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A SIMPLIFIED THEORY OF

NEUTRON THERMALIZATION

by

Luis G. de Sobrino

Submitted to the Department of Nuclear Engineering
on May 14, 1960 in partial fulfillment of the requirements
for the degree of Doctor of Science.

A simplified theory of neutron thermalization based
on the heavy gas model is studied.

The influence of the crystalline binding in the
thermal neutron spectrum is first considered by the use
of an asymptotically valid approximation to the Boltzmann
equation in an infinite homogeneous medium. The results
are compared with the results of the heavy gas model, and
it is seen that the use of this approximation constitutes
an improvement over the use of the gaseous model without
the assumption of a heavy mass.

The simplified model is then applied to then
applied to the spatially dependent problem. To this end,
a generalization of the Wilkins equation is studied and
its solutions are tabulated.

The results of the application of the theory to bare
and heterogeneous systems are compared with the results
of experiments'available in the literature. The agreement
of theoretical and experimental results is found to be
good.

Thesis Supervisor: Melville Clark, Jr.,

Associate Professor of
Nuclear Engineering.
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INTRODUCTION

Thge leM at Nentrgn Thermj i ation

The problem of neutron thermalization deals with

the- distribution of neutrons of energies near the

thermal energte- af' the- medium-. In ah--circumrtances

the nuclei of the- media with which the- neutrons

interact cannot. be- assumed- at- rest-.- The- neutrons

will not always loose energy in interacting- with

the nuclei but can a-lo gain energy. If an

equilibrium is reached, neutrons will gain energy

on the average with the same probability that they

will loose it, and the resulting equilibrium

distribution will be a thermal distribution at

the temperature of the moderator.

In general, such an equilibrium distribution

cannot be achieved. Neutrons will be absorbed by

the nuclei of the moderator or they will leak out

of it due to the finite size of the' body. In

such circumstances, a steady-state distribution

can be reached only in the presence of a source,

and, unless the source and the absorption cross

sections have very definite energy and spatial

dependence, the steady-state distribution will

differ from the thermal equilibrium distributions.
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Because of their very nature, substances other than

gases, have binding forces among their constituent

atoms of magnitude comparable with the energies of

thermal agitation. These forces cannot, therefore,

be ignored in considering the interaction of the

neutron with the substance in question.

The thermal motion of the atoms of the moderator

was first studied theoretically by Wigner and Wilkins (9)

who neglected the effects of chemical binding and con-

sidered that the atoms of the moderator behaved like

those in a perfect gas. Since then numerous

authors have studied the problem both theoretically

and experimentally. Three review articles that

discuss the work are available in the literature

(4j,49, 49 ). The main emphasis has been directed

to the calculation of the.spectrum in an infinite

homogeneous medium. Numerical calculations have

been performed using different models to take into

account the effect of the binding forces. The

nature of these forces in solids is fairly well

understood, and the infinite medium spectrum can

in principle be calculated with a good physical

basis. The nature of the binding forces in a

liquid is not well understood and detailed
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calculations taking into account the effect of the

liquid binding forces are not reliable until more

advances are made in the theory of liquids. Little

work has been done in the space dependent problem,

the introduction of a leakage term was proposed by

Hurwitz et al. on physical grounds. The work by

Honeck (50) constitutes an exception; he developed

a code based on the gaseous model to obtain the

spatial and energy dependence of the flux in

cylindrical cells of an heterogeneous system.

On the experimental side the emphasis has

been mostly on homogeneous or quasi-homogeneous

water systems. Only recently the measurement

of the spectrum in fuel and moderators or uranium-

water lattices has been undertaken. Some early

measurements were done in heavy water and graphite

but they were routine measurements performed as

part of the set up of spectrometers. Therefore,

no detailed resujts about the spectra were

obtained, with the exception of the graphite

measurement by Taylor.

2. Purpose and Outline . the Pregnt Work

The purpose of the present thesis is to develop

simple approximate methods that would enable the
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calculation of neutron spectra with sufficient

simplicity, and reasonable accuracy. To this

end it is first necessary to choose a sufficiently

simple model with few parameters that gives a

reasonable description of the spectrum.

The first part of the thesis-chapters I

to IV-is dedicated to the study of the effects

of chemical binding in the infinite homogeneous

medium. In chapters I and II, a review of the

existing literature on the all important calcu-

lations of the inelastic scattering cross sections

is made. In chapter III an approximate,

asymptotically valid, differential equation for the

energy distribution of neutrons is obtained. The

method uses Placzek's asymptotic expansion for the

cross section and is the natural extension of

Wilkins' equation for heavy gaseous moderators.

The results are only valid asymptotically and

for heavy moderators. In chapter IV, the method

is applied to beryllium and carbon. The results

are compared with the results of a simple

Wilkins' calculation and it is found that the

error introduced by the heavy mass approximation

is in the right direction to account for chemical



binding effects.

In chapter V the problem of spatially dependent

spectra is considered. Feynmore's method is used

to establish the limits of validity of the introduction

of a leakage term into the equation for the infinite

medium.

It now becomes necessary to choose a simple

model for the process of thermalization. In view

of the results obtained in chapter IV and V the

Wilkins model is chosen with "l/v" absorption

and constant leakage. This selection makes

necessary the study of a second order linear

differential equation of the second order which

is undertaken from a purely mathematical point

of view in chapter VI. Numerical results and

tables are presented in Appendices A and B.

In chapter VII, the result of previous

chapters are applied to specific systems. Since

the Wilkins model fulfills the conditions of

neutron conservation, detailed balance and correct

asymptotic behavior, regardless of the mass of the

moderator, it is hoped that its application to

experimentally determined water spectra gives

reasonable! values. The examples worked out for

homogeneous systems in chapter VII show that the
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hopes were well founded. The application of the method

to a water moderated lattice is also made, and the

results compare reasonably well with the experiment.

Conclusions and recommendations for future

work are stated in chapter VIII.



Chapter I

THE PROBLEM OF NEUTRON THERMALIZATION.

The Boltzmann, Eauatiol f~gr NeutlfnA.

The macroscopic behavior of neutrons in a material

system is described quite generally by the following

integro-differential equation

- 0(Lx,vt) + J + 0(Lz,,t) =

00+x ( 2xz,)t)dx+
4nT

+ S (,x,2Q t) (1.1.1)

where r is the position vector, x is the energy measured

in units of kT, v0 is the neutron speed at kT, k is

Boltzmann's constant, T is the absolute temperature of

the material medium, a is a unit vector pointing in the

direction of the velocity, 0(r,x,L.,t) is the directional flux

per unit energy, solid angle and volume, Xis the total

macroscopic neutron cross section of the material

system, 1(x',.2',-+x,2l) is its macroscopic differential

inelastic scattering cross section, and S(.,x,4t) is the

number of neutrons introduced in the system per unit time,

energy, solid angle and volume.

In writing equation (1.1.1), neutrons are considered

to interact with the system as a whole, rather than-with

-7-



its individual nuclei. It is also assumed that the

density of neutrons is so small that neutron-neutron

collisions are negligible.

As any other equation deseribing the maeroscopic

behavior of an ensemble of particles, equation (1.1.1)

implies a subdivision of phase space.in elementary cells.

A consideration of the size of these eells-will clarify

the physical situation.

Each cell should contain a sufficiently large

number of neutrons in order that statistical con-

siderations be applicable.

The properties of the system should not change

appreciably in one cell, The, size of the oells must be

such that the interactions of a. neutron in one.-cell be

independent of the properties. of the-system in any

different cell.

2. The ForaUlatign .f. th PrebleM 9. Nelte ron Thermalizat ion.

The problem of neutron thermalization is concerned with

the solution of equation-(.,1.1) in the energy-range in

which the thermal and binding energies of the atoms of

the medium in which the neutrons move are comparable with

the energy of the neutrons. This medium will be referred

to as the moderator.

The lower limit of the range is taken as that energy

below which the nondirectional flux-or simply the flux-



is so small that it does not contribute appreciably to the

over-all neutron interaction rate.

The high limit is taken at an energy which is large

compared with the thermal and binding energies of the

atoms of the moderator, but small compared with the

energies of the resonances of the nuelei present, in such

a way that the neutron-flux obeys the asymptotic low

energy behavior predicted by slowing down theory. In

general, it is possible to find such a high limit in

usual moderators. Moderators whieh-contain appreciable

amounts of Pu23 9 constitute an exception; the 0.3 ev.

resonance must be included in the thermal range.

In order to tackle the thermalization problem

analytically, it is first necessary to obtain expressions

for the properties of the moderator that appear in

equation (1.1.1), namely, the souree, the total cross

section and the inelastic scattering cross section.

All neutrons produced by fission or other neutron

multiplying reactions are produced at energies extremely

high compared with the thermal range that do not depend

on the energy of the thermal neutrons. The spatial

dependence of the flux in the thermal range is very

slightly affected by the distribution in space of very

high energy sources, because-of the randomizing effect of

the collisions. For these reasons, the source will be



taken as an externally applied source, independent of the

distribution in energy in the thermal range. The spatial

distribution of the fission soureeswill, in general, be

approximated by use of a simple monoenergetie approximation

for the thermal flux.

Obtaining analytical expressions for the cross- sections

is a more difficult problem and will be treated in the- next

few sections.

3.. The Smattt1riff _Cas Seat ion Qa. -MaLtg f or I w -Neutrons.

The interaction of neutrons with aggregates. of atoms,

as such, is considered in contrast to- the-inter~etion of

neutrons with individual nuclei. The subject matter of

this section has its place in the quantum theory of

matter, rather than in nuclear physics.

The scattering of slow neutrons by matter has been

studied theoretically by several authors (5,43).

The formalism that is most convenient for our purposes

is the formalism developed by Glauber (4) and Zemach and

Glauber (s).

In the following study, the interaction of the

neutrons with the nuclei is the only one considered. The

interaction of the magnetic moment of the neutrons with any

magnetic field present in the moderator (magnetic

scattering) is neglected. (Only in magnetic substances

is this interaction important.) It is assumed that the

interaction of the neutrons with the moderator nuclei is
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a point interaction responding to a &-function potential.

This approximation is known as that of the Fermi pseudo-

potential (2) and is valid to a high degree of accuracy

(f) if the scattering cross section is calculated in

the first Born approximation.

In the derivation of the expression for the cross

section, we adopt a system of units in which the

rationalized Planck's constant 4i is taken as unity,

p and p_' denote the initial and final momenta of the

scattered neutron, x and x' the corresponding energies

in units of kT.

Let us consider a system that is initially in a

state Pa and that, as a consequence of the interaction

with a neutron, changes it s state to Tb*

All the calculations will be performed per unit

volume of the system.

In the Fermi pseudopotential approximation, the

potential seen by the neutron is

Vt)= a -(r. (1.3 .1)
i

where T, is the position vector of the ith nucleus of

the system, ai is its bound scattering length and m is

the neutron mass.

The Born approximation with the potential (1.3.1)

gives for the scattering cross section (2)



12-

2 - _aPZ aI( - ) p',rb > IXb + x - X)

(1.3.2)

x& and xb are the initial and final energies of the system.

The second 8-function expresses conservation of energy. The

notation for the matrix element is as- usual:

I 
1  2 ,2V(l,2)eir2

* b~rl1 dr1 dr2

By virtue of the properties of the S-function)(1.3.2)

can be immediately written

aI a e b2 8b ( + x za X)

(1.3.4)

where p= . - p'.

In order to obtain the total differential cross

section for neutron scattering of the system in state

, (1.3.4) must be summed over all possible final states.

To this end, we write the 8-function in Fourier integral

form and obtain

Z (x,&2-+ x'.' = p 1a11aie'I )2
b i

-it(xb - Xa) -it(xl - X)
* J dt e e

(1.3.5)-0 O



-13-

but, sincefa and b are eigenfunctions of the system

corresponding to the energies xa and xb we may write

e-it(xb - xa) ir \a0
aaie 1 T b Ab e J at=

b

a*& itH ' Oi -itH Erj=iaia ae e e e a
(1.3.6)

where H is the hamiltonian of the system-and we have made

use of the rule of matrix multiplication.

Substitution of this expression into (1-3.5) yields

after averaging over all states f, in a thermal

distribution

00

_ ,..-+xd)a a* dt e-it(x' - x) itH
2r p ji

i j -00

ei.rj e- ItH -JPj

T
(1.3.7)

the subscript T denotes the thermal average. Equation (1.3.7)

constitutes the general expression, for the scattering cross

section of a system for neutrons.

Equation (1.3.7) may be written in a simpler form

by making use of Heisenberg's equation of motion

(x,_Q-x' -') 1 aa* dt *

i j -00

e-it(x- x) <i i(t) - (0>

(1.3.8)
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where r4 (t) represents now the position Heisenberg operator.

14. Coherent anl Incohrent C .- ,32c t ions, .&=- . Se i| -

Distribution Fungtions.

Consider a uniform moderator formed by atoms of the

same chemical species. Spin and isotopic disorder will

introduce fluctuations in the scattering lengths ai. The

products a a* have to be averaged over the system.

Performing the average, we get

a>( 2

aa> <( (I.>.1)

The incoherent ainc and coherent coh bound atom

cross sections are defined by

a =coh 241<>2

ainc = 2 a>1 2 ]
(1.4.2)

In the case under consideration, we may write

2(xQ->x' ,Q.') = Ycoh(x * a + (incx j2-vxv 8 )

(1.4.3)

where the coherent and incoherent differential cross sections

are respectively defined by

2coh(xI>-Xp1)

p cohZ7 dt e eiP. e8n Z4

(1.4.4)
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Zinc (* X ,&2Q') =

-2 p incL ET - 00
-it(x'-x) < i

(1.4.5)

It is convenient to define the pair distribution

function, which is the Fourier transform of the sum of

the matrix elements appearing in (1.4.4) (.).

G (r,t) =
2pf N

< i (t) -ijkr
<e e j(o>T

(1.4.6)

where N is the number of nuclei per unit volume.

Similarly we define the self-distribution function as

the Fourier transform of the matrix element in (1.4.5)

G(rt) =  - dk e
2Tr 3N 4

~i. . .-i(t) -ik..r (o)
<e > T

(1.4.7)

These distribution functions can be given a simple

and convenient classical physical interpretation. To

this end, we next transform (1.4.6), We may write

G (Xt) = 2m3N & Edk C

a
-ik.r.k'- 

8 r~ Sg'-(0)

(1.4.8)

'ik~ e ik' r:1(t) yr e



or, using again the Fourier representation of the 8-function,

G, (.,t) = ' - (t) + r. rk'-. g (o)

i N
i j

(1.4.9)

The seemingly obvious reduction of the 8-functions is

not permissible because of the noncommutativity of the

position operators.

In the classical approximation the physical

interpretation of (1.4.9) is clear. Interpreting the

position operators as classical position vectors,

(1.4.9) defines G (rt) as the probability of finding a

nucleus at . at time t if a different nucleus was at

the origin at time 0.

A similar transformation leads to a classical

definition of the self-distribution function: The self-

distribution function G,(r,t) represents the probability

that a nucleus initially at the origin at time 0 be

found at r at time t.

In terms of the distribution functions the macro-

scopic differential scattering cross sections can be

written

Zh(XQ-X ~~O Q)=N ch ct=it(xl-x) 'Lox
co N e d e G (rb t)

-00

(1.4.10)

-16-
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0OD

11n -x, x', 11) N Vdd1 Xr e G (rt)
-a,

(l.4.11)

The formalism here developed will be applied in the

following chapters to different moderators of interest.

We have still to determine adequate analytical

expressions for the total cross section. The total

scattering cross section can be, of course, obtained by

integration of the differential scattering cross section.

The absorption cross section, if not "1/v", will be

assumed as given experimentally.



Chapter II

THE CALCULATION OF THE SCATTERING CROSS SECTIONS FOR

DIFFERENT MODERATORS

j'. Introduction

The formalism developed in the preceding chapter will

be applied to different types of moderators.

Moderators consisting of a single -species of atoms

have incoherent cross sections that can be expressed by

similar analytical expressions, regardless of the nature

of the interatomic forces. This fact is a consequence of

the- physical nature of the self-distribution function.

Since the number of atoms of the system is very- large,

the self-distribution function will be very approximately

gaussian, with a width that will, in general, depend on

time. In this case, we may write

2
G -rgt)) 2 exp rI (2.1.1)

where it has been found coivenient to factor out of the

width of the gaussian, -Lw(t), the quantity $L that denotes

the ratio of the neutron mass to the mass of the nucleus.

Substituting the expression (2.1..1) into (1.4,11)

and performing the . integration we-find for the in-

coherent cross section: 1 00

(xx-f2') Ninc dt exp [i(x-xt)t + Lx2(t)

inc 00
(2.1.*2)



where we have -written

P
-E (2.1.3)
2M

Part of the-work-in this chapter will be- devoted to

finding- the-form of the. function w(t).

In certain instancesg, it is possible to approximate

the total inelastic differential scattering-cross section

by an expression similar. to (2.1.2). This approximation,

called the -incoherent- approximation will also be -disusaed

in this chapter.

We shall discuss mainly the gaseous and solid

moderators. Although the gaseous moderator is a highly

impractical one, the theory is simple and many of the

features of the reactor spectra can be understood with

its help. The- solid model is useful because it is a

realistic model, and the theory of solids has reached

a state of development such that it is possible to calculate

the cross sections with a high degree of accuracy.

Liquid moderators are-used extensively in reactors;

however, the theory of liquids is not sufficiently well

developed to permit- the calculation of the-scattering

cross- sections. Some- remarks a-bout liquids are also

included in this chapter.

2. The Monoatomic Perfect Gas

In the case of a monoatomic perfect gas, the classical



model gives results identical with the quantum-mechanical

model; however, for the sake of generality, and as an

illustration of the methods that- are necessary to treat

more complicated moderators, it seems-convenient to apply

the general formalism developed in Chapter I to the

calculation of the scattering cross -section.

The only motion to be considered is the translational

motion of the atoms that constitute the gas. Since the

positions of two different atoms are totally uncorrelated,

the average matrix element appearing in (1.4.4) is,

obviously, zero. The coherent cross section is, therefore,

zero as we would intuitively expect.

The average matrix element, appearing in (1.4.5) will

be evaluated next:

Heisenberg's- equation of motion yields (.)

d_t ) = l I (t)H(t) (2.2.1)

where the brackets denote the-.commutator of two operators :

AB1 M AB - BA (2.2.2)

To evaluate the commutator in (2.2.1), we- note that, since

different atoms are not correlated, the part of the

hamiltonian due to atoms other than 1 -commutes with i. Now,

the hamiltonian of the system is the sum of the hamiltonians

of the individual free atoms, and is, of course, independent

of time. (It should be remembered that the hamiltonian
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refers to the initial state of the system):

2

H =M (2.2.3)

where is the momentum of the ith atom of the system and

M is its mass.

Using (2.2.3) in (2.2.1) we obtain

dri(t) =

dt M

-i(t) = t + r(0)

We have, therefore:

K ik.ri(t) -i .ri(O), ip. ( M t + Z (0)) .'.r-,(O)
Ke e TT T

(2.2.6)

In order to perform the operator product in the right-hand

side of the preceding equation, we recall that for any two

operators A and B that commute with their -commutator

A B A+B+ 1A,B3e e- e 2' (2.2.7)

Applying this rule, we obtain

i_. ( t + r(0)) -i1.z i(o)
e e

(P2 + 2P.psi)
2e

(2,42. 8)

and,

(2-2.4)

(2.2.5)



Operating with the- operator in (2.2.8) on the- wave function

of the system, which is just the product of all the free

particle wave functions of its atoms, we- obtain

+ 2. )(P2 + 2P, )
i2M 2 i) e 2M 'i(2.2.9)

a

where- we- have used- the symbol ps to denote,-both the

Heisenberg momentum- operator and its corresponding

eigenvalue. The value (2.2.9) has to be averaged over

all the possible initial- states defined by the Maxwellian

distribution at temperature T. The momentum- distribution

is:

(2.2.10)

We now -peform the integration:

iP.. (t) iP.r.i(0) 1
Ke e /dX

-1 0

2 22 R 2 P2 + 2PpX)
dppe 2

(2.2.11)

where we have taken the z axis along E., and where is

the cosine of the colatitude.

2

2 214'

(2TM} /Pt 0
2

(R it - t
=e2

2

dp pe 2 Msin M

(2.2.13)

R.J(t) -1g.i(o)4
(e e T

(2TM)3



Substituting the expression for the average matrix element

into (1.4.5) and taking (2.1-3) into account, we obtain

the differential inelastic scattering cross section

Y-b'- CO -it(x1-x) 4x 2(it-t 2
-- 2 p

-00

(2.2.14)

Comparison with (2.1.2) shows that for a perfect

monoatomic gas

w (t) = it - t2 (2.2.15)
g

Equation (2.2.14) can be integrated in a straight-

forward, but laborious, manner- -over t, and- over all

possible changes in direction of the incident'neutron.

The result is -the complicated kernel- derived by

Wigner and Wilkins (2) from classical principles.

We are not interested, however, -in the-exact form

of the kernel, but, rather, in obtaining simpler

approximations that make the Boltzmann- equation more

tractable.

a. Crystalline Solid

The- calculation of the scattering cross section for

a crystalline solid. requires the use -of quantum mechanics.

The calculation is lengthy, and we shall not perform

it in detail. The general method has been illustrated in



previous section for the perfect monoatomic gas. Here, we

shall outline the procedure used in references ( ) and ( ).

A crystal formed by a single atomic species of equiva-

lent atoms is considered.

The- main problem is the calculation of the--average

matrix elements- appearing- in (1.4.4) and (1.4.5). In

order to solve it, we need to know the- position operators

zi(t), corresponding to the ith nucleus.

The nuclei of the crystal can be considered -to be

harmonically bound; with this hypothesis- the- Li(t) are

simply given by a superposition of all possible normal

modes, i.e., modes- at which- all the atoms vibrate with

the same frequency. Let -. represent the equilibrium

position of the ith atom, then (/0 ).

.i(t) = a +Js (Ve(t) d1

(2.3.1)

where f is the propagation vector, q. (t) are the normal

c-oordinates, i.e., the periodic solutions of the- simple

harmonic oscillator equation

+ w (f)q = 0 (2.3.2)

The integration extends over- all possible propagation

vect ors f, and (f ) is the density- of -normal modes per

unit volume- in space.* The- quantities ,C,( ) are the

* Actually, the L's constitute a, discrete set, but little

error is made if the corresponding sum is- replaced- by an

integral, due to the large number of permitted values of f.
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amplitudes corresponding to the normal modes. The. subscript

s refers to the different values of the frequency w that

correspond to each f.

The normal modes q(t) can be represented by means of

the annih1lation and creation operators , and Y used in

the quantization of the harmonic oscillator (I). It is

through the use of these operators- that the equivalence

of a gas of particles obeying the Bose-Einstein statistics

and a set of harmonic ostillators, becomes apparent. The

set of oscillators forming the solid can be regarded as a

gas of particles which are called phonons. A normal

oscillator in its nth quantum state is exactly

equivalent to n phonons- being in a' state- defined by the

propagation, veotor ,- and the, polarization s.

The intersttion of the neutron with the vibrating

nuclei of the crystal can be looked upon as the interaction

of the neutron with the phonon gas. A particular inter-

action resulting- in a jump, of an- oscillator qf from its

nth to its (n-m)th- state , corre sponds to - an. interaetion

in whic-h m phonons- in the state (j, s) disappear; such an

interaction is called an m-phonon interaction.

The concept of the, phonon gas helps to explain the

method of calculation of the- matrix- elements- that- consti-

tute our target.

The expression (2.3.1) is substituted into the matrix
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elements. The product of exponentials can be evaluated

using the rule (2.2.7) and the commutation properties

of q andv.

To evaluate the thermal average of the resulting

expressions, use- is made of the, known equilibrium

distribution for a Bose-Einstein gas, which is just

Planck's distribution.

Proceeding in this way, one gets after considerable

algebra

<e e e exp C ( +

C ( h ,0)
(2.3.3)

where

C (at)= e pl +

S e

-I(U. .-w s 0 df
( +
e -l

(2.3.4)

We now substitute into the expressions (1.4.4) and

(l-4-5), taking into account our hypothesis of equivalence

of all the -atoms- of the lattice, and get for the- cross

sections
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Na go t. 1/2 ik. b
coh (Xa- X48)2 X

* dt exp{ it(xt-x) + r xax iCap (kjt) - c (0,0)
-00 M

(2.3.5)

Na ,1/2

nc

0 dt exp{-it(x'-x) + IL>9axy[Cap(ot) - Cap(0,)

-00 as

(2-3.6)

with C given by (2.3.4). Here x ,x represent the com-

ponents of the vector2; defined in (2.1.3).

In the usual case- of a polycrystal, these results are

to be averaged over all possible orientations of the grains,

i.e., over all possible directions of the vectors .s,

Several- physical consideration can be- made, regarding

the expressions for the cross section. If 4L-+0, i.e., for

extremely heavy nuclei, the integrals reduce to 8-functions,

the scattering, of course, is elastic in the- laboratory

system-. The factor D e in (2.3.5) gives Bragg's

law.. The factors (e 8 -1) in (2.3.4) arise from the



average number of phonons of energy w in thermal

equilibrium.

Both (2.3.5) and (2.3.6) are very complicated

expressions and require--simplification-before they can be

used for our- purposes.

The first approximation that we shall make is the

so-called incoherent approximation. It was first intro-

duced by Placzek. Its accuracy has- been discussed by

Kothari and Singwy (f) . In the incoherent approximation

the summation appearing in (2.3.5) is replaced by an

integral, the integration can- be carried out more easily

after expansion of the exponential. A result is obtained

similar to (2.3.6) but with %coh instead of ainc' In

replacing the sum by the integral, an error is commItted

that. Kothari and Skngwy show to be the smaller, the

larger the energy change of the neutron.

Elastic scattering is very badly represented by the

incoherent approximation but the error in the total in-

elastic cross section was found In several examples to be

about ten percent . The error in th-e calculation of reactor

spectra is expected to be smaller than that in the cross

section because elastic scattering does not contribute

to the process of thermalization and because the importance

of inelastic scattering increases with the change in

energy of the neutron.

The expresrsion that we shall use is, therefore



Nu.; 1/2 00
E(x,. .,D.' fl --(,A:)--- -- 2 x dt- exp- it(r'-x) +

-=o

+ ILf X2CPC"P(O,1) - ( oo)]}

(2.3.7)

Here, Ub is the total bound atom cross section.

It is interesting, partly for the applications,

and partly because- of the physical insight- that will be

gained, to partlicularize (2.3.7) for an isotropic

crystal.

In such a case, the averaging over the orientations

of the crystal need not b-e- performed.

Let (w) be- the density of- phonons of frequency w;

changing the variable of integration in (2.3.4.), we

obtain for- the cross section (2.3.7)

(X ,; -_ -- r,. ') = ( /dt expt it(x ' rx ) + y (t

(2-3.8)

with

00

w Le 1..1 eW -1

(2-3-9)



3 O=

Returning. now to the -interpretation of- w(t) as the

width- of the (gaussian) self-distrhbution function, we

compare the- width corresponding- to a- solid (2.3.9) with

the width (2.2.15) that corresponds to a perfect gas.

Firtt- of ;all, we- note- that- for very small t, both

W ond-w- approah-ahit. A high--energy neutron, (small

collision time-), will "see" in-both-cases-a free

nucleus. The term it gives rise to the- inelasticity

of the cro-ss section produced by the- recoil of the

free atom. The next -term- in the expansion of w S(t)

2is prop-ortionai, though not- equal, to- t- . This fact

means- that, for neutrons- with- energy large- compared with

the- temperature- of the solid but slower- than the ones

considered before, the solid moderator will still appear

like a gas, though with a temperature different from the

real temperature of the solid and depending on the phonon

distribution.

We also note that for large- values of t, the- width

of the gas increases without bound. The fact is physically

evident, sinc-e ther position at time t of an atom- initially

at- the, origin-becomes more -and more- unpredictable as t

increases, the atoms of the perfect- ga-s being- free to

move.

On the- contrary- the- width of the solid is always

bounded which is the mathematical expression of the



physical fact that, although the nuclei in a crystal can

move, their- motiorr is restrIcted to the neighborhood of

their equilibriur -position.

4.. ReMarkra .= th~k &Attering Croge Section _. Othe!r Kinds

-Q. Moderato ra

Liquid moderators are of great- interest in reactor

applicatons; however-, the theory of liquids has not

yet reached a stage of development that permits the

calculation of the neutron scattering cross section.

The calculation- can be carried out with- good accuracy

for the individual molecules (.); however-, the nature

of the intermolecular forces- is not well' -understood.

Qualitatively, one- would expect- that the width

We (t) would increase without bound for- large values of

t, although this increase should be slower than in the

case of a perfect- gas. A model based on these con-

siderations has been proposed by Vine-yard ( 2).

A model of the liquid cannot- be incisively tested

by comparing theoretical spectra with experimental

measurements because the spectra are insensitive to

the model and to small changes in the cross section.

A direct measurement of the cross section seems much

more reasonable- for this purpoue. For these reasons,

liquid moderators- will not be discussed here.

Moderators consisting of hydrogen bound to heavy



metals, like zirconi-um- hydride, are also of interest in reactor

applications; they can be approximated by a set of noninter-

acting harmoni-cally bound -hydrogen atoms. The cross section

is easily- ec~lulated fronr formula (2.3.9) by using a delta

function for-the phonon- density-. However, no satisfactory

analytical method of treating this case has been found, due

to the highly singular nature of the- resulting kernel

that transforms the integral equation into an infinite

order, difference equation.



Chapter III

THE ASYMPTOTIC SOLUTION OF THE BOLTZMANN EQUATION IN

AN INFINITE HOMOGENEOUS MEDIUM

1. Introduction

In an infinite homogeneous medium, the steady-state

neutron flux depends only on the energy. Boltzmann s

equation (1.1.1) reduces to

OD

,(x) 0(x) = jxZ(x'->x) 0(x') + S(x) (3-1-1)

0

We are interested in an approximate solution of

(3.1.1). We shall start with an expression for the

cross section of the form (2.1.2). The cross section

will be expanded using Placzek's inverse- mass

expansion (14). No hypothesis will be made about the

form of the width w(t). As a result, a fourth order

differential equation involving the moments of w(t)

will be obtained.

The expression (2.1.2) is not valid for anisotropic

moderators of which graphite is an important example.

The necessary modifications- to include moderators with

a certain degree of anisotropy will be carried out.

The approximation- to (3.1.1) obtained in the

mannner described Is only valid, in general, asymp-

totically. The first few coefficients of an
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asymptotic expansion- for the- flux are given explicitly.

2.. ETxhanz I on -o. - tbQ. Cr go- Sect ion

It was pointed out by Placzek (4-) that for moder-

ately heavy moderators, it is convenient to expand the

exponential appearing- in the- expression (2.1.2) in powers

of the ratio LL of the neutron mass to the- seatterer mass.

The resulting expansion is expected to converge rather

fast, at least in the-case of a solid, due- to the rapid

oscillations -of the- terms -of the- type e iwt- 1

appearing in the expression-of- the- width (2.3.9), for

large powers of w(t). Experimental evidence showed

that the convergence was very good.

Since we -are- interested in moderators such that
2

^-~0.1, we shall use Placzek's expansion to order 4 .

Expansion of (2.1.2) with use of the. incoherent

approximation yields:

X(x,-+x', ') ( )/2 28 (x-, x') +
_ '2 x

8rr

CO 00

+ Lx2  dt e-i(X'-X)tw(t) + 112 X4  dt e-'(x'-x)t *

-00

* w2 (t) + 0(Q))

(3.2,1)

We now integrate over all possible changes in

direction of the neutron, and noting that
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. = X + x' - 2(xx')1/200s 0 (3.2.2)

where 9 is- the- angle between the- initial and final

directions of the scattered neutron, we obtain

x-+Ox') (. L(x + x') dt e-i(I'-x)t w(t) +

.00

+ 42 [(x+,x) 2 + x

00

-00

dt e-I(x-)t w2 (t) + ( )

(3.2.3)

where we have omitted elastic terms- that do not contribute

to (3.2.1).

We further approximate (3.2.3) by expanding w(t)

in powers- of it.

00

w(t) or

n=l

wn (t)n (3.2.4)

This expansion was also suggested- by Placzek ( L4);

it has been used by Zemach and Glauber ( ) in the

calculation of the scattering- cross section of methane

giving good agreement-with- experimental results.

It use in reactor spectra calculations was

suggested by Hurwitz et al. ("), and has been used by

Kazannovsky and coworkers (L6 Y and by Corngold ( L7)

in his calculations for gaseous moderators.

Kazarnovsky restricted his calculations to first



order in L. Corngold did not make- any restrictions on

the mass of the moderator, but he assumed a gaspous

model.

It is convenient to note that, since at high

energies (small collision time t), the width w(t)

of any scattering-system approaches the width (2.2.15)

of a perfect gas, we have quite generally

w=1 (3.2.5)

The expression (3.2.4) is now substituted into

(3.2.3); we make use of the identity

1 _ ei(x'-x)t (it)n dt = 8 (n), ( x')

-00

(3.2.6)

where 8 (x - x') is t e nth derivative of the 8-

function, and obtain to order 4 2 for the inelastic

cross section

Zx--L(X+) wn8 ( ( ') +
n=l

+ 2 w (n+m)(, x
3~ nwm
n=. m=1

(3.2.7)

Inspection of the preceding expression shows that with

the approximations used, the integral equation (3-1.1)
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will be transformed into an infinite order differential

equation. The approximation is an asymptotic one as can

be expected fr-om the- fact that the expansion of w(t) has

been an expansion about the- origin, tht is, valid for

small collision times or high- neutron energies. It

should be poss-ible to find a solution for the

differential equation in terms of an asymprtotic

series- without- trunc-ating the equation. However,

the domain of validity of the asymptotic series

would not be greatly extended and the mathematical

complications that arise would tend to obscure the

result. We have, therefore, decided to cut the

differential equation, arbitrarily, after the fourth

derivative7. It is, then, consistent to consider only

the first three moments of the width w(t). With this

new approximation, the total inelastic scattering

cross section becomes

'(x--*x') dx' =-2 + 2) + P2(3 2

0

(3.2.8)

In deriving (3.2.7) we have used the fact that

b

f(x)8 (x) dx = ,-1)n )(0)
a

(3.2.9)



if the interval of integration includes the origin.

The fact that the- expansion of the cross section

is of an asymptotic nature, is apparent in (3.2.8).

If we add to (3.2.8) the elastic term- and make x-)o g

the total scattering- cross section becomes

+b(l - 2P + 32) 2 (3.2.10)

so that to the order-of our approximation, X. becomes

the free atom cross section. This fact is to be

expected since the, only errors inherent to the in-

coherent approximation are produced by the ordering

of the atoms- resulting from th-e- interatomic binding

forces and the-se can be disregarded for sufficiently

high neutron energies.

3,. The ApDroxi1ation- tha Int egra- Eauation

As already has been mentioned,- the expression

(3.2.7) constitutes the basis f-or the transformation

of the integral equation into a differential equation.

We substitute (3.2.7) into the kernel of the

integral equation. By making use- of (3.2.9), trun-

cating after the fourth derivative, and considering

only the first three moments of the wiith, we obtain

a lengthy expression for the integral term involving

0 and its first four derivatives . This expression is
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now combined with (3.2.8) and the absorption cross section

in accordance-with (3.1.1). A fourth order differential

equation results. The procedure is entirely straight-

forward and for this reas-on- the details are not given.

We furthermore asstme that the absorption cross

section is of the form

=10 
-. (3.3.1)

a x1/2

where Z is the cross section at kT.
0

In order to remove the half integral power,

the change of independent variable

y= x1/2 (3.3.2)

is made and the following fourth order differential

equation is obtained.

w 4  ~w d 4 w2, 2r 2..+V 3w ++ + :a+ ( -L2 2 + y-1 +

dy T~ ~ dy3  2

+ ( + 27w + 3 2 +
31]dy 2  [22 w2 +3w3 y +

+ L( 2 + 2w2 y2 +-w 3 +3 2 Wdy [4y -~ 3y

+ p + 4w y~ 3 ) - A] = 0

(3I3.3)

In writing- (3.2.13) we-have ptt
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= ' b.11 (3.3.4)

= w2 + 2w3  (3.3.5)

and we have also assumed that the energies of source'

neutrons are very high compared with the thermal energy

so that we may write (3.1.1) as a homogeneous equation

and select the- solution that- behaves properly- at infinity.

The moments wn appearing in (3-3-3) will be

determined next: For a gas, we obtain immediately from

(2.2.15)

w 2  1 (3.3.6)

wn =0 n > 2

and for an isotropic solid (2.3.9) yields

00

w =T wn (M) dwr, (n odd)

0

00 (3.37)

-n-l (1W d (n even)

Several features of equation (3-3.3) are of interest.

We note firstly that for a heavy gas, p<< 1; the- equation

to first order in 4, becomes a second order differential

equation. This simple and useful equation was first

proposed by Wilkins (18) and is known as the Wilkins

equation.



Secondly we note that although, in general, equation

(3.3.3) has only asymptotic validity, this is not the

case for a gas, since then the expansion (3 .2.4) of

the width is exact because of the simple form (2.2.15).

In this case, however-, the expansion in 4 is not valid

because- of the fact that the width w(t) increases as

t2 for large t. The expansion is therefore valid only

for 4t2 e 1, or, since the square of the collision time

is inversely proportional to the energy, for 4/x . 1.

. Modification _of the quatin for Anisotropic

Solids.

The preceding theory is based on the expression

(2.1.2) valid only for isotropic moderators. The case

of anisotropic moderators is of interest in reactor

calculation because graphite has a strongly aniso-

tropic lattice.

Krumhansl and Brooks (19) have developed a

model for graphite in which the phonon spectrum

is considered to be different for displacements

parallel and perpendicular to the layer planes. It

is also assumed that both components of the atomic

displacements do not interaet. Keenson and Pearlman

(20) have determined the-pertinent constants from

measurements of the low temperature specific heat

of graphite, and- Kothari and Singwi (22) have calcu-

lated with the use of these- constants, the. inelastic



scattering- cross-section- for- cold- neutrons-, obtaining

good agreement- -with exper-imental results

We are going to consider now the- modifications of

the theory de"-veoped in- the- preceding- sect ion for crystals

having- asymmetry- smi-lar- to- the- model of graphiter just

discuss-ed, i.e., an asymmetry characterized by an

ellipsoId of revdlution.

We start with 'equation (2.3.7) and again change

the variable f. to w. Let (() represent the

distributions of phonons of polarization . p , we

then have

C (ot) - Ca(0,0)= ee (S) (W) e +

p

+ (e iwt -)1 + d)
e - 1

(3.4.1)

In specializing for the type -of anisotropy under

(1) (21
consideration, let (w) and (w) represent the

distribution of phonons corresponding to the displace-

ments normal to the layer planes and in the layer planes

respectively. We have to integrate over all possible

orientations of the grains. To this end, we take a

coordinate system with axes along the three principal

axes of the polarization ellipsoid. Let the z-axis be

along the polarization vector e. and the x and y axis



be directed in such a way that the vector X, representing

the change In momentum of the neutron lie in the- z-y

plane (Fig. 3.1) and form an angle - with the z-axis.

To simplify the notation, let us write

[ -iwt
gi (t) (() e 1 + 1 +

(3.4.2)

We then have, omitting the argument of g,(t)

?cZ . eaeogs 2 (g cos2  + )2sin2

Orgputting i 00cs , we obtain for the cross section

averaged over all orientations of the grains

(x,0-2x', .) j 1/2dt i(x'-x)t

-oo

I di e & 2  2 2

0
(3.4.4)

We now want to evaluate- the- integral I, over- P. Use

of the definiton-of the error- function

erf (z) = e-t

0

yields

I = 22 erf[.(g2 - l
2 4 . (g2 ~g1) e2f[

(3.4.6)
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Fig. 3.1. System of coordinates used in the

averaging of the cross section over

all orientations of the grains .
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Using the Taylor expansion of the error function (2j),

we obtain to order 4

2 g1(t) + 2g2(t)3

2
g (t) + 2g2(t) + g1 (t) - (t)]2

(3.4.7)

Let us define

g1 (t) + 2g2 (t)
w(t) = 3 (3.4.8)

u(t) = g1 (t) -'2(t(3.4.9)

Comparison of (3.4.7) with the expression (3.2.1) shows

that the theory can be extended to- anisotropic scattering

if w 2(t) is replaced by w2(t) + U2 (t) in the terms of

second order in .L.

We note- that to first- order in -, the cross section

is independent of the degree of anisotropy, since (3.4.8)

is nothing else but the average of the- phonon' distributions

of different polarizations. We also note that the new

definition- of w(t) (3.4.8) is- consistent with our. previous

definition.

A, derivation entirely similar if the one that led

to equation (3.3.3) shows that for- the anisotropic

igoderator under consideration, the corresponding fourth

order differential equation is



w 4 w,, 4W 2  2 w~~p + +( 2+

+w 4Wy 25R. y +
~dy4  2 3  dy

+[w 2 y - + 2 3  + 2y 2 . +

+[2y 2 . w2 - 3w3 Y'10 2 +,& 4W__ + 2 2 -4W Y2)jO+

16Wi
+[4Y - 3w y-3 + ( 4W 3 ) - A 0 = 0

3 3

(3.4.10)

where we have used the following notation, consistent

with the notation- previously introduced

4 ~2

2 w + 45u J2 (3.4.11)W2 2 75 2 1

w 2 + 2w + : + 2u u3 )2 3 45 2 13

and un are the moments of u(t) defined by

00

U(t) ft-=Z un(it)n (3-.4.12)

n=1

Equation- (3.4.10) is a more general. form- of (3.3.3)

and reduces to it in the case of is-otropy, u(t) 0.

5.. Some- Remarkr n the Wilkins Eqaation

As it was pointed out in section 3, equation- (3.3.3)

or the more general (3.4.10) becomes the Wilkins equation

when the perfect gas model is considered and all powers

of the mass ratio ,, except the first, are neglected.



The Wilkins equation is

y dy2+ (2y2 - y 1) +(y-A) 0 (3.5.-1)
dy

or, in term8 or the- energy variable x = y2

+ x = 0 (3.5.2)
dx 4xd

Here, the abs6rption cross section has been assumed I/v.

This restriction is not necessary and- without it the

Wilkins equation may be written

2~ ~~ CIZaI&(x)
X + x d 1-)#=0

dx 2 dx 241 'Tb
(3.5-3)

The preceding equations are extremely attractive be-

cause of their simplicity. They have bfen derived as

a particular case of the more general equation (3.4.10);

their usefulness, however, extends beyond the validity of

the hypotheses that led to their derivation, because they

satisfy two fundamental conditions that every equation

describing the spectrum of neutrons over the full energy

range, must satisfy. These conditions are

a) The condition of detailed balance, which requires

that the steady-state distribution of neutrons in an

infinite homogeneous moderator without sources or sinks

be a Maxwellian distribution.*

* Quantum effects in the distribution are entirely negli-

gible in all practical cases because of the low density

of the neutron gas.



b) The condition that the asymptotic behavior of the

flux, in an infinite homogeneous medium in the presence of

absorption and high energy sources, must have the 1/x

dependence predicted by slowing down theory.

That these conditions are satisfied by (3.5.5) can

be readily verified.

The fourth order differential equation that results

from (3 .4.10) applied to the perfect gas, also satisfies

these conditions.

Therefore, both the Wilkins equation and the fourth

order differential equation for the perfect gas can be

expected to represent reasonably well the overall be-

havior- of the spectrum when the absorption is small.

In the case of a solid (3.4.10) will give with good

accuracy the asymptotic form of the spectrum but it does

not satisfy the condition of detailed balance, and there-

fore it cannot represent at all the -overall behavior of

the spectrum even for very small absorption.

The properties mentioned are a result of the fact,

already noted in section 3, that the expansion of the

width in powers of it and subsequent truncation after

the first four terms, yields an exact result for the

width of a gas but not for the width of a solid.
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{2, Tg.Asyot ot ic Exnns ion- for, _the Fljjx

It is easy to find an asymptotic series for the

flux in (3.4.10) that behaves at infinity as req-pired

by slowing down theory. We substitute in (3.4.10) the

series

-n
2- n=

and- identify- coefficients.

The first few coefficients are given next, explieltly,

fqr convenience

a

a - -

1 2

2 +2w 2 + P( 2 - + 8w
a +- + 2 2a3  2~~ 12 2 1 9172

a 3 [w2  w - + + w ) +

+ 56w r- - 69w- 2  20wji'1 + 10W]

These coefficients when particularized for a gaseous

moderator coincide with the values given by Corngold (I_)* to

order P.

* Note that the A used inreference (R) is the A in this

work multiplied by the ratio of the bound to the free atom

cross section.



Chapter IV

APPLICATION TO SEVERAL MODERATORS

1. Introduction

In the preceding chapter, an approximate asymptotic

solution to the Boltzmann equation was-given-. In this

chapter, the explicit solution for beryllium and

graphite at different temperatures and in systems with

different absorption will be given. The results are

compared with the results given by the simple Wilkins'

equation, and it will be found that the difference be-

tween the Wilkins solution and the more accurate

gaseous model is in the direction of the correction

due to crystalline binding, and that, at least in the

energy range covered by the asymptotic solution, the

use of the Wilkins' equation instead of the-more

accurate equation for the gaseous model, actually

constitutes an improvement in the calculation of the

neutron spectra.

a. Beryllium

Beryllium is considered to have a Debye phonon

spectrum with a Debye temperature of 10000 K. This

model has been- used by Bandhari (23) to calculate

the total scattering cross section for beryllium in

the thermal range. The results are in excellent

agreement with the- experimental measurements. Nelkin (2)



used this model in conjunction with the incoherent

approximation and the lowest term in the inverse mass

expansion of the cross section to calculate the spectrum

of thermal neutrons in beryllium by numerical integration

o the integral equation.

Let 9 represent the Debye temperature in units of

kT. For a Debye model of the phonon- spectrum we- have

2
(W) 3(4.2.1)

and therefore the pertinent moments are

W2  "p2  w3 e + dw (4.2.2)
2@3 0e -129 0

2 (4.2.3)

if Q 6 4, that is, if the Debye temperature is less

than about four times the temperature of the moderator

the series expansion for w2 in powers of 0 converges

very rapidly, and we have

92
2 1 20 +.. (4.2.4)

Equations (4.2.3) and (4.2.4) show that the- effect of

crystalline bindIng increases as the square of the



ratio of the Debye temperature to the temperature of

the moderator. This effect is measured by the width

of the Gaussian self-distribution function of the

solid compared with the corresponding quantity for

a gas.

Figure 4.1 shows the effect of the crystalline

binding in the asymptotic part of the- spectrum for

beryllium- at 6000 K and 300 0K. Two values of A are

shown, the- value A = 0.4 can be considered as

typical for a thermal reactor. The value A = 0.8

corresponds to a slightly under-moderated reactor.

The small circles have been obtained with the

Wilkins' equation. It can be seen that the use

of this simple equation constitutes an improvement

over- the use of the- more complicated gas model, at

least in the energy range under consideration.

Table 4.1 lists the values of the pertinent

moments- used In- calculating~ the solution.

Table 4.1

Moments Used in, the Calculation of_ Beryllium S-ectra

Temperature of Beryllium

300 0K 600 0K

W2 1.499 1.134

w 1.111 0.278

w 4.469 1.843
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Fig. 4,1. The asymptotic part of the spectrum in beryllium.

The circles are the result cnf the heavy gas model.
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.Grahit

As we briefly mentioned in the preceding- chapter,

Krumhansl and Brooks (9) developed a model for graphite

in which the phonon spectrum is considered to be different

for displacements perpendicular and parallel to the layer

planes and both components of the displacement are assumed

independent from 'each other. By theoretical considerations

they found that both spectra can be approximated by a

parabolic dependence on w near the origin and by a

linear dependence over the rest of the interval.

By measurements of the specific heat of graphite

at low temperatures Keenson and Pearlman (20) determined

the necessary constants. More recently Baldock (25)

has computed with great detail the phonon spectrum

for displacements perpendicular to the layer planes.

Schofield and Hassit (26) have computed the neutron

distribution in graphite in the presence of plutonium

at 300 0 by numerical solution of the integral equation.

They used Baldock's model for the distribution of the

transverse modes and Krumhansl's model for the

vibrations along the planes; however, they found small

differences between the constants using Baldock's

spectrum and those computed using the corresponding

Krumhansl spectrum. We shall use Krumhanslls model.

From the constants given by Keenson, it follows

that the parabolic part of the distributions is en-



tirely negligible in our application; for our purposes

both spectra can be considered to be linear with Debye

temperatures of 1000OK for the transverse modes and

25000K for the planar modes. With this model we may

write

(i )) = 2 (4.2.4)

Because of the independence of the modes, the

total number of phonons corresponding to each of three

principal displacements is the same, insuring that

wil 
(4.2.5)

W 2 W w2

As in the case of beryllium the effect of chemical

binding on the moments is seen to be quadratic in

9 and 92 for values of these ratios not much larger

than unity.

Figure 4.2 shows the asymptotic solution for

the neutron flux for the same values of the temperature

and the thermalization parameter A used in the previous

section. The Wilkins solution showed by the circles

still constitutes an improvement over the solution for

the gaseous model; also the difference between both

of them is smaller than in the case of beryllium be-

cause of the higher value of the graphite mass.

Table 4.2 shows the values of the moments used
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in the calculation.

Table 4.2

Moments Used In th CalculatIop Graphit Saectra

Temperature of Graphite

300 0K 6000K

w2 2.376 1.449

w3 5.864 1.046

w 17-55 4-325

The large values of the moments caused by the- high

Debye temperature of the planar- modes are to be

noted.



Chapter V

THE SPACE DEPENDENT PROBLEM

.. Introduction

In the present chapter, we shall pre-sent the theory

of the space dependent Boltzmann equation- when the

energy dependence of the, neutron flux is- takenm into

account.

The complication of the problem- is very great

and simplifications- have- to be made in order to be

able to treat. analytically even the- simplest problem.

We shall start with the general equation and proceed

with the simplifications finding the condittins under

which they are valid. The approach- taken-by- Feynman (2)

in his method is admirably suited for the discussion

of the simplifications and it will be followed.

A note about the titne dependent problem is also

included at the end of the chapter.

The treatment presented is purely formal and

serves as an introduction to the work- of later

chapters.

2. The Approximation to. the Boltzmrnn EQuation

We are interested in the steady-state version

of Boltzmann's equation (1.1.1). The first approx-

imation that we shall make is that the inelastic

scattering cross section is isotropic. This



approximation is certainly good for heavy gaseous

moderators. In fact, the approximation is better at

thermal energies than at epithermal energies. A

simple calculation based on the expression (3.2.1)

for the cross section yields for the average cosine

of the scattering angle in a gaseous moderator

Kcos = ( 2x (5.2.1)

which shows the dependence of the anisotropy on

energy. Expression (5.2.1) is valid, of course,

only asymptotically. The reduction of the aniso-

tropy is a consequence of the highly disordered

motion of the moderator atoms.

In liquid moderators, the reduction of the

anisotropy at thermal energies is even greater

because of the increase in apparent mass of the

molecules of the moderator caused by the increase

in the effect of intermolecular binding with de-

creasing energy. Drozdov et al. (2) report

calculations done with a phenomenological model

of scattering by water that show that the average

cosine of the scattering angle has a value of

only 0.4 at an energy of 4kT.

Crystalline binding in solids should greatly

increase the apparent mass of the scattering nuclei

and therefore reduce the scattering anisotropy.
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Coherent effectp must be also taken into account. Bragg

scattering, however, is very selective in energy, and,

although it may strongly affect the isotropy at certain

energies, its overall effect is expected to be- small.

Calculations of the- transport cross section of beryllium

carried out by Bandhari (23) confirm this point.

With the assumption of isotropy, an integral

equation for the flux can be obtained from (1.1.1) (27)

0(r,x) = dr.' 2 Z(x- x)0(r,x~') dx' +
v 0

+ 4TrS (, x)

(5.2-3)

where-the source is assumed to be isotropic.

We make use- of the basic idea underlying the

method of Feynman (27,2_ that: consists in expanding

the- solution- of (5-.2-3) in a series of spatial

eigenfunctions in which the energy plays- the role of

a parameter. To this end it Is convenient to intro-

duce the emission density H(r,x) defined by (27)
aD

H(r.,j) 1 dx' Z(x1-+x)O(rx1) + S(rx)
0 (5.2.4)

that represents the total number of neutrons appearing

with energy x at the point r_ per unit volume and energy.

The inversion of (5.2.4) can be easily performed. Physical



intuition dictates

e- 1Mx)) '
V(x) = Id '2 I(r',x) (5.2.5)

which can be readily verified by elimination of

H(r,x) between this equation and (5.2.4). Substi-

tuting (5.2.5) into (5.2.4) we obtain an integral

equation for the emission density,

00 .- Z(x') 1r-ri
H(,x) = d' J- 2

* H(r',x') dx' + S(r,x)

(5.2.6)

Feynman used this equation instead of (5.2.3) because

f or the work to follow if is convenient to have in the

exponential the cross section at energy x'.

As can be seen from the form in which the integral

equations have been written, we are restricting the

problem to the case in which the cross sections are

independent of position. More complicated systems will

be considered later.

We now expand the solution of (5.2.6) in a series

of space eigenfunctions, having the energy as a parameter

H(rx) = L f(x) Z(z,x) (5.2-7)
t=0
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The normalized eigenfunctions Zt (r,x) are defined by

the eigenvalue problem

X(x) + 247.7% (x) -Vx) Ir-1'
2t (rX) 4e Z9 2 t (r.',x) dr.

(5.2.8)

and constitute an orthogonal set. The form of the eigen-

value A (x) has been chosen for later convenience.

The source is also expanded in a series of the

space eigenfunctions

S (r, X) = Z S (x) Z e(r,x)
=00

(5.2.9)

The series (5.2.7) and (5.2.9) are now substituted

into the integral equation (5.2.6); the result is

multiplied by Zp (,x) and integrated over the

volume of the system. Use is made of the ortho-

normality- of the set Z (r,v) and of the integral

equation (5.2.8). The result is

f (x) j(X) + 2WI-b L (x ) A (x'jx) dxl + St(x)

S0

(5.2.10)

where

A (x' x) =_- Z (G'Z (r-x) d~r
V

(5-2.11)



Let us now change the dependent variable

fD (x)

7'p() j x) + 2 (bX) (5.2.12)

We obtain

aD

E((x) + 2ZIb p fp(x) *(x x) (x')A (x'I x-) dx + S (x)

) 0

(5.2-13)

The- sytem (5.2.13) is- still exart- except- for the

assumption of isotropy of the- scattering- kernel.

If the dimensions- of the system are-large compared

with the mean free path, it is permissible to use the

diffusion approximation in (5.2.8). The buckling

B (x) is then related to the eigenvalue Xp(x) by the

equation

1 .(x). tanl BD(x)

21L+Zb.p(x) = B (x) n(x)

1 + X(x)

(5.2.14)

But, since the system is large 1B(x)/ Z(x)] 2<<1 and

we may write

B (x)2
(x) D (5.2.15)p 607J(x)

However, with the assumption of large system, the change

of extrapolation length with energy is negligible and



the spatial eigenfunctions are the same for all energies;

this fact means that

A t(x'lx) = t

and (5.2.13) becomes

00

LZ(x) + 24fb p (x jfp(x) ( X)(x) dx + St (x)
0

(5.2-17)

with Xp(x) given by

B2

ApW W b (5.2.18)

The- function fp(x) is, then, given by the- solution of

an equation analogous to the equation for the infinite

medium-with an extra term k2bj7p(x). To neglect this

term- in the left-hand side of (5.2.17) on the grounds

that B/Z is smell, is not permissible because the

(large) contribution of the elastic scattering cross

section to 7 cancels from both sides of (5-.2.17).

The equation- (5-.217) is, of course, valid-what-

ever the dimensions of the system- if the total cross

section is independent of energy.

In the cases in which (5.2.17) is valid consideration

of (5.2-5), (5.2-7), (5.2.8), and (5.2.12) yields
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00

0(r,x) = 4r : (x)Z(

(5.2.19)

If the conditions stated for the validity of (5.2.17)

are not fulfilled, it is necessary to solve (5.2.13)

In general, it will be sufficient to use a perturbation

approach because the spatial eigenfunctions at different

energies would not differ much from each other. This

idea is basic to Feynman's method.

In the following chapter we shall study the

solutions of equation (5.2.17) with the heavy gas

model.

Feynman's method is also very useful in treating

the case of severl media only one of which scatters

inelastically. This medium will be called the moderator.

The usefulness of this problem for cell calculations is

obvious. The fuel, because of its heavy mass, can be

considered to scatter neutrons without changing its

energy.

We shall outline the basis of the method; a de-

tailed description can be found in several references

(2j7j). We shall assume that sources are present

only in the moderator. This assumption does not

constitute any restriction in the usual case of

high energy sources because neutrons can only- attain

thermal energies by moderation in the moderator.



The first collision distribution in the moderator of

neutrons produced in the other media should be in-

cluded in the source.

The emission density is expanded in a series of

spatial eigenfunctions, orthogonal in the volume of

the moderator,

aO

H(r,x) I (x)Z (rx) (5.2.20)

L=O

The functions Z (r,x) are defined by

Z (rx) =[Y-(x) + 2 Zb X (x) K(,r'Ix)Zt(x',x) dr'

mod

(5.2.21)

The cross sections are the cross sections of the

moderator. The definition of the kernel K(Z,rl'x) is

given next: Consider a fictitious system in which all

parameters are independent of energy and have the

values that the parameters of the real system have at

energy x; K(r,.'lx) is the probability that a neutron

originating at r' in the moderator of the fictitious

system, suffers its first collision in the moderator

at r. Obviously K(rr' x) is symmetric in r and r'.

The orthogonality of the set ZL (zl.)follows from this

property.

By inserting the series into the integral equation
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for the flux, using the orthogonality-relation and the

equation (5.2.21), a system of integral equations like

(5.2-13) is obtained. The parameters in the system

of equations refer to the moderator, and the series

(5.2.20) gives the emission density in the moderator

only. Once the emission density is known, the flux

can- be obtained by the equation analogous to (5.2.5)

which in this case reads

0 (z X) dr IE K(r,.r'|x) H(r',x)

mod (5.2.22)

The flux in- the other media can- be obtained by solving

monoenergetic problems at each energy, since no change

of energy of the neutrons occur.

The simplifications that were made in- the case

of a sIngle medium, when the dimensions were large

compared with the mean free path, cannot be carried

to the present problem- without great care. Even when

the dimensions of the moderator are large compared with

the mean free path, a rapid change with energy of the

cross sections of the other media can affect sensibly

the spatial eigenfunctions of the moderator at different

energies.

a.1 Noe .on thet TiMe Dependent Problem

Inspection of the general- equation (1.1.1) shows
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that it can be reduced to a time independent equation

by performing a Laplace transformation with respect to

time. The resulting equation has the same structure

than the time independent equation but with an added

absorption cross section of magnitude s/v (LO), where

s is the parameter of the Laplace transformation. The

general methods outlined in the preceding sections

can be applied to the Laplace transformed equation,

but considerable care must be taken in using

approximations similar to thnse described before,

even when the system is large compared with the mean

free path. The fact that a term in s/v constitutes

a part of the mean free path of the Laplace trans-

formed problem- should be kept in mind. Generally,

in solving a time dependent problem, one is interested

in obtaining a relaxation constant that is given by

the value of s, when the problem- is considered as

an eigenvalue problem where s is the eigpnvalue.

If the relaxation constant is large, it is no longer

possible to neglect the change in the spatial eigen-

functions with energy, caused by the variation of

s/v with energy even if the dimensions of the system

are large compared with the mean free path.
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Chapter VI

THE GENERALIZED WILKINS EQUATION

.. Introduction

In the preceding chapter, we have seen that in

several simple systems, the zeroth order solution of

the space and energy dependent Boltzmann equation can

be expressed as a sum of eigenfunctions of the

spatially dependent problem with coefficients that

are functions of energy defined as the solutions of

integral equations of the form

1i(x) + 24 1 (x)B(x) = Z(x'- x) f (x') dx' + S(x)

(6.l.l)

In order to be able to treat the problem

analytically, it is necessary to study the solutions

of (6.1.1). A considerably simplified model has to

be chosen to calculate the cross sections in order to

make the problem tractable. The heavy gas or Wilkins

model is the simplest one, and as it was shown in

chapter IV, it is a reasonable one to use. If this

model is used, (6.1.1) becomes

24Yx 2( + x _+ 1 x)2 ~ldx 2 +dx+ 24. b xf()y Sx)

(6.1.2)



Simple analytical expressions for a (x) and X(x) are

needed; it is natural to take a 1/v dependence for

Ia(x) and a constant value for X(x). Since both

X(x) and Ta( ) enter additively in (6.1.2), the

foregoing hypotheses on the form of Za(x) and X

allows us to treat exactly dependences of Ax)

and Z(x) as the energy of the form A + B/xl/2.

As regards the source, two cases are at present

of interest: a) A high energy source. For all practical

purposes, fission sources and other commonly used sources

can be considered to be of infinite energy compared with

thermal energies. b) No sources present. This case is

of interest in pulsed neutron experiments.

These two cases require that we consider the

solutions of the equation

2A
X ! + x + (J2 -=

(6.1.3)

that are regular at the origin.

Equation (6.1.3) will be studied in the present

chapter from a purely mathematical point of view.

For a reference to the methods used in this

chapter, see, e.g., ref. (31).



. a BehgvIorL -. tae Solutions around the Singualr

Points.

In order to study equation (6.1.3) it is con-

yenient to .change both the dependent and independent

variables. We make the changes

= xe~X (6.2.1)

X1/2= y (6.2.2)

and obtain

y 2+ (3 -2y 2) -(A + 4yX)t = 0
dy 2dy 

(6.2-3)

We note first that for A = 0 a solution of (6.2.3)

regular at the origin is the confluent hyper-

geometric function 4(X,2;y 2) as defined in ref. (32).

Upon returning now to our original equation (6.2.3),

inspection shows that the origin is a regular singular

point and that there is no other singular point for

finite values of y. The indicial equation at the

origin is

s(s - 1)-= 0 (6.2.4)

suggesting the existence of a solution regular at the

origin and a solution with a logarithmic singularity

at the origin.



In order to obtain the solution regular at the

origin, , we substitute the series

00

a y
n=O

(6.2.5)

and obtain the following values for the coefficients

a. = 1

a - 3 (6.2.6)

S=2 (n-2+2
'n - n(n+2) an-l n(n+2) n-2

The normalization has been chosen in such a way that

(6.2.7)

The solution independent of 1 has a logarithmic

branch point at the origin and can be obtained by the

formula

+ 2 (y) = C + 1 (y) e
-Jd.'(1, - 2y')

2

(6.2.8)

where the explicit dependence on the parameters has

been omitted for brevity. Performing operations,

we obtain

-72

+ (A,0;y) = )(A,2;y'2)



2

* 2 (y) = C (y) 3 2 dy (6.2.9)

3[J2 d (62.9

Considering (6.2-5), formula (6.2.9) gives an expression

of the form

Y 2 (X,A;y) = A j'(y) log y + + + jbn-n

n=l

(6.2.10)

For A = 0, we have the relation

T 2 (X,0;y) =r(N) (A,2;y2 ) - (X-l)[ + 1 - 2 A,2;y2

(6.2.11)

Here, *(A,c;x) is the second solution of the confluent

hypergeometric equation as defined in ref. (2) and

T is Euler' s constant.

Direct substitution of (6.2.10) into the

differential equation (6.2.3), yields the values of

the coefficients:

-- 2+4(X -1), b =-A b =- 3+(92-44A
2 b-A* b1  32 2

b2 7A - (20+28X)A 2+48X -192, (6,2.12)

bn= nAn+2) bn-l + 2 n2+2X) bn 2 + 2A[(2n+3)an - 2an 2

- "73 -
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Since no singularities of the solution exist for

finite y aside from the origin, the radii of convergence

of (6.2.5) qnd the power series in (6.2.10) are infinite,

and, therefore, both series converge absolutely and

uniformly for all finite values of y.

We now proceed to investigate the point of

infinity. To this end, we make the substitution

y = 1/z in the original equation and obtain

Z3 2 + (2 - z 2 -(A + 4)y . 0
dz2  dz z

(6.2.13)

The point z = 0 is an irregular singular point,

the nature of the singularity, however, is such

that one solution with a branch point exists. The

indicial equation is

2s - 4N = 0 (6.2.14)

WO therefore substitute a series of the form

00

(Z) = z2j7 cnzn (6.2.15)

n=O -

into (6.2.13) and obtain the coefficients:

J; Ac0 =1; Cl2

en = - c - (2X+n-2)(2A+n) (6.2.16)
n 2n n-1 2n n-2



The radius of convergence of the series (6.2.15) is

zero. This fact can be readily seen by considering

the behavior of the recurrence relation (6.2.16) for

large values of n. The divergence of the series is

a result of the fact that the point z=O is an irregular

s ingular point .

Returning to the variable y, we obtain

3 -2c cnyfn (6.2.17)
n=O

where we have used the symbol ~ to denote that

there is a solution 4 3 (y) represented asymptotically

by k6.2.17).

We now want to investigate whether a solution with

a different asymptotic representation exists. To this

end, we return again to equation (6.2.13) and note that

a solution independent of (6.2.15) exists given by

Z2 - ) dz'
3(z) = (z) e J ( 2

3(z)]

U2 dz
S(z)j

(6.2.18)

This expression suggests a solution containing an essential

singularity of the form exp (z-2). In consequence, we
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make in (6.2.13) the substitution

(z) = eZ-).(z) (6.2.19)

The result is

Z3 d~--- (2+z2 ) -C - (A + = 0
dz2  dz z

(6.2.20)

which has a solution with a branch point at z=O,

with index s = - (2X-4). Substitution of the

corresponding series into the equation yields the

coefficients. It is again found that the radius

of convergence of the series is zero. Returning

to the previous variables, we find a solution,

independent of 3 (y) given asymptotically by

Y)(', - y2X-4 e y d2y-n (6.2.21)

n=0

where

d =J; di-

(6.2.22)

d A -dn-l + (_+2-2;Q)(n-2 )an .2n 2n n-2

In short, we have found two solutions expressed

about the origin by (6.2.5) and (6.2.10) and two
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solutions expressed asymptotically by (6.2.17) and

(6.2.21). Our task is now to relate the solutions

about the origin to the solutions about the point of

infinity.

a. .T g ining f the Solutions

Since the generalized Wilkins equation is of

the second order, 4' must be a linear combination

of 3 and + . The coefficients will, of course,

depend on the parameters X and A of the equation.

We, therefore, write

T,(XAa;y) = P(i) 43(XA;y) + Q(A) 4(,A-Y)

(6-3-1)

Extreme care must be exercised in studying the

asymptotic behavior of 1(and 2 ), because, the

point of infinity being an irregular point, both

functions should exhibit a Stoke's phenomenon.

In order to study the asymptotic behavior of

1, the form of the coefficients an for large values

of n is needed, To this end, let

a
a . n (6-3.2)n an+,

A = (n+l)(n+l) (6.3.3)n 2(n-1+2X)



B = 2(n-1+2 ') (6.3.4)

The recurrence relation (6.2.6) gives the following

terminating continuous fraction expression for

a
n

A A 2 A
*0 ---2_ 1 (6o3o5)n B B+ Bn+'**** B2+ B +A

that can also be written

A
CL = B n+ a (6-3.6)

n n n-l

We have already proved that the series for is

absolutely convergent in the finite y-plane; therefore,

for sufficiently large m, Lm > 1, and there will exist

an M such that for m > M

Bm< E am (6.3.7)

e being an arbitrarily small number. Since the

sequence Bn decreases monotonically, we may write

A A A
n A n n-2 m+2 C [1 + o( )i (6.3.8)
n An- A .ue hat bm+ o v

where we have assumed that both n and m are even.
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From (6.3.6), (6.3.7), and (6.3.8) we may also write

a
a M 1 + 0(6 (

an *A A n-3 A () (6.3.9)
an n-AlA 3 . m+l

for n and m even.

A similar reasoning yields for n even and m odd

+ 0( C )]
n-i n-3..8Am+2

By (6.3.3) and (6.3.9), (6.3.10) can be written

( + )2
an r (n+(l2)

2 2

7 (1+) r ()2 2

(a+am 1+ 0( E)

n,m even

2
an

2 2

(6.3.11)

5( ) r (M+3)

2 + a m+ il+O(E)

n even, m odd

Consider first the case m even and let n = 2p. We

have,

a 2 a_ _ +__ _ _ _ + ~
a2p 2, 2 a +(+2) (p+l)

2

(6-3-13)

(6.3.10)

(6-3.12)
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Similarly, for n odd, we put n = 2p+l and obtain

r(m+t) p (a+:,)
a2p+ ''a2 am+11

2 +X

+ O(e )](P ) a)

(6.3.14)

The asymptotic behavior of the

Z-
z 2 e."z

-function yields

We may write for large p

r(p + x + 2)

2

-9 -

r (p + 2) P(p + 1)

(6.3.16)

We are now going to determine separately the

asymptotic behavior of the functions represented by

the series Z a2pfy2p and
p

Z a2p+1 y2p+
1

p
. To this

end, it is convenient to write the series expansion

of the confluent hypergeometric function (32)

(6.3.17)(a,c=z) = O

n=O

The following theorem (3) is now used: "Let

f(z) -=

n=O

na nz
00

g(z) MC \

n=0

(6.3.15)

bn n

r(z) -+4_2n



where an and b maintain a constant sign for n > N,

with N arbitrary but finite. If the series converges

for 0< z <Ca, where a is real and positive, and diverges

for z = CL; and if, as n-+ o

an-* C bn

then as z-oa

f (Z) -+jC g (Z)"

Comparison of (6.3.13) and (6.3.17) shows that

a2p 2p am + Q.(e 2 (A,2;y2

(6.3.18)

In a similar way, we obtain

2p+1 2 2 + + O(' )*
aPp+1 -10 Et + X) C41i (4

p-0 2

)2 )

(6.3.19)

We now make use of the asymptotic behavior of

the confluent hypergeometric function (32) for real

and positive values of the argument and obtain



'(2) (,2,y2 2X-4 ey2 (6.3.20)

and

( .2 2

r (2)y ' , ) e (6.3.21)

Remembering that the series (6.2.5) defining

+ 1is absolutely convergent, we may write
00 00

Tl(NAa;y) a 2py 2p + a2p+ly 2p+l

p=O p-O

(6.3.22)

The asymptotic behavior of Yi, for y real, follows

from (6.3.13), .(6.3.14) and (6.3.19) through

(6-3.21).

2' ) 2) (-3) 2
(X , A; y) -+l [ 1r+m 2 2 a) 2 2 -am+ y2X-4ey

M -- 00 (m + ) m P(M+' + X )22

(6-3.23)

where we have used the fact that as m-+oo, 6 can be

taken as small as desired. As already stated, the

asymptotic form (6.3.23) is only valid for y real,

because of the restriction imposed by the theorem.

- Comparing (6.3.23) with (6.3.1) and the

asymptotic series for 4, (6.2.21), we may write



. ( ) F , ( 2 +- ) ( g j ) r ( M * )
2Q(A, ) lim + 2 am+j

(6.3.24)

In order to have the complete relationship

between , and the solutions around the point of

infinity Y and * 41 it is necessary now to derive

an expression for P(X,A). Fort-unately, the laborious

process leading to (6.3.24) can be avoided.

Consider again the original equation (6.2.3)

and let us change both the dependent and the in-

dependent variables

2
X- el ) ; - -it (6-3.25)

Performing operations, we obtain

t + (3 - 2t2 ) dt- Ii + 4(2-=lt0X 0
dt 2d

(6.3.26)

Upon comparison of (6.3.26) with (6.2.3), we learn

that

ey 2 1 (2-,;iA;iy) (6-3.27)

is another solution of (6.2.3). The absence of

singularities at the origin shows that (6.3.27) is
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proportional to and its value at this point shows

that

2
, -Y ey 1(2-NOI;iy). (6.3.28)

For y pure imaginary, iy is real and the theorem

quoted above can be used. Its application shows

that, for y pure imaginary

(A vA; y) -+Q2-A,jA) e' iXy-2A

(6.3.29)

and comparing with (6.3.1) and the asymptotic

series for $ 3, (6.2.17) we obtain

A) - e -Q(2-X,iA) (6-3-30)

which completes our investigation of the relation-

ship among ,y 3 , and y4 .
The expression (6.3.24) obtained for Q(X,A)

is, however, not very convenient for numerical

calculation. In the next section, a power

expansion in A for Q(,A) is obtained.

4. The Exransion _of Q(Xr,) Jn Powers _Q_ A

As was mentioned at the end of the last section,

the expression (6.3.24) for the joining factor Q(X,A)

does not lend itself easily to numerical calculation,



In this section, we shall obtain an expression of the

coefficients am as polynomials in A, and, as a

consequence, a series expansion of Q(X,A) in powers

of A. The approach is based on the solution of the

difference equation (6.2.6).

The expression (6.3.24) suggests that we make

the change of variable

a - f(n) (6.4.1)n r( ) r (DE.2)
2 2

With this change of variables, the recurrence relation

(6.2.6) becomes

f(n) - Ag(n) f(n-1) - f(n-2) = 0

(6.4.2)

where

r -a+ l )- r (n-) (a)
(n) 2 2 2

4 ( + x)r( ) (a -)

(6.4-3)

Two initial conditions are needed to determine the

solutions of the difference equation (6.4.2); these

conditions .are provided by the values of a and a

in (6.2.6). Using these values in conjunction with

(6.4.1), we obtain



f(O) - = (6.4.4)

f(L) = p - "TA (6.4.5)
2

We now substitute in (6.4.2) a series of the form

f(n) - A Ai (6.4.6)

J=0

Direct substitution of this series into the difference

equation yields a system of recurrent difference

equations for the coefficients A

A0(n) - A0(n-2) = 0

A (n) - AY(n-2) - g(n) A (n-1)

(6.4.7)

A (n) - A (n 2) = g(n) A3 1 (n-1)

The system (6.4.7) can now be solved by successive

steps. Because of the nature of the initial

conditions, the values of the coefficients A are

different for n even and n odd. We shall denote this

difference by using the subscripts e and o for n even

and odd respectively.

The first equation of the system (6.4.7), gives

evidently



A0(n ) = a ; A0(n0) = 0

The second equation yields (34)

A(n0 ) - +p

p=1

g(2p+l) - CL

p=l

or, taken into account (6.4.3), (6.4.4), and (6.4.5),

2
A(no) W a g(2p -1)

p=1

(6.4.10)

A e(ne) = 0

By proceeding in this way, the general form, which

can be proved by induction, is obtained. For n

even we have

p2=1 P2

p2= P3=

Pn-1

n

g(2pl)g(2p2+1) *

(6.4.11)

A n(n ) = 0

Similarly for n odd we get
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(6.4.8)

g(n+2p)

(6.4.9)

n/2
A (n) a
n e

*g(2p i . g(2pn-1



p p2 l P3
1

pn-l

... j g(2p 1 +l)g(2p 2 )

n=1

* g(2p 3 +1) .. g(2pn-)

(6.4.12)

An(n) = 0

These formulas, however, are not particularly

advantageous for the calculation of the coefficients

an of the power series for *V; the recursion relation

being a more expedient method for the computation.

The usefulness of (6.4.12) is for the computation of

Q(AA). By (6.3.24) and (6.4.1) we have:

Q(2A~) = lim Lf(n) + f(n+l)] (n, even)
n--oo

(6.4.13)

By (6.4.4), (6.4.6), (6.4.11), and (6.4.12), we

obtain

00

Q(A?,A) = 1 + AZ
p=l

CD P

g(2p-l) + A2

p=1 q=1

g(2p)g(2g-1) +

+ 3 q Nl
p=l q=l r=l

g(2p+l)g(2q)g(2r-1) + .. *

(6.4.14)

Ano(n) = a
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This formula has been used to calculate Q(AA).

The numerical calculations and results are discussed

in Appendix A.
2

Tables of the function y2 e-y (N,A;y) together

with the discussion of the numerical calculation are

given in Appendix B.

. Th Eigenvalue Problem

When low energy sources of neutrons are present,

or in studying the decay of neutrons in the absence

of sources in small systems, it is convenient to

examine the eigenvalue problem defined by the

eigenvalue equation

d2  dW
y + (3-2y2 ) - (A + 4yy)W = 0

dy 2dyn
(6.5-1)

and the boundary conditions that Wn be regular at

the origin and have a nonexponential behavior at

infinity.

Equation (6.5.1) can be written in Sturm-

Liouville form

2 dW (Ay2 e-2 24y3 e ) 2
y - 2 + 4) Wn ' 0

(6.5.2)

The coefficients are seen to fulfill all the re-

quirements that insure the orthogonality and
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completeness of the set Wn in the range (O,oo ) (35).

The orthogonality relation can be immediately written

002

Wn(y)Wm(y) y3 e~2 dy = ND- m
0

(6.5.3)

where the Nn are the normalization constants.

Instead of considering y as the eigenvalue

parameter, it is possible to so consider A. We

denote by Wn the corresponding eigenfunctions for

fixed 7, the orthogonality relation reads instead

of (6.5.3)

2 - (dy = Nt8

0

(6-5.4)

In a physical problem, the eigenvalues T n for

fixed A are related to the negative leakage (or

inward flow of neutrons) necessary to maintain the

nth energy distribution mode for a given absorption.

The eigenvalues An for fixed T are related to the

(negative) absorption cross section necessary to

maintain the nth energy mode for a fixed leakage.

In time dependent problems with no sources present,

the An are closely related to the decay constants

of the different energy modes.
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The equation determining the eigenvalues can

be obtained from (6.3.1). Since (, {yA;y) increases

exponentially at infinity, and since Y 1 (T,A;y) is

regular at the origin, it is evident that the eigen-

values are the solutions of

Q(0,A) - 0 (6.5.5)

This equation can, of course, be used to determine

either the Xn or the A .

Equation (6.5.5) in conjunction with formula

(6.4.14) has been used to calculate the first few

eigpnvalues. The numerical calculation is discussed

and a table of eigenvalues is given in Appendix A.

Tables of eignefunctions are given in Appendix B.

The normalization of the eigenfunctions has

been chosen in such a way that

Wn(y) = Yl(-Yn'AY

(6.5.6)

n yA n;y)

A useful relation that gives pairs of values of

X and A that satisfy (6.5.5) is easily obtained from

a consideration of the recurrence relationship (6.2.6),

which, for convenience, is repeated here:



A 2(n-2+2T)
a = n(n+2) a +2 an2 (6.5.7)

Let 7 = -m/2 where m is zero or a positive integer;

if A is a root of am+1 = 0, equation (6.5,5) is

satisfied.

The proof is immediate; for y = -m/2, we have

from (6.5-7)

am+2 = '(m+2)m a+ 658

and if am+1 = 0, then am+2 = 0 and in general

an = 0 for n > m. The power series expansion of

%4 1terminates; behaves at infinity as ym and

therefore, (6.5.5) is satisfied. This property

has been used in Appendix A to extrapolate the

formulas obtained for the eigenvalues from (6.4.14).



Chapter VII

APPLICATIONS TO SPECIFIC SYSTEMS

1. Introduction

In this chapter, we treat some of the applications

of the theory developed in the preceding chapters. We

consider first the problem of the calculation of neutron

spectra in bare homogeneous systems. Unfortunately,

the detailed measurements of spectra have been limited

up to now to water systems. Furthermore, the measure-

ments have been designed to simulate the spectrum in

infinite media and have not been directed to the in-

fluence of leakage. The applicability of the Wilkins

approximation to water systems (not discussed

theoretically) is tested by comparison with experiments.

The approximation is seen to be applicable in the range

of absorption studied.

The problem of the neutron spectrum in lattices

is considered next. A very simplified model equivalent

to the first order approximate solution of the system

of integral equations (5.2.13), is considered. The

result of the calculations is seen to be in agreement with

the expeimentally measured moderator spectra.

2. Ba Homogeneous Systems Withigh Energy Sources

It was shown in Chapter V that in a bare homogeneous
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system with dimensions large compared with the mean

free path, the neutron flux can be represented by

00

#(r, x) = 4-a T(x)2n(r-) (7.2.1)

where the Zn(r) are the spatial eigenfunctions and

? n(x) are the solutions of the equation

17-(x) + 24tkn(x)3n(x) = JZ(x'-sOx) fn(x') dx' + S (x)
0

(7.2.2)

n (x) are the spatial eigenvalues as defined by (5.2.8)

and S n(x) is the contribution of the source to neutrons

in the nth spatial mode as defined by (5.2.9).

If the source neutrons are emitted at energies

very large compared with thermal energies, then we

can assume with a high degree of accuracy that the

source neutrons are monoenergetic. The accuracy is

a consequence of the fact that they have already

reached the asymptotic behavior predicted by slowing

down theory when they attain thermal energies. We

can, therefore, write

Sn(x)S n8(x Xo) (7.2.3)

where x0 is the energy of the source neutrons.



In order to solve (7.2.2) we use the Wilkins

approximation and assume 1/v absorption and .constant

total cross section in the thermal region. With

these assumptions, we obtain instead of (7.2.2)

2
df d'p S
d T +- d + (1 -8(x - x0 )
dx 2 xdx 4x1/2 n) n 24t.3 0

(7.2.4)

We want to reduce (7.2.4) to the equation studied in

Chapter VI. To this end, we put = xe~Xgn and

x = y2 . Changing the variables in (7.2.4), we obtain:

2
2 -2 Yo

d g + (3 - 2) + yA e Sn )
dy 2dyn)g8( 

YO

(7.2.5)

The solutioni of (7.2.5) can easily be written by appli-

cation of the methods for obtaining the Green's

function of a second order linear differential operator

(_/), in terms of the functions studied in the previous

chapter

( = 
Sn {l( 2n)A Y) n3(X A;y ) YO

b 

AngA9 T3 (n 9A;Y) 1l(knPAo) Y>y0

(7.2.6)

We are interested only in the region y y. Moreover,
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since we have assumed y>> 1, we can use the asymptotic

form for 4#3 and write

-d 2A n

gn(y) 2 LnAY N )

(7.2.7)
Or returning to our old variables nand x, and taking

into account (7.2.1) we may write

n
0(-,) D S nxo n x-x 1/2)(E )=24Lb C n X) *1(X$'

n;

(7.2.8)

This relation is the final solution of our problem.

Before: proceeding further it is interesting to

consider the solution (7.2.8) for energies much higher

than thermal. Use of the asymptotic expression (6.3.23)

for yields

00 ,'
0(r-.L Z 00S-z (o A(zx) n=O n n

(7.2.9)

We now introduce the notation customarily used in age

theory. With the assumptions made about the cross

sections, we have

T log 0 (7.2.10)3 x
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(7.2.11)

where T is the Fermi age, f is the average logarithmic

energy decrement per collision and q is the slowing

down density. We also showed in Chapter V that

B2

Ign (

In general, we have (37)

(7.2.12)

=1 + (3--", log 1
24 1+42 .

(7.2,13); (7.2.14)

and for small 4

I Is 24L 2b (7.2.15)

By (7.2.10) through (7.2.15), (7.2.8) becomes:

g(r,T) =

n=0

-B 2 T
n (7.2.16)

which is exactly the result of age theory.

We notice that if, as a result of the discussion

in Chapter IV, the Wilkins approximation is used for

light moderators, it is then convenient to replace

P1b by I5 /2 in order to have the correct asymptotic

behavior. Then we should use

q(r, T ) = E (,X)
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DB2
A = s X = n (7.2.17)

n 118

Since the assumptions about the cross sections

are certainly not valid at energies large compared

with thermal, we shall obtain a more accurate 2

expression for the flux if x - is replaced by e 0

where T is now the age of source neutrons to the0.

energy kT, calculated with the assumption that the

spectrum is l/E in the range from epithermal down

to kT.

Taking into account these considerations, we

write instead of (7.2.8)

-B 2 T
She no01/

= L., _ "&7 Z () xe (nA;xl/2)

(7.2.18)

where X and A are given by (7.2.17)o

Several considerations regardihg (7.2.18) are of

interest: We note firstly that if the source neutrons

are distributed according to the lowest spatial mode

Z'(.), then the spectrum is given simply by xe -xy( ,A;xl/2).

Secondly we note that even if the above statement

is not true, the spectrum will still be represented with

good accuracy by xeX YJ(x A xl/2) if the dimensions of

the system are sufficiently small compared with the
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square root of the age. Mathematically, if

B 2T2-B 2 -B 2
S1e 1 <o S e 0 0 (7.2.19)

then the lowest mode represents the flux well.

Ir the case of a slab of width 2a with a plane

source at the center the criterion (7.2.19) becomes:

2 T TT 2 T

e a e a (7.2.20)

Table 7.1 gives the value of 2a for different moderators

such that the contribution of the second harmonic to

(7.2.18) Is only 10% of the fundamental. The source

is assumed to be a fission source. It should be

noted that a plane source is much richer in harmonics

Table 7.1

Dimeneions .. I slab fQr. contribution o .f ; second
harmonic ta th.e A DectruM, in jasal moderators.

Moderator Width ._L jg Slab

Water 34 cm

Heavy Water 64 cm

Beryllium 58 cm

Graphite 110 cm

than an extended source with reasonable -spatial dependence.
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It should also be noted that the value of 10% given

for the contribution of the second harmonic is an

tpper limit valid for energies a few times greater

than the thermal energies. The actual contribution

to lower energies is somewhat less because of the

preferential leakage of neutrons in the higher

spatial modes. This fact is illustrated in

Fig. 7.1 where the spectrum for the fundamental

and second harmonic, for a case approximately

that of beryllium given in Table 7.1, has been

plotted.

3& -The Infinite ?ediur with & Plane Sourge

When the size of the assembly becomes large compared

with the slowing down length, the separation between

the spatial eigenvalues becomes very small. When the

medium becomes infinite in extent, the spectrum of

eigenvalues becomes continuous and equation (7.2.18)

is no longer valid. We can, however, transform

(7.2.18) into an integral performing the limiting

process customary in such cases. We are going to

perform such a limiting process in the special case

of an infinite medium with a plane source. As it is

well known (-Lo), the solution for a point source- and

therefore for any source- can be derived from the plane

mource solution.
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1.6 -

/4-

1.2-

/.0-

.6-

.4 -

0/0 1.6 2.0 2 .3-o

Figure 7.1

Comparison of the spectra of the fundamental and second

harmonic in a slab of beryllium, for A = 0.1 and 68 cm.

thick.
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Let us consider a plane slab of width 2a with

a plane source of unit strength at the center. Let

the z axis be directed normal to the plane of

symmetry. The buckling B is given by

B = (2n+lr 2
n 2 -a (7-3-1)

and the corresponding normalized eigenfunctions by

Z (z) L cos (2 )+) y
SL 2 a (7.3.2)

Equation (7..181 becomes

x OD exp 2n+1 L 2T
O(zIx) =2 a Cos -(2n+l)n .J

a a n=O Q (2+ .I 2 . 2

js 2 a A

* T
2 T 1/2

* Ti~Z 2 a

(7.3.3)

Let

= p2
(7.3.4)

We now make a -+ 04 the slab becomes an infinite

medium. With the definitions (7.3.4), (7.3.3) becomes

0(z,x) = I Xrr

00

0

dk cos kz 2 2xe X 1 2(k2A;xl/2)

(7.3.5)

2n+. 21= k2 a
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which is the answer to our problem.

The evaluation of the integral in (7.3.5),in .closed

form seems hopeless. Some approximations, however, can

be made. We note first that for energies a few times

greater than kT the function q)(p2k2A 1x/2Q( 2k2,A)

-k2T
varies slowly compared with e T. This fact

follows immediately from the consideration of the

asymptotic behavior, (6.3.23), of 1l. For low

values of x, it may be seen from (A.l) that

Q(P 2k 2,A) changes to first order linearly in p2 k2

while the function is rather insensitive to

changes in p2 k2, as can be seen from the tabulations

in Appendix B and the series (6.2.5).

Disregarding changes in ,/Q for small values

of k which are the values that contribute mostly to

the integral (7.3.5), we may write

- (0, A;xl/2)
(z, x) e ee

(7-3.6)

so that to first approximation the spectrum is the

same as the spectrum in an infinite homogeneous

medium.

In order to find the limits of validity of

(7.3.6) we compare first the asymptotic form of

(7.3.6) with the result of age theory, namely
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2

0(z,x) = e4+ (7.3,7)

From (6.3.23) it is seen that both results are identical

if the energy is such that the difference between the

age T corresponding to it and the age To corre-

sponding to the energy kT can be neglected. This

difference for ordinary moderators is less than

10% for energies less than 5 kT. If T is replaced

by T in (7.3.6) the correctness of the asymptotic

behavior is insured at the cost, however, of in-

troducing large errors for energies less than kT.

We are now interested in finding the limit

of validity of (7.3.7) for energies smaller than

kT. As'was remarked above, Yl is quite insensitive
to changes in p2 k2 for small pk. To find the first

order correction to (7.3.6) we take into account the

first order change in Q(p2k2 ,A) for changes in p2k2.

We may write for small X and A (A.1)

Q(IA ~X + A (7.3.8)

With these assumptions, we may write instead of (7.3.5)

(z,x) = xe x(o,A;xl/2) OD dk cos kz e -k2
~zs 0

2L 
.3 k.9

rTA (7-3,)
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where we have assumed p2 k2<<-- A . If the term cos kz

is also expanded in a power series in kz, (7.3.9) can

easily be integrated to give the expression

2

O(z,x) = xe o 1/2
is Q(o) To (o

(7.3.10)

2
valid for \small A and small z /4T . Comparing (7.3.10)

with (7.Y.6), we see that, at least for small absorption

parameter A and distances from the source small compared

with the slowing down length To, (7.3.6) is valid if

4p2 / I AT << 1. Taking into account the definitions

of A (7.2.17) and p2 (7.3 .4), we conclude that under

the conditions stated the approximation (7.3.6) is valid,

for energies.less than kT, only if

D
0 4< T 0(-,1

This condition is not always satisfied by ordinary

moderators even for A '.3, a value that can be

considered typical of a thermal reactor, and care

must be exercised in designing an experiment not

to distort the lower part of the spectrum.

The physical interpretation of (7.3.12) is

immediate. D/Z E is a measure of the distance the
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neutrons diffuse before being absorbed, while T is a

measure of the distance the neutrons travel before

reaching thermal energies. Equation (7.3.12) is an

expression of the fact that neutrons produced by a

plane source should not travel too far from the

source before being moderated if their energy spectrum

is to be well represented by the spectrum corresponding

to a source infinite in extent.

Another limitation of (7.3.6) is that zee 7<'r.

This limitation is the limitation of age theory, which

(7.3.6) approaches asymptotically.

i, .Comarison wth ExDerimental Results

Extensive measurements have been made in water

systems to determine the energy distribution of

neutrons. Spectral measurements in other systems

have been directed towards other goals. Unfortunately

no measurements have been made to investigate the

influence of leakage in the spectrum. The experiments

have been designed with the specific purpose of obtaining

the spectra for infinite homogeneous media.

The application of our theory, based in the

Wilkins approximation, to water systems is justified

by the fact that this approximation satisfies the

detailed balance and conservation conditions as discussed

in Chopter III. That the Wilkins equation may be applied
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to water was first suggested by Greeber (41), who

compared the results of a Wilkins calculation with

a spectrum obtained by Poole (4) in borated water.

In order to test the applicability more

thoroughly, we have compared several spectral

parameters with experimental results and also with

the calculations done by Amster (5..2) using a

Wigner and Wilkins model. The experimental results

are due to Poole (40).

The results of the comparison are shown in

Table 7.2. The temperature of the moderator is

given by kT in ev. The experimental spectra were

fit by least squares in the slow energy range by

a maxwellian with a most probable energy of E

and in the high energy range by a l/E distribution.

The maxwellian was normalized so that the total

area under it was unity. With this normalization,

the spectrum behaves asymptotically like C/E.

We have calculated the temperature E in the
0

same way, and the constant C by the relation

C =(7.4.1)

where Q is the joining factor discussed before,

x= E /kT and f(x) the calculated flux. The0 0

value of A used was obtained from the free atom

value of the quantity 12:. In all cases we took e = 0.



A
a

barns per
H atom

1.5

2.9

3.73

4.55

3.03

4.54

7.6

0.291

0.563

0.725

0.884

0.588

0.881

1.477

kT

e.v.

0.0251

0.0251

0.0251

0.0251

0.0318

0.0318

0.0319

E meas. E clc.0 i
ev 10% Wilkilas

0.026

0.027

0.029

0.032

0.037

0.037

0.0432

0.0271

0.0292

0.0304

0.0317

0.0372

0.0401

o.o46

E cale. C meas. C. cale. C calc.0
Amster + 10% Wilkins Amster

0.0261

0.0276

0.0294

0-0360

0.0390

0.0390

0.067

0.130

0.13

0.214

0.121

0.136

0.328

S0.671

0.133

0.175

0.216

0.141

0.207

0.38

0.072

0 139

0.18

0.215

0.125

0.34

Table 7.2

Comparison of Experimental and Theoretical Determinations of .Spectra Parameters

in Homogeneous Water Systems.

HO
I
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From the table it is seen that both theoretical models

represent the experimental results well.

In performing the computations, the caliated

value of E was seen to obey the relation

E = kT(l + 0 .30A) (7.4.2)

This result should not be compared with the equation

obtained by Coveyou et al (53) using the Wigner and

Wilkins model

E = kT(1 + 0.49A) (7.4.3)

The reason is that they fitted points up to energies

of 7.2 kT while we have excluded the "non maxwellian

region" by taking an upper limit of 2kT in our

calculations.

Recently, Stone and Slovacek (39)) have measured

the neutron spectrum in water and closely packed

uranium-water lattices. The measurements were per-

formed with a slow chopper. Two spectra were

measured in pure watier at 298 0K and 5860 K. The values

of A-were obtained from the measured absorption cross

section as 0.0636 and 0.0426 respectively. The

experimental results are compared with the theoretical

ones in Figs. 7.2 and 7.3. Experiments and theory

were made to coincide at 1 ev. A strong disagreement
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I0

(E)

0

-0 /0 /02

Energy (ev)

Figure 7.2

Comparison of theoretical and experimental

spectra for water at 298 0K. The vertical

lines are a measure of the statistical

experimental error .
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/0

(E)

/ - -

l-2/0 /02

Energy (ev)

Figure 7.3

Comparison of theoretical and experimental

spectra for water at 5860 K. The vertical

lines are a measure of thre experimental

statistical error.
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is seen at 5860K. However, because of the smallness of

the high energy component of the spectrum, a small

error in the measurement of the absorption cross section

will bause a large relative error in the magnitude of

the tail. A similar disagreement was obtained by the

Puthors when they compared the results with a Wigner

and Wilkins calculation.

Two spectra were measured also by the same

authors in a closely packed uranium water lattice.

The uranium was 0.0013 in. thick and clad in zircalloy.

Measurements were performed at 2980 and 5860 K.. Because

of the thinness of the fuel, the assembly can be assumed

to be homogeneous. From the measured values of the

cross sections at the most probable energy, A has been

calculated as l.14 at 298 K and 1.12 at 5860 K. The

buckling was also measured by the experimenters, and

from these measurements A was obtained as 0.0014 and

0.011 respectively. No self shielding correction was

applied. The comparison of the experimental spectrum

with the theoretical results is shown in Figs. 7.4 and

7.5. The agreement is good in spite of the fact that

that the absorption cross section is not "1/v" as

assumed in our theory.

Finally, in Fig. 7.6 we have compared the result

of a Wigner and Wilkins calculation by Amster -reported

in Ref. (4) -with the result of a Wilkins calculation
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/0

I0

0(E)

0 -

Energy (ev)

Figure 7.4

Comparison of the theoretical and experimental

spectra for a close packed uranium-water

lattice at 2980K. The vertical lines

are a measure of the statistical experimental

error.
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(E)

t42

0

/ 2 /0-/ 1 /0 /02 10.3

Energy (ev)

Figure 7.5

Comparison of the theoretical and experimental

spectra for a close packed uranium-water lattice

at 5860K. The vertical lines are a measure

of the statistical experimental error.
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0(E)

FI

Wigner and Wilkins

Wilkins

/I I I I 1111 I i ii i

Energy (ev)

Fig. 7.6

Comparison of a Wigner and Wilkins calculation

with a Wilkins calculation for hydrogen at

293 0K. A = 0.8.



for hydrogen and A = 0.8. Both calculations are seen

to disagree only in the -low energy part of the spectrum.

The Wilkins calculation is seen to give a harder spectrum

than the gas model. As was explained in Chapter IV for

solid moderators, this deviation is in .the right

direction to account for the effect of chemical binding.

L Heterogeneous Systems

The cell of a heterogeneous assembly can be con-

sidered as a -system composed of several media only

one of which, the moderator, scatters inelastically.

To a very good approximation the fuel, cladding, air

channels etc. can be considered not to change the

energy of the neutrons. (Systems in which the coolant

is water or heavy water and the moderator is a

different material cannot be represented by this

model.)

In order to treat such a system, the method

discussed in Section 5.2 is used. It was shown

there that the flux in the moderator can be represented

by

O>

x) =1 4 7 fn(x) Zn(r)
n=0

(7-5.1)

where the Z (z) are the spatial eigenfunctions in then

moderator and the 'fn(x) are the solutions of the equation

-116-
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OD

I(x) + 2t;xn (x) (x) =fx'ox) &(x') dx'

0

(7.5.2)

where the source has been assumed to be at very high

energies and we have replaced 24LZb by Fs in accordance

with the discussion of Section 7.2. It was also shown

there that this approximation is valid as long as the

spatial eigenfunctions of the moderator are not very

different for different energies. This condition is

not satisfied, in general, in a cell of a heterogeneous

assembly, because of the change with energy of the nuclear

properties of the fuel. We expect, however, to obtain

a reasonably accurate spectrum in the thermal region

by considering suitably averaged properties of the

fuel.

In order to compute the spatial eigenvalues corre-

sponding to the moderator eigenfunctions, we shall use

diffusion theory in the moderator with an extrapolation

distance at the boundary of the fuel computed by transport

theory. We shall restrict our spatial calculations to

cylindrical geometry. The modifications for other simple

geometries are obvious.

Let the outer radius of the cell be r1 and the

outer radius of the rod r0 . With the usual boundary

condition that the gradient of the flux vanishes at

the outer boundary of the cell, the spatial eigenfunctions



are given by

Zn(r) = -N (Br )JO(Bnr) + Jl(Bnro)N'(B -)

(7.5.3)

The notation for the Bessel functions is as in

ref. (42). Using the boundary condition at the

surface of the cell, we obtain

N 1 (Bnr)JO(B r ) - J1 (B r)N (Bnro)

n ~ N1 (Bnrl)J (B nr) 1( BnFr)N1 (B r0 )

(7-5.4)

which determines B . Here d is the linear

extrapolation distance. If Bnr and Bnr 1,

(7.5.4) can be simplified using the expansions

for the Bessel functions, the result is

B2 _ -2n ~ - r2 r12
1-(r - 2 ) + r2  I log(+ (112 2 r 4 2r

(7.5.5)

For the linear extrapolation distance d we use the

results obtained by Kushneriuk and McKay (4) from

a variational method in conjunction with the integral

Boltzmann equation.

It is interesting to compute the limiting value of
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B2 when the rods are very thin compared with their meann

free path. In this case we have (4_3)

d + r Z ) + (log 2r + 0.077)
3rol 1 00 0

(7.5.6)

here Z is the absorption cross section of the fuel

and 2: the transport cross section of the moderator.

If r X is sufficiently small, we may write instead0 ao

of (7.5.5)

B2  2

n 2 r2 - 2  2 2
2 I -+ r 2log 2 1 2 2 r 4 2r

3 Zaoll o r- r o

(7.5.7)

and in case the second term in the denominator be

negligible we get

2

B2  ao o (7.5.8)
r2 - 2
1 o

so .that

DB2  Z 2

n (x) 2 2 (7.5.9)
47. fZs r1 - r

the quantity in brackets in (7.5.2) becomes then
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zsl + al 1  2 2 (7.5.10)

1 r 0

which shows that (7.5.2) amounts to the problem of an

infinite hompgeneous medium with an absorption cross

section very approximately equal to the volume averaged

absorption cross sections of fuel and moderator.

In general, if the Wilkins approximation is used

and the diffusion approximation to n(x) is taken into

account, equation (7.5.2) becomes an equation similar

to (7.2.4).

d2 id DB2  4rrs

d'x2 dx 4 x 12 
0

(7.5.5)

If we are to use the solutions of the equation

described in the preceding chapter in 2rder to solve
DB

(7-5,5), the energy dependent term -B must be

$1/2
approximated by a function of the form A + C/xl/2

Even at energies as large as 10 kT, the absorption

cross section is small in natural or slightly enriched

uranium. Since' the buckling is small at such an energy

and decr6asing, the term DB/;Y, must be represented by

a function of the type C/xl/2. Otherwise, the spectrum

will be distorted at such energies. The lower region



of the spectrum will not be much distorted by such a

function, since an examination of the tables in

Appendix B shows that the form of the functions

for y 4 1 is fairly insensitive to changes in the

parameters.

It is important in performing the approximation

mentioned not to destroy neutron conservation so

that C must be constrained by the condition

CI X1/2 (X)dxL1JDB2 0(x) dx

0 14

(7.5.6)

Since the flux is not known we replace it by a

maxwellian at the moderator temperature and obtain

C = 2 DB2 xe-x dx (7.5-7)

With this approximation, the solution of (7-5-5)

for high energy sources becomes proportiona.. to

xe~x4 1 (o,A+4C;xl/2) (7.5.8)

(cf. (6.1.3) and (7.2.5) and see (6.2.1)) and can be

calculated with the help of the tables given in

Appendix B.

Once the spectrum in the moderator is known,



-122-

the spatially averaged spectrum in the fuel can be

computed by calculating at each energy, the average

depression of the flux in the fuel by an of the

methods developed for the calculation of the dis-

advantage factors. In the computations to follow,

we have used the integral transport method ( 549)

for the calculation of the disadvantage factors.

jE. Comparison withi ExperiMentg

The only detailed measurements in the fuel and

moderator of heterogeneous lattices are, again, in

uranium-water lattices.

Two experiments have been selected to compare

theory and experiment: a natural uranium-water

lattice measured by Mostovoy et al (55) and an enriched

uranium-water lattice measured by Poole (40). The

parameters of the lattices are described in Table 7.3.

Table 7.3

Parameters u uanium-water lattices

r r1  Moderator MeasUreMent
M Temoerature ndthod

Natural U. 1.75 2.?7 3150K Slow chopper

1.6% 1.52 2.65 293 K Pulsed source
enriched U.
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The transport cross section of water wls taken equal to

the scattering cross section. The bucklings were obtained

as a funotion of energy by using (7.5.4) in conjunction

with the extrapolation distance obtained from the report

of Kushneriuk and McKay (43). The cross sections were

obtained from the compilation BNL 325. The high values

obtained for the lowest buckling in both cases insure

that the contribution of all the spatial modes but the

lowest is negligible. Calculations were performed in

both cases by taking a constant value and a "l/v" for

the leakage term DB2. The resulting parameters,

obtained by averaging the energy dependence of

DB2 between 0.01 and 0.3 ev in both cases are shown

in Table 7.4.

Table 7.4

Values of and A Used In the compotatioh .2Lthe

moderator spectrUM.

Constant Leakage "1/v" Iggkage
Fuel A

Natural U. 0.20 0.055 0 0.80

Enriched U. 0.098 0.057 0 0.42

In every case the value of Y taken was the one corre-

sponding to the free atoms.
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Figures 7.7 and 7.8 show the results of the

calculations together with the experimental results.

The agreement with the moderator spectrum is seen to

be very good when the "l/v" leakage is used. The

constant leakage overestimates, of course, the

high energy tail, since fewer neutrons are allowed

to thermalize.

With the moderator spectra calculated from the

"1/v" leakage, the spectrum in the fuel was obtained

by first calculating, as a function of energy, the

depression of the moderator flux near the fuel with

respect to the flux in the center of the moderator

by means of the formula

0(ro) N 1 (Br1 )J (Br) - J (Br )N0(Br )

T('r) N 1 (Br ) 0 (Br1 ) 1 J 1(Br )N0(Br ) (7.6.1)

By virtue of the properties of the Bessel functions,

(7.6.1) can be reduced to

0(r ) rrBr(r 0 TT-{ 1(Br )N (Br0 ) N (Br 1 ) (Br)

(7.6.2)

The expression for the fuel disadvantage factor 0(r )/00 0

is given by the integral transport method (45j46) and may

be used to calculate the average spectrum in the fuel.
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Figure 7.7. Comparison of theoretical and experimental

spectra in the moderator and fuel of a

natural uranium-water lattice.
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Fig. 7.8. Comparison of theoretical and experimental

spectra in moderator and fuel of a slightly

enriched uranium-water lattice.
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The result is shown in broken lines in the lower part

of Fig. 7.7 for the natural uranium lattice. In this

experiment a very thin collimator was used and, therefore,

the measured spectrum in the fuel is probably a good

representation of the spectrum in the center of the

fuel. To estimate it, we have assumed that the spatial

dependence in the fuel is given by J (zr) and we have

adjusted x at each energy to yield the correct dis-

advantage factor. The result of the calculation is shown

in solid lines in the lower part of Fig. 7.7. The agree-

ment with the experimental results is seen to be good.

However, not much significance is attributed to this fact

because, as found by Poole, the measured spectrum in the

fuel depends on the direction.along which the neutron

beam is taken.

The calculated average spectrum in the fuel of the

enriched uranium lattice is shown in Figure 7.8. The

spectrum in the center of the fuel calculated by the

method used before gives a spectrum considerably more

depressed in the low energy region. We, however, feel

that the representation of the spatial dependence of

the flux by a function of the form I (cr) is inadequate

in the lower energy region where the ratio of the scattering

to the total cross section is of the order of 10%. The

lack of information about the disposition and size of the

collimator used in the experiment also makes difficult the

interpretation of the measured spectrum in the fuel.
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Chapter VIII

CONCLUSIONS AND RECOMMENDATIONS

1. Conclusions

The influence of the chemical binding in the

asymptotic part of the thermal neutron spectra has been

studied for isotropic and anisotropic, infinite,

homogeneous, solid moderators. Calculations have

been performed for beryllium and graphite at 300 K

and 6000K. The effect of chemical binding at these

temperatures is particularly marked in graphite because

of the high Debye temperature of the vibrations in the

lattice planes. The theoretical results have been

compared with the Wilkins approximation, and it was

found that this approximation in the range of energies

considered constitutes an improvement over the gaseous

model.

The problem of determining the spatial and energy

dependence of the neutron flux in finite moderators has

been considered, and the Wilkins approximation for the

scattering kernel has been used. The solutions of the

pertinent differential equation have been studied,

calculated numerically, and tabulated. Applications to

homogeneous and heterogeneous systems have been studied

and the results compared with experiments, when possible.

From the comparisons, it is concluded that the theory can

be applied to water systems in the range of absorption



practically used in reactor applications. The theory

also predeicts accurately the neutron spectra in the

moderator of natural or slightly enriched uranium

lattices. Within the range of validity of the methods

used for the calculation of disadvantage factors, the

theory can also be used to calculate the average spectrum

within the fuel.

The main advantage of the theory is the simplicity

of its application. With the tables given, spectrum

calculations can be performed with reasonable accuracy

without having to resort to expensive machine calculations.

2.. Recommendations for FUture Study

Further experimental work is necessary to- check

the validity of the theory in systems with moderators

different from water.

On the theoretical side the Feynman-Welton

method can be used to obtain accurate machine calcu-

lations of spectra in lattices. The assumption of a

fuel that does not scatter neutrons inelastically is

very probably a very good one. These hypotheses yield

a solution in separated form: each term in an infinite

sum involves two factors, one of which depends only on

the energy, and the other of which depends on the

neutron position and contains the energy as a parameter.



The use of the eigenfunctions Wn in the diffusiot

cooling problem, instead of Laguerre polynomials, should

also be investigated in order to improve the theoretical

calculations of the diffusion cooling constant.

Finally the representation of the energy dependence

of the spectrum in terms of a series of the eigenfunctions

W is also of interest. The series is very poor for repremn

senting the spectrum at energies a few times greater than

kT, but for lower energies a good agreement may be ob-

tained with only a few terms.

We conclude by noting the direct applicability

of the equation studied in Chapter VI to the study of

the time behavior of a Lorentz gas with constant

cross section.
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Appendix A

THE CALCUIATION OF THE JOINING FACTOR

The direct calculation of the joining factor

Q(XA) can be performed by means of the expression

(6.4.14). In the explicit calculation we have ne-

glected terms of order higher than X2  A2  or XA.

The resulting formula is adequate for most practical

purposes.

10or X small the r -functions appearing in (6.4.14)

that depend on X can be expanded, in general, in a

Laurent series around the point X = 0. If only the

dominant terms are taken into account, the result is

Q(, = X + 2 + AN- 1 + X(T + 2log 2 + g)] + hA 2 +

(A.1)

where the constants g and h are given by

2 Z (p + ) r(p)

p=1 F(p + 2) ,'(p+)l)

and

F(p+l) r (P-)
h =F_ 2- (A.3)

32 pp+ )(p+ )

Here, y = 0.57722... is Euler's constant. The series

(A.2) can be summed by noting its relationship with

the hypergeometric function (_). We have
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g = JIM -2) F (a, r ;2;1)-

(2) F( -6 1
=lim(6 )L.. 2 -- J

'2
= ~Jim~ F(6 '

- ( + 2 log 2 (A.4)

2

The series (4.3) is related to a higher order con-

fluent hypergeometric function and its sum is not known.

Numerical evaluation yields

h = 0.1770... .(A-5)

(A.l) may be written more explicitly

(X=) A(l + yX) + A [ + M( + y + 4log 2)] + hA2 +

(A.6)

As a result of the method used for the numerical

determination of the solutions Y (XA,y) of the

differential equation (6.2.3), discussed in Appendix B,

the corresponding values of Q(AA) were obtained. These

agree with the results of formula (A.1) within 2% for values

of A up to about 0.3 and values of X up to about 0.05.

Tables A.. and A.2 give values of Q(A,A) calculated

numerically from the solution of the differential equation.
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Table Ak 1

VALUES OF THE JOINING FACTOR Q(XA)

0.0351
0641
0975
1359

1798
2297
2862
3500
4219

0.92
0.0462

0763
1109
1506

1958
2470
3051
3705
4441

0.0575
0887
1244
1653

2118
2645
3241
3911
4664

0.0689
1011
1380
1801

2280
2821
3431
4118
4888

0.0804
1137
1517
1951

2442
2997
3623
4325
5112

Table A.2

VALVES OF THE JOINING FACTOR Q(*N,t)

PA
0.4 0.121 0.427 0.738 1.021

0.8 0.330 0.748 1.156 1.514

1.6 1.187 1.931 2.604 3.148

0.1
0.2
0.3
0.4

0.5.
0.6
0.7,
0.8'
0.9

0.0240
0519
0842
1214

1639
2124
2674
3296
4786

0.2
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It is also possible to solve the equation Q(XA) = 0

that determines the eigenvalues. To this end, we note

that as A -+O the corresponding values of X that satisfy

the elgenvalue equation are 0, -1, -2, ... , since the

equation, for A.= 0, becomes the Laguerre dquation.

For small A we may, therefore, write

'yn = -n + anA + bnA2 + .. (A.6)

where y is the nth eigenvalue for fixed A.

Substituting expression (A.6) into the eigenvalue

equation, expanding the P-funoto is around A = 0 and

identifying coefficients of the power series in A one

obtains after considerable, ihough straightforward,

algebra.

n+1r(p-)r( I n44
an - 4rr F(p+) r(p) r(n-p+2)

(A.7)

n l = (p--i)r (p- )r (n-p+ ) -e(n-p+2)
b n = a 1 r (p+ ) r (p) r (n-p+2) " n- +2)

Pa p-- (p+1)1'P(Pp-n- I)

P~p9)P p) Rp-n)

4 (P+2) r (p+k)F' (p-n+) AJ
(A.8)
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It is not difficult to sum numerically the series

in (A.8) because a simple recurrence relation exists

between two consecutive coefficients. Table A.3 gives

the values of the coefficients an and bn for the first

10 eigenvalues.

With the property derived at the end of Section 6.5,

it is possible to extrapolate the values obtained from

(A.6). Table A.4 gives the eigenvalues obtained by

this method for several values of A.



Table A.3

COFFZCIENTh FOR THE DETERMINATION OF THE EIGENVALUES'f
n

-0.22156
19386
17655
16422
15476

14717
14088
13552
.13087
12681

12320

0.00819
00409
00252
00175
00130

00101
00081
00067
00056
00048

00041

Table A.4

0o
0.1 -0.02207

0.2

0.4

0.8

04399

08734

17225

EIGENVALUES'Y AS A FUNCTION OF A

T 2 Ts Y4
-1.01934 -2.01763 -3.01640 -4.01546

03861

07689

15251

03521

07021

13962

03277

06541

13025

30001 27601 25822

03085

06169

12296

24420

0

2
3
4

5
6
7
8
9

10

1.6 33539



Appendix B

NUMERICAL INTEGRATION OF THE GENERALIZED WILKINS EQUATION

The generalized Wilkins equation (6.2.3) was numerically

integrated using the IBM 704 computer available at the

M.I.T.Computation Center. Rather than integrate equation (6.2.3)

it was felt convenient to integrate the equation for

0(y) = y2 ey2 1 (y) because it gives directly an expression

for the neutron density and, more important, be0ause 0(y)

decreases as y -+ coDwhile 4 (y) increases without limit.

A power series about the origin for 0(y) can be

easily obtained from (6.2.5); the result is

0(y) y2 7 ny (B.l)

a at A , 2(n+22N) ,
0' = 3; n n(+2 %-l n(n+2) an-2

An asymptotic series is immediately obtained from

(6.2.21)

00

(y)~P. y 2(.X-1) b y -n(.2)
n=O

A A n+2-2X)n-2
0 = 1 -;by = n bn- 1  2n n-2

To perform the numerical integration, the series

(B.1) was used for 0 . y4 2. At y * 2, the derivative

(2) was calculated using the power series immediately

-141-
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obtainable from (B.1). The values 0(2) and 0'(2) were

used as initial conditions to perform a numerical

integration for 2 < y 4 6 using the four point integration

formula provided in the M.I.T. CompUtation Center FORTRAN

16ader. For 54 y.410 the asymptotic series (B.2) was used.

The results of the sum of the asymptotic series in the

interval 54 y 4 6 were compared with the results of the

numerical integration. This comparison served two

p1*poses: first, the joining factor Q(X,A) was obtained;

second, the constancy of Q(X,A) in the interval provided

an estimation of the truncation error caused by the

numerical integration. After two trials, the step of

integration for 24 y4 6 was selected as 0.02. The re-

sulting error was estimated not to affect the fifth

decimal place.

Tables B.l and B.2 give values of the functions

0(y) for different values of A and A useful for practical

applications. The results can be extended to values of

y greater than 4.0 by use of the asymptotic series in

conjunction with the joining factors given in Tables A.l

and A.2.

With the eigenvalues calculated in Appendix A.1,

eigenfunctions have been calculated by the proc.edure

explained above. Because of the reduced practical

interest, only the first five eigenfunctions for three

values of A have been tabulated in Table B.3. These

eigenfunctions correspond to eigenvalues given in Table A.4.



A = 0.1

0.0 0.00000
0.1 00993
0.2 03869
0-3 08309
0.4 13821
0.5 19808
0.6 25648
0.7 30776
0.8 34743
0.9 37265

1.0 38230
1.1 37697
1.2 35857
1.3 32992
1.4 29432
1.5 25504
1.6 21503
1.7 17668
1.8 14169
1.9 11107

2.0 08528
2.1 06427
2.2 04767
2.3 03493
2.4 02540
2.5 01844
2.6. 01346
2.7 00996
2.8 00753
2.9 00586

3.0 00472
3.1 00392
3.2 00337
3.3 00296
3.4 00266
3.5 00243
3.6 00224
3.7 00208
3.8 00194
3.9 00182

0.00000
00993
03870
08313
13832
19834
25697
30857
34867
37437

38457,
37979
36190
33372
29848
25946
21960
18128
14621
11544

08943
06815
05127
03824
02842
02119
01595
01223
00959
00774

00644
00550
00482
00431
00392
00359
00333
00310
00290
00272

2Q. 0
0.00000

00993
03871
08317
13844
19859
25746
30939
34990
37611

38685
38262
36526
33754
30268
26393
22422
18593
15080
11988

09365
07212
05495
04163
03152
02402
01853
01457
01173
00970

00823
00715
00635
00572
00523
00482
00447
oo418
00391
00368

4.o 00171 00257 00347 00443 00544 00651

Table B.1

T C2
THE FUNCTION y2e-7yXAy

0.00000
00994
03871
08320
13855
19885
25795
31021
35114
37785

38913
38546
36864
34139
30691
26843
22888
19064
15545
12439

09795
07616
05872
04510
03471
02694-
02119
01700
01396
01174

01010
00888
00794
00721
00661
00611
00568
00531
00499
00469

0. 00000
00994
03872
08324
13866
19911
25844
31103
35239
37959

39143
38832
37203
34526
31117
27298
23359
19540
16016
12896

10232
08029
06256
04866
03799
02994
02394
01952
01626
01385

01205
01068
oo961
00876
00806
00746
00696
00651
00612
005?6

0.00000
00994
03873
08328
13878
19937
25893
31185
35363
38134

39373
39119
37544
34916
31546
27758
23835
20022
16494
13361

10677
08449
06650
05231
04135
03302
02678
:02212
01865
01605

01408
01256
01136
01038
00957
00889
00830
00777
00731
00689
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Table B.] (Cont'd)

A = 0.2

... 02. 00..Q.3 .4
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.0
3-1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3-9

0.00000
00997
03895
08393
14010
20150
26189
31547
35761
38525

39712
39362
37655
34868
31330
27374
23302
19363
15736
12536

09814
07573
05783
04390
03332
02543
01966
01548
01247
01031

00875
00760
00674
00607
00554
00510
00473
00441
00413
00388

0.00000
00997
03896
08397
14021
20176
26238
31630
35887
38702

39945
39652
37999
35262
31763
27836
23780
19846
16213
12998

10255
07989
06170
04747
03659
02842
02238
01797
01475
01239

01066
00936
00836
00758
00694
00641
00596
00557
00522
00491

4.0 00366 00463 00565 00674 00788 00909

0.00000
00997
03897
08401
14033
20202
26288
31713
36013
38880

40178
39943
38346
35658
32200
28301
24263
20334
16697
13468

10704
08412
06565
05513
03995
03150
02520
02054
01710
01456

01265
01120
01007
00916
00842
00779
00725
00678
00636
00599

0.00000
00997
03897
08405
14044
20228
26338
31796
36140
39057

40413
40236
38695
36056
32639
28771
24751
20829
17187
13946

11161
08844
06969
05487
04340
03467
02811
02320
01955
01680

01472
01311
01184
01081
00996
00924
00861
00806
00757
00713

0.00000
00997
03898
08408
14055
20255
26388
31880
36267
39236

40648
40730
39045
36457
33082
29245
25244
21329
17684
14430

11626
09284
07381
05870
04694
03793
03110
02596
02208
01914

01688
01511
01370
01255
01158
01076
01004
00941
00885
00834

. .5.
0.00000

00997
03899
08412
14067
20281
26437
31964

'36394
39415

40884
40825
39397
36861
33528
29723
25742
21836
18188
14922

12099
09733
07802
06263
05058
04128
03419
02880
02470
02156

01912
01719
01564
01436
01328
01235
01154
01083
01019
00961
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0.

0.0
0.1
0.2
0 :
0.4
0.5
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3-7
3.8
3.9

0...01

0.00000
01003
03947
08563
14393
20848
27295
33131
37861
41138

42797
42844
41434
38833
35365
31371
27169
23028
19149
15667

12652
10124
08060
06416
05131
04143
03393
02826
02397
02072

01822
01627
01471
01343
01237
01146
01068
00998
00937
00882

0.00000
01003
03948
08567
14404
20875
27346
33217
37992
41323

43042
43151
41802
39255
35832
31872
27692
23560
19679
16185

13151
10596
08504
06829
05513
04495
03717
03123
02671
02324

02055
01843
01671
01530
01412
01310
01222
01144
01074
01012

0.L

0.oooo
01003
03949
08571
14416
20901
27397
33304
38123
41509

43288
43459
42171
39679
36303
32378
28221
24099
20216
16711

13657
11078
08957
07251
05905
04858
04050
03431
02955
02586

02298
02068
01881
01726
01595
01483
01384
01297
01219
01149

A - 0.4

0.03

0.00000
01003
03950
0875
14428
20928
27448
33390
38255
41695

43535
43769
42542
40106
36777
32888
28755
24644
20761
17245

14173
11569
09420
07684
06307
05230
04394
03748
03248
02858

02550
02302
02099
01930
01787
01663
01554
01457
01371
01293

0.00000
01004
03950
08579
14439
20955
27499
33476
38387
41882

43782
44080
42915
40536
37255
33403
29294
25195
21312
17786

14697
12069
09892
08126
06719
05612
04748
04076
03552
03139

02811
02545
02327
02143
01987
01851
01732
01625
01530
01444

0.00000
01004
03951
08583
10451
20982
27551
33563
38520
42069

44031
44393
43291
40969
37736
33922
29838
25752
21871
18336

15229
12579
10374
08579
07142
06005
05113
04414
03865
03430

03082
02798
02564
02365
02196
02048
01918
01802
01697
01603

4.0 00832 00955 01085 01223 01366 01517

Table B.1 (Cont'd)
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Table B.1 (Cont'd)

0.0
0.1
0.2
0-3
0.4
0.5
0.6
0,7
0.8
0.9

1.0
1.1
1.2

1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

0.9 O.-lQ

0.00000
01007
03973
08651
14587
21202
27860
33946
38944
42491

44402
44664
43419
40925
37504
33502
29244
25005
21001
17379

14215
11536
09330
07554
06148
05054
04209
03560
03062
02675

02372
02033
01938
01777
01639
01522
01419
01329
01248
01174

0.00000
01007
03974
08654
14599
21230
27912
34033
39078
42681

44653
44980
43 798
41362
37990
34025
29791
25564
21560
17926

14743
12040
09804
07996
06559
05434
04560
03884
03361
02952

02629
02371
02159
01983
01833
01704
01590
01490
01400
01319

01391 01544 01705 01874

Q4QZ
0.00000

01007
03975
08657
14611
21258
27964
34120
39212
42871

44905
45297
44179
41801
38479
34552
30343
26129
22126
18481

15280
12553
10288
08449
06981
05825
04922
04219
03670
03239

02896
02619
02390
02199
02036
01895
01770
01660
01561
01472

A = 0.5

0.00000
01007
03976
08661
14622
21285
28016
34208
39346
43062

45159
45616
44562
42243
38971
35083
30901
26700
22699
19045

15827
13075
10783
08913
07414
06228
05295
04565
03991
03536

03172
02876
02631
02425
02248
02094
01959
01839
01731
01633

0.00000
01007
03977
08665
14634
21312
28016
34296
39481
43253

45413
45936
44947
42688
39467
35619
31464
27278
23279
19618

16382
13607
11288
09388
07858
06641
05679
04921
04322
03844

03459
03144
02882
02660
02469
02303
02156
02026
01908
01802

0.00000
01007
03978
08669
14646
21339
28120
34384
39616
43444

45668
46257
45334
43135
39967
36160
32033
27863
23867
20198

16947
14149
11802
09873
08312
07065
06074
05288
04663
04162

03756
03422
03142
02905
02700
02521
02363
02221
02094
01979

4.o ollo9 01246



Table B.1 (Cont'd)

A = 0.6

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.0
3.1
3.2
3o3
3.4
3.5
3.6
3.7
3.8
3.9

0.00000
01010
04000
08736
14783
21563
28435
34774
40049
43877

46049
46537
45469
43094
39731
35728
31417
27086
22959
19192

15877
13046
10692
08777
07247
06040
05097
04362
03789
03338

02980
02690
02452
02253
02083
01937
01808
01694
01591
01499

0Q1
0.00000

01010
04001
08740
14795
21591
28487
34863
40186
44071

46307
46862
47860
43545
40234
36272
31988
27671
23546
19770

16437
13582
11199
09253
07690
06452
05479
04715
04116
03641

03261
02953
02697
02482
02299
02139
01999
01874
01762
01661

01732 01902 02081 02268

Q_4.0Q

0.00000
01010
04002
08744
14807
21618
28540
34952
40323
44265

46566
47189
46254
44000
40741
36820
32565
28263
24141
20357

17007
14128
11716
09739
08145
06875
05871
05080
04454
03955

03554
03225
02952
02721
02523
02351
02199
02063
01942
01832

0.0

0.00000
01010
04003
08748
14819
21646
28593
35041
40460
44460

46826
47517
46649
44457
41252
37373
31148
28862
24744
20953

17585
14683
12244
10236
08610
07309
06275
05455
04803
04280

03856
03508
03217
02970
02758
02572
02408
02262
02130
02011

0.00000
01010
04003
08752
14831
21673
28646
35131
40597
44655

47086
47846
47046
44917
41767
37931
33736
29478
25354
21557

18174
15249
12783
10745
09087
07755
06690
05842
05163
04616

04170
03802
03493
03229
03002
02803
02626
02469
02327
02198

0'd00000
01010
04004
08756
14843
21700
28698
35220
40735
44851

47348
48177
47445
45380
42285
38494
34330
30080
25970
22169

18712
15825
13332
11264
09575
08212
07117
06240
05535
04963

04495
04106
03779
03499
03256
03043
02854
02685
02533
02395

4.o 01415 01570



Table B.1 (Cont'd)

A = 0.7

0.0
0.1
0.2,
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.0
3-1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

0.00000
01013
04026
08824
14982
21929
29017
35618
41177
45294

47739
48335
47586
45341
42045
38048
33692
29269
25022
21114

17645
14658
12153
10095
08436
07112
06044
05239
04587
04067

03646
03305
03019
02781
02578
02397
02238
0099
01974
01859

0.00000
01013
04027
08828
14994
21956
29071
35708
41317
45493

48005
48801
47990
45808
42567
38615
34289
29885
25640
21724

18238
15228
12694
10605
08912
07556
06477
05622
04942
04397

03955
03593
03290
03034
02814
02621
02451
02300
02164
02041

4.0 01758 01930

0.00000
01013
04028
08832
15006
21983
29125
35798
41457
45692

48271
49137
48396
42278
43093
39186
34891
30506
26266
22343

18841
15808
13246
11126
09400
08012
06902
06017
05309
04739

04275
03892
03571
03297
03061
02855
02673
02510
02363
02231

0.00000
01014
04029
08836
15018
22011
29178
35889
41596
45891

48537
49474
48803
46751
43623
39762
315499
31133
26900
22971

19454
16398
13808
11658
09900
08479
07338
06424
05689
05093

04606
04202
03862
03571
03319
03099
02903
02729
02571
02429

0.00000
01014
04030
08840
15030
22039
29232
35980
41737
46091

48804
49812
49213
47227
44157
40342
36114
31767
27541
23608

20077
16999
14382
12201
10412
08959
07787
06843
06080
05459

04949
04523
04164
03856
03588
03353
03144
02958
02789
02637

0.00000
01014
04031
08844
15042
22067
29286
36071
41877
46292

49072
50152
49624
47706
44695
40927
36734
32409
28191
24254

20710
17611
14969
12757
10936
09451
08248
07274
06484
05837

05303
04856
04477
04151
03868
03618
03396
03197
03017
02854

-149-

02110 02299 02497 02705
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Table B.1 (Cont'd)

A = 0.8

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

0.00000
01017
04053
08912
15182
22297
29610
36476
42329
46746

49477
50453
49773
47667
44449
40469
36073
31567
27199
23147

19523
16378
13717
11513
09717
08271
07115
06193
05455
04862

04379
03980
03647
03363
03119
02905
02717
02549
02398
02261

.0..0.1
0.00000

01017
04054
08916
15194
22325
29664
3656842471
46949

49748
50797
50189
48151
44991
41058
36696
32210
27848
23791

20151
16983
14294
12058
10229
08749
07561
06608
05842
05223

04716
04296
03942
03641
03381
03153
02951
02770
02608
02461

.0. .

0.00000
01017
04055
08920
15206
22353
29718
36660
42614
47152

50020
51142
50607
48637
45537
41652
37324
32859
28505
24443

20789
17599
14882
12615
10753
09240
08019
07036
06242
05596

05064
04622
04249
03930
03653
03410
03195
03002
02828
02671

0.03
0.00000

04056
08924
15218
22381
29773
36752
42757
47356

50293
51488
51027
49126
46686
42251
37959
33516
29171
25105

21437
18225
15481
13183
11288
09743
08490
07476
06653
05981

05425
04961
04568
04230
03937
03679
03449
03244
03058
02890

4.0 02137 02328 02528 02737 02956 03185

o.o

0.00000
01017
04057
08928

.15231
22409
29827
36845
.42900
47561

50567
51836
51450
49618
46640
42855
38600
34181
29845
25777

22096
18863
16092
13764
11837
10259
08974
07930
07078
06379

05799
05312
04899
04542
04232
03958
03715
03496
03299
03120

0.00000
01017
04057
08932
15243
22438
29882
36938
4,3043
47766

50842
52186
51874
50113
47198
43464
39247
34852
30527
26458

22765
19512
16715
14357
12398
10788
09471
08396
07515
06789

06185
05676
05241
04866
04539
04249
03991
03759
03550
03359



Table B.1 (Cont'd)

A = 0.9

0.02 .03Q. 0.0QA

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2-3
2.4
2.5
2.6
2.7
2.8
2.9

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

0.00000
01020
04080
09001
15385
22671
30211
37349
43505
48231

51258
52496
52030
50078
46944
42991
38560
33976
29492
25296

21515
18210
15390
13033,
11097
09524
08253
07229
06403
05730

05178
04721
04333
04004
03717
03466
03245
03045
02866
02703

0.00000
01020
04081
09005
15397
22699
30266
37443
43650
48439

51536
52850
52459
50577
47508
43604
39212
34649
30173
25975

22180
18852
16004
13616
11646
10038
08734
07679
06823
06123

05546
05065
04657
04308
04004
03737
03501
03289
03098
02925

02988 03220 03461 03714

0.00000
01020
04082
09009
15409
22728
30321
37537
43795
48647

51815
53205
52890
51079
48075
44222
39869
35329
30863
26663

22855
19505
16630
14211
12207
10565
09228
08142
07256
06529

05926
05422
04993
04624
04303
04020
03769
03544
03341
03157

0.00000
01020
04083
09013
15421
22756
30376
37631
43940
48855

52095
53561
53323
51585
48645
44845
40531
36017
31562
37361

23541
20170
17268
14818
12782
11106
09736
08618
07702
06947

06319
05791
05341
04953
04614
04315
04049
03810
03595
03399

0.00000
01020
04084
09017
15433
22785
30431
37725
44086
49064

52376
53919
53758
52094
49219
45473
41200
36712
32270
28068

24237
20846
17918
15438
13369
11660
10257
09107
08162
07379

067Z6
06174
05702
05294
04937
04622
04340
04088
03859
03651

0.00000
01020
04084
09021
15446
22813
30486
37819
44232
49274

52658
54279
54196
52606
49797
46106
41875
37415
32986
28785

24944
215 4
18590
16071
13970
12228
10792
09611
08635
07825

07145
06570
06076
05648
05273
04941
04644
04377
04135
03915

4.o 02556 02767
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Table B.2 (Cont'd)

A = 1.6

0.0.
0.1
0.2
0.3
0.4
0.5
o,6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

30161
28502
27004
25645
24406
23272
22229
21266
20375
19548

18777

.. 0.9
0.00000

01044
04272
09641
16858
25421
34678
439,12
52427
59629

65082
68542
69958
69454
67287
6303
59384
54406
49204
44053

39159
34657
30621
20775
24009
21384
19154
17263
15659
14293

58870
56718
54717
52852
51109
49477
47945
46503
45144
43861

42646 87431

a.2
0.00000

01045
04289
09725
17121
26044
35909
46055
55815
64587

71896
77424
81023
82710
82635
81048
78257
74589
70357
65840

61265
56805
52579
48660
45082
41852
38958
36372
34066
32006

0.00000
01046
04306
09811
17387
26676
37169
48268
59347
69815

79172
87041
93191
97536

1.00118
01084
00652

0.99082
96641
93587

90145
86507
82820
79194
75702
72390
69280
66380
63686
61887

13123
12114
11235
10463
09780
09171
08624
08130
07682
07272

QP.6

0.00000
01047
04323
09896
17656
27319
38459
50552
63028
75324

86932
97439

1.06544
14068
19953
24237
27043
28543
28939
28444

27259
25567
23525
21259
18870
16433
13999
11607
09278
07026

04858
02775
00778

0.98862
97025
95263
93571
91945
90383
88879

4.0 o6897
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Table B.3

EIGENFUNCTIONS y2 -y W(Y)

A = 0.2

0.00000
+ 00992

03814
08003
12855
17563
21360
23655
24119
22715

Q

0.00000
+ 00996

03892
08376
13959
20036
25971
31183
35210
37753

38698
38101
36159
33167
29464
25392
21257
17305
13712
10583

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2-3
2.4
2.5
2.6
2.7
2.8
2.9

3.0
3.1

3.3
3.4
3.5
3,6
3.7
3.8
3.9

z
0.00000
+ 00987

03738
07640
11808
15289
17289
17333
15352
11673

+
06913
01831
02840
06526.
08891
09862
09590
08377
06595
o46o6

02704
- 01092
+ 00128

00938
01381
01535
01485
01314
01087
00852

0.00000
+ 00982

03663
07288
10815
13206
13716
12078
08556

+ 03843

- 01137
05476
08486
09829
69537
07947
05573
02964

- 00586
+ 01248

+

19685
15468
10617
05691
01175
02576
05366
07147
07998
08076

07584
06727
05688
04611
03600
02714
01981
01401
00962
00642

00417
00264
00162
00097
00057
00033
00018
00010
00005
00003

02403
02898
02857
02457
01876
01261
00713
00285
00010
00183

00261
00274
00249
00205
00158
00115
00080
00053
00634
00021

00001 00005

-

0.00000
+ 00977

03588
06947
09876
11303
10597
07762

+ 03411
- 01444

05705
08504
09407
08478
06188
03236

- 00331
+ 01973

03375
03839

00638
00458
00317
00211
00136
00085
00052
00031
00018
00010

+

07962
05841
04181
02921
01993
01328
00865
00550
00342
00208

00124
00072
00041
00023
00012
00007
00003
00002
00001
00000

03534
02732
01732
00776
00021
00470
00706
00742
00649
00495

00330
00187
00080

- 00010
+ 00029

00045
00047
00041
00033
00024-

4.o 00000 00012 00016
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Table B.3 (Cont'd)

A = 0.4

0.00000
+ 00998

03863
08153
13173
18102
22147
24679
25333
24045

-Q
0.00000
+ 01003

03940
08530
14291
20616
26851
32387
36727
39543

40693
40217
38307
35260
31429
27173
22819
18633
14807
11461

z
0.00000
+ 00993

03786
07787
12110
15785
17981
18183
16287
12601

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

07739
02476
02425
06352
08938
1084
09926
08766
06981
04948

02979
- 01291
+ 00001

00873
01363
01547
01515
01352
01125
00886

00666
00480
00333
00223
00144
00090
00055
00033
00019
00010

a
0.00000
+ 00988

03710
07431
11101
13659
14317
12769
09248

+ 04442

- 00712
05271
08508
10044
09885
08354
05970
03297

- 00826
+ 01110

+

02356
02922
02926
02546
01967
01340
00774
00327
00015
00171

00258
00277
00254
00211
00163
00119
00083
00055
00035
00022

00002 0o006

21037
16749
11745
06607
01849
02148
05162
07130
08120
08290

07846
07002
05950
04845
03797
02872
02102
01492
01027
00687

00447
00283
00175
00105
00062
00035
00020
00011
00006
00003

4

0.00000
+ 00983

03635
07085
10147
11714
11114
08311

+ 03898
- 01104

05567
08579
09659
08840
06580
03583
00583

+ 01838
03352
03903

+

+

+

08646
06360
04564
03197
02186
01460
00953
00608
00379
00231

00137
00080
00046
00025
00014
00007
00001
00001
00000
00000

03647
02862
01850
00868
00079
00442
00702
00753
00667
00514

00347
00200
00088

- 00014
+ 00027

00045
00047
00042
00033
00025

4.o 000010 00013 00017
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