Z, and angle,(P » of the resultant of the signal and
noise components. This resultant is equally well defined by
its X and Y components, and this latter representation is used

in the ensuing discussion.
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Following Rice,(l4) the probability densities of the
component variables,

x(t) = I(t) + P Cos e

» (2.8)
Y(t) = Iy(t) + P Sin©
can now be vwritten. They are
2
- -PClosO
p(x) = (2w, ] g KZPEO)
(2.9)

2
p(y) = (Z-T("\Po)-‘/z'exp_ (Y—,Z_P—\fm 0)

where \Vo is‘the mean square value of the noise current.
If, then, at each range position, the receiver radio-
frequency output signel is resolved into two components, X

aﬁd Y, these components dompletely characterize thils signal
and hence contain all of the data that will be useful in de-
ciding when a target signal is present. It remains now to
findAthe function R(X,Y), which provides the optimum perform-
ance in the sense already disdussed. To see how to proceed,
it'is helpful to consider the meaning of Egq. 2.1 in relation
to the vector dlagram of Fig. 2.3. 1In this example, Eq, 2.1
simplifies to

R(X,Y) = R, (2.10)
because there are only two observables at each range position,
i.e., the two signal components X and Y. Ry is, of course,
the critical level discussed at the.beginning of this chapter.

Ifr nbw ve regard X and Y as continuous variables, then for

each different cholce of the function R(X,Y) Eq. 2.10 deter-

mines a curve in the X - Y plane. Fig. 2.4 shows a plot 1n
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the X - Y plane of the curve deflined by one possible func-
tion. If R(X,Y) is a continuous function, then for all
points (X,Y) on one side of this line, R(X,Y) <; Ry- Sup-
pose that this corresponds to region "A" in Fig. 2.4.
Similarly for all points on the other side of this line,
R(X;Y) ? Ry, and this corresponds to region "B". It fol-
lows that when ﬁhe observed receiver output components X and
Y for a particula} range position are such as to make ‘
R(X,Y) < Ry, the point in the X - Y plane with coordinates
(X,Y) will 1ie to one side of the line defined by Eq. 2.10,
and when the values are such as to make R(X,Y) > Ry, the
point will lie on the other side. Therefbre, the decision to
be made at each range position between the two alternatives,
"signal" or "nolse", can be based upon the position in the

X - piane of thevpoint defined‘by the observed receiver out-
put components. |

In the language of mathematical statistics, the X - Y

plane 1s the sample space of the random variables X and Y,

and & point (X,Y) is & sample point. In the present example,

the sapple space is the entire X - Y plane, as both X and Y
can (in theory, at least) assume any erbitrarily large vaiue,
either positive or negative. The choice of a detection sys-
tem function can, therefore, be regarded as a division of the
sample sp&cé into two regions, a "signal on" region and a

"signal off" reglon. The boundary separating these two
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regions will be designated as the critical boundary in con-

formity with the términology of mathematical statistics.

A geometrical representation of the probabilities of
type I and type II errors in relation to the cholce of the
function R(X,Y) will now be givén. Suppose that a large,
but finite, number of observations of the receiver output
-signal is made at a range position vhere no target signal
is present. These observations, when plotted as sample A
points in the X - Y plane, will be distributed somewhat as
shown by the small circles appearing in Fig. 2.5, i.e., they
will be scattered over the X - Y plane but will be most
dense in the viecinity 6f the origin, O.

If.similar observations are mede at a range position4at
which is located a target signal of amplitude P and phase
angle 8 , the sample points as shown by the crosses in Fig. 2.5
will be concentrated about the tip of the vector P.

A possible critical boundary for discrimiﬁating between
target signals and noise is shown in Fig. 2.5. 1In this in-
stance, since the majority of the sample points for the noise
position fall to the left of the‘boundary ir region "A", this
should be teken as the "off" region. Similarly, region "B" is
to be taken &as the "on" region since most of the sample points
for the signal position fall into this,region. Therefore, a
type I error occurs whenevér a sample polnt for a noise-oniy
range’position‘falls intc region "B", while a type II error
occurs when a sample point for the signal position falls into

region "A".



[

2.

SAMPLE POINTS
CORRESPONDING

TO NOISE POSITION

SAMPLE POINTS
CORRESPONDINGTO

+ SIGNAL POSITION

N +
+
b M +
- +
A +
L ,
> X
+
RELATIONSHIP OF
SAMPLE PCINTS TO
CRITICAL BOUNDARY Fig. 2.5
v b ixn
I\ DE.CREAS-
CONTOURS FOR k
Bixv): CONST. \ ANII:

P, (x1)
DECREAS
ING e

[ [ [ ;

)

CONTOURS FOR
P (xY)= CONST.

™~

RELATIONSHIP OF PROBABILITY

DENSITY CONTOURS TO
CRITICAL BOUNDARY

Fig. 2.6




In order tc discuss the prpbabilities of occurrence of
these two types of error, the scatter diagram of Fig. 2.5
caﬁ be replasced by a diagram showing contours of constant
probebllity density for observations at a noise-only renge
position and at a target signal position. The nature of
these contours is shown in Fig. 2.6. In this diagram, po(X,Y)
1s the probability density function of the sample values at a
noise-only range position, while p;(X,Y) is the corresponding
function for the target signal position. 1In the following
énalysis, a subscript "o" denotes the distribution function
for the nolse-only case, while & subscript "1" is used when
the target signal is present.

These two families of contocurs can be thought of as rep;
resenting & probebllity surface whose height above the X - Y
plane at any point is p(X,Y). The probability of a type I

error 1s then glven by

P =Py = ffpo(x,y)dXdY @ (2.11)
Region "B"
This 1s just the volume bounded by the probability surface
po(x,Y), the cylindricel surface R(X,Y) = Ry, and region "B"

of the X - Y plane. The probebility of type II error 1is

Prr = /ﬁnl(x,Y)dXdY (2.12)

Region "A"

given by



- 34 -

This 1is the volume bounded by the probability surface pl(X,Y),
the cylindricel surface R(X,Y) and region "A" of the X - Y
plane.

Now the detection probability, PD’ is of greater practi-
cal 1lnterest than P11 and 1is related to it by the equation
D II | (2.13)

Hence an eauation equivalent to Eq. 2.12 1is

// pl(x Y)jdxay = '/];’1(}‘ Y)axdy (2.14)

Region "A" Region "B"

P.=1-P

The optimizdtidn problem can now bé stated es follows:
Given the probsbility distribution functions po(X,Y) and
and pl(X,Y)‘and e constant Py < 1, it is required to find the
criticel boundery defined by R(X,Y) = Rq which maximizes Pp-
The solution to this problem wes obtained by Neyman and
Pearson by an application of the Calculus of Variations,(le)
It will suffice for present purposes to stafe this solution,
which 1is very simple in form; and then verify that 1t possesses
the desired maximizing properties. The optimum criticalh
boundary is defined by

Rx) = P ok, | (2.15)

Thus the optimum critical boundery is determined by the noise
and signal-plus-noise probability density functions. The con-

stant R, is as yet undetermined. It 1s clear, however, that



- 35 -

corresponding to any particuler choice of R(X,Y) each differ-
ent choice of the critical level Ry will determine & differ-
ent critical boundary. Hence & value of Rq caﬁ be found that
will make the nolse probability, Py, assume eny preassigned
value (less than unity, of course). The probabllity density

functions Py and p, are alsc known as likelihood functions,

and their ratio is known as the 1likelihood ratio.

To show that Eq. 2.15 is the required golution, it is
only necessary to show that if any other function R'(X,Y) is
used to determine & boundary according to an equation

R'(X,Y) = R} (2.16)
and R} is chosen so that ﬁhe noise probability has the same
value in the two ceses, then the detection probability will
be smaller with this alternative boundery. In Fig. 2.7, two
possible>alternafive critical boundaries are shown. Curve R
1s supposed to have been determined by thé optimizing felation
(Eq. 2.15), while curve R' is the alternative critical bound-
ary corresponding to Eq. 2.16. Corresponding to the critical
region "B" of Fig. 2.5, there are now two critical regions,
one for eech of the two curves R and K'. In genersl, these
two regions will have a portion in common, represented in
Fig. 2.7 by w3. There will alsc be two regions not shared,
denoted by w, and W5. Since the nolse probability 1s required

to be the same for each of these two boundarles, it is
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necessary that these boundaries be related so as to satisfy

the ecquation

/fpo(x,Y)dXdY =Py = f/po(x,y)dxdy (2.17)
1 + wz - 1 + V3

w W

Now each of these two integrals can be split into two parts

as follows:

// pPodXdyY +// PodXay =// PodXdy +[/ pPodXdY (2.18)
Wl ' Vz Vl W3

From which it follows that
ﬁpoﬂdY=[/ p,dXdY (2.19)
Yo V3 o

That is, when observations are made at a noise position, the
probability of the sample point falling in region Wo is equal
to the probebility of its falling in region LEX

Now it haes already been shown that R(X,Y) > R, for
points (X,Y) lying to one side of curve R, while R(X,Y) < Ry
for points (X,Y) lylng on the other side. Hence, if region

W3 + Wo 1s the "signal-on" region, then in this region

( Pl(X:Y) »
R(X,Y) =.BO(XT) > Rg
or pl(X,Y)' > R,p (X,Y) | | | (2.20)

Similarly in region w3,

p1(X,¥) < R,p,(X,Y) (2.21)
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It follows, then, from Egs. 2.19, 2.20 and 2.21 that
[/plwidY > //pldXdY (2.22)
Vo w3

Adding,J/;/bldXdY to both sides of thls ilnequality yields

//pldldY > /pldXdY (2.23)

WitWo Wtisg
Here the left-hand member of the lnequality ls the detection
probability for the case of the supposed optimum boundary
and 1s greater than the right-hand member, which is the de-
tectlon probability for ahy alternative boundary. Hencé,
the boundary defined by Eq. 2.15 does have the required max-
imlzing property.

In the above discusslon, it may appear that the particu-
lar type of deformatlon used in going from boundery R to R'
is of a somevwhat speclalized character, since the boundaries
are shown as having a polnt of intersection. Because of the

constraint on P 1t is seen that eny deformation which tends

N’
to increase Py must be bounteracted by one having the oppo-
site effect. Therefore, the type 1llustrated in Fig. 2.7 is
the simplest admissible. Furthermore, any erbitrarily com-
plex deformation can be arrived at by a succession of deforma-

tions of this simplest type} which indicates the generality

of the proposition proved for this special case.
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So far the discussion has been confined to the sclution
of the two-dimensioﬁal case. It was shown by Neyman and
Pearson(la) thset this sclution applies without change to the
general case where N observations are avallaeble, provided
the two-dimensional probability density functions are re-
Placed by the joint probability density function for the N
semples. Thus in the general case the critical boundary is
~defined by

p. (X, « « . X))
R(X; « . . Ry) = =21 N_ _ g

pole . . . XN)

o (2_.24)

If N 2 3, this equation can be interpreted geometrically

only as a hyper-surface in a multi-dimensional space.

2.4 Example 1--Optimum Critical Boundary for Detection.

of a Single Radlo-Frequency Pulse of Known Phase Angle. It

is now possible to complete the solution of the two-dimensionsl
case under consideration. Using Eqs. 2.9, pl(x,Y) can be

written as
B (%Y )= BBV @y esp -7 [(x-PCos 6)'+(Y-PSim 6)] (2.25)

Upon expanding the squared terms in the exponent, this becomes

R(X,Y)= (Z“"‘/C)-‘exp-z—'x? [x"-o-Y‘f-F'—2P(x(o.,e+Y3me)] (2.26)

from which p,(X,Y) is obteined by placing P = O.

B (X, Y) = (2 Tr%)"exp-i‘;& [)(7'+ Yz] (2.27)
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Therefore, the required critical boundary is defined by
X, ,
R(X,Y)= ,];((xg—exp{zw [ZP(XCose+Y5m6) PZ]}= Ko (2.28)
Since R(X,Y) is constant on the boundary, its logarithm will

be alsc. Hence, an equivalent definition of the boundary is

z%[Zl’(x Cos B +Y Sin e) ] n Ko (2.29)

After multiplying through by-ﬂG/F’ and transposing all con-
stant terms to the right-hand side, the equetion defining the
bocundary becomes _

X Cos® + YSin® =k, | (2.30)
where K, 1s a function of R,, P and Y’- It will be seen later,
however, that K, can be determined directly and hence thst Ro
need not be determined at all. For any specified value of 8,
it can be easily verified that Eg. 2.30 defines a straight.
line at a distance K, from the origin and perpendicular to
the vector F, as 1llustrated in Fig. 2.8.

For a specifled value of the noise probability, Py, Ko
could be determined by use of Eq. 2.11 by expressing the value
of the Integral in terms of K, and®. Fortunately, a much
simpler approach is available in this case. It 1s observed
from Egqs. 2.25 and 2.27 that the contours of constant prob-
ability density for p,(X,Y) and p1 (X,Y) are circles centered
respectively at the origin and at the terminus of the vector P.

Hence the statistics of the problem are unchanged if 6 is set
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equal to zero. Eq. 2.30 then becomes

X =K, | (2.31)
This means that the component of the receiver output signal
in phese with the target signal is the quantity that should
be observed. If, then, at any particular range position, the
observed X £ K,, it must be presumed that only noise is pres-
ent; while 1f X > Ky, @ signal is presumed to be present. In
thls case, K, 1s some particular value of X, say X,, which 1is
to be Chosen 80 as to yleld the desired nolse probability, Py.
Hence X, is determined in terms of Py by the follovwing

equation:

© »VQ © ‘z
PN=£1%<X)CIX = @mv) eXF"Zlfo dX (2.32)

The detectlon probability is then given by

© y Q )
P = xf‘ (X) dX = @Ty;) "jexF.ZJ%[x-P] d X (2.33)

°
These expressions can be simplified somewhat by defining

a new random variable

X x/% (2.34)
and by expressing the signal strength through the dimension-
less quantity

2

= P2y, (2.35)
which is the ratio of the mean square signsl current, P2/2,
to the mean square noise current,'qg. Eqs. 2.32 and 2.33

then become
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| © )
P = (zrr)"/zfex,o- 2 dx
%

(2.26)
I
and PD'-‘ (Zﬂ.)-'ﬁ-f @xp-%[ﬁ—m]Jx’ (2.37)
z
Eq. 2.36 can be expressed in terms of the probability integral
u 2
W) = (zn) "zfexlo At - (2.38)

: -4 )
by making use of the fact that the integrand is an even func-

tion and noting that W(o) = 1.0.* Thus

Py = %W(x ) = é[l - W(x )] (2.39)
from which |
 xy = wl(i-zpy) _ (2.40)

where W'l(z) 1s the function inverse to W(z).

Pp can be expressed in terms of the probabllity integrsl,
W(u), by making the change of variable u =(z-{27\) in Eq. 2.37.
This ylelds | '

Fo= em] " exp- o = 4 [1-wiu (2.2
A plot of the common logarithm of the function P(u) = b[-w(uﬁ

versus u appears in Fig. 2.9. This curve suffices for the
determination of x, according to Eq. 2.40. For the determina-
tion of PD as 8 function of },according to Eq. 2.41, a curve

of P(u) x 100 versus u is also glven 1n<F1g; 2.9. Ir this
case u = Xo,-v K

*A tebulation of this integral is available in reference 21.
The probability 1ntegral is closely related to the error func-

e Plu) = fe"P 1% dt

but the probability function, W(u), 1s the more convenient form
for use in the present problem.
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It is éeen from Fig. 2.9 that Py 1s very strongly depend-
ent upon X5+ In Fig. 2.10, Pp 1s plotted as a function of A
with Py es the parameter. It is seen that Pp i1s relatively
insensitive to Py and hence to Xo+ This latter relstion is
better 111ustrﬁted by the dashed-line curves in Fig. 2.11,
where the signal strength,)\p, required for specified values
of Pp 1s plotted as a function of Py. Here p is the percent

detectability and is equal to Pp x 100 percent.

2.5 Example 2--Optimum Critical Boundary for Detection

of a Single Radio-Frequency Pulse of Unknown Phease Angle;

It is seen from the preceding example that for each differ-
ent phase angle of the sigral to be detected there is a
different optimum critical boundary, as typified in Fig. 2.8.
In the usual caese, this phase angle 1s not known in advance--
any value between zero and 2Wradians being equelly probatble.
Therefore, the phase angle, O, appearing in Fig. 2.8 has the
‘character df & random variable with & probability density

function

2(0) = p (2.42)
For thils case, the joint protabllity distribution function of
the sample values X and Y is no longer given by Eq: 2.26 as'
this.must nov be regarded as & conditional distribution func-
tion, p(X,Y,G), for X and Y when© assumes & specifled value.
The joint distribution funcﬁion of ¥ and Y slone, as required

for application of the optimization theory, can be found by

first obtaining the joint distribution p(X,Y,0) and then
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integrating over the range of . Thus
‘ | 2
P, (X,Y) = fp(X,Y,e)de (2.43)
0
Now p(X,Y,0) can be expressed in terms of the conditionsl dis-

tribution function, p(X,¥|®), and p(6) as follows:(22)

p(x,Y,8) = p(X,¥]6)p(6) (2.44)
Hence Eq. 2.43 can be wrltten as
' 2m ‘
N P, (x,Y) = fP(X,Yle)p(e)de (2.45)
' o

Using Eq} 2.26 for p(X,Y|®) and Eq. 2.42 for p(O) there results
2T
I I P , .
ﬁ(XsY)=z—ﬂexP{-ﬁ[XhYﬂP’]}{exp[? (XCos® +YSm6)]%19_T (2.46)

The integral can be put into a recognizable form as follows:
Making use of the identity

X CosO® + Y 5in® =,"fx2+ Yééos(e-lf) (2.47)

where @ = tan lY the 1ntegral becomes

- fexr[x—r;hxw Corlo-9)

which 1s of the form
-L- exp [A Cos (6 - ‘F)] de
Meking the change of va;iable °(=9-‘P the integral becomes
5 :x?[ACos of] dex |
Because the integrand is periodic with a period 2T the value
of the integral is unchanged if thellimits of integration are

changed to zero and 27, giving for the integral

m
éép»oebqpi)ﬁ Cascx] do(.
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This integral defines the Bessel functlon of imaginary argu-

ment, I,(A). Hence Eq. 2.46 becomes

= 2 z
P, (X)Y) =7y exp -Z—I‘T/,[x +YZ+P2]} Io(T’;}; X"‘Yz) (2.48)
Po (X,Y) can nov be obtalned simply by placing P = 0 in this

expression and noting that I;(0) = 1. Hence the optimum crit-

'ical boundary is defined by

R(x,Y)= —(i exP[zY]I($\/X’+Y‘  (2.49)

It 1s seen that X and Y appear only in the combination.¢X2+Y;
which ié the envelope of the receiver radio-frequency outpﬁt
slgnal. Therefore, the best detection system in this case 1is
based upon the observation of the envelope function.

For the further anelysis of this case, 1t 1s now expe-
dient to introduce & normalized variable

yX+Y? / VAL (2.50)

and, as before, take

A = PE/2Y, ' (2.35)
Eq. 2.49 then becomes

exp [-1] Io(m-‘ Z)
Transposing the constant factor exp[—)\] to the right-hand side
of this equation, it becomes

I,(f2N2) = K | (2.51)
where k, 1is an undetermined constant.

Since the left-hand member of this equation is a con-

stant on the optimum critical boundary, the argument of the



- 49 -

function Io(ﬁ'}\‘ Z) must be also. Therefore, the required
critical boundary 1s defined by

Z = 2, (2.52)
where the velue of Z; 1s to be determined so as to establish
the required noise probability, PN. The general method of
procedure to be followed from here on in order to obtain quan-
titative results is analogous to that used in the previous
example and, in fact, has already been carried out by other

(16)

workers. However, the maln results are presented here
for the sake of completeness and to‘facilitate comparison with
the results of the previous example. The probability distri-
bution function of the envelope functicn, Z, 1s well known.(2’14)
It is given by : _
2
P(z) = zexp [-& -] I, (V2X Z) (2.53)
1
Hence
© > z2 z
PN =4 P,(Z) dZ, =4Z exp[-—z-]dZ=exp|:-—2"j
° o
from which the following expression for the critical level,

Z is obtained:

2, = ‘/-ZInPN' (2.54)

o,

Also

PD= fpl (Z.,/\)JZ = fexp[__g_-z_A] I-o(m Z) dz (2.55)
Zo z ,

(]

This integral cannot be eipressed in terms of elementary func-
tions. However, Rice has published in graphical form the re-
sults of numerical computation of this 1ntegral.(l4) He has

vefy kindly supplied the &uthor with an enlarged reproduction
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of the published graph es well as a graph to an expanded
scale. These graphs were further supplemented by an exten-
sive tehulation of this integral supplied by J. I. Marcum
of the Rand Corporation. With the help»of these graphs and
the curve of Fig. 2.12, which 1is a plot of Eq. 2.54,>the
curves of Flg. 2.13 were constructed. This latter figure

shows the dependence of detection probability, PD’ upon sig-
nal strength,A, for several values of the noise probability, Py.

The circled points appearing in Fig. 2.13 were obtained
experimentally. They are shoﬁn here for purposes of compari-
son with the theoretical results, although a discussion of
the experimental techniques used must be reserved for a later
chapter. To permit this comparison to be made, one additional
factor regerding the theoretical calculation requires explana-
tion. The signal detection probabilities have thus far been
calculated in terms of the peak signal poﬁer at the output of
the radio-frequency amplifier, the signal power being measuredv
in units of average noise povwer at this point. However, it
is usually'of greater practical Interest to specify system
-performance in terms of signal power at the input tefminals
of the receiver as measured in units of receiver noise power

referred to the input terminals. When the receilver bandwidth

is equal to the reciprocal of the pulse iength, as required
for meximum signal-to-noise ratio at the output of the radio-
frequency amplifier, a steady-state condition 1s not reached

during the pulse. The exact amount by which the output pulse
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falls short of reaching the Steady-state value depends some-
what upon the shape of the receiver bandpass characteristic
and the shape of the pulse. For the experimental system used
in the present investigation, this factor 1is approximately
one decibel. Consequently, to facilitate comparison between
experiment and theory, the computed values of signal-to-nolse
ratio have been increased by one decibel. The agreement be-
- tween theory and experiment is seen to be within 0.2 decibel
fof most of the points, with a ma x1mum discrepenéy of
0.4 decibel. |

The results for the present case are compared with those
for the previous one in Fig. 2.11, 1in which Ap is plotted as
& function of Py for several values of p. The dashed-line
and solid-line curves refer respectively to detection with
known and with unknown phase angles. It is seen that lﬁ is
larger in the latter case by an average amount of only about
one decibel.
k_ A 1little reflection shows that the optimum critical bound-
ary defined by 2 =\}‘/12+ Yz/-‘\]g'/é Zo is intultively sound. Re-
ferring to Flg. 2.8, it 1is éeen that if © is allowed to assume
a succession of values between zero and 2T, then the critical
boundary will sweep out a regibn bounded by a circle centered
at the origin. This circle 1s, in fact, the envelope of the
famiiy of curves defined by Eq. 2.30 having @ as a parameter.
}Regarding as the critical region the portion of the X - Y

plane on the side of the critical boundary away from the
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origin, O, 1t i1s seen that the region bounded by the circle
includes a portion of the critical region corresponding to
each value assumed by 8 . The curve defined by Z = Z, is, of
course, just such a circle.

Viewed in this light, the detérmination of the optimum
critical boundary appears almost trivially simple. However,
in a later éxample it will be found that a critical boundary
that is optimum in the strict sense may be difficult, if not
impossible, to determine. In such an event, the critical
boundary defined by the envelope of curves in & manner anal-
ogous to that followed,above, while not an optimum critical
boundary, will still serve as a useful compromise.

Before leaving the subject of signal detection without
integration, it is of interest to consider the effect upon
threshold signal level of incréasing the pulse train number, N,
when detection is considered to occur if at least one pulse in
the pulse train exceeds the critical level. Such a detection
system has been considered elsewhere.(ls) It 1s discussed
here as an example of an Intultively concelved system whose
performanbe falls far short of that of an optimum systgm.

When the pulse train number, N, is larger than unity,
each of the individual pulses in the pulse train is en inde-
pendent event in the statistical sense because the ampli-
tudes of the individual Pulses are independently distributed.
Let the number of pulses in the Pulse train be N, and let

the probabllity that at least one of these pulses will exceed
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the slicing level be PéN). This is Jjust one minus the prob-
abllity that none will do so, which, in turn, is (1 - P(l))N
where P(l) is the probability of a single pulse exceeding the

slicing level. Stated in a formuls,

1-eM o m]“

or (1) - 1-[- P(N)] 1/N

Using P(N) = 0.9, corresponding values of P( ) vere cal-
culated for several values of N. Then from the curves of
Fig. 2.13 corresponding values of A\ were obtalned for several
values of PN’ these being the A9O values to be expected under
the assumed conditions. The dependence of )\90 upon N thus
determined is shown by the solid-line curves in Fig. 2.14 for
several values of Py. The results of similar calculations
based upon the experimental deta for N =1 are shown by the
crosses in Fig. 2.14, through which the dotted-line curves
are drawn. In addition, experimental runs were made with
values of N of 3, 10, 30, 100, 300 end 1000. The results ob-
tained are shown by the circles appearing in Fig. 2.14. The
agreement with the results of the extrapolation from the ex-
perimental data for the case of N =1 is seen to be very good.
Agreement between the theoretical and experimental results is
agein seen to be within 0.2 decibel for most of the points,
with the maximum discrepancy being about 0.5 decibel. It is
noted that 1A90 does decrease somewhat with increasing N.
However, it will be found later that the rate of decrease is

small compared to that for systems employing integration.
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2.6 Example 3--Detection of a Sequence of N Radio-Frequency

Pulses All of Equal Amplitude and Known Phase Angle. For this

case, the jolnt probability density function for the 2N obser-
vatlons, X, . . . Xy and Yy « . . ¥y, 1s required. It is as-
sumed that the amplitude, P, and phase angle, 9 » of the signal
pulse do not change from one pulse to the next. It is further
assumed that the 2N observations at each range position are all
statistically independent. Therefore, the required probability
density function is & product of terms of the form of Eg. 2.25

and 1s given by
N

RO XX Wl RO) <TTemw] exp {4y fox-Peast(1-Psnd)]} (2.56)
=1

Expanding the squared terms in the exponent, this equation

~

can be rewritten as
N . ' _
p,(Xi,Yi IR0 )=(ZTI'\I;)-NexP{-Z-1{Y Y X+ P2 P(xicoswﬁSma)]} (2.57)
o=t

where a simplified notation for the probability density func-
tion has been used in the left-hand member. At a noise-only

position, P = O and hence

B Xi,Y;) = (amv,) exp{ Z[XL+ Yl]} (2.58)

The optimum critical boundary is now found by use of Eq. 2.24.
It is

R (X, Y;) = exp{ z[x,cose +Y, 58] -

ol-

Z\Ifo}= Ro (2:59)
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Again, the argument of the exponential function is constant
on the optimum critical boundary. Setting this asrgument equal
to a constant and transposing constant terms, the ecuation

defining the critical boundary becomes
N
Z(XiCosﬁ+Yi5‘m6) = Ko (2.60)
i=1

Now X; Cos® is the projection of the component X4 onto the
signal vector P and similarly for Y; Sin® . This, hovever,
1s equivalent to placing 0=o0 initially and observing only
thet component of the recelver output which ls in phase with
the signal to be detected. Hence an equally gocd definition

of the optimum system functiorn is
N
R(X,,Y;) = Z‘;‘xi = K, (2.61)
, iz

wvhere X; 1s the in-phase component of the receiver output sig-
nal. -

To determine signal and noise probsbilities in this case,
it 1s necessary to obtaln an expression for the‘probability
density function of R(X;) = ZN; X{. Since the Xj are all dis-
tributed normally about the ;;he me&en, P, andéd all have the
same variance,\yo, the resultant distribution function will
also be normal but with & mean, NP, and a variance, ng. Hence

P(R) = i) exp [— %2] | | ~ (2.62)

In terms of the dimensionless variables
1
r=R/(NV)"

and (2.63)

A= P/2V,
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the distributicn functicn becones

z |
pir) = m " exp [ (= VHR)] (2.60)

Comparing this(result with the distribution function for e
single observaetion, obtained eimply by plecing N = 1 in this
expressicn, 1t 1s seen that the effect of integretion of N
observations 1s to produce a composite signal having N)\ as
its effective power. Therefore, the results obtained for
Example 1 are applicablé in this example if.x is replaced
by )\' = NA. Furthermore, since NA is a quantity propor-
tional to the total signsl energy in the pulse trein, it

follows that the total signal energy is the quantity that

determines the detection probability in this particular case.
It is immaterial whether this energy 1s received in a single

pulse or is divided among & large number of pulses.

2.7 Example 4--Detection of a Seguence of NI Redlo-Freguency

Pulses of Eoqual Amplitude with Constant but_Unknown Phase
Angle. In the example just considered, it was assumed that

the phase angle of the signal was known. If instead 1t 1is
unknokn but constant for all pulses, Eq. 2.57 must be re-
garced as a condltional distribution function in which ©

is a random variable. Tb obtain the probebility density func-
tion for X; and Y; elone, it is necessarj to multiply Eq. 2.57
by p(Q) and integrate over the range of . Agaln, taking

p(0O) =il/2ﬂ‘ and the range zero to 2W, the required probability

density function is

| 2T
P( xi’YiIP)z(zmk)-NojexP{;_l‘ﬁ Z:‘;.[xf B, p’-zp(xiCo;e+YiS,ne)]} g-g-r (2.65)
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The part of the summation dependent upon 6 can be rewritten

as N

25 (X;Cos8 + Y;Sin@) = (cose)ZX +(Sm0)ZYl
‘I, 1
{(Z.'xl) +(Z Yl)} Cos (- ‘P)

where P={am Z=;
X

Carrying out the inteé;etion yields

(4, YilP) =@z vy exp{z\,,ﬂ AR A eV Ex,)ﬂ(g“y } 2.66)

Setting P = 0 gives

EXLYilo)=ery texp {- L 3 [X;+ ¥} (2.67)

The optimum critical boundary 1s then defined by

ROGY0) = exp (= 2} L{ZV (i (Ev)? ) = Re

Setting the argument of the function in the left-hand member

equal to a constant and transposing constant terms gives as

the definition of the optimum critical boundary

\/(Zx ZY,) = Zo . (2.68)

A simple physicel interpretation of this expression can

now be given. With reference to Fig. 2.3, ‘Z:Xﬁ_is the sum

of the components of the signal vectors endlghe nolse vectors
elong the X-axls, which, of course, is the component along the
X-axis of the resultant of & sum of vectors, Z = Ei + 22 Fooot EN,

and similarly for }z Y;. Therefore, the left-hand member of
i=1
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Eq. 2.68 is the magnitude of the vector Z. The operation de-
~fined by Eq. 2.68 can thus be replaced by the operation of
vector addition. It is now recalled that these vectors repre-
gsent sinusoldelly-varylng currents, and that the operation of
vector eddition corresponde to a linear superpositioning of
these currents. Hence, it 1s seen that a detectlion system
equivalent to the one defined by Eq. 2.68 would consist of
some means for storing the radlo-frequency signal current
from one observation'period to the neit, adding the stored
slgnal to the incoming signals, storing the resultant and re-
peating the entire process until all of the N signal samples
heve been added. Such a process is usuelly referred to as
radio-freguency coherent integra;;gg.(4) It 1s now apparent
that the summation process derived in the preceding example
cen be replaced by coherent integration of the type just de-
scribed. The results of Example 2 cen be used for the pres-
ent case if \ is replaced by N = NA. This meens that if the
slgnal strength required for p-percent detectebility in the
cese of a single pulse is )S;, then for the case of N pulses
the signal strength required is Xﬁ;:: ) /N. This dependence
‘of threshold signal level upon the number of pulses available
for integration 1s so simple as scarcely to require s graphi-.
cal représentation.

One of the basic assumptionq in the present example 1s
that all of the target signals are received with exactly the
same phase angle. Obviously, if the target signal currents

during successive observations have only a haphazerd phase



- 62 -

relationship, they will tend to nullify one snother ss cften
s they reinforce. Unfortunately, in any practical rader
System, the coherence requirement places very severe limita-
tions upon allowable target veloc%ties becguse the effect of
target motlion is to cause a shift 1n the phase of the target
signal from one observation to the next. Hence, coherent
integration, while of theoreticsl interest, hes found no
practlcal application. It now remains to consider the case

of target signels with random phases.

2.8 Exsmple S--Detection of & Sequence of N Radlo-Frequency

Pulses All Having Equal Amplitudes but Random Phase Angles.
In this case, 1t is still possible to observe the phase of

the signal as perturbed by noise, that is, phase is still a
measurable characteristic of the signal. The observation of
signal phase 1s, of course, subject to an embiguity of an
integral number of cycles. It is sufficient for present pur-
poses to assume that the phase angle, 91, for the 1th obser-
vation is confined to the range zero to 2W. The uncertainty
in © i can be expressed by regarding e g a8 @ randéom vari-
able having a probability density of 1/2Tt.

The joint probability density functilon for the N pairs
of observations (X4, Yy), subject to specified values of 9‘1,

is as follows:

_ o l 1
P Xi,Y.16;) = (ZN\};)'Nexp —2-1{-’; :A:»;[(Xi—PCosei)+(Yi-Ps-ne.-)]} (2.69)
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To obtain the probability distribution function for the vari-
ables X; and Y; alone, it 1s necessary to multiply by
del ae, ae

_—_1_2.,.._Nana integrate over the range zero to 2{ for
2T 2w 2m

each 91: This repeated integral is resolvable into a product
of simple integrals, each of which is identical 1n form to
that occurring in Eq. 2.46. The result of this integration
is'given by Eq. 2.48. Therefore, the required probability

density function is

B (%,Y;) = (T ) TT[QKP{- [XL+Y+P]}I, \/X Y }] (2.70)

Hence the optimum critical boundery 1is defined by

““}ni( VKY) =Ro  (2.72)

RW%PP&?)
o\, 1}
Because the varilables Xy and Y; are not contained within the
argument of a single function, it is not posslble to proceed
as before to simplify this expression. However, because the
left-hand member of this equation is a constant on the criti-
cal boundary, 1ts logarithm is also. Thus the repeated product

can be rerlaced by a summation as follows:

N
P1/ 2 '
Z 1'\ Io({r— Xi_z"'Yi ) = Ko (2-72)
-l'-'-l ® . v
where all of the constant terms have been included in k,.

The qﬁantity\/xff+‘Yf is, of course, the magnitude of the
envelope function Z4. Usihg the dimensionless variables de-

fined by Eqs. 2.50 and 2.35, Eq. 2.72 becomes

ZlnI oXzy) = x, | (2.73)
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It does not appear to be possible to further simplify this
expression. Consequently, no geometrical representation of
the optimum critical boundary suggests itself.

It is seen that the detection process defined by Eq. 2.73
requires that each signal sample, 2z, be multiplied by the
factor 2\ and the product weighted by the operation 1nIo(x).
The quantities resulting from these operations are then
summed. All of these operations can, of course, be approxi-
mated physically to any desired degree of accuracy, and, in
this sense, the detection system defined by Eq. 2.73 is physi-
cally realizable. However, it is to be noted that the opti-
muﬁ détection process is not determined until A, the strength
of the signal to be detected, 1s specified.

This situation is analogous to that encountered in
Example 1 where it was found necessary to specify the phase
angle,® , in order to determine the optimum detection process.
in Example 2 a probabllity density function was assumed for
the unspecified parameter,e , which permitted its elimination
by integrationf In addition to the parameter 9, A was also
ccentalned in the original probabllity density functions for
the variables X and'Y. However, in that example, as ian all
of the others considered, 1t haﬁpened that the process of inte-
grating to eliminate © also disposed of A . Since this did
not occur in the present case, the éame procedure used to elim-
inate O suggests itself, that is, )( might be regarded as an
unknowh parameter having the character of a random variable

to which & probability density function could be assigned.
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Eq. 2.70 could then be:multiplied by this function and the
result lntegrated over the renge of A However, the question
would then arilise of what protabllity density function to
assign to M. This function would depend, of course, upon
such factors as the types of radar targets to be encountered
and theilr distaﬁce from the detection system. Because of the
very great range of conditions that’occurs in prectice, it
appears that this procedure cannot be used to obtain generally
applicable results, although its use in special cases might
'~ be practicable.

It 1= appropriate at this point to mention that the
appearsnce, 1in some cases, of unspecifled parameters 1n the
equation defining the critical boundary was familiar to

Neyman and Pearson.(la) They also recognized the possibility

of making use of & priorl knowledge of the statistics of the

parametér values to overcome this difficulty. Although no
specific method of so dolng was described, the method used
in the foregolng analysis is in accordance with this basic
idea. |

The fundamental difficulty in the present example is the
lack of knowledge of the statistics of the parameter A. Evi-
dently what is required in this situation is a detectlon pro-
cess independent of A (or any other unspecified parameters).
It is relevant at this point to recall the discussion in
Example 2 of the use &8s a critical boundary of.the envelope

of the critical boundaries corresponding to the range of Values
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of| the parameter © . Clearly, since the envelope was gener-
ated by allowing the perameter O to vary over its entire
range, the envelope is described by a function which is inde-
pendent of ©. That this independence will 2lso be obtained
in the case where several parameters are involved can be

. seen by consldering the method of determining the equation
of the envelope of a family of surfaces defined by an equa-
tion of the form

| £(Xy, Xp « « X3 Ky Kp o LX) =0 (2.74)
where X7 . . . Xy are Ilndependent variebles and X;, . .
are parameters. The envelope of the family, if one exists,
1s found as follows: Differentiate Eq. 2.74 partially with

respect to each of the parameters to obtaln the equstions

o D%, =0
of =0

Re (2.75)
Of/0x, =0

and use these equatlions to eliminate thezxi in Eq. 2.74. The
resulting equation

g(Xy, Xp + + . Xy) =0 (2.76)
1s the equation of the envelope of the familyf and clearly it
is Independent of the parameters. Although a critical bound-
ary defined by this envelope is not an optimum boundary in the

strict sense, it at least satlsfies one's intultional

*A1most any text on advanced calculus can be consulted for a
derivation of this method.
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requireﬁents for a good compromise 1n view of the infinite
number of different boundaries which exlsts, corresponding
to the range of values that the unspecified parameters can
assume.

It 1s interesting to note that this method of determin-
ing critical boundaries was advanced by Neyman and Pearson
on intuitive grounds prior to the development of their
general theory of most efficlent tests of statistical hypoth-

eses. It is called the maximum likelihood principle. The

interpretation of this principle in terms of the envelope of
a famlly of curves was not disecovered untll after the general
theory vas developed. Neyman and Pearson also showed that

1f there exists an optimum criticel boundary which 1s inde-
pendent of the parameters of the original distribution func-
tion, then this boundary will colncide with the orne given by
the principle of maximum likelihood.

The envelope critical boundary will now be determined
for the problem at hand. It is convenient to begin with the
expreésion for the optimum critical boundeary subject to speci-
fied values of phase angles and smplitude of the target sig-
nals. This expression can be obtained from Eq. 2.69 by fhe

usual method. It 1is

N
P Z (XC ) / NPz
'Y91=| l 1 l) FEA
By partial differentiation with respect to i» the following
is obtained: |

—X;SinB; +Y; Cos 8;=0 , i= 1,2, - - -N. (2.78)
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By partial differentiation with respect to P, there 1s ob-

tained the equetion
| N
= N ?_:' (XiC056i+\ﬁ5m6() (2.79)
Now Eg. 2.77 nan be transposed to the form

P~ 25 Z(x CosB; +Y; Sing;) = — 2¥ake.

Completing the square in the left-hand member gives

N 2 N 2
|p- #é(XiCOSGL*%SmBi)] = {-,'q- Z'.‘(XiCosei *YiSin ) - ZKe (2.50)

By virtue of Eg. 2.79, the left-hand member of Eq. 2.80 is

zerc. Hence Eqg. 2.80 becomes

N

g[XiCoseﬁYiSmei] =yo%ke = k, say (2.81)
E¢g. 2.78 can now be used tc eliminate the O,'s from Eq. 2.81.
Begin by transposing so &as to bring terms in ej_to the left-
hand side es follows:

X Cos®, + Y Sin8 =k, ~ Z {XLCOS 0; +Y; Sin 9:}
Square both sides of this equation and adé to 1t the square of
BEg. 2.78 wlth 1= 1. This gives

Xiz {k —Z[X Cos B +Yi Sinb; ]}
Thus eflkws been ellminated. Taking the sauare root and
transposing so as to bring only terms in 1 = 2 to the left-
hand side allows the same process of squaring and adding to
be repeated to eliminate 532. This procedure can be continued

until 811 O 4's sre eliminated, giving finally

i+ ¥+ xB+ B)E 4. L. (%2+ ¥2) %=1k, (2.82)

&8s the envelope of the family of surfaces defined by Eg. 2.69.
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‘ 1
The quantity (Xf3+ Yf)g 1s, of course, the msgnitude of
the recelver output signal, or, in cther words, the emplitude
of the envelope function Z;. Hence the detection system de-

fined by Eq. 2.82 1s equally well defined by the equation

N

202y = Zo (2.83)
Therefore, accoﬁz&ng to the maximum likelihood principle,
algebraic summation of the sample values at the output termi-
nal of the envelope detector of the receiver 1is the/gg:;ation
for discriminating between signals and noise. This operation
can be regarded as a simple averaging process since
Z“:Zi = N'ET\I wher*ewi‘;\I i1s the average of the values of N suc-
J:;sive samples.*

Although the maximum likelihood pPrinciple has been used
successfully to derive a detection system, it provides no
measure of goodness of the system. An‘analogous problem exists
in comparing different tesfs of statistical hypotheses. To
‘deal with this problem, Neyman and Pearson introduced the con-
cept of the bovwer of & test. From the statistical standpoint,
this measure of goodness 1s identical to the detection proba-
bility, Pp, as defined above. Thus two distinct detection sSys -
tems will be considered equally good 1f they both detect a
given strength cf signel with the same probability when both

are adjusted for equal noise probasbilities.

*The symbol "»w" placed over an algebraic quentity 1is used to
denote the average value of that quantity. The more conven-
tional "—" used in statistical snalysis 1s avoided because
it has already been used to indicate vector quantities.
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An analytical and experimentel investigation of the per-
formance characteristics of signal detection systems employ-

ing signel integration is the subject of the remaining

chapters.



CHAPTER III
FURTHER ANALYSIS OF SIGNAL DETECTION SYSTEMS

It was shown 1in the preceding chapter that the detection
of a traln of radio-frequency pulses accompanied by random
noise is best aécomplished by performing the elementary opera-
tion of edding the 1ndividual pulses. When the radio-
frequency pulses are coherent in phase, the addition should
be done prior to envelope detection. The anelysie for that
case was found to be exceedingly simple, primarily because
the probability density function for the amplitudes of the
component signals wes normal. When phase coherence is lack-
ing, the addition must be done after envelope detection. In
thisvcase the amplitudes of the individual component signals
are no longer distributed norhally. For this and other rea-
sons which will soon become apparent, the analysis of this
caseiis more complex than for the phase-coherent case.

Hereafter, an integrator which performs this simple addi-
tion‘process is called‘a Type-I or ideal integrator. It will
be seen, however, that this ideal integrator, while the sim-
plest from the snalytical standpoint, is realized physically
only with considerable difficulty. An integrator meking use
of the delayed-feedback signal intégration technlique discussed
in Chapter I is more easily constructed, but is only an approx-
1mation of the 1deal integrator. Both types are anslyzed in

this chapter.
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3.1 Type-I Integrator. Before proceeding with the snal-

ysis for this case, 1t is well to restste exactly what is re-
qulred of thé integrator. 1In the first place, the addition
Process must be performed independently at each range position.
Furthermore, the integrator output at any range position at s
particular instant must be the sum of incoming signal and the
signals that occurred at that same range position during the
preceding (N-l) repetition periods. It is readlily appreci-
ated that this operation requires a signal storage or delay
pProcess as weil as the addition itself. There are, of course,
many known techniques for storing signals and reproducing
them at a later time. It will suffice to consider oné method
which.readily suggests 1tself. This method is shown in

Fig. 2.1 in the form of a block dilagram. Here the signal
progresses from the input terminalé on the left through each
slgnal-delay unit in turn. The signals present at the junc-
tion points marked (1), (2) . . . (N) are added 1n the signal-
adder unit. This composite signal sppears at the output ter-
minals on the right. It will be assumed that the signal-
delay units do not attenuate or otherwise distort the signals.
The difficulty of constrﬁcting a Type-I integrstor in the form
illustrated in Fig. 3.1 can readily be seen. In a practical
radar system, N is seldom less than 10 and is often nearer to
100. The delay units must each produce 8 delay of the order
of a milliseconé and transmit signals uniformly over a band-

width of the order of a megacycle per second. Although this



- 73 -

SIGNAL
INPUT
G (D' DELAY t@ DFLAY @f DELAY :@ ey | ©
‘ T 1 T [ T T
SIGNAL ADDER ; | ——
SIGNAL
OUTPUT
TYPE-I INTEGRATOR
Fig. 3.1
E;(t) . _
t_ " INPUT AND DELAYED SIGNALS
H‘ | |
-
> | I I
® B I .
® L0 0 1
® | I I |
E(t) T INTBGRATED SIGNAL
] L.

RESPONSE OF A TYPE-I INTEGRATOR
TO A SUCCESSION OF PULSES
Fig. 2.2




- 74 -

deiay and bandwidth are obtainable with the ultrasonic delay
line,(23—26) the multiplicity of such lines required for the
system under consideration is prohibitive. An analysis of
the performance charascteristics of this ideal system is of
interest, however, because the résults wlll serve as a refer-
eﬁce wlith which other systemslcan be comparéd.

~ The dperation of this 1ideal integrator can best be under-’
stood by considering first the manner in which it responds to
a successlon of short-duration pulses, N in number and of
amplitude A, each separated in time from the preceding by an
intervel T. Such an input signal and the resultant signals
at each of the junction points are shown in Fig. 3.2. In
this example, N has been made equal to five for simplicity.
It is seen that there is a linear build-up of the integrated
signal followéd by a linear decay.

- When the input signal is a fluctuating voltage EI(t), the

output signal E(t) is given by

N ,
E(t) = gﬁI{t - (k-l)T} (3.1)

An approximete analysis for this case was given by Northﬂz)

In his analysis, attention was confined to the case of signals
small compared to noise; i.e., )\ <<1, and N, the number of
pulses integrated, large. 1In the ensuiﬁg analysis, values of
N as low as three are of interest. It has already been shown
that for N = 1, high detection probabllities are obtained only

for N> 1. Hence approximations based upon an assumption that
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)\<<.1 can no longer be used. Another epproximation employed
by North wes that of representing the probabllity density
function for the integrated signal by a normal density func-.
tion having the same mean value and verlance as the actual
distribution. EHils justification for this assumption was the
laplace - Liapounoff theorem,omore commonly called the central
limit theorem. This theoreh states that, subject to certain
conditions, the probability density function of the sum of a
number of statistically independent rendom variables approaches
8 normal distribution as the number of constituent variables
increases without 1limit, regardless of the character of their
individual probability density functions. The conditions to
be satisfied amount to requiring that the ratioc of the vari-
ance of any one of the constituent variables to the variance
of the sum vanishes as the number of constituents increases
without limit.(zz)

When only a small number of samples is added in the inte-
gration process, the accuracy of the results obtained by the
use of the normal epproximstion is open to question. The
maximum error would occur if the normel approximetion were
used to analyze the case of detection with no Integration.
Since en exact anelysis of this case has already been given
in Chapter II, & comparison with those results of gimilar re-
gults based upon the use of the normal approximation will give
an indication of the masgnitude of the errors to be expected for

small N.
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The normal approximation to the Probability density func-
‘ticn of the vearieble Z is
Anpn 2
l IZ—Z()\)|
(z;X) = exp — T,y (z.2)
P ) ‘[21('020‘) 2 O'Z(A) <

w -
where Z(\) and.Gé(}J are respectively the meen velue and stan-

dard deviation of Z and beth depend uponwkn An expressicn for

the meen velue of Z given by North(z) tecomes in our notastion

T o-VE M2 [N LoVz) + XI.(?\/Z)] (3.3)

Here Io(x) and Il(x) are modified Bessel functions of the first
kind and of orders zerc snd orne respectively.*

A graph of Z(\) as & function of A, vithAeipressed in d ci-
bels, appears in Fig. 2.2. A seccond curve in which the inde-
pendent variable 1is \/2_).\' is also shown, \/Ef belng the signal
eamplitude in units of rms noise amplitude.

This latter curve shows the dependence of the aversge
value of the envelope upon the signal emplitude. The departure
from linearity at»small signsl amplitudés ls apparent. In this
region the curve becomes parsbolic, and hence equal increments
of the input signal et two different slgnal levels do not pro-
duce equal increments in the output amplitude. This is_the
signal-suppression effect frequently referred to in the liter-

ature . **

*Tables of the functions é“‘Io(x) ang e’xIl(x) are given in
reference (27). '
**See for example reference (6).
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The standard devietion 92(79 can be calculated by use of

the formuls

[P = 220 - [T Jcey

gty (14)
where 2\79 is the mean square value of Z, and is given by

PO

2N = 2 + 2N\ (3.5)
A gréph of G}(X) calculated from these equatlons sppears in
Fig. 2.3,

Nolse and signal probabilities can nov be calculeted
wlth the help of the curves of Fig. 2.%. In this case, the
veriable u is defined by

U= Z—2(N (3.6)
0z (N)

vValues of Ap, the signai strength required for p-percent

detectability, were calculated by this method for values of

2

p of 50, 90 and 99 percent, and for values of Py from 107° to

10-8

. These values of Xp wvere fcund tc be conslistently
smaller than the correct values end differed by én emount
ranging from 0.4 to 1.7 declibels. The largest errors occurred
with the smallest values of EN and %).

Although the sccuracy of this epprcximation 1s lower
than might be deslred, it can be expected to imprcve rspidly
as the number of samples added 1s incressed. The extent to
which this 1s the case will be apperent from a comparison of
the resulté of the enalysis with tke experimental results.

The normal approximetion will now be used to calculate

the performance of a detectlon system besed upon the use of
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the Type-I Ilntegrator of Fig. 3.1 when the input signal is
the envelope function Z(t). According to Eq. 3.1, the inte-

grator output signal 1s given by

N .
£(t) = Y z{e-(k-1)1} (3.7)
e
Using a simpler notation, this can be written as
N
E(t) = 2.2, (t) | (3.8)
k=1
where .
Zy () = 24t~ (k-1)1) (3.9)

The normal approximetion to the probsbility density func-

tion fer E is

“A) = 1 | _ E':EYXHZ (.
PEN = s exp Im (3-10)

where ﬁﬁ’(}\) and G‘E()\) are related to the corresponding stetls-

tics of the varlable Z as follows:
E(N) = NZ(N) }
(o) =
> (N =yF 6N
The following anelysis will be simplified by making the

(3.11)

change of varlable

e =[eE) (3.12)
Then
TN =T [T - T (3.13)
and :
e (N =0 (N (3.14)

. WAA
From which it follows that €(0)= 0.



- 80 -

The noise and signal probebilities sre now expressed by

the equations

_ p{2-EM | _ pfe-WNIZN-70)]
CIA G- } P{ Oz () }‘-3'16)

Here P(U) is the functlon plotted in Fig. 2.9, and @, is

and

the criticel level to be determined by use of Eq. 3.15, in
which(T;(O) = (2 -'ﬂ??)% as mey be verified by use of Eos.
3.3, 3.4 and 3.5,

For the determlnstion of %) with A specified, the func-
tion [E?XJ:EXOﬂ which eppeers in Eq. 3.16 1s grephed in
Fig. 3.4 with A expressed 1n declbels ss the sbscisssa.

values of 0, (M) can be obtained from Fig. 3.3.

More frequently it is of interest to determine the value
of X.required to give & specified value of ED when €, 1is such
as to give & specified value of Py. In this case, Egs. 3.15
and %.16 cen be inverted, and €. eliminsted between the re-

sulting equetions to give

[zv-z0] = [g;(08Yz) - GO | AF (5.17)

where P_%xj is the inverse, not the reciprocal, of P(x). Be-
cause %.appears in both members of thls equation, and because
Eq. 3.3 forAEYX) is 8 transcendental equation, Eg. 3.17 is
most eesily solved by a method of successive approximations
es follows: Choose & trial value of A\, read O_Z()\) from

Flg. 3.3 and celculate the value of the right-hand member
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of Eq. 3.17. Assigning this value to the function [z()\)-z(o)] ,
read from Fig. 3.4 the corresponding value of X. If this new
value of X differs from the trial value, use the new value ag
a trial vdlue and repeat the process until agreement is ob-
talned. Because 0;(%) varies much more slowly with X than
does [Z(X)aZ(Oﬂ » thils process converges very rapidly, one

or two trials being sufficient in most cases.

The curves of Figs. 3.5, 3.6 and 3.7 were computed by
this method. 1In each of these figures the signal strength,
xp, required for p-percent signal detectabllity for values of
p of 10, 50, 90 and 99 percent is plotted as & function of N,
the number of pulses integrated. Each figure corresponds to

6, and 10'8

a different value of Py, the values being 10'4, 107
respectively. For the points at N = 1, the sccurate Xp values
- calculated in Chapter II were used in preference to approxi-
mate values that would be obtained by use of the normal approxi-
mation. Also, the correction for the effect of the radio-
frequency filter on pulse amplitude, as discussed in Chapter
iI, has been applied.

A comparison of the three sets of curves shows that the
only significant difference between them is & progressive
shift in the direction of increasing )‘p as PN 1s decreased,
as is to be expected. However, this shift is of the order of
only two decibels for a change of Py from 107% to 1078,

The circled points in Figs. 3.4 sand 3.5 show the results

of the experimental study of the Type-I integrator. It is



il e

R LR T
|

B

S IR AR S o

B OO

Dmbia o ae ol

p o g

-

i i

r..,tui”-I —*

v
'
s f N 20 h m u HION) d3d SNOISIAIG Ol X 53713JA0 ©
~ G v
‘DO N3IDZa31Q ANADNI DINHLINVIOT-IWN3S

MTWaAW L MM MTOTIBA A oS s



ek PR

'

H

L R )

Fig. 3.6



"IN

v : |
| Hitttt + ! _Wnl

i 4T H

4 ] IH Rl i L
ooa@anr © B A ~o@hr @ ©n < @ m

9 )
S e,
‘83 NEI8Za310 IN3IDN3 .

¥3d SNOISIAIQ O1 X S3T134A3 w.
DUNHLINYE O NI S
e A mASY R s e,

Fig. 3.7




- 86 -

seen that agreement to within one-half declbel is obtained

at all points except for the points at N = 3, where the dis-
crepancy appro&aches one decibel for the smallest values of p.
vIt 1s believed that thls discrepancy 1s a result of the error
inherent 1n the use of the normal approximastion with small
values of N. However, the close agreement between theory and
experiment obtained for larger values of N lndicates that the
hormal approximetion is sufficiently accurate for all practi-
cal purposes.

It 1s of interest to investigate the dependence of)\p
upon N for N very large. In this region,)13<<l. Following
North,(z) Z(N) and 0;()\) are accurately represented when A is
sufficiently small by |

_ dzZ (N
Z(\) = Z (o) +)\d}‘ Ao (3.18)
dz (N '
G (N) = 0 (0) + N5 Fy il N (3.19)
Differentiation of Eq. 3.3 with respect to k gives
j—i(l) —-+Z(\) +/f e‘Vz{_ LT, (M2) +L (M) -
(3.20)
-7, (x/z)+I.()~/z)+—[L(X/Z)--Z-Tn (’*/Z]}
Placing )\- 0 and noting that 2(0) -\/— I,(0) =1 and
I,(0) =0 gives
ax e 3V (3-21)

Differentlation of Eq. 3.4 with respect to )_gives

2Tz ()) %%\Z_Q) = Fe 270 dzZ( (3.22)

dx AN
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AR

From Eq. 3.5 there 1s obtained gx 22()\) = 2. Substituting
this into Eq. 3.22 and setting A= 0 gives

d = /2= | (3.2
Fo0| =F/e-mk 3:23)
Hence Egs. 3.18 and 2.19 become
TN = (1 + Me) (3.24)

O,(N = ¥z - /201 + M) (3.25)

Substitution of these expressions in Eq. 3.17 gives

-1, -1
VT =z [ ey - s MerThe| AR
Neglecting the quantity MN/2 appearing within the brackets
in comparison tc unity, this equation becomes

Ap =Zh%_. l [P-l(PN) - F-'(Pn)l (5.26)

Therefore, for large N the threshold signal pcwer varies in-
versely as the square root of K. The esymptotes appearing
in Figs. 3.5, 3.6 and 3.7 are plotted in accordance ﬁith

Eq. 3.26. For values of N approaching unity, the departure
from the asymptote 1s large and the dependence of‘Xp upon N

becomes more nearly an inverse first-power law.

5.2 Type-II Integrator. This designation is used for

the class of integrators characterlzed in Chapter I by an ex-
ponential signal decay process. In analjzing this type of
integrator, it is well to have in mind a specific physical
system. For thils purpose, the delayed-feedback integrator

is consldered since this was the type used 1ln the experiments
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to be reported in & later chapter. A block diagram of this
system 1s shown 1in Fig. %.8.

In the folloving analysis, it is assumed that the signal-
deley unit does not attenuate or otherwise distort the signal
and also that the feedback sttenuator and adder units intro-
duce no distortion.

The operatlion of this system can be i1llustrated by con-
sidering its response to & succession of rectangular pulses
of constant amplitude. This response 1s illustrated in
Q Fig. 3.9. For thils example, an attenuation factor cf K = 0.8
Vis used. The upper trace represents the input signal. The
next five numbered traces each show the response that would
result if the correspondingly numbered pulse in the input
signal occurred alone. The bottom trace is the sum of the
five traces immediately above, and represents the output sig-
nal. The expcnential nature of the signal build-up and decay
process is evident.

In view of this exponential behavior, it is appropriate
to define an integrator time constant, Ni, as the number of
repetition periods in which & single signal pulse will be
attenuated by a factor ofé'1 or one napier. This time con-
stsnt is related to the attenustion factor, K, by the relation

N ¢l |
or ' Ni = -l/logtK. (%.27)
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The response of this system to an arbitrary lnput func-

tion EI(t) is seen to be

E(t) = E¢(t) + KE(t- T) + K EI(t 2T) + . . . (3.28)
Q
= §° Eq {t__m} (3.29)

In the following statistical analysis, the normal ap-
proximatibﬁ for the probebility density function of E(t) will
again be used. Hence the mean velue and standard deviation
of E(t) must be.found, both for the case of a nolse-only range
positlon and for a signal position. Actually, it 1s suffi-
cient to consider the latter case since 1t Includes the former
as a speclal case. For this latter case, the first N terms
of the serles of Eq. 2.29 will be influenced by the présence
of the signal while the remaining terms will not. Hence it

is approopriate to rewrite Eq. 2.29 as follows:

©
E(t;N) = Z K EI{(t } + 2K EI{(t-k'" -o}
} k=N
The signal etrnngth )-hae been explicitly included in the
argument since the mean and standard deviation of E is a
function of N. All of the terms of the last summation in
thls equation contain a common fector KN. Hence the equation

can be rewritten as follows:

N-| «©
k
2. KKEI{(t-kT);)\} + X' YK EI{[t-(k+N)T];o}
k=° k:o /
(3.30)
The meen value and standard deviation of E(t;\) will now be
calculated with the help of the following elementary propo-

sitions from statisticel theory:
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(1) The meen value of a sum of random verlebles is equal
to the sum of the means of the individual variables.

(2) The variance of the sum of statistically independ-
ent rendom variables is equal to the tum of the vari-
ences of the individual varizbles.

1f E(t;\) 1z the envelope function, Z(t), the condition

of independence is satisfied. Hence it follows from Eq. 3.30

that . .
A l.;K*an ._L P
N = £ 2N + T Z(0) (3.31)
N = 157 OGN+ 25 (0 (3.22)

where use has been made of the following formulas for the sum

of a geometric series:

N
1+K+K 4. . .0 = = gl
N 1-K
T B
2 oo IK 1-K

From this point on, the analysls would follow exactly the
same lines as for the case of the Type-I integrator exceﬁt
that the attenuatlion factor K now enpears as an additional
perameter whose effect‘upon the performance of the system
reduires investigation. This was done experimentslly with tke
bbjective of establishing an optimumr value for K. These ex-
preriments will be described in & later chapter. However, the
conclusions with regard to the optimum vaelue of K can be used
to simplify considersbly the ensulng analysis. It is as follows:‘

K should be such that the integrator time constant Ny defined
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by Ea. 3.27 1s ecual to N, the number of pulses in the
pulse train, that is, K ==e_1/N
Substituting this expresslion for K into Egs. 3.31 and

2.32, there results

e = ,—_'GT,N[(I—G")E"(X) +€"'?(°)] (3.33)
and
_ 2 2, 1%
e (L LA R0 O

To simplify the snalysis, it is expedient to introduce a

new varlable, e, defined as follows:

e = (E-EW) (1-e¥N)*% (3.35)
Then . - .
€ (\)=(E(N\)- 1=(<>))(|—¢'§’z"")/z | (3.36)
and . 'lfr;
Se(X)= T () (1- e /M) (3.37)
Using Egs. 3.33% and 3.34, there is obtained
as _ l+'6_VN % _ U
*0 - (e -6 [Zm -] (2:28)
and i
- - /2
T, ()\) = |__.ez q_z 2 2
W= [-8)%0) + €'q 0] (3.39)
"2

The radical in Eq. 3.38 can be rewritten as.[Coth(l/ZNﬂ,
and for N even as small as 3 this can be replaced by V2N with
&én error of only one-quarter percent. Hence for all practical

purposes, ,

€(x) = 2N (1-€¢™) [?(x) —?(0)]

which can be evaluated by use of Fig. *.4 for the factor in

(2.20)
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brackets. Eq. 3.3S for 9o(\) is plotted in Fig. 3.10.
The noise and signal probabilities can now be ex-

pressed as follows:

= F{ZB_ET:;) f - P d?(o)} (3.41)
Po="P {——e";:;;)} (%.42)

wherez?(X) and Gé(k) are given by Egqs. 3.38 and 3.39 snd €o
1s the critical level. These equations can be used to ob-

| tain curves of )\p versus N in the same menner as that used

in the preceding example. Also, the method used in the pre-

ceding»example to obtain the equation of the asymptote can be

applied here, and the result is the eguation

_ 2t o g -
A= ZN (l-.e“)_[P {P}-7'{R}] (3.43)

It is seen that this equation differs from Eq. 3.26, the

equation of the asymptote in the previous example, onlj in
the factor y@ﬁ?0—€4) = 1.119. Hence for given values of N,
Py and Pp, the asymptote for the Type-II integrator in a plot
es used in Figs. 3.5, 3.6 and 3.7 will lle above that for the
Type~I lntegrator by 10 log 1.11S = (0.487 declbel.

Becsuse the difference in performance of these two types
of integrators 1s so slight in the 1limiting case of large N,
it is hardly to be expected that there will be any significant
difference for samaller values of N. To check this point, curves
of”%p versus N were calculated for Py = lO'6and p’= 10, 50, 90

and 99. These curves, together with their asymptotes, are
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plotted in Fig. 3.11. The corresponding results for the

Type-I integrator for p = 50
curve in this figure. It is
proximafely one—half decibel
range of N except for N less
are again the results of the

to be in good agreement with

are shown by the dashed-line
seen that a difference of ap-
1s maintained over the entire
than three. The circled poilnts
experimental study and are seen

the theoretical results with

the exception, as in the previous example, of the points for

N = 3 and the smallest value of p.
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CHAPTER IV
DESCRIPIION OF THE EXPERIMENTAL SYSTEM

The-description of the experimental system is divided
into two principal parts: (1) & general description of the
complete system, and (2) e more detailed discussion of the
performance characteristics and special features of the in-
dividuzl units of the system.

4.1 General Description. The principal components of

the experimental system are indicated by the block dilagram
of Fig. 4.1. Waveforms representative of the functions of
these units are shown in Fig. 4.2. Fig. 4.3 1s & general
view of the experimental system. All of the functions of

this system are timed with reference to the master trigger

pulses generated 1n the signal integration unit. These
trigger pulses are shown as trace (1) in Fig. 4.2. In this
experimental system, the repetition frequency c¢f these mas-
ter trigger pulses 1s approximatelj 2,000 per second. This
frequency is fixed by the length of the signal-deley unit
In the signal integrator.

The trigger and gate generator appearing in the upper

left-hand corner of Fig. 4.1 receives the master trigger
pulses. By means of & serles of flip-flop counters, trigger
pulses are generated at a repetition'frequency'equal to a
sub-multiple of the master tfigger frequency. These tfigger

pulses are shown in Fig. 4.2 as trace (2) and are called

pulse train triggers. They are applied to the pulse train
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control unit where they initlete the pulse train gate as shown

in trace (3). Also generated within the pulse train control
unit are trigger pulses deléyed_in time relative to the master
trigger pulses, ithe delay being adjustable according to the
desired range of the target signal. These delayed pulses are

gated by the pulse train gate to produce the signal trigger,

shown in trace (4). These gated trigger pulses are trans-

mitted to the intermediate frequency (i.f.) pulse and C.w.

signal generator and are also applied to a pulse counter cir-

cuit in the pulse train control unit. AL the end of & pre-
determined éount, this counter produces an impulse which ter-
minates the pulse train gate, thus termineting the signal
triggef pulse train. This sequence of events 1s repeated
following each pulse‘train trigger pulse.

The i.f. signal pulse trains thus generated are trans-
mitted to the receiver via the calibrated signél attenuator
which sets the level 6f the slignals applied to the recelver.
The receiver is typical of pulse-type receivers used in prac-
tice. $ufficient amplification is available to raise the
input circuit noise to the maximum level usable at its output
terminals. The input signal level 1s calibrated in terms of
the receiver noise level by a method tc be described later.

4 choice of 1.f. bandwidths from 0.1 megacycle to 10 mega-
cycles 1s available in this‘receiver, although the smallest
bandwidth was used 1n most of'the experiments. This was done
in order to minimize the effect of bendwidth limitatlons in

other parts of the system.
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The signal from the receiver 1s applied to the signal in-
tegrsator unit where & choice of two modes of operation is
available; one for the study of Type-I 1integration and the
other for the study of Type-II integration. The output sig-
nel for the latter mode is represented by trace (5) in

Fig. 4.2, where the envelope of the lntegrated signal pulse
train is indicated by the dashed curve. The 1ntegr&ted sig-

nal is applied to the peak selector unit whicin produces an

impulse whenever the instantaneous amplitude of the integrated
signal passes through a predetermlined voltage level, or

slicing level, with positive slcpe. This slicing level 1s

indicated in trece (5) by the horizontel dashed line. The
resulting peak selector dﬁtput impulses are shown in trace (6).
Such Ilmpulses can result both from signal pulse treins and
from chance occurrences of large noise pulses. It is desired
to count separately tue signal responses and nolse responses.

Therefore two sets of counters are provided, a signal response

counter and & noise response counter. DBecause these counters

can not in themselves distinguish betweeh signal and nolse re-
sponses, they are gated by means of a signal range gate pulse
which streddles the signal pulse, as indicated by trace (7)
of Fig. 4.2. The signal response counter is sensitized only
during this pulse, while the noise response counter is simul-
taneously disabled. This signal range gete pulse 1s genersted
in the pulse ﬁrain contrdl unlt.

Because it is desired to observe the integrated signal

only at the time that it reaches its maxlimum value, the signal



- 103 -

response counter is also gated by sensitizing gate pulses

which are represented by trace (&) in Fig. 4.2. These gate
pulses are generated in the trigger and gate generator.
Their spacing is made equal to the pulse train duratiosn by
appropriately setting the divislon ratio of an adjustable
pulse-repetition-frequency divider. The divider output
pulse defines the leading edge»of the sensitizing gate,

and the next master trigger pulse defines the trailing
edge. It is noted thet the sensltizing gate occurs one
repetition period after the end of the signal pulse train.
Hence, 1in order to obtain colncidence between the meaxlimum-
amplitude portion of the pulse train and the sensitizing
gate, the signal at the output of the integrator delay line
1s used, this being delayed by one repetltion period rels-
tive to the pulse train et the input. This same seasitiz-
ing pulse 1s applied to the noise response counter to pre-
vent nolse pulse counting except during the repetition
period when signal responses can be counted. In oréer to
prevent nolse pulses occurring within the signal range gete
from producing spurious signal response counts, the signal
response counter is sensitized only during the pulse train
gate. For this purpose, the pulse train gate of trace (3)
1s stretched so as to overlap the sensitizing gate, as shown
in trace (9). The resulting colncldence between the pesk
seleclior output, the signal range gate, the sensitizing gate

end the stretched pulse-train gate is indicated by the pulse
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appearing in trace (10). This pulse 1is transmitted to the
signal response counter. The stretched pPulse-train gate
is not applied to the gating circuit which controls the sig-
nals supplied tc the noise response counter because, in
practice, noise responses occur independently of whetiher
signal pulse trains are present or not and must be counted
accordingly.

The initiation of the counting process is COntrolled

menually by & count start push-button switch, while its ter-

mination 1is controlled by the predetermined count relay
whiclh recelves impulses from the signal response counter.

The signal presentations counter indicestes the total number

of signal pulse trains generated within the counting inter-
val. The signal detection probability is thus the ratio of
the signal response count to the slgnel presentations count.
The period of time over which noise pulses sre counted
1n eny one run is indicateé.by the interval timer. The ratio
of the nolse response count to the elapsed time is the noise
triggering rate.
The reset push-button switch, shown in Fig. 4.1, restores
the electronic counters, the predetermined count relay and the
interval timer to their "zero" condition. Resetting of the

electromechanical counters is done manually.

4.2 Ecuipment Detalls. In this discussion, attention is

confined primarily to the parts of the system which are not of
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& conventional nature, although the more conventional portions
wlll be described briefly for the sake of completeness.

4.2.1 Trigger and Gate Generator. A schematic circuit

diagram of this unit appears in Fig. 4.4. It is primarily
an adjustable-ratio pulse-scaling unit and supplies a low-
repetition-rate trigger pulse (10 p.p.s. or less) to the pulse
train control unit. The first portion of the scaling chain
(V4-v1l) 1is adjustable in scaling ratio from 1:1 to 16:1 in
unit steps. Following the adjustable scaling circult is a
serles of three scale-of-ten counters. By means of selector
switches, any scaling ratio R satisfying@the following rela-
tlon can be obtailned:

R=A10°, a=1,2,3...16, B=0,1, 2, 3.

Sensitizing gate pulses beginning with each pulse tfain
trigger pulse and ending with the next input pulse are gener-
ated with both positive and negative polarity (V13-vV16).
Trace (8) of Fig. 4.2 is representative of these gete pulses.

4.2.2 Pulse Train Control Unit. The schematic circuit

disgram of thls unit appears in Fig. 4.5. A trigger pulse
delayed with respect to the master trigger pulse 1s generated
by & mono-stable multivibrator and blocking oscillator circuit
(V3-Vv5). This delayed trigger pulse is gated in V10 by the
pulse traln gate which is generated by V7-VS and associafed
circuits. The pulse train gate 1is 1n1tiated.by the pulse
train trigger. This gate allows trigger pulses to be fed into

a binary counter chain (V14-V2l), which is followed by a
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series of three scale-of-ten scaling units. A pulse is de-
rived from the scaling circuits after a predetermined count
has been reached, this count being controlled by selector
switches arranged as in the trigger and gate generator just
described. This predetermined count setting is the pulse
train number N. The counter output pulse terminates the
pulse train gate, thus ending the pulse train. The delayed
trigger pulse also triggers a gate generator (vez, V23)
which produces the signal range gate shown as trace (7) in
Fig. 4.2.

4.2.5 I.F. Pulse end C.W, Signal Generator. Fig. 4.6

1s a schematic circuit disgram of this unit. A 15-mc oscil-

lator stage (V1) feeds two frequency-doubling stages, V2 and
V3. The 30-mc output signal from each 1is fed via separate
level-setting attenuators to a common output circuit. Ampli-
fier stage V3 is normally bissed beyond cut-off and 1is brought
into conduction by & rectangular pulse from the pulse gener-
ator circuit (VS5-V8). The duration of this pulse is adjust-
able over the range 0.5 to 50 microseconds. Timing markers

of 0.2-microsecond width and 1.0-microsecond specing are gen-
erated by a delay-line controlled blocking oscillator circuit
(v9). a sufficientvamount of coupling exists between the
marker generator and the multivibrator via the cathodé;grid
capacity of V5 to cause the multivibrator Pulse to terminate
at one of the marker pulses. Hence, as the pulse width con-
trol is varied, the pulse width varies in steps, which facili-

tates the adjustment of pulse width to a specified value.
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Amplifier stage V2, when in operation, supplies a c.w.
signal whose phase relative to that of the pulsed signal is
adjusted by the tuning of the resonant circuit in the Plate
of Vl. Thils c.w. signal is required in the procedure used
to calibrate the signal power level in terms of the recelver
noise power level, a variation of & method deseribed by

(4)

Lawson. As a first step, the receiver amplification is
adjusted to give the desired receiver output noise level.

The c.w. signal power level is then made equal to the re-
ceiver power level by observing the increase in the average
rectified d-c ocutput current of the receiver video detector.
For the linear detector, this factor is known from theoreti-
cal considerations to be 1.45 when the c.w. power level is
equal to the noise power level at the input to the detector.(4)
This condition 1is obtalned by use of the c.w. level-setting
attenuator, the calibrated signal attenuator beihg at a con-
venient seﬁting. For the comparison of the pulse signal with
the c.w. signal, the attenustion setting of the calibrated
attenuator is reduced by 30 to 40 decibels, thus ralsing the
signal level. The receiver amplification is reduced accord-
ingly, and hence the comparison is made 1n the absence of any
appreclable amount of residual noise. This comparison is
based upon the fact that the resultant of signal and c.w.
will be of the same amplitude as the c.w. alone if the pulse
signal is of exactly twice the amplitude of the c.w. signal

and 130 degrees out of phase; but, of course, the phase of
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the resultant will differ from that of the c.w. by 180 de-
grees. Therefore, except for transient disturbances excited
by the phase reversal at the beginning and end of the pulse,
the receiver output signal will appear on an oscilloscope as
a straight line. In order to assure that a steady-state con-
dition 1s reached in the receiver circuits following the first
phase reversal, it is necessary that the receiver bandwidth
be at least three times the reciprocal of the ﬁulse length.
This requirement can be met by increasing elther the receivef
bandwidth or the pulse length at the time the comparison is
made. Because of the possibility that the phasing adjust-
ment will affect the amplitude of the c.w. signal, a prelimi-
nary adjustment of the phase is advisable. The adjustment

of pulse-signal amplitude and c.w. phase to obtailn the de-
sired condition is very easily accomplished by observation

of the osclilloscope pattern. It is apparent that when this
condition 1s satisfied the initial setting of the calibrated
attenuator will result in the pulse signal power being 6 deci-
bels greater than the receiver nolse power. Hence it is con-
venient to use an initial attenuator setting of +6 decibels

relative to the desired zero decibel setting.

4.2.4 Multi-Bandwidth Receiver Unit. The receiver con-

sists of two main sections: a high-gain, wide-band amplifier
strip, followed by & multi-bandwidth unit which contains high-

level i.f. amplifier stages, video detectors and an output
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cathode follower. The schematic ciréuit diegram of the high-
galn unit is shown in Fig. 4.7. The first ten stages of this
unit (V1-v10) make use of identical double-tuned coupling
networks having a single-stage bandwidth of 20 megacycles
centered at 30 megacycles. Following’the tenth stage, the
i.f. amplifier splits into two channels, one of which feeds
into a dlode video detector and cathode follower for monitor-
ing purposes. The other channel supplies i.f. signals to the
multi-bandwidth unit via a terminated 75-ohm coaxial cable.
Fig. 4.8 is a schematic circuit diagrem of the multi-
bendwidth unit. The widest bandwidth chanael is comprised of
vVl and.VZnand assocliated circuits. Again, doublé-tuned cir-
cuits are used. The overall reéeiver i.f. bandwidth for
this channel 1s 10 megacycles (to the half-power points) and
1s largely determined by the coupling circult between V2 and
the video detector. The successlvely narrower channels are

as follows:

5.0 megacycles bandwidth - V4, V5
1.0 h " - V6, V7
0.30 d " - V8-V1l, V14
0.10 " " - V8, V11-v14

In all of these latter chennels, the bandwidth is deter-
mined by the clrcult immediately preceding the output i.f._
amplifler stage. Initially, it was intended that the output
amplifier - detector coupling circult be the band-narrowing

circuit because the higher transfer impedance that could
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thereby be obtained would produce higher peak output voltage.
This, in turn, would minimize the effects of diode detector
non-linearities present at low signal levels. However, the
variation in detector impedance with signal level caused
objectlonable varlations in the bandpass characteristic.
Hence wide-band, ‘low-impedance output coupling circuits were
used to minimize this effect, and the band-nerrowing circuit
was moved ahead of the output stage as shown. |

The two narrowest bandwidths are obtailned with coupiing
circuits having reasonable Q's by using a8 center frequency of
2.0 megacycles. The 30-megacycle i.f. signal is heterodyned
to 3.0 megacycles in the pentagrid mixer stage (V1l) by a
27-megacycle local oscillator signal (via).

The selectivity curve of the O.l-megacycle bandwidth
channel is shown in Fig. 4.9. Thils curve is typical of the
other channels and because the O.l-megacycle bandwidth chan-
nel was used 1n the majority of the experiments, only this
one curve is shown. The noise bandwidth of this channel, as
defined by Eq. 2.3, was found by graphlcal integration of the
curve of Fig. 4.9 to be 0.105 megacycles.

The over-all amplituge response characteristic of each
channel of the multi-bandwidth unit is shown in Fig. 4.10.
Tne inset at the right shows the response at the lgyer signal
levels and indicgtes that the linearity of the two narrow-
bandwidth channels is slightly better than for the other chan-

nels. At higher levels, these channels show markedly superior
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characteristics. This superiority is a result of the higher
value of dlode load resistance used in these channels than

for the wider-band channels. In the experiments, the average
level of the receiver output noise was 5 volts. In this re-
glon, the amplitude response characteristic is seen to be very
linear. Hence, the theoretical relation between detector

d-c output and c.w. signal level used in the callbration of

the signal generator can be applied with confidence.

4.2.5 Signal Integrator Unit. A block diagram of the

equipment used in the study of the Type-I and Type-II signal
integration systems 1s shown in Fig. 4.11. With but one ex-
ception, the experimental system used in both cases was iden-
tical. The system as used for the Type-I integrator will be
described first. This system is not identical to the basic
AType-I integrator described in Chapter III and shown 1n

Fig. 3.1.. The prohibltive number of signal delay units that
would be required in such & system has already been noted.
‘For the purposes of this investigation, equivalent perform-
ance 1s obtained by the use of one delay unit and a signal
recirculation technique similar to that described in Chapter
III in the dlscussion of the Type-1II integrator and shown in
the block diagram of Fig. 3.8." It is recalled from the

*The technique used was suggested by Dr. R. M. Ashby, who
was the author's supervisor while employed by the Naval Research
Laboratory Field Station, Boston, Msssachusetts.



- 119 -

LOO OXAIA Q
JHLVHDALNT

AATATTdWY
AvIHd-IS0d

LINN HOLVHYDAINT TYNDIS

NIVI

TdWY-HYd

AVTHd-L50d

100 HSTAd
HADOT NI,
JH LS YW
4S04
ONTINDOT ,
YOLVHANTD 4ADHTHI DN NI
NIOHTYHI > LV @
MALS YW ONIZILISNAS
Wy
e 0AIA JOYEQTLI
Hv. NI FLVD
- © AONVY
LING TATLVOAN
oy
IOVLTIOA "0° D v
0HAIA XA TIAAND Y 1
_ N
IIND TINN w%wa@o
ANTT AVIAd - HAATHA .pr HOLVTINAOR anty - o
DINOSVHIIN AMOOHAW ANTT HOLVITINSO ONTXTH T odari
AVIEQ HATHEY)D 0RATA N aa1h

Fig. 4.11



- 120 -

discussion of the Type-I integrator in Chapter III that its
output at any instant is ﬁhe sum of N 1lnput signals all added
with equal welghts. To accomplish this with a regenerative
system, the loop gain must be unity. In order to satisfy
this loop-gain requirement and at the same time preserve
stability, the feedback path 1s opened periodicélly for one
complete repetitlon period. Thus, the integration process
becomes cyclic in nature with the signal and.noise building
up in the integrator loop from zero during the time the feed-
back path is closed. The number of basic repetition periods
in the 1ntegration cycle is denoted by Niy, called the inte-
gration number. At the end of an integration cycle, the total
signal is therefore‘the sum of Nj input signals, just as in
the case of the basic Type-I integrator. It is readily appre-
clated, however, that & pulse train of Ny pulses will be fullj
integrated only if 1t coincides exectly with the lintegration
cycle. Subject to this condition, the gated integrator is
equivalent to the basic Type-I integrator. Although this con-
dition could not be met in practical systems because of the
undert&inty as to the time of occurrence of any psrticular sig-
nal pulse train, 1t is easlly satisfied 1n the laboratory be-
cause the signal pulse tralns can be timed as required.

In the experimental system, the signal delay is obtained
by use of a-mercury ultrasonic delay line. The technlques
for the constructlon and use of this type of line to obtain a

signal delay of the order of a millisecond and an overall
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bandwidth of the order of a few megacycles are amplyrdescribed
in the literature.(23'26) The mercury ultrasonic delay line
used in this experimental system can be seen in Fig.‘4.3
mounted on the side of the left-hand relay rack. The signal
delay obtained with this line is approximately 500 micro-
seconds. The signal to be trasnsmitted is modulated onto a
radlo-frequency carrier (in this case 23 megecycles), ampli-
fied by a linear amplifier and delivered to the 1nput termi-
nals of the delay‘line &s 1lndicated in Fig; 4.11. Because of
conversion loss at the trensmitting and receiving crystals of
the deiay'line and attenuation in the delay medium itself, the
level of tie output signal is epproximately 60 decibels below
that of the input signel. This loss 1s overcome by the post-
delay amplifiers shown in the block dlagram. The amplified
signal 1s rectified to recover the video modulstion. This
delayed signal is fed back to the video mixing and gating
unit as shown, the level of the feedback signal being adjusted
to give unity ioop galn. The gating of the feedback signal is
accomplished before i1t is mixed with the input signal. The
video gating circuit is controlled by the sensitlzing gate
pulse as represented by trace (9) of Fig. 4.2.

The master trigger pulses are generated in the follow-
iﬁg manner: A blocking oscillator pulse originating in the
Master Trigger Generator unit is applied to the control grid
cilrcuit of the final amplifiler stage of the delay line drifer

unit and cuts 1t off. The synchronizing pulse thus appears



- 1lzz -

at the input to the delay line as & 100 percent downwsrd modu-
lation of the carrier. The ccrresponding video pulse appeayr-
ing &t the output of the main post-delay amplifier is fed to
the blocking oscilletor in the master trigger generetor to
initiate the next trigger pulse. A clipping circult removes
the signal modulation from the synchronizing waveform fed to
the blocking oscillator. This blocking oscillator pulsebcon-
stitutes the master trigger pulse.

In order to obtain exact superpositioning of the pulse
signals 1n the integration process, the spacing between the
master trigger pulses, as determined by the total delay around
the trigger loop, must be equal to tne delay around the signal
loop. It is seen from Fig. 4.11 that these two loops Lave cer-
teln parts in‘cummon. Differences in delay can arise only in
the parts of the two loops that are not common. The principal
source of additional delay in the trigger generator loop is
that inherent in the blocking oscillator in the Master Trigger
Generator. Thls delay 1s compensated by that lnherent in the
part of the videc loop between the feedback input to the video
mixer and gating unit aﬁd the point in the line driver unit
where the synchronizing trigger is applied. A precise adjust-
ment of trigger timing is obteslned by verying the bias of the
blecklng oscillator circult.
| Two forms of Automatic Gain Control (A.G.C.) action are
used. The first is for the purpose of compensating for grossb

variations in delay-line attenuation aind post-cdelay amplifier
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gain. In this portlon of the A.G.C. clrcuit the carrier empli-
tude at the output of the main post-delay smpiifier is com-
pared with that at the input to the delay line. The error
signal derived from this comparison is amplified in a two-

stage direct-coupled amplifier snd applied &8s sn A.G.C. volt-

age to the first stsge of the main post-delay amplifier. This

portion of the A.G.C. system is called carrier A.G.C.
Althougn ﬁhe ma jor sources of variafion of<loop gain are
compensated by the carrier A.G.C. system, a portion of the
feedback loop 1s not thus compensated and was found to be a
source of cobjectionable long-time variationsbin loop gain.
Hence a supplementary A.G.C. system sensitive to loop gain
variations was added. This system makes use of the fact that
the overall amplification factor for the integrator is in-
creaéingly sensltive tc loop gailn variations as the loop gain
approaches unity. Hence, with & constant-level input noise
signal, the output noise level is also sensitive to loop gain
variations and can be measured in a video rectifier to provide
an A.G.C. voltage. 1In order to prevent the A.G.C. rectifier
from responding to the intermittent signal pulse trains, it

is desensitized by the signal range gete, as indicated in

Fig. 4.11. This stabilizetlon method is called noise 4.G.C.
It 1s apparent that this method of stabilizing tke loop gain
is satisfactory only for a laboratory experiment in which the

lnput nolse level is stabilized and the range position of the
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slgnels in the pulse tresin is known. As these conditilons
were satisfied, this noise A.G.C. system proved to be both
simple end effective.

Another matter of considerable importance in any prac-
tical system but of little consequence in this experimental
investigation is the effect upon pulse signals of limited
video bandwidth 1n the integration loop. If the pulses are
of insufficilent duration, they become seriously attenuated
after repeated recirculation through the loop. For this
reason, the bandwidth of the signals ss supﬁlied to the inte-
grator was kept as small as possible by using the narrowest
recelver bandwidth evailable (100 kc), thus permitting the
use of 1lU-microsecond duration pulses. Under these condi-
tions, the transient distortion cf the signals caused by the
integrator is negligible.

The responsé of this modified Type-I integrator to pulse
signels accompsnied by random noise is 11llustrsted by Fig. 4.12,
where one complete integrator cycle 1s shown by the lower trace.
The bright-tipped downwerd deflectlions are the basic synchroniz-
ing pulses. The duration of the integration cycle is ten bssic
repetition periods. The build-up of signal pulses relative t
the noise during the integration cycle 1s aspparent. The input
signel to the integrator is shown in the upper trace where the

signal pulses cen barely be seen.
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RESPONSE OF MODIFIED TYPE-I INTEGRATOR
TO PULSE SIGNALS IN NOISE

Flg. 4.12



For the investigation of Type-II integration,‘the only
chenge required in the system Just described is the elimins-
tion of the feedback geling action and the adjustment of the
loop gain to the desired value. The elimination of the gating
action requires only the removal of tﬁe sensitizing gste.

The basgis for éhoosing the loop gailn setting and the method
of aéhieving the @esiréd value is described in the next
chapter.

The response of the Type-II integrator to pulse signals
accompanied by random noise ig 1llustrated by the lower trace
in Fig. 4.13. - In this case, the pulse train consists of
100 pPulses at a level of 6 decibels sbove noise, ané the
integrator loop gain is 0.99. Because of limited resoiution
of the oscilloscope from which the photograph was made, the
irdividual pulses of the pulse train sre not resolved. Hence
only the envelope of the integrated pulse train is visible.
The randomizing effect of noise upon the signal amplitude
accounts for the jagged build-up curve, although the exponen-
tial charscter of the envelope 1s still apparenf. The upper

trace agaln shows the input signal to the integrstor.
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CHAPTER V

EXPERIMENTAL PROCEDURE AND RESULTS

5.1 Detection Without Integration. The first experiments

performed 1n this investigation were for the determination of
. detectioan prdbabilities,as a function of signal strength. In
these experiments no form of signal integration was used. The
parameters controlled were as follows:

(1) Receiver bandwidth (Af)

(2) signal pulse duration ()

(3) Pulse train number (N)

(4) signal strength (A)

(5) Signal detection prcbability ()

(6) Noise probability (PN)

The definitions of these parameters and the methods by
which they are controlled are discussed 1n earlier chapters.
Therefore only the choice of values used need be discussed
here. For the recelver, the 300-kc bandwidth channel was
chosen in preference to the wider-band channels becsuse its
amplitude response characteristic is linear over a consider-
ably greater range, and in preference to the 100-ke bandwidth
channel because tuning of the signal generator carrier fre-
quency 1s less critical with the greater bandwidth. The pulse
duratlion was made 3.0 microseconds in order to satisfy ap-
prdximately the well-known optimizing relation TAf = l.(4’6)

For thls relation to be satisfied exactly, the pulse duration
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should have teen 3.3 microseconds. However, the pulse-
signal duration is adjustable only in multiples of one micro-
second with the pulse-duration stabilizstion cifcuit in oper-
ation. The references just cited show that the threshold
signal level 1s a very slowly varying function of the pulse
duration in the vicinity of its optimum value. Hence this
slight departure from optimum has a negligible effect upon
the experimental results.

The pulse train number, N, was one of the parameters of
the lnvestigation and was varied over the range from one to
- one thoﬁsand. A signal response was counted if at least one
of these pulses exceeded the slicing level. The sensitizing
gate described in the previous chapter was on full time be-
cause there was no integration cycle involved in these experil-
ments.

A second parameter in these experiments was the slicing
level which, of course, determines the noise response rate
and hence the noise probability. No attempt was made to pre-
set the slicing level to eétablish specified noise response
rates, but rather, convenient values of the slicing level
were chosen and the corresponding noise response rate was re-
corded. However, the range of values of slicing level chosen
was great enough to cover a range of noise probabllity values

2 to 1 x 1078,

from 0.5 x 10~
Before starting on experimental runs, the pulse train num-

ber, the slicing level and the signal strength were set to the
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desired values. Then, with all counters re-set to 2ero, the
run was started and allowed to continue until a predetefmined
number of signal responée counts was obtained, at which point
the run was sutomatically terminated in the manner described
in the previous chapter. This predetermined count was gen-
erally in the neighborhood of 1000 to 2000. It was found
that this number was sufficlently large to insure accurdcy
equivalent to approximately + 0.1 decibel variaﬁion in sig-
nal strength. This accuracy is of the same order as the re-
setting accuracy of the signal attenuator, and probably some-
what better than the reproduceability of the signal-to-noise-
retio calibration.

In any series of runs, the signal strength was varied
over a range of values such that the detection probability
varied from something in excess of 99 percent to below 5 per-
cent. Fig. 5.1 shows the results of a number of such runs
for several values of the slicing level, XL. In this case s
pulse train number N = 1 was used.

- The slicing level, X;,, 1s expressed in units of the aver-
age nolse amplitude as measured from its most negative excur-
sions. The callbration of the video slicer in these'units'
was accomplished as follows: With zero signal input to the
slicer, the slicing-level control (a ten-turn Hellpot with a
1000-division dial) was set to mid-scale (dlal setting = 500),
following which the slicer zero-axis adjustment was set to

make the zero axils coincide with this control setting. The
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control setting was next changed to a lower sliéing level

(for example to a dial setting of 400) and the input signal

was restored. The amplitude of the input slgnal was then in-
creased until the downward noise troughs just reached the
slicing level as indicated by the nolse response counter.

Since the input signal 1s capacitively coupled to the slicer,
its a-c axls coincildes with the zero axis of the slicer. Hence
the dial setting of 400 corresponds to the most negative excur -
sion of the nolse, while a setting of 500 corresponds to the
avérage value measured relative to these negative peaks. Be-
cause the relationship between slicing level and Helipot set-
ting i1s linear, any desired slicing level can readily be
established.

During the signal detectiorruams, -data on nolse response
rates were also accumulated. These measured nolse-response
rates, after conversion to equivalent noise probabilities by
use of Eq. 2.7, are plotted as a functlon of the slicing level
in Fig. 5.2. Using slicing levels read from Fig. S.z for
several values of Py, the curves of Fig. 5.1 were interpolated
to obtain the points plotted in Fig. 2.13.

The results of similaf experiments in which N > 1l are
plotted in Fig. 2.14 as circled points. The method by which
the data for the case of N = 1 can be used to calculate corre-
sponding points was discussed in Chapter II, the results of
these calculations being shown by the crosses 1n Fig. 2.14.

It is seen that the circles and crosses colncide almost exactly,
which indicates a high degree of equlpment stability and cali-

bration reproduceability.
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5.2 Detection With Type-I Integrator. The properties

of this type of lntegrator were investigated experimentally
by making use of the simplér géted-feedbaék integrator de-
scribed in Chapter IV. It was shown there that the two types
are equlvalent as regards the build-up of signals and noise
provided that each signal pulse train occuplies exactly one
.1ntegration cycle. This condition was achleved by making
the integration number, N;, &s determined by the division
ratio setting for the sensitizing gate generator, equal to
the pulse train number, N, the pulse treln generator being
triggered by fhe pulse train trigger pulse, which pulse
coincides with the leading edge of the senslitizing gate.
Although the only new parameter studied in this phsse
of the investigation was the integration number, Nj, two
~ additional parameters of the integrator required adjustment
and checking. The first of these was the video gate bslance
adjustment. At the beginning of a run the gate was alvays
balanced but was found to drift appreciably from balance 1if
not occasionally readjusted. The effect of an unbalance of
the gate 1s to introduce into the integration loop a spurlous
signel in the form of a square pulse bf duration equal to the
baslic interpulse period. Because the low-frequency response
of the integrator does not extend to zero frequency, this
spurious signal excltes a 1qng-period transient which persists
throughout the integrating period. The only objectionable

effect of this transient is to shift the "zero" axls of the
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waveform at the end of the integration period relative to the
true a-c axis. Thils has the effect of shifting the slicing
level and hence changes the false alarm rate. Fortunately,
however, in comparison with the false alarm rate, the detec-
tion probability for a giveﬁ signal strength 1s quite insensi-
tive to the slicing level. For example, a change in slicing
level sufficient to cause a two-to-one change in false alarm
rate is compensated by s change in signal level of less than
0.2 decibel, as far as effect on signal detection probability
is concerned. It was found possible to remain well within
these limits by adjusting the gate balance at the beginning
of each run.

The second adjustment reéuired was the integrator loop
gain. It was desired to maintaln the loop gain at & value
close to unity. This adjustment 1s most eaéily made by ob-
serving the response of the integrator to a single pulse which
occurs at the beginning of the integration cycle. When the
galn 1s unity, the integrator output consists of a train 6f
pulses lasting throughout the integration cycle, all of the
Pulses being of equal amplitude. Following this adjustment
the noise automatic gain control circuit is brought into opera-
tion, and the equipment is then ready for use.

The results of thils experimental study of the modified
Type-I integrator are plotted as circled points in Figs. 3.5
and 3.6 to permit comparison with the theoretical results de-
rived in Chapter III. The largest value of N for which ex-

perimental points are shown is 100. Meaningful results could
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not be obtained for appreciably larger values of N because
of equipment limitations. The effects of slight variations
in the loop gain become véry ﬁronounced. Even more serious,
minute deviatlions from linearity of the amplitude response
characteristic of the amplifiers in the integrator loop
cause serious deviations from linearity in the amplitude re-
sponse characteristic of the integrator under closed-loop

conditions.

S.3 Detection With Type II Integrator. The basic inte-

gration system used 1n these experiments is the delayed-
feedback type described in Chapters III and IV. It differs
from the gated-feedback iqtegrator used in the preceding
experiments 1n that the feedback path is not gated but is
closed continuously. The circuit is stable, therefore, only
if the loop gain is kept below unity. It does not follow,
however, that the loop gain should be made as close (o unity
as 1s consistent with stability considerations. In fact, it
is easily seen that an optimum loop gain setting exists for
each specified pulse train number, N. In Chapter III the
performance of the Type-II integrator was calculated under
the assumption that the loop gain, K, was such as to make the
integrator time constant, Ny, as defined by Eq. 3.27, equal
to the pulse train number, N. A comparison of those results
with the reéults for the caée of no integration shows that a
substantial improvement in signal detectability is obtalned

with the Type-II integrator for that particular condition of



- 137 -

adjustment. The effect of making Ny much greater than N cen
be readily anticipated. Thinking of N as & measure of the
number of signal or noise sémples that contribute the total
integrator output signal at any particuler range positiocn,
it is apparent that the number of noise samples that can ac-
cumulate 1s much greater than the number of signal samples.
Hence, under ihese condlitions the integrator will cause a
greater increase in the level of the noise than of the signel,
and the signal detectabllity will be degraded. Therefore,
lying between the two extremes just considered, there exists
an optimum integrator time-constant setting.

The object c¢f the first phase of the experiments with
the Type-II integrator was to determine the optimum value for
the integrator time constant. Accordingly, the variation of
the threshold signel level as a function of the integratcr
time constant was investigated. Thilis was done for values of
the pulse trein number, N, of 10 and 30. The results are
shown in Fig. 5.3 where the input signsl-to-nolse ratio re-
quired for a detectlion probability of 90 percent is plotted
in decibels as a function of the ratio Ny/N. It is evident
that the optimizing condition 1s Ni/N = 1. In order to obtain
& specified value of Ny, the integrator loop gailn, K, must be
adjusted in accordance with Eq. 3.27. The method used to ob-
tain a particular value of K is based upon the fact that the
amplification of continuously repetitive pulses in the inte-

grator increases by a factor of 1/(1-K) when the gain in the
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feedback path is increased from zero to the point where the
loop gain 1s K. The procedure used is as follows: A pulse
signal is applied to the integrator 1input vis & calibrated
attenuator with the feedbeck gain at zero. The level of the
input signal is first adjusted to produce an output signsl
of some flduclal smplitude. The input signal is then attenu-
ated by a factor (1-K) and the feedback gein 1is increased
until the output amplitude is agaia at the flducial value.
This is the required lcop gain edjustument. The receiver out-
put signel is then substituted for the pulse signal and the
noise A.G.C. circuit is brought into actlon, thus making the
equipment ready for operation.

Using the optimizing relation, N; = N, & series of ex-
periments was conducted. These experiments were closely
analogous to those for the case of the gated-feedback inte-
grator. Signal detection probablilities were determined as
a function-of signal level for a series of values of the
bfalse'alarm perameter and with values of the pulse train
number, N, of 3, 10, 30 and 100. The points appearing in
Fig. 3.11 were obtained in these experiments, and agsin it
is seen that the experimehtal dets conforms closely to the
theoretical curves.

As was shown theoreticslly in Chapter III, the differ-
ence 1in performance between.the Type-I and Type-II integrators
is almost insignificent, the former being superior by only
about 0. decibel over most of the range of N. This slight

difference 1s also apparent from thne experimentel results.
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S.4 Significance of the Experimental Results. In the

case Qf each of the basic signal detection Systems studled
experimentally, the results obtained were found;tovbe in
Very good esgreement with the correspcnding thecreticel re-
gults ootsined in earlier chapters. These resuits iIndicate
that under most conditlons the use of the normsl approxima-
tion to the probablility density function for the integrated
signal yields results which are in error by no more than
one-quarter declbel, this figure belng a conservative esti-
mete of the accuracy of the experimentsl results with which
the theoretical results are compared. Only'in the case of
’N iéss than ten is the error eppreciably larger, discrepan-
cies of nearly one deciktel having been noted for N = 3.

For N =71 the exect probability density functlon is avsilable
and yields results that agree with experimental results to
within the limits of experimental error. The lack of experi-
mental daté for N > 100 in the integrsation experiments is
not considered to be serious inssmuch as the asymptotic be-
havior of the curves of Ap versus N is clearly established

by the date plotted in Figs. 3.5, 2.6 end 3.11 for N £ 1CO.
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