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Abstract

The main goal of this thesis is to use homological methods as a step towards the

classification of symplectic mapping tori. More precisely, we exploit the dynamics

of wrapped Fukaya categories to distinguish an open version of symplectic mapping

torus associated to a symplectomorphism from the mapping torus of the identity. As

an application, we obtain pairs of diffeomorphic Weinstein domains with the same

contact boundary and symplectic cohomology, but that are different as Liouville do-

mains.
This work consists of two parts: in the first part, we define an algebraic model for

the wrapped Fukaya category of the open symplectic mapping tori. This construction

produces a category, called the mapping torus category, for a given dg-category

over C with an autoequivalence. We then use the continuous dynamics of deforma-

tions of these categories to distinguish them under certain hypotheses. More precisely,

we construct families of bimodules- analogous to flow lines- and use their different

periodicity. The construction of the flow uses the geometry of the Tate curve and

formal models for the graph of multiplication on G (

The second part focuses on the comparison of mapping torus categories and the

wrapped Fukaya categories of the open symplectic mapping tori. For this goal, we

introduce the notion of "twisted tensor product" and prove a twisted Kunneth theo-

rem for the open symplectic mapping tori by using a count of quilted strips. In this

part, we also give a large class of Weinstein domains whose wrapped Fukaya category

satisfies the conditions for the theorem on mapping torus categories to hold.

Thesis Supervisor: Paul Seidel

Title: Professor
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Chapter 1

Dynamical invariants of mapping

torus categories

1.1 Introduction

1.1.1 Motivation from symplectic geometry

Let M2" be a Weinstein manifold and let # be a symplectomorphism. For simplicity,

assume # acts as the identity on the boundary and it is exact with respect to boundary.

Associated to this data one can construct the open symplectic mapping torus as

T 2 := (M x R x S1/(x, t, s) - (O(x), t + 1, s)) \ {[(x, t, s)] : t = 0, s = 1} (1.1)

This is a symplectic fibration over punctured torus To = T2 \ {*} with monodromy

as shown in Figure 2-1. It can be shown to carry a Liouville structure and its contact

boundary at infinity is isomorphic to that of To x M, in other words the boundary of

the mapping torus of identity.

One would like to distinguish the fillings To and To x M, when 4 is not Hamiltonian

isotopic to identity. An attempt can be made as follows: Assume the fillings are the

9



M8 M8

'f'O idm

Figure 1-1: T and its Z-fold cover '' x M

same. Consider the partial compactification

To := M x R x SI/(x, t, s) ~ (#(x), t+ 1, s) (1.2)

Assume we are able to identify T, with Tlm = T2 x M. Every circle action on T2

lifts to a circle action on T2 x M; however, this is not the case with To. Indeed, the

flow of the obvious lift of 8 at time t = 1 gives us the symplectomorphism

[(x, C, s)A [(#-'(x), t, s)] (1.3)

which is different from the identity. In other words, it seems there are "more circle

actions" on T2 x M and its flux group is bigger. The first limitation of this approach is

our inability to identify the partial compactifications. Second limitation is even if one

successfully runs the above program and rigorously computes the flux groups, they

would only be able to conclude fiberwise #, the inverse of the symplectomorphism

(1.3), is Hamiltonian isotopic to identity. We do not know how to conclude the same

for # acting on M.

1.1.2 Categorical construction and the statement of the main

theorem

Instead, we follow the analogous idea, but we take a more algebraic route. Start

with an A,-category A and an auto-equivalence, which we still denote by #. We

construct a category MO, called the mapping torus category, associated to q. The
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definition of M4 is inspired by mirror symmetry and it is constructed to be a model

for the wrapped Fukaya category W(TO), when A ~ W(M) and the auto-equivalence

corresponds to an auto-equivalence of V(M) induced by the symplectomorphism.

More precisely, let A be an A.-category over C and # be an auto-equivalence,

i.e. an A,-functor 0: A - A such that H*(O) : H*(A) -+ H*(A) is an equivalence.

For simplicity assume A is a dg category and 0 is a dg functor acting bijectively on

objects and hom-complexes of A. Based on this we can construct an A, category

N/ over C, and we call it the mapping torus category of #.

Briefly, the construction goes as follows. Consider the universal cover of the Tate

curve to whose definition will be recalled in Section 1.2.1 (also see Figure 1-2). It

is a nodal infinite chain of projective lines parametrized by i E Z, and it admits a

translation automorphism tr which moves one projective line to the next. Consider the

bounded derived category of coherent sheaves supported on finitely many projective

lines, denoted by Db(Cohp(To)). We will construct a dg category O(2o)dg whose

triangulated envelope is a dg enhancement of Db(Cohp(To)). Moreover, it admits a

strict dg autoequivalence, still denoted by t, which lifts tr.. Then, It 0 # endows

O(o)dg 0 A with a Z-action, and we define the mapping torus category as

MO : = (0(t)dg ® A)#Z (1.4)

The smash product with Z, whose definition will be recalled in Section 1.4, corre-

sponds geometrically to taking the quotient by the Z-action.

The following example justifies the terminology "mapping torus category" from

an algebro-geometric perspective:

Example 1.1.1. Let A be a dg model for Db(Coh(X)), where X is a variety over C

and = (#x), for an automorphism #x r-v X. Consider the algebraic space

TO x X/(t, ) ~ (tio(t), X (X)) (1.5)

We expect tw'(MO)- idempotent completed twisted (triangulated) envelope- to be a

11



'o To

2gSpeC(C[X;, Yt+1)/(XXY+1))

Figure 1-2: The nodal elliptic curve 70, and its Z-fold covering 7o

dg enhancement of bounded derived category of coherent sheaves on this algebraic

space. We showed this in the case X = Spec(C), when the construction gives the

nodal elliptic curve To (see Figure 1-2). See Lemma 1.9.9 for this result. Note that

this is an algebro-geometric version of the mapping torus and it provides another

motivation for the categorical construction.

Remark 1.1.2. The informal mirror symmetry motivation for the construction of

MO is as follows: one knows by [LP16] and [LP12] that the nodal elliptic curve To is

mirror dual to To. T is obtained as a quotient of to x M, where to is an infinitely

punctured cylinder that is covering To (see also Figure 2-1). Heuristically, one can

think of to as a mirror to to. Assume X is mirror to Weinstein manifold M2", and

an automorphism of X, denoted by #x, corresponds to #. A natural proposed mirror

for To is the algebraic space (1.5). MO is a straightforward categorification of the

construction in Example 1.1.1.

Example 1.1.3. If # = 1A, MO is Morita equivalent to Coh(To) ® A, where Coh(To)

is a dg model for Db(Coh(To)). Thus, the category of perfect modules over MO is

equivalent to the category of perfect modules over Coh(70 ) 9 A.

We will assume the following conditions hold throughout the paper:

C.1 A is (homologically) smooth, see [KSO9] for a definition

C.2 A is proper in each degree and bounded below, i.e. H*(homA(x, y)) = 0 is finite

dimensional in each degree and vanishes for * < 0 for any x, y E Ob(A)

C.3 HHI(A), the ith Hochschild cohomology group of A, is 0 for i < 0 and is

isomorphic to C for i = 0

12



Based on this M will be shown to satisfy C.1-C.3 as well.

Now we can state our main theorem:

Theorem 1.1.4. Let A be as above and assume further that HH1 (A) = HH2 (A) = 0.

Assume MO is Morita equivalent to MA. Then, 0 ~ 1A.

1.1.3 Sketch of the proof

The proof goes as follows. Assume M10 is Morita equivalent to M1A. The notion

of Morita equivalence will be recalled later in Definition 1.6.28, but we remark that

this is equivalent to equivalence of derived categories for A,-categories over C. To

any categorical mapping torus one can associate a natural formal deformation (with

curvature) over the topological local ring R = C[[q]]. We denote this deformation

by MR (resp. MRI). Its explicit construction is as follows. There exists a natural

smoothing of to, denoted by TR (see Figure 1-4). To this we associate a curved

dg category, denoted by O('YR)cd, and then apply the same construction as (1.4)

replacing O(to)dg by O(R)cdg. The deformations MR and MR have no a priori

relation to the Morita equivalence; however, HH2 (Mo) ~ HH2 (MA) ~ C, under the

assumptions of the theorem and the construction. Hence, there is only one formal

deformation that is non-trivial at first order (up to reparametrization). Thus, we may

assume without loss of generality that the Morita equivalence deforms to a Morita

equivalence between MR and MR.

MR (resp. MO) carries a canonical Gm(R) (resp. Gr)-action for which the in-

finitesimal action is sensible, and it gives a class R E HH1 (MR) (resp. y4 E

HH1 (Mo)). The action can be considered as a family of MR-bimodules which is

parametrized by the formal spectrum of C[t, t-][[q]], and which "follows" the class

1 R y along tOt direction. This family can be considered as a "short flow line" for

1 0 , and we extend it to a "longer flow line", i.e. to a family over the formal

spectrum of C[u, t][[q]]/(ut - q). This is the formal completion of {ut = 0} C A' and

contains the formal spectrum Spf(C[t, t- 1] [[q]]) as a formal open subscheme, where

the inclusion is induced by t -+ t, u -+ qt-1 . See Figure 1-3. To construct the extended

13



C[t, t-1][[q]] C[t, u])[[q]] /(ut - q)

t t

Figure 1-3: Inclusion of C[t, t-1][[q]] into C[u, t][[q]]/(ut - q)

family we consider a formal subscheme 9R C 'T x TR x Spf(C[u, t] [[q]]/(ut - q)) with

the following properties:

1. it is flat over Spf(C[u, t][[q]]/(ut - q))

2. it restricts to the graph of G,,R-action (see Remark 1.2.3) over the formal

spectrum Spf(C[t, t-1][[q]])

3. it restricts to graph of composition of the inverse action with backwards trans-

lation th- 1 over Spf(C[u, u- 1][[q]])

In particular, we obtain the diagonal over the R-point t = 1 and the graph of back-

wards translation over u = 1. To turn this into a family of bimodules over MO, we

first define a bimodule

"(T,'-) " homi,,,R(q*, p* 3 0 R)" (1.6)

over (TR)cd and show it naturally descends to MR = (O(WR)cd 0 A)#Z. After

some other technical replacements, we obtain a family 9*f of bimodules over AMy

parametrized by C[u, t] [[q]/(ut - q) satisfying properties G.1-G.3 below for y = R

and which restricts to "fiberwise #" at u = 1, i.e. to the bimodule corresponding

to descent of auto-equivalence 1 9 # on Q(iR)cd to MR. Hence, if we can show

families constructed in this way correspond to each other under the Morita equivalence

between MR and MA, this would imply the triviality of "fiberwise #" and therefore

triviality of #, finishing the proof of the theorem.

14



For this, we would first need to show the classes yf and -y correspond to each

other under the isomorphism HH' (MR) ~ HH1 (M&) induced by the Morita equiv-

alence. To achieve this, we prove in Section 1.8 that these classes fall into natural

rank 2 lattices inside HH1 (Mr) V C2 resp. HH1 (MR) ~ C2 that are matched by

the Morita equivalence, and show in Section 1.9 that the symmetries of MR induce

SL 2 (Z) symmetry on the lattice. Hence, we can use these categorical symmetries to

fix the initial Morita equivalence so that the classes - and -y match.

Given this result, one would only need to prove a general theorem that the axioms

G.1 The restriction 9 JlIq=O is coherent. This is equivalent to its representability by

an object of twT(3o 0 B 0 "Coh(A)"). See Definition 1.6.8.

G.2 The restriction 9 JIt.1 is isomorphic to the diagonal bimodule over B.

G.3 The family follows the class 1 0 y E HHl(Be).

uniquely characterize the family once the class -y is chosen. This is achieved in Theo-

rem 1.10.1, namely we show that two families satisfying G.1-G.3 are quasi-isomorphic

up to q-torsion. The proof of Theorem 1.10.1 relies on two things: the ideas in

[Seil4J, which we recall in Section 1.6.2, and the algebra/geometry of modules over

C[u, t][[q]]/(ut - q) which carry connections along the derivation t - u9%. More

explicitly, given two such family 91 and 92, we show the hom-complexes in the cat-

egory of families involving them are chain complexes of C[u, t] [[q]/(ut - q)-modules

carrying such connections in each degree that commute with the differentials. Hence,

degree 0 homomorphisms in the cohomological category give rank 1 modules with

connection, and we show in Section 1.7 that such modules are free up to q-torsion.

Following this line of ideas we prove the isomorphism 911t=1 ~ 92t=1 extends over

C[u, t][[q]/(ut - q) to an isomorphism up to q-torsion. This completes the proof.

Now, let us phrase the moral idea for the algebro-geometric minded reader. Con-

sider the algebro-geometric torus given in Example 1.1.1. It has a natural deformation

=' 0 R x X/(t, X) (tr(t), OX#(X)) (1.7)

15



which is a fibration over the formal smoothing TR = It ~ tr(t). Its generic fiber

"C((q)) (in the sense of Raynaud, see [Tem15, Section 5]) gives

"GC((q)) x X/(t, x) ~ (qt, #x(x))" (1.8)

a rigid analytic version of C* x X/(t, x) - (qot, #x(x)), where Iqo < 1. There is an

action of G"( on this rigid analytic space; however, it descends to an action of the

elliptic curve GC((q))/q if and only if #x = Ix. In other words, the trivial mapping

torus will be distinguished from the others in that the restriction of the graph of the

action to z = q c GaC((q)) is the diagonal of T3 C((q)) while in general it is the graph of

fiberwise px. This action can be thought as analogous to the flow of a vector field.

The uniqueness of the family is an analogue of the uniqueness of the flow of a vector

field. This is more explicit if we consider the philosophy of Raynaud and realize rigid

analytic spaces as formal schemes over R = C[[q]] up to admissable blow-ups in the

special fiber q = 0. In particular, the family 9S[ obtained from the graph

9R C TR X 'YR x Spf (C[u, t][[q]]/(ut - q)) (1.9)

morally corresponds to such a degeneration of the graph of action, restricted to a

smaller annulus in G (( afterwards.

Remark 1.1.5. The proof can also be thought as an algebraic version of the argument

in Section 1.1.1. The deformation MR is analogous to partial compactification T4 ,

(see also [Sei02]). The Hochschild cohomology class -y is an algebraic analogue of

the (lift of) vector field Ot, and the family 9S( is the analogue of its flow. Hence, the

restriction of this family to u = 1 is analogous to time 1-flow of at (time (-1)-flow

to be precise), giving us "fiberwise #" in both cases. The problem of concluding the

triviality of 0 from the triviality of fiberwise # has an easy solution in categorical

version.
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1.1.4 Outline

In Sections 1.2 and 1.3 we review the construction of T0 , iR, and present the dg model

O(Yo)d9 and its deformation O(R)cdg. In Section 1.4 we review the smash products

and define Mo and MR. Section 1.5 is dedicated to computation of Hochschild coho-

mology and its results will be referred in other computations later. In Section 1.6, we

construct the family S9f and prove it satisfies desired properties. This section also

contains a brief review of families. In Section 1.7, we prove some results (such as

freeness up to q-torsion) for finitely generated modules over AR = C[u, t] [[q]]/(ut - q)

with connections along tat - u&s. It can be omitted if one accepts the statements

there. Sections 1.8 and 1.9 provide us the statements we need to fix the image of

-y4 c HH1 (Mo) a C2 under the Morita equivalence. In Section 1.8, we show that the

classes that are obtained as the infinitesimal action of a Gm (resp. Gm(R))-action

on M, (resp. MR) form a copy of Z2 inside HH1 (MO) (resp. HH1 (MR) R2)

generated by basis elements. This "cocharacter lattice" is obviously preserved under

Morita equivalences, and Section 1.9 provides us symmetries of the categories acting

transitively on primitive elements of the lattice. In Section 1.10, we finally conclude

the proof of uniqueness(up to q-torsion) of families satisfying G.1-G.3 and the proof

of Theorem 1.1.4. In the final section, Section 1.11, we relate the growth rates of

rk(HH*(MR, bk)), where <Dk is the bimodule kernel of fiberwise #k, to growth rates

for #.

1.1.5 Generalizations and future work

We believe the following generalization of Theorem 1.1.4 holds:

Conjecture. Assume A is as in Theorem 1.1.4. Let # and 0' be two auto-equivalences

satisfying the stated conditions and assume Mo and My are Morita equivalent. Then

# and #' have the same order.

Indeed, we believe the order of # would be the index of the subgroup of the lattice

given by the elements for which the restriction of the corresponding family to "u 1"

is the diagonal. The reason we put u = 1 in quotation marks is the possibility that
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one needs to use a base different from Spf (C[u, t] [[q]]/(ut - q)) for the other lattice

elements.

Let us finish by mentioning work in progress and applications. As mentioned, the

categorical mapping torus is constructed as a model for W(T4) and this will be shown

in [Kar]. Assume this for the moment. As mentioned, if the symplectomorphism 0

restricts to identity on the boundary, then &TO = aT1, as contact manifolds. If

7ri(M) = 1, one can attach subcritical handles to To to make the first cohomology

vanish. This process does not change the wrapped Fukaya category due to results of

[Iril3], [Cie02], [BEE12]; hence, the filings are still different as a corollary of Theorem

1.1.4. However, no argument involving symplectic flux can be used to distinguish the

fillings since they have vanishing first cohomology.

Notational remarks

R will always denote C[[q]] with the q-adic topology. Similarly, AR = C[u, t][[q]]/(ut-

q) with the q-adic topology and A = C[u, t]/(ut) = AR/(q). Spf(B) denotes the

formal spectrum of a complete topological ring B equipped with I-adic topology

for an ideal I C B. This is a ringed space whose underlying topological space is

Spec(B/I) (which is homeomorphic to Spec(B/Im ) for any m > 0) and whose ring of

global functions is the topological ring lim B/I. For more details see [Bos14]. Note,

in our paper most formal affine schemes are completions of varieties along a closed

subvariety.

Constructions/concepts over R = C[[q]] are implicitly assumed to be q-adically

completed and continuous. This applies to categories over R, Hochschild cochains

CC*(B) of such categories, and to tensor products of topological complete modules

over R. For instance if M and N are such modules, M 0 N refers to MORN, which

is the q-adic completion of M 0 N. If M is over R and N is over C, M 0 N refers to

q-adic completion of M Oc N. We also mostly drop the subscripts of tensor products

from the notation. Similarly, the base of products of schemes or formal schemes are

written only when it is unclear (for instance 'TR x 'TR refers to fiber product over

Spf(R)).
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We have elaborated on the definition of to in Section 1.2 (see also Figure 1-4).

Indeed one can take

'YO := to/t ~ tr(t) (1.10)

as the definition. For an explicit equation defining T0 , see [LP12].

Given an ordinary algebra B, Cdg(B) denotes the dg category of chain complexes

over B.

Given dg categories B and B', we can their tensor product category as a category

with objects Ob(B) x Ob(B'). Let b x b' denote the corresponding object of B 0 S'

for given b E Ob(B), b' E Ob(B'). Morphisms satisfy

(B B')(b1 x b', b2 x b') = B(bi, b2 ) o B'(b', b') (1.11)

See [Ke106} for more details.

For a given A,-category B, tw(B) stands for the category of twisted complexes

over B and tw'(B) stands for the split-closure (a.k.a. idempotent completion) of

tw(B). For a definition see [Sei08c, Chapter 1.3,1.4]. D'(B) stands for the triangulated

category H0 (tw"(B)). A dg/Ao enhancement of a triangulated category D is a

dg/A, category B such that D is equivalent to HO(B) as a triangulated category.

By generation, we mean split generation unless specified otherwise. See [SeiO8c,

Chapter 1.4]. We used the notations CC*(B) and CC*(B, B) interchangeably. They

both stand for the Hochschild complex of an A,-category B. See [Seil5), [Seil3]. The

notation Bimod(B, B') is used to mean the dg category of A.-bimodules over B-13'.

There is a functor
Bimod(B, B) -+ Cdg (C) (1.12)

gy - CC* (B, 9)

which is naturally quasi-isomorphic to Yoneda functor of the diagonal bimodule. In

the case of an A,-algebra over C, CC*(B, 91) has underlying graded vector space

Ej>O homc(B3', 9)[-i] = homc(TB[1], 9), where TB3[1] = 3®o B3[i](which is

also defined in Section 1.6). We note that this direct sum means each degree of each

summand is summed separately. Also, as remarked before the constructions take
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place in the category of completed R-modules in the case B is a curved category

over R. For instance, hom(B3O, 9J1) only involves convergent sums of continuous

homomorphisms and direct sums are assumed to be q-adically completed. For the

differential of CC*(B, 9)), which involves p13 and pUx, see [Seil3, Remark 9.2].

For more homological algebra preliminaries see [Kel06], [Seil5],[SeiO8c], [Seil3].
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1.2 The universal cover of the Tate curve

1.2.1 Reminder on the construction of 'R

We first review the construction of 'WR following [LP12]. We slightly change the

notation. Recall R is C[[q]] endowed with q-adic topology.

Given i E Z, let Ui+1 / 2 denote Spec(C[q][Xi, Yi+ 1]/(XiYi+1 - q)). It is a scheme

over Spec(C[q]), and it is isomorphic to A2 as a scheme over C. Moreover,

Ui+1/2[X ] 'I Spec(C[q][Xi1, f) (1.13)

is isomorphic to

Ui-1/2[yi 1] Spec(C[q)[Y, Y-1]) (1.14)

as a scheme over C[q]. Denote this scheme by i. The isomorphism is given by the

coordinate change Xi ++ Yj-1. In other words, the coordinates Xi and Y satisfy
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XY = 1 on V.

By using the identifications Ui+1/2 [X; 1] ~ Ui-1/ 2 [Y[ 1], we can glue Ui+1/2 , i E Z.

Hence, we obtain a scheme over Spec(C[q]), which we denote by YC[q] . It is not

Noetherian and it is covered by charts Ui+1/ 2 , i E Z.

Note, there is a Gmc[q]-action over C[q] on this scheme. Locally, the action is

given by

Yi 1  -+ tYi+1 and Xi 4 t4Xi (1.15)

where t is the coordinate of Gm,C[q]-

We will mainly be interested in

O := Tc[q]q=o = 7C[q] Xspec(c[q]) Spec(C[q]/(q)) (1.16)

and its formal completion inside 'TC[q. We denote this formal completion by

TI := 'C[q] x Spec(C[q]) Spf(R) (1.17)

where the fiber product is taken with respect to the obvious morphism

Spf((R) -- Spec(C[q]) (1.18)

(Recall, Spf(R) denotes the formal spectrum of the topological ring R = C[[q]].)

Let Ui+1/2 := Ui+1/2Iq=O and Ui+112 :=Uii+1/2 XSpec(C[q]) Spf(C[[q]]). In the coordi-

nates above,

Ui+1/2 = Spec(C[Xi, Yi+1l/(XiYi+1 )) (1.19)

and

Ui+1/2= Spf (C[Xi, Yi+1 ][[q]]/(XiYi+1 - q)) (1.20)

respectively. In the latter, the formal spectrum is taken with respect to q-adic topol-

ogy. Let

i := D -1/2 U i+1/ 2 = Vi XSpec(C[q]) Spf(C[[q]]) (1.21)
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21SPc(CX,,VY4J/(Xgi4,)) 2! SpfCA, Y4+1I[[qjjXiYi+i - q))

Figure 1-4: The inclusion of To into WR

Notation. Let ju ,,I,, resp. jy, denote the inclusion of the open set U+1/2 resp. V.

Similarly, let and j, denote the open inclusions into 'Y.

Remark 1.2.1. It is easy to see that to is an infinite chain of projective lines. Let

C denote the projective line given as the union of {(Xi_ 1, Y) E Ui-1/ 2 : X-_ 1 = 0}

and {(Xi, Yi+ 1) E Ui+1/2 : Yi+1 = 0}. Its affine charts have coordinates X, and Y

satisfying XiYi = 1 on the overlap V := Vi|q=O C Ci. See Figure 1-4.

Definition 1.2.2. Define the translation automorphism on WR(resp. TO) to be

the automorphism given by the local transformations Ui-1/ 2 -+ Ui+1/2 (resp. Ui- 1 /2 -+

Ui+1/2) given by

X, '-+ Xi-1, IYi+1 +- Y (1.22)

on the coordinate rings. Denote both of them by tt.

Remark 1.2.3. Restricting the Gm,c[]-action in (1.15) along Spf(R) -+ Spec(C[q]),

we obtain an action of Gm := Spf(C[t, t- 1][[q]]) on 'R in the category of formal

schemes over R. Similarly, restricting the Gm,ciq]-action along 0 : Spec(C) -+ Spec(C[q]),

we obtain an action of Gm := Gm,c on to in the category of schemes over C.

1.2.2 Multiplication graph of W'R

Raynaud's insight provided a picture of (some) rigid analytic spaces over C((q)) as

generic fibers of formal schemes over C[[q]]. In this view, the analytification of Gm,C((q))

can be obtained as the generic fiber of 7R. But, the analytification G'"C(q)) is a group

and this suggests finding a morphism of formal schemes

'YR X cR -+ cJR (1.23)
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giving the group multiplication

~an x G an (1.24)GM,C((q)) x , G _ c(q)) -+ Gm,C((q)) (.4

in the generic fiber. This could be possible after admissible blow-ups on the special

fiber of 'TR x 'R, but instead, we will write an explicit formal subscheme of TR X 'TR X 'j'

over Spf(R), which presumably gives the graph of multiplication when the generic

fiber functor is applied. We emphasize that we will not show this and there will be

no formal references to Raynaud's view or to rigid analytic spaces, as it is not needed

for our purposes. Interested reader may see [Bos14] or [Teml5]) for more details.

Definition 1.2.4. Let g91, be the formal subscheme of 'TR x tR x tR locally given

by the following equations

Y(1)Y(2) = Yi+j(3), Y(2)Xi+j(3) = Xj(1)

Y (1) Xi+(3) = Xj (2), Y(2) = Xj(1)Y+j(3) (1.25)

Y (1) = Xj (2)Yi+ (3), Xi+j (3) = Xi(1)Xj (2)

and by the equations

Y(1)Y(2)X+j(3) = 1 Xj(1)Xj(2)Y+j(3) = 1 (1.26)

Here, Xi(1), Y (1) are the local coordinates of the first component, Xi(2), Yj(2) are of

the second and Xi(3), Y (3) are of the third. For fixed i and j, each of these equations

make sense only on one chart of type Uk+1/2 X Ui+1/2 X Um+1/2. Hence, 91,R is the

formal subscheme given on the chart Uk+1/2 X O1+1/2 X Um+1/2 by all the equations

(1.25) and (1.26) for all i,j that make sense on this chart. If none of these makes

sense (i.e. for all equations as above there is at least one local coordinate involved

in the equation and that is not defined on the chart), we take the subscheme to be

empty on that chart.

Example 1.2.5. For instance Y(1)Y (2) = Yi+j(3) makes sense onUi-1/2 x Uj-1/ 2 x

Ui+j-1/2 and Y (2)Xi+j(3) = Xj(1) makes sense on Oi+1/2 x Uj-1/2 x Ui+j+ 1/ 2 . The
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other equations that make sense onOi-1/2 x Uj-1/2 x Ui+j-/2 are Y(2)Xi+j-1(3) =

Xj_1 (1) and Y(1)Xi+j-1(3) = Xj_1(2).

Remark 1.2.6. There is an S3-symmetry of the coordinates preserving equations,

which would become more obvious after the coordinate change

Xi(3) -+ Y-4(3), X-i(3) -+ Y (3) (1.27)

After the coordinate change, the symmetry is given by permuting the components of

'YR X 'YR X YR.

We still need to check:

Lemma 1.2.7. Equations (1.25) and (1.26) give a well-defined formal subscheme of

TR X 'YR X TR.

Proof. We need to check the formal subschemes match in the intersections of charts

Uk'+1/2 X Ul'+ 1/ 2 X Um'+1/2 and Uk"+1/2 x Ul"+1/2 x Um"+1/2. Assuming the intersection is

non-empty and charts are different, we see that k' f k", 1' / I" or m' =i m". Without

loss of generality assume l' 7 1", l' = -1 and " = 0. Hence, their intersection lives

inside

7R X VO X TR = TR X (U-1/ 2flUl/ 2 ) X TR (1.28)

Notice that the intersection of the subscheme defined on a specific chart Uk+1/2 X

U+1/ 2 X Um+1/ 2 with T R x VO x TR is the same as the graph of the action

'R x Spf(C[t, t 1] [q]]) - TR (1.29)

intersected with that chart. The action is still locally given by

Y + - tYi+1 and Xi -+ t-1 Xi (1.30)

and we identify o with Spf(C[t, t- 1] [[q]]) by putting t = Yo.

Hence, the restriction of the graphs defined on Uk'+1/2 X Ul'+1/ 2 X Um'+1/2 or

UkI+1/2 X Xl'+1/2 X Um"+1/2 can be obtained by restricting the graph of the action
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above to (Uk'+1/2 X Ul'+1/ 2 x Um'+1/2) n (Uk"+1/2 X Ui1"+1/ 2 X Um"+1/2). This implies

they are the same. El

We will confine ourselves to l, 'n-R x U-1/2 x 'T. Put u = X_ 1 , t = Yo and put

Xj = Xj(1), Xj = Xi (3), Yi = Yi(1), Y>' = Y+1 (3). Moreover, we interchange

the second and third coordinates to obtain a formal subscheme 9R C 'T R X R X

Spf(C[u, t][[q]]/(ut - q)), where the formal spectrum is taken with respect to q-adic

topology. The topological algebra C[u, t] [[q)]/(ut - q) will appear recurrently, so let

us name it:

Notation. AR := C[u, t][[q]]/(ut - q) with its q-adic topology and A := C[u, t]/(ut).

9 R is given by the equations

ty+i = Ya, tXj = Xi, Y+ Xl = u on U41/2 x U41/2 x Spf (AR) (1.31)

Y+, = uYj, X>_- =uXi, Y'X = t on U41/2 x Ui-1/2 x Spf (AR) (1.32)

Remark 1.2.8. Equations (1.31) and (1.32) are merely translations of the equations

(1.25) into new variables, and the equations (1.26) are not needed for the definition.

9 R is covered by its open subschemes defined in (1.31) and (1.32).

Lemma 1.2.9. g is flat over AR = C[u, t][[q]]/(ut - q).

Proof. We show this only for the formal subscheme of 0+ 1/ 2 x Ui+1/2 x Spf (AR)

defined by (1.31). The part defined by (1.32) is similar.

Notice the equations tY+i = Y>', tXj = Xj, Yi+ 1X' = u define a subscheme of

C[Xi, Yi 1 ][q]/(XiYi+1 - q) Xc[q] C[Xj, Y][q]/(XjYj'j - q) (1.33)
XC[q]C[U,t] [q] /(ut - q)

whose formal completion along q = 0 gives (part of) g. Indeed, it is isomor-

phic to the subscheme of Spec(C[Xj, Yji, Xj, Y, u, t]) given by the same equa-

tions(equations (1.31) imply X Yi1 = XjY/' = ut). As tY>i = Y 1 and tXj = Xj,

we can see it as the subscheme of Spec(C[Y+i, Xj, u]) x Spec(C[t]) given by the
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equation Yi+1 X' = u. Spec(C[Yi+1 , X', u]/(Yi+1 Xj - u)) is flat over C[u]; hence,

Spec(C[Yi+1,Xiu, t]/(Yi+1Xj - u)) is flat over C[u,t] 2 C[u,t][q]/(ut - q) and so is

its formal completion along q = 0. L

Remark 1.2.10. In the same way, we can show !9,R is flat with respect to all three

projections to ' T R.

Notation. Let 9 := g9
Rq=O C 'o x To x Spec(A). It follows from Lemma 1.2.9 that

g is flat over A.

1.3 A dg model for the universal cover of the Tate

curve

1.3.1 The dg model O('o)dg

In this section we construct a dg category 0('T o)dg such that

D'(O(o)dg) ~ Db(Coh,(jTo)) (1.34)

where Cohp(To) is the abelian category of properly supported coherent sheaves o.

We will take Ob(O(Vo)dg) := {OC, (-1), Oc : i E Z}, where Oc, denotes the structure

sheaf of the closed subvariety Ci and Oc (-1) denotes the structure sheaf twisted by

a smooth point on Ci(it does not matter which). First we show

Lemma 1.3.1. {0c.(-1),Oc, : i E Z} generates Db(Cohp(To)) as a triangulated

category.

Proof. It is enough to show that every - E Cohp(To) is in the full subcategory

generated by {Oc (-1), Oc, : i E Z}. Let in : Cn -+ To denote the inclusion for a

given n E Z. Consider T -+ ini*-, where i* refers to ordinary (not derived) pull-back.

Note, i, does not need to be derived as i is affine. The sheaf ini* is in the image

in*(Db(Coh(Cn))), which is generated by Oc., Oc,(-1) as C G P1, Oc,, =n

and Oc(-1) = i,*Opi(-1). Hence, to finish the proof, we only need to show the
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kernel and the cokernel of the map T --+ z are in this category. But,

both the kernel and the cokernel are finite direct sums of coherent sheaves supported

on the nodes. Any such coherent sheaf can be filtered so that the subquotients are

isomorphic to the structure sheaves of the nodes. Hence, they can be seen as iterated

extensions of the structure sheaves of the nodal points, and the structure sheaf of the

node is in in,(Db(Coh(C,)))(as the cokernel of a map Oc(-1) - Oc"). Hence, they

are all in the triangulated subcategory generated by {Oc (-1), Oc. : i E Z. l

To find an enhancement of Db(Cohp(To)), we will closely follow [LS16]. First some

generalities:

Let X be a separated scheme over C, which is locally of finite type. Let {U} be

an open cover, where the index set is ordered. Assume, every quasi-compact subset

intersects only finitely many U,. Let _ be a sheaf on X; and for a given open subset

j : V <-+ X define

v jj*(J) (1.35)

Also define

C(,)T:={-) - - fi (U nU1~2+ (U T)} (1.36)
al <a2

For the differential of this complex and exactness see [LS16] and references there-in.

In our situation we will choose a cover so that triple intersections will be empty. The

differential is given by maps

( UcinUo 2 3 ) -+ (U-1T) X (Uc2J) (1.37)

on the factors, which are the differences of the natural maps ( UcIn" 2 jT) -+ (U- j),

i 1,2.

Now, assume the Ua are affine and their triple intersections are empty. We will

modify the resolutions as follows: for each finite subset I C {a}, fix a free resolution of

jr' 17,Uwhere j,1 is the inclusion of U1 = ,F U0 . This extends to a double resolution

over C!(Y), where C (J) is assumed to lie in the horizontal direction. Take its total
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complex to obtain a resolution of J by sums of sheaves of the form ji (E), where

j V - X is an open embedding and E is a vector bundle on V. We denote this

bounded above complex of Ox-modules by R(Y), suppressing the data of resolutions

and maps between them in the notation.

From now on let X ='to and the covering be {Ui+1 / 2 }iz. Consider Oc(a), where

'i, a E Z. The complex C(Oc (a)), as a graded sheaf, is a shifted sum of jav,!Ovi,

Ju_ 11 2,!Ocinus, 12 and jUi+1I2,!OCinUtiI 2 . Note that to write it this way, we need

to choose trivializations of Oc,(a)Iv,, Ocj(a) iu 1 2 and Oc (a)|uv 11 2 . Choose them

together so that tr moves the trivializations for Oc (a) to these for Ocj+i(a). Under

the natural isomorphism

Ui+1/2 Spec(C[Xi, Y+1 ]/(XiYi+1 )) (1-38)

Ocinui+1 12 corresponds to the module C[Xi, Yi+1 ]/(XiYi+1 , Y+ 1). Similarly, Ocinuil/2

corresponds to C[Xi_ 1 , Y]/(Xi 1 Y, Xi_1). Let the free resolution of Ovi be the trivial

one. Also, let the other resolutions be

. . .4 O(Ui-1/2) i O(Ui-1/2 ) -+ O(Ui1/2 )/(Xi 1 ) (1.39)

... - -4 O(Ui+1/2) i ii O(Ui+1/2 ) -+ O(Ui+1/ 2)/(Y+1 ) (1.40)

The only non-zero horizontal arrow in the double resolution is

3VioV -+ 3U- 1 / 2 ,OU / 2 x ju+1 /2 ,!OUi 1 /2  (1.41)

lifting

3vi,!Ocinvi - JUi_112,!Ocinuj_11 X 3jUi+1,!OcinUi+,/ (1.42)

It is determined by an element in C[Xi, Xi- 1] x C[Xi,X,-1 ]. Choose the horizontal

arrows simultaneously for all i so that they are compatible with Vt, in the sense above

(i.e. the chosen arrows for Ci will move to Ci+1 under tr).

In summary, applying the above procedure of finding double resolutions and to-
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talizations, we find complexes of sheaves R( F) supported in non-positive degree and

quasi-isomorphisms

T( (1.43)

Definition 1.3.2. Let 0(o)dg be the full dg subcategory of complexes of OgY-

modules that is spanned by objects R(Oc,(-1)) and R(Oc,). We will denote these

objects by Oc,(-1 ) and Oc, as well.

Proposition 1.3.3. tw'(O(To)dg) is a dg-enhancement of Db(Cohp(fo)).

Proof. First, start by noting that Db(Cohp(Yo)) is equivalent to D'ohP,(OO), the full

subcategory of Db(O-) spanned by objects whose hypercohomology sheaves are in

Cohp(To). This can be shown using [Huy06, Cor 3.4,Prop 3.5] and the fact that

Db(Cohp(Yo)) is a union of subcategories equivalent to derived categories of properly

supported coherent sheaves on open Noetherian subschemes of to. Hence, we will

actually work with the latter category.

We need to show the natural map

HomK(o05)(R(T), R(J')) -+ HomD(Oj )(R(T), R(!fl) (1.44)

is an isomorphism. Here, T and ' are among {0ci, Oci(-I) : i E Z} and K(O-)

denotes the homotopy category of complexes of O -modules.

First note

HomK(O ,O )(R(-T), 9') ~_ HOMD(O O) (R(T), J') (1.45)

To see this choose a resolution T' -+ I by quasi-coherent sheaves that are injective

as Oto-modules. Then we know (see [Sta17, Tag 070G])

HomD(Ore)(R(T), ') ~ HomK(o )(R(T), T) (1.46)

To show (1.45), we only need the hom complex

hom~(R(T), 9' - I) (1.47)
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to be acyclic. But this is the totalization of a double complex supported on bide-

grees that is in a fixed translate of the first quadrant. Moreover, the rows of this

double complex are shifted direct sums of complexes of type hom (Ji! (E), ' -+ I) ~

hom' (E, j*(' - I~)), where j is the open embedding of either Ui+1/2 or Vi for some

i, and E is a vector bundle on it. Hence, the rows are acyclic and (1.45) follows from

the spectral sequence for the double complex.

Hence, we only need to show

HOMK(0% )(R(T), 7') ~- HOMK (O,% R-J) )-(148)

or equivalently hom~ (R(Y), R(Y') -+ Y') is acyclic. By Lemma 1.3.4 below the acyclic-

ity of hom(j(E), R(J') -+ ') is enough, where j and E are as in the above para-

graph. Let U denote the domain of j.

Without loss of generality, assume E is the trivial line bundle on U. By the

adjunction Ji I j*

hom(j!(E),R(Y') -+ Y') ~ hom-(E,j*(R(') -+ ')) ~7F(j*(R(') -+ 3')) (1.49)

When U = Vi, j*(R(J') - Y') is an acyclic complex of coherent sheaves on U and F,

the global sections functor, preserves its acyclicity. When U =Ui+1/2 , F(j*R(3')) can

be obtained as the totalization of a double complex resolving the complex F(j*Cr(Y)),

whose explicit form is

{F(jgi,Jj J) x jg i* '

F(ivij-*j') x F(jyvsI,+j7Y') x F(ju+112,!j* ')} =

{]FU~i1,,3ij 2')} = {frj 2')}

The equation holds as F(Jvy,!jViY') = 0 for all i(which is true since jYj' is locally

free and Ui+1/ 2 is connected). This is still a resolution of F(jt, Y'). Hence, be-
gbit1/2

ing the totalization of a double complex resolving F(J*Ct(Y)), r(dj*R(YJ)) is another
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resolution of ' and

F(j*(R(y') -+ 3')) (1.50)

is an acyclic complex. This finishes the proof. D

Lemma 1.3.4. Let C', D- be bounded above complexes of objects of an abelian cat-

egory. Assume for each i, hom-(C, D-) is acyclic. Then the total hom complex

hom*(C*, D) is also acyclic.

Remark 1.3.5. tr* gives an explicit dg quasi-equivalence of O( t o)dg that acts bijec-

tively on the objects and hom-sets. We denote this dg functor by tr as well.

Remark 1.3.6. The complex hom0(j ) (Oc(a), Oc,(b)) = 0, for |i - i') > 2 and

a, b E {0, 1}. Indeed, if j!(E) 7 0 and j(E') 5 0 appear in R(Oc,(a)) and R(Oc,(b))

respectively, there is no way the domain of j or j' can contain the domain of the

other; hence Homo (j!(E), j(E')) = 0.

1.3.2 Gm-action on O('o)dg

Let T E {Oci, Oci (--1) : i E Z}. Put a Gmn-equivariant structure on T. This makes

every graded piece of C(T) naturally a Gm-equivariant sheaf, and the differential

is Gm-equivariant. Moreover, the double complex resolving it can be made Gm-

equivariant as well in each bidegree, so that both differentials are Gm-equivariant.

Hence, R(Y) -+ T is an equivariant resolution. Fix choices for each i so that tr,

moves Oc, to Oc, as an equivariant sheaf and similarly for Oc(-1) as well as the

resolutions. Hence, we obtain an action of Gm on hom-sets of O(To)dg, so that the

differential and the multiplication are equivariant. In other words, there exists a

Gm-action at the chain level on this category.

Note, however the hom-sets homj (R(3T), R(1')) are not rational as representa-

tions of Gm. Instead, they are products of countably many rational representations

at each degree. Inspired by this define:

Definition 1.3.7. Let 0(j 0 )Va be the dg-subcategory of O(To) dgwith the same set

of objects and with the morphisms given by the subspace of those in O(70o)dg that
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decompose into a finite sum of eigenvalues of Gm-action.

Proposition 1.3.8. The inclusion O( 4O)e"al -+ O(TO) dg is a quasi-equivalence.

This follows from a simple lemma whose proof we skip:

Lemma 1.3.9. Let (C, d) be a chain complex satisfying

* There is a Gm-action on each C' and d is equivariant

e The induced action on H-(C-) is rational, i.e. H-(C') admits a direct sum

decomposition into eigenvalues of Gm-action

o For each i, C' has a product decomposition

Ci = C{k} (1.51)
kEZ

into rational representations, such that d : C' -+ Ci+1 is a product of equivariant

maps

dk : CZ{k} -+ C2+{k} x C'+1{k + 1} (1.52)

Let Ceval be the subcomplex of C' spanned by eigenvalues of Gm-action. Then the

inclusion Cevai + C' is a quasi-isomorphism.

1.3.3 A deformation of O(to)dg

We have constructed a deformation of To in Section 1.2.1. In this subsection, we

will use it to obtain a deformation of O( t o)dg to a curved A,,-category, which we

denote by O(TR)cdg. We will manage this by deforming the double complex whose

totalization gives R(Oc, (-1)) and R(Oc) to a bigraded sheaf of Oj' -modules with

two endomorphisms of degree (1, 0) and (0, 1). (In other words it deforms to an object

that looks like a double complex except the differentials does not square to 0).

First a local model: Consider the resolutions

{...4O(Ui-1/2) O(i/) -+> O(Ui-1/2)/(Xi-1) (.3
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(1.54)

and deform them to "complexes" of 0, -modules given as

{.- .. -- O(U-1/2) 0 ((Oi-1/2) Xi 0((5i-1/2)} (1.55)

{. .. (UJi+1/2) 0((5<+1/2) > (Ui+1/2)} 1.6

The "differentials" do not square to 0 as XiY = q and XiY+1 = q in the corre-

sponding rings.

This gives the data to deform the vertical differentials of the double complexes

resolving C!(0c (-1)) and C(Ocj. Deform the horizontal differential to

j f.! 0 f, -+ jri-/2, 1/2 x JC (1.57)

trivially. Let R(Oci(-l))R and R(Oc)R denote the totalizations of these bigraded

sheaves with degree (0, 1) and (1, 0) endomorphisms. They are graded sheaves with

degree 1 endomorphisms, which squares to a degree 2 endomorphism that is a multiple

of q E R =C[[q]].

Definition 1.3.10. Let O('R)cdg be the curved dg category given by

" Ob(O(TR)cdg) = {0c(-I), Oc. i E

* homO(jR)cd, (T, Y') := homb R(R(Y)R, R(T)R) for T, ' C Ob(O(TR)cdg). The

hom- "complex" is defined in the standard way similar to actual complexes, only

note its differential does not square to 0

" The composition is composition of homomorphisms of "complexes"

" The curvature term is the degree 2 endomorphism obtained by squaring the

differential of R(Oc,(-1))R and R(Oc,)R

It is easy to see that this is a curved dg category over R = C[[q]]. For instance, the

square of the differential of homo(,R)dg (T, Y') is simply the difference of composition

33

{... O(Ui+1/2) Yi1 O(Ui+1/2)} -+ O(Ui+1/2)/(Yi+1)



with the differentials of R(Y)R and R(Y')R. It is also obvious that the specialization

to q = 0 gives O(YO)dg.

We now want to elaborate on the compatibility of this formal deformation with

the geometric deformation above. We show "local" compatibility.

In general, if B is an algebra and BR is a deformation of B over R, then we obtain

a curved deformation of the category Bt', A,-modules over B. It is the category

of curved modules, which is given by the same data as a semi-free A,-module over

BR but the A,-module equation is satisfied only up to O(q). Hence, we obtain a

deformation of the category of finitely generated modules as a subcategory of the

deformation of Bmod.

Assume BR is commutative and apply this to U = Spec(B) and to Spf(BR). This

way we obtain a recipe to produce formal deformations of (generating A,-models of)

Db(Coh(U)) such that OU deforms to Ou, Thus, the inclusion functor from the full

subcategory spanned by Ou deforms to an A,-functor from the algebra OUR. Call

such a deformation a good deformation.

Now our compatibility result is:

Proposition 1.3.11. For each i E Z, there exists

" A dg enhancement Coh(Ui+112) of Db(Coh(Ui+1/2 ))

" A good deformation Coh(Ui+1/2 )R of Coh(U+1/2)

" A dg enhancement Coh(V%) of Db(Coh(V))

" Ac -functors Jr O(TR),dg -* Coh(Ui+1/2 )R

" A,-functors i* . Coh(Ui+1/2)R -> Coh(Vi)R, J Coh(Ui-1/2 )R --

Coh(i)R where Coh( )R is the trivial deformation of Coh( i)

such that at q = 0, J* specializes to a lift of the natural functor

:*:Db(Cohp(to)) -+ Db(Coh(Ui+1/2 )) (1.58)
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and similarly j / and j . Moreover, everything can be chosen in a tt-

equivariant way.

This proposition can be proven using constructions similar to these in Section 1.3.1

and it will be useful in order to write localization maps for Hochschild cohomology.

These maps will be written as deformations of maps induced by restriction functors

in Section 1.5.

Remark 1.3.12. The deformations of J* and j in Prop 1.3.11 can be

chosen so that

j 0y 1j ~ o (1.59)

Remark 1.3.13. This deformation is compatible with tr and there is an obvious strict

auto-equivalence acting on O(TR)cdg. This auto-equivalence deforms the translation

auto-equivalance of O('o)dg. We denote it by ft as well.

Remark 1.3.14. The hom-sets of O(TR)cg are graded complete vector spaces over

R and there is an action of Gm(R) = R* on hom-sets deforming the action in Section

1.3.2. Moreover, the completed base change of 0(iO),"a to R/C is a non-full curved

dg subcategory, inheriting the curved dg category structure from O(T R)cdg. We denote

it by O(rR) ,al. Its inclusion into O(TR)cdg clearly deforms the inclusion O(WO) val .

O(To)dg, which is a quasi-equivalence by Prop 1.3.8. It is clear that for all 'T, Y' and

j, hom 3 v1 (Y, Y) is a completed rational representation of Gm(R) = R*, i.e. it is

the q-adic completion of a representation of R* with an eigenvalue decomposition.

1.4 The construction of the mapping torus

1.4.1 Smash products and the construction

In this section, we define the mapping torus category and its canonical deformation

associated to a pair (A, 0). Let us first remind the reader of smash products:

Definition 1.4.1. Let B be a dg category and G be a discrete group. Assume G acts

on B by auto-equivalences that are bijective on Ob(B) and on hom-sets. Moreover,
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assume composition of the auto-equivalences associated to 9i, 92 C G is equal to the

auto-equivalence associated to gig2. Define B#G to be the dg-category such that

" Ob(B#G) := Ob(B)

* homOb(B#G)(bl, b2 ) = EG hom5 (g(b1), b2) as a chain complex. We will de-

note f c hom5 (g(bi), b2 ) by f 0 g when it is considered as an element of

homOb(13#G) (bl, b2 )-

S(f' 0 g') o (f o g) := (f'o g'(f)) (g'g)

Remark 1.4.2. When B is taken to be an ordinary algebra, Definition 1.4.1 gives

the well-known semi-direct product construction. Indeed, it is possible to recover

Definition 1.4.1 by applying this construction to the total algebra of B.

Remark 1.4.3. Under similar assumptions, Definition 1.4.1 generalizes verbatim to

curved dg algebras.

Let (A, 0) be as in Section 1.1, i.e. A is a dg category satisfying C.1-C.3 and

# is a strict auto-equivalence. Note the conditions C.1-C.3 are not yet necessary.

The auto-equivalence tt 0 # generates a Z-action on (O(To)dg 0 A) satisfying the

assumptions of Definition 1.4.1.

Definition 1.4.4. Define MO to be the dg category (0(o) dg0 A)#Z. Similarly,

define M' to be the curved dg algebra (O(TR)cdg0A)#Z, where the tensor product is

over C(and q-completed) and the Z-action is generated by tro acting on 0('R)cdg 0

A.

Remark 1.4.5. The tensor product of a curved dg category with an uncurved dg

category is defined in a way analogous to tensor product of dg categories. Note the

curvature pJox of an element _T x a E Ob(O(R)cdg 0 A) = Ob(O(R)cdg) x Ob(A) is

[L 0 1,, where po- is the curvature of -T.

Remark 1.4.6. The Gm(C) (resp. Gm,(R)) action in Section 1.3.2(resp. Remark

1.3.14) induces an action on (O(TO)dgoA) (resp. (O(TR)cdgo A)); which is compatible
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with tro# as the action on O(Yo)dg (resp. (O(R)cdg) is chosen to be compatible with

tr. Hence, it descends to an action on M10 (resp. M') Similarly, this action is not

rational (resp. completed rational); however, we can pass to non-full quasi-equivalent

(resp. quasi-equivalent at q = 0) subcategories on which action is rational (resp.

completed rational).

1.4.2 Bimodules over B#G and over Mo

Let us make some general remarks about the dg bimodules over B#G, where (B, G)

is as in Definition 1.4.1. Let GA {(g, g) : g E G} C G x G and consider its action

on B = B 0 BOP. One can then consider modules over (Be)#GA. Concretely, any

such module is given by

9 A B-B bimodule 9N

* For each g E G, bi, b2 E Ob(B) chain isomorphisms

Cbi,b 2 (g) 9Y(b 1, b2 ) -+ 21(g(b 1), g(b 2 )) (1.60)

such that Cg'(bi)-g'(b 2)(g) o cbb(g) Cb1, 2 (g o g), Cb,b(lb) - 1g(b) and satisfying

g(f.m.f') - g(f).g(m).g(f') (1.61)

for any f' E homB(bi, b2 ),m e 9R (b 2 , b3),f E homB(b3 , b4 ), where g(m) denotes

Cb2.b3 (g)(m).

Now construct the B#G-B#G bimodule 9J#G as follows

0 9J#G(bi, b 2 ) = (DEG (9(b1), b2) as a complex. Let m 0 g denote m E

9(g(bi), b2) when it is considered as an element of 9i#G(bi, b 2 )

e Given gi,92 CG, m2 9i1(gi(bi), b 2 ), f E homs(g 2(b2), b3 )

(f 0 g2)(m 0 91) = fg 2 (m) 0 9291 (1.62)
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* Given g1,2 EG, f C homs(gi(bi), b2), n E 9-n(g 2 (b 2 ),b 3 )

(m 3 92)(f 0 gi) = Mg2(f) 0 g291 (1.63)

The simplest example is the diagonal bimodule of B. In that case, the process clearly

gives the diagonal bimodule of B#G.

This construction can be seen as a base change under the map

(Be)#GA -÷ (B#G)e = (Be)#(G x G) (1.64)

sending (b 0 b') 0 g - (b 0 g) 0 (b' 0 g- 1) E (B#G)e, which corresponds to (b 0 b') 0

(g, g) E (Be)#(G x G). To see this, one may simply prove this construction gives a

left adjoint to the restriction map of modules under this map.

Also, note the functoriality of this construction in the dg category of dg bimodules.

In particular, it sends exact triangles into exact triangles and quasi-isomorphisms into

quasi-isomorphisms.

To use this to produce bimodules over MO, we first need to produce bimodules

over O(WO)dg satisfying the above invariance condition.

Definition 1.4.7. Given a complex E of O.,- -modules we can define the corre-

sponding O(To)dg-bimodule as

93TE : J7 ') - "RH omo, " (q*(-T), p*(-T') (Doj"' E)"7 (1.65)

where q, p are projections to first and second factor respectively.

Remark 1.4.8. To remove the quotation marks in the definition(i.e. to make it more
L

precise), replace T by R(T) and p*(T') ohO E by a (K-)injective resolution I, of

p*(R(T')) 0ori E that is functorial in O(To)dg(and thus RHom by Hom). As we

noted, we will often omit the subscripts of tensor product from the notation. To see

the existence of such a resolution see R(J) - p*(R(Y')) 0oO E as a dg functor

from O(Yo)dg to chains on the sheaves on To. The latter has functorial K-injective
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resolutions since sheaves of 0 -- modules has functorial injective resolutions. See the

construction in [Spa88].

To endow it with a ZA-action(i.e. with maps cb1 ,b2 as above) fix an isomorphism

E ~ (ft x tr),(E) (1.66)

L

and assume the injective resolution 1, of p* (R(Y)) 0 E is carried to the injective reso-

lution , of (trx tt)*(p*(R(T'))0E) ~ p*(R(tr,*'))(t'rx tt)*E ~ p*(R(ttr'))OE

under (t x tr)*. Then (tr x tr)* gives us chain isomorphisms

hom (q*R(T), I,) hom (q*R(trJ), Ii4y) (1.67)

which is the desired ZA-action. In the following, the isomorphisms E ~ (tr x It),(E)

will be obvious.

Definition 1.4.9. We can produce another O(To)dg-bimodule out of the complex of

to x To modules E. Namely define 9'E by

L
9J' : (, -T') -+ "RHomo0  x (q*(T) 0o-- E, p*('))" (1.68)

Remark 1.4.8 applies in this case too. A quasi-isomorphism as in (1.66) would be

sufficient to endow 9A'1 with a ZA equivariant structure We will not use this fact and

we skip the technical details.

Assume in addition we have a bimodule T over A such that

T ~ (0 (9 O)M() (1.69)

strictly (via a dg-bimodule map that acts as chain isomorphisms for each pairs of

objects). Hence, we have a ZA-equivariant structure on IN, i.e. an equivariant struc-

ture with respect to 4 0 9b. We can endow the O(To)dg 0 A-biiodule 9N 0 01 with

a ZA-equivariant structure (with respect to ft 0 #); hence obtain a bimodule over
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M4 = (O(to)dg 9 A)#Z using the recipe above. In particular, the diagonal bimodule

of A is an example of such an 91.

As an application of these ideas let us prove:

Proposition 1.4.10. 1V4 is a smooth category whenever A is.

Proof. Consider the normalization 7r : P1 x Z -+ to. Throughout this proof let 0,

denote the structure sheaf of the diagonal of to, and let OA denote (wr x

where /-\pixz is the diagonal of P x Z. We have a short exact sequence of sheaves on

TiO X To

0 -+ OL, --+ 6,A- Ox j2 Z Oxj2 --+0 (1.70)
jEZ

Here, Xj+11 2 is the node in the chart Ui+1 / 2 , and the map OA -+ 6A comes as the push-

forward of Oe -+ 7, (Opi xz) under the diagonal map. Using Beilinson's resolution of

diagonal of P1 (at each component separately) and exactness of affine push-forward

(, x ir), we obtain a resolution

0 -+ Oc, (-1) 0 Oc (-1) -+ Oc, Oc, -+ 6N + 0 (1.71)

iE7Z E

This implies the sheaf OA is quasi-isomorphic to twisted complex

(D Oc(-1) Oc (-1) -+ EOC Z OC OX 0 Oxe ®/2 (1.72)
iEZ iEZ jez

We could apply E -+ 9)E to (1.72); however, 9 )TE'E" is not quasi-isomorphic to a

Yoneda bimodule. Inspired by [LunlO], we will instead apply E '-4 9)' to OA(i.e. to

derived dual of OA) and to dual of the resolution (1.72). First notice,

L

9_'s (T, 3') = "RHomo - (q*(9) (o OA

"RHomo0  - (q*(T), Riom 0  (Ov, p*(J')))"~

"RHomo0  (q*(), VA 0p*(')))" ~ "RHom, (F, 3')" (1.73)

Here, the quotation marks are used to omit the resolutions that are necessary for (dg)
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functoriality of the corresponding expression from the notation (see Remark 1.4.8).

As a result of (1.73), Mo is quasi-isomorphic to diagonal bimodule. The only non-

trivial step is the quasi-isomorphism between second and third rows and this follows

from Lemma 1.4.11(let X be jT0 and f be the diagonal embedding). Taking the

derived duals, we find 0' is quasi-isomorphic to twisted complex

®j - @ Z -+ ( 0,, (-1)v / C (-T1)V (1.74)
jEZ iEZ iEZ

Notice the derived duals of coherent sheaves are quasi-isomorphic to bounded com-

plexes of coherent sheaves, thanks to the Gorenstein property.

Applying E-+ 9MZ', we find 9i'Ov is quasi-isomorphic to

ED 'oc, (-1)vOc. (-1)V + 09M 0 -+ 9 E' ov (1.75)
Ez EZ jEzXj+1/2

Note we are secretly using the fact that

mEZl m ® JEm (1.76)
mEZ

for {Em} satisfying: given T, Y' E Cohp(to) there exists only finitely many Em whose

support intersects supp(q*(Y)) U supp(p*(Y)).

Note also that the sheaves involved in expressions (1.70) and (1.71) can be made

(tr x t-),equivariant in an obvious way so that the maps can be chosen to be com-

patible with these ZA-equivariant structures. This does apply to their duals as well;

hence, the bimodule 9'Ov OAA AO is quasi-isomorphic to a twisted complex

of bimodules

ED / V MOV / ®AA (1.77)

compatibly with the ZA-action.

Assume Ej = El 0 E', where E, E' E Cohp(to) satisfying E+ = tr*E and
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Ei'1 = tcE', as in (1.74). Then 9R' is a right 0(f)od 0 O(To)-module (i.e. a

functor from O('o)' 0 0(o)dg to chains over C) represented by

E V x Ei' C Ob(O(7o)7, 0 O(To)dg) (1.78)

where Eiv is-again- the derived dual of E . This is essentially stating

RHomn xj0 (q*3T (E O E '),p*7') ~ RHomo(JT, E v) Oc RHomo(E', Y') (1.79)

Hence, ®iCz 9N'E'E" 09 AA, with its obvious (tr, 0 4) 0 (tt, 0 #)-equivariant

structure, descends to

(e7 O ' AA) # (1.80)
iEZ

which is quasi-isomorphic to a twisted complex we informally denote by

"hEOvxEg 0 AA" (1.81)

where hE6vxEg is the contravariant Yoneda functor associated to EOv x E". To see

"hEOvxEg 0 AA" is quasi-isomorphic to a twisted complex over M one may find a

twisted complex X = (X, 6,7r) over A' that is quasi-isomorphic to AA and apply

descent to an infinite equivariant sum and obtain

(o EO 0 (# ® #)i(X) #Z (1.82)

which can be represented by a twisted complex of objects "E6v x a' x E' x a"".

Hence, Aj, which can be obtained by descent from AO0io)dg A can be represented

by a twisted complex as the latter is ZA-equivariantly quasi-isomorphic to (1.77). 0

Lemma 1.4.11. Let X,Y,Z be (locally Noetherian) Gorenstein varieties over C,

f : X - Y be a closed embedding and p : Y -+ Z be a flat map. Assume p o f is also

flat. Then, for any coherent sheaf 3 on Z, there exists a natural isomorphism in the
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derived category

Ox (oY p*(T) 4 R Tnomy(Oxp*) (1.83)

Here Ox = RfOx = fOx and Ov = R- omy(fOx, 0y).

Proof. We will drop the subscript Oy of the tensor product and 0 refers to derived

tensor product as usual. However, notice in this case flatness of X over Z implies
L L

Ox op* (T) ~ ox op*(T). In particular Ox Op* (T) is a bounded complex of coherent

sheaves.

We also remark that 0' ~ Ox over Y, thanks to the Gorenstein property (see

[Har66, Section V,Theorem 9.1]). In other words, we have an isomorphism in the

derived category

Ox -> R71 omy(O', Oy) (1.84)

which induces Ox 0p*Y -+ Romy(O>, Oy)op*T. Our asserted quasi-isomorphism

is the composition of the natural maps

Ox ® p*J -+ RI omy(O, Oy) 9 p* - RI-omy(O, Oy ®p*y) (1.85)

Whether (1.85) gives a quasi-isomorphism is a local question; thus, we can assume

X, Y, Z to be Noetherian(and even affine). First, let us compute 0' using Duality

theorem [Har66, Section VII,Theorem 3.3]. Let Dy be a dualizing complex on Y and

Dx be a dualizing complex on X. Assume Dy and Dx are related by f in an appro-

priate sense, i.e. fADy ~_ Dx in the notation of [Har66]. One can define correspond-

ing dualizing functors as Dy(&) = RI- nomy(&, Dy) and lDx(e) = R omx(e, Dx).

Then [Har66, Section VII,Theorem 3.3] states that Rf, o 1Dx Dy o Rf,. If we apply

this to T= Ox E Coh(X), we obtain

R71 omy(RfOx, Dy) ~_ RfRi-omx(Ox, Dx) RfDx (1.86)

As X and Y are Gorenstein, Dx and Dy are quasi-isomorphic to shifted line bundles.
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Hence,

0' = R7omy(RfOx, 0y) D-i 0 RfDx (1.87)

Moreover, a functor f: D'+ (Y) -+ D+h(X) satisfying

RfRRomx(9, f!g') = RU-omy(Rf, e,e') (1.88)

for every E E D-Oh(X), &' E D+h(X) is constructed in the proof of [Har66, Section

VII, Corollary 3.4] and it also satisfies f' ~ Dx o Lf* o Dy. This implies

R7omy(Ov,p*T) - R7omy(D7 1 0 RfDx,p*T) ~

R7-omy(Rf*Dx, Dy 0 p*3) ~ Rf*RLomx(Dx, f!(Dy 0 p*Y))

Note, we take e = Dx and g' = Dy 0 p*T for the last isomorphism.

Now we assert,

f!(Dy p*-T) ~ (pf)*0 0 Dx

Indeed,

f (Dy 0 p*T) ~ Dx L *f* Romy(Dy 0 p*T, Dy) ~

DxLf*Rtomy(p*Y, Oy) ~ DxRW mx((pf )*T, Ox) ~

(pf )*-TO Dx

The last identity holds due to Gorenstein property. The identity

Lf*R7tomy (p*Y, Oy) ~ RNomx((pf)* T, Ox)

(1.89)

(1.90)

(1.91)

can be proven using flatness of p and pf. Namely let E T T be a locally free

resolution. R?1omy(p*T, 0y) ~ p*Ev ~ Lp*EV is bounded below. Still

Lf*Lp*Ev ~ L(pf)*Ev ~ (pf)*Ev - (pf)*,Tv
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Combining (1.89) and (1.90), we see that

R~7 omy (', p*_T) ~ Rf*((pf)*) ~ Rf*(Ox) 0 p*T = Ox 0 p* T (1.93)

This finishes the proof. l

1.5 Hochschild cohomology of the mapping torus

categories

1.5.1 Hochschild cohomology of O('o)dg and O('R)cdg

In this section we will compute the Hochschild cohomology of the mapping torus cate-

gories. For this we first need the Hochschild cohomology of O(To)dg and O(TR)cdg. Let

Coh(To) be a dg enhancement for the bounded derived category of coherent sheaves

on To. This clearly restricts to a dg enhancement of Db(Coh,(Wo)). We will denote it

by Cohp(To). Similarly, let Coh(Ui+1/ 2) and Coh(Ui+1/2n Uj+1/ 2 ) be dg enhancements

of corresponding derived categories. Then there are pull-back maps

Coh('To) -+ Coh(Ui+1/2 ) -+ Coh(Ui+1/2 n Uj+1/ 2) (1.94)

which are A.-functors but without loss of generality one can choose the enhancements

so that they become dg-functors. Hence, Coh(Ui+112 ) and Coh(Ui+1/2 n Uj+1/2) can

be considered as bimodules over Coh(To). Moreover, the diagonal bimodule Coh(To)

is quasi-isomorphic to the homotopy limit

holim ( ]7 Coh(Ui+1/ 2 ) -+ fj Coh(Ui+11 2 n Uj+12)) (1.95)

i<j

of bimodules(by this notation we mean the homotopy limit of the big diagram in-

volving Coh(Ui+1/2 ) and Coh(Ui+1/2 n Uj+1/ 2 ); however, (1.95) can also be realized as

the cocone of these products). That Coh(To) is quasi-isomorphic to (1.95) holds since

the triple intersections are empty. Also as the double intersections for 1j - iI > 2 are

45



empty we have

Coh(to) ~ holim ( fJ Coh(Ui+1/2 ) -4 Coh(Uj-1/2 n Uj+1/2)) (1.96)
z j

as bimodules over Coh(To) and its full subcategory Cohp(To).

Apply the functor

Bimod(Cohp(To), Coh,(to)) -+ Cdg (C)

'3 - CC*(Cohp(Yo), 3)

where Cdg(C) is the category of chains over C. This functor can be seen as a Yoneda

functor and hence it preserves the limits. This implies

CC*(Cohp(to), Coh(to))

holim( Hi CC*(Cohp(To), Coh(Ui+1/2)) -+ ]jj CC*(Cohp(to), Coh(Uj-11 2 nUj+12))

(1.97)

We can easily identify the chain complexes

CC*(Cohp(ro), Cohp(to)) ~ CC*(Cohp('To), Coh(to)) CC*(Cohp(to)) (1.98)

Moreover we have

Lemma 1.5.1. Let U C T- be a quasi-compact open subvariety. Given a dg model

Coh(U) and restriction(pull-back) functor Cohp(to) -+ Coh(U), the induced chain

map

CC*(Coh(U), Coh(U)) -+ CC*(Coh('To), Coh(U)) (1.99)

is a quasi-isomorphism.

Proof. This follows from Lemma 1.5.2 and Lemma 1.5.3. E

Lemma 1.5.2. Let U C to be an open quasi-compact subvariety. Then there exists a

line bundle L and a section s E F(L) such that U = {s ; 0} and for any such (L, s)

46



the localization of Cohp(to) at the natural transformation

s :eohp('to) - (-) L L (1.100)

is quasi-equivalent to Coh(U).

Proof. See [Sei08a] for the definition of localization and the proof of a similar state-

ment. Note, the existence of such a pair (L, s) holds for general U only because we

are on a curve. But, we only need it for U = Ui+1/ 2 or Vj in which case there are

obvious pairs (4, s).

Lemma 1.5.3. Let B be a dg category, 4i be an auto-equivalence and T : 1 -+ ( be a

natural transformation. Consider the localization functor B - T-1 B. Then,

CC*(T-lB, T-'B) ~ CC*(B, T-1B) (1.101)

Proof. We will not include the proof here. For motivation, one can consider the case

B is an ordinary commutative algebra and T = f E B. In this case, it is obvious that

RHomBg(Bf, Bf) ~ RHom&e(B, B). l

We can summarize this discussion as

CC*(Coh,(to))

holim H CC*(Coh(Ui+1/ 2 )) - H CC*(Coh(Uj- 1 2 ln Uj+1/ 2 ))) (1.102)

For the moment let Coh(Ui+1/2)R, Coh(Vi)R denote some curved deformations com-

patible with the deformation of T0 to TR(and its restriction to corresponding open

subsets). Note the compatibility here is in a loose sense, see the notion of good defor-

mation in Section 1.3.3 for instance. Most importantly, we need restriction functors

(1.94) to deform so that the map in (1.94) deforms as well. The chain complexes

CC*(Coh(Ui+1/2)R) and CC*(Coh(Vi)R) (1.103)

deform the complexes CC*(Coh(Ui+1/2 )) and CC*(Coh(Vi)) respectively. Similarly

47



the complex CC*(Coh,(To)R) deforms CC*(Cohp(To)), where Cohp(To)R is a curved

deformation of Cohp(To) extending the one for O(To)dg. We can write the map

CC*(Coh,(TO)R) -(

holim ( HCC*(Coh(Ui+1/2)R) -+ H CC*(Coh(Uj-1/2 n Uj+1/2)R)) (1.104)

following similar steps as before, for instance by deforming the maps in (1.96); and

thus, (1.97). Note that the analogue of Lemma 1.5.1 can be shown by a semi-

continuity/q-adic filtration argument. Namely

Lemma 1.5.4. If one has a chain map

f : C -+> C'* (1.105)

of complexes of complete topological torsion free vector spaces over R which deforms

a quasi-isomorphism C* 4 C'*, then f itself is a quasi-isomorphism.

Moreover, using the semi-continuity and deformability of the maps such as 1.97

and 1.99, we prove

CC*(Coh,(to)R)

holim ( CC*(Coh(Ui+1/2)R) -+ F CC*(Coh(Uj_1 1 2 n Uj+1/2)R))

Now, let us turn to the questions about the Hochschild cohomology of Coh(Ui+1/2 ),

Coh( ) as well as their deformations.

First note we can as well compute the Hochschild cohomology of perfect complexes

'erf(Ui+1/ 2 ) C Coh(Ui+1/2 ) and 'erf(V) c Coh(Vi) as well as their deformations. It

is possible to show that the restriction maps induce isomorphisms

CC*(Coh(U)) CC* (erf(U)) (1.107)
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and this implies by semi-continuity

CC*(Coh(U)R) - CC* ('erf(U)R) (1.108)

where U is Ui+1/2 or V and 'erf(U)R is the corresponding deformation. See [AG15,

Appendix F] for an Ind-completed version of (1.107). Alternatively one can identify

Hochschild cohomologies of Coh(U), resp. 'Perf (U) with derived self-endomorphisms

of the diagonal of U in the category DbCoh(U x U), resp. D(QCoh(U x U)), which

are known to match.

As U is affine, CC*('Perf(U)) ~ CC*(O(U)) and similar for the deformations.

Notice that we use the fact that we can deform the functors

O(U) -> 'erf(U) -+ Coh(U) (1.109)

which was imposed for "good deformations". Let O(U) and O(U)R both denote the

corresponding deformation of the algebra O(U). More explicitly

O(Ui+1/2)= (C[Xi, Yi+ 1][[q]]/(X Yi+1 - q) (1.110)

O(V4) = C[Xi, X1 1][[q] = C[Y1, Y][[q] (1.111)

In summary

CC*(Coh(Ui+1/2)R) ~ CC*(O(Ui+112 )) (1.112)

CC*(Coh(Vi)R) ~ CC*(O( )) (1.113)

where the Hochschild cohomologies are computed over R. Now, using [Fn07, Ap-

pendix, Theorem 2] one can show:

Lemma 1.5.5.

CC*(O(Ui+1/2 )) - C[Xi, Yi+1 , Xi*, Y /*+1, i+1/ 2 ]/(XiYi+1) (1.114)

where the latter dga is the quotient of the free (super-commutative) graded algebra gen-
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erated by the variables Xi,Y+, Xi,Y,/i*e , #3 / 2 with degrees lXii =Yi+1I 0,X|

|Yi+1I = 1,l/i+1/21 = 2 as a graded algebra. Its differential d satisfies

d(Xi) = d(Yi+1/ 2)= d(#A+1/ 2) = 0 (1.115)

d(X*) = Yi+10i+1/2, d(Yi*,) = Xi#<+1/2 (1.116)

Using an R-relative version of the same theorem, we can prove:

Lemma 1.5.6.

CC*(O(Us+i/ 2)) ~C[Xi, i+1, X;", Yi* 1 , i+1/2][[q]]/(XiYi+1 - q) (1-117)

where the degrees of the variables are the same and the differential still satisfies (1.115)

and (1.116). We note that in (1.117) the q-adic completion of the free graded algebra

C[Xi, Yi+, Xj, Y, i+1/2] is taken separately at each degree.

It is now easy to calculate the cohomology of the above dga's:

Lemma 1.5.7. The cohomology of CC*(O(Ui 1 1 2 )) can be computed as

O(Ui1/2) = C[Xi, Yi+ 1]/(XiYi+ )

O(Ui+112)( Xi X|} e (U(s/2)(Yi+1Yi*+1)

C(3k) ~ (Ui+1/2)/(Xi, Yi1)

O(Ui+1/ 2)(Xi*3'**1ky+1Yi*+fk)
((XiXi*-Yi+1Y -*13'

* = 2k k > 1

*=2k+ k > 1

(1.118)

which can be written concisely as the graded commutative algebra

(1.119)
(XiYinl, X3i+i/ 2 , Yi/i+1/ 2 , (XiXZ - Yi+1yi*)Oi+1/2)

Note, the cohomology groups (1.118) are not free over O(Ui 1/2) unless * = 0. For

instance, in the second line of (1.118) Yi 1 (XiXi) = 0 still holds and O(Ui+1/2 )(X;XZ)e

O(Ui+1/2)(yielyi* ) ~- (C [Xi ED C [Yi+1] -
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Lemma 1.5.8. The cohomology of CC*(O(Ui+11 2 )) can be computed as

HH*(O(Ui+1/2)) =

O(Ui+1/2 )= C[Xi, Yj+1][[q]/(XiYi+1 - q)

O(Ui+1/2)(XiX - y+1yi*)

C (/k) ~ O(Ui+1/2)/(Xi, X+1)

0

* = 2k, k > 1

*=2k + 1, k > 1

(1.120)

which can be written concisely as the graded commutative algebra

C[Xi, Y+1, XiXi - Yi+ 1Yi* 1 , i3i+1/2]I[[q]]
(1.121)

(XiYi+1 - q, Xi3i+1/ 2 , Yi+A1f+1/ 2 , (XiX; - Yi+1i*)A+1/2)

where the q-completion is taken in each degree separately.

The Hochschild cohomology of O(V) and 0(K) can be computed using the same

theorem or Hochschild-Kostant-Rosenberg isomorphism. We have

CC*(0 (V)) ~ C[Xi, X7 1, X] and CC*(0 (I)) ~ C[Xi, X1-1, X ][[q]] (1.122)

Here, IXjI = 0, IX/I = 1 and the differential vanishes. In the latter, the q-adic

completion is taken separately at each degree.

To compute the Hochschild cohomology of O('o)dg and O('IR)cdg we also need the

localization maps

HH*(O(Ui+1/2))- HH*(0(V)), HH*(O(Ui+1/2 )) -+ HH*(0( +1))

HH* (0(UJi+-1/2)) HH*(0(K)), HH*(O(Ui+1/2 )) -+ HH*(0( +1))

(1.123)

(1.124)

They all vanish when * > 2 for the right hand side vanish. For the others identify

(1.125)

(1.126)

O() ) ~O(Ui+1/2)xi, 0(V+1) ~O(Ui+1/2)Y

O(Vi) ~(O(Ui+1/2)xi) [[q]], O(Vi+1) 2~' (O(Ui+1/2)Yim) [[q]]
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The identification gives the localization maps (1.123) and (1.124) for * 0.

For degree * = 1 we have

H H1(0(Ui+1/2)) -+ HH1(O(V)) HH1 (O(Ui+1/2 )) -+ HH1(O(V+1 ))

XIIX| Xi XI|,Yi+1Yt*+1 0 XA * 0, Yi+1yi + a i+1y i+

and

HH1 (O(Ui+1/2)) -+ HH1(O( )) HH1(O(Ui+1/2)) -+ HH'((K+1 ))

X'iX'I - Y+1Yi + X'IX? X,,i - Yi+1Yi1-4 - t+1i,+1

To see this, for instance for HH1 (O(Ui+1/ 2 )) -+ HH1 (0(1K)), see XjX; - Yi+1Yi* as

the derivation XL~x1 - Y~i~ 1 , acting on C[Xi, Yi+1][[q]]/(XiYi+1 - q). As mentioned

above, 0(K) = C[X ][[q]] a C[X , Yi+1][[q]]/(XiYi+l - q) and the derivation acts as

X -+ mXp, which is exactly the action of Xi~x, on C[X ][[q]]. The others follow

from similar considerations.

To compute the limits, we need one extra information. Namely, we identify O(Vi)

with C[X ] and C[Yj] and the coordinates satisfy XjY = 1. Basic calculus would

tell us that the derivation corresponding to XZXZ acts the same as -YiYi*.

Now, we are ready to compute the Hochschild cohomology of 0(o)dg and O(R)cd

in low degree. First, recall we can see the homotopy limit as the right derived functor

of the limit functor.

Remark 1.5.9. For conceptual ease, we will think of above data and localization

maps as defining sheaves on T0 and TR. We emphasize there is no need to pass to

sheaves and one can merely work with diagram categories. However, this is the basis

of many ideas we have used. Then, the desired (homotopy) limits can be thought

as (right derived) global sections of these sheaves. For instance, for T0 consider the

sheaf that assigns

U - CC*(Coh(do), Coh(U)) (1.127)

for U = Ui+1/2 or Uj-1/2n Uj+1/2. The restriction maps are induced by the pull-
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back maps for the inclusions Ui-/ 2 n Ui+i/2 -+ Ui+1/2 . By (1.97) and (1.98), the

global sections of this sheaf compute the Hochschild cohomology of 0(9QO)dg. See also

(1.102). One can replace CC*(Cohp(To), Coh(U)) by explicit supercommutative dga

as in (1.114), but this will not be necessary since cohomology level information is

sufficient to compute the cohomology of the global sections as we will see.

Lemma 1.5.10. Cohomology of these sheaves are isomorphic to

Oj resp. OQR for * = 0 (1.128)

SOc resp. OQ, for * = 1 (1.129)
iEZ

0 i+1/2 resp. (o X+ 1 12 for * = 2k, k > 1 (1.130)

e 0 +1/2 resp. 0 for * = 2k + 1, k > 1 (1.131)
iEZ

To relate the global sections(a.k.a. the limits of relevant diagrams) of these sheaves

to desired homotopy limit, we can use the Grothendieck spectral sequence.

More precisely, let CC*, resp. CC* denote the homotopy sheaves on To, resp. 'R

mentioned in Remark 1.5.9. We combine (1.102), (1.106), the invariance of Hochschild

cohomology under passing to twisted complexes and Remark 1.5.9, and we apply

Grothendieck spectral sequence to obtain two spectral sequences

E2P = HP(-nq) = HHP+q(0(T 0 )d9 ) (1.132)

E[ = HP(-Hg) = HHPq(O(T)cag) (1.133)

Here, N7 -q , resp. W-t-t, denotes the qth hypercohomology of CC*, resp. CC*, which

are listed in Lemma 1.5.10. The spectral sequence degenerates in E 2 page (since

HP = 0 unless p = 0, 1) and we can easily compute
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Proposition 1.5.11.

C =0

HH*(O(Co)dg) = iE2 C(YiYj*) * 1 (1.134)

RsEZ C(Ai+1/2) *=2

R* -0

HH*(O(R)cdg) R* 1 (1.135)

jH ezC(3i+1/2) 2

Moreover, HH1 (O(TR)cdg) is generated by a class locally given by the derivation

Yi+1Yi* 1- XX = Yi+1OYi+1 - Xa&Xi and qHH*(O('R)cdg ) = 0 for * > 2.

Definition 1.5.12. Let 'yo E HH1(O(to)dg)(resp. 7'y E HH1(O(R)cdg)) denote the

class locally given by Y+ 1Yi* - XiXi'. Note y0 corresponds to (YY*)j, where each

YiYi* is considered as a vector field on Ci c to.

As we will see 'yo and -yo can be obtained as the "infinitesimal action" correspond-

ing to Gm-action mentioned in Section 1.3.2. See Prop 1.6.50, for instance.

1.5.2 Hochschild cohomology of MO

Let us return to the main problem of computing HH*(MO). The simple idea is as

follows: Given two dg/Ace categories(possibly with curvature) B1 and B2 , we have a

map

CC*(B 1, B1) 9 CC*(B 2 , B2) -* CC*(B1 ® B2 ,B 1 ® B 2) (1.136)

Moreover, this is a quasi-isomorphism under certain compactness conditions on Bi,

for instance if both are smooth. In addition, given dg category B with a strict action

of the discrete group G, we can compute HH*(B#G, B#G) as the derived invariants

of the complex CC*(B, B#G).

Let us first start with a few remarks on HH*(B#G, B#G). Let B be a dg category

with a strict action of discrete group G. Let 9)1 be a bimodule over B#G. Then we
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have

RHom(B#G)e (B#G, 1) a RHom(B)e#G (B, 9)1) (1.137)

This is true since B#G, as a bimodule over B#G can be obtained as a base change

under

B'#GA -+ (B#G)' (1.138)

i.e. it is isomorphic to the induced representation Ind GxG(B). Hence,

RHom(#G)e (B#G, 9)) a RHoMG(C, RHom()e (B, ))) (1.139)

Here, RHomG(C, -) is the derived invariants functor on D(Rep(G)). Let G = Z and

C* be a representation of G, where the generator 1 E Z acts by qr; C*. Then, we

can construct a chain model for the derived invariants as

cocone(C* 7 C* 0*) = cone(C* C*) [-1] (1.140)

Assume G = Z and the generator 1 E Z acts on B by the strict auto-equivalence 4.

Let ),* denote the auto-equivalence induced on CC* (B, 9n). Note the action on 91 is

by t 0 t- 1 E (B#Z)e where t E B#Z denotes the generator of Z in B#Z. We have

CC*(B#Z, 9)1) (1.141)

CC*(B, 9)1) CC*(B, ))

where i* is induced by i : B -+ B#Z and where the composition is 0 in cohomology.

Presumably, one can write an explicit h

CC*(B#Z, 9)1) (1.142)

. Hh

CC* ( , TT) CC* (B, TZ)

satisfying d(h) = @ -1) o i*. However, instead of appealing to this we remark that
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(1.141) can be completed to a natural strictly commutative square

CC*(3#Z, )) :-~ C(B, 9)) (1.143)

4 i* 10
CC* (B, 5) ** CC* (B, 5J)

where C(B, 9N) can be naturally obtained from various hom-sets and Hochschild

complexes via natural replacement procedures in derived categories. In other words,

(1.143) amounts to writing h as in (1.142) in the derived category. As a result, we

have natural map (in the derived category over the base ring, which is R or C)

CC*(B#Z, 9) -+ cocone(CC*(B, 9)) i* CC*(B, 9N)) (1.144)

(1.144) is a quasi-isomorphism by the previous remarks(such as (1.137) or that (1.140)

computes the derived invariants). Moreover, (1.143) and (1.144) generalize to the

curved case as well and (1.144) is still a quasi-isomorphism by Lemma 1.5.4. We

prefer to notationally pretend that the quasi-isomorphism (1.144) is a chain map.

Using the remarks above we can prove

Proposition 1.5.13. Let A be a dg category that satisfies Conditions C.1-C.3. Then

CC*(MO, MO) cocone(CC*(O(50)dg, O(t)dg) 0 CC*(A, A)
(1.145)

* * CC*(O(T 0 )dg, 0(To)dg) 0 CC*(A, A))

i.e. CC*(M,5, MO) is given by the derived invariants of the Z-action on

CC*(0(tO)dg, O (70)dg) o CC*(A, A) (1.146)

Proof. We noted (1.144) is a quasi-isomorphism. As a special case, we obtain the

quasi-isomorphism

CC*(MO, MO ) _ cocone(CC*(O(ti)dg 0 A, (O(To)dg 0 A)#2)
t0*i1* C> 0 A,(1.147)

* CC*(O(To)dg 0 A, (0('Od 0) A#Z))
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We can write

(0(O)dg o A)#Z = e 0('o)dg 0 A)(troO)" (1.148)
nEZ

as a bimodule over O(to)dg 0 A. Here, (O(to)d, 0 A)(trOO)n denotes the diagonal

bimodule of O(t o)dg 0 A twisted by (tr 0 0)rl on the right (i.e. o(vo) dg0 A acts

on the right by the composition of (tt 0 0)" and the right action on the diagonal

bimodule). If n # 0

CC*(O(ro)dg 0 A, (O(o)dg 0 A)(tro)-) ~ 0 (1.149)

which follows from

RHomo(O)e (O (To)dgi (O(Q)dg)ttr) = 0 (1.150)

unless n = 0. The reason (1.149) follows from (1.150) is due to a calculation very

similar to the calculation below.

We will not prove (1.150) here but simply mention that its proof is based on

showing

RHomo(j)e (O(j'o)dg, (OQjo)dg)trn) ~ RHomg- j0 (O'raph(tr"), O ) (1.151)

which is 0 as the graph of tr' and the diagonal are disjointly supported. For the

equivalence one does not need to fully develop Fourier-Mukai theory for compactly

supported coherent sheaves on to. Instead, we can write resolutions of OA and

Ograph(tr') by infinite direct sums of exterior products of compactly supported sheaves

(such as Oc, 0 Oc.) such that direct sums satisfy some finiteness property (as in

(1.72) and (1.74)). We can make the comparison in (1.151) (i.e. compare the ho-

momorphisms of coherent sheaves and induced bimodules) for these exterior tensor

products first, and then use this to deduce (1.151).
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In summary

CC*(1v4, A4) ~ cocone(CC*(O( o)dg 0 A, (Oo)dgO A) (1.152)

ti*-1 > CC*(O(Yo)dg 0 A, O(To)dg 0 A))

Now, consider the natural map

CC*(O(jYo)dg, O o j)dg) 0 CC*(A, A) CC*(0(o)dg 0 A, O( o)dg 0 A) (1.153)

We would like to show this gives a quasi-isomorphism. Notice

CC*(O(t)dg 0 A,O O o)dg 0 A)

RHom((t)dg 0A)e( (0 o) d 0 A, OQo)dg0 A)

RHomoo)e (0(o)dg, RHomAe(A, 0(0)dg 0 A)

RHomQoj 0 )e (0(o)dg, CC*(A, A) 0 0( T o)dg)

The last quasi-isomorphism is due to smoothness of A. The Kiinneth map

RHomo(Yz)e(O(70)dg, 0O( o)dg) 0 CC*(A, A) -
dg (1.154)

RHomQn(j-O)L (to)dg, cc*(A, A) 0 O(W-o)dg)

is obvious. Clearly, this map strictly commutes with Z-actions; hence, it induces a

map between derived Z-invariants of left and right hand sides. We want to show

this map is a quasi-isomorphism. The conditions C.1,C.2 imply that CC*(A, A) has

finite dimensional cohomology in each degree. Moreover,

RHomo(to)g (Oc)dg, O(TO)d 9) (1.155)

has bounded below cohomology. This is sufficient to show that the map above induces

a quasi-isomorphism. This finishes the proof.
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Corollary 1.5.14. For A satisfying the conditions C.1-C.3, we have isomorphisms

HHO(MO) ~ C, HH1(1/0) ~ HH1 (To) D HH1(A)o Y C2 D HH1 (A)0 (1.156)

as vector spaces.

Proof. This follows from Prop 1.5.11 and Prop 1.5.13. l

Recall TO denotes the nodal elliptic curve over C.

Corollary 1.5.15. If HH1(A) = HH2 (A) = 0, then HH1(MO) ~ C2 and HH2 (Mo) ~

C.

Remark 1.5.16. The analogue of Prop 1.5.13 holds for MO as well. In other words,

CC*(My, My) cocone(CC*(O (iR)cdg, O( R)cdg) CC* (A, A) (1.157)

+** CC*(0(TR)cdg, O(R)cdg) 0 cc*(A, A))

where 0 denotes the q-adic completion of the tensor product over C. The proof

works similarly. One can alternatively use the semi-continuity (Lemma 1.5.4) since

the Kiinneth map and the map in (1.144) admit natural deformations over R.

Definition 1.5.17. Let -y4 E HH1 (Mo)(resp. 'yR E HH1 (MR)) denote the class

obtained by "descent" of Yo 0 1(resp. - 0 1).

Similar to Yco and 'yR, these classes come as the infinitesimal action of Gm. This

will be shown in Cor 1.6.51 for 7 R

1.6 A family of endo-functors of Mo

1.6.1 Introduction

In this section, we will use 9R c 'R x 'R x Spf(AR), resp. g := gRjq=o C WO X

to x Spec(A) to define explicit modules over MR 0 M0 ", 0 AR, resp. M 9 M0 " 0

A, i.e. "families of bimodules parametrized by AR, resp. A". We can see them as

bimodules over MR, resp. MV4, taking values in AR(resp. A)-modules.
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First, define a bimodule over O(YR)cd, with values in AR-modules by the formula

(,,') '-+ hom5R X-R h X R 
0

R) (1.158)

Here, as before q and p are projections onto first and second factor respectively. Recall,

the R(T)R and R(3')R are "pseudo-complexes" of sheaves, i.e. graded sheaves whose

d2 is divisible by q - R. See Definition 1.6.3 and Subsection 1.3.3. Tensor product is

taken in each factor and hom-complex is as in ordinary complexes. Homomorphisms

are over 0 ,-Rx,R; hence, we obtain an AR-module, which is flat by Lemma 1.2.9.

Denote the AR-semi-flat bimodule defined by (1.158) by 9".(A pseudo-complex is

AR-semi-flat if it is flat over AR in each degree. Similarly, AR-semi-flatness of a bi-

module 91 means each 9JN(L, L') is an AR-semi-flat pseudo-complex, and the bimodule

maps are AR linear.) The only subtlety with semi-flatness of 1.158 is that it involves

infinite products of flat AR-modules. However, this does not cause a problem for the

flatness of these infinite products can be shown explicitly, or alternatively one can

use [Cha60, Theorem 2.1].

Similarly define a bimodule over O(To)d9 with values in A-modules by

(Y, 9') - hom6 - (q*R(y), p*R(J') oo Og) (1.159)

This bimodule is the restriction of the bimodule 9"i defined by (1.158) to q = 0. It

is again A-semi-flat. Denote it by sre.

Both g and g are invariant under the action of tr x tr x 1. This implies 9"' and

9 Yre satisfy the invariance condition (i.e. carry a ZA-equivariant structure) in Section

1.4.2. So does the AR (resp. A)-valued O(TR)cdg A(resp. 0(To)dg 0 A)-bimodule

9Rr OC AA (resp. Spre &C AA). Recall that ZA is the diagonal action corresponding

to action generated by ft x <b on O(TR)cd, 0 A (resp. O(Jo)d, 0 A).

Definition 1.6.1. Let 9 R denote the AR-valued MR-bimodule obtained by descent

of Spie Oc AA as in Section 1.4.2. Similarly, let 9 denote the A-valued MO-bimodule

obtained by descent of 9qPr &C AA.
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Remark 1.6.2. Clearly, 9 = 9
Rlq=O. Also, 9 R and 9 are semi-flat (over AR, resp.

A) as well, i.e. SR(L, L') is flat over AR in each degree (and same for 9(L, L')).

1.6.2 Review of generalities on families of objects and their

infinitesimal change

In this subsection, we will recall how to make notions such as families of (bi)modules

and their infinitesimal change precise. We will mostly follow the first section of [Seil4].

We will write it for curved algebras over R; however, it works for curved categories

over other pro-finite local rings as well(hence for uncurved categories). Contrary to

most of the rest of the paper we will work with A.-algebras/categories and modules,

instead of dg algebras/categories. These can be considered as a special case of A,-

algebras. The only major difference is in the homomorphisms between them; for

instance, homomorphisms of A,-modules are automatically derived. We used the

notation RHorn to remove any ambiguity before, but below the hom-complexes are

complexes of A,-morphisms.

First a preliminary definition:

Definition 1.6.3. A pseudo-complex over the local ring R = C[[q]] is a graded(and

complete in each degree) R-module C* and a degree 1 endomorphism, "the differ-

ential", d such that d2 is a multiple of q E R. Pseudo-complexes form a curved dg

category, where the homomorphisms of a given degree are given by graded module

homomorphisms and the curvature element is d2 . We denote this category by Ccdg(R).

Definition 1.6.4. Similarly, we can form a curved category of pseudo-complexes over

AR, which we denote by Ccad(AR). Let Cs (AR) denote the full (curved)subcategory of

Cdg(AR) spanned by pseudo-complexes that are q-adically complete and topologically

free (i.e. q-adic completion of a free AR-module) in each degree and whose restrictions

to q = 0 give K-projective complexes of A-modules.

Definition 1.6.5. Let B be a curved Am-algebra over R = C[[q]]. A family of (right)

modules parametrized by Spf (AR) is an Ao-homomorphism BP -+ C'J9(AR). In
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other words it is a module 91 over B such that each 91(b) is a topologically free

AR-module, 9)(b)lq=O is K-projective over A and the structure maps are AR-linear

and continuous. Families of left modules and bimodules are defined similarly.

Definition 1.6.6. If 3o is an uncurved category over C, then a family over it is

defined similarly as a functor from B' to K-projective complexes of A-modules.

Remark 1.6.7. SR fails to be "semi-K-projective" (i.e. each 93(b)q=o is K-projective)

but we will pass to a semi-free replacement of it satisfying K-projectivity condition.

The phrase "AR-valued" bimodule/module refers to such a bimodule/module with

complete AR-linear structure as above, where freeness/K-projectivity conditions are

dropped. In other words, a given module 91 is AR-valued if 91(b) is an AR-module in

each degree for every object b, and the structure maps of the module are linear over

AR.

Now, let us make the condition G.1 precise:

Definition 1.6.8. Given an A,-category B over C, define a coherent twi-family of

Bo-modules parametrized by A to be a twisted complex of objects b 0 M E ob(Bo 0

Cdg(A)), where b E ob(Bo) and M is a K-projective complex of flat A-modules whose

cohomology is bounded and coherent (finitely generated) over A. In other words, this

is the category spanned by such objects b 0 M, b' 0 M' with hom-sets BO(b, b') 0

homA(M, M'). There exists a Yoneda functor from the category of twi-families to

( A3 ))"d, the category of families of Bo-modules parametrized by Spec(A) with A-linear

morphisms, see Definition 1.6.17. This functor can be shown to be cohomologically

fully faithful. A family that is quasi-isomorphic to an object in the image of the

idempotent completion of coherent twi-families is called a coherent family.

Remark 1.6.9. Coherent twi-families are analogous to families of twisted complexes

defined in [Seil4], except we allow (K-projective replacements) of coherent sheaves M

that are not just vector bundles over the base curve. See [Seil 4 , Section If]. Yoneda

lemma- for this Yoneda functor- can be shown in a way similar to well known Yoneda

lemma for A,-(bi)modules. When we write b 0 M for a finitely generated module
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M over A, we will mean a K-projective replacement of M. We will elaborate more

on this later (to replace in a way compatible with ft and action). We denote the

replacements by 9Sp',sf, 9 presf, 9 sf, 9"R etc.

Lemma 1.6.10. K-projective replacements of families exist, and they are unique up

to quasi-isomorphism of families.

Proof. The existence follows from the existence of functorial K-projective replace-

ment functors on Cdg(A) that extend to Ccdg(AR) --+ Csf(AR) C Ccad(AR). See the

construction in [Spa88]. Their uniqueness follow from a length filtration argument

similar to [Seil4, Lemma 1.10]. More precisely, one only needs to show that the ho-

momorphisms from 9)1sf to 9R' is acyclic when 9Rsf is K-projective at q = 0, and

9)1q=O is acyclic. As hom(91, 9R') deforms hom(9Alq=o, 9r'q.o), and acyclicity of the

latter implies that of the former, we can focus on hom(9XJq=o, 91'|q=o). The length

filtration argument, and K-projectivity of 9)q=O implies the result. El

Remark 1.6.11. Presumably, one may modify the definition of a family as a functor

from Bo to Ind-coherent sheaves over A and realize coherent families as compact

objects of category of such. However we do not need this.

Now, we state a lemma:

Lemma 1.6.12. If 9)1 and )' are coherent families and B satisfies conditions C.1-

C.2 (see Subsection 1.1.2), then (B 0 )od( 9 ) , 91') is cohomologically bounded below

and finitely generated over A.

Proof. This follows from the analogous statement for coherent twi-families and Yoneda

lemma. EI

Corollary 1.6.13. Let D and D1' are families over a curved category B over R such

that their restrictions to q = 0 are coherent, and B|q=O satisfies C.1-C.2. Then

Bjod(9y1, )') is cohomologically bounded below and cohomologically finitely generated

over AR.

Proof. This follows from Lemma 1.6.12 and 1.10.3. l
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t U

Figure 1-5: The graph g shown separately over t and u axes of Spec(C[t, u]/(tu))

1 0

Figure 1-6: The relative partial normalization Ot which can also be seen as a degen-
eration of Gm action on P1 x Z

Remark 1.6.14. Definition 1.6.5 and 1.6.6 are obvious generalization of definition

of families of modules over smooth curves in [Seil4]. Moreover, one can define push-

forward of families along Spec(C[t]) -+ Spec(A) etc. and the pushforward of (a direct

summand of) a family of modules coming from a family of twisted complexes is ob-

viously coherent. For instance, when BO = C, a vector bundle over Spec(C[t]) gives

such a family that pushes forward to a coherent family.

Proposition 1.6.15. The family 9f q=o e:: 9-f is coherent.

Proof. The proof is similar to proof of Prop 1.4.10; thus, we skip some details.

First, apply Lemma 1.4.11 when X = 9, Y = to x to x Spec(A), Z = to and

p is the second projection. It implies the family 9Pr',f is (ZA-equivariantly) quasi-

isomorphic to

(3, 37') '-+ "R*m (* O p,*p ')" (1.160)

As before (e.g. (1.65), (1.68) and (1.73)), we put quotation marks since we use a

suitable enhancement of (1.160) to a dg functor (see also Remark 1.4.8). Also note
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that RHomgex O(-, -) in (1.160) is an abbreviation for

RHomO xio xspec(A)/Spec(A)(, -) (1.161)

We can use the notation of Section 1.4 and denote this family by 9R' . Tensoring Og

with the (pull-back of) short exact sequence 0 -+ A -+ A/u E A/t -+ A/(u, t) -+ 0,

we obtain a quasi-isomorphism

0' cocone (0' 1t=o (1 Ov I =o - Ov It=u=o) (1.162)

where O I t=0 refers to push-forward of derived restriction of Ov along Spec(C[u]) -

Spec(A)(similar for others). This quasi-isomorphism is compatible with natural ZA-

actions and it implies

' cone(nR'tg -+ R', iu'g) (1.163)

ZA-equivariantly. Hence, it is sufficient to prove 9X'0, 9R'/ and 9r

descend to coherent families over MO, after tensoring with A. That 9V' is

coherent follows from the others. Also, the proof for 9R's is almost the same as

the proof for 9)?'u=0; hence, we prove coherence only for the latter. uOvj' - as a

family over Spec(C[u, t]/(ut))- can be seen as the push-forward of the family 9W'0 v
91U=0

considered as a family of bimodules over Spec(C[t]).

Consider the subscheme 9I|=o C to x to x Spec(C[t]), where we identify C[t] with

A/(u). We proceed similar to Prop 1.4.10. The subscheme ge :=!9j=o is given by

tYi+1 = Y', tXj = Xj, Yi+1Xl = 0 on Ui+1/2 x Ui+1/2 x Spec(C[t]) (1.164)

Y+1= =Xj- = 0, Y'Xt = t on U+1/2 X Ui-1/2 x Spec(C[t]) (1.165)

It is flat over C[t] by Lemma 1.2.9 and can be seen as a flat degeneration of the graph
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of Spec(C[t, t-1 ])-action on 't o. Consider the normalization 7r : P1 x 2 -+' To, where

7rIp 1,} : 1P1 {n} -+ C, (1.166)

is an isomorphism. We can see Xi, Y as coordinates of P1 x {i} satisfying X2Y = 1.

Let 9 t c Pi x Z x P1 x Z x Spec(C[t]) denote a natural flat degeneration of the graph

of Gm = Spec(C[t, t-1 ])-action on P' x Z given by

Yj ~-ti, Xi -> -' (1.167)

More precisely, Ot is given by

Y / = tY on Spec(C[Yi, Y', t]) - {Xj # 0} x {X / 0} x Spec(C[t])

Xi = tXj on Spec(C[Xi, X, t]) {Y $ 0} x {Y = 0} x Spec(C [t])

XjY'= t on Spec(C[Xi, Yj', t]) {Y $ 0} x {X. $ 0} x Spec(C[t])

The domains on the right side are considered as subsets of

P1 x {i} x PI x {i} x Spec(C[t])

(1.168)

(1.169)

(1.170)

(1.171)

See Figure 1-6 for a picture of t, and Figure 1-5 for a picture of G, where g = G|=o

and Glt-o are drawn separately.

It is easy to check that ir x ir x 1 restricts to a morphism ~r : Ot -+ Gt. It is an

isomorphism over the part of gt in Ui+1/ 2 x Ui-1/2 x Spec(C[t]). The part of Gt in

Ui+1/2 x Ui+1/2 xSpec(C[t]) has coordinate ring

C[XZ, Yi, Xj/, Y', t]/(Xiyi 1 , Xi'Y', Y4 1Xjl, Vj' 1 - tYi+1 , Xi - tATl)

C[i1X1t/Y+X'
(1.172)

and the part of !t over it has coordinate ring

C[Xi Xj t](Xi- tj) C[i+1 Y+, t/Y+ - t i+1) a C[Xj,t] x C[Y+1, t] (1.173)
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The map induced on coordinate rings from the former to the latter is given by

Xi' F- (Xi, 0), Yi+1 F- (0, Yi+1), t - (t, t) (1-174)

Hence, it is isomorphic to normalization map of an affine nodal curve relative to

C[t]. This description implies the map Og, -+ rKOj, corresponding to Ot -+ g is

injective with cokernel DiEZ O(Zi+12Xi+1) C[t}, where Xi+1/ 2 still denotes the nodal

point in Ui+1 / 2. In other words, we have a short exact sequence

0 -+ Ogt -+ frOdt -+ ( 0 2 0Xi+1/2 ) M C[t] -+ 0 (1.175)

This is the analogue of (1.70) in Prop 1.4.10. Moreover, using smoothness of P1 x {i},

we can resolve O, IP1x{ xi} x{i}xSpec(C[t]) by sheaves of type E X E', where E and E'

are coherent. More precisely, it is quasi-isomorphic to a complex of sheaves of type

E 0 E'(we do not need to consider its direct summands as Db(Pl x Pl) is generated

by exterior products, but it would not affect us.) Concretely, one can use

0(-1) 0 0(-1) N C[t] _XY'i mrNX N 0 MC[t] (1.176)

(1.175) and resolution maps from (1.176) can be made invariant under tt x tr x 1 and

hence r,,00 is quasi-isomorphic to a finite complex of sheaves of type iEz(triE' N triE')M

C[t], where ' and " are push-forwards of compactly supported coherent sheaves

on the normalization P1 x Z (hence, isomorphic to twisted complexes over O('o)dg).

This complex is the analogue of (1.71) in Prop 1.4.10. The same holds for Og, by

(1.175) and for O by taking duals.
9t

Let E =E@iEZ(trik' X triZW'v) Z C[t]. A C[t]-relative version of the idea in the

proof of Prop 1.4.10 shows that 9J'EOA, as a family over Spec(C[t]) descends to a fam-

ily of bimodules over M/1 that is representable by a (family of) twisted complexes(See

[Sei14]). Hence, its push-forward along Spec(C[t]) -+ Spec(A) is coherent by Remark

1.6.14 and the same holds for 9JT' ~ 9 'VVI which finishes the proof. 0
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Remark 1.6.16. One can presumably show that 9 is representable by a family of

twisted complexes and SR is representable by an (unobstructed) twisted complex over

MR g ® M p 9 AR, as it is a deformation of 9. However, we do not need this.

Before making infinitesimal change precise, we need a few more definitions:

Definition 1.6.17. Let B" be the category whose objects are families of modules

over B parametrized by Spf (AR) and morphisms M -+ 9)1' are pre-module homomor-

phisms 9J1 -+ 91' over B in the sense of [SeiO8c]. This is a dg category. Let Bd (or

simply BAR abusing the notation) denote the subcategory where the pre-module ho-

momorphisms are the AR-linear ones. One can define such categories for left modules

and bimodules similarly.

Remark 1.6.18. The superscripts "pre" in Definition 1.6.17 and in 9 "e are unre-

lated.

Remark 1.6.19. More explicitly, a morphism of B" can be defined as a sequence

of R-linear maps

f1 :9JA -+ 91

f 2 :9A13 __B+ 9R[-1]

One obtains a morphism of Bmod if AR-linearity is imposed.

Remark 1.6.20. Notice the hom-sets of BP have the structure of an AR 0 AR-

module, which comes from the algebra maps

AR -+ B (9)1, 9)1) (1.177)

for each 91. The algebra map sends a C AR to f (f= a, 0, 0, . . . ), i.e. to the

multiplication by a.

Now, we will make "the infinitesimal change of the family" precise, still following
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[Seil4]. For simplicity let us confine ourselves to Am-algebras, keeping in mind that

one can pass to them from A,-categories via constructions similar to total algebra.

Let B be a curved A,-algebra over R = C[[q]]. Let B(B) denote the graded q-adic

completion of T(B[1]) = n> B[1]@,. Recall B(B) is a (co-unital) coalgebra (in the

category of q-adically complete, graded R-modules) and one can see the A,-structure

as a coderivation p of degree 1 satisfying p o p = 1[p, p] = 0 and such that p o c is

a multiple of q E R, where e : R -+ B(B) is the natural coaugmentation given by

inclusion of B*0 = R.

A right A,-module structure on graded complete R-module 9)1 is given by a

degree one endomorphism of the comodule 9T 0 B(B) satisfying co-Leibniz rule with

p. In other words, it is a dg comodule over the dg coalgebra (B(B), P). See [KS09]

for details. Note again the tensor product denotes the completed tensor product

over R. In this language, the morphisms of B" are comodule homomorphisms of

9A 0 B(B) and the differential on the hom-set is given by the commutator with the

endomorphism corresponding to the A,-structure.

Remark 1.6.21. If the module M is AR-valued- e.g. if it is a family of modules- then

the comodule 9A 0 B(B) has an AR-linear structure commuting with the comodule

structure maps.

To define the infinitesimal change let us introduce an auxiliary notion:

Definition 1.6.22. Let 9A be a family of modules over B(or more generally an AR-

valued B-module). A pre-connection on 931 along the derivation DAR = tat - U&a, (see

Section 1.7) is an element $ E (BP )0(, 9)) such that [, a] DAR(a).1sm for every

a E AR considered as an element of (B" )(9, 9R).

In other words, a pre-connection is a comodule endomorphism of 9)10 B(B) that

satisfies Leibniz rule (with respect to natural AR-linear structure on 9:Q 0 B(B)).

Families of modules (over A,-categories over C) parametrized by Spec(A) and pre-

connections on them along DA can be defined analogously.

Remark 1.6.23. The endomorphisms of the comodule 9) 0 B(B) can be shown to

be in one to one correspondence with the pre-module endomorphisms in the sense of
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[SeiO8c]. Hence, P can be defined as a sequence of maps

P 1:9Jr - 9JT

V2:9JT L3 B 9R1[-1]

such that P' is a connection of the graded module 9)1(up to sign) and P, i > 2 are

AR-linear and there is no further constraint. This is how they are defined in [Seil4]

and this approach shows that AR-semi-freeness implies existence of pre-connections.

Definition 1.6.24. Given a pre-connection P on 91 its deformation class is def ($)

d($) c (B )1 (9t, 9)1), i.e. the differential of P in the dg category BT. It is AR-

linear due to commutation relation in Definition 1.6.22. Its class in H1 (BA ( 9A, 9)1))

will be denoted by Def($).

Remark 1.6.25. Two pre-connections on 9J1 differ by an element of (BAR) 0 () 91);

hence, the classes of their differentials are the same in the category BAR. We denote

it by Def(9JN) as well.

Let us show the naturality of this class:

Lemma 1.6.26. Let 91 and 9)1' be two families of modules with pre-connections l

and g' resp. Let f : 91 -+ 9)1' be a closed morphism in B' . Then the images of

Def(931) and Def(9M1') coincide under the natural maps

H1 (3R(9-n, 9R)) f 0)H1 (B3A(9Jn, 911')) (OfH'13R(TV ' 9JZ')) (1.178)

Proof. Consider the pre-module homomorphism

Pof -f oP: -9)J' (1.179)

It is AR-linear, as f is AR-linear; hence, it falls into category BAR. Its differential is

equal to

d(4') o f - f o d( P) = def (g) o f - f o def (-) (1.180)
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Hence, the BA,-classes of def (Y) o f and f o def ($) are the same.

Corollary 1.6.27. Let f :91 -+ 91R' be a quasi-isomorphism of families with pre-

connections. Then Def(9R) corresponds to Def(9R') under the natural isomorphism

H'(3R(9-, 9R)) _- H'(BAR(90', R')) (1.181)

We also want to show naturality of deformation classes under Morita equivalences.

Let B' be another curved A,-algebra and let X be a B-B'-bimodule. For a definition

of A,-bimodules see [Seil3]. One can also see a bimodule as a graded complete

module over R such that the bicomodule B(B) 0 X 0 B(B') (again tensor product is

over R and completed) has a differential compatible with the coderivations of B(B)

and B(B'). Such a bimodule X induces a dg functor

Bmod -+ B'od (1.182)

between the categories of right modules as well as dg functors

Byre B'p' (1.183)

B od B'mod (1.184)

between the categories of families. It is given by (-) 0BX. See [Abol0] for a definition.

Note also, (1.183)(resp. (1.184) is AR 0 AR(resp. AR)-linear.

Definition 1.6.28. X is called a Morita equivalence if there exists a B'-B bimodule

Y such that

Y 0L X ~ B' in the dg category of bimodules over B' (1.185)

X OF' Y ~ B in the dg category of bimodules over B (1.186)

In this case, B and B' are called Morita equivalent.

If X is a Morita equivalence, then the induced functors (1.182),(1.183) and (1.184)
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are quasi-equivalences. For a definition of X 013, Y and Y O® X see [Abo10]. One

can also define them as cotensor products of corresponding dg bicomodules, clarifying

the module structure. As the transformation (1.183) is AR 0 AR-linear and strictly

unital, it sends an endomorphism P satisfying the commutation rule [P, a] = D(a).1

to such an endomorphism of the image. In other words, it produces a pre-connection

of the image and clearly def (P) is sent to the deformation class of the image. Hence,

we have proved

Corollary 1.6.29. Let X be a B-B'-bimodule admitting an "inverse" Y as above and

thus inducing an equivalence 4X : Bmod -+ B"od . Then, for a given family (with

connection) 91 E Ob(B"ad), the deformation class Def(9R) is sent to Def(4(9)1))

under

@ :H1 (B 31,9,)) -4 H1 A(B'R(4(9) j(9))) (1.187)

Now, let us make the meaning of infinitesimal change precise following [Seil4].

First, recall there exists a natural map

CC*(B,B) -* CC*(Bod, 3od) (1.188)

inducing a chain map

CC*(B, B) _ Bmod(M, 9) (1.189)

for every B-module 1R. Seen as a map TB[1] 0 91 -+ IN, the latter is given by explicit

formulas

- >3 p(l 0 1r 0 gj 0 1*s) (1.190)

where g- denotes the components of a cochain g E CC* (B, B) (note again the Kozsul

signs or see (1.19) in [Seil4], up to possible differences in signs). Using the same

formula, we have

CC*(B O AR, B O AR) -IAR( 9 3
l 931) (1.191)

for every family of B-modules. Moreover, any cochain -y e CC*(B, B) induces a
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cochain in CC*(B ® AR, B 0 AR); hence, we have a chain map

FM : CC*(BB) -+ BAR (9, 9A) (1.192)

given by the formula (1.190). Indeed, we can simply treat 9A as a B-module to

compute the class. Then, the induced A,-module endomorphism on 9A is AR-linear.

Remark 1.6.30. There are analogues of (1.188) and (1.189) for left modules and

bimodules, which also generalizes to families as in (1.192). For instance, given a

B-B-bimodule (or more generally B"-B-bimodule) 9)?, we have the map

CC* (B, B) -+ hom*mod((, 9)) (1.193)

that maps g c CC*(B, B) to yp 1I(1II1, r 0 gj 0 1S) with similar sign

conventions. The image of g will be denoted by 1%R(1 0 g).

Definition 1.6.31. Let -y E CC'(B, B) be a closed cochain and 9)1 be a family of

right B modules (resp. B-B-bimodules) admitting a pre-connection. We will say 9)

follows [-y] (resp. 10 -y) if Def(M) = [Fm(y)] E H1(BAR(9)T, 9))) (resp. Def(M) =

Remark 1.6.32. CC*(B, B) is quasi-isomorphic to endomorphisms of the diagonal

bimodule. 91 O B 9 1, for any right module 91; thus, we have a natural map

CC*(B, B) ~ hom*, (B, B) -+ hom* (1 OB B, 9 OB B) ~ hom*(9, 1) (1.194)

It is possible to show this map is Fq in cohomology (the notation FA is used for

B-modules in general not only families over AR). It follows in the setting of Corollary

1.6.29 that if a family 9)? follows -y then 4b(M) follows the class corresponding to -y

under the quasi-isomorphism CC* (B, B) CC* (B', B'). The same holds for families

of left modules and bimodules.

Now, we want to prove the cohomology groups of hom-complexes between families

following the same class admit connections along DAR (see Definition 1.7.2 for the
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notion of connections along AR-modules). First some preliminaries:

Definition 1.6.33. Let E = (K, d) be a chain complex of AR-modules(resp. A-

modules). A pre-connection on (E, d) is a choice of connections DEi : E' --+ E' along

DAR, (resp. DA) for each i. We will denote a pre-connection by PE, or simply by S.

We will mostly drop "resp. DA" keeping in mind that the definitions and proofs

would go through analogously.

Definition 1.6.34. Define the Atiyah class at(p) : E - E[1] of a pre-connection

to be the differential of P: E -+ E considered as an R-linear map. More precisely,

at(P) := do $- Pod (1.195)

It is a chain map over AR.

Remark 1.6.35. The cohomology class [at($)] c homAR (E', K) is independent of

the choice of pre-connection. Denote it by At(E*).

We also include the following, which is proven in [Seil4].

Lemma 1.6.36. At(E*) = 0 if and only if one can find a pre-connection that is a

chain map over R.

Proof. The only if part is clear. Let us prove the if part. If At(E ) = 0, that means

there exists a pre-connection such that at($) = d(c) for some c c homo (E', F) such

that at($) = d(c). Thus, $-c is a degree 0 chain map, which is still a pre-connection

since c is linear over AR. D

We will call such a connection a homotopy connection. Let us note a general

lemma that will be of use later:

Lemma 1.6.37. Let C* be a chain complex of complete AR-modules whose cohomol-

ogy groups are finitely generated over AR in each degree. Assume t - 1 C AR acts
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injectively on C* (e.g. when it is flat over AR). Also, assume C* carries a homotopy

connection, i. e. a pre-connection that is also a chain map. Then

Hi(C*/(t - 1)C*) ~ Hi(C*)/(t - 1)Hi(C*) (1.196)

Proof. First, note t - 1 acts injectively on any finitely generated AR-module N that

carries a connection along DAR. To see this consider

No = {x c N: (t - 1)'x = 0 for some n > 0} C N (1.197)

It is invariant under the connection DN on N. As it is still finitely generated, there

exists no > 0 such that (t - 1)noNo = 0. Given x E No

0 = DN((t - 1)noX) = no(t - 1)"o~tX + (t- )0 oDN(X) = no(t - 1)Tl 1 x (1.198)

as (t - 1)"o-ltX = (t - 1)noX + (t - 1)o-Ix = (t - 1)o-1x and DN(x) C No. Thus,

(t - 1)"o-'No. By induction

(t - 1)"o-No = (t - 1)no- 2 NO -... = No = 0 (1.199)

Now consider the long exact sequence associated to short exact sequence

0 N HC w C)* -+ C*/(t -i)C* c 0 (1.200)

Putting N = H'(C*), we see H'(C*) , H'(C*) is injective; hence, the induced map

Hi(C*)/(t - 1)Hi(C*) -+ Hi(C*/(t - 1)C*) (1.201)

is an isomorphism. 0

Now let us prove a crucial result, again following [Seil4]:

Proposition 1.6.38. Let 9N and 9:Q' be two families of -modules with pre-connections.
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Assume there exists a class [y] - HH1 (B, B) such that both 9N and ' follow ].

Then, BA,(9A, 9)1') has Atiyah class 0, and it admits a homotopy connection. More-

over, the homotopy connection can be chosen to be compatible with the composition

possibly up to homotopy.

Proof. Recall BA, (9X, 9)1') can be thought as the comodule homomorphisms and the

map , o (-) - (-) o $J gives a pre-connection on this complex. Its differential is

given by

d( () - (-) o d(]P7) = def(PgJ,) o (-) - (-) o def (7z) (1.202)

which is cohomologous to

1A,(Q) 0 (-) - (o) F T,(y) (1.203)

However, as -y is a closed class it induces a natural transformation and this cocycle

is null-homotopic. Indeed, P(y) is the degree 0 part of restriction of a Hochschild

cocycle F(-y) to 91 where

F : CC*(B, B) -+ CC*(B"nod, Bod) (1.204)

is a chain map and F(-y) has only degree 0 and 1 parts possibly non-vanishing. It is

what Seidel denotes in [Seil4] by ,ymod, up to sign. As -y is closed, Fr() too is closed.

The vanishing of the differential implies

Fm (Y) 0 (-) -- () 0 FM (-) (1.205)

is equal to differential of degree 1 part F(7) 1. Hence, the Atiyah class vanishes and

by Lemma 1.6.36, the complex admits a homotopy connection.

For the compatibility with the composition, first correct the pre-connections pb

and $ZN, by AR-linear cochains bounding def($%) - T,(-y) and def($m,) - Fm,(-y)

so that (1.202) and (1.203) would actually be equal. Second, note the pre-connection
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A o () - () o $m is automatically compatible with the composition. To make it

into a homotopy connection as in Lemma 1.6.36, we have to correct it by a cochain

bounding the Atiyah class and F(-y) 1 is a natural such choice. The closedness of F(- )

implies

i F('y) 1(-) o (-) (-) o F(7y) 1(-) ](y)1(- o.-)=r -Y),() 0 0IF (Y) r, 1 0(1.206)
ip 2 (F(7)1, .) p2 (., F(y) 1) F(7) 1 (p2 (., .)) = 0

Hence, the pre-connection $/I o (-) - (-) o $m corrected by F(y) 1 is still compatible

with composition 12 and is a homotopy connection. F1

Corollary 1.6.39. The cohomology groups H(BA,A(9, R ')), considered as AR-modules,

admit connections along DAR.

As we mentioned, the notion of following a class [7] measures infinitesimal change

on a family. Now, we will give a recipe to compute the class which a family follows

by using Gm-actions.

Remark 1.6.40. The heuristic is as follows: let M be a manifold and G be a Lie

group acting smoothly on M. Then, to any X E Lie(G), one associates a vector

field X# on M obtained as xi = d(exp(tX).rm) t=o. Smooth equivariant maps relatedt

infinitesimal action on both sides.

We start with some generalities. First, let us define a class of categories and

equivariant modules on which one can make sense of the infinitesimal action. As we

will follow a formal approach, it will not make a big difference to work over C or over

R.

Definition 1.6.41. Let B30 be an Am-category over C with a strict action of Gm(C)(i.e.

it acts on hom-sets and differentials and compositions are equivariant). Call this ac-

tion pro-rational if one can choose a product decomposition for each hom' (b, b') into

countably many rational representations of Gm such that the decompositions together

satisfy the following: if we restrict the differential or one factor of the composition

into a finite subproduct it factors through a finite subproduct of the target. Similarly,

call a strict action of G.m(R) on a curved A,-category B over R pro-rational if each
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hom'(b, b') admits a product decomposition into R-free completed rational represen-

tations (i.e. q-adic completion of rational representations of Gmn(R)). Same condition

for differential and compositions is imposed (and no extra condition on curvature is

needed).

Example 1.6.42. The guiding example is the following: consider the abelian cate-

gory Rat(Gm) of rational representations of Gm = Gm,C. Let 5o be the dg category

of unbounded complexes over Rat(Gm). Then given such complexes C-, D-

hom'0 (C-, D-) = homRat(Gm) (C', D"') (1.207)
nEZ

Clearly, this decomposition satisfies desired property. One can give analogous example

for pseudo-complexes.

The following can be thought as a special case of this example:

Lemma 1.6.43. 0(to)dg and 0(R)cdg are pro-rational.

Proof. O(To)dg is a subcategory of chain complexes of sheaves on 'T o. Each degree

of these complexes is equipped with a Gm-equivariant structure, and hom's of these

complexes are given by products of hom's of these Gn-equivariant sheaves. A closer

examination shows each factor in these products is a rational representation, and the

product decomposition is compatible with differentials and compositions. The proof

is the same for O('R)cd. E

Definition 1.6.44. A strictly equivariant module 9N over a (uncurved/curved) cat-

egory with strict pro-rational action of Gm(C)/Gm(R) is called pro-rational if each

91W(b) admits a product decomposition such that the module maps satisfy a similar

local finiteness as above. Similarly, a family of modules 9R E BA - B od is called

strictly pro-rational if it admits a strict pro-rational Gm(R)-equivariant structure as

a B 0 AR-module. Here z c Gm(R) acts on AR by t -+ zt, u -+ z--u. In other words

it is pro-rational as a B-module and each 9J1(b) is equivariant as an AR-module.

Similar definitions make sense for bimodules and tri-modules and so on.
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By Section 1.6.3, we have the following (which is similar to Lemma 1.6.43).

Lemma 1.6.45. AR, resp. A-valued bimodules 9 ', resp. SPr are pro-rational.

Remark 1.6.46. Putting a pro-rational action on a category is essentially a special

case of enriching the category in the complexes/pseudo-complexes in pro-completion

of the category of rational(or completed rational) representations. For a rational

representation W, we can formally differentiate the Gm-action and obtain an operator

(za)# associated to 20 E Lie(Gm). If Gm-action on v C W is by z -+ zm , the

(zO,)# action is by m. The pro-completion process remembers the cofiltration of

representations and hence we can formally define (zO)#-operator on the vector spaces

underlying pro-objects. As the morphisms between pro-objects are compatible, they

intertwine with (Zd0)#. Similar statements hold for ind-completion; hence, we can

formally define this operator on direct sums of pro-objects of rational representations.

Remark 1.6.47. M4 and MAc are not pro-rational in the sense above, neither are SR

and 9 for their definition includes direct sums. However, the complexes involved are

direct sums of pro-rational representations; hence, we can define infinitesimal action

of z&, at each component separately, and we will use this. It is straightforward to

define the notion of "ind-pro rational" as direct sums of pro-rational representations.

fore generally, such direct sums would be included (and infinitesimal action would

be built-in), if we used sub-representations of products of rational representations

that are invariant under (zOz)# (which is already defined on the product). Note, the

morphisms of the latter category are assumed to be not only Gmn-equivariant, but also

compatible with (zO)#. It is closed under products, direct sums and tensor products.

Lemma 1.6.48. Given a strictly pro-rational curved A, category B over R,

(zO,)* : hom' (b, b') -+ hom' (b, b') (1.208)

defines a Hochschild cocycle of degree 1. Same holds for uncurved categories over C.

Proof. One only needs to check the closedness of the class, which can be proven

using explicit computation. Alternatively, one can turn the Gm (R)-action on B into
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an action on the bar construction B(B). The Ac structure p can be considered

as a coderivation, which is clearly equivariant; hence the action is by dg coalgebra

automorphisms. The bar construction is not a product of rational representations, but

one can still differentiate the action to obtain a meaningful coderivation (z&z)#. Let

z act by pz r- B(B). Differentiate the relation pz o p = p o pz to obtain [p, (z&2)#] =

0.

Lemma 1.6.49. Let 9J1 be an AR-Semi-free strictly pro-rational family of B-modules.

Then, 9A admits a natural pre-connection and its deformation class is the image of

[(zaz)#] E HH1 (B,B) under the natural map HH'(,B) -+ H1 (3AR(91, 9)). In

other words, 9A follows (zOZ)#.

Proof. z C Gm(R) acts as an operator 77 E 9(b, b') --+ 93(b, b') and it is possible

to differentiate it by the remarks above. Moreover, riz(ax) = (z.a)r/z(x) for any

a E AR, x E 9J(b, b') and differentiating this relation, we obtain

(z&l)#(ax) = a(zOz)#(x) + (zz)# (a)x (1.209)

where (zz)#(x) = "(L' Jz=1)" and (zO,)j#(a) -- "(A."L|)" denote the corre-

sponding infinitesimal actions. As it will be remarked in Section 1.7,

(z&2)# (a) = DAR(a) (1.210)

hence, (z&2)#(x) is a pre-connection with no higher maps. We denote it by _PM.

Now similarly differentiate Gm1(R)-action on 9R ® B(B). We obtain a coderivation

acting on 9)OB(B). Let us project it to 9A and extend as a comodule homomorphism.

This way we obtain the pre-connection $PM seen as a comodule endomorphism of

9)10 B(8).

Now, its differential: first note the differential on dg comodule 9R 0 B(B) can be

written as the sum 6M + 6s 9 10 B(B). Here, 6M is the extension of the structure
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maps of the module as a comodule endomorphism. More explicitly, it is given by

(1.211)

61 denotes the remaining terms, i.e.

J Z3 = 1. 0 110 .. - ... -01-- (1.212)

The extension of an operator $R : 91 -* 9N1 to 91 0 B(B) is via the formula

$ 7 n 0 1 3 0 13 0 . .. 1 3 on the each summand 9R 0 BO'. Let Ps denote this operator

(only for the rest of this proof). The differential of it is given by the commutator

(O6 + 6 ) o $ - $ o (69 + 6B) = [6M, $gyI + [615, 9A (1.213)

By the formulas above, [ 63, Pn] = 0. Hence,

def($P) = Jg o -9 - $q o 69m (1.214)

which is a comodule homomorphism whose composition with the projection 91 0

B(B) -+ 9N is given by

(1.215)

on the summand 9N 0 B[1]@ -. For a fixed i, equivariance of pi and the fact that

Pi is obtained as the infinitesimal action of z&, E Lie(Gm) implies

o (Jm 0 1i-1) + o (1S 0 10 0 (z@ )# 2) = p o aj (1.216)

Hence, the deformation class(projected to 9R) is given by

(1.217)- p i (1 0 1 0 (zOz)#&0 @ i-j2)
93
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The Lemma follows from the definition of 11(y) given by formula (1.190). l

Most of the results/definitions above follow similarly for left modules and bimod-

ules. Indeed, we will use the results for a semi-free, semi K-projective replacement of

9 R, which is a family of bimodules.

1.6.3 The deformation class of 9 R

To apply the results above, first we should clarify the Gm (R)-action on 9 R. First, the

graph 9 C TR x Ti x Spf (AR) (resp. g c To x to x Spec(A)) is invariant under

the action of Gm(R) ( resp. Gm(C)) which is trivial on the first factor, as in Remark

1.2.3 on the second factor, and by z : t .-* zt, u " z-iu on the third. This is clear

from the defining equations (1.31) and (1.32).

Hence, there is an action of Gm(R)(resp. Gm(C)) on 9" (T, Y')(resp. gpre(,T, y))

compatible with the action of the same group on O('R)cd, 0 O(& TR) 9 0 AR(resp.

O(To)dgO O(To)" 0 A) that is trivial on the first factor, as in Remark 1.3.14(resp.

Section 1.3.2) in the second factor, and by z : t F-+ zt, u " z-lu on the third. A

similar action exists for AR(resp. A)-valued MR (resp. Mo)-bimodule 9R(resp. 9).

The strict pro-rationality is obvious in the former case. In the latter, we do not have

pro-rationality. However, by Remark 1.6.47, it is still sensible to formally differentiate

the action and the results above are valid since we have direct sums of pro-rational

representations.

However, as mentioned the bimodules above are not semi-free over AR(resp. A)

and they do not satisfy K-projectivity condition. This is easy to resolve by passing

to equivariant semi-free replacements that are K-projective over A at q = 0. More

generally, consider a curved A,-category B with strict and pro-rational action of

Gm(R). Let 9% be a bimodule over B with a pro-rational action. We may weaken

pro-rationality to "differentiability" of the action (see Remarks 1.6.46 and 1.6.47).

Then the bar construction gives us a bimodule. To its objects, it assigns a complex
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which in each degree is given by a product of expressions such as

13 k (bk, -) BikL-1 (bk1, bk) ... 0 9A" (b,_ 1, b1) 0 - 0 1 (bi, b2 ) 0 Bio(., bi) (1.218)

Its differential and structure maps can also be given by explicit expressions involving

the structure maps of 91 and A,,-products of B(alternating sums of expressions such

as 1sO13-0 -.. - 13) and it also defines a strictly equivariant B-bimodule,

where the infinitesimal action can be formally defined again (i.e. by differentiating

each component of the tensor product and applying the Leibniz rule, see also Remark

1.6.47). We gave it for bimodules just as an illustration, and this can be done for

left modules, right modules, trimodules, and so on. In particular, we can use this

construction to replace 9 pe and 9R with AR-semi-free, semi-K-projective families of

bimodules over O(TR)cdg and MR in a canonical way. It is compatible with tr in the

former case. Let us denote these replacements by 9Se"sf and 9S{.

To find Hochschild cohomology classes that are followed by 9 ,re'sf and 9s{, we

can apply Lemma 1.6.49. The following proposition relates the infinitesimal action

cocycle (zOz)# to previously defined Hochschild classes.

Proposition 1.6.50. The infinitesimal action cocycle (zO,)# defined in Lemma 1.6.48

of G(R)-action on 0(TR)cdg has the class -yo.

Proof. This follows from local to global techniques of Section 1.5. For instance,

consider the isomorphism (1.106). It is based on maps

CC* (O(rR)cdg, O( (R)cdg) 00* (O(TR),dg, Coh(U)R) (1.219)

CC*(Coh(U)R, Coh(U)R)

where U =Ui+y1 2 or Vi and Coh(U)R is a curved deformation of Coh(U). We can

replace Coh(U) by the image of the restriction functor from O(TR)cdg and use a

strictly Gm(R)-equivariant model such that this functor would be strictly equivariant

too. Moreover, it is easy to see that the images of cocycles (zO,)# in lower right
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and upper left complexes correspond in cohomology. Similar statements hold for the

restriction maps

CC*(Coh(Ui+1 2)) -+ CC*(C[Xi, Yi+1 ] [[q]]/(XiYi+1 - q)) (1.220)

and so on. Hence, it is enough to prove the infinitesimal action cocycle (zDz)# is the

same as local building blocks of -o. In other words, we wish to show Yi+Yi* - XiX*

corresponds to cocycle (zOz)# for the action

z : Y+1 -+ zYi+1, Xi " z-1Xi (1.221)

under the Hochschild-Kostant-Rosenberg isomorphism of [Fn07, Appendix, Theorem

2]. Examining this isomorphism, we can see Yi+1Yi*l -XjXj corresponds to derivation

Yi+1 - Xi&x,; i.e., to (zO,)# for the given action.

Corollary 1.6.51. Consider the G,(R)-action on MR. The infinitesimal action

cocycle (z&9)# has the same class as

Proof. Follows from a similar examination of the isomorphism in Prop 1.5.13. 0

Corollary 1.6.52. The family 9 "'"f of 0)(TR)cdg -bimodules follows 10yR G HH (O(T R) -

Similarly, the family of Mc-bimodules 9'f follows 10 z HH1((M1 )e).

Proof. This follows from the remarks at Section 1.6.3 about the Gm(R)-action on

, 9 as well as on families 9 "e'', 9'{ by applying Lemma 1.6.49. L

Remark 1.6.53. Results similar to Corollary 1.6.52 hold for 9Ps'fJq=O, which is a

semi-free replacement of 9qP" and for 9SR| q=O, which is a semi-free replacement of 9-

1.7 Modules over AR

Recall AR = C[u, t][[q]]/(ut - q) and A = AR/(q) = C[u, t]/(ut).

Definition 1.7.1. Let DA, resp. DAR denote the derivation tOt - uQe on A, resp.

AR-
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Note that DAR is R-linear on AR and it can be seen as the infinitesimal action of

the G7,-action given by z : t - zt, u + z-+u.

Definition 1.7.2. Let M be a topological module over AR. A connection on M along

DAR is a linear map DM : J1l -+ M satisfying Dm(fm) = DAR(f)m + fDm(m). We

will often refer to it simply as a connection on 1U.

A connection can be seen as an infinitesimal version of an equivariant structure

with respect to the action above.

Remark 1.7.3. AR is a Noetherian ring. Moreover, finitely generated modules over

AR are automatically complete with respect to q-adic topology.

Let us first prove:

Proposition 1.7.4. Let Al be a finitely generated module over AR, which can be

endowed with a connection D,1 . Assume M1l/(t - 1)M is a q-torsion module over

AR/(t - 1) c R. Then, 11 is q-torsion.

Proof. We can assume t11/(t - 1)II = 0, by replacing M by qzM for i > 0. Consider

M/uM. It is a finitely generated module over C[t] and carries a connection along the

derivation Ot& on C[t]. As it vanishes at t = 1, it has to be torsion over C[t] and as

it carries a connection its annihilator is invariant under the action z E Gm : t '-+ zt.

Hence, annc[t](A/uM) = (t"-1 ) for some n, implying t"M C utM = qM C tM.

This shows t-adic and q-adic topologies on M coincide and M is t-adically complete

as well. Hence, we can see M as a module over C[u][[t]] that is finitely generated over

AR = C[u, t][[ut]] c C[u][[t]].

Given s E M, consider Cfu][[t]].s C M. It is an AR submodule and AR is Noethe-

rian; hence, C[u][[t]].s - C[u][[t]/ann(s) is finitely generated over AR as well, where

ann(s) := annc[lJ[[t]](s). Now dividing by u again, this implies

C[u][[t]]/(ann(s) + uC[u][[t]]) (1.222)

is a module over C[[t]] that is finitely generated over C[t] = AR/(u). By the classi-

fication of finitely generated modules over PIDs, we see that this module is indeed
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t-torsion, i.e. there exists N' such that

t N1 ann (S) +uC[u] [ [t] 1 (1.223)

In other words ann(s) contains an element that is of the form tN' + 0(u).

Now, pick a set of generators s1 ,... , s, and Ni such that there exists an element

in ann(si) that is of the form tNi + 0(u). The product of these annihilating elements

is of the form tN + 0(u) E C[u] [[t]] and annihilates M.

Let M( denote the completion of M with respect to the ideal (u) c C[u] [[t]]. It is a

finitely generated module over C[[u, t]] and it also carries a connection along tt -uo".

Hence, its annihilator J over C[u, t]] satisfy the conditions of Lemma 1.7.5 below.

Moreover, by the above paragraph, an element of the form tN + O(u) is in J. Hence,

J cannot be contained in (0) or (u) and the prime ideals belonging to J contain t.

This implies there exists N, such that tNl E J. In other words, tNl annihilates fI.

We want to use this to show tNl M - 0, implying M is q-torsion.

Our approach is using [AM69, Theorem 10.17], namely the kernel of the (u-adic)

completion map M -+ NI is the set of elements of M annihilated by some element

of 1 + (u). By above, tNi M is in the kernel and we see that M is annihilated by an

element of the form tNl(1+O(u)). Consider tNl M/tNl+1M. It is annihilated by t and

an element of the form 1+0(u). Hence, we can get rid of multiples of t in 1+0(u) and

see that there exists a polynomial f(u) such that 1+uf(u) annihilates tN1M/tNl+1M.

tNi1tNj+1M is a finitely generated module over C[u] with a connection along -uO,.

Hence, by the classification of modules over PIDs, it has to be finite direct sum of

copies of C[u] and of C[u]/(u'), for various 1 > 1. Thus, that it is annihilated by

1+ uf(u) implies tN1M/tNj+1M = 0. In other words,

tNiM - tllM - tNl+ 2 M . (1.224)

But recall M is complete in t-adic topology i.e. the completion map

M _ lim M/t"M (1.225)
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is an isomorphism. Thus, M ~ M/tN M and tNlM = 0. This implies qNi = = 0,

finishing the proof. l

Lemma 1.7.5. Consider the action of the group C* on C[[u,t]], where z E C acts by

t - zt,u -+ z'u. Consider an ideal J that is invariant under the action, or equzv-

alently (tOt - uDa)(J) C J. If J is a prime ideal, then it is one of (0), (u), (t), (u, t).

If J is an arbitrary invariant ideal, then the prime ideals belonging to J(its prime

components) are among (0), (u), (t), (u, t) (thus y J is the intersection of some of

(0), (u), (t), (U, t)).

Proof. The second statement is an easy corollary of the first: namely assume J = f qi

is a a minimal primary decomposition, which exist by [AM69, Theorem 7.13]. Then

prime radicals pi = fil are invariants of J, by [AM69, Theorem 4.5]. J is fixed under

the action of C* on C[[u, t]]. Hence, so are its prime components.

Now assume J is prime. As the Krull dimension of C[[u, t]] is 2, the height of J

can be 0,1 or 2. If it is 0, J = (0). If it is 2, J = (u, t) as C[[u, t}] is a local ring.

Hence, assume J has height 1. As C[[u, t]] is a UFD, J is principal(see [Har77, Prop

1.12A]). Take a prime f E J such that J = (f). The invariance of J under C*-action

implies that for all z E C*, z.f is a generator as well; hence, it differs from f by a

unit of C[[u, t]].

Partially order the monomials as

taub < tcud iff a<candb<d (1.226)

As the units of C[[u, t]] are of the form a + O(u, t), where a E C*, the set of non-zero

monomials of f that are minimal with respect to this order does not change when

we multiply it with a unit. Moreover, the coefficients of the minimal monomials are

multiplied by the same constant a C C*. On the other hand, the C*-action acts on

the monomial tzuj by z'tI. Thus, the difference i-j has to be the same for all minimal

monomials. But if i - j = i' - j' then either tzi tI'u-' or ti'ul' < t'uj. Hence,

there can be only one minimal non-zero monomial of f. Call it t'u2 . As all the other

monomials are divisible by it, tfu differs from f by a unit; hence, J = (t'uj). As J
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is prime, it is either (t) or (u). This finishes the proof of the lemma.

We wish to use Prop 1.7.4 to prove some properties of modules of higher rank.

For that we need another lemma:

Lemma 1.7.6. Let M be a finitely generated module over AR, which can be endowed

with a connection DM. Then Mv = HomA,(M, AR) is free over AR.

Proof. Mv is finitely generated and admits a connection as well. Assume Mv A 0.

Consider the local ring (AR)(u,t) C C[[u, t]]. Note, we do not take its q-completion.

This is a Noetherian local ring whose (u, t)-adic completion is C[[u, t]]. Hence, by

[AM69, Cor 11.19], they have the same Krull dimension, which is 2. Thus,

depth((AR)(u,t)) < dim((AR)(u,t)) 2 (1.227)

by [Eis95, Prop 18.2]. As u, t is a regular sequence (i.e. u is not a zero divisor on AR

and t is not a zero divisor on AR/(u)), depth((AR)(u,t)) = 2.

Moreover, (AR)(u,t) is a regular local ring, hence it has finite global dimension (see

[Eis95, Cor 19.6]). Thus, we can apply the Auslander-Buchsbaum formula ([Eis95,

Thm 19.9]) to every finitely generated module and obtain

depth(M') +pd(M') = depth((AR)(u,t)) = 2 (1.228)

where pd, depth are over (AR)(u,t). Let M' := (Mv)(u,t). Clearly, u, t is a regular

sequence for M' r HomA, (M, (AR) (u,t)); hence, if M' 4 0, it has depth 2 and

projective dimension 0. Thus, it is projective. As (AR)(u,t) is local, this implies

M' = (Mv)(u,t) is free.

In particular, this implies that the A = C[u, t]/(ut)-module (Mv)o = Mv/qMv is

free around (0, 0), i.e. (Mv/qMv)(,,t) is free over A(u,t). Using the connection on Mv,

one can show the freeness of ((Mv)o)t, resp. ((Mv)o)u over C[t, t-'], resp. C[u, u-1].

This is sufficient to conclude (Mv)o is free.

This implies the freeness of Mv as well: choose a basis An 4 (Mv)o and lift it to

a linear map A n -+ Mv. A simple semi-continuity argument would show this is an
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isomorphism as well, finishing the proof. l

Remark 1.7.7. The proof implies the freeness of any finitely generated module with

connection for which u, t is a regular sequence. However, we do not need this.

We can use Prop 1.7.4 and Lemma 1.7.6 to prove:

Proposition 1.7.8. Let M be a finitely generated module over AR that can be en-

dowed with a connection. Then, M is free up to q-torsion.

Proof. Consider the natural map M -+ MVV. This map is compatible with the

connections; thus, both its kernel and cokernel are q-torsion by Prop 1.7.4. MVV is

free by Lemma 1.7.6, implying M is free up to q-torsion. L

Remark 1.7.9. One can use Prop 1.7.8 to produce Mvv " M with q-torsion cok-

ernel.

1.8 A rank 2 lattice inside HH1 (MR)

In this section, we will find a subgroup of HH'(MR) that contains , that is iso-

morphic to Z 2 and that is preserved under Morita equivalences. The basic idea is as

follows:

Given an A,,-category B, one can define the derived Picard group as the functor

from commutative rings to groups sending

DPic: T -+ {T-semifree, invertible B' 0 T-modules}/quasi-isomorphism (1.229)

Here we call a B' 0 T-module 9N invertible if there exists another B' 0 T-module T

such that

9T o 9 ~_ I g B o T (1.230)

In other words it is a "family" of invertible B-bimodules parametrized by T. The

group structure is given by (9R, 9') F-4 211 &L M' See [Kel04] for a infinitesimal

and derived version of it. In [Kel04], the author also argues to show that the Lie
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algebra of this group is isomorphic to HH'(B), with the Gerstenhaber bracket as the

Lie bracket. This group functor is obviously Morita invariant. Hence, it is natural to

look at its coroots, i.e. maps Gm -> DPic and the induced image of (zOz) C Lie(GM).

This subset will be a lattice in our case. However, we will not formally refer to this

group functor again. Instead, we will simply use of group like families of bimodules,

whose definition is close to definition above.

In the case of mapping tori, notice another Gm (C), resp. Gm (R)-action on AM4,

resp. -V/1, this time rational, resp. completed rational(which we will informally refer

as another Gm/Gm-action). By definition B#Z is automatically equipped with an

extra Z-grading. Recall the morphisms from b1 to b 2 are

homB(g(bi), b2 ) (1.231)
geZ

and we declare homB(g(bi), b2 ) to be the degree g part in this extra grading. In

particular, iV4 and M carry this extra grading and we let z E Gm act by z9 on

degree g part.

Remark 1.8.1. When A = C and = 1c, this new action corresponds to twist by

line bundles in Pic0 (TR/R).

It is easy to see that the new and old Gm/Gm-actions commute strictly. Hence,

we have an action of Gm x Gm/G X SpIR Gm on MO/M . We want to organize them

in group-like families of bimodules. First, let us give meaning to this more general

notion of families, mimicking [Seil4] and [Ke104]. We will work over R, as everything

is similar over C.

Definition 1.8.2. Let B be a curved A,-category over R. Let T be a topologically

finitely generated complete commutative R-algebra (examples are given by formal

completions of affine subschemes of affine varieties). A family of B-modules/bimodules

parametrized by T is an Ax-module/bimodule 9)1 over B such that each 91(b) resp.

9M(b, b') is a free T-module (in each degree), 9(b)/q9M(b) resp. 9M(b, b')/qJ(b, b') is

K-projective over T/qT and the module maps are T-linear. The morphisms between
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such families can be defined in a analogous way to Definition 1.6.17 and Remark

1.6.19. We denote the category of families(with T-linear morphisms) by B"' or

simply by BT.

Contrary to previous section, we will assume T is the ring of functions on a formal

affine scheme that is smooth over R. We can define pre-connections in a similar way:

Definition 1.8.3. A pre-connection 7 on the family 9) of right B-modules parametrized

by T is a B(B)-comodule map

9N 0 B(B) -- QT/O 9)10 B(B) (1.232)

that satisfies the Leibniz rule with respect to T.

This can again be seen as a collection of maps

Y )1 : (bo) -+ T/IR 09(bo)

9)2 : (bi) 0 B(bo, bi) -+ TIR 0 9(bo)

y3 : 91(b 2) 0 B(bi, b2) 0 B(bo, bi) QT/R 09 )(bo)

such that 71 satisfies the Leibniz rule and IP are T-linear for i > 1. See [Seil4]. The

deformation class

def () E (Bmod) I(), Gr/R 0 1) (1.233)

has a similar definition, i.e. as the differential of 7. The class of def(7) is independent

of the choice of pre-connection and will again be denoted by Def(9X). Everything

works for bimodules in a similar way.

Now we define group-like families. The moral of the definition is simple: For

a (formal) affine group G the transformations "G - DPic(B)" are the families

parametrized by G and group-like families are those corresponding to group homo-

morphisms "G -> DPic(B)". More explicitly, let T = O(Go)[[q]] = O(G), where Go

is an affine algebraic group over C and G = Go x c Spf(R). T is a Hopf algebra in
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the category of complete R-modules. Let

m, fi, f 2 : G x G- >G (1.234)

denote multiplication, first and second projection respectively.

Definition 1.8.4. A group-like family of invertible bimodules parametrized by T is

a family 9A such that f*9 O3 f2* ~_ m*91).

This condition can be phrased in terms of the Hopf algebra structure of T. In

particular, it is easy to see that a (strict) G-action on B gives a group-like family.

Example 1.8.5. We mentioned an action of Gm XGm :=Gm XSpf(R) Gm on M .

This was a pointwise action; however, it is easy to see it as a group-like family

parametrized by C[zjI, z'] [[q]]. Denote it by pun. Similarly, there is group-like family

of bimodules over MO parametrized by Gm x Gm.

Lemma 1.8.6. The restriction of the family parametrized by Gm x Gm to two differ-

ent R-points are different. In other words, 'Gm x Gm(R) -+ DPicjR (R)" is injec-

tive.

Proof. Assume the family is trivial over an element of Gm x Gm(R) R* x R*. This

implies there exists z 1 , z 2 E R* such that the bimodule corresponding to z1 for the

action in Remark 1.4.6 is quasi-isomorphic to bimodule corresponding to z 2 for the

action coming from extra grading.

First, let us show zi = 1. Pick a smooth R-point p E 'YR such that the restriction

to q = 0 is on Co c 'To. We can represent O, as a deformation of a mapping

cone Cone(Oc0 (-1) -+ OcO); hence, by a twisted complex of this form, which we

also denote by O, (it is an unobstructed object over O('R)cdg, the differential of

this twisted complex may include other terms that are O(q)). Hence, we obtain a

subcategory Op 0 A = {0 0 a : a c ob(A)} C tw7r(MR). The zi-action moves this

subcategory to Oz.p 0 A. Moreover, the morphism OcO(-1) -+ Oco is of degree 0, in

the extra grading; hence, z 2 fixes 0 A. It is not hard to prove 0 9A is orthogonal

to 0 Z1.P 0 A unless zi.p = p. Thus, z1 = 1.
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Hence, by assumption the bimodule Z2(MR), corresponding to z2-action is quasi-

isomorphic to diagonal bimodule. The bimodule Z2(MR) 1 has the same underlying

pseudo-complexes but the action is twisted by z2 on the right (i.e. f.x.f'

z2(f)xf'). This bimodule can be obtained from O(TR)cd, 0 A as in Subsection 1.4.2

and the z2 twist amounts to changing the ZA-equivariant structure, where the new

ZA-equivariant structure is given by g.m = zg(m). The complex CC*(MR, p2 (MR) 1 )

can be computed to be the derived invariants of

CC*(OQ(jR)cdg, (R) cdg) 0 CC*( A, A) (1.235)

as in Prop 1.5.13, but again the Z-action on CC*(O('TR)cdg, O('R)cdg) is different

from the one in Prop 1.5.13 by z2 (i.e. it acts by z2 (tr*) in the first component).

This complex has no negative degree cohomology and its cohomology in degree

0 is isomorphic to R, fixed by the previous action. Hence, The derived invari-

ants of it in degree 0 is 0 with respect to new action, unless z 2 = 1. Therefore,

HH0 (MR, Z2(MR)1) = 0 unless z 2 = 1; thus z 2 = 1. El

Remark 1.8.7. For a group-like family 93, the deformation class

Def(9r) = [def(Y)] E H1(BTmod)(9i1, R 0 9)1) ~ H H*(B, O/0 B) (1.236)

induces a linear map

g -+ HH'(B, B) (1.237)

where g = Lie(G/R) = Lie(Go)[[q].

Lemma 1.8.8. The map R2 = Lie(Gm x G,) -+ H H1 (M, AIR) induced as in

Remark 1.8.7 is an isomorphism.

Proof. We know both sides are isomorphic to R2 . It is enough to show the restriction

C2 --+ HH1 (MV, 3/4) is an isomorphism. This map is given by the deformation class

of a group-like family parametrized by Gm x Gm. The restriction of the family to

G, x {1} corresponds to the action in Remark 1.4.6. This restricted family carries
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a Gm-equivariant structure; where Gm action on M4 0 M 0 O(Gm) is trivial on

the first factor, by z : t - zt on O(Gm,) and as in Remark 1.4.6 on the second.

By a version of Lemma 1.6.49, we can show the restricted family follows 1 0 7O E

HH1 (M, M). Its restriction to diagonal bimodule gives y4 E HH1(M,, 4);

hence, the image of (zaz, 0) E Lie(Gm x Gm) is y7. The sign depends on the

identification of RHom* (M , M ) with HH*(M , MO).

Similarly, consider the restriction to {1} 0 Gm. The infinitesimal action -y2

(0, za2)# is a 1-cocycle on MR that acts by n E Z on degree n morphisms with

respect to extra grading(7-(f) = nf for If I n, -y2= 0 for i -f 1) and as before the

family restricted to {1} x Gm follows t72 (it follows 1 0 72 to be precise, and the

restriction to diagonal gives 72).

We want to show 74 and 72 are independent. By the proof of Prop 1.5.13, we have

a long exact sequence

SHH0 (o(O)d9 0 A) t HH(O(co)d9 0 A) (1.238)
HH'(A4) -* HH1 (O(T o)dg0 A) -+ ...

7 E HH'(MO) maps to 7o 0 1 and the image is non-zero. On the other hand, the

map on the lower line is the equivalent to

H H 1((0(o)dg 0A)#Z, (C0(o)dg 0A)#Z) -+ HH1(O( 0 ®) A, (O to)do 0A)#Z)

(1.239)

and the restriction of 72 to O(o)d0 0 A is zero since the functor 0(o)dg 0 A -+

(0(0)dg 0 A)#Z maps to degree 0 part (with respect to extra grading). Thus, 7o

and 72 are independent and this finishes the proof.

Lemma 1.8.9. Let B and G = Go xc Spf(R) be as above and let p and p' be two

group-like families of bimodules parametrized by G. Further assume B|q=O is smooth

and proper in each degree and HH0 (B) = R. Assume p and p' can be represented

as objects of tw(Be 0 O(G)), where the tensor product is over R and completed as

usual(more precisely, p and p' are direct summands of families of twisted complexes

in the sense of [Se14]). Then there is a natural formal subgroup scheme S C G with
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R-points {x c G(R) : px ~ p }. Moreover, S is closed.

Proof. By choosing a minimal model for B1 =o and considering the corresponding

deformation, we may assume B(b, b') is a bounded below complex of finite rank free

R-modules. Hence, choosing representatives for p and p' by twisted complexes, we

can assume

hom Le)mo (p, p') =: hom-(p, p') (1.240)
( )O(G)

(and other hom-complexes among p and p') is a bounded below complex of finitely

generated O(G)-modules. Here, (Be) mod is the category of families of B-bimodules(9(G)

parametrized by O(G).

Given a bounded below complex C* of finitely generated, free O(G)-modules, we

can define "a closed locus of points such that rkH0 (C,*) > m" as follows: consider

-C- -1 -+ d- C do C, __ ... (1.241)

Let CO ~ O(G)r. We wish to define the locus of points x where

rk(d-1 ) + rk(d'-) < r - m (1.242)

where rk is the matrix rank. This is the same as

U {rk(dx) <a and rk(d) <14 (1.243)
a+b=r-m+2

and hence can be defined by the ideal

n7 (Ia(d-1 ) + Ib(d)) (1.244)
a+b=r-mrn+2

where Ik(di) denotes the ideal generated by k x k minors of d', where d' is considered

as an O(G)-valued matrix (or alternatively one can realize it as

{rk(d- 1 ) < a or rk(do) < #} (1.245)
a+#=r-m+1
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as in [GL87]). Borrowing the terminology of [GL87], denote the (formal) subscheme

defined by the ideal (1.244) by Sm(C*). Let

Si = S1(hom-(p, p)) n Si(hom-(p', p)) n Si(hom~(p, p')) n S1(hom-(p', p'))\ 1.246)
(S2 (hom-(p, p)) U S2 (hom-(p', p)) U S2 (hom-(p, p')) U S2 (hom-(p', p')))

which deforms the locus of points x E Go = GIq-o where H0 (hom- (px, p'x)) etc. are

of rank 1. Note as we are working with formal schemes, this is not immediately a

defining condition. Note also we do not assert R-flatness of S1. Si is an (formal)

open subscheme of the closed intersection of S, (hom- (p, p')) and so on.

Now, let us define S as a formal open subscheme of S1. Roughly, we want to

define a subscheme whose K-points satisfy the property that the composition

H0 (hom-(p', px)) 0(G) H0 (hom- (px, p')) -+ Ho (hom- (px, px)) (1.247)

is surjective, where R/q C K. Let x E S1 (K) be a K-point, where R/q = C -+ K is a

field extension. Let v E homo (px, p') be a closed element generating H0 (hom-(px, p',))

K We can extend v to D defined on a neighborhood of x E Si such that do(') = 0.

The existence of such a i follows from Lemma 1.8.10. Pick V', a closed section of

hom0 (p', p) satisfying the same property. The composition V' o f) generates the co-

homology H0 (hom-(px, px)) and by the proof of Lemma 1.8.10 it is invertible in a

neighborhood of x in Si. Same holds for the composition ' o ' as well. Hence, there

exists a neighborhood Q of x in S1 such that pQ - p'jQ. Define S to be the union of

open subsets Q C Si such that pip ~ p'QO.

We want to characterize S functorially. A formal scheme I over R = C[[q]] be

seen as an ind-scheme, presented as the colimit of I x RC[[q]]/(qf+1). See [Sta17, Tag

OAIT], [hs] or [hh]. More explicitly, we can realize it as a functor over Alg0 , algebras

over C or even better over AlgRf algebras over R such that q maps to a nilpotent

element (such as R/(q')). Given T E AlgR,f, the R-linear maps Spec(T) -+ S c G

are maps Spec(T) -+ G such that PT and p' are locally isomorphic over T. Indeed,

if we have such a map f : Spec(T) -+ S and a point x E Spec(T) we can choose a
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neighborhood f(x) E c S such that pQ - p' and thus pf-1(Q) P ' ; hence

they are locally isomorphic. On the other hand, if we assume PT and p'I are locally

isomorphic, we can easily check the rank conditions so that f factors through S1 C G.

Local surjectivity is also easy to check; thus, it is actually a map into S.

From this functorial description, it is easy to see that S is a subgroup functor of

G over R(hence it has a flat unit section over R). Clearly, it is locally closed. But

locally closed subgroup schemes(such as Slj=o) are actually closed. Hence, we are

done. E

Lemma 1.8.10. Let U, V, W be finite dimensional vector spaces over C and

U A"'s" >V B(q,s) > W (1.248)

be a family of matrices parametrized by a formal scheme X' over R(we do not assume

R-flatness). Assume B o A = 0 identically and restrict to locus

"C := U {rkA < a, rkB <b}\ J {rkA < a, rkB <b}" (1.249)
a+b=r+1 a+b=r

where r = dimV. Then given a point x = (q = 0, s = so) of X = XIq=O there exists

a neighborhood Q of x inside X(X and X has the same underlying topological space)

and a section v(q, s) defined over Q(i.e. a family of vectors in V parametrized by Q)

which restricts to a generator of ker(B(0, s))/Im(A(0, s)) for all (0, s) e Q.

Proof. The locus X is essentially the locus of points at which the cohomology kerB/ImA

is exactly of rank 1. Let x = (0, so) satisfy rkA(x) < a, rkB(x) < b for a + b = r + 1.

When we perturb x, nullity(B) may only decrease and rk(A) may only increase,

but if this happens the rank of cohomology decreases too. Thus, rkA and rkB are

constant in a neighborhood of x inside X. In other words, it has a neighborhood

Q C X on which a x a minors of A(q, s) and b x b minors of B(q, s) all vanish and

there exists an b - 1 x b - 1 minor of B which is invertible on Q. By row and col-

umn operations we can assume this minor is the upper-left principal minor and the

upper-left b - 1 x b - 1 square submatrix of B is the identity matrix. By more row
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and column operations we can assume the rest of the entries of B are 0. Hence,

kerB has the simple description as the column vectors with vanishing first a - 1-

entries. This implies there exists v(q, s), (q, s) E Q such that B(q, s)v(q, s) = 0 and

v(0, so) V Im(A(0, s)). Im(A(0, so)) is generated by columns of A(O, so) and the

condition v(O, so) V Im(A(0, so)) can be phrased as the columns of [A(0, so), v(0, so)]

generate the subspace of vectors with vanishing first a -I entries. Hence, it is an open

condition and by further shrinking Q we can ensure v(0, s) generates the cohomology

at (0, s) E Q.

Remark 1.8.11. Note the statement of the Lemma 1.8.9 does not immediately imply

flatness of S over R; however, we believe this to be true.

Remark 1.8.12. There is a possibility that it is unnecessary to assume the rep-

resentability by objects tww(Be ® O(G)) as it may be a corollary of smoothness of

B|q=o.

Proposition 1.8.13. Let p be a group-like family of invertible bimodules over MR

parametrized by Gm. There exists a homomorphism q : G -+ Gm x Gm of formal

group schemes over R such that p is the pull-back of the family puni(see Example

1.8.5) under r7.

Proof. Let G = Gm x Gm and recall puni denote the family in Example 1.8.5. Pulling

back p resp. puni under projections G x Gm -+ Gm resp. G x Gm -+ G we obtain two

group-like families on G x Gm, which we denote by p' resp. p". Apply Lemma 1.8.9

to p' and p" to obtain a formal subgroup scheme S of G x Gm, "the locus of points

such that p', ~ p'". Hence,

S(R) {(x, x') c G(R) x G.(R) : puni, ~ px}l (1.250)

By Lemma 1.8.6, the map S(R) -+ Gr(R) is injective. It is easy to prove a version

of Lemma 1.8.6 for the special fiber q = 0 by using the same idea; thus, SIq=o(C)

S(C) -+ Gm(C) is injective as well.
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By the functorial description of S, the Lie algebra (i.e. R[E]/(E 2 )-points that

specialize to identity at F = 0) of S has a description as Lie(G) XHH1(IR) Lie(G)

and by Lemma 1.8.8 the map Lie(S) --+ Lie(Gm) is an isomorphism. Similarly,

Lie(S|,=o) -> Lie(Gmq=0) is an isomorphism.

Combined with the injectivity statement above, this shows Sq=O -+( Gr, is an iso-

morphism. Being a formal closed subscheme of a formal affine scheme, S = Spf(B)

for some quotient B of O(G x G,) and the map S --+ G corresponds to an alge-

bra map C[z+][[q]] -+ B inducing an isomorphism C[z*] -+ B/qB. Thus, the map

C[z*][[q]] -> B is surjective and S can be seen as a formal affine subscheme of Gm.

One can prove surjectivity of C[zL] [[q] -+ B by lifting an element b E B step by step.

This uses the fact that n~ q'B = 0, which follows from q-adic completeness of B.

Thus, let B = C[zI][[q]]/I. The identity morphism Spf(R) -+ G factors through

S; hence, I C (z - 1). Moreover, the R[E]/E 2-points of S that specialize to identity

at e = 0 are in correspondence with such points of Gm. Thus, I C ((z - 1)2). S is a

subgroup of G,, over Spf(R), thus the comultiplication

A: C[z*][[q]] -+ C[z'][[q]] 0 C[z'][[q]] - C[z4, z][[q]], z - z 0 z ' Z1Z2 (1.251)

should induce a map B -+ B 0 B. Let f(z) = g(z)(z - 1)2 E I.

A(f(z)) = A(g(z))(ziz 2 -- 1)2 E I C[z1][[q]] + C[zL][[q]] 0I C (1.252)
((zi - 1)2, (Z2 - 1)2) C C[z , z ][[q]]

As (ziz2 - 1)2 = (ziz 2 - z 2 + z 2 - 1)2 = 2(zl - 1)(z 2 - 1)(mod((zi - 1)2, (z2 - 1)2)),

A(g(z))(zi - 1)(z 2 - 1) E ((zi - 1)2, (z 2 - 1)2) (1.253)

Thus, A(g(z)) E (z 1 - 1, z 2 - 1). Thus, g(z) c (z - 1) and f(z) E ((z - 1)3); hence,

I C ((z - 1)3). Inductively, I C (z - 1)" for all n. This shows I = 0 and the

embedding S -+ Gm is an isomorphism.

Hence, we have a diagram G <- S G,, G of groups and inverting the isomorphism

a group homomorphism rq : -> G. The pull-back of puni along this map is the
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quasi-isomorphic to pull-back of p" along r/ x 1 : G -+ x Gm,,, which factors through

S; hence, it is (locally) quasi-isomorphic to pull-back of p' and thus to the family p

on Gm(there is no non-trivial line bundle on Gm so local isomorphism is the same as

isomorphism). This completes the proof. El

Definition 1.8.14. For a curved A,,-category B over R = C[[q]], define L(B) c

HH1 (B, B) to be the set of < zDO, Def(p) > for all group-like families p parametrized

by G.. In other words, it is the set of images of (z&2)# under the map Lie(G) -+

HH1 (B, B) induced by the deformation class of a group-like family p.

Corollary 1.8.15. L(MR) C HH1 (MR, MR) ~ R2 is a subgroup isomorphic to 2

spanned by a basis of the free module R2 .

Proof. By Prop 1.8.13, the deformation class of a group-like family parametrized by

Gm can be computed as the pull-back of Def(puj) under a group homomorphism

Gm - G C G x G. It is easy to classify such maps as the rank 2 coroot lattice

inside R2 (the proof is exactly the same as Gmnc) and this observation together with

Lemma 1.8.8 concludes the proof. L

1.9 Two relative spherical twists of the trivial map-

ping torus

To prove the theorem, we need to modify the Morita equivalence MO ~ MI, such

that the induced isomorphism HH(MO, MO) - HH1 (M1A, MiA) carries -y to Y1A .

It is easy to show M1A ~ A 0 (O(To)dg#Z) and O(To)dg#Z is Morita equivalent to

wrapped Fukaya category of a punctured torus by [LP16]; thus, it must have a SL2(Z)-

symmetry, which we would expect to act transitively on the primitive lattice points

of HH1 (M1A, MiA). We will not use action coming through this Morita equivalence

and instead will write spherical twists that act in the desired way. The first twist is

more general, but the second one only exists for the trivial mapping torus.
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1.9.1 The twist of MR along a smooth point

We first find a self-Morita equivalence of the category MAf that sends -o to yR 2

and that fixes -y. Here -y E HH1 (MR, MR) denotes the R-relative version of the

Hochschild cocycle -y2 defined in Lemma 1.8.8 of Section 1.8. Namely, -y2 is the

infinitesimal action of second G(R)-action(which has weight equal to extra grading)

and it forms a basis of HH1 (MR, M) a R2 together with y.

In this subsection, we will not officially refer to twists by spherical functors as

defined for instance in [AL17]. However, for those interested we remark that what we

construct is equivalent to using twist by the functor

A[[q]] -* MR 0 (1.254)
"a F- a@ 0x

where 0., is the structure sheaf of a smooth R-section of TR = cR/Z. After showing

existence of right and left Morita adjoints, one can write the spherical twist and

conclude that it is an equivalence at q = 0 using [AL17]. Then it is easy to show

that invertible bimodules over Mo deform only to invertible bimodules over MR. The

spherical twist/cotwist by the structure sheaf of a smooth point p on a curve C is

simply (.) 0 Oc(p) resp (-) 0 Oc(-p), so we will use this directly.

Let p = po be a smooth R-point of TR supported on Co. Let pi = W(p) and

consider the line bundle L, = O(Zjzpj). Define a bimodule over O( T
R)cdg by the

rule

AP: (3, ') - hom6R (R(Y)R, R(9')R 0, ) (1.255)

Recall R(1)R,R(Y)R 0 Lp are pseudo-complexes of 0,-modules and we are taking

their hom pseudo-complexes as usual. This defines an (unobstructed for tautological

reasons) O(TR)cdg-bimodule. It is the bimodule corresponding to (non-existent) fune-

tor (-) 0 L, and we will pretend as if it is this functor. One can make its restriction to

q = 0 into an actual functor by extending 0(o)dg with similar resolutions R(Oc, (a))

of Oc' (a), for all a E Z. Call this bigger category O(To)dgP. The line bundle A,

is invariant under tr, and thus the O(YR)cd 0 A bimodule Ap 0 A has an obvious
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ZA-equivariant structure. We can thus descent it to a bimodule

Ap = (A® 9 A)#Z (1.256)

over MR. Its restriction Aplq=o still does not induce an A.-functor; however, we

can construct M -- 's(uper 0 A)#Z D MO(which is equivalent to a full

subcategory of tw'(M)) on which Aplq=o acts as an A.-functor ("(0) 0 0(p)"). It

is easy to see this functor is a quasi-equivalence with a quasi inverse defined by the

similar formula "(0) 0 O(-p)" (more precisely by using Lp-' in place of L, in the

definition of Ap). This implies Aplq=o; thus, Ap is invertible.

Fixp E 'TR(R) as above. Let p temporarily denote the group like family punjGGm x{1}

which corresponds to Gm(R)-action on M? defined earlier in Remark 1.4.6. Using Ap

we can define a new group like family

"A o p o A-"' :~- z Ap 0MR p V, R A - (1.257)

The reason composition is in quotation marks is again that we have "quasi-functors"

instead of actual -functors. However, we will abuse the notation and simply use

composition symbol. By Prop 1.8.13 this family can be seen as the restriction of Puni

along a cocharacter of Gm x Gm. We wish to compute this cocharacter.

Consider instead the group-like family

AP o p o A- o p- 1 :.z - Ap OMR pz ogR A-' ®g p1 (1.258)

It can be seen as the composition of AP and p o A- 0 p-1. Given z E Gn, we can

compute pz o A-1 0 P-1 ~ A-. Hence,

A o pz o A-' o p-1 ~ Ap o A- (1.259)

Lemma 1.9.1. Ap 0 A-' is the bimodule obtained by replacing L by L ® L-1 at the
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beginning. In other words, first consider

(T, ') - hom6 (R(Y)R, R(J')R 0 Lp 0 L-) (1.260)

then take its exterior product with A and descent to MR.

Proof. (Sketch) Instead of showing this leads to Ap o A-' for individual z, one can

specialize to q = 0 and compare bimodules over M/1. Extending MO as above, both

Ao A-' and the bimodule corresponding to L, 0 L;1 can be realized as actual A,-

functors and both are enhancements of "(-) 0 Lp 0 L;7". Hence, the specializations

to q = 0 are the same. As families of bimodules over deformation MR, they are

group-like which correspond to coroots of Gm x Gm speacialing to same coroots of

Gm x Gm. Hence, by discreteness of the coroots we conclude they are the same. 0

Now let us turn our attention to the line bundle

LP 0 L (pi -T- pZ) (1.261)
Z.P \ iEZ/

The equivariant structure of the induced bimodule comes from the obvious isomor-

phism

tt*O (>1(1% - Zz) E j (p - Z.pi) (1.262)
( EZ iEZ

Lemma 1.9.2. LP@9 L admits a trivialization G G F(L (9 L; ) such that under the

isomorphism OQ-R -4 L, 0 L;y the equivariant structure Lp 0 L1 -+ tr,(Lp 0 L; )

identifies with tt, j = 0,.R

Proof. A section of Ip D L;' is a rational function on 'TR with simple poles at pi

and zeroes at z.pi, for all i c Z. Denote the Y-coordinate of the smooth point

P = po E U1/ 2 by Yo E R*. We can find a section using convergent infinite products.

Namely, consider the chart Ui+1/2 = Spf(C[Xi, Yi+,][[q]]/(XiYi+1 - q)). Define the

rational function Oi+1/ 2 on Ui+1/ 2 by the formula

1 qzy 0X - qzyYi (1.263)
i+1/2 - 11 i l 1 - Yi(.
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Its convergence is obvious by q-adic completeness. On Usi+/ 2 it is

I - zyOX l I -Z- yoi+1 (1.264)
1 - yOX, 1 -- yi+1

up to invertible functions. Using the relations XjY = 1, Xi_1 = qXj and Y+1 = qY

we can compare
+1/2 _ (1 - zyOXi)/(1 - yoXi) = z (1.265)

G_1 /2  (1 - z-lyo-lY)/(1 - y - z(Y2)

on 0 U/2n i+1/ 2 . Now define G G(z) c '(L, 0 9,.-) locally by the formula

Gj+1/2 := z-iOi+1/2 (1.266)

This gives a trivialization of p &LCy and Gotr = z-G as a rational function. Hence,

the equivariant structure turns into 0
TR z Ot*R OR under the identification

L 

p Q0 1. r_
Hence, the bimodule

(T, 9') - homb (R(3T)R, R(Y')@R I, 0 L-1) (1.267)

identifies with the diagonal bimodule of O(TR)cdg. Moreover, its ZA-equivariant struc-

ture is

O(TR)cd(-T, 9) -4 O(TR)cd (trT, trt') (1.268)

(while O(TR)cdg (, J) + O(TR)cdg(trT, try') is the ZA-equivariant structure descend-

ing to diagonal). If we descent O (TR)cdg 0A with respect to ZA equivariant structure

Z.tr 0 1 A, we obtain the bimodule

(M) 01 ( )2-1 (1.269)

It is the bimodule with same underlying pseudo-complexes and right action as MR

but with left action twisted by action of z by extra grading(i.e. (f 0 h)(m 0 g) =

zhfh(m) 0 hg). Hence, depending on the convention this is the bimodule pu'ni,(1z,) or
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puni,(1,z-1). Everything above can be done relative to z G and we conclude

Corollary 1.9.3. ApopoA,-lop-' is quasi-isomorphic to p,4,1 1  or its composition

with the antipode z - : {1} x GX + {1} x G

Denote p temporarily by P2

Corollary 1.9.4. Ap o p o A ~ p o pf.

Taking their deformation classes we find

Corollary 1.9.5. Under the automorphism of HH'(My) induced by Ap, -y corre-

sponds to y. 'Y.

Now we want to show Ap fixes y and -y2. For this we will again examine P2 o Ap o

p-1 . A systematic approach would be first proving Ap is the same as the twist by

A[[q]] __- _11R
(1.270)

"a a 0 OP"

as mentioned above and then showing its conjugate by P2,z is the same as the twist

by the composition of the spherical functor with conjugation by P2,z. For instance, in

the case A = C, this is given as the twist by "P2,z(Op) = 0 "; hence, it is the same.

However, we take a simpler approach.

Lemma 1.9.6. P2,z o Ap 0 p2 ~ Ap

Proof. By Corollary 1.9.3

A 0 p 0 A1 -pz1  p (1.271)

Hence, it is sufficient to show

A-' o AP o pz o A' o pZ-1 o Ap AP o pz o A- o pz-1 (1.272)

Clearly, the former is quasi-isomorphic to pz o A o p- 1 o A, which is simply A;; o A.

By the proof of Lemma 1.9.1, A- o A, is given by the descent of the bimodule
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corresponding to the same line bundle namely LpOL-, with the same ZA-equivariant

structure. Hence

A-oA ~A oA (1.273)

We have shown before that APoA; ~ AP o pzoA- 1 op; 1. This completes the proof. El

Corollary 1.9.7. The induced action of A, on HH1 (MR) fixes '4.

Proof. Compare the deformation classes of Ap a P2 o A-~ P2. El

Remark 1.9.8. Notice we can twist the family 9S by

9' := "A, o as o A-" (1.274)

to obtain a family that follows 1 x ( '4). It is easy to see that the family satisfies

Properties G.1-G.3 with -y = 2 '. One can attempt to use "convolutions of the

families of bimodules relative to Spf (AR)" to produce families following other classes

in L(MR) C HH1(MR, MR). However, we do not know how to show property G.1

for the new family.

1.9.2 The twist of Mi, along the "structure sheaf"

The second twist is more restrictive. We can still work the the curved algebra AIR;

however, we will not do this. We find a self Morita equivalence of M1A that fixes 71A

and that carries -y2 to 2 Y1A . It is sufficient to do this for A = C. In the following

'y1 will denote y1c.

We can work as in the previous subsection. However, we find it conceptually

relieving to relate M1 , to algebraic geometry. Hence, we wish to start by sketching a

proof of a weaker version of the claim in Example 1.1.1. Namely:

Lemma 1.9.9. tww(Mic) is a dg enhancement of Db(Coh(To)), where To is the nodal

elliptic curve.

Proof. TO can be realized as "to/(x ~ tr(x))" and we have a projection map :

To -
T O (denoted by 7r only throughout this proof). Choose dg-models Cohp(Yo) and

Coh(To) for Db(Cohp(to)) and Db(Coh(o)) such that
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e There exists a dg functor 7r, : Cohp(To) -+ Coh(To) enhancing the push-forward

by r

o tr induces a strict action tr, on Cohp(co)

* 7r, o tr* = r (strictly)

We can further assume Cohp(to) has the objects {0c,(-1), Oc : i C Z} and denote

tr* by tr following the previous convention. We can also assume there exists a zigzag

of strictly Z-equivariant dg quasi-equivalences relating Cohp(To) and O(TO)dg. Hence,

Cohp('YO)#Z- ~ O(T o)dg#Z. The relation ir* o tr = 7r implies 7r* descends to

Cohp(o)#Z -- Coh(To) (1.275)

Let f E Cohp(To)(tr9 T, Y') and consider f as an element of (Cohp(To)#Z)(T, Y') (recall

we denoted it by f 0 g). It is sent to

ir,(f) E Coh(To)(7r*(tr9T), 7r* (T')) = Coh(To) (7r (T), 7w (9')) (1.276)

under the new functor. Denote the new functor by 1r* as well.

The induced functor between homotopy categories of twisted envelopes is essen-

tially surjective. This follows from the fact that the push-forward of OPI (-1) and

Opi under the normalization map P1 -+ To generates Db(Coh(To)). See [LP16].

To conclude the proof, we need to check (cohomological) fully faithfulness of the

functor

Cohp(-o)#Z Coh(To) (1.277)

We do this only for T = ' = Oc, as the others are similar. First notice

(Cohp(To)#Z)(OcO, Oc)

CohP( o)(c_1, OcO) @ Cohp(70)(OC, OcO) ( Cohp(To)(Oci, OcO)
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and its cohomology is

RHom0o (Oc, Oco) ( RHomo (Oco, Oco) E RHomo (Oc1 , Oc,) (1.279)

A simple local computation(i.e. calculating local hom's and their global sections) re-

veals RHomo0 (0c, Oco) is one dimensional in every positive odd degree and 0 in

other degrees. Same holds for RHomo0 (Oc, Oco). On the other hand, RHomo0 (Oco, OcO)

can be calculated to be one dimensional in degree 0 and two dimensional in positive

even degrees.

We can compute local hom's of 7,,T and 7,,' on the 6tale chart

qr: Spec(C[Xo, Y1]/(XoY1)) -+ To (1.280)

and see that RHomy,(7, Oc, -X. 0 C0 ) is 1 dimensional in degree 0 and 2 dimensional

in higher degrees. Hence, degrees match up and it is hidden in the local computation

that the map

RHomo (Oca, OcO) @ RHomo0 (Oco, Oco) D RHomo, (0c, OcO) (1.281)
- RHom (-x, 0 co, 7, 0co)

is an isomorphism. l

Notice, 0X, is a 1-spherical object of Db(Coh(70 )) in the sense of [ST01, Definition

2.9]. In other words,

" RHomyr (0 T0 , T) and RHomyo(T, yo0) are finite dimensional for all 'T E Db(Coh(T0))

* RHomy (Oc 0, Oyo) = C @ C-1]

* RHom' (T, 07y) x RHom Ij(0w ,_T) -+ RHom 0 (070 , 070) !-1 C, composition

map, is a non-degenerate pairing

The first and second conditions are immediate and the third one follows from Serre

duality. Note, we are ignoring the condition they call (K1)) as it can be arranged by

choosing an appropriate representative of OTO in the enhancement.
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Hence, by [ST01, Proposition 2.10], there exists a (quasi-)equivalence To, 0 of (an

enhancement of) Db(Coh(To)) fitting into an exact triangle

RHomyr(oc 0,-) 0 Or0 - (-) -÷ To, (-) -+ RHomy0 (Oc 0,-) 070 [1] (1.282)

Thus by Lemma 1.9.9, there exists an object of tw'"(M,) corresponding to Oy,, and

a self Morita equivalence of A4, which we denote by A 0 . This is the second twist we

are looking for. Next we examine its effect on 71 and -y2.

Remark 1.9.10. The actions p1 and P2 induce Gm-actions on Db(Coh(To)). pi is

already induced by the geometric action in Remark 1.2.3, hence its induced action

on Db(Coh(To)) comes from the action Gm - T0 making To -- To equivariant. In

other words, it is the action of Auto(To) ~ Gm. To describe induced p2-action first

note AP r- Db(Coh(To)) is simply tensoring with Or0 -(p), where we use p to denote

the image of po E To -+ TO as well. Hence, Ap o A acts by OQy(p - z.p). By

Section 1.9.1, this action is the induced action of p:. In other words, p2-action

induces the action of Pic(To) on Db(Coh(To)). In summary, pas; induces the action

of Auto(To) x Pic(WO) ~ Gm x G. on Db(Coh(To)).

Consider p1,z o A 0 o pi-z. This is the twist by the 1-spherical object pi,z(Oro). By

Remark 1.9.10, piz(Oro) ~' j-0 ; hence, pi,z o Ao o p- ~ A 0 . In other words, p1

commutes with A 0 and by taking deformation classes, we conclude the map induced

by A 0 sends 'Y1 to itself.

On the other hand, consider the commutator P2,z o Ao o p2i o A-' . As z varies,

this gives a group like family, determined by a cocharacter of puni, thanks to Prop

1.8.13. We want to determine this cocharacter. A quick calculation shows that for

any two smooth points q, q' E T0 , Ao(Oyo (q - q')) = Ocr(q - q'). Hence,

p2 z o AoopoA-( ) = P2,z o Ao o p-(O) =

P2,z o A 0 (Oyo (p - zT.p)) = p2,z(Oo (P - z.p)) -= 
0(2

This implies the second component of the cocharacter of Aut0 (To) x Pic0 (To) van-

ishes(since it fixes QOx). On the other hand, for the smooth point p c T0 , Ao(O,) =
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0 ,1 (-p)[1]. If we apply P2,z o AO o p- o A-' to Ao(0p) we obtain Ow (-z+p)[11.

This shows, Aut0 (To) component is the cocharacter of weight 41. This implies

P2,z o AO o p- o A- =p (1.284)

and thus AO 0 P2 o A-' = P2 o pT . By taking the deformation classes we conclude:

Corollary 1.9.11. The map induced by AO on HH1 (Mic) sends 71 to yi and '2 to

"2 T '71.

To conclude the section, we have found two self-Morita equivalences Ap and AO

of Al, that acts on HH'(M1A) by the matrices [a ] and [ +:l] respectively in

{'1,72} basis. The action of any self-Morita equivalence has to preserve the lattice

L(M 6 ) := L(A/R)-q=o C HH1 (MO). It is easy to show these matrices generate the

group SL(L(MA)) ~ SL 2 (Z). Indeed, it is a classical fact that SL 2 (Z) is generated

by [ }] and [0 -1k]. See [Ser73] for instance. The latter matrix can easily be obtained

as

[ -31] = [1 0] [1 -1 0[ (1.285)

Corollary 1.9.12. The group of self-Morita equivalences of V1A act transitively on

primitive vectors of the lattice L(M1A) ~ Z2

1.10 Uniqueness of family of bimodules and the

proof of the main theorem

In this section, we will use the previous sections to conclude the proof of Theorem

1.1.4. In other words we will prove:

Theorem 1.1.4. Let A and # be as in Section 1.1, i.e. satisfying C.1-C.2 and so

on. Assume further that HH1 (A) = HH 2 (A) = 0. If MA is Morita equivalent to

M1A, then 4 ~ 1A.

To prove this theorem, we will give a characterization of the family of bimodules

9'f. Let us first work in a more general setting. Let BO be an A,- category and B
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be a curved deformation over R = C[[q]]. Let 9N1 be a family of bimodules over B

parametrized by Spf (AR) and let E E HH1 (B). Consider the properties:

G.1 The restriction 9)1Iq=o is a coherent family. This is equivalent to its repre-

sentability by an object of tw"(Bo 0 B' 0 "Coh(A)"). See Definition 1.6.8.

G.2 The restriction 9Jtlt=1 is isomorphic to the diagonal bimodule over B.

G.3 The family follows the class 1 0 - E HH1 (Be).

The semi-freeness of 91 is implied by the family assumption. The property G.1 is a

technical one. However, notice the similarity of properties G.2 and G.3 to an initial

value problem. We show

Theorem 1.10.1. Assume BO is smooth, proper in each degree and HH(Bo) = C.

Let 91 and 91' be two families of bimodules satisfying G.1-G.3. Then 91 and 91'

are isomorphic up to q-torsion. In other words, there are maps

fl : 9N 91',f2 :9'-+9J) (1.286)

in the category ( Be)mod of families of bimodules such that f2 o f1 ~ q n1M and f1 o f2 ~

Proof. Let Hom(9)1, 9)1') denote HO((Be),od)(9)T, 9T') throughout the proof. First,

notice that it is finitely generated over AR. To see this consider the complex

(B )A ( Iq=O, 9)1'lq=O) (1.287)

of A-modules. Here, (B,) od is the category of families of BO-bimodules parametrized

by Spec(A), which can be defined analogously. As stated in Lemma 1.6.12, the

condition G.1 implies this complex has cohomology that is finitely generated over A

in each degree. Thus, by Lemma 1.6.13 or 1.10.3 the same holds for the complex

(Be) od(9TZ, 9)T') (1.288)
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and Hom(t, 9)') is finitely generated.

Second, by Prop 1.6.38, the complex (Be)d(9A, 9R') admits a homotopy connec-

tion along PA.; thus, so is its cohomology. In particular, the AR-modules Hom(9), 9r'),

Hom()', 9)) and so on carry connections along AR-

Applying Lemma 1.6.37 to this complex we see that

Hom(9R, 9)')/(t - 1)Hom(91, 9)') 2 HO((Be)mod(9N1t i, 901't=)) (1.289)

Here we are also using the fact that the restriction of (Be')Od(9)1, 9)') to t = 1

gives the hom-complex (Be)mod(9R, 9R') and this follows from semi-freeness of families

over AR. However, by condition G.2, HO((Be)mod(91t. 1, 1't=i)) is simply the self-

endomorphisms of the diagonal; which is computed by Hochschild cohomology. Hence,

the assumption HH(Bo) = C implies Ho((Be)md(9)R1t=i, Wt'It=)) a R.

In summary Hom(9R, 9)') is a finitely generated AR-module with a connection

whose restriction to t = 1 is isomorphic to R. Hence, by Prop 1.7.8, it is free of

rank 1, up to q-torsion. In other words, there is a map Hom(91, 9)1') -+ AR with

q-torsion kernel and cokernel; hence, there exists an f E Hom(9R, 9)') and k c N

satisfying the following: for every x E Hom(9, 9)'), there exists a unique a E AR

such that qk x = af + y for some q-torsion element y (by increasing n, we can ensure

y vanishes, assume this holds). The same is true for Hom(Tt', 9A), Hom(9R, 9)) and

Hom(9)1', 9R'). Choose such an elements f C Hom(9R, 9r'), g E Hom(9R', 9)) with

the same k E N.

Moreover, the composition map

Hom(9)', 9R) OA, Hom(9R, 9R') -- Hom(9), 9)) (1.290)

(again the tensor product is q-adically completed) has kernel and cokernel that are

q-torsion. To see this consider the cokernel C. By the compatibility of the connection

with composition in Prop 1.6.38, the image and the cokernel carry connections along

DAR. Moreover, the restriction of composition map to t = 1 gives the composition of

families restricted to t = 1; hence, it is an isomorphism and C/(t - 1)C = 0. Using
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Prop 1.7.4 we see that C is q-torsion.

Hence, there exists an m such that q'1 is in the image of (1.290). By increasing

m, we can ensure an element of the form a(g 0 f) maps to qm 1n. Similarly, we

can ensure there exists an element of the form a'(f 0 g) that maps to q"ln, under

composition. Hence, qmag = ag o f o a'g = qma'g. Letting f, = f, f2= qmag proves

the statement of the theorem. El

Remark 1.10.2. A version of Theorem 1.10.1 for families over smooth complex

curves is proven in [Seil4, Prop 1.21]. We follow a similar idea.

Lemma 1.10.3. Let C* be a complex of q-adically complete AR-modules that are free

of q-torsion. Assume the cohomology of the complex C*Iq=0= C*/qC* of A-modules

is finitely generated over A in each degree. Then, H*(C*) is finitely generated over

AR in each degree.

Proof. (Sketch) Pick yi, . . . , yn E Cz/qC' that are closed and whose classes generate

Hi(C*/qC*) as an A-module. Consider the module A < yi,... , y, >c C'/qC' and

consider its submodule of elements x such that there exists an V E C' that deform

x and satisfying d(z) = 0. This submodule is finitely generated over A as well and

we can find closed elements zi, ... , m E C' whose restrictions to q = 0 generate this

submodule of deforming elements. Now, it is easy to see the cohomology classes of

i1, . . . , x, generate Hi(C*) over AR. El

Proposition 1.10.4. The family 9"[ satisfies the conditions G.1-G.3 for Y =

Proof. We have already shown G.1 in Prop 1.6.15 and G.3 in Corollary 1.6.52. See

also Remark 1.6.53. To see G.2, notice gRjt=1 C TR X Ti is the diagonal by defining

equations (1.31) and (1.32). Hence, it induces the diagonal bimodule of O('R)cdg,

which descends to diagonal bimodule of M. El

Remark 1.10.5. Similarly, by (1.31) and (1.32), 9 RIl=l c 'R x 'R is the graph of

tr-. Hence, the bimodule 9 "' is quasi-isomorphic to
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Since we take the smash product with action generated by tr 0 9, the bimodule

induced on = (O('R)cad 0 A)#Z is given by

(F 0 a, 5' 0 a') 0 Ag(T 0 a, (1 0 -1)(7' 0 a')) M4(T0 a, #,-(J' 0 a')) (1.292)

where of is the "fiberwise 0" functor, which will be defined in Section 1.11.

Before going back to main theorem, let us state some lemmas in abstract defor-

mation theory:

Lemma 1.10.6. Let B and B' be Morita equivalent A, categories over C. Let BR

be a (possibly curved) deformation of B over R = C[[q]]. Then there exists a (possibly

curved) deformation B' of B' over R such that the initial Morita equivalence extends

to a Morita equivalence of BR and B'R-

Next result is a versality statement, which is a version of [Seil5, Lemma 3.5] and

indeed follows from [Seil5, Lemma 3.9].

Lemma 1.10.7. Let B be an A,-category such that HH2 (B) = C. Then any two

(curved) deformations B 1 and B2 of B over R = C[[q]] that are non-trivial in the

first order are related by a base change by an automorphism fq of R that specialize to

identity at q = 0. In other words, B1 = f*B 2.

Corollary 1.10.8. Assume B and B' are Morita equivalent. Let BR and B'R be

respective curved deformations over R = C[[q]] that are non-trivial in the first order.

Assume HH2 (B) e HH2 (B') ~ C. Then there exists an automorphism fq of R

specializing to identity at q = 0 such that initial Morita equivalence extends to a

Morita equivalence of BR and f*B'.

Proof. This follows from Lemma 1.10.6 and 1.10.7. Cf. [Seil5, Cor 3.6]. l

Let us go back to proof of main theorem.

Theorem 1.1.4. Let A be as in Section 1.1 and assume further that HH'(A) =

H H 2 (A) = 0. Assume IW is Morita equivalent to M1A. Then, # ~ 1A.
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Proof. The Morita equivalence gives an isomorphism HH'(A/4) - HH1 (M1A). More-

over, it gives a correspondence of group-like families parametrized by Gm and the

correspondence is compatible with taking deformation classes. This implies that the

isomorphism carries L(M) := L(M R)lq=o c HH1 (Mo) onto L(MA) C HH1 (MA1).

The primitive class -y G L(MA) 2' is carried to another primitive class in L(AI1).

By Corollary 1.9.12, there exists a self-Morita equivalence of M1A that carries every

primitive class to every other primitive class. In particular, we can find one that

carries image of N' to _Y1A and composing the initial Morita equivalence with the

latter, we can assume the isomorphism of Hochschild cohomologies induced by the

equivalence MO ~ M1A maps 'yo to 71A.

By Corollary 1.10.8, the Morita equivalence extends to a Morita equivalence of

MR and f*MR for some automorphism fq of R specializing to identity at q = 0. For

simplicity assume fq = 1R.

Under this equivalence 7. corresponds to a deformation of -
7

1(i.e. to an element

R + O(q)). This element also has to be in the discrete lattice Z2 - L(MR) C

HH1 (MR); hence, it is

Consider two families of bimodules over MR and MR, which we denoted by

9'[. To avoid confusion, let us now denote them by 9 and 91 respectively. They

both satisfy the properties G.1-G.3 on their domains(G.3 is satisfied for the class

7R and 7R respectively). The Morita equivalence gives rise to a correspondence of

bimodules and families of bimodules. See (1.184) in Section 1.6.2. By Corollary

1.6.29 and Remark 1.6.32, the family over MR corresponding to 91 satisfies G.3 for

the class corresponding to -R, i.e. for y by the paragraph above. In other words, it

follows 10 Y . Denote this family over My by 9. That it satisfies G.1 essentially

follows from the fact that the Morita equivalence between MO and M1A induces a

quasi-equivalence between tw'(M) and tw"l(MiA). That it satisfies G.2 is clear.

Hence, by Theorem 1.10.1 the families 90 and 91 are the same up to q-torsion.

In particular, consider their restriction to R-point u = 1 of Spf(AR). By Remark

1.10.5, 91 restricts to diagonal; hence, Si restricts to diagonal of M . By the same

remark, 9 restricts to kernel I7f of the Of that will be defined more carefully
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in Section 1.11. Hence, 4' is quasi-isomorphic to diagonal bimodule of M' up to

q-torsion(thus, so is 'lf by invertibility).

Let p = po E ' R be a smooth R-point supported on Co. As remarked in the

proof of Lemma 1.8.6, there exist an unobstructed object of tw7(O(TR)cdg) given as

a deformation of a cone of "Oc.(-) -+ Oco". Note that it is easier to define as an

unobstructed module rather than a twisted complex. Hence, we have an unobstructed

object "Op 0 a" E tw (MR) for each a E ob(A) and a full (uncurved) subcategory

{0}oA C tw((M). of acts on this subcategory and the restriction of the bimodule

1 j to it is given by

(Op0 a, 0 0 a') -4 MR (o 0a, Of (0 9 a')) (1.293)

In other words, it is the bimodule corresponding to action of of on {0,} 0 A. By

above, it is quasi-isomorphic to diagonal bimodule up to q-torsion.

As these are uncurved categories, we can invert q. The category {Op}0A becomes

{Op}K 0 A ~ K[t] 0 A, where K = C((q)) and t is a variable of degree 1. Note slight

sloppiness of notation about q-adic completions of {0,} 0 A. On this category the

diagonal K[t] 0 A and K[t] 0 4) acts the same way. Lemma 1.10.9 concludes the

proof. l

Lemma 1.10.9. Let 1 and IF be self Morita equivalences(we can assume D and IF

are just bimodules over A). Assume K[t] 0 4 and K[t] 0 I are quasi-isomorphic as

K[t] 0 A-bimodules (where deg(t) = 1). Then D and T are quasi-isomorphic.

Proof. Consider the algebra maps K - K[t] -+ K. We have a functor

Bimod(K[t], K[t]) -+ Bimod(K, K)
L (1.294)

M - K OK[] M

where the bimodule structure on the right is induced by the inclusion. Geometrically

this map would be "(p*, i,)". It sends the diagonal bimodule of K[t] to diagonal
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bimodule of K. We can define a similar functor

Bimod(K[t] & A, K[t] 0 A) -4 Bimod(A, A)
L (1.295)

9A1F- K0K[t] 9 R

sending K[t] 0 D and K[t] 0 4 to 1b and 4F respectively. This finishes the proof. E

1.11 Growth rates and another dynamical invari-

ant

In the previous section, we have exploited the uniqueness of the family 9S[ to distin-

guish trivial mapping tori from the others. However, 9'[ encodes more and we can

use it to produce more invariants of the tori. As mentioned in Remark 1.10.5, we

can extract "fiberwise #" by restricting this family to R-point u = 1. Let us define it

more carefully.

Let 0 be an auto-equivalence of A that commutes with #. For simplicity assume

V5 is a strict dg autoequivalence (i.e. acts bijectively on objects and hom-sets and its

higher components vanish) and it commutes with # strictly.

Definition 1.11.1. Under these assumptions, 4' induces auto-equivalences of M

and MR(again bijective on objects and hom-sets) given by descent of 104 acting on

O(To)dg 0 A, resp. O('YR)cdg 0 A to their smash product with Z, namely M, resp.

MR. Denote this autoequivalence by 4'j and corresponding M resp. MR-bimodule

by TJ.

Intuitively, this autoequivalence corresponds to application 4 on each fiber of "the

fibration MO -+ 'To"; hence the name fiberwise 4. This Section is about description

of growth of HH*(MR, <D).

Remark 1.11.2. Let I be the A-bimodule corresponding to 4, i.e.

T : (a, a') '-4 A(a, 4'(a')) (1.296)
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Due to the strict commutation assumption, T is naturally ZA-equivariant with the

action is generated by

A(a, 4(a')) -- A(#(a), 0(0(a'))) = A(O(a), V/(#(a'))) (1.297)

We can obtain Ij by descent of O(to)d, 0 4, resp. O('R)cdg 0 4. In particular, we

can assume Ibf = (10 'I<)#Z in the sense of Section 1.4.

Lemma 1.11.3. Assume A is a smooth dg category. Then

CC*(MO, Tf) ~ cocone(CC*(O( (o)dg, O( (o)dg) 0 CC*(A, 4')
(1.298)

CC*(O(FO)dg, OQ o)dg) 0 CC*(A, IF))

i. e. the derived invariants of

CC*(O(jo)dg, O(to)dg) 0 CC*(A, T) (1.299)

Proof. The proof of Prop 1.5.13 works in this case. Namely, we would need to replace

CC*(A, A) by CC*(A, T) and so on.

Corollary 1.11.4. Assume A is a smooth dg category. Then

CC*(AMI, 4's) cocone(CC*(O('iR)cdg, O(TR)cdg) 0 Cc*(A, T)
(1.300)

*z* CC*(O('R)cdg, O(7R)cdg) 0 CC*(A, 4'))

i.e. the derived invariants of

CC*(O('R)cdg, O(R)cdg) 0 CC*(A, 4) (1.301)

Proof. All the maps leading to quasi-isomorphism in Lemma 1.11.3 can be written

over R, as remarked in Section 1.5. Hence, the result follows from Lemma 1.5.4 and

1.11.3. Note we use q-adically completed tensor products again. l
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By Proposition 1.5.11 and Kiinneth formula, the cohomology of

CC*(O(R)cdg, O(TR)cdg) 0 CC*(A, T) (1.302)

is isomorphic to

(R @ R[-1] @ HH 2((R)cdg, OR)cdg)) 0 HH*(A, I) (1.303)

up to q-torsion. HH 2((cVR)cdg, O(nR)cdg) is also q-torsion by Proposition 1.5.11.

Hence, it is HH*(A, T) ( HH*(A, T)[--1]. By Corollary 1.11.4, its derived invariants

compute HH*(MOR, 'J' ). In other words

HH*(M , 's) R 0 HH*(A, )*O

R 0 (HH*(A, T)O ( HH*(A, P)/(O - 1))[-11@

R 0 HH*(A, T)/(0 - 1)[-2]

Letting b = #k, this relates growth of HH*(MOR) to the growth of invariant part of

HH*(A, 4Dk). We also recover

HH*(A, T)*O

(HH*(A, T) e HH*(A, T)/(# - 1))[-1]

HH*(A, 4I)/(# - 1)[-2]

out of HH*(MOR, Ts) up to q-torsion(the input is up to q-torsion). By Section 1.10

this data is an invariant of the pair (MO, -yo), when Vb =k, where k E Z. Hence, we

obtain:
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Proposition 1.11.5.

HH*(A, I)@

(HH*(A, <bk)O @ HH*(A, qDk)/(o - 1))[-1]e

HH*(A, 4Dk)/(# - 1)[-2]

is an invariant of the pair (IMV, -y). In other words, if MO is Morita equivalent to MO,

such that -yo corresponds to -yo, under the induced isomorphism between Hochschild

cohomologies, then the graded vector spaces given above are isomorphic. Note 4bk

denotes the self-convolution of the bimodule <D k-times.
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Chapter 2

Distinguishing open symplectic

mapping tori via their wrapped

Fukaya categories

2.1 Introduction

This paper is a sequel to [Kar18]. In [Karl8], we have constructed a category MJV that

is supposed to model the wrapped Fukaya category of an open symplectic mapping

torus and we have exploited the dynamics of these categories to distinguish them. In

this paper, we prove the equivalence of MJ with the wrapped Fukaya category and give

example applications of the main theorem, such as construction of non-deformation

equivalent Liouville domains with the same topology and symplectic cohomology.

More precisely, let M be a Weinstein domain with vanishing first and second

Betti numbers and let # be a compactly supported (i.e. 1am = 1,), exact symplec-

tomorphism acting on M. Consider the completion M. One can define the open

symplectic mapping torus of 4 as

T, := (R x S' \ Z x {1}) x M/(s, O, x) ~ (s + 1, 6, O(x)) (2.1)

There is an obvious projection map -r : TO -+ TO, where To is the punctured 2-torus. 7
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is a symplectic fibration with a flat symplectic connection and with fibers isomorphic

to MVI. The symplectic form is

{wg} + w*wo (2.2)

Here, wT,, resp. wi; is the symplectic form on M, resp. To, and {wgy} denotes

fiberwise wT,.

To can be seen as the completion of a torus with one boundary component. This

domain will be denoted by To, and its Z-fold covering space corresponding to covering

(R x S' \ Z x {1}) -+T (2.3)

will be denoted by io. One can build a Weinstein domain

T T := To x M/(s, 0, x) ~ (s + 1, 0, O(x)) (2.4)

whose completion gives To. See Figure 2-1.

We will later prove (Proposition 2.2.4) that To carries a natural Liouville structure

that is deformation equivalent to a Weinstein structure. Moreover, aTo = &(To x M)

as contact manifolds. Our main result is about distinguishing the fillings TO and

To x M. More precisely:

Theorem 2.1.1. Suppose M satisfies Assumption 2.1.2 below, and $ induces a non-

trivial action on W(M). Then, To and To x M have inequivalent wrapped Fukaya

categories. In particular, they are not graded symplectomorphic.

By assumptions on H1 (M) and H2 (M), Km A T*M has a canonical trivializa-

tion (that is unique up to homotopy); hence, W(M) and SH*(M) can be Z-graded.

Moreover, KT, can be trivialized using the double cover R2 \ Z2 -+ To, and this

induces a natural trivialization on KT, and a Z-grading on W(To). Theorem 2.1.1

distinguishes the wrapped Fukaya categories with this particular grading. The con-

clusion of this is that there is no exact symplectomorphism between the two domains

that preserves the trivializations up to homotopy (i.e. they are not graded symplec-

tomorphic).
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V(M) and SH*(M) can be defined with coefficients in Z, but we assume they

are defined over C. The assumption we need for Theorem 2.1.1 is:

Assumption 2.1.2. W(M) is cohomologically proper and bounded below in each

degree (see Assumption 2.1.7), SH*(M) vanishes for * < 0,* = 1,* = 2, and

SHlo(M) = C.

There are many examples of symplectic manifolds satisfying Assumption 2.1.2.

For instance:

Example 2.1.3. Let X be a smooth hypersurface in CP7 of degree greater than or

equal to 9 and D C X be a transverse hyperplane section. Let M = X \ D and

let # be the square of a Dehn twist along a spherical Lagrangian (one can find such

Lagrangians easily by considering degenerations of M into varieties with quadratic

singularities). Then by Theorem 2.1.1, To and To x M are not graded symplectomor-

phic. On the other hand, # is smoothly isotopic to identity by an unpublished work

of Giroux (see [May09, 5.3] and [Siel6]). Thus, T and To x M are diffeomorphic.

Example 2.1.4. Similarly, let X be a smooth hypersurface in CP5 of degree greater

than or equal to 7, and M be complement of a transverse hyperplane section. Let #

be the eighth power of a Dehn twist. One can show using [Kry07] and [KK05] that

# is smoothly isotopic to identity (see remarks at the end of [KK05, Section 3.1]).

Hence, again we obtain a Weinstein domain To that is different from To x M as a

graded Liouville domain, but they are the same as smooth manifolds.

That these manifolds satisfy Assumption 2.1.2 is proven in Section 2.5 (see Corol-

lary 2.5.6). The reason # acts non-trivially in either case is that when W(M) is

Z-graded, TL , the Dehn twist along a spherical Lagrangian L, acts on L (consid-

ered as an object of W(M)) as shift by 1 - n. One can consider the cases where

an A.,-configuration of Lagrangian spheres is embedded into M to produce more

sophisticated examples (i.e. examples where action of # is different from a shift).

As these two examples demonstrate, To is a construction that turns exotic sym-

plectomorphisms (i.e. symplectomorphisms that are isotopic to 1 in Diff((M, OM)
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but act non-trivially on W(M)) into exotic Liouville structures. In particular, we can

use Theorem 2.1.1 to obtain pairs of diffeomorphic, but not (graded) symplectomor-

phic Liouville domains for every even n > 4. Indeed, as we explain now, it is possible

to produce non-symplectomorphic examples as well.

Assume 7r1 (M) = 1 and n > 1. One can attach subcritical handles along the same

isotropic spheres on the boundary of To and To x M to obtain Weinstein manifolds

M1 and A/1 2 satisfying ir (M1 ) = 7r,(M2 ) = 1. Moreover, attaching subcritical handles

does not change the derived equivalence class of the wrapped Fukaya category. A proof

of this statement can be found in [GPS18, Cor 1.22], where one uses the Weinstein

property for generation as in [GPS18, Cor 1.21] (see also [Cie02], [Iril3] and [BEE12]).

Combining Theorem 2.1.1 with this fact, we obtain:

Corollary 2.1.5. Mi and M2 give different exact fillings of M1 = 0M 2 .

Notice, after handle attachment, the trivialization of the canonical bundle is

unique up to homotopy. Hence, Corollary 2.1.5 produces non-symplectomorphic fill-

ings (which is stronger than not being graded symplectomorphic).

The proof of Theorem 2.1.1 is in two steps. The first is to define an algebraic

model Mo for W(TO), and prove an analogue of Theorem 2.1.1. This is achieved in

[Karl8]. More precisely, we have proven:

Theorem 2.1.6. [Kar18, Theorem 1.3] Suppose Assumption 2.1.7 is satisfied. As-

sume # is not equivalent to the identity functor IA. Then, /10 and M1A are not

Morita equivalent. In particular, they are not derived equivalent.

In the statement of Theorem 2.1.6, A is an A,-category over C, # denotes an

auto-equivalence of A, and M1 is constructed based on this data (one can assume A

is dg and # is strict for the construction of Mo and for the proof of the theorem).

Theorem 2.1.6 is an obvious algebraic analogue of Theorem 2.1.1.

Assumption 2.1.7. A is (homologically) smooth (see [KSO9] for a definition), proper

in each degree and bounded below, i.e. H*(homa(x, y)) = 0 is finite dimensional in

each degree and vanishes for * < 0 for any x, y - Ob(A). Moreover, HH(A), the
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MS M3

Figure 2-1: To and its Z-fold cover to x M

ith Hochschild cohomology group of A, is 0 for i < 0, i = 1, i = 2 and is isomorphic

to C for i = 0.

The second step in the proof of Theorem 2.1.1 is the comparison of MO with

W(TO), and this is the goal of this paper. In other words, we prove:

Theorem 2.1.8. Mo is Morita equivalent to W(TO), if A = W(M) and the auto-

equivalence # is induced by the given symplectomorphism (which was also denoted by

k).

Theorem 2.1.1 is clearly implied by Theorem 2.1.6 and Theorem 2.1.8. More

precisely, since M is Weinstein it is non-degenerate in the sense of [AbolO]. Therefore,

it is smooth by [Gan12, Theorem 1.2] and its Hochschild cohomology is isomorphic to

SH*(M) by [Gan12, Theorem 1.1]. Hence, if A = W(M) and the auto-equivalence

# is induced by the given symplectomorphism, then Assumption 2.1.7 follows from

Assumption 2.1.2. Hence, W(TO) ~ Mo is different from W(To x M) = W(Tim) e

MiA by Theorem 2.1.6.

Remark 2.1.9. The proof of Theorem 2.1.6 uses dynamical properties of (deforma-

tions) of categories Mo. From one perspective, it may be seen as the comparison of

a categorical version of Flux groups of Mo and M1A. However, the dynamics is not

visible at a geometric level alone; hence, one has to exploit dynamics of Fukaya cat-

egories. Moreover, Corollary 2.1.5 gives examples of simply connected diffeomorphic

fillings that are distinguished by categorical dynamics. As they have vanishing first

cohomology, one cannot expect to use any form of flux. Therefore, the dynamics is

only visible at the level of Fukaya categories.
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Remark 2.1.10. As we will show later (Lemma 2.5.8), it is possible to give examples

that cannot be distinguished by their symplectic cohomology groups either. Indeed,

this is true for Example 2.1.3 and Example 2.1.4 if we assume the degree of the

hypersurface X is at least 14, resp. 10.

Remark 2.1.11. Given a pair of strictly commuting auto-equivalences # and 0' on

A, one can generalize the mapping torus category A1 to double monodromy mapping

torus category A00 (as a twisted tensor product with respect to group action/extra

grading by Z x Z, see Section 2.3 for Z-action case). In this case, W(TO) with different

choice of gradings will correspond to Mem],[n], where [in] and [n] denote the shift

functors. Moreover, one can attempt to generalize Theorem 2.1.6 to classify M[m,[n]

in terms of the order of # modulo translation (this requires a simple modification of

the technique of [Kar18], as well as some minor technical checks). Hence, this would

imply that TO and To x M are not symplectomorphic if # does not act as a shift.

Moreover, this would produce infinitely many different Liouville domains (that are

diffeomorphic in the examples above). We do not plan to write this generalization

separately.

2.1.1 Summary of the proof of Theorem 2.1.8

To prove Theorem 2.1.8, we need to give a simpler description of MO. We claim it is

a "twisted tensor product" of 0('Yo)dg and A. Here, 0(7o)d is a dg model for the

derived category of coherent sheaves on the nodal elliptic curve TO over C. This claim

is proven in Section 2.3. After introducing the notion of twisted tensor products, the

claim follows from the definition of Mo. We remind the definition of Mo from [Kar18]

for the convenience of the reader.

By the results of [LP16], O(To)dg is also quasi-equivalent to W(To). However, the

notion of twisted tensor product requires extra gradings on O(To)dg and W(To). We

define the extra gradings, and we show in Section 2.3.3 that 0(YO)dg and W(To) are

quasi-equivalent as categories with extra grading as well (by reproving the equivalence

of these categories via the gluing formula of [GPS18]).
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Hence, Theorem 2.1.8 reduces to the following:

Theorem 2.1.12. W(TO) is quasi-equivalent to twisted tensor product of W(To) and

W(m).

Note, the notion of twisted tensor product and twisted bimodule is similar to the

notion that can be found in [B008] and [GNW15] and perhaps its appearance should

not be as surprising for Kiinneth type theorems for symplectic fibrations.

This is a twisted version of Kinneth theorem for wrapped Fukaya categories.

Untwisted versions of this theorem are proven in [Gan12], [Gao17], and recently in

[GPS18]. Indeed, for simplicity we also start by proving a Kiinneth theorem in the

untwisted case and for the compact Fukaya category. Namely:

Theorem 2.1.13. F(To x M)p is quasi-equivalent to tensor product of F(T) and

.. (M).

Here, F(TO x M)p is full subcategory of F(T x M) spanned by product type

Lagrangian branes. To define the "Kiinneth" functor, we use the same count of

pseudo-holomorphic quilts as in [Gan12] and [GPS18] (see Figures 2-10 and 2-15)

and obtain a functor

Y(To x M)p -+ Bimod(F(To), T(M)) (2.5)

In Section 2.4.2.1, we detail the definition of (2.5). Then we define maps of T(To)-

T(MW) bimodules, similar to continuation maps to show the image of objects of .F(T x

M)p are quasi-isomorphic to Yoneda bimodules, and we use a TQFT argument and

Yoneda lemma to prove fully faithfulness. In Section 2.4.2.2, we present necessary

modifications to apply the same idea in the twisted case. The algebra of the twisted

case is taken care of in Section 2.3, and Section 2.4.2.2 consists of modifications on the

labeling for quilts and modifications needed on the perturbation data for issues such

as compatibility with A,-structure on W(Tp) as well as analytic issues arising from

the use of infinite type covering spaces. We would like to emphasize Section 2.4.2.1

and Section 2.4.2.2 are not the main goal and they are written with the purpose of
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conveying the idea on how to prove fully faithfulness before the compactness issues

with wrapped Fukaya categories arise. Indeed, Theorem 2.1.13 is rather uninteresting

on its own due to lack of a generation statement for F(To x M) by product type

objects.

In Section 2.4.3, we explain the modifications required for wrapped Fukaya cate-

gories. We start by introducing a version of W2 of [Gan12], W' of [Gao17] and Wprod

of [GPS18]. These are versions of wrapped Fukaya category defined using split-type

data on the products. To is not a product; however, its conical end can be identified

with that of the product and we define W 2 (TO) using data that is of product type on

the conical end. This takes care of compactness issues related to conical end. After

one takes care of compactness one could define a functor

W(TO) -+ Bimodte(W(To), W(M)) (2.6)

using a similar count of quilts, where Bimodt, is the category of twisted bimodules

defined in Section 2.3. More precisely, we describe a set of "twisted product type"

Lagrangians generating W(TO) and define the functor on these Lagrangians. It will

be remarked that their image under (2.6) are equivalent to twisted Yoneda bimodules.

These bimodules are defined in Section 2.3 and their span is equivalent to the twisted

tensor product (in fact, their span can be taken to be the definition of twisted tensor

product).

The fully faithfulness argument we use for compact Fukaya categories works almost

verbatim, and we obtain a quasi-equivalence from W(TO) to twisted tensor product,

proving Theorem 2.1.12.

Finally, we would like to mention another possible proof of Theorem 2.1.12. Re-

cently, a gluing formula for wrapped Fukaya categories appeared in [GPS18]. One

can also cut To into Liouville sectors that are products. Then one can use gluing

formula, ordinary Kiinneth theorem for sectors (again proven in [GPS18]) and the

framework of twisted tensor products given in Section 2.3 to give another proof of

Theorem 2.1.12. We sketch this in Appendix A.
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2.1.2 Outline

In Section 2.2, we start by investigating Liouville and Weinstein structures on TO.

In other words, we show To carries a natural Liouville structure that is deformation

equivalent to a Weinstein structure. We give a description of cocores of this Weinstein

manifold, giving us generators by [CDGG17], or by [GPS18, Theorem 1.9].

In Section 2.3, we set up the algebra of twisted tensor products and bimodules. We

then demonstrate how one can realize Mo as a twisted tensor product and comment

on the extra gradings on W(TO). In particular, we prove equivalence of WV(To) and

O(To)d, as extra graded categories.

Section 2.4 is devoted to proof of Theorem 2.1.12. We start by giving detailed

proofs in simpler cases (such as untwisted and twisted Kiinneth theorem for compact

Lagrangians) to better illustrate the idea.

In Section 2.5, we give a large class examples of symplectic manifolds satisfying

Assumption 2.1.2, which let us apply Theorem 2.1.1, and construct exotic Liouville

manifolds as in Corollary 2.1.5.
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2.2 Structures on the mapping torus

2.2.1 Liouville structure

Let Al and To denote the completions of M and To. Let Am and Zm denote the

Liouville form and vector field on the completion M as well. We assume # is exact,

i.e. there exists a smooth function K with compact support in the interior of Liouville

domain M such that #,(AM) = AM + dK.

Proposition 2.2.1. To has a natural Liouville structure.

Proof. We first try the following ansatz for the Liouville form:

ATO {As} + 7T*ATO (2.7)

where AT,, is a choice of Liouville form on To and {A 8} refers to a family of Liouville

forms on Nl parametrized by the first coordinate of To (and extend them to comple-

tions). We will construct A, as Am+dK, where {K,} is a smooth family of compactly

supported functions on M as above (extended by 0 to M). If we take the parameter

s in R, we have to show the ansatz 2.7 induces a 1-form on To, i.e.

0,As = As+, (2.8)

We will choose {As} to be constant near every s E Z (indeed over (s - e, s + E) for a

fixed E such that the hole of the domain To have s-component in this interval).

For (2.8) to hold, we need

d(*(Ks) + K) = dKs+1  (2.9)

on M which would be implied by

0*(Ks) + K = K.+ 1  (2.10)

(2.10) gives us enough data to define family {K}. Namely, fix a small c > 0 (one
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may assume it is large enough to cover the s-component of the hole of TO). Let

p : (-c, 1 + ) -+ [0, 1] be a function such that p(s) = 0 for x E (-c, c) and p(x) =

1 for x E (1 - e, 1 + c). Define KS = p(s)K, for s C (-E, 1 + E). The equality

<p(K,) + K = K,+ 1 holds for s E (--E, E) and we can extend K, to all s E R using

(2.10).

Unfortunately, AT, is not a primitive for the original symplectic form. More ex-

plicitly

d(AT,) = {dm(As)} + d(AT0 ) + p'(s)dsdK = wr, + p'(s)dsdK (2.11)

Here, dm is the exterior derivative along the fiber direction and d(AT 0 ) is used to mean

lr* d(AT0 ). We are implicitly using the coordinates s c (0, 1) and the fact that p'(s)

vanishes near s = 0, 1. We can correct the form AT, as

AT,, + p'(s)Kds (2.12)

and its derivative is clearly wT,. Moreover, (2.12) looks like A, near the conical ends

of fibers and AM + AT0 near the puncture; hence, it is a Liouville form. L

2.2.2 Weinstein structures on TO

Definition 2.2.2. A triple (M, Am, fM) is called Weinstein if (M, Am) is a Liou-

ville manifold with Liouville vector field ZM and fKI is a proper (generalized) Morse

function on M such that

ZA (fM) > E(IZM 2 + IdfM 2) (2.13)

for some E > 0 (and for some Riemannian metric). If a pair (ZKI, fxi) satisfies (2.13),

Zm is called gradient-like for fiv and fM is called Lyapunov for ZA (see [CE12] for

more details).

Assume (M, wN) is Weinstein, with Weinstein structure (M, Am, ZM, fM). We

aim to make To Weinstein, possibly with respect to a deformation equivalent Liouville

structure.
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Figure 2-2: Handlebody decomposition of To

Fix a Weinstein structure on To such that the handlebody decomposition is as in

Figure 2-2. The yellow and orange strips (i.e. the vertical and horizontal strips re-

spectively) are the 1-handles, and the blue and yellow curves (i.e. the vertical and hor-

izontal curves) are the cocores. We denote this Weinstein structure by (ATO, ZTo, fTO).

The ansatz for the Weinstein structure on To is the following: Let {A. : z E to} be

a family of Liouville structures on M that descent to mapping torus (in other words

A(+1,t= ( )*A) Assume

AZ = Am + dKz (2.14)

for a family of functions K, with support uniformly contained in a compact subset

of M \ 9M. Let {fz : z E To} be a family of functions on the fibers of to -+ To (i.e.

a family of functions on M parametrized by M that descent to T+). Assume near

the critical points of fT0 , Az and fz does not depend on z E to and form a Weinstein

structure on M. Then,

ATO + C z'Az (2.15)

fT0 + C-1 fZ (2.16)

is the ansatz for the Weinstein structure. First, notice (2.15) is a Liouville form for

large enough C. To see this consider its differential:

wTO + C-lWM + C-1 VAz (2.17)
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where V is the natural flat symplectic connection of local system of symplectic mani-

folds To -+ To (in other words, locally it is differentiation in the base direction). Take

(n + 1)th exterior power to obtain

C~"wTo A w' + O(C~-' 1 ) (2.18)

To ensure it is Liouville, we could assume that A, is constant near &To (the middle

circle in Figure 2-2). However, this is not the best option for other purposes. Instead,

we arrange it to be constant over a neighborhood of the part of &TO bounding gray

and orange areas. We enlarge this area slightly to include part of yellow strip as well.

That it is pointing outward over the rest will follow from the computation below.

Consider the mapping torus as a fibration over this Weinstein domain. Let T

denote the yellow (i.e. vertical) middle strip in Figure 2-2. The monodromy # is

forgotten if we take out the pre-image of T. In other words, the complement is a

product (To \ T) x M. Hence, the mapping torus can be constructed topologically

by gluing To \ T x M and T x M. We identify the left boundary of T (times M) by

idm, but we need to twist the right boundary by 4.

Now, we demand the family (A,, f,) to be constant and equal to (AM, fm) over a

small neighborhood of the orange and gray area in Figure 2-2 (i.e. in a neighborhood

of To \ T). Here, we use a trivialization of the local system of symplectic manifolds

over this area. To construct a 1-form and a function over the 1-handle T, we need to

construct a family {(A,, fz) : z c T} that is constant near right and left boundary of

T and that interpolates between (AM, fM) and (#- 1)*(Am, fM).

The 1-handle T can be identified with [-1, 1] x [-1, 1] in the qp-plane such that

fT = (P2 - q2)/2, WT = dpdq (2.19)

pdq + Eqdp Mp - Eq9q
AT = 1 (2.20)

1-c ,ZT=

Note, we can simply assume r E (0, 1) is 1/2 as we will not let it vary.

As (0-1)*Am = AM + dK, for some compactly supported function K, we can
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N'

q

Figure 2-3: One handle T in qp-coordinates

interpolate between AM and (#-l)*Am by a family Aq (it only depends on the q-

coordinate) such that A. = Am on q E [-1,6] for some small 6 and Aq = (&-)*AM on

q E [1 - 6, 1]. Similarly, we choose a family fq of functions on M such that fq = fm

for q E [-1, 6] and fq = (q~l)*fm for q E [1 - 6, 1]. Define

Ac = AT + C-1Aq

fc = fT + C-ifq

(2.21)

(2.22)

Then we have

wc := dAc = dpdq + C-1wM + C-dq A Vq(Aq) (2.23)

which is symplectic for large C as we remarked before. We need to compute symplectic

dual Zc of Ac. Write

ZC = Z + Z + Zcorr (2.24)

where Z. is the Liouville vector field corresponding to Aq (Zcorr is a correction term

not a Liouville vector field). Then

iz.orrwc = izcwc - izTwc - izqc =

Ac - AT + 'qVq(Aq) - CAq+ C iZVq(Aq)dq -

C-1qVq(Aq) + C-izqVq(Aq)dq (2.25)
1 -

Clearly,

C-izqVq(Aq)dq = C-1 izqVq(Aq)iapWc (2.26)
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Define

Zcorr, = Zcrr - C-1 zzqVq(Aq)&p (2.27)

Then
ri ,c = C-lqVq(Aq) (2.28)

1 - c

Write Zcorr,i = gOp + v1 , where vf is in fiber direction (there is no gi1q as this would

produce -g 1 dp term, which cannot be eliminated). (2.28) implies

gipwc + ivJ.WC C-1 qVq(Aq) (2.29)

In other words

gdq + C-1 vfWM - C-IfVq( Aq)dq - E qVq(Aq) (2.30)

Using the natural splitting of tangent spaces into horizontal and vertical directions,

we conclude

g =C-vfVq(Aq) and ifwM = qVq(Aq) (2.31)

The symplectic dual of VqAq is clearly VqZq. Hence,

v5 - qVqZq and g = C- q ivqzq(VqAq) (2.32)

(the latter term actually vanishes). To sum up

Zcyr'r = Vj + O(CW)P (2.33)

and thus

ZC = ZT + Zq + qVqZq + O(C1 )Op (2.34)

As we mentioned, we do not let c vary, but for sufficiently large C, ZT dominates

O(C-1)0, near the upper and lower boundary of T. Hence, it is pointing outward

there. On the other hand, Zq are all the same near OM, so it is pointing outward on
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T x OM as well. In short, the form is Liouville over the 1-handle T.

Now, let us examine fc. First, the only critical point of fT is at (0, 0). For large

enough C, dfT dominates C-dfq + C-'dq A Oqfq away from (0, 0). Near (0,0), fq is

constant and equal to the Morse function fM. Hence, the only critical points of fc

live over q = p = 0 and they are all non-degenerate.

Moreover,

Zc(fc) = ZT(fT) + O(C- 1) (2.35)

since vf(fT) = 0. Hence, away from the critical point (0, 0), ZT(fT) dominates the

other terms and Lyapunov property (2.13) is satisfied.

Near (0, 0), Aq, fq are constant in q; hence, by (2.25) Zcorr = 0, Zq = Z1, fq = fM-

This implies

Zc(fc) = ZT( fT) +C Z ( fM) (2.36)

From this, Lyapunov property is clear.

By gluing the "Weinstein structures" on To \ T x M and T x M, we obtain:

Proposition 2.2.3. There exist a Weinstein structure on To that is of the form

AT= Ar0 + C 1 A, (2.37)

fho = fT0 + C 1 fz (2.38)

where A, is a family of Liouville forms, f, is a family of functions on M, both are

locally constant (in z) outside one handle T and around the critical point of T. This

is Weinstein for all sufficiently large C.

Recall how we made the original symplectic structure on T Liouville. We found

a primitive of the form

A'= ATO + A, + p'(s)Kds (2.39)

where A, = AM + p(s)dM (K).

Turning C parameter on would effect these only by

A'rC = ATO + C-1AS + C- p'(s)Kds (2.40)
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Now, for large enough C, the Liouville structure (2.37) and (2.40) are linearly inter-

polated by Liouville forms. Hence, they are deformation equivalent. (2.40) is clearly

deformation equivalent to (2.39). In summary:

Proposition 2.2.4. T4 with its standard symplectic structure is Liouville and the cor-

responding Liouville form is deformation equivalent to Liouville form of a Weinstein

structure.

2.2.3 Generators for W(TO)

Now, we will write an explicit set of generators for W(TO). As shown in [CDGG17],

the cocores of a Weinstein manifold generate its wrapped Fukaya category. The

cocores of the Weinstein structure in Proposition 2.2.3 can be described as follows:

The cocores of To with the chosen structure are given by green and purple curves in

Figure 2-2 (i-.e. the dividing horizontal and vertical curves), which we denote by Lg,

and L,, respectively. Fix lifts of these curves to Z-fold cover to -+ To, and denote

them by Lgr, Lpur.

Definition 2.2.5. Let L' C M and L C To be cylindrical Lagrangians with a fixed

lift L C to of the latter. Let L x L' denote the image of L x L' under the projection

map To x M -+ To.

It is easy to see the cocores of critical handles of (2.38) are among the Lagrangians

Lgr xO4 L', L,, xO4 L'. More precisely, if L' is a cocore disc for M, moving it along

green and purple curves in Figure 2-2 gives us the cocores of To.

It is easy to see that by careful choices Lgr xO L' and Lpur xO L' can be forced

to stay as exact Lagrangians throughout the Liouville deformations involved. Hence,

we have proven

Corollary 2.2.6. W(TO) is generated by objects of the form Lgr xp L' and Lpu, x L',

where L' is a cocore for M.
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2.3 Mapping torus categories and twisted tensor

products

2.3.1 Twisted tensor product, twisted bifunctors and bimod-

ules

Let A and A' be ordinary algebras. Assume A carries an extra Z-grading and A'

carries an automorphism. Following [B008], we can define A tw A' as the algebra

with underlying vector space A x A' and with multiplication

(ai 0 a').(a2 0 a') = aia2 ® I-a2(a')a' (2.41)

where Ia 21 is the degree of a2 in the extra grading. Hence, one can describe a right

module over A Otw A' as vector space M with a right A-module structure

(i, a) + p 11N 0(ma;) (2.42)

and a right A'-module structure,

(i, a') I- p 10;1 (m1; a') (2.43)

satisfying

p1IO (A l;(mla; )I; a') - p 1 0([ 1 0 1(ml; #IaI(a'))Ia; ) = 0 (2.44)

for any m E M, a E A, a' G A'. This is the same as saying (m.a).a' =(m.#lal(a')).a.

The definition of such bimodules extends to A,-categories immediately. Namely,

let B and B' be two A,-categories. Assume B carries an extra Z-grading (so that p13

preserves the degree) and B' is endowed with a strict automorphism # without higher

maps.

Definition 2.3.1. A (right-right) twisted A,-bimodule 9)1 over B-B' is given by an
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assignment

(L, L') E ob(B) x ob(B') - 9R(L, L') (2.45)

and maps

93(Lo, OL') 0 B(LI, Lo)91 0 B((L 2 , L 1 )92 0 ... 0 3B(Lr, L 1)9-0 (2.46)

B'(L', L') 0 .. 0 B' (L' , L'1 - (LLs[ - m - n]

where B(L1 , LO)91 denotes the degree gr-part of B(L 1, Lo) in the extra grading, and

= g . We will denote these maps by py = y' 1m, omitting Li, L' and degrees

from the notation. These maps are required to satisfy

p Ag(PM(mIx1, /. .. Xi; 7ht (I . ... X ))Xi+1 , ... -xm; Xj+, X1 --

tys(mlx1. ... pB(. ... ) .... ,Xm; X'i . .. X')+

Pg(mIX1 . .. X ; X'i, . ... [113(. .. ) ... X') = 0

where # ight denotes OIXi+1I+1Xi+2j+--+kI, i.e. # applied as many times as the to-

tal degree of x,'s on the right, and #right(xI,... XI) means #/ight is applied to each

x',..., X separately, rather than a higher component of # (we use this notation in

order to shorten the expression).

A (pre-bimodule) homomorphism f from a twisted bimodule 9R to another 9W is

defined to be a collection of maps

f llr"n : 9J(Lo, 09L') 0 B(L1 , Lo) 9 1 0 B(L 2 , L1 )9 2 0 ... 0 3(Lm, Lm-1) 9 ® (2.47)

'(L', L te B'(L L'_1) -ho+ m i(Lm, L' s[-m - n]

The differential of the pre-bimodule homomorphism f is

tygA(f(MIX,,,...- X;# orig(X1,... X1)Xi+1,..X'M; X+1' - -X

f (psgx(mnlx1,... Xi;# org (X'I.. i... .. (1 -I - I

tf (MIX,... p L(...)...., ; x '..x')+

tf (M X1...m; X'1 ... -P134(. .. -- n)
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(when this is 0, we say f is a homomorphism of twisted bimodules). Twisted bimod-

ules form a dg category denoted by Bimodt (B, B'). The composition is similar to

composition of pre-bimodule homomorphisms (see [Sei08c]); however, with a similar

twisting rule (see Note 2.3.2).

Note 2.3.2. The general rule in defining "twisted A,-object" is that when swapping

morphisms x of B and x' of B', one acts on x' by OWxI (i.e. x 0 x' + OW (x') 0 x) (for

instance, this is the case with composition of pre-bimodule maps etc.).

Note 2.3.3. We have not specified signs here, but any set of sign conventions for

ordinary A,-bimodules can be used here (in particular signs that one can obtain by

unfolding Koszul signs in bar constructions).

Remark 2.3.4. One can weaken the assumption that # is a strict auto-equivalence

without higher maps. Namely, one can assume ' is bijective on objects and #1 (the

first component of 0) is bijective on hom-sets. In other words, the action of # is an

isomorphism of the coalgebra TB'[1]. In this case, the rule in swapping morphisms x

and x' becomes

" / ( n 0 x ) (. )(2.48)

In other words, as before #OWX is applied to x' 0 . . .x' while moving x to its right;

however, this time #OW is considered to be an automorphism of the dg coalgebra

TB'[1}.

Note in this situation, definition of twisted Yoneda bimodules (see Example 2.3.5)

becomes more subtle. Namely, one has to choose a quasi-equivalence s : B' -+ B'st?

such that there is a strict auto-equivalence #str on B'st" without higher maps and such

that #"'t o s and s o # are strictly equivalent (not only homotopic). In this case, a

length filtration argument shows that

Bimodte(8, B's") -- Bimodte(L3, B') (2.49)

is cohomologically fully faithful. One could define Yoneda functors in Bimod,(B, 73')
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to be the images of Yoneda bimodules in Bimodt,(B, (B')sr). Hence, we prefer to

avoid the situation # has higher maps. This more relaxed notion could be useful as

it allows us to work with minimal models.

Example 2.3.5. (Twisted Yoneda bimodule) Let (L, L') c ob(B) x ob(B'). Define

the twisted Yoneda bimodule as

0 B(-, L)T 0 B'(g , #-r(L')) (2.50)
rEZ

To define structure maps, one uses Am,-structures of B and B', but twists B' com-

ponent by the degree of elements of B on its right. More explicitly, the bimodule

structure is given by:

p(y) 9 y' y 0 P1(y') m = n = 0

(Y 0 (9 y Ix i, '. ; X .. .X') t(y, X 1,. . . , Xm) 0 -left(y ), m = 0, n $ 0

Y 9 PS,(y', ', ... ,'), M nm = :0,/: 0

0, m 7 0, n $ 0

(2.51)

where h-left - #x1---~~~xmI. We will denote twisted Yoneda bimodules by hL Otw hLI,

or simply by hL 0 hL' when the twisting is trivial. Notice that

hL Otw hL' hL(1) tw h-1(LI) (2.52)

where L(1) is the "shift" of L defined by B(-, L(1))r = B(-, L)r+l (one may enlarge B

by adding these objects, and make it closed under such shifts).

Definition 2.3.6. Assume B and B' are dg categories. Define the twisted tensor

product B 9tw B' to be the dg category satisfying

1. ob(B 03t B') = ob(B) x ob(B')

2. hom(L x L',L2 x L'2) =rEZB(L1, L2 )r 0B'(L', Or(L')) as chain complexes

with the composition defined by (2.41) (but with Koszul signs).

141



Remark 2.3.7. If A and A' denote the total algebras of B and B' respectively, one

can equivalently define B Otw B' to be the dg category with total algebra A Ot, A'

(and the set of idempotents eL 0 eLI where L c ob(B), L' E ob(B')).

Remark 2.3.8. Given a model for the tensor product of A, algebras such as the

model in [LodO7], one can presumably define its twisted version and a Yoneda embed-

ding. However, we will bypass this by considering the full subcategory of Bimod((B, 13')

spanned by twisted Yoneda bimodules. This is equivalent to giving an explicit model

by Yoneda Lemma (see Lemma 2.3.12).

From now on, assume the categories 13 and B' are cohomologically unital with

units denoted by CL and eL'. Further assume # acts freely on objects of B', eL is

homogeneous of degree 0 (in the extra grading) and 0 sends eLI to e1 o(L) for all L'.

Once we have cohomological unitality, these can be arranged easily.

We would like to investigate the structure of the category Bimodt (B, B'). Most

of the following proofs are standard (up to remembering the rule of twisting x 0 x' -

#l(x') 0 x and x' 0 x -+ x 0 #r-k'i(x')). Nevertheless, we will include them for the

convenience of the reader.

First, let us prove something for graded twisted bimodules over graded algebras:

Lemma 2.3.9. Let A and A' be graded algebras equipped with an extra grading and an

automorphism # respectively. Let M be a twisted graded (right-right) A-A'-bimodule.

Then there exists a bar type resolution of M as a twisted bimodule consisting of shifted

direct sums of M 0 A*' 9 A'rn .

Proof. First, consider the bar resolution of M with respect to A. It is given by

{M 0 Aon} -+ M (2.53)

with the map MO A -+ M being m 0a '- ma. One can endow this resolution with an

A'-action making it A Otw A'-linear. For instance, define (m 0 a).a' := m#la (a') 0 a.

Now, apply the standard bar construction to each term in the resolution to obtain

a double resolution of type M 0 A®'" 0 A'n . Likewise, one can equip these terms
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with an A-action making the rows linear over A ®t, A' as well. By taking the total

complex, we obtain what we desire. E

We would also like to prove independence of Bimodte(B, B') from the quasi-

equivalence type. Namely:

Lemma 2.3.10. Let f : B -+ _3 be a quasi-equivalence of extra graded A, categories.

Let f' : S' -+ _B' be a quasi-equivalence of Ax-categories that are equipped with strict

auto-equivalences <p and 0 without higher maps. Assume f is compatible with the

extra grading and f' strictly commutes with given auto-equivalences. Then, there is

an induced dg quasi-equivalence

F : BimodtwU3,_1') -( Bimodtw(B, B') (2.54)

Proof. For simplicity assume all A,-categories have only one object (hence, they

are A,-algebras). The induced map is standard and twisting does not effect the

definition. Namely, if 9JN c Bimod.(B, B'), then define F(91) to be the bimodule

with the same underlying chain complex, and with structure maps

(m x1 .. , !m '1, n 
I (2.55)

# nl ipim f (x1,. .., ),f ( + ,--- ---; ' (--- ,---

Likewise, for a pre-bimodule homomorphism g, F(g) is defined by

Z g(m fil( x ,. . ,fi2(xi+ 1, . . . ) f (2.56)

It is easy to see F is a dg functor. To see F is cohomologically fully faithful, filter

the hom complexes by the total length. Then, the induced map between associated

graded complexes is clearly a quasi-isomorphism.

To see it is essentially surjective, one can construct a quasi inverse G as

"91 (r3 _B ( 13_B" (2.57)
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In other words, as a complex, G(9R) is obtained as shifted sums of

9N 0 B "m & B ® B'*n 0 B' (2.58)

similar to untwisted case. The only difference is, when defining the structure maps

(and action of the functor G on morphisms), one has to take twisting into account. For

instance, PAL(m1; b')®b term in differential of m0 b0b' is replaced by pbL (m1; #Ib(b))®

b. Then FG(1) is quasi isomorphic to bimodule given by

"M (B B 0O' B'" (2.59)

as a twisted B-B'-bimodule, where the quasi-isomorphism is induced by f and f' seen

as maps of B-B, resp. B'-B' bimodules B -- B, resp. B' -+ B'. There exists a natural

map

9N ® B B B' -+ 9N (2.60)

of twisted bimodules and one can filter the cone of (2.60) by the total length. The

EL-page of the corresponding spectral sequence is (a union of the summands of)

the standard bar resolutions of Lemma 2.3.9, for A = H*(B), A' = H*(B') and

M = H*(M); hence, it is acyclic (to make sure the EL-page agrees with the standard

bar resolution in Lemma 2.3.9, one can construct (2.57) and (2.59) by first taking

013_ and then 1,_B'). This implies, the natural map from (2.59) to 91 is a quasi-

isomorphism and we are done. E

The bimodules we will encounter in Section 2.4 will fall into span of twisted Yoneda

bimodules. However, the following is a natural corollary of the proof of Lemma 2.3.10

and we include it here:

Corollary 2.3.11. The category Bimodt.(B, B') is generated by twisted Yoneda bi-

modules (in the sense that every object is quasi-isomorphic to a (homotopy) colimit

of finite complexes of twisted Yoneda bimodules).

Proof. The resolution (2.59) can be seen as an infinite resolution by twisted Yoneda
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bimodules. More precisely, let (9R 3OB03, 31)<n denote the submodule of 9M OiBOs,

B' spanned by chains of length less than n +1 (this is a submodule since the structure

maps of the bimodule are not increasing the length). This is clearly a finite complex

of infinite sums of (shifted) twisted Yoneda bimodules. Moreover, 9N On3 B OB, B'

is a (homotopy) colimit of (< O On' B') ", since homotopy colimits of injective

inclusions can be taken as the ordinary colimit (one can describe the homotopy colimit

as a cone of two direct sums, with an induced map into (2.59), then the induced map

is a chain equivalence, since the statement that homotopy colimit is the same as the

limit is true at chain level). Therefore, 931 O3 B 0, B' is a colimit of twisted Yoneda

bimodules.

As expected, we also have the following:

Lemma 2.3.12. [Yoneda Lemma] The chain complexes hom(hL Otw hL', 91) and

93(L, L') are quasi-isomorphic with a quasi-isomorphism given by

'YL-LI : hom(hL Otw hL', 91) -+ 93(L, L') (2.61)

f '- f 1 0;0 (eL 0 eL') (2.62)

Proof. The proof of this is similar to [SeiO8c, Lemma 2.12]. Namely, one writes a

quasi-inverse

A : 93(L, L') -+ hom(hL O9tw hL', -) (2.63)

similar to [Sei08c, (1.25)]. For instance, assume B and B' are dg categories and 93 is

a twisted dg bimodule (i.e. has vanishing higher structure maps). Let d E 931(L, L').

A(d) given by

A(d)1100(b 0 b') = pt (p(dIb; )I; b') (2.64)

A(d) = 0 if i 0 or j # 0 (2.65)

defines a right quasi-inverse to 7LL'. To see A is a quasi-isomorphism, one can apply

the same length filtration spectral sequence argument in [Sei08c, Lemma 2.12] (more
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precisely, one has to show exactness of another bar resolution for twisted bimodules:

for this one can simply take the dual of the resolution in Lemma 2.3.9 or follow its

proof to construct the other bar resolution). One can generalize the map A to the

general A, case (note one has to take twisting into account, the rule is as always

b 0 x' -+ 5-Ib (x') 0 b etc.) and apply the same proof; however, we take the following

route:

Alternative to using more general A, one can choose quasi-equivalences from B and

B' to dg categories B and B' carrying an extra grading and a strict auto-equivalence

respectively such that the quasi-equivalences are strictly compatible with extra grad-

ing, resp. strictly commute with given auto-equivalences (one can also assume the

chosen cohomological units map to strict units, but this is not necessary). Then, the

induced map

Bimodt.(B, B') -+ Bimodte(B, B') (2.66)

is an equivalence by Lemma 2.3.10. Hence, Yoneda lemma holds in the essential

image of dg bimodules. As twisted Yoneda bimodules over B-B' are dg and their

image under (2.66) are quasi-isomorphic to twisted Yoneda bimodules, the essential

image of dg bimodules is all Bimodte(B, B') by Corollary 2.3.11. This finishes the

proof. E

2.3.2 Mapping torus category as a twisted tensor product

Let To denote the universal cover of the nodal elliptic curve 0 , which is an infinite

chain of projective lines. See Figure 2-4. To carries a translation automorphism

denoted by tr. It moves every projective line to the next (to the right in the figure)

and generates the group of Deck transformations of TO -+ 0 , where TO is the nodal

elliptic curve over C, which can as well be defined by To := j'o/(y ~ tt(y)). In [Kar18],

we have constructed a dg category 0(to)dq such that

HO(tw(O('Io)dg)) ~ Db(Coh,(To)) (2.67)
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where Cohp(Yo) is the abelian category of coherent sheaves with proper support on

To. The objects of O(To)dg correspond to sheaves Oc, (-1) and 0 c,. We use Oc, (-1)

and Oc, to denote the corresponding objects of 0(o)dg as well. Push-forward along

tr induces a strict dg auto-equivalence of O(To)dg, which we still denote by tt.

Recall the following construction from [Kar18: let A be a dg category, and let #

be a strict dg auto-equivalence of A. Define the mapping torus category Ms as

the dg category with objects

ob(Mo) := ob(O(to)dg) x ob(A) (2.68)

and with morphisms

Mo(T x a, Y' x a') = e 0(to)dg (, tr ) 0 A (a, #-"(a')) (2.69)
nEZ

for T, Y' E ob(O(o)dg) and a, a' E ob(A). (2.68) and (2.69) can be written concisely

as

M : (0(to) dg 0 A)#Z (2.70)

To define the mapping torus category for a more general A,-category A with a strict

quasi-equivalence # (possibly with higher components), one has to find a dg category

Astr, a strict dg auto-equivalence #" on A"' and a quasi-equivalence A - As' that

commutes strictly with # and 0".

Remark 2.3.13. In [Kar18], hom-sets were defined as

e 0(o)dg (t (_J) , j7') 0 AQ h(a), a') (2.71)
nEZ

instead of (2.69). It is easy to identify (2.69) and (2.71) as chain complexes and under

this identification, one can describe the product structure on M, by (2.74). Hence,

the definitions are equivalent, but (2.69) is better suited for description of Mo as a

twisted tensor product.
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Let 0(To)dg denote the category with objects Oc,(-1), Oc and morphisms

0 (70) dg (-T, Jr) =@ 0 Odg (-, tT~') (2.72)
nEZ

O(To)dg is quasi-equivalent to Mi.

Endow O( T o)dg with an extra Z-grading by setting 0(to)(dg(T, t-"n(y)) to be the

degree n morphisms of O(70)dg(-T, J).

Proposition 2.3.14. M0 can be seen as the twisted tensor product of 0('To)dg and

A.

Proof. This becomes a tautology once one recalls the product structure on M and

0(O)dg. For instance, given

al 0 fi E O(TO)dg(J, tr-N(Y)) 0 A(a, #"(a')) C M(-T x a, Y x a') (2.73)
a2 0 f2 E 0(to)dg(Y', tr~n(_")) 0 A(a', #-n(a")) c Mo(_T' x a', T" x a")

the product in M4 is defined as

(a2 0 f2 )(ai 0 fi) = t ~M (a2)ai 0 -"m (f2)f1 (2.74)

and the product of a1 and a2 in 0(o)dg is defined as tr'(a 2)ai ( is simply the

Koszul sign coming from switching f2 and ai). We can easily identify hom-complexes

of M11 and 0( 0 )dg ®t, A, and this description shows product structures coincide (see

Definition 2.3.6). L

A natural question one can ask is the dependence of quasi-equivalence type of

A/M on the dg model O(o)dg. One knows any other dg model for Db(Cohp('o)) is

quasi-equivalent to 0(To) by the main result of [LO10]. Moreover, one can improve

(zigzags) of quasi-equivalence(s) to make it strictly tr-equivariant. More precisely:

Lemma 2.3.15. Consider pairs (B, 4'), where B is an A,,-category, 4 is an auto-

equivalence acting bijectively on objects and hom-sets, and acting freely on objects. Let

(0', tr') be another model for Db(Cohp(to)) with the same set of objects as O(ro)dg
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and with a strict lift ft' of tr.. Then, there exists a zigzag of Ax-quasi-equivalences

between O('T o)dg and (0', tr') through pairs (1, ).

A very simple proof of lemma can be given by using a push-out description of

O(To)dg. We will explain this in this section. See Note 2.3.19. Lemma 2.3.15 would

also follow for instance from a statement that any two dg lifts of the Fourier-Mukai

transform tr are naturally quasi-isomorphic: indeed, one can prove an analog of

[Gail3, Theorem 4.6.2] to develop a Fourier-Mukai theory for properly supported

coherent sheaves on 'Yo, namely a large class of quasi-functors of tw7r(O(To)dg) (such

as these which shift the cohomological support of the sheaf by a bounded amount) can

be represented fully-faithfully by coherent sheaves. Hence, any two dg lifts of tr would

be quasi-equivalent, and together with uniqueness of dg enhancements, this would im-

ply desired statement (note to is a union of Noetherian schemes and analogous local

results can also be used to prove these assertions).

Lemma 2.3.15 implies the extra grading on O(To)dg = O(tO)dg#Z is independent

of the chosen dg model for which tt lifts as a strict dg auto-equivalence. Hence:

Lemma 2.3.16. M does not depend on the chosen dg model O(to)dg or on the

chosen strictification (Astr', ostr)

Proof. The twisted tensor product of dg categories is equivalent to span of twisted

Yoneda bimodules. Changing the model for O(To)dg or the strictification for (A, #)

does not change this span by Lemma 2.3.10.

Now, we want to express O(To)dg as a homotopy push-out, as this will be used in

Section 2.3.3. This will also give a proof of Lemma 2.3.15.

Consider the normalization map

N : P X Z - to (2.75)

In the notation of [Kar18], P1 x {i} is the component that maps to Ci C to, 0 E Pl

maps to the nodal point Xi1/ 2 E t 0 and oo E P1 maps to the nodal point Xi+1/ 2 E 'To.

We also assume tr lifts to normalization as (y, i) 4 (y, i + 1) (and is still denoted by
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tr). Choose a dg enhancement for Db(Coh(Pl)) and take the subcategory spanned

by Opi, 0p,(-1), 0o and 0,. Denote it by O(P')dg. Without loss of generality

enlarge the category 0(to)dg by adding objects corresponding to nodes 0 .,,,,, in a

tt-equivariant way. This does not change the twisted envelope obviously and it causes

O(TO)dg = O(O)dg#Z to enlarge in its twisted envelope as well (together with the

natural extra grading). One can choose the enhancement O(P1 )dg so that

1. There is a dg functor E0 from O(P I )dg to OJ'o)dg lifting the push-forward of

P1 -+ Co C o

2. There are dg functors io, is C -+ O(Pl)dg lifting the push-forward of {O} -+ P1

and {oo} -+ P1

3. Compositions Eo o io, E0 o i* : C -+ O(Pl)dg -+ O(o)dg are strictly related by

Vt, i.e. tt o 0  0 to = 0 oo

Define B: trt o B0 . These are dg functors lifting the push-forward of P' + Ci C to.

Taking Z-many pairwise orthogonal copies of this dg category, we obtain a dg model

for properly supported coherent sheaves on P1 x Z, denoted by 0(P1 x Z)dg.

There is a dg lift of the push-forward of normalization map (2.75) which we also

denote by 7rN. Let Pt, denote the dg category consisting of infinitely many copies of

C indexed by i+1/2, i E Z. Denote its objects by *i+1/2. Pt, has an auto-equivalence

mapping *i-1/2 to *i+1/2, which we still denote by tr. The collection of functors

io : (C)+1/2 =:C -+ O(PI)dg 0(IP1 x {i + 1})dg (2.76)

(i.e. io used to map *i+1/2 to (i + l)th p1) gives a functor

Pt" -+ O(P1 x Z)d9  (2.77)

which is essentially push-forward of 0 c P1 at each component. Denote this functor

by io as well. Similarly, the collection of functors is : (C)i+1/ 2 -9 O(P' x {i})dg gives
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Ci- 1  C Ci+1

Pt 0 .. / i / ..

Figure 2-4: A schematic picture of diagram (2.79)

a functor

Pt, -+ O(P1 x Z)d9 (2.78)

which is essentially push-forward of 00 E P1 at each component (to a different P1

though). Denote it by ix. Clearly, 7TN 0o i= rN o In other words, we have a

strictly commutative diagram

O('TO)d (2.79)

((P1 x Z)d 9  ((P1 x Z)dg

Pt0

Thus, we have an induced map

hocolim(Pt -- O(P1 X Z)dg) + O('To)dg (2.80)

One can define the homotopy coequalizer above as ((P1 x Z)dg J(Pt.IIPt) Pto, i.e.

by gluing ((P 1 x Z)dg and Pt 0 along io J_ i, : (Pt0 J_ Pt0 ) --+ O(P x Z)dg and

id JI id (note it is not the same as colimit of (2.79), see Figure 2-4 for a schematic

picture). See [GPS18] for the definition of homotopy push-outs.

For convenience, let us spell out a description of this coequalizer via Grothendieck

construction, following [GPS18] (more precisely, we give an equivalent, slightly mod-

ified version that works for coequalizer diagrams, this version is equivalent to one
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given in [Tho79]). Consider the category gr with objects

ob(gr) = ob(O(P1 x Z)d9) LI ob(Pt,) (2.81)

We define the morphisms to be

O(P1 x Z)dy(XX'), if X, X' E O(P1 xZ)dg

Pto(X, X'), if X, X' E Pto

hom(X, X') :< (pl x Z-)d(iO(X), X')( (2.82)

O(P' X Z)dg (io(X), X'), if X E PtocX' E 0(P1 
X Z)dg

0, if X E O(P' X Z)dg, X' E Ptoc

In other words, gr is a category that contains Pt, and O(P1 x Z)dg as full subcat-

egories, and contains additional morphisms corresponding to maps io(X) -4 X' and

%0(X) -* X'. In particular, if we let X' to be io(X), resp. i,(X), then gr(X,X')

contains morphisms corresponding to identity. Denote the family of these morphisms

by C. The homotopy coequalizer can be defined as

hocolim(Pt, -: O(P1 x Z)dg) := C- 1 gr (2.83)

For the definition of localization, see [GPS17] or proof of Lemma 2.3.26.

Now we prove:

Lemma 2.3.17. (2.80) is a quasi-equivalence.

Proof. One way to see is direct computation: namely, write the Grothendieck con-

struction for the diagram, then check that the induced functor from the localization

is a quasi-equivalence. This is a cohomology level check, in the sense that one can

localize after taking the cohomology. The localization of the cohomological category

of gr has an explicit description in terms of sequences of morphisms and their for-

mal inverses, and it is not hard to check in this case that the induced functor into

H0 (O('To)dg) is an equivalence.
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Another option is to use the fact "Coh sends colimits to colimits". As it was

explained to us by Vivek Shende, this follows from [GR17, Theorem A.1.2]. See also

[Nad16, Corollary 2.5] for the explanation on how the statement follows from [GR17,

Theorem A.1.2].

More precisely, [GR17, Theorem A.1.2] states that the contravariant functor X -

IndCoh(X), f a f' restricted to category of affine, Noetherian schemes with closed

embeddings sends push-outs to pull-back squares (in a category of dg categories).

Unfortunately, this does not immediately apply to our situation; however, we can use

it easily.

First, assume the statement that X - IndCoh(X), f F-> f. sends push-outs to

push-outs for Noetherian, projective schemes with closed embeddings hold. Then the

same holds with IndCoh replaced by Coh. Let Ev(n) denote the full subcategory of

0(Pl x Z)dg spanned by sheaves on even indexed curves C-2n, C-2n+2, ... , C2n. In

other words,

Ev(n) = [ O(PI )dg (2.84)
i=-2n,-2n+2,...,2n

Let Ev denote the union of all Ev(n). Similarly let Od(n) denote the subcategory

corresponding to curves with odd index -2n + 1, -2n + 3,... , 2n - 1 and Od denote

their union. Let Ptn denote the subcategory of Pt,, spanned by points with index

-2n + 1/2, -2n + 3/2, .. ., 2n - 1/2 (i.e. the points of intersection of curves in Ev(n)

and Od(n)). Finally let To(n) denote the reduced subvariety of to given by the union

of C-2n, C-2n+1, .. . , C2n. Clearly, to(n) is a push-out of curves involved in Ev(n)

and Od(n) along Ptn. As we assume "push-outs to push-outs" hold for Noetherian

projective schemes with closed embeddings, we have

Od(n) upt. Ev(n) ~ Coh(To(r)) (2.85)

where Coh(To(n)) is a dg-model for Coh(To(n)). Moreover, the colimit of Coh(To(n))

gives a dg model for properly supported coherent sheaves on to, which is derived
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equivalent to O(fo)dg. Hence,

O(To)dg hocolimnGoh(To(n)) ~ hocolimn(Od(n) Liptn Ev(n)) ~ (2.86)
(hocolimnOd(n)) L(hocolimnPtn) (hocolimrEv(n)) = Od Upt, Ev

The second to the last equivalence is an abstract category theory statement. It is

easy to see that Od upt,. Ev is equivalent to hocolim(Ptoo -: O(P' x Z)dg). Hence,

the claim follows.

Now, we need to show why "push-outs to push-outs" hold for projective Noethe-

rian schemes, at least in our specific case. We only need to show the functor X '-+

IndCoh(X), f + f! sends push-out diagrams of projective Noetherian schemes along

closed embeddings to pull-back diagrams, as "push-outs to push-outs" follows in the

same way as [Nad16, Corollary 2.5]. The basic idea is to combine the statement for

affine push-outs with Zariski descent.

Let X be the union of curves C-2n, C-2n+2,.. ,2n and Y be the union of curves

C-2n+1, C-2n+3, . .., C2n-1. Let Z be the union of nodal points in the intersections of

C-2n, C-2n+1,. C2n. Then to(n) = X Uz Y. Let {UiJ be an affine open cover over

To. Assume {Ui} is closed under intersections and the index set is ordered so that

i <_ j if and only if Ui C U. Let U = U n X, U =Ufl n Y and Uz = Ui n Z. These

give affine open covers of X, Y and Z. By Zariski descent for IndCoh (see [Gail3])

IndCoh(to(n)) ~ holimIndCoh(U ) (2.87)

Indeed, this can be stated by saying that the functor V - IndCoh(V), f + fl from

the category of schemes with open embeddings sends colimits to limits (note f* = f

for open embeddings). Similar descent statement hold for X, Y and Z. Moreover,
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Uj UL uz UY and they are affine so push-outs to pull-back hold for them. Thus,

IndCoh(to(n)) ~ holimIndCoh(Uj) _ holimIndCoh(Uj LY uz U ) ~

holim(IndCoh(U ) x Indcoh(uz) IndCoh(Uf))

holim(IidCoh(Uj )) X holim(IndCoh(U )) holim(IndCoh(U )) ~

IndCoh(X) XIndCoh(Z) IndCoh(Y)

This completes the proof. E

Hence, (2.83) generates another enhancement for Db(Cohp(To)) and (2.80) is Z-

equivariant. Taking smash products with respect to Z-action (see [Karl8, Section 4]),

we obtain

Corollary 2.3.18. There is a quasi-equivalence (C- 1 gr)#Z -+ ('To)dg that is com-

patible with extra gradings.

Notice, (C-1gr)#Z does not depend on the choice of enhancement made for

Db(Coh(Pl)) by [LO10].

Note 2.3.19. Lemma 2.3.15 also follows from these considerations. Namely, given

any other model (0', tr') for O(To) with a strict auto-equivalence tr' lifting tr,, we can

choose a dg functor similar to B0 and define EB by composing with tr. Assume the

chosen model O(Pl)dg is minimal. We then obtain a diagram similar to (2.79), corre-

sponding Grothendieck construction and a functor to 0'. This is strictly compatible

with translation. Hence, there is a quasi-equivalence from the explicit localization of

the Grothendieck construction to O' that is strictly compatible with translation. The

localization of Grothendieck construction does not depend on 0'; hence, it gives us a

zigzag as promised in Lemma 2.3.15.

By Z-equivariance, one can also realize (CWgr)#Z as a localization of gr#Z.

This localization carries an extra grading by Lemma 2.3.26 and it is quasi-equivalent

to (C-19r)#Z (hence to O(To)dg#Z = O(To)dg) since the localization map gr#Z -+

(C-'gr)#Z is compatible with extra grading.
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Notice gr#Z is equivalent to Grothendieck construction for

PtO#Z = O(P1 X Z)#Z (2.88)

which is defined similar to (2.82) by replacing hom-sets with the hom-sets of smash

product. This construction is equivalent to a dg category with objects ob(O(P')dg) 1I{*}

and with morphisms

O(PIl)d(X, X% if X, X' E O(Pl)d 9

C, if X=X' {*}

hom(X,X') : O(p 1)dg(i(X), X')CD (2.89)

O(P') d9 (o(X), X'), if X E {*}, X'E OP)dg

0, if X E O(Pl)dg, E {*}

In other words, this is a dg category consisting of (some) coherent sheaves on P1 ,

an extra object * and morphisms * -+ T corresponding to morphisms 00 -+ T and

Oc, -+ T. This category is the Grothendieck construction for the diagram C 3

O(Pl)dg, which is defined similar to Gr. Let us denote this category by gr#Z as well.

O(7To)dg is obtained by localizing 9r#Z at two morphisms from * corresponding

to identity maps of Oo and O. Denote these morphisms by co and c,. This process

geometrically corresponds to identifying 0 and oo on P1.

The corresponding extra grading is given by setting the summand

O(P)dg (io(X), X') C hom(X, X') (2.90)

to be the degree 1-part and the remaining expressions in (2.89) to be of degree 0.

The extra grading descends to localization O('To)dg (see Lemma 2.3.26) and it clearly

matches the extra grading coming from smash product with respect to Z-action.

Remark 2.3.20. This extra grading on (2.89) comes from the identification with

gr#Z via * i X_1 2 and PI + P1( {x0} C P1 x Z. In a different identification,
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one can set elements of O(P)d (io(X), X') to be of degree -1 and the rest to be of

degree 0. The descriptions become equivalent after localization, and we will go with

the former.

2.3.3 Extra grading on W(To)

By [CDGG17] and [GPS18, Theorem 1.9], W(To) is generated by Lagrangians that lift

under the covering map to -+ To. We will only consider these Lagrangians as objects

of W(To), and we fix a lift for each object of W(To). For a Lagrangian L C To, denote

the lift by . Given r C Z, let L(r) denote another lift of L obtained by shifting iL

by r in the positive direction.

The chain complexes CW(Li, Lo) are generated by Hamiltonian chords from L1

to Lo for a fixed Floer datum. This chord lifts to a path from 1, to Lo(-r), for a

unique r. We define the extra grading by letting this chord to be of degree r. This

should not be confused with the original grading of W(T).

We now wish to compare the categories 0(Yo)dg and W(To), while taking their

extra gradings into account. Recall:

Lemma 2.3.21. [Kar18, Lemma 9.9J O(Wo)dg generates a dg model for Db(Coh(To)).

Theorem 2.3.22. [LP16, Theorem B.(ii)] W(To) is a dg model for Db(Coh(To)).

Indeed, tw(W(To)) is a dg enhancement of Db(Coh(T0 )), and one can choose the

equivalence so that L,, and Lpur (green and purple curves in Figure 2-2) correspond

to (5O0 and 0., respectively. Here Ocy0 is the push-forward of structure sheaf under

normalization map and 0., is the structure sheaf of the singular point.

Choose suitable generators for W(To) (Lg,- the green curve in Figure 2-2 and the

diagonal curve not shown in the picture). One can rephrase [LP16, Theorem B.(ii)]

as:

Corollary 2.3.23. 0(o)dg and W(To) are quasi-equivalent Aoo-categories. More-

over, under this quasi-equivalence Oc 0 corresponds to Lgr, UO 0(-1) corresponds to

the curve that wraps around the torus once (which would be the diagonal curve in
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Figure 2-2), and 0,-the structure sheaf of the node, as an object of tW(O('To)dg)-

corresponds to Lp.

However, we need the comparison of categories 0(o)d, and W(To) as A,-categories

with extra grading. In other words, we need to relate these categories by zigzags of

quasi-equivalences which respect extra gradings.

Remark 2.3.24. By choosing homotopy transfer data to be of degree 0, one can

construct minimal models with extra grading. Moreover, the constructed quasi-

equivalences and homotopies all respect the extra grading as well. See [Mar06] for

more about transferring A,-structures. It is easy to see that such a minimal model

is unique up to a gauge equivalence that preserves the extra grading. Hence, one can

equivalently define the notion of equivalence for extra graded A,-categories as the

graded quasi-equivalence of their minimal models.

It is easy to see the extra gradings on 0(o)dg and W(To) match at a cohomological

level (up to a minor modification of the quasi-equivalence between them, for instance

using symmetries of W(To)). However, this does not directly imply that they are

equivalent, for the same reason that two gauge equivalent minimal A,-structures on

a extra graded vector space (i.e. a doubly graded vector space, note that Ac-maps

are of degree 0 in the second grading) are not necessarily equivalent via a gauge

equivalence that respects the grading.

Nevertheless, one can prove:

Lemma 2.3.25. 0('To)d9 and W(To) are quasi-equivalent as A,-categories with an

extra grading.

We do not know how to prove this using the approach in [LP16]. However, one

can prove Theorem 2.3.22 and Corollary 2.3.23 using other approaches. One is via

stop removal (see [Syl16] and [GPS18]). Yanki Lekili has informed of this approach.

The other is via gluing formula of [GPS18]. In other words, we will give a descrip-

tion of W(To) as a homotopy coequalizer similar to description of 0(To)dg in Section

2.3.2. W(To) will be described as a localization of an intermediate category grs with

extra grading. To obtain extra grading on W(To), we need:
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Lemma 2.3.26. Let B be a category with extra grading and C be a set of homogeneous

morphisms. Then the category C- 1 B can be endowed with an extra grading such that

the localization map respects gradings of B and C-'B. Moreover, If B1 and B2 are

quasi-equivalent as extra graded categories, and C1 and C2 correspond to each other in

cohomology under the (zigzag of) quasi-equivalence(s), then C-'B1 is quasi-equivalent

to C 1 B 2 as an extra graded category.

Proof. First, let us remind the definition of localization following [GPS17]: consider

the set of cones BC of elements of C. Take the Lyubashenko-Ovsienko/Drinfeld

quotient of B by BC (see [LO06], [Syl1 6], [GPS17]). In general, this specific model

allows one to endow the quotient B/B' by an extra grading when B is an extra graded

category and B' c B is a full subcategory. In our case, one has to enlarge B within

tw(B) by adding cones of C1, resp. C2. However, the extra grading also extends to

this larger subcategory as the morphisms of C are all homogeneous. Hence, the first

claim follows.

For the second claim assume without loss of generality that there is a quasi-

equivalence B1 -+ B2 that respects the extra gradings and that carries C1 to C2

strictly (for instance assume B2 is minimal). Then, enlarge both categories by adding

cones. The quasi-equivalence extends to a (graded) quasi-equivalence of enlarged

categories as well (that sends cones of C1 to cones of C2). The natural functor from

the localization with respect to cones of C1 to localization with respect to cones

of C2 preserves the extra gradings. Hence, there is an induced quasi-equivalence

CW-5B1 -+ Cg1B2 that preserves the gradings.

To apply gluing formula, decompose To into Liouville sectors T (the 1-handle

shown in yellow in Figure 2-2) and To \ T. In other words, cut To into sectors along

the 1-handle T. The finite boundary of these sectors correspond to side edges of T.

See Figure 2-2 or Figure 2-6 for a clearer picture (we are being sloppy about the

notation as To previously referred to Liouville domain rather than its completion,

similarly with T). As a Liouville sector, T is equivalent to T*[0, 1]; hence, has a

wrapped Fukaya category equivalent to C. It is generated by Lp,,- the purple curve

159



Figure 2-5: The sector N = To \ T and two inclusions of T into N

Figure 2-6: The inclusions of sector T into N = To \ T and the inclusion of N into To

in Figure 2-2.

On the other hand, T \ To is equivalent to a cylinder with two stops at its

boundary; hence, it is easy to see that its wrapped Fukaya category is equivalent

to Db(Coh(Pl)) (we will also use the letter N to refer to T \ To as a Liouville sec-

tor). Indeed, as generators one can take the green curve in Figure 2-5 and another

curve that wraps around once without intersecting the green curve (the diagonal of

Figure 2-2). Clearly, the subcategory spanned by them is equivalent to Kronecker

quiver, and one can write the curves partially winding the stops as cones of these two

generators. The curves partially winding the stops are the purple, vertical curves in

Figure 2-5- the small Lagrangian linking discs of the stops in terminology of [GPS18].

As these curves together with the green curve generate the partially wrapped Fukaya

category, one has the desired equivalence with (a dg model for) Db(Coh(Pl)). Al-

ternatively, this partially wrapped category is equivalent to Fukaya-Seidel category

of Landau-Ginzburg model (C, z + z- 1), which is well known to be a mirror to P1.

Green and purple curves in Figure 2-5 are sufficient as generators.

We glue T and N = To \ T along the sector given by a neighborhood of their shared

edges (represented by two yellow sectors in Figure 2-5). This sector is isomorphic to

T*[0, 1] J_ T*[0, 1]. In summary, we have a pushout diagram by [GPS18, Theorem
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1.20, Corollary 1.21]:

W(To \ T) = W(N) W(T) (2.91)

'1 1
W(T* [0, 1]) J W(T* [0, 1]) W(T*[0, 1]) V(T)

Even though the inclusion of two yellow sectors into the 1-handle T is not an iso-

morphism, it induces an equivalence between their wrapped Fukaya categories. In

other words, the lower horizontal arrow in (2.91) can be seen as the identity on each

component. Hence, we can write this gluing diagram as

C - W(T*[0, 1]) = WIV(T) - W(N) - W(To) (2.92)

where W(To) is equivalent to homotopy coequalizer of

W(T) -- W(N) (2.93)

A pictural representation of (2.92) is given by Figure 2-6 (Figure 2-6 can also be

seen as a coequalizer diagram; however, from the perspective of [GPS17], [GPS18]

this picture is slightly informal, as the maps of sectors in Figure 2-6 are not global

inclusions, but rather like "6tale maps" for sectors).

Let Jo and ji denote both the inclusions T =3 N = To \ T and induced functors

W(T) -3 W(N) (assume jo correspond to left inclusion for instance). To make

statement about homotopy coequalizer precise, consider the category Gr, with objects

ob(W(T)) fi ob(W(N)) (2.94)
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and with morphisms

VV(N)(X, X'), if X, X' E I(N)

hom(X,X'):= W(T)(X, X') = C, if X X' E W(T)

W(N) (jo(X), X') e IN(N) (ji(X), X'), if X V(T), X' E W(N)

0, if X E W(N),X' E W(T)

(2.95)

As before, gr, can be seen as the Grothendieck construction for (2.93). The rightmost

arrow in (2.92) induces a functor

gr, -+ W(T) (2.96)

(2.92) is a homotopy coequalizer diagram means (2.96) is a localization at two mor-

phisms Lpur - j 0 (Lpur) and Lpur a Ji(Lpwr) corresponding to identities of jo(L,,,)

and ji(Lpr) (we are abusing the notation and denote the purple curves in copies of

T in Figure 2-6 by Lp, as well). Denote the set of these two morphisms by C,.

Grade gr, as before: let morphisms of type W(N)(jo(X), X') be of degree 1 and

the remaining components be of degree 0. This extra grading descends to localization

C-gr, by Lemma 2.3.26. To see the extra grading obtained by localizing gr, matches

the previously given one on W(To), one only has to show the map 2.96 respects the

extra grading. For instance, let L, resp. L' denote the image of j1 (X), resp. X' c N

in To (fix lifts 1, and L' for L and L'). One can arrange the lifts so that the image

of a chord from Ji (X) to X' lifts to a chord from L to L' (hence, degree 0 in the

previously given extra grading). This implies the image of any chord from jo(X) to

X' lifts to a chord from L to L'(-1) (hence, degree 1). The other cases are easier.

One can prove Theorem 2.3.22 by showing gr (defined by (2.81) and (2.82))

is equivalent to gr, (defined by (2.94) and (2.95)) and the sets of morphisms C

and C-1 correspond under the equivalence (in cohomology). Hence, the homotopy

colimits C-1 gr and C,~'gr, are equivalent. Moreover, the equivalence preserves the

extra gradings on gr and gr,; hence, the induced equivalence also preserves the extra
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grading by Lemma 2.3.26. This proves Lemma 2.3.25.

Remark 2.3.27. The definition of wrapped Fukaya categories in [AbolO] and [GPS17]

are not the same and one has to use continuation functors to show their equivalence

(which extends continuation maps, see also Note 2.4.24). However, it is easy to see

that continuation maps actually respect the extra grading as the extra degree depends

only on the relative homotopy type of the chord (alternatively, if one wants to prove

derived equivalence of these categories using invertible bimodules, one would endow

the bimodule with a compatible extra grading, inducing a functor between "graded

twisted complexes").

Remark 2.3.28. Stop removal approach we mentioned above also gives a description

of W(To) as a quotient (of Db(Coh(P1)), the situation is the same algebraically).

Hence, one can presumably apply proof of Lemma 2.3.26 to this quotient to prove

Lemma 2.3.25.

Remark 2.3.29. Let A be a bigraded ordinary algebra (we consider this as an graded

algebra with an extra grading). It is well known that the space of minimal A,-

structures (ignoring the extra grading) on A is controlled by a part of dgla CC*(A, A)

(see [Sei15, 3a ] for instance). Moreover, one can extract the space of A,-structures

modulo gauge from minimal L,-models for this dgla. Hence, once the complex has

small cohomology, one has a better control over this space (e.g. [Seil5, Lemma 3.2]).

Similarly, the space of A,-structures that is of degree 0 with respect to extra

grading (modulo gauge equivalence that respects extra grading) is controlled by part

of CC* (A, A)Gm, where Gm-action is induced by the rational Gm-action on A corre-

sponding to extra grading. Hence, one can possibly prove the existence of a gauge

equivalence respecting the extra grading via a cohomological comparison between

CC*(A, A)Gm and CC*(A, A), at least in our case where the Hochschild cohomology

is small (see [LP12],[Karl8, 5]).

Remark 2.3.30. Another option is this: [LP16] proves equivalence of wrapped

Fukaya category of the n-fold cover of To and coherent sheaves on the n-fold cover of

TO. It is easy to see compatibility of this equivalence by the Deck transformations.
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n-fold coverings endow both sides with Z/n-gradings that is induced by the original

extra Z-grading. Hence, this comparison for all n, implies the original gradings are

the same.

Remark 2.3.31. Homological mirror symmetry for To and 'O with extra Z/n-grading

can be seen as homological mirror symmetry for their n-fold covers. Similarly, equiv-

alence with extra Z-grading can informally be thought as mirror symmetry between

TO and To.

2.4 Kiinneth and twisted Kiinneth theorems

In this section, we define an Ax-functor

W(TO) -+ Bimod,,((To), W(M)) (2.97)

using count of quilted strips, and show it is full and faithful. We start by defining

the functor in the untwisted case, for the Fukaya category of compact Lagrangians.

In other words, we start by writing an A.-functor

F(TO x M) -+ Bimod(F(To), .F(M)) (2.98)

Starting with ordinary Fukaya category allows us to convey the basic TQFT argument

without compactness issues related to wrapping. Then, we will indicate the necessary

modifications for twisted version, still for the compact Fukaya category. However,

there will be a compactness problem related to use of infinite cover to. We will find

appropriate Floer data, for which Gromov compactness holds.

Then, we will explain how to do the same for wrapped Fukaya categories. We

start by defining a category /V2 (TO) that is analogous to category /V 2 in [Gan12] and

WProd in [GPS18]. It is equivalent to W(TO) by an argument similar to [GPS18].

As a special case of Corollary 2.2.6, W(T x M) is split generated by Lagrangians of

type L x L'. Hence, we will restrict attention to only these objects, we will prove their
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images are quasi-isomorphic to Yoneda bimodules, and that (2.98) is fully faithful on

these objects.

2.4.1 Quilted strips

Moduli of n-quilted strips is defined in [Ma'15], and it controls A, n-modules. Their

main strata can be identified with n-parallel lines with markings in C with fixed

distance from each other (up to conformal equivalence). For n = 3, this is used in

[Gan12] to define functors from a version of wrapped Fukaya category on M x M- to

bimodules over W(M). Indeed, defining a functor (2.98) is equivalent to defining a

left-right-right W(To x M)-V(To)-WV(M)-trimodule. We would like to exploit similar

ideas to define (2.98). Let us start by describing moduli of quilted strips first:

Definition 2.4.1. Let d = (di, d2 , d3 ) E Z3 0. A 3-quilted strip with d-markings is

" a pair of strips rl, r2 biholomorphic to R x [0, 1]

" dr-markings on the upper boundary of ri, and d2 -markings on the upper bound-

ary of r2

" d3-markings on the lower boundary of r1 and r2

" an identification of r1 and r2 preserving the incoming/outgoing ends of the strip

and mapping lower markings of r1 to lower markings of r2

The isomorphisms of such quilted strips are given by isomorphisms of both strips

commuting with the identification (i.e. by simultaneous isomorphisms of r1 and r2 ).

Definition 2.4.2. Let Q(d) = Q(di, d2 , d3 ) denote the moduli space of 3-quilted

strips up to isomorphism.

The identification of r1 and r2 is uniquely determined up to translation. When

d3 > 0, it is uniquely determined. When d3 = 0, different identifications give different

elements. It is not hard to identify Q(di, d2 , d3 ) with the space of 3-quilted lines in

[Ma'15]. We will indeed picture these objects as in Figure 2-7 which is similar to
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Figure 2-7: An element of Q(3, 4, 2)

0 0 C

Figure 2-8: An element of aQ(5, 5, 7)

[Gan12] and [GPS18]. In this figure, -r 2 is the strip r2 with conjugate holomorphic

structure. This quilted surface can be folded to obtain a single strip, thanks to global

identification of r, and r2. The complement of the markings in the quilted strip

r = (ri, r2) E Q(d) will be denoted by Sq. The complement of markings in the

folding of the strip will be denoted by S/ (the superscript q stands for quilted and

f stands for folded). The family of these surfaces form universal bundles over Q(d),

denoted by Sq and Sf respectively. The complement of the markings in r1 and r2

will be denoted by S and S'2) respectively (hence, SJ = S n S ).

Q(d) admits a natural compactification described in detail in [Ma'15]. We denote

this compactification by Q(d). We will not give all the details, and instead give

an example of a boundary element in Figure 2-8. Note, however, to describe the

boundary structure/gluing we have to restrict the strip-like ends. We demand the

strip like ends on the discs to be rational, i.e. extend to a biholomorphic map from the

whole strip to the disc. Moreover, for the incoming ends on discs, we impose the other

end of the strip to converge to the outgoing marking on the same component. For the

ends on the quilted component, we choose standard ends on the left and right. To

choose ends for the markings on the upper boundary of r1 and r2 (i.e. lower boundary
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Figure 2-9: A more convenient description of boundary elements of Q(d) for the
purposes of gluing

of -r 2), we consider the natural embedding of the strip into upper half-plane so that

upper boundary maps to real axis, and that does not change the strip width. This

embedding is determined up to translation, and we demand the incoming strip-like

ends corresponding to upper markings of r1 and r2 to be as before, i.e. rational, and

such that the extended map from

Z=Rx [0,1] (2.99)

would have other end converging to oc (of the ambient half-plane). The ends for the

middle markings are similar.

To explain gluing picturally, consider elements of boundary strata as in Figure

2-9. Then gluing a hyperplane to the strip is essentially taking a large half-disc in

that hyperplane, taking out a small half-disc from the edge of the strip, and gluing

the large half-disc after rescaling.

The reason we choose specific strip-like ends is because we need to keep global

identification of r1 and r2 (i.e. folding). If we allowed arbitrary ends, the identification

would require Riemann mapping theorem, and the bottom markings of r1 and r2

would no longer match.
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2.4.2 Kunneth functor for Fukaya category of compact La-

grangians

For definitions and conventions of Fukaya category F(M), we follow [Sei08c]. In this

section, we define a Kiinneth functor

9R : F(To x M), -+ Bimod(F(To), T(M)) (2.100)

where F(To x M)p is the full subcategory of F(To x M) spanned by product type

Lagrangians (this is important in the proof of fully faithfulness, but not for defining

the Kiinneth functor). Defining a Kiinneth functor (2.100) is equivalent to defining

a left-right-right trimodule over .F(To x M)p-F(To)-Y(M). Hence, we will denote

9J(L")(L, L') by 9)(L", L, L') or by 931L"(L, L'), where L C To, L' c M, L" c To x M

(the reason we choose this input order is that we use tri-module 9) to define functor

(2.100) ).

Given compact, exact Lagrangians (with a brane structure) L" C To x M, L c To,

and L' c M, choose a Floer datum (as defined in [Sei08c]) for the pair (L x L', L")

satisfying conditions to be specified. Then, 9(L", L, L') is generated by Hamiltonian

chords in To x M from L x L' to L". The maps

CF( L"_ 1, L") ® CF(L" 2,L a ) 0... 0 CF(L', L'') 0 9( L', L, L'o

CF(L1, Lo) 0 ... CF(Lm, Lri) 0 CF(L', L'I) 0 & CF(L', L' _1)

9RM(L", Lm, L' ) [1 - m - n - p]

defining the bimodule structure, as well as the Acc-functor (2.100) are obtained by

counting pseudo-holomorphic quilts as in Figure 2-10. More precisely, for each stable

quilted strip r, we choose a family of almost complex structures Jr parametrized by the

folded strip Sf, and a Cc (To x M)-valued 1-form Kr on S/. Kr vanishes in directions

tangent to 0S/. The choice is required to satisfy consistency condition similar to

[SeiO8c]. On the boundary Q(d), the data should coincide up to infinite order with

the data obtained via gluing. Notice we do not choose separate perturbation data
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Lo --.........-.. L M

L 0

Figure 2-10: The quilts defining bimodule/functor structures on 9A

(family of almost complex structures and Hamiltonian valued 1-form) on SP) and S

(for To and M respectively). Indeed, we impose the condition that the restriction of

perturbation data on S/ to R x [2/3, 1] nS/ splits as product of restrictions of data on

((R x [2/3, 1])n Sr'1) x T and ((R x [2/3, 1])n S 2 )) x M. Hence, on the (R x [2/3, 1]),
one can think of the components as separate holomorphic maps into To and A. On the

other hand, we assume it restricts to perturbation data that defines Fukaya category

of To x M on ((R x [0, 1/3]) n Sf) x To x M. As we will see, this condition is more

relevant to the twisted case. In the untwisted case for compact Fukaya category, one

can presumably restrict to product type data over all Sr.
As for the Floer data: for the pair (Li,, Lj) we choose almost complex structure

and Hamiltonian on To appropriate for the definition of HF(Li+1 , Li). Similarly,
for the pair (L1+ 1, L'), resp. (L', L' 1 ) we make the same choices that are used to

define HF(L'+1 , L'), resp. HF(L', L' 1 ). For the Floer data on the ends of the

strip, the same condition on perturbation data is imposed. It is of product type on

R x [2/3, 1] n Zi and of type compatible with To x M on R x [0, 1/3] n Z (i.e. of

type defining Fukaya category of To x M).

Given a chord x from Lo x L' to L', and generators x' E CF(L' 1 , L'), x' E

CF(L's, Li_ 1), and xi E CF(Li, Li_ 1) the coefficient of y E 9%(L", Lrn, L') is given by
the count of zero dimensional moduli of (r, u), where r E Q(m, n, p) and u : (u1 , U2 )

S -+ To x M satisfying

* (du - XKr)O1 = 0 on the complement of markings of r

" u converges to x on the left end, to y on the right end, and to x' on the marking

between labels L '_1 and L'
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* u1 , resp. U2 converges to xi, resp. x' on the top marking between Li- 1 and Li,

resp. L'_1 and L'

One can show the trimodule equations/A,,-functor and bimodule equations are sat-

isfied using standard compactness and gluing arguments. Moreover, the generators

of 9R(L", L, L') are graded as usual, and the moduli spaces defining M are oriented

(see [Gan12],[GPS18]). Thus, 9A can be defined over Z (for our purposes we define it

over C) and is Z-graded.

2.4.2.1 Fully faithfulness

In this section, we give a proof of fully faithfulness of 9) as a functor

T(To x M)p - Bimod(.F(To),.F(M)) (2.101)

One can prove this by explicit identifications of the generators as in [Gan12], [GPS18].

However, we prefer a different method.

We start by writing a quasi-isomorphism between the bimodule 9Z(L x L',-,.) and

the Yoneda bimodule corresponding to (L, L').

First, let us indicate a possible way which we do not follow, but which we derive

the idea from. Observe that one can see L x L' as the geometric composition of L x {*}

and {*} x L'. Then, one can use a version of quilts with Y-ends as in [LL13]. More

precisely, one can attempt to count quilts as in Figure 2-11 with correct labeling

to define a quasi-isomorphism from 9R(L x L') to Yoneda bimodule corresponding

to (L, L'). The disadvantage of this approach is that after folding this quilt (as in

[LL13]), the perturbation data cannot be continued over the point corresponding to

Y-end. Hence, we would need different arguments for compactness.

Instead, we take this as inspiration and define continuation maps directly. For this

purpose, we can count quilts as shown in Figure 2-12. To clarify, the green asterisk

is an unconstrained point, and it increases the dimension of moduli of such quilted

surfaces by one (and it rigidifies the surface when there is no marking). Hence, the

labeling does not change on the left or right of green asterisk, the holomorphic maps
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Lm

Figure 2-11: A quasi-isomorphism from 9)(L x L') to Yoneda bimodule corresponding
to (L, L')

and perturbation data are defined at the asterisk, and so on. For this count to define

a map from 9J(L x L') = 9A(L x L', -, -), we must specify the right Floer data on the

left, and right. On the left we use Floer data used for the incoming (left) end in Figure

2-10, that are used for generators of 93(L x L', Lo, L'). On the right, we use product

type Floer data. Notice, if you use product type data to define bimodules by counting

same quilts as in Figure 2-10 but with no markings on the seam, we would obtain

Yoneda bimodule (see [Gan12, Proposition 9.4]). Hence, by compactness and gluing

theorems, this defines a bimodule map from 9J(L x L') to hL 0 hLI (More precisely,

one has to ensure the data remains 9A, resp. Yoneda type on the left, resp. right

when the strip approaches to boundary of its moduli. For instance, one can assume

the data becomes 9Y/Yoneda type if the horizontal distance to the asterisk is larger

than 1). Denote this bimodule map by T LL'. To see it is a quasi-isomorphism, we can

construct an explicit quasi-inverse by counting the same quilts as in Figure 2-12, only

after interchanging the types of Floer data used on the left and right end. Denote

this bimodule map from hL 0 hL' to 9)(L x L') by YLL'. To see this is a quasi-inverse,

one can describe the composition of 1
7L,L' with YLL' by a count of quilted strips as in

Figure 2-12, with the same type of Floer data at the ends (the type defining 9A or

product type, depending on the direction of the composition).

171

L'0 ------------- Ll



Lo .............. LM

L x L' L x L'

Lom .............. L

Figure 2-12: Another quasi-isomorphism from 9X(L x L') to Yoneda bimodule corre-
sponding to (L, L'). Note the green asterisk is an unconstrained point

Now, we have a diagram:

CF(L1 x L', L2 x L') hom(9M(L1 x L'), 9J(L2 x L')) (2.102)

hom(hL1 9 h',9 J(L2 x L'))

r y2
Y=Y~ 1 ,L' ,9Y(L 2 xL')

qx(L2 x L', L1, 7L')

, is a quasi-isomorphism, since YLL is. YL1,L,91(L 2 xL') is the Yoneda map, which

is also a quasi-isomorphism. It is given by insertion of (cohomological) units of L,

and L', and we abbreviate it by Y. Hence, to show 9% is a fully faithful functor, we

only need to show IF is a quasi-isomorphism.

For this purpose, we describe the composition. It is pictured in Figure 2-13. Again,

the green asterisks are unconstrained, and merely stabilize the components they are

in. Gluing the half discs correspond to unit insertion, i.e. Y. Middle component

corresponds to _Y!,L' and the leftmost component to the functor 9). The input is in

the seam of leftmost component. After gluing and folding, this can be described as

in Figure 2-14. The green asterisk stabilize the otherwise unstable disc. It is easy

to see this map is a quasi-isomorphism. Indeed, a left-quasi-inverse can be obtained

by flipping the same surface horizontally (and interchanging positive and negative

ends), and by gluing these we obtain a count of stable pseudo-holomorphic discs with

one incoming and one outgoing end. Modify the perturbation data to a translation

invariant one without changing its restriction to strip-like ends. This holomorphic

map would need to be constant due to its rigidity. Same argument works for a right

172



LxL' L 'x Li x L' L2 x L2

L11

L2 L2

Figure 2-13: The composition F

L1 xL'

L 1 xL t L 2 x L'

Figure 2-14: The composition r after folding and gluing

quasi-inverse. Hence, we have proven:

Proposition 2.4.3. The functor 91 defined by count of pseudo-holomorphic quilts as

in Figure 2-10 is cohomologically fully faithful.

Remark 2.4.4. Following a trick in [GPS18], one can make the choice of Floer data

defining 9A1 to be of product type. This way 9J(L1 x L') ~ hi 9 hL' is immediate

and we can avoid maps qj and -y. In this case, one has to replace the condition that

the data is of type defining To x M over (R x [0, 1/3] n Sf) x (To x M) by the same

condition for the data on a smaller, bounded neighborhood of the markings in the

middle seam. One can take the neighborhood to be points of distance less than 1/3

to a marking on the seam. One further imposes that the data is of product type

outside a slightly larger neighborhood of middle markings (such as points of distance

less than 2/3).

2.4.2.2 Modifications needed for the twisted case

In this section, we will show how to define a fully faithful twisted Kiinneth functor

-F(T0),, - Bimodte(.F(To)i, F(M)) (2.103)
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T(TO)p,1 denotes the full subcategory of T(To) spanned by product type Lagrangians

L x0 L' (i.e. images of Lagrangians of type L x L' C to x M under projection to To,

where L is a fixed lift of a compact Lagrangian in To). F(To) is the full subcategory

of Y(To) spanned by Lagrangian branes that lift to cover to. Fix a lift for each such

Lagrangian (given L C To, let L c to denote the lift and L(r) denote trr(L) as

before). We endow F(To), with an extra grading as in Section 2.3.3. More precisely,

the extra degree of a chord from L1 to Lo is the unique r such that chord lifts to a

path from 1, to Lo(-r).

r(T0)p,1 , resp. F(To) does not generate F(To), resp. F(To); however, our main

goal is to prove the same result for wrapped Fukaya categories. As shown in Corollary

2.2.6, resp. [LP16}, Lagrangians of type L x0 L', resp. Lagrangians that lift to to

generate the respective wrapped Fukaya category. We will define the analogue of

(2.103) on the full subcategory of wrapped Fukaya category spanned by generators

L x 0 L', but this- together with fully faithfulness- implies the "twisted Kiinneth

theorem" for the whole wrapped category. The reason we start by ordinary Fukaya

category rather than wrapped Fukaya category is purely expository. Twisted case

involves a different compactness argument, and we prefer to explain it for ordinary

Fukaya category first to separate this from compactness issues related to wrapping.

Before technicalities, we would like to mention that the labeling for quilts defining

9JA are as in Figure 2-15. To clarify, the asymptotic conditions we put on the markings

on the seam are given by chords from L' to L', in To. These chords has infinitely

many lifts to chords from 7-1(L') to 7r 1 (L'g1 ); however, once the labeling and other

asymptotic conditions are fixed, the lift is uniquely determined (this also uses the fact

that we only consider L" that lifts under 7). For instance, assume the labeling is as in

Figure 2-15. If we know the chord from Lo(-g) x L' to r-1 (L'), this determines the

component of 7-1(L') to which that part of the seam maps. Hence, this determines

the lift of the chord from L' to L'', determining the component of 7- 1 (L') that the

seam maps to, and so on.

We want equivalence of Figure 2-15 to Figure 2-16; hence, we will choose the Floer

data and perturbation data accordingly. One can compare this to the following: the
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Lo(- - L 1 (g) Lm

01Lo' ------------- '7gr- 1(L")

L'-..--... L'

Figure 2-15: Labeling for quilted strips defining 91 in twisted case

Lo(i -g) -- _Lm-1(i -gm) JM(i)

r 1(L ) ------------- r )

Oi(LO) -------------- Oi(L')

Figure 2-16: Equivalent labeling for quilted strips defining 91

symplectomorphism # does not a priori induce a strict auto-equivalence of the Fukaya

category. To make it strict, one needs to add quasi-isomorphic objects [L', n] for each

object L' C M and n E Z (and let # act by [L', n] '-+ [#(L'), n + 1]). This allows one

to choose Floer data invariant under #. We will abuse the notation and keep denoting

the objects of W(M) by letters such as L' and their images under the induced strict

autoequivalence by #(L'). The reason this is emphasized is that for Figure 2-15 and

Figure 2-16 to be equivalent, we need similar invariance conditions under tr x 4. For

this purpose, it still suffices to add quasi-isomorphic objects [L', n] for each L' C M.

Given L", L, L' and i E Z, choose Floer data for the pair (L(i-g) x #'(L'), ir-(L")).

We impose the condition that the data for L (-g) x L' and L (i -g) x #i(L') are related

by (tr x #)i. Hence, the chords from L(i - g) x #'(L') to 7r- 1 (L") can be identified

with the chords from L(-g) x L' to ir-(L"). Let 9JT(L", L, L') be generated by these

chords.

Similarly, choose the perturbation data for the labeling as in Figure 2-16 for each

i, in a way that it is related by (tr x 0)i to perturbation data for Figure 2-15. These

two conditions are important not only for bimodule equations, but also to obtain

maps (2.46).

We have two types of almost complex structures/Hamiltonians on To x M: one
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is product type data where we assume the datum on To comes from To under the

projection to -+ To. The other is the data that come from the data on To under the

covering map to x M -+ To. We call the former product type data and the latter

To-type data.

Now, we impose the following: after folding the strip, the perturbation data will

be of product type on R x [2/3, 1] n Sf, and it will be of To-type on R x [0, 1/3] n S!.

The reason we impose this is to ensure that in the compactification the stable discs

on the seam will be lifts of pseudo-holomorphic curves in To, and on the upper and

lower boundaries they will correspond to pseudo-holomorphic curves in To and M

respectively.

Assume compactness for moduli spaces of stable pseudo-holomorphic quilted strips

hold. Using equivalence of Figure 2-15 and Figure 2-16, one can easily check that the

count of such quilted strips defines a functor (2.103). In other words, when there are

no markings in the middle seam the twisted bimodule equations (2.46) are satisfied,

and when we allow inputs in the middle, this count defines an A.-functor to the

category of twisted bimodules with morphisms as in (2.47).

The proof of fully faithfulness is essentially the same as in Section 2.4.2.1. Namely,

one has to show the equivalence of 2 RLxoL with the twisted Yoneda bimodule hL Ot

hL'. A geometric description of twisted Yoneda bimodule is given by:

Lemma 2.4.5. Consider labeled quilted strips as in Figure 2-15 with no markings in

the middle seam (i.e. p = 0) and L' = L x0 L'. Endow the upper strips S1) with

Floer data coming from To and lower strips S'2) with Floer data coming from M (i.e.

endow the folded strip with product type data that is invariant under tr). Assume

the data is chosen in such a way that it only depends on the stable components S

and S(2) when there are markings on both lower and upper boundaries (as r varies

over a single moduli) and assume it is translation invariant on unstable components

(strips). Assume the data for labellings as in Figure 2-15 and Figure 2-16 are related

by (tt x <p)i as before. Then the count of such strips gives the twisted Yoneda bimodule

hL ot hL'.
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Proof. For the proof in untwisted case, see [Gan12, Prop 9.4]. For the twisted case,

call this bimodule IR. The generators of IN(Lo, L') are given by chords from Lo x L' -*

7r'(L x L'). As we are using product type Floer data for To x M, the graded vector

space generated by these chords can be identified with CF(Lo, L)r0CF(L', 0-r(L')),

where CF(Lo, L')' refers to degree r part in extra grading. Hence, as a graded vector

space, we have an identification of IR(Lo, L') with hL 0 tw hL' (see (2.50)). That 9'

and hL 0t, hL' have the same structure maps follows from the same proof as [Gan12,

Prop 7.3, Prop 9.4] together with identification of strips in Figures 2-15 and 2-16. 0

Remark 2.4.6. The reason we make the assumptions on the stable/unstable com-

ponents of Sr is to apply the trick in [Gan12, Prop 7.3]. Namely, for instance, if there

are markings on both upper and lower boundaries, then a rigid quilted strip would

restrict to pseudo-holomorphic maps S - To and S2 M. But the quilted strips

Sr with these components are parametrized by R and as the data only depends on

the components, the quilted strip itself cannot be rigid. One can presumably, dismiss

this condition, as it is likely that we can write bimodule quasi-isomorphisms between

bimodules defined using this type of data and more general data similar to -YLL'. The

condition roughly means that the data on S,. comes from data on the moduli spaces

of stable discs defining F(To) and T(M).

Hence, using the count of pseudo-holomorphic strips labeled as in Figure 2-15

with no markings and one unconstrained point on the middle seam (cf. Figure 2-12)

one can define a quasi-isomorphism between twisted Yoneda functor and 93(L x 0 L')

analogously to Section 2.4.2.1. More precisely, choose the data on compactified moduli

of quilted strips as in Figure 2-12 inductively on the strata. On the lower strata,

assume the data on quilted strip components (without asterisk) are of 9R or Yoneda

type (i.e. as defined in Lemma 2.4.5). Then extend to higher dimensional strata after

gluing.

To obtain analogue of diagram (2.102), one also needs an analogue of Y, which is

provided by Lemma 2.3.12. The rest of the proof of fully faithfulness is the same.

Now, we turn back to the question of compactness. For this, we need to impose
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Figure 2-17: The annulus A c To and its lifts to to

further conditions on perturbation data as we will explain now. to x M is not of

finite type; therefore, even in the case of Fukaya category of compact Lagrangians, we

have to show pseudo-holomorphic curves of fixed (finite) boundary conditions, fixed

asymptotic conditions and bounded energy do not escape to infinity. Presumably,

one can adapt geometric boundedness arguments in [Sik94], [Grol5] and dissipative

Floer data in [Grol5]. However, there is a simpler solution, which can actually be

seen as a baby version of i-boundedness of [Gro15]. Choose an annulus A as in Figure

2-17. In particular it satisfies:

1. A lifts to to

2. Every path connected subset of to that is not contained in a finite subdomain

crosses infinitely many lifts of A on both boundary components.

Fix a trivialization of fibration To -+ To over A, i.e. identify it with A x M over

A. Let Ai denote the lifts of A. We will choose the Floer and perturbation data on

To x M to be of product type over Ai x M (we do not have to say with respect to

which trivialization of Ai x M - Ai, as they all differ by 1 x #k and this does not

effect the product type assumption).

The projection of a given a pseudo-holomorphic map into to x M is pseudo-

holomorphic over the annuli Ai. This is due to product type assumption. Hence, we

need a lower bound on the energy of pseudo-holomorphic curves mapping into annuli.

This is achieved in the following lemma:

Lemma 2.4.7. Let A = [s-, s+] x S' be an annulus with coordinates s,t E R (where

t-coordinate is 1-periodic). Endow A with the symplectic structure WA = ds A dt and
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a compatible almost complex structure. Let E be a closed, connected Riemann surface

with (non-empty) boundary and / be a closed one form on E that has integral periods

(in other words fc # G Z for every 1-cycle C C E). Let h = as, where a is a fixed

element of Q+. Assume v : (E, OE) -+ (A, OA) satisfies the equation

(dv - Xh 0 0)0' = 0 (2.104)

Theme the topological energy of v is non-negative and takes values in (s+ - s-)(Z +

aZ) c (s+ - s_)Q. In particular, it is at least (s+ - s_)gcd(l, a) > 0 if Im(v) is not

contained in OA = {s_, s+} x S'.

Proof. We compute the topological energy using Stokes theorem. In other words

EalJ(v) = j v*w - d(v*(h).3) = j v*sdt - v*(h).# (2.105)

Let OE+, resp. 9E_ denote OE n v-1(s+), resp. 9E n v- 1 (s_). Define

n:= dt = dtEZandm:= j/ = j3 EZ (2.106)
far, fa ar, fE+ _l

The equalities of integrals hold since dt and 0 are closed. They are integers since we

choose / with integral periods. Then as s and h are constant on either of E

EOP(v) = (s+ - s-)(n - ma) (2.107)

This proves the first claim.

Non-negativity holds since

EtOP(v) = Ee2( )= d - Xh I2 >0 (2.108)

in this case (E9eO - Eto - f_ v*h.d#, but d/ = 0).

Finally, if EtaP(v) = E9eO(v) = 0, then dv = Xh 0 over all E. Hence, image of v

is contained in a single Xh-orbit. This has to be be on the boundary of A. L
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Note 2.4.8. To apply Lemma 2.4.7, one can let the perturbation term to be K

h/3+ -y, where -y is a 1-form on E and h, 3 are as in Lemma 2.4.7 (since XK = Xh &

in this case). Moreover, if we assume E is simply connected, then the condition that 3

has integral periods becomes automatic, and the condition on the perturbation term

K becomes infinitesimal. In other words, one can let K E Q 1 (E, C (A)) to satisfy

the following conditions:

" 3o := 8,(K) is a closed 1-form on E (i.e. dE(0,(K)) = dA(Os(K)) = 0)

" K - sio is a 1-form on E (i.e. dA(K - sio) = 0)

Recall s is a coordinate on A and not on E. We do not need to fix a in case E is

simply connected, but if we fix a, one recovers 3 as 3o/a.

Definition 2.4.9. For a simply connected Riemann surface S, we call the pertur-

bation data (K, j) (or simply the perturbation term K) a-sloppy, if K satisfies two

conditions listed in Note 2.4.8. In the case of Floer data (on strip-like ends), we

also assume 0 is standard (this means = d 2 , if the strip-like end has coordinates

(61, E2) E R x [0, 1], this assumption is relevant when such data depends on a).

Fix small a E Q+ so that all Hamiltonian chords in to and To over chords of

h = as are non-degenerate. To summarize all the conditions on perturbation/Floer

data (K, J) (where K E Q 1 (Sf, C (To x M)) and J is a family of almost complex

structures on To x M parametrized by S/):

1. over (R x [2/3, fl n S!) x T x M, (K, J) is of product type

2. over (R x [2/3, 1] nS!) x To x M, the To-component of the datum is the pullback

(under to -+ To) of restriction of a datum on (R x [2/3, 1]) n s1)

3. over (R x [2/3, 1] n s/) x TO x M, M-component is the restriction of a datum

on (R x [2/3, 1]) n S2)

4. over (R x [0, 1/3] n Sf) x To x M, (K, J) is tr x -invariant (i.e. it is pulled

back from TO)
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5. over Sf x Ai x M, (K, J) is of product type

6. the To component of K is a-sloppy over Sf x A. x M

7. 1 XK <C and Ids(K)I < C over to x M c T x M, where ds(K) is the exterior

derivative of K in the S! direction and C is a positive constant

8. (only for compact Fukaya category) K is supported in S/ x (int(to) x int(M))

When making choices of data for families of strips, we assume there exists a uniform

constant C as above; however, we do not fix C for all choices of data (in other words,

there could be another choice of data over the same family with a larger constant).

Note that not fixing the constant is important in the contractability of such choices.

Remark 2.4.10. When we are working with the compact Fukaya category, we can

assume everything takes place in the interior of given Liouville domains; hence, we

mostly used the compact parts to, To, M etc., rather than their completions. The

last condition in particular, implies the pseudo-holomorphic maps to the Liouville

completion (with boundary and asymptotic conditions in the interior) stay in the

interior (this follows from Lemma 2.4.19, if one assumes that almost complex structure

is cylindrical near the boundary).

For a clarification on the product type assumption, see Definition 2.4.17. We defer

the question of existence and contractability of such data to Section 2.4.3.The norms

IXKI and Ids(K)I at a point x E Sf are taken with respect to metric induced by

the almost complex structure at x. Given consistent choices of strip-like ends, one

has thin-thick decomposition of the (quilted) Riemann surfaces in the moduli (see for

instance [Sei08c], [Grol5]). For instance, if we glue two Ricmann surfaces along one

end of each, the thick part of the glued surface is the complement of other strip-like

ends and the part corresponding to glued ends of initial surfaces. Moreover, we can

make the choices of ends such that:

Assumption 2.4.11. The thick part has area uniformly bounded by a constant D1 .
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The consistency of choice of data (J, K) means that near the boundary of moduli,

(J, K) and the data obtained by gluing from the lower dimensional strata matches

up to infinite order (see [AS10], [Abol0]). The curvature R vanishes over the strip-

like ends (see (2.109) in Lemma 2.4.13); however, this does not imply vanishing over

the thin part if we only assume asymptotic consistency. On the other hand, we can

assume:

Assumption 2.4.12. The difference of (perturbation terms of) (J, K) and data ob-

tained by gluing is exponentially (Cl) small in terms of the gluing length. In particu-

lar, the curvature has uniformly bounded integral over the thin parts as well (call this

uniform bound of integral D2 ).

Under these assumptions, we have:

Lemma 2.4.13. The curvature is bounded and for a given pseudo-holomorphic strip

u, EtoP > Ege" - D for a uniform constant D.

Proof. Recall that the curvature R has the following form

R = (08K(Ot) - DtK(&8 ) + {K(as), K(at)})dsdt = ds(K) + {K, K} (2.109)

in local coordinates (see [Seil2, 5.14] for instance). Clearly

I{K, K}I = iw(XK, XK)I XKj 2  (2.110)

Hence, IRI < C2 + C. Moreover, R vanishes over the strip-like ends (this follows

easily from (2.109)), and the integral of R is bounded by D2 over the thin parts by

Assumption 2.4.12. Let (S)thick, resp. (SI)thin is the thick part, resp. thin part of

S! (we are being slightly informal in thin-thick decomposition of Sr as S, is actually

a quilted surface, one has to take care of parts near the upper and lower boundary of

S, before folding). We have

IE - Et"I < j u*R + j u*R < D1 (C 2 + C) + D2 (2.111)
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which proves the claim.

Remark 2.4.14. One can weaken the assumption on the choices of strip-like ends and

K. Namely, one can allow the bound C to vary over the strip so that the curvature R

would be uniformly bounded by a positive function over the strip with finite integral.

Choose such perturbation data consistently over all moduli spaces Q(d). Then

we have:

Corollary 2.4.15. The moduli of pseudo-holomorphic strips with fixed labeling and

asymptotic conditions on the strip-like ends is compact.

Proof. It is enough to show that images of all strips are contained in a fixed bounded

region in to x M. In other words, they do not go to ends of to component. First, the

topological energy depends only on the asymptotic conditions on the marked points,

see [Seil2, (5.13)] for instance. Hence, by Lemma 2.4.13, the geometric energy is

bounded.

Moreover, by Lemma 2.4.7, there exists an E > 0 such that each time the folded

strip passes through the pre-image of Ai, the topological energy increases at least by

e. Indeed, the geometric energy in Ai component is the same as topological energy

in that component. The total geometric energy is the sum of geometric energies in

both components. Hence, the total geometric energy increases at least by e. Since

the total geometric energy is bounded, the curve can cross only finitely many of Ai,

finishing the proof. El

Remark 2.4.16. As mentioned, to apply the argument in Section 2.4.2.1, one defines

maps 7LL and rIL,L between twisted Yoneda bimodule and 9DL xL'. For this purpose,

one still has to choose the perturbation data on folded strip so that compactness holds.

A simple modification of Conditions (1)-(8) above gives rise to such data: namely, for

instance for counts defining y assume the data satisfies Conditions (1)-(8) on the right

end, and it is of product type and tt-invariant (i.e. satisfies (1)-(3)) on the left end

(in addition to intersection of the folded strip with R x [2/3, 1]). We do not need to

(and cannot) impose t x h-invariance over all R x [0, 1/3]. Conditions (5)-(8) remain
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unchanged. Modifications for counts defining r/L, are similar. It is also similar for

counts of stable discs with one auxiliary marking that define units. For instance, we

assume a-sloppy conditions for counts defining units of T(To).

2.4.3 Modifications needed for wrapped Fukaya categories

In this section, we describe the necessary modifications to Section 2.4.2.1 to prove:

Theorem 2.1.12. W(TO) is quasi-equivalent to twisted tensor product of W(T) and

W(M).

For the definition of wrapped Fukaya categories we follow [Abo10]. In other words,

we use Hamiltonians that are quadratic at infinity.

Throughout this section, let W(To) denote split generating subcategory (of the

big wrapped Fukaya category) spanned by L, and Lpu. The fixed lifts endow this

category with an extra grading as before. Let W(M) denote a split generating cat-

egory spanned by cocores of the Weinstein structure used in Section 2.2.2 and their

iterates by 4. Assume W(M) is made #-equivariant in the way we explained. Let

W(To) denote the category spanned by L x, L' where L E W(To) and L' E W(M).

To prove Theorem 2.1.12, we need to define an analog of (2.103), i.e. an AC-

functor

W(TO) -+ Bimodt,(W(To), W(M)) (2.112)

This will use count of quilted strips as in Figure 2-15. The main issue to be addressed

is compactness. Apart from preventing pseudo-holomorphic curves from escaping to

left and right ends of To x M (which we showed how to handle in Section 2.4.2.2), one

has to prevent curves from escaping to conical end. To solve this problem, we follow

[GPS18]. Namely, we define a category W2 (To), that is quasi-equivalent to W(TO)

and define an Ax-functor

W 2 (TO) -* Bimodte(W(To), W(M)) (2.113)

using the count of quilted strips as in Figure 2-15 (or equivalently as in Figure 2-16).
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The category W2 (TO) is analogous to W/2 of [Gan12], VVS of [Gao17] and WpIod of

[GPS18]. The basic idea is the following: even though T is not a product, its conical

end can be identified with the conical end of the product. Hence, one can talk about

the product type data on the conical end.

More precisely:

To \ To = ((To X M) \ (To X M))/(tt X 2)

((lo \ To) X M /(tr X 4) U (To X (M\ M))/(tr X ()

(To \ To) is isomorphic to infinitely many copies of To \ To and tr moves one to the

next. Hence

((T0\T) x MT /(tr x ) (TO\To) x M (2.115)

Moreover, # acts trivially on (M \ M); hence

(to x (M\ M))/(tr x o) 0 x (M \ M) (2.116)

The intersection of these subsets is isomorphic to (To \ To) x (M\ M) with the obvious

embeddings. Hence, the conical end of To can be written as the union of products

(2.115) and (2.116).

As before, we refer the reader to [SeiO8c] for the conventions about Floer data and

perturbation data. As a quick reminder, given a Riemann surface with boundary E

and symplectic manifold X, a perturbation data is a pair (J, K), where J is a family

of compatible almost complex structures on X parametrized by E and K is a CO (X)

valued 1-form on E that vanishes along the directions tangent to OE.

For a product of symplectic manifolds, we have a special type of data:

Definition 2.4.17. Let X x Y be a product of connected symplectic manifolds and

(J, K) be a perturbation datum on X x Y with domain E. We call J is of product

type over E x X x Y if it can be written as a direct sum of families of almost complex

structures on X and on Y parametrized by E. Similarly, we call K is of product

type over E x X x Y if it can be written as K1 + K2 , where Ki C Q1 (E, C (X))

185



and K2 E Q 1 (E, C (Y)). Clearly, the decomposition of J is unique. Moreover, the

decomposition of K is unique up to addition of a 1-form on E. In other words, one

can also decompose K as K = (K1 + y) + (K2 - y) for a -y E Q1 (E), and that covers

all possible decompositions. We still refer to K1 and K2 as the components of K.

(J, K) is called product type over E x X x Y if both J and K are of product type

over E x X x Y.

For the wrapped Floer homology we need:

Definition 2.4.18. Let (X, Ax) be a Liouville domain and X be its completion. Let

E be a Riemann surface with boundary components labeled by Lagrangians such that

Ax vanishes on these Lagrangians. Let (J, K) be a perturbation datum on X with

domain E. We call (J, K) cylindrical if J,| 1 \x is invariant under Liouville flow for

each s E E and KIx(g\x) can be written as r2 -y + 77 where -y, r c Q1(E), dy < 0 and

r is the Liouville parameter (over the strip-like ends, assume -y = dt as usual). The

negativity (subelosed) assumption can be stated as

d (K - 7) = (08,(K - 71)(t) - 8t(K - q)( 8 ))dsdt < 0 (2.117)

where s + it are holomorphic coordinates on E. For the restrictions to strip-like ends

of E (once they are chosen), we make the standard assumption on J and K. For

instance, K can be written as r2 dt on the conical end over the strip-like ends (or as

wr2 dt when the end is weighted for the purposes of rescaling, see [AbolO, Definition

4.1]).

The integrated maximum principle (see [ASlO, Lemma 7.2], [AbolO, Lemma B.1],

[Gan12, Appendix A.2]) applies to cylindrical perturbation data. More precisely, let

E be a closed Riemann surface with corners such that OE can be written as union of

smooth curves 01E and &,E. Choose cylindrical perturbation data on X with domain

E (we assume K IE = 0 but we do not assume Ko> vanishes). Let L C Z \ int(X)

be a cylindrical Lagrangian such that AxIL = 0. Let u : E -+ {r > ro} be a map

satisfying
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1. (du - XK)0O' =

2. u(OYE) c {r = ro}

3. u(01E) c L

Then, we have:

Lemma 2.4.19. The image of u is contained in {r = ro}.

Combining Definitions 2.4.17 and 2.4.18, we obtain the following definition:

Definition 2.4.20. Let (J, K) be a Floer data on To with domain E. We call (J, K)

of W 2 (To)-type if it is of product type on E x (TO \ To) x M, resp. E x To x (M\ M)

and their components are cylindrical (on the conical ends). Here, (To \ To) x M, and

To x (M \ M) are seen as subsets of To.

Lemma 2.4.19 applies to W 2 (To)-type data as well. More precisely, for curves

mapping to conical end TO\TO, one can apply Lemma 2.4.19 to components separately

and conclude that the curve is contained in a fixed compact subset. See Lemma 2.4.27

for a proof in a more general case.

The existence and contractability of such data may not seem obvious at first.

Hence, we prefer to include a proof here:

Lemma 2.4.21. W 2 (T4)-type data exists and the set of such data is contractible.

Proof. For the existence, put data on E x (To \ To) x M and E x To x (M \ M)

that agree on the intersection and that satisfy the assumptions (product type and

cylindrical on conical ends). Then extend it to the rest of E x T.

For the connectedness of such data, one needs to preserve the product type as-

sumption. Hence, given two such data (J, K) and (J', K'), first construct a datum

(Ji, Kj) that agree with (J, K) in the first components of (TO\TO) x M and To x (M\M)

and that agree with (J', K') in the second. Then one can connect (Ji, Kj) to both

data along the data that is product type on the conical end and satisfying the required

conditions (A simple illustration of the idea is the following: to connect two metrics
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g1 X 92 and g' x g' on the product along product type metrics, one first connects

91 x g2 to 91 x g1 then gi x g' to g' x g'. Indeed, this together with retraction of the

space of metrics onto almost complex structures let us connect product type almost

complex structures as well).

The higher connectivity and contractability are similar. Indeed, one can do the

same for a family of data parametrized by a topological space X. Namely, first extend

the family from X ' X x {O} to a family of data parametrized by X x [0, 1], where

the first components are the same over X x {1}. Then, use the contractability of data

on the second component to extend this family to cone of X (i.e. to X x [0, 2]/X x

{2}). l

Now we are ready to define W 2 (TO):

Definition 2.4.22. Let /V
2 (TO) (or W 2 in short) be the category with objects L x L'

(see Section 2.2.3 for the definition of L x, L'), where L E W(To) and L' E W(M).

Fix a Floer data for the pairs of objects and consistent choices of perturbation data

for finite sequences of objects, all assumed to be W 2 (To)-type. The hom complex

CWw2(Ll x0 L', L 2 x 4 L') is generated by the Hamiltonian chords from L1 x , L' to

L 2 x0 L'. The A,-structure is defined by the count of holomorphic stable discs as

usual.

Remark 2.4.23. We are ignoring the standard rescaling problem here. To be more

precise, one needs to choose weights and time shifting maps for each stable disc. See

[Abo10, Definition 4.1]. The rescaling uses the Liouville vector field defined in Section

2.2.1 (which matches with the product Liouville form for To x M on the conical end

of To under the natural identification).

It is standard that this defines a Z-graded A,-category over C for a generic choice

of data. See [Gan12] and [Gao17] for more details.

Note 2.4.24. One still has to compare IN(TO) and W 2 (TO), which is hard in the

definition of wrapped Fukaya category with quadratic Hamiltonians. On the other

hand, [GPS18] uses a different definition and gives a proof of equivalence of these
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categories in the untwisted case (i.e. for 0 = 1M, To = To x M). Their proof

applies verbatim in the twisted case. More precisely, they define W and IN2 
(WPTOd

in their notation) using localization and the same definition can be carried in the

case of W2 (To) as well. In other words, one can first define an ordered version of

W 2 (T) using W 2 (To)-type almost complex structures (with vanishing perturbation

term) and then localize with respect to a set of continuation elements. Then the

same proof for the equivalence of WP'od and W applies (one also has to cylindrize

L x, L' as in [GPS18], but this also takes place outside the interior of T which

cannot be distinguished from the same manifold when # = 1). What remains is the

comparison of different definitions of wrapped Fukaya categories, and the comparison

of different definitions of W 2 . One can write a functor from the ordered version to WV

defined using quadratic Hamiltonians by counting stable discs with one auxiliary inner

circle tangent to output point (inner circle is not a seam, the disc maps to the same

space, but the domain of the pseudo-holomorphic map varies over the multiplihedra).

Then, one can show this factors through a quasi-equivalence from the localization of

ordered Fukaya category. We skip this proof here. Alternatively, everything we do in

this section can be carried out using localization definitions (see Remark 2.4.32).

We will address the compactness of the moduli of pseudo-holomorphic (folded,

quilted) strips later in this section. If we assume compactness holds, definition of

(2.113) and proof of fully faithfulness is the same as Section 2.4.2.1. In particular,

one defines continuation morphisms ^UL' and /LL' using the count of quilted strips

Figure 2-12 (except one has to modify the labeling as in Figure 2-15 and choose data

so that this would be equivalent to Figure 2-16).

Moreover, the essential image of (2.113) is generated by twisted Yoneda bimodules.

This completes the proof of Theorem 2.1.12.

What remains is to give a class of Floer data for which the moduli of pseudo-

holomorphic quilted strips is compact. The conditions will be a combination of

conditions in Section 2.4.2.1 and conditions ensuring compactness in the context of

wrapped Floer homology.

As remarked before the conical end To x M \ To x MA is a union of infinitely many
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copies of the conical end To \ To ~ Ryo x S'. Denote closure of these components by

B5, i E Z (ordered in a way that tr(B) = 5j+1).

Definition 2.4.25. Given a Riemann surface E (such as Sf), we call perturbation

data (J, K) of W 2-type, if it is of product type over E x b5 x M for each i and over

E x To x (M \ M) such that B5, resp. (Al \ M) components are cylindrical.

Remark 2.4.26. It is clear that W(TO) type data can be seen as W 2-type data that

is invariant under ft x #.

As mentioned before, one way of proving compactness results required for wrapped

Floer homology is to use integrated maximum principle (see [AS10, Lemma 7.2],

[AbolO, Lemma B.1], [Gan12, Appendix A.2]) and the assumptions in Definition

2.4.25 ensure that no solution can escape to conical end as in the case of W 2 (To)-type

data. More precisely:

Lemma 2.4.27. Let u : E - To x M be a solution to perturbed Cauchy-Riemann

equation with W 2-type perturbation data. Assume the strip-like ends converge to

chords in a compact region and the boundary components of E map to Lagrangians of

type L x L' C To x M such that L, L' are cylindrical and the Liouville form vanishes

over them outside a compact subset. Then, u is contained in a subset of type {r1 <

R} x {r2 < R}. Here, r1 and r2 are Liouville parameters and R is constant that

depends only on the asymptotic and boundary conditions.

Proof. As before, this follows by considering components of u = (ui, u2 ) separately.

Namely, consider the map u1 : E -+ To. It is not pseudo-holomorphic, but the

part that maps to cylindrical end is pseudo-holomorphic due to W 2-type assumption.

Hence, it is contained in a subset {r, < R} by Lemma 2.4.19. The other component

is similar.

Note that the subset {r, < R} x {r2  R} C To x M is not compact. However,

one can address the problem of escaping to left and right ends of To as in Lemma

2.4.7 and Note 2.4.8.
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We would like to write a list of conditions on Floer and perturbation data. There is

a technical subtlety about the perturbation data; namely, one needs to apply rescaling

trick to define the trimodule 9R (similar to [Abo10, Definition 4.1] for instance).

Hence, the following set of conditions is precise only for the Floer data (the strip

without any marked points) defining the differential and we will postpone necessary

modification for the interested reader to Section 2.4.3.1. In the following, S, denotes

the unstable strip; however, the reader who wishes to ignore rescaling issue may take

S, to be elements of general moduli spaces Q(d) and Q(d) (hence there will still be

phrases about making consistent choices of data even though the careful reader may

wish to think this in the context of Section 2.4.3.1).

Fix a small a E Q+ so that all Hamiltonian chords in To and To projecting to

chords of h = as are non-degenerate. The conditions on perturbation/Floer data

(J, K) are:

1. over (R x [2/3, 11 n S!) x To x M, (K, J) is of product type

2. over (R x [2/3, 1] nSf) x To x M, the To-component of the datum is the pullback

(under To --* TO) of restriction of a datum on ((R x [2/3, 1]) n srk ) x To

3. over (R x [2/3, 11 n Sf) x To x M, M-component is the restriction of a datum

on ((R x [2/3, 1]) n S ) x M

4. over (R x [0, 1/3] n Sf) x To x M, (K, J) is W 2 (T6)-type

5. over S! x A x M, (K, J) is of product type

6. the To component of K is a-sloppy over Sf x Ai x I

7. IXK <C and Ids(K)I < C over To x M C T x M, where ds(K) is the exterior

derivative of K in the S1 direction and C is positive constant

8. (only for the wrapped Fukaya category) K is of W2 -type

The first and second conditions are related to W 2 (TO)-W(T)-W(M)-trimodule struc-

ture as in Section 2.4.2.2 (i.e. we need them to define a functor W 2 (TO) -+ Bimods(V(To), VV(M))).
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As before, the norms IXKI and Ids(K)I at a point x E S/ are taken with respect to

metric induced by the almost complex structure at x.

We still assume Assumption 2.4.11 and Assumption 2.4.12. Also, when making

choices of data for families of strips, we assume: there exists a uniform constant C as

in (7); however, we do not fix C for all choices of data (in other words, there could be

another choice of data parametrized by the same family with larger constant). Note

that not fixing the constant is important in the contractability of such choices.

Lemma 2.4.28. For sufficiently large C, the space of Floer/perturbation data satis-

fying conditions (1)-(8) is non-empty. Moreover, this space is contractible.

Proof. We only consider the case where there are no markings in the upper and lower

boundary as more general case is similar. Hence, let r denote this quilt.

Due to translation invariance of Floer data, one has to construct data parametrized

by the interval [0, 1] that is tr x h-invariant on [0, 1/3] and is product type and tr-

invariant on [2/3, 1]. Hence, construct W2 (Tp)-type data on [2/3, 1]. One has to

make sure it satisfies condition (5) and (6). But this is simply another product type

assumption, namely the data is product type on the subproduct Ai x M' and Ai

component satisfies various assumptions. Condition (7) is a pointwise condition and

can also be incorporated easily. One has to make extensions from data on

[0, 1/3] x (UA x MU U i x M x To x (M\ M)) (2.118)

to [0, 1/3] x To x M while keeping K small on the rest. This is a reason we have

to take large C: a-sloppy condition already puts a constraint on how small K may

become (similarly, that the Floer data is r2dt on the boundary is a constraint).

To put tr-invariant product data on [2/3, 1] is simpler:. simply repeat what we

did before to construct data on [2/3, 1] x To. Then, take product with data on M

satisfying bound conditions similar to (7).

To extend the data on [0, 1/3] U [2/3, 1], while keeping product type conditions

on Ai x M, B x M and To x (M\ M), one has to go through "zigzags" over the

subproducts Ai x R, B4 x Al and To x (M \ M). This is explained in the proof of
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Lemma 2.4.21 (this is similar to connectivity of product type metrics on X x Y: to

connect gx x gy to g' x gy, connect both to gx x gy). The condition (7) is convex

in K; hence, (approximately) piecewise-linear interpolations of the perturbation term

does not break the condition (maybe at the expense of increasing C slightly).

Hence, we can construct Floer data satisfying these conditions. The proof works

for perturbation data on quilted strips with markings as well. Moreover, the exis-

tence proof works in families as well, implying the existence of consistent choices and

contractability of such choices.

It is easy to see that (asymptotically) consistent choices of Floer/perturbation

data (with uniform C) exists. The contractability of such choices can also be shown

in a similar way. Moreover, the choice can be made so that

Assumption 2.4.29. The difference of (perturbation terms of) (J, K) and data ob-

tained by gluing is exponentially (Cl) small in terms of the gluing parameter.

As remarked before, this assumption lets us bound the integral of the curvature

R = (OsK(Ot) - &tK(&5) + {K(9), K(Dt)})dsdt = ds(K) + {K, K} (2.119)

over the thin parts (recall the remarks about thin-thick decomposition) and the bound

can be chosen uniformly over a single moduli space.

Make a consistent choice of Floer/perturbation data satisfying this assumption.

Collecting everything we have:

Lemma 2.4.30. The solutions to perturbed Cauchy-Riemann equation (for such per-

turbation data) with given boundary conditions and asymptotic conditions are con-

tained in a fixed compact region of To x M. Hence, the moduli of stable-quilted strips

is compact.

Proof. That the curves are contained over a finite subdomain of To follows similar to

Corollary 2.4.15. That they do not escape to infinity on the conical end follows from

Lemma 2.4.27.
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It is standard to show the 0 and 1-dimensional moduli of quilted strips is cut-out

transversally for a generic choice; hence, they form smooth compact manifolds with

corners. Thus, by counts of zero dimensional moduli, one can define the trimodule

91, the twisted bimodule maps and other relevant maps. By standard gluing results,

TQFT argument given in Section 2.4.2, and generation result Corollary 2.2.6, one

concludes the proof of Theorem 2.1.12. More precisely, the functor

W(To) ~ W 2 (TO) -+ Bimodt(W(To), W(M)) (2.120)

defined by 91 is full and faithful and the essential image of Lagrangians of type L x 0 L'

split generate the split closure of triangulated envelope of twisted Yoneda bimodules.

Remark 2.4.31. Similar to Remark 2.4.16, modifications are needed to define the

maps 'YLL' and T/LL' used in Section 2.4.2.1 so that compactness holds for the relevant

count. For instance, for counts defining -YLL', we assume the data satisfies Conditions

(1)-(8) on the right end and it satisfies (1)-(3) on the left end (in addition to inter-

section of the folded strip with R x [2/3, 1]). We do not need to (and cannot) impose

tr x <-invariance over all R x [0, 1/3. Conditions (5)-(8) remain unchanged (except

for the rescaling issue that will be addressed in the next subsection). Modifications

for stable discs defining units are similar; for instance, we assume a-sloppy condition

for counts defining units of W(To).

Remark 2.4.32. As mentioned, [GPS17] defines the wrapped Fukaya category in a

different way: they first define an ordered A,-category and then localize with respect

to a set of morphisms called continuation maps. This definition is attributed to the

work of Abouzaid and Seidel. Everything, we did can be done in this language, this

adds minor complication to the algebra, yet simplifies the analysis substantially. For

instance, due to absence of perturbation term, none of the conditions related to K

would be needed. Moreover, there is no rescaling issue in this definition, making

Section 2.4.3.1 redundant.
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2.4.3.1 Rescaling problem for quilted strips

So far, we have deliberately ignored the (almost standard) rescaling problem one

can encounter in definition of wrapped Fukaya category. This section addresses this

problem for the quilted strips defining 91. It is slightly technical and the reader may

skip if they prefer. We will assume familiarity with rescaling trick as in [Abo10].

Recall that to define the products on the wrapped Fukaya category, one has to

rescale the output Lagrangian by the Liouville flow and identify the Floer chain com-

plexes (see [Abol0, (3.4)]). Let E be the domain curve (i.e. an open Riemann surface

with boundary and fixed strip-like ends). The amount of rescaling is determined by

a function pr : 0E -+ [1, oc) that is equal to a constant (called the weight) near the

boundary punctures. Indeed, perturbation data in the context of wrapped Fukaya

category involves a consistent choice of time shifting maps pE as E varies (where

the signed sum of weights is assumed to be 0).

As mentioned, for W(To), one does the rescaling by the Liouville vector field

introduced in Section 2.2.1, which restricts to product type Liouville structure over

the cylindrical end.

However, rescaling is not compatible with the conditions (5) and (6) as the Liou-

ville flow distorts the annuli Ai and the resealed data no longer satisfies these. Hence,

we would like to explain the necessary modifications on these conditions to make data

invariant under rescaling.

Another issue about rescaling is the Liouville vector field we use to rescale. One

may try the product type Liouville vector field on To x M, but then condition (4) will

not be preserved. Similarly, the Lagrangian labeling on the middle seam belong to

To, but under such a rescaling it will lose this property. To deal with this problem,

we will not modify (4) but rather choose the Liouville vector field we rescale with

carefully. We will let it vary over the domain curve.

First, the function p of Section 2.2.1 (not to be confused with time shift map pE)

can be chosen such that the Liouville vector field defined by (2.12) is product type over

A x I C To (i.e. it can be written as a sum of vector fields on A and M, under the
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trivialization of T , -+ To over the annulus A C TO) with To component given by the

restriction of ZTo. Let Zt. denote the lift of this vector field to to x M. By definition,

the restriction of Z to Ai x M has the same Ai C To component as the product

type Liouville vector field given as the sum of Liouville vector fields corresponding to

pull-back of AT0 and corresponding to Am. Denote the latter (product type) vector

field on to x M by Zi + ZM. As the to components of Z, and Zi + ZM are

the same (over Ai), their linear interpolation is through Liouville vector fields that

is of product type over Ai. Moreover, the flow of any Liouville vector field of type

(1 - e)Zi, + e(Zi0 + ZNI) (where e c [0, 1]) acts on Ai x M in the same way and

preserves the product decomposition. We will denote the corresponding Liouville

vector fields on the completions by the same notation.

The conditions (5) and (6) will be weakened to hold on a varying family of annuli

over the strip. More precisely, let E be an open Riemann surface with boundary and

fixed strip-like ends and let fE : Z -- (0, oo) be a map that is constant over the

strip-like ends (hence bounded and bounded away from 0). For instance, one can

choose a time shifting map pr : OE - [1, oc) which extends to a map E -+ [1, oc)

that is constant over the strip-like ends. Let ZI denote the Liouville vector field on

To corresponding to pull-back of AT0 under To -+ To and let OP denote the time log(p)

Liouville flow of Zt0 . Let

Ai c E x To c E x To (2.121)

denote the pre-image of E x Ai under Of : E x To -+ E x To. We repress f from

the notation. For E = S(), we choose f to be an extension of a time-shifting map

(denoted by pr : -+ [1, oo)). Also, denote A by Z.

The condition we would like to replace (5) with is:

(5') over A x AI C 8/ x To x M, (K, J) is of product type

The meaning of this for J is clear. For K, this means it can be written as a sum

r) l(S2)
of Ki E Q'(Ai) (such that K1 vanishes in To-directions) and K2 E Q1(0 r, C (M))

(see Remark ??).
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Note 2.4.33. Before modifying the condition (6), we would like to make a clarifica-

tion similar to Remark ??. As remarked the Floer data for the definitions of wrapped

Fukaya category contains another piece of data: a time-shift map pr : OE -+ [1, oc).

A time-shift map for the quilted strip can be defined to be a pair of functions

p(:1) -+ [1, oc) and p : OS -+ [1, oc) (that are constant on the bound-

aries of strip-like ends) such that the restrictions of pr and p are the same over

the lower boundaries of SP) and S'2) (i.e. over the middle seam), and over the right

and left ends. In this case, the rescaling is by log(p, )ZI; on the upper boundary of

quilted strip Sr, by log(p, )ZM on the lower boundary of S, (i.e. upper boundary of

Sr), and by log(p(1))Z- = log(pr )Zt, on the seam.

We choose extensions of time-shift maps to SP) and Sr2) such that they are the

same on the left/right strip-like ends and on (R x [0, 1/3])nSl = (R x [0, 1/3])n SW.

The asymptotic consistency condition for such pairs of maps as r varies over the

moduli is clear. We assume the choices are made consistently. Note, we have to

assume the equality of sum of input and output weights. This is automatic when

perturbation term is of type H-y such that d-y = 0, but not in our case. We also

assume that pr are bounded (uniformly over the moduli), and we make the consistent

choices so that over the thin parts the difference between p(') and the extended time

shift maps one can obtain via gluing are exponentially close in terms of gluing length

(this also requires us to make choices of extensions of time shift maps to the stable

discs that are used to define A,,-structure on W(To), W(M) and W(To)).

As mentioned, the rescaling is made by an interpolation of Zt. + ZM and ZT over

the left and right strip-like ends. We would like to include this as part of the data.

More precisely, consider the left or right strip-like end of Sf, which we denote by sf

Let w = log(p ')) - log(p ) denote the weight on this end. We choose a translation

invariant family of vector fields ZSC (we omit left/right end from the notation) on

To x M parametrized by Sf (equivalently a family parametrized by [0, 1]) such that

1. Z;i" is of type w.((1--e)Zj +e(Zm 0 +ZM)) at all points of Sf , where c c [0, 1]

2. ZrSC restricts to w.(Zg + Z.A) on (R x [2/3, 1]) n sf
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3. Zrsc restricts to wZt, on (R x [0, 1/3]) n S4

4. over the subset Ai x M, T0 component of Z"c is given by wZtb

Let

,rsc: SM x To x M -+ S to x M (2.122)

denote the time-1 flow of this vector field. Observe,

(4 ,s)-'(Sf+ x A x i) ((S x To) n A) x M (2.123)

This is true because for any s E 84 , over (shifts of) {s} x Ai x R the vector field

(Z"c), splits into components and the first component matches log(p)Z 0  wZTO .

This piece of data (i.e. ZrSC) will be used later.

Now, we go back to replacing condition (6). We would like to replace this condition

with the condition that A component can be obtained from an a-sloppy perturbation

((1)

data on S,) x Ai x M by pulling-back via OP, . More precisely:

Definition 2.4.34. A Floer/perturbation datum on Aj C E x To is called distorted

a-sloppy if it can be obtained by pulling-back an a-sloppy datum on E x Ai via 4 'f

(we take f = p(, when E = S )

A Floer/perturbation datum on A clearly means a 1-form on Ai c E x To that

vanishes in vertical (i.e. T (TO)) directions and an almost complex structure in vertical

tangent bundle (in other words, it is restriction of a datum on To with domain E).

Unfortunately, distorted a-sloppy condition is not sufficient. If S, is the strip with-

out any markings on the horizontal boundaries and on the seam, then the rescaling

is uniform (in To-direction). Hence, one can identify pseudo-holomorphic quilts for

distorted a-sloppy data with pseudo-holomorphic quilts for a-sloppy data by applying

Vrsc (extended by translation). The argument in Corollary 2.4.15 gives the desired

compactness result. For more general quilts, we need to add a geometric boundedness

condition.

For the definitions we refer the reader to [Grol5]. Briefly, one calls an almost com-

plex structure b-bounded if the corresponding metric has injectivity radius bounded
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below by 1 and sectional curvature bounded above by b. Groman defines geometri-

cally bounded perturbation data (in the presence of a perturbation term) as the data

for which the Gromov construction is geometrically bounded (see [Grol5, Section

5.2]). Recall for a given Riemann surface E (endowed with an area form compatible

with the holomorphic structure), symplectic manifold X and perturbation datum on

X with domain E, the Gromov construction is a symplectic structure and an almost

complex structure on E x X such that the solutions E -+ X of the perturbed equation

correspond to pseudo-holomorphic sections of E x X -+ E. For a map u : E -+ X,

we denote its graph by (1, u). Define:

Definition 2.4.35. A perturbation datum on A is b-bounded if the correspond-

ing Gromov graph construction is b-bounded. It is geometrically bounded if it is b

bounded for some b.

Remark 2.4.36. To clarify, to define the compatible symplectic structure and the

metric on the Gromov construction, [Grol5] uses an extra parameter related to bounds

C of {K, K} and ds(K) in (7). However, it is possible to make uniform choices of

data so that there is such a bound (that works for the choice). Indeed, one can simply

use the bound C.

One can presumably obtain geometrically bounded datum on AE from such a

datum on E x Aj by rescaling as well. As the rescaling constant is bounded, geometric

boundedness constant b would change only by a constant.

Most important feature of b-bounded data is the monotonicity. We refer to [AL94]

and [Grol5] for details. In general, if X is a symplectic manifold with a geometrically

bounded almost complex structure, then there are constants r(b), E(b) such that for

any pseudo-holomorphic map u : E a X from a compact Riemann surface E, r <

r(b), x c E such that u-1 (B(u(x); r)) n 0E = 0, the energy of u on u-(B(u(x); r))

is greater than or equal to E(b)r2 . Applying this to Gromov construction, we obtain

similar lower bounds.

Let b be a large positive number. The replacement for (6) is:
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(6') The To-component of (K, J) is distorted a-sloppy and b-bounded over A for

infinitely many positive and negative i E Z

The constants a and b do not depend on the component i. We require a constant b

that works for a given choice of data parametrized by the moduli space Q(d); however,

we allow larger b for other choices. This is similar to assumption we made for C. We

relaxed the condition from all i E Z to infinitely many i E Z so that space of choices

would be (weakly) contractible. We still need the following uniformity assumption

for the families of data:

Assumption 2.4.37. Consider a family of data parametrized by a topological space

X. At each point x E X, there exists a neighborhood x E U C X and a subset A C Z

that is unbounded on both sides such that (6') holds at each point of U and for each

i in A.

Remark 2.4.38. Assumption 2.4.37 is called uniform i-boundedness in [Grol5]. On

the tr x <-invariant and tt-invariant parts, (6') necessarily holds for all i.

Assume we make (asymptotically) consistent choices of data satisfying conditions

(1)-(8) with the exception of (5) and (6). Assume instead (5') and (6'). We have:

Lemma 2.4.39. The solutions to perturbed Cauchy-Riemann equation with fixed

boundary conditions and asymptotic conditions (on the ends) are contained in a fixed

compact region of To x M. Hence, the moduli of stable quilted strips is compact.

Proof. We follow the proof of [Grol5, Theorem 6.3] to make the necessary modifica-

tions to Lemma 2.4.30. The steps of [Gro15, Theorem 6.3] will be recalled as well for

convenience of the reader.

First, there is no escape to conical ends as Lemma 2.4.27 still applies. Hence,

we only need to show that the projection to To is contained in a finite subdomain.

Equivalently, the projection crosses through only finitely many Ai.

As before the topological energy is fixed and by Lemma 2.4.13, the geometric

energy is bounded. Let E denote a bound on the geometric energy. Consider the

thin-thick decomposition obtained by gluing, where the thick part has area uniformly
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bounded over the moduli and the strips of the thin part are endowed with standard

metric. We first show there is a fixed compact subset of To that contains the projection

of the image of the thick part. Let ET denote the thick part. Assume ET is connected

for simplicity, and extend it where it is glued to finite or semi-infinite strips of the thin

part by fixed length (say 1). Denote the extended Riemann surface with boundary

by E'. The area of E' is also bounded over the moduli, say by a constant Area'.

Hence, the energy of the graph (in the Gromov construction) of any solution has

energy bounded above by Area' + E. The boundary of E' naturally decomposes

into two 1-manifolds with boundary. One is the boundary with Lagrangian labeling

(denote this part by 01E'), and the other is the shared boundary with the strips of

the thin part (denote this part by Of E').

There is a compact subset K1 C to that contains the Lagrangians labeling the

boundary of 0 1E'. Assume there is no compact set containing the image of the thick

part (for all solutions); hence, the solutions extend either to the left or to the right end

of To. Without loss of generality, assume it is the right end. Hence, there exists an no

such that for any io there exists a solution (u, v) (where u is the To-component) and

points xi E ET (i = 0, . . . , io) such that (xi, u(xi)) E AZ i. Assume no is sufficiently

large so that (E' x K1 ) nA = 0 for all i > 0.

One can assume there is a 6 > 0 such that the distance of (xi, u(xi)) to boundaries

of A- 1 is at least 6 (6 is independent of io etc.). The distance of x, with OfE' is

larger than 1, assume this is larger than 6. Also, the distance of (1 x u)(xi) with

E' x K1 is larger than 6. Hence, (1, u)-(B((1, u)(xi), 6)) n OE' = 0. This implies

that the energy of (1, u) on (1, u)-(B((1, u)(xi), 6)) is at least E(b)6 2 and the energy

of (1, i) on E' is at least E(b)P2 io. As c(b), 6 do not depend on io, and the energy

of (1, u) (or rather (1, u, v)) on E'r is bounded above, we have an upper bound on

such to. Hence, there is a compact subset of To that contains the image of the thick

part (the reason it does not escape to conical end is integrated maximum principle

as explained in the first paragraph). Call this compact set K.

Now the thin part: strip-like ends have boundary contained in the compact set K.

Its end attached to thick part and the Hamiltonian chord it converges on its infinite
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end are also contained in K. As the Hamiltonian is a-sloppy there (or distorted a-

sloppy but the distorting Liouville flow is uniform on the strip), it is contained in

a slightly larger compact subset K' that depends on K, the energy bound and the

bounds on the distortion. The proof of this is similar to Corollary 2.4.15 and follows

from Lemma 2.4.7.

The same argument does not immediately apply to other components of the thin

part since we impose asymptotic consistency rather than strict consistency (see Re-

mark 2.4.40 however). On the other hand, although the map does not satisfy per-

turbed Cauchy-Riemann equation with respect to glued data, the proof of Lemma

2.4.7 still provides the same lower bound on the topological energy with respect to

glued data (up to a constant related to homogeneous rescaling). Call this lower bound

c'. Moreover, we still have Assumption 2.4.29; therefore, the difference of the cho-

sen perturbation term on these components and the one one could obtain by gluing

are exponentially (Cl-) small in terms of gluing length. Hence, the difference of the

topological energies computed with respect to these perturbation terms converges to

0 as one increases the gluing length. In particular, for large gluing length (i.e. close

to the strata), this difference becomes less than c'/3. Similarly, the exponential decay

conditions near the strata of moduli of strips ensure that the integral of the curvature

term (of the chosen data) over the component of the thin part converges to 0 near

the strata (the curvature is 0 for the glued data, it is small for the data exponentially

close in terms of the gluing length). Hence, close to the strata the difference between

geometric and topological energies for the original data is less than E'/3. In summary,

the geometric energy with respect to chosen data still increases by a fixed constant

c'/3 each time it passes through one of Ar x M and once an energy bound is fixed,

these components of the thin part are also contained in a fixed region. This completes

the proof. 0

Remark 2.4.40. One other way to bound the thin parts other than the strip-like

ends is the following: we assume the consistency of the data only asymptotically.

However, this is for the purposes of transversality and one does not need this when

gluing time-shift maps (pr , ). In other words, we can assume that this part of

202



the data is the same as what one would obtain by gluing (near the strata of Q(d)).

Hence, this part cannot escape to infinity for the same reason as the strip-like ends.

Existence and contractability of such consistent choices is similar to Lemma 2.4.21,

Lemma 2.4.28. One only has to incorporate the argument in [Grol5, Theorem 4.6].

Remark 2.4.41. The argument in [Grol5, Theorem 4.6] is not necessary while con-

structing the data on tr x # and tr-invariant parts: while interpolating through tr x 4,

resp. tr-invariant data, the bound b can be kept small on compact subsets; hence, on

all Ar.

The rest is standard: one can identify the Floer chain groups with respect to

data satisfying conditions (1)-(8) with labeling (Lo, L', L") (where Lo C To with a

fixed lift, L" C M and L' C To as before) with Floer chain groups with respect

to rescaled data where conditions (5),(6) are generalized by (5'),(6') with labeling

(1)(2) ee (1) (2)
(P ~*(Lo) iP *(L') 4,sc'*(L")). Here, VP resp. V)Pr denotes the time log(pr)

w, resp. time log(pr) = w flow of Zjg, resp. ZM. Note @/,sc*(Lo x L') is equal to

product of rescalings of Lo and L' (by ZTO, resp. ZM by weight p() = p - w).

Moreover, 4'I'r*(L'') is equal to rescaling by the Liouville vector field on TO by the

same weight. Hence, one can also thought of the rescaling labeling on the folded strip:

(Lo x L', L') turns into (yrsc'*(Lo x L'), 0 rs'c*(L'))

An important point in the identification of Floer chain complexes is the following:

since the rescaling vector field is time dependent on the ends of quilted strips, its time

(- log(w)) flow, (<,rc)-1, does not map the chords of the original time dependent

Hamiltonian (say H) to chords of orSc'*H. However, one can still realize the image

of the chord under (,rsc)-1 as the chords of an Hamiltonian satisfying W 2 (and

other) condition(s). Hence, the complex formed with this alternative Hamiltonian is

naturally identified by 0r to complex 9X(L", L, L').

To see the images of these chords are given as chords of other time dependent

Hamiltonians, let Zt, t C [0, 1] denote the time dependent family of Liouville vector

fields of type (1-e)Z,+e(Zt0 +ZM) that we choose for the conical end (i.e. w-lZ'rsc).

Let Ot denote the time log(w)-flow of Zt. Then, '0- o Ot =: gt is a symplectic isotopy.
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Indeed, since Zt can be written as Zo + Xm, (all Zt can be obtained by extending

Z + ZM + (1 - e)Xp(s)K, see Section 2.2.1 for the notation), gt is an Hamiltonian

isotopy.

Let H = Ht be the time dependent family of Hamiltonians (so that the pertur-

bation term is given by K = Htdt) and #t denote its Hamiltonian flow. rs' is given

by 0t = bogt at t and thus it maps the trajectory {#t&i- 1(x) : t E [0, 1]} of {Ht}

onto {Nogttoo 1 (x)}. Since gt is also Hamiltonian, gtot is an Hamiltonian isotopy.

The conjugate of an Hamiltonian isotopy by 4o is an Hamiltonian isotopy (since o

only rescales the symplectic form). In other words, OogtotP- 1 is Hamiltonian and

V/ ogt~ 1 (x) is a trajectory of this Hamiltonian.

One has to check W2 -condition still holds for the Hamiltonian corresponding to

isotopy gtot = 0-1/'tot and this could be checked directly from the vector field gener-

ating the isotopy. Since, i.Vf7>/t is identity on To x (M\ M), Hamiltonian is the same as

{Ht} on this part. Over B4 x 1l, the vector fields Zt have a product decomposition as

Z +(ZM + p(s)XK) (p is a function that is constant near the puncture, note here K

is as in Section 2.2.1 and this expression is not global). In particular, B4 component is

independent of t. Hence, the isotopies o, Ot and #t also have product decomposition,

where the first two have the same B4 component and Ot has B5-component equal to

that of a cylindrical perturbation term as in Definition 2.4.18. Thus, the composition

-t t has B5-component generated by a cylindrical perturbation term (recall that

quadratic condition was built into our definition of cylindrical perturbation term).

Similarly, one can check the perturbation term for rescaled labeling still satisfies dis-

torted a-sloppy condition. Indeed, this is implied by the assumption that Zi is of

product type near Ai x iVI and it has the same To component as Zt + ZM.

After the identification, define 9JN using the perturbation data satisfying modi-

fied conditions and labeling given by OPr 7*(Li) on the upper boundary of SP), by

p *(L'.) on the upper boundary of S (i.e. lower boundary of the quilted strip S,),

and by v-'* (L') = VP< '*(L') on the seam (where O4 denotes time log(p)-flow of

the Liouville vector field on T4).

Rescaling is similar for counts defining bimodule maps from 9 1 LXL to twisted
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Yoneda bimodules and will not be written separately.

2.5 Examples of symplectic manifolds satisfying

Assumption 2.1.2 and applications

In this section, we give a large class of examples satisfying Assumption 2.1.2. We

search for examples among Liouville manifolds with periodic Reeb flow since it is

easier to compute the Conley-Zehnder indices. More specifically, we will confine

ourselves to complements of smooth ample divisors. For Assumption 2.1.2, we need

1. Vanishing first and second Betti numbers

2. Reeb orbits with sufficiently large degree

Let us start by addressing (1):

Lemma 2.5.1. Let X be a smooth and projective variety and D c X be a smooth,

connected hypersurface that is given as a transverse hyperplane section of a projective

embedding. Further assume:

1. b1 (X) = b 1(D) = 0

2. b 2 (X) b2(D)= 1

Let M = X \ ND ~ X \ D, where ND is a tubular neighborhood of D. Then,

bi(M) = b2 (M) = 0.

Proof. First note H*(X, D) ~ H*(M, OM) by excision. Consider the long exact

sequence

H0 (X, D) -+ H0(X) - H0 (D) -+ H1(X, D) -+ H1(X) 24 H 1(D) (2.124)
- H2 (X, D) -* H2 (X) -* H2(D) ...

(H2 (X) -+ H 2 (D) is injective since H2 (X) is one dimensional and this map car-

ries a Kdhler class on X to one on D). Thus, H1 (M, 3M) = H1(X, D) = 0, and
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H2 (M, OM) H2 (X, D) = 0. This implies H1(M) -+ H1 (OM) is an isomorphism,

and H2 (M) - H2 (&M) is injective by a similar long exact sequence. Hence, it is

sufficient to prove H1 (OM) = H2 (OM) = 0.

Consider Serre spectral sequence for the fibration S' " OM -+ D given by

E2r = HP(D,{H (Sl)}) -> Hr'q(9M) (2.125)

where {Hq(S1)} denotes the local system formed by the cohomology of each fiber.

OM --+ D is the circle bundle of a complex line bundle; thus, it is an oriented bun-

dle and {H1 (S1 )} is the trivial local system (i.e. constant sheaf). Same holds for

{H0 (Sl)} easily. This implies p = 1, q = 0 and p = 1, q = 1 terms in the E2-page

vanish; thus, H1 (OM) and H 2(OM) can be obtained as the cohomology of

H0 (D, H1(S')) % H2 (D, H0 (S1 )) (2.126)

where d2 is the differential of E2-page. Both groups are of rank 1, and to finish the

proof we only need d2 4 0-

By assumption, there exist a projective embedding X - PN and a hyperplane

N c PN such that X rh N and D = X f N. Then, NR a OpN(W)IW restricts to

ND E Ox(D)ID. Let SW and SD 4 9M denote the corresponding circle bundles.

There is a similar spectral sequence for S- as well and we have a diagram

HO (D, H1 (S')) d2: H 2(D, HO(S')) (2.127)

HO (W, H 1(S')) H2 >H(W, HO (S'))

by naturality. In previous considerations, we can replace X by pN and D by N, and

conclude

HO (R, H1 (S')) -% H 2(-H, HO (S'))

computes H1 (Sw) and H2 (S ). But we know H1(PN \ N)= H1 (Sw) (we proved

H1(M) 2 H1 (OM), apply this to the case X = PN, D = N). Hence, H1(Sw) = 0. A
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simpler way to see this is: topologically OpN(7-) '_ OpN(--)JW which is just the

circle bundle of the tautological bundle over X. It is easy to see this is homeomorphic

to

S 2N- 1 _+ S
2 N-l/l

hence the total space has vanishing H1 .

In summary, the lower horizontal arrow in (2.127) cannot vanish. The right ver-

tical arrow cannot vanish since it carries at least one Kahler class to one on D. Left

vertical arrow is an isomorphism by connectedness of D. All the groups in (2.127)

are 1-dimensional; thus, the composition does not vanish and neither does the upper

horizontal d2 . This completes the proof.

To make sure SH1 (M) = SH 2 (M) = 0, we need Reeb orbits to be of sufficiently

large degree. More precisely, we will use the spectral sequence in [Sei08b] whose

Ei-page is given by:

Hq(M) p = 0

Efj = Hp(ld)+q(DM) p < 0 (2.128)

0 P > 0

and which converges to symplectic cohomology of M (note that we made a degree

shift on SH*(M) by n so that SH*(M) 2 HH*(W(M)) by [Gan12, Theorem 1.1]).

Here, p E 2Z is a Conley-Zehnder type index defined in [Sei08b].

Assume we are in the setting of Lemma 2.5.1 and Kx = O(mD). Then we have:

Lemma 2.5.2. p= -2m - 2.

Proof. Recall how p is defined: given a Liouville domain M with 1-periodic Reeb flow

at its contact boundary, choose a trivialization of KM. Let x be a Reeb orbit on 0M.

We obtain a trivialization of x*TM as a symplectic bundle. Hence, the Reeb flow

defines a path in Sp(2n) and the class of this path in r1 (Sp(2n)) a Z is the number

p/2.

To compute p, identify a neighborhood of D with a neighborhood of zero section

of JVD (the holomorphic normal bundle of D). Let d E D and let F denote a fiber of
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JVD. Then Tx F a F x (TD.d DJVD,d) =: E as a symplectic bundle. In other words, it

is the trivial bundle with fiber TD,d ED D,d. Under this trivialization, the circle action

induced by Reeb vector field is

F x (TD,d E D,d) - F x (TD,d D VD,d) (2.129)

(a, V, V') i (z 1l, V, z-iV')

If we trivialize using a section Q of Kx, the section can be chosen to have vanish-

ing order m along D. Hence, the dual section has vanishing order (-m)-along D.

Therefore, the map

f : SF x (TDd ( D,d) - SF x (TD,d D D,d) = EISF (2.130)

(a, v, v') i (a, v, a-mv')

is the new trivialization (symplectic trivialization obtained by using Q). Here, SF is

the unit circle in F. The right hand side is considered to be the restricted bundle, and

the left hand side is considered to be a trivial bundle, and the trivialization map is the

framing (if E' is a vector bundle over F', then a trivialization is a map F' x V - E'

for a vector space V). The S1 -action is by z- 1 on the right hand side. In other words,

z : (a, v, a-v') e (zlav , zl a mv') (2.131)

or

f (a, v,v') fs f(z-la, v, mv') (2.132)

More diagrammatically

SF x (TD,d E DD,d)-: EISF (alV1VI) f (a, v1 amv/)

I 1 T _M- f 1 1 t -
SF x (TD d @ AJD,d) - EISF ( a, v) z V') -J- 1W ( 1 am v

(2.133)
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Hence, the path in U(n) C Sp(2n) induced by the circle action is

Si - U(TD,d ( .AD,d) (2.134)

If we compose this map with det, we obtain a map of degree -m - 1. Thus, p/2 -

-M - 1, and p = -2m - 2. L

Combining the spectral sequence (2.128) and Lemmas 2.5.1 and 2.5.2, we obtain:

Corollary 2.5.3. Assume m > 0. Then, SH*(M) vanishes for * < 0 or * = 1,2

and it is 1 dimensional for * 0.

We also have:

Lemma 2.5.4. Assume m > 0. Then, W(M) is proper in each degree, i.e. HW(L, L')

is finite dimensional in each degree and bounded below for any pair of objects of

W(M).

Proof. Consider the generating subcategory of W(M) spanned by cocores. One can

arrange the cocores to be cylindrical; hence, their intersections with the contact

boundary (with periodic Reeb flow) are Legendrian submanifolds. Let Lo and L1

be two such Lagrangians. The generators of CW(Lo, L1 ) are given by

1. finitely many chords in the interior

2. finitely many chords in the contact end of length less than 1. Note each such

chord lives on a unique Reeb orbit because of periodicity

3. chords obtained by concatenating a chord of length less than 1 with the Reeb

orbit it lives on k times (where k G Z>o)

Let x be an orbit living on a Reeb orbit, and assume y is obtained by concatenating

the Reeb orbit k-times. A straightforward calculation shows deg(y) = deg(x) - kA,

where p is as before (i.e. as in [Sei08b]). By Lemma 2.5.2, p = -2m - 2 <0. Thus,
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the degree of y grows as one increases k. In other words, there are only finitely many

generators of CW(Lo, L1) of degree less than d (for every d). This completes the

proof. L

Combining the results of this section, we have:

Proposition 2.5.5. Assume the pair (X, D) satisfies the assumptions of Lemma 2.5.1

and Kx O(mD) such that m > 0. Then M (the Liouville domain corresponding

to X \ D) satisfies Assumption 2.1.2.

Corollary 2.5.6. Let X be a smooth hypersurface in CPn+1 (for n > 4) of degree

at least n + 3 (i.e. of general type) and D be a transverse hyperplane section. Let

M = X \ D. Then M satisfies Assumption 2.1.2.

Proof. This follows from Lefschetz hyperplane theorem and Proposition 2.5.5. L

Remark 2.5.7. As commented in the Section 2.1, powers of Dehn twists act non-

trivially on W(M2"), when n > 1; hence giving us applications of the Theorem.

However, the least trivial examples are when # is (pseudo-)isotopic to identity relative

to OM. We are not aware of such examples when n = dim(M)/2 is odd, but powers of

Dehn twists give such examples when n is even. Indeed, the order of a Dehn twist in

mapping class group divides 412n+1 1, where 42n+i is the group of homotopy spheres

of dimension 2n + 1 (see [Kry07],[KK05]).

Now, we will show that To and To x M cannot be distinguished by their sym-

plectic cohomology for a large class of examples provided by Proposition 2.5.5. More

precisely:

Lemma 2.5.8. Let (X, D) be as in Proposition 2.5.5 and $ be an even power of a

Dehn twist along a spherical Lagrangian in M. Assume n = dimc(X) = dimR(X)/2

is even. Then, SH*(TO) e SH* (To x M) as vector spaces, if m+1 > n. In particular,

this holds if X is an hypersurface in CPn+l (n > 4) of degree larger than 2n + 1.

Proof. First, note that one can recover SH*(T4) as a vector space from SH*(M) and

action of # on SH*(M). This follows for instance by combining [Kar18, Prop 5.13],
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[Gan12, Theorem 1.1], and Theorem 2.1.12. Hence, it is sufficient to show that # acts

trivially on SH*(M) if m + 1 > n.

One obtains the spectral sequence (2.128) by using the length filtration on the

Reeb orbits. Notice that # acts trivially on p = 0 terms (i.e. on H*(M)) by Picard-

Lefschetz formula, and it acts trivially on p < 0 terms since it is compactly supported

(and continuation maps defining 4 action on SC*(M) are length decreasing).

Since M is a Weinstein domain of dimension 2n, it has the homotopy type of

an n-dimensional CW complex, and its cohomology is supported in degree 0, . . . , n.

Hence, p = 0 th column of (2.128) is supported in degrees 0, . . . , n. Similarly, the

cohomology of OM is supported in degrees 0,.. , 2n - 1; therefore, for p < 0, (p, q)

term can be non-zero only if

2n - 1 (1 - )p + q > 0 (2.135)

which is equivalent to

2n - 1+ pp p + q > pp (2.136)

In other words, pth column is supported in degree pp, . .. , 2n - l+pp. By assumption,

p(p - 1) > (2n - 1 + pp) + 1; hence, terms of (p - 1)th column and pth column do

not interact. Same holds with (-1)th column and 0 th column as well. Hence, the

spectral sequence degenerates in E-page and the action of # on each term is trivial.

This implies that 4 acts trivially on SH* (M) (in summary, one can filter the complex

SC*(M) by length and the action of # is trivial on the cohomology of associated

graded. Moreover, orbits of different length differ at least by degree 2, implying the

desired result).

Remark 2.5.9. Presumably, when the degree of the hypersurface X is sufficiently

large, SH*(TO) and SH*(To x M) agree as BV-algebras as well. Indeed, we strongly

believe for any finitely many set of BVo-operations, one can increase the degree of

the hypersurface to produce examples where SH*(TO) and SH*(To x M) are isomor-

phic with an isomorphism respecting these operations (for instance, one can produce

examples where symplectic cohomologies are the same as An-algebras). We do not
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yet know how to prove SH* (TO) and SH* (To x M) are the same (or different) as

BV,,-algebras; however, we believe it is not possible to prove a statement that would

imply Theorem 2.1.1 or Corollary 2.1.5 just by computing closed string invariants.
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Appendix A

Proof of Theorem 2.1.12 using the

gluing formula for wrapped Fukaya

categories

One can give an alternative proof of Theorem 2.1.12 using the gluing formula in

[GPS18]. The proof is easy after the algebraic setup given in Section 2.3, and we sketch

this proof in this appendix. A notational remark: in [GPS17] Liouville sectors are

defined with their infinite ends; however, we omit the completions from the notation

throughout this section similar to Section 2.3.3 (i.e. we write M instead of M, TO

instead of T6 etc.).

Recall the notation from Section 2.3.3: T denotes the 1-handle that is shown

in yellow in Figure 2-2 and N denotes To \ T (more precisely, one has to consider

the completions). See also Figure 2-5. As a sector, T is isomorphic to T*[0, 1] and

V(T) ~ C. Similarly, N is equivalent to a cylinder with one stop on each boundary

components and W(N) is derived equivalent to Db(Coh(P1)). To calculate W(To),

decompose To into two sectors T x M and N x M. In other words, To = T x MUN x M

and these subsectors intersect on (T*[0, 1] x M) U (T* [0, 1] x M) = T*[0, 1] x (Mu M).

Since i1f is a Weinstein domain, MW Li M and horizontal completions of T x M, N x M

are Weinstein. Moreover, To is a Liouville domain (as opposed to a more general

Liouville sector). Therefore, the assumptions of [GPS18, Cor 1.21] are satisfied, and
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one has a homotopy push-out diagram similar to (2.91):

VV(N x M) W W(To) (A. 1)

W(T* [0, 1] x M) JJ W(T* [0, 1] x M) > W(T*[0, 11 x M) ~_ W1(T x M)

Therefore, one has a homotopy coequalizer diagram

W(T*[0, 1] x M) =3 W(N x M) -+ W(T) (A.2)

The map W(N x M) -+ W(TO) is induced by the inclusion and the maps W(T* [0, 1] x

M) W(N x M) are induced by jo x lm and ji x # (recall jo, ji were used to denote

both inclusion maps from T into N shown in Figure 2-5 and the functors induced by

these inclusions). By the Kiinneth theorem [GPS18, Theorem 1.5], W(T*[0, 1] x M) ~

W(T*[0, 1])®W(M) and W(N x M) ~ W(N) VW(M) (note we again need Weinstein

property for M for the Kiinneth map to be essentially surjective). Under these quasi-

equivalences (A.2) can be identified with the diagram

W(T*[0, 1]) 0 W(M) - W(N) 0 W(M) -+ W(TO) (A.3)

where the arrows are Jo ® lw(M), 0#. Moreover, as in Section 2.3.3, W(T*[0, 1])

C and W(N) ~ O(Pl)ad and Jo, ji turn into io, i under these identifications. In

summary, we have a homotopy coequalizer diagram

W(M) -: O(Pl)dg 0 W(M) -+ W(TO) (A.4)

where the arrows W(M) - O(P)dg 0 W1V(M) are given by io 0 iW(M) and i9 0 #.

As the situation is symmetric, one can swap io and i or replace # by #-1 (different

identifications may lead to this).

Let us now describe MO as a similar homotopy pushout. Let A ~ W(M). Recall

the diagram (2.79) and the quasi-isomorphism (2.80) from the homotopy coequalizer
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to O('o)dg are strictly tr equivariant. Hence, there exists a quasi-equivalence

(hocolim(Pt, 2 O(1P1 x Z)dg) 0 A)#Z =4 (Oio)dg 0 A)#Z = M (A.5)

Following [GPS18], we described the homotopy coequalizer as a localization of the

Grothendieck construction (see (2.83)). Hence, A4 is equivalent to ((C- 1gr)OA)#Z.

It is easy to see that localization commutes with tensoring with A, i.e.

(C-1gr) ® A ~ (C o 1)-1(gr 0 A) (A.6)

where C 0 1 is the set of morphisms {(c 0 IL') : c E C, L' E ob(A)} (in the absence

of strict units, choose a #-equivariant set of cohomological units). Moreover, as C is

tr-invariant, localization commutes with smash product as well. Hence,

A/1 ~_ (C 0 1) - 1((!gr 0 A) #Z) (A.7)

It is easy to see gr 0 A is the Grothendieck construction for the diagram

Pt0 o A =3O(P1 x Z)dg o A (A.8)

and (gr 0 A) #Z is the Grothendieck construction for

(Pto 0 A)#Z -4 (O(P1 x Z)dg 0 A)#Z (A.9)

Hence, by (A.7), Mo is the homotopy coequalizer of the diagram (A.9). The Z action

is still by tr 0 d; however, translation carries components of Pto, resp. P' x Z to

different components. Hence,

(Pto 0 A)#Z ~ A and (O(P1 x Z)dg 0 A)#Z - O(P)dg 0 A (A.10)

If there were no A in (A.9), the arrows would become io and i under the identification

(A.10), as remarked in Section 2.3.3. On the other hand, as Z-action is given by tro,
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the arrows in (A.9) become different under the identification (A.10). More precisely,

one of them becomes i0 0 1A and the other one becomes i, 0#. Hence, we have a

coequalizer diagram

A - O(Pl)dg 0 A --+ Mo (A. 11)

where the arrows A - O(P1 )dg 0 A are given by iO 0 1A and iZ 0 #. Notice under

different identifications of Pt.#Z ~ C and O(P1 x Z)#Z ~ O(P'), these arrows

could turn into io 0 0-1 and i1 0 1A either.

By (A.4) and (A.11), both W(TO) and Mo are the homotopy coequalizers of equiv-

alent diagrams. Hence, they are equivalent, completing other proof of Theorem 2.1.12.

Note A.0.1. One can see the commuting of smash products and localization in

two ways: the first is writing explicit zigzags using the definition in [GPS18]. More

precisely, let B be a dg category with a strict Z action and let C be a Z-invariant set

of morphisms. Then, by adding cones to B (and extending the action), the problem

turns into showing that #Z and quotient by a Z-invariant subcategory commutes

(i.e. (B/Bo)#Z ~ (B#Z)/(Bo#Z)), which can be achieved using the explicit model

in [LO06], and [Syl16]. The hom-complexes for (B#Z)/(Bo#Z) may look larger. To

show it is equivalent to (B/Bo)#Z, one has to first extend the category B to a quasi-

equivalent category by adding objects (g, b) (for all g E Z, b E ob(Bo)) equivalent to

gb. Then the quotient of extended categories (with objects added to B0 as well) is

quasi-equivalent to B/Bo. Smash product with this quasi-equivalent category gives

(B#Z)/(Bo#Z).

The second way is to see B#Z as another colimit. Namely, consider the diagram of

categories given by one category, B, and endofunctors g E Z. Then the corresponding

Grothendieck construction (as in [Tho79]) is exactly B#Z. In this situation, one

does not need to localize with respect to corresponding set of morphisms, as they are

already invertible, and one can easily show colimit property. Then, it is easy to see

that (C 1 B)#Z and C-1 (B#Z) can be characterized by the same universal property.
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