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ABSTRACT

The variables entering en enalysis nroblem are linked together by a
set of functional relationships. These relationships may be expressed in
the form of a flow graph, a network of directed branches which connect at
nodes, Zach node is associated with one of the variables of the problem
and the branches entering that node indicate the dependence of that node
variable upon other variables. Branch jk originates at node j and ter-
minates at node k. The transmission of branch jk is defined as the par-
tial derivative of node-variable k with respect to node~variable o

A flow graph exhibits certain topological properties which relate
to the structure of the functional relationships entering that graph. In
particular, a closed path in the graph indicates that an equation mst
be solved in order to find the values of the node variables whereas the
absence of any closed paths means that the values of the node variables
are obtainable explicitly by direct sutstitution in the original func~
tional relationships. The mumbsr of nontrivial simultaneous equations
which mist be handled in the problem sclution is evident from the graph
on the basis of certair topological principles, Specifically, if at
least n nodes must be erased in order to eliminete all closed pathe in
the graph, then the analysis problem requires the solution of n simul-
taneous equations,

For linear grephe, which come from linear functional relationships,
the analysis problem may be solved by direct manipulation of the graph,
according to certain transformations and equivalences, The manipulative
algebra of flow graphs permits meny relatively complicated linear pro-
blems to be solved by inspection. In addition to aiding the solution of
practical problems, the flow graph approach provides a convenient lan-
guage in which the fundamer.tal theory of feedback theoreme become ex-
ceedingly simple when carried out on the flow graph basis,

The transmission through.a flow graph is, in general, affected by
changes in the branch transmission of the graph. It 1s often desirable,
in the design of a feedback system, to minimize the sensitivity of the
overall transmission T with respect to changes in some particular branch
transmission t. The representation of such systems as flow graphs leads
to certaln structures which are inherently insensitive. The picture of
signal flow afforded by a flow graph facillitates the physical interpre-
tation of the basic processes which result in low sensitivity.



When each branch transmission is a function of the complex frequency,
the presence of closed paths in the graph may lead to sustained oscillatione
within the system. The general stability eriterion for potentially un-
stable flow graphs includes criteria previously developed for electronic
circuits and automatic control devices. 1In certain cases the criterion
developed for flow graphs results in a simplification of earlier methods.

In particular, the number of Nyquist plots required in a stability inves-
tigation may be less, As to the determination of stability information
from a Nyquist plot, a method depending only upon the concept of confor-
mality, and requiring only simple curve sketching, has been devised.

Thesis Supervisor: ZErnst A, Guillemin
Title: Professor of Electrical Engineering




Jenuary G, 1081,

[

Prafescor Joserh 7, Newvell

Seeret-ry of the Faculty
Massachusetts Inctitute of Technolory
Combridre 29, Mass,

Denr Professor Nevell:
In 2acccridance with the rerulations of the fuculty,
I rorebry cubmit 5 thesie antitled, ON THF LOGIC OF FRFDBACK,

in prriial fulfillment of the reauirements for the depree
of DOCTOR OF SCIFNCE,

> & .
firnature of Aprlicent

it



ABCTRACT

The veriahles entering on analvsic preblem are Tinked torether hv o
~et o7 functional relationchins, These relsticnshins mav be evpreses 3 in
the form of = flov ~ravh, 2 natvork ¢f directed branches which connect ni
ncdes,  Fach nolde i« soaceirted vitY cne of the verishles of the 1raklan
n?l the brencher entering thet nole indiecete the Jdependence of thet node
veri=hla unon cther vari=bles, Branech il eriziastes alb node i an? ter-
minates ot nede k, The transmissicon of branch jli ic 'efined ro the prr-

tial Aderivative of nede—variable k vith respect tc node-varisble 3.

A fley ereph exhibits certain topelerical properties which relste
te the structure of the functicnal relationships enterineg thrt rrach,
Ir vparticular, a clcsed nrth in the oraph indicates thet an ecustion wmuct
he solved in order to find the values of the node varisbles wheress the
nbornee of sny closed noths means thet the vilues of the nnde veriahlec
qre cbtrineble explicitly by direct cubstitution in the oriciaal funec—
tiznnl relrtionships, The number of nentrivial simullenecus equations
viich muet be handled in the rroblem solution is evident from the ereph
om the baris of certrin tepclesicel principles, Cpecificslly, 17 ot
lesst n nodes must be erssed in order tc eliminate -all closed reths in
the graph, then the anslysis prcbtlem recuires the sclvtion of n sinul-

tonrous ermistions,

For linear grephs, which come from linear functional relaticonshipe,
the rnalyvels problem may be sclved by Airect manipulaticn of the areph,
recerdine to certein troncformations snd ecuivelerces, The monirvl-otive
#leoebra of flow graphs permits many relstively comrlicnted linerr pro-
Flems to be solved by inspection, In additicn te =idine the colution of
prsctical preoblems, the flow graph approach vrevides a convenient len-
ruage in which the fundsamentrl theorv of feedback in linear systems may
be expressed. The proofs of mamy classicsl feedback theorems become ex—

ceedinelv simnle vhen carried cut on the flcw erevnh basis,

The transmission through a flow eraph is, in general, affected by

changes in the branch transmissions of the graph, It is often desirable,
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CHAPTER I

INTRODUCTION

1.1 The Feedback Concept

Feedback is a magical word which means many different things
to different people; a certain amplifier circuit to the student,
a panacea or a headache to the design engineer, and, with the pop-
ularization of the automatic control art and the pronouncement of
Cybernetics, an attractive new analytical tool to the psychologist
and the economist. As a physical concept, feedback is most mean-
ingful when associated with unilateral devices, such as vacuum-
tube amplifiers. If tae output of a controlled power source finds
a return path to the control point, then feedback is said to exist.
Physically, feedback implies a closed loop around which energy flows
in a specified direction.

Many definitions of the term "feedback" or "feedbaclk system"
have been proposed., Some are restricted by choice to electronic

circuits. For example,

nfeedback (fed'bak'),

adj. 1. Electronics - denoting or pertalning to a
system in which some of the energy of the plate
eircuit of a vacuum tube is returned (fed back)

to the grid circuits. When this opposes the input,
it 18 called inverse, when it aids the input it is
called regenerative.

n. 2. A feedback system." fref.0]

In contrast, Bode offers a purely mathematical definition of feed-
back which requires subsequent physical interpretation,

nDefinition: The return difference, or feedback,
for any element in a complete circuit is equal

to the ratio of the values assumed by the circuit
determinant when the specified element has its
normal value and when the specified element

vanishes." [Ref.4, p.29]

If the specified element mentioned by Bode is the gain p of a uni-
lateral amplifier, and if a fraction B of the output is fed back in
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series with the input, then the return difference is equal to 1-ug,
where p8 1s, of course, the loop gain. The advantage of Bode's gen-
eralized definition lies in its applicability to complicated circuits
wherein the quantities y and B are not evident as separate entlties.
Still another definition is suggested by Wiener in his discussion of
control systems involving people,

"Notice that in this system there is a human link

in the chain of the transmission and returan of

information: in what we shall frum now on call

the chain of feedback." [Ref.2, p.114!
Worthy of note is the fact that the last two definitions above permit
the identification of feedback in passive bilateral systems such as,
for example, a transmission line supporting both incident and reflected
waves. This generalization, which frees the feedback notion of its
traditional bond to unilateral active elements, representc a signifi-
cant step. As an illustration of a further break with tradition, the
writer can not resist the temptation to interject Prof.R.B. Adler's
definition of a multiple-lcop feedback system as "za octopus biting
all of his fingernails.”

Although the qualitative concept of feedback had been recognized
earlier, it remaiased for Nyquist and Black, working at the Bell Tele-
phone Laboratories in the early nineteen-thirties, to crystallize an
elementary but powerful feedback theory which dealt with the behavior
of a unilateral amplifier having a simple external feedback path.
That the study of vacuum-tube amplifiers should have cultured the
feedback notion is not surprising, Electronic amplifiers were, with
certain minor exceptions, the first unilateral signal transmission de-
vices to undergo careful study. The very presence of unilateral ele-
ments gave direction and hence physical embodiment to the concept of
a feedback loop around which signal energy might flow.

Black analyzed the now familiar mu-beta circuit, for which

W= —— (1.1)
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where p' and pu are the amplifications with and without feedback, re-
spectively, and B is the so-called Iesdback constant. His work brought
forth useful design information concerning the quantitative effects
of feedback and also served to unify certain disconnected theoretical
results previously obtained by others., Nyquist developed a stability
criterion, based upon the steady-state performance characteristics of
the broken feedback loop, which resolved many an enigma, among them
the rule of thumb thLat a feedback amplifier having more than two
stages 18 likely to support spontaneous oscillations. The value of
Nyquist's test lay in the simplicity of its application. Previous
connections between transient and steady-state response had been, in
the main, sufficiently complicated so that their acceptance by engi-
neers was inhibited.

Under the stimulus of the advances made by Black, Nyquist, Blackmen,
and others, feedback was employed to advantage in many new circuit de-
signs. The scope of feedback theory, however, remained limited almost
entirely to Black's elementary circuit, The ninetezen-thirties might
well, perhaps, be called the mu-beta era. Nevertheiess, much good work

was done and the great god Mu-Beta was assumed to be omnipotent until

proven otherwise,

VWith the appearance in the early nineteen-forties of the work of
H. W. Bode, the elegant and poverful methods of network theory were
brought to play upon the general problem of amplifier analysis and de-
sign. Bode treats vacuum-tube amplifiers as passive networks in vhich
are imbedded unilateral active elements representing tube transconduct-
ances. Nearly all of his theorems for feedback circuits are stated in
terms of the "return difference," which is defined in terms of the mesh
or nodal network determinant. Hence calculations and proofs depend up-
on the manipulation of the determinant and its cofactors. Following
the formal analysis of active circuits, Bode considers the relation be-
tween the real and imaginary parts of network functions and applies the
results to the design of terminal and interstage networks, and finally
to the design of singie-loop feedback amplifiers.
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In the mu-beta era, when telephone repeaters constituted
possibly the largest field of application for high quality feed-
back amplifiers, the Bell Telephone Laboratories fostered much
of the research then in progress. During the war, however, radar
and servomechanisms applications created en increased demand for
feedback techniques. In the servomechanisms field, especlally,
certain design procedures adapted from feedback amplifier theory

were rapidly advanced, refined, and implemented.

At present there exists a mass of literature on the subject of
feedback, the large majority of which is devoted to special cases
of practical interest. Since the publication of Bode's work on ac-
tive networks relatively little material of a general nature has ap-
peared. The feedback art has become more detailed and complex with-
out a balance of effort toward the formulation of & simple, inclu-
sive, and unified theory. The feedback notion itself, perhaps one
of the most importent concepts of our time, has enjoyed & recent
growth in stature with the pronouncement of Cybernetics, out this
growth has taken place princlpally at a philosophical level. There
remains, in the opinion of the writer, & need for development at the
working level so that engineers may find the feedback approach more
useful in their dealings with the troad class of technicel problems

wherein such techniques are applicable.

1.2 Purpose of this Investigation

The underlying goal of this research has been to obtain a bet-
ter understanding of the properties of feedback systems, In this
paper the concept of a signal-flow greph is introduced. The flow
graph provides a visual presentation of the relationships entering
an analysis problem and facilitates certain menipulations leading
to the solution. The exploitation of the gignal-flow graph approach,
as related to the fundamental theory of feedback and to the practical

solution of engineering analysis problems, is the specific purpose of

this work.
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CHAPTER IT

THE SIGNAL-FLOW GRAPH CONCEPT

2.1 Structure of the Flow Graph

A flow graph is a network of directed branches which connect at
nodes. Branch j-k originates at node j and terminates upon node k,
its direction being indicated by an arrowhead. A simple flow grapn
is shown in Fig. 2.1. This particular graph contains nodes 1, 2, 3

ﬁg’ 201

and branches 1-2, 1-3, 2-3, 3-2, and 3-3. The flow graph mey be in-
terpreted as a signal transmission system in which each node is a
tiny repeater station. Each station receives signals via the incom-
ing branches, combinea the information in some manner, and then trans-

mits the result along each outgoing branch.

If the resulting signal at node j is called xj, then the flow
graph of Fig. 2.1 leads to the functional relationships

x, =a specified quantity or a parameter
%y = fa(x15%3) (2.1)
Xy = 3(xl,xz,xB). .

The second equation, for example, simply states that signal X, is
directly influenced by signals X5 and X5, 08 indicated by the pres-
ence of branches 1-2 and 3-2 in the graph. More precisely, the
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branch transmission of branch j-k may bte defined as the partial

derivative

tjk ='1'fk_/3x‘1 . (2.2)

If branch j-k does not appear in the graph, then the corresponding
branch transmission tjk vanishes identically. Total differentiation
of Egqs. 2.1, therefore, ylelds

dx, = 0
dx, = t) %) +ba,dx, (2.3)

dxy = by 4dx) +1y0d%; +155dx5,

where t12 and t32 are, in general, functions of both x) and X3 and

t13, t23, and t33

The flow graph shown in Fig. 2.1 may be thought of as a graphi-
cal representation of Eqs. 2.3. When the values or actual analytical

are functions of X35 Xy and X3

forms of the branch transmissions are marked upon the graph near the
corresponding branches, th. graph is said to be explicit. An explicit
graph and its associated set of total differential equations are equiv-
alent. Both contain the seme information, the difference between them
being one of notation alone. As we shall see later, explicit graphs
are useful primarily in linear problems since the branch transmissions
are then independent of the variables xj. Under the assumptions of
linearity, Egs. 2.3 integrate directly, so that the original Egs. 2.1
must be of the form

=N

X, =7, +t12x1 +'l'.32x3

x3 = y3 +t13x1 -0-‘!’.231(2 +t33x3,
vwhere IRIIRE! are constants of integration. If, now, quantities
Vs Yps Y3 8T treated as additional variables, the flow graph takes
the explicit linear form shown by Fig. 2.2. Each branch may be 1lik-
ened to a unilateral amplifier having a gain equal to the branch
transmission and each node acts as an adder which sums the incoming
signals. Since yj always transmits to xj through a branch of unity

(2.4)
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Hg, 2.2

transmission, it is not really necessary to show the additional
nodes and branches; they may be omitted provided their effect is
automatically implied. The important point is that an explicit
set of linear equations may be recast in the form of an entirely
equivalent flow graph, whereas a nonlinear set of relationships
must be totally differentiated before an explicit flow graph be-

come3 meaningful.

A symbolic flow graph is one on vwhich the branch transmissions
are not indicated. FEach branch is simply present or absent, as in
Fig. 2.1. Such graphs prove useful in the considera’ion of both
linear and nonlinear problems. A symbolic graph shows the struc-
ture or "Gestalt" of the associated set of functional relationships
but not the precise nature of the functions or operations involved.
The associated functions fk need not be analytic or even single val-
ued in order to be representable as a symbolic flow greph. The pres-
ence of branch j~k means only that fk depends in some fashion upon
x, and does not necessarily imply the mathematical existence of the

partial derivative afk/axj’ In short, a branch may be significant
even though its transmission, as defined by relation 2,2, is not.

2.2 The Formulation of Analysis Problems in Terms of Flow Graphs

Preparatory to more general considerations, let us glance at
Black's linear circuit, shown in Fig. 2.3. Given the input voltage
Vo, what is the output voltage VB? Were we sufficiently familiar
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with the circuit it might be possible to write the answer by in-

spection,
= —H

v3 vO l-P,B ¢ (205)
Lacking such knowledge, we must introduce additional variables
chosen so that the relations among them are evident by inspection.
In general, for a given physical problem, these relations become
simpler as the number of variables is increased. For the circuit
of Fig. 2.3 the introduction of variable Vl permits us to write
V3 = pvl. Since Vl itself is not known, it must be expressed in
terms of other quantities, Vl = Vo-+V2, and so on, V2 = BVB, until

the set of relations is complete.

The process is one of tracing a succession of causes and effects
through the physical system. One variable is expressed as an explicit
effect due to certain causes, which are in turn recognized as effects
due to still other causes. Each link in the chain of dependency is
limited in extent only by our powers of 1n8pection. The problem may
be formulated in a few complicated steps or it may be subdivided in-
to a larger number of simple ones, &s determined by our judgment and
knowledge of the particular problem under consideration.
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The approach outlined above leads to a general formulation
which has the form

xp = (X)X, 000, X))

Xy = Dolxsxgs =075 xp)
(2.6)

x = fn(xl’x2’ seey xn),

in which one or more of the variables X1 Xpy *°%, X may be absent
from each of the functions fk. Relations 2.5 are evidently in proper
form for essociation with a flow graph. Moreover, the flow graph
could have been constructed directly from the physical problem, with-
out "writing" the equations, The explicit flow graph shown in Fig. 2.4,

v
< Vs
A
/
Vv, &
Frq. 2.4

for example, may be sketched by inspection of Black's linear circuit,
Fig. 2.3. This graph is quite equivalent to the set of equations

Vo = a specified quantity

V1=2V47 (2.7)
Vo = BV,

V3 = uvl .

As another elementary example, let us attempt to formulate the
input impedance of the grounded-grid amplifier shown in Fig. 2.5(a).
Under certain simplifying assumptions, the linear incremental equiva-
lent circuit is that of Fig. 2.5(b). When driven by & current source
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@) b)
Fig. 2.5

I the circuit responds with a voltage E, and the ratio of E to I
is the desired impedance. Voltage E may be expressed as the sum
of the generated voltage pEg and the voltage drop (rp*-RL)I. Hence
the flow graph begins as shown in Fig. 2.6(a). The dependency of

I & E 7 PR, E £,
I I M
@) &)
Fiq. 2,6
pEg upon Eg, and E8 in turn upon E, yields two branches which com- ’
plete the graph as shown in Fig, 2.6(b). The completeness and valid-
ity of the graph, of course, must be determined by judgment. It is
entirely possible to make errors in formulating & graph just as it '
1s possible to write a set of equations which do not properly describe
the physical problem.

Figure 2.7 shows a passive linear circuit which will serve as a
third sample problem., A straightforward analysis results from the
loop equations

By~ (Ry*R)I) +R) I, = 0 (2.8)

- 3111 +(Rl +r12)12 = 0,

1N
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which may be solved simultaneously for Il and I2. Our purpose
here, however, iz to illustrate the formulation of flow graphs.
In order to make way for a graph, the first and second equations

may be solved individually for I1 and 12, respectively, yielding

1
1=(%+Hﬁ)%+H

(2.9)
1

2 = (R1y) R +R, °

I

The corresponding flow graph is shown in Fig. 2.8. This graph

/ R
Kof'?l L RI +RZ I
2
£, >
R,
Kot Ry
Frq.2.8

might have been deduced directly from the circuit in the following
manner., Effectively, loop current Il i8s caused by the voltages Eo
and 12R1 vwhich are produced in the first loop by quantities other
than Il' The contribution of each voltage to Il
quotient of that voltage and the self-resistance R°-+R1 of the first

loop. Hence branches 0-1 and 2-1 in the flow graph. Similarly, cur-

is given by the

rent I1 produces a voltage IlR1 in the second loop and division by
the second self-resistance R1+R2 yields the transmission ratio of
branch 1-2, &s shown in Fig. 2.8,

11
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The flow graph of Fig. 2.4 bears a striking resemblance to
the physical circuit from which it was derived. In Figs. 2.6(b)
and 2.8, hovever, we have the same graphical structure arising
from other physical problems wherein the pattern of signal flow
is not as clearly related to the physical arrangement of system
elements., Later we shall see how the solution of each of these
analysis problems may be written by inspection of the graph. It
is the pattern of signal flow, rather than the particular circuit
configuration, which points the way toward the desired solution.
This suggests, perhaps, the freedom and generality to be enjoyed
by a theory based upon flow graphs, as contrasted with a theory
which is bound to a particular class of physical components or
systems.

The foregoing examples indicate the general manner in which a
flow graph may be formulated but they do not, perhaps, emphasize
the fact that the flow graph of a particular problem is not unique.
Any one of a number of alternative graphs may be built by the ana-
lyst as he formulates the problem. A knowledge of the current-
divider principle, for example, would permit us to represent the
circuit of Fig. 2.7 as the graph shown in Fig. 2.9, where the first

/
R+ !& R
EO0——0O > 01,

Fig. 2.9

branch transmission is the conductance faced by Eo and the second

treansmission is the current-divider ratio. A comparison of Figs.

2.8 end 2.9 bears out the rule that more complicated branch trans-
missions are the price which must be paid for a simpler flow graph
structure. In later chapters an algebra 18 developed by which

12
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Fig. 2.8 is very simply reducible to Fig. 2.9. The process of re-
duction makes clear the increasing complexity of branch transmis-

sions as the graph is condensed.

2.3 The Flow Matrix

A flow graph implies the set of relations

xk = k(xl’x.?’ c*ty xn) (2.10)

k=1,2, ***, n

vwhere fk denotes the result of some specified operation upon the set
of variables X s Xpp *0%y XKoo In this section we shall undertake a
straightforward mathematical treatment of the equation-set. This
treatment leads to a square matrix whose properiies are intimately
assoclated with the structure of the corresponding flow graph. A
familiarity with the matrix is not at all necessary for the exploi-
tation of flow graphs. All primary methods and results discussed in
this paper can be obtained without ever mentioning the words "matrix"®
or "determinant". Nevertheless, the formal mathematical treatment
provides a background for certain bridge-points and parallelisms
which are of sufficient interest to warrant their inclusion.

To proceed, we may define a new set of functions @, where
¢k = X~ fk(xl’XZ’ % xn) (2.11)
k=1,2, ¢*¢, n,
Total differentiation yields the matrix equation

ag = dx(u -t), (2.12)

vwhere
dx = [dx, dx, +- dx ] :
af = [ad, dag, «-- ag ]

are the differentials of the row matrices

13
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SICTEREN
¢-’-[¢l¢2 e ¢n]’

u is the unit matrix, and t is the branch matrix

t t ese t -l

11 12 1in
t t ee e t
¢ = 21 22 2n (2.13)
Ltnl tn2 e tnn_

having as elements the branch transmissions

tjk =ark/axj. : (2.2)

~

As mentioned previously, branch j-~k appears in the flow graph if and
only 1if tjk does not vanish identically.

It is convenient to define u-t as the flow matrix

p=u-t, (2.14)

The elements of p are given by

B, [1-ty, i=k

Pix =9—£j‘= Sty SAK, (2.15)
so that the flow matrix has the form
1=ty mtp ot Yy
o= "ty 1ty ottt -ty (2.16)
i -;nl ';hZ "t 1'-;nn_ :
The inverse of p is defined as the transmission matrix
T=p? (2.17)
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and its elements are called‘tranamissions (not to be confused with

branch transmissicns). The elements are given by

P
k
Ty = -I;i, (2.18)
vhere
P = determinant of the p matrix
ij = cofactor of pkj‘

Quantity P, hereafter called the flow determinant, 1s recogniz-
able as the Jacobian of Egs. 2.10. The significance of the Jacobian
is brought out by the following geometrical interpretation, in which
the quantities ¢k are visualized as scalar point-functions in n-dimen-

sional space, the n coordinates being X1s Xoy ooy X o In such an in-
terpretation, the original Eqs. 2.1C are represented by the surfaces
¢k =0(k=1, 2, +++, n) and the intersection of these surfaces is
the desired solution. If the intersection is a single point then the
solution is unique. Similarly, if the surfaces intersect in a number
of separate points, then & number of discrete solutions obtain. When
the surfaces intersect in a common curve, hovever, every point on the
curve satisfies the equations and a discrete solution no longer exists.
Since the curve may be specified by only n-1 equations, the original

equations are not independent.

A curve common to each of the surfaces ¢k = 0 is normal to each
of the gradients V¢k. If 8 1e a vector tengent to the curve, having

components 8)5 By **°y By then
R V¢k =0 (2.19)

k=1,2, ***, n.

Fxpansion of the dot product gives

n n
5Z=i 8 3525“/33:‘1 = j:zl 84Pjy = 0 (2.20)

k = 1’2, ooo’ n.

15
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Now coneider the follcwing matrix product

rsl 82 co Sn "pll p12 s e pln ,-0 o s o0 O

o 1 ...0 Po1 Ppp ees Pl [Pryp Proeee B

D 3 R S P : (:.21)
L0 0 "'lJ 3%1 Phg oo %ml fhl Pz < %mj .

Zeros in the first row of the product matrix are due to relations

<«/Ce Since the determinant of the product must equal the product
of the determinants, we have

P Sl = O. (’) ’,‘2)

The numbering of coordinates is arbitrary so that we may assume
s = 0 without loss of generality. Remembering the condiiions
whicn led to relation 2,22, we see that the flow determinant van-
ishes identically when, and only when, a discrete solution of the
original equations is impossible, Witho.t specifyirg the nature

of the functional relations, little more can be said about the
general nonlinear problem.

When p is independent of x the problem is_said to be linear.
integration of Eq. 2.12 yields the linear relation

g

xp -y, (2.43)

vhare

= [ylyZ tee n]
contains the constants of integration. In n-dimensional space,

the planes g = 0O represent the original equations. If P is nonvan-

ishing, the intersection of these planes at the single point

x = yT (2424)

gives the desired solution. In the particular case y = 0, all
plenes pass through the origin and the trivial solution x = O re-

sulte, If, however, y = O and P = 0, then the plenes intersect

16
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in a line passing through the origin. Hernce the ratio of any two
coordinates xk/xj is specified but their actual velues are indeter-
minate .

Relation 2.24 states the superposition principle. Since T is
independent of x and y in linear problems, the response

n

x, = j>=:1: 7y Ty (2.25)

due to a set of drives y is the sum of the individual responses due
to each drive acting alone. In view of the validity of superposi-
tion, no loss of generality results if we consider only a single
drive yj. The corresponding responses x, are given by

%k ip -k
(jﬁ) = Tjk =3 (2.26)
yi=0,1;£j

and the ratio of any two responses is

T P
(Z)  -#=-. (2.2
VyEo,uA M

In terms of the linear flow graph, Tjk is the signal appearing at
node k when a unit signal is injected into node j through an exter-
nally driven branch. If, for some resson, P and yj both become
small, then in the limit x, may 8till have some nonvenishing finite

value,
= = 1
X ijjk (zero X infinity). (2.28)

The ratio 2,27 still holds, however, and

P
(_xx_k. = ng , for any j. ' (2-29)
®p=0,y=0 ™

When P vanishes, therefore, the flow graph supports a self-sustained
flow of signals in which only the relative velues of the node signal

levels are known,

17
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CHAPTER III

THE TOPOLOGY OF FLOW_GRAPHS

3.1 Introduction

In the preceding chapter the flow graph concept was introduced
and the flow graph representation of physical analysis problems was
discussed, The graph was also shown to have an associated flow ma-
trix which enters the formal solution of the problem. In this chap-
ter the topological properties of flow graphs will be considered.
Topology has to do with the form and structure of a geometrical en-
tity, but not its precise shape or size. The topology of electrical
networks, for example, is concerned with the interconnection pattein
of the circuit elements but not with the characteristics of the ele-
ments themselves. Similarly, flow graph topology deals with symbolic
graphs, for which the branch transmissions are unspecified. Flow
graphs differ from electrical network graphs in that the branches
are directed. In accounting for branch directions, we shall need to
take an entirely different line of approach from that adopted in elec-
trical network theory.

3.2 Classification of Branches and Nodes

As a signal travels through some portion of a flow greph, tra-
versing a number of successive branches in their indicated directions,

that signal traces out a flow peth, In Fig. 3.1 the succession of

18
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branches (1-2, 2-4, 4-5), or (2-3, 3-2, 2-4), or (2-3, 3-4, 44, 4-5),

constitutes a flow .ath, as do many other combinatlons. In general,
there may be many different paths which originate at node j and ter-
minate upon node k, or there may be none. For example, no path from

node 4 to node 2 appears in Fig. 3.l.

Feedback now enters directly into our discussion for the first
time with the definition of a feedback loop as any flow path which
closes upon itself. The flow graph shown in Fig. 3.1 has feedback
loops (2-3, 3-2) and (4.4). Additional loops are (2-3, 3-2, 2-3, 3-2),
(4-4, 4-4), etc., but these are trivial.

The branches of a flow graph may be classified as elther feed-
back or cascade branches. A feedback branch is one which forms part

of a feedback loop. All others are called cascade brasnches. Return-
ing to Fig. 3.1, we see that 2-3, 3-2, and 4-4 are the only feedback

branches present. If each branch in a flow graph is imagined to be a
one-way street, then a lost automobilist who obeys the law may drive

through Feedback Street any number of times but he can traverse

Cascade Boulevard only once as he wanders about in the graph.

The nodes in a flow graph are evidently susceptible to the same

classification as branches. Namely, & feedback node is one which forms

part of a feedback loop and all others are cascade nodes.

3.3 Feedback Graphs )

A feedback graph is a flow graph which contains only feedback
branches, Similarly, a cascade graph has only cascade branches. If
all cascade branches are removed from a flow graph, the remaining feed-
back branches form one or more separate feedback graphs, which are sald
to be imbedded or contained in the original flow graph. The graph
shown in Fig. 3.2(a), for example, contains the %wo feedback graphs
indicated in (b) and (c).

Feedback graph (b) has three loops whereas (c) possesses only one.
The number of loops, however, is not the most important characteristic

19
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2 3 i 5 G
b) (c)

fFiq. 3.2

of a graph relative to the difficulty of solution. More significant
is a quantity called the index, defined as follows. The index of a
feedback graph is the minimum number of nodes which must be blocked
in order to interrupt all feedback loops in the graph. The process
of node blocking simply interrupts all paths passing through that
node. For the determination of index, blocking a particular node is
if"' equivalent to removing all branches which connect at that node. Both
graph (b) and greph (c) in Fig. 3.< are of index one, since the block-
ing of node 3 and either 5 or 6 serves to interrupt all closed paths.

The index notion is sufficiently important to justify its de-
velopment from another point of view. The alternate approach begins

with the expansion of each node, as shown in Fig. 3.3. Node k, 1ik-
ened to a repeater station, mey be expanded into a receiver k' and a
transmitter k", which are connected by a new branch k!'-k" of unity
transmission. This process produces & new graph having signal levels
xi and x; equal to the originel signal x_ in the unexpended greph. In
terms of the expanded graph, the index may be defined as the minimum
number of branches which must be broken or removed in order to elimi-
nate a1l feedback loops. The expansion of Fig. 2.2(b) is shown in

20
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Flg, 3.2

¥ig. 3.4 The removal of branch 3'-3" evidently leaves a cascade graph,
8o that the index ie unity, as before.,

Fig. 3.4

Two nodes are 2aid to be connected if they lie in a common flow
path, and coupled if they occur in a common feedback loop. A flow greaph
is connected (or coupled) if every palr of its nodes is connected (or
coupled). A feedback graph mey now be defined rigorously as a connected
flow graph having only feedback branches. It follows that a feedback
graph is elso coupled; a flow path exists from j to k and also from k
to j for all j and k. For a proof we choose some flow path containing
j and k, as shown in Fig. 3.5. Since each branch pq is a feedback branch,
a path must exiet from q to p and hence, by continuation, from k to 3.

Nodes J and k, therefore are coupled.

21
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Fig. 3.5

3.4 Cascade Graphs

A cascede graph exhibits a special character which suggests the
numbering of ites nodes in a certain successlon. The nodes will be
termed early or late according to their positiones in the succession;
node j is earlier than node k if k exceeds j. In addition, we shall
defice a forward path as any flow path from J to k and a backward path
as any path from k to j, where k exceeds j. In a cascede graph it 1s
possible to number the nodes in a sequence, called the order of flow,
gsuch that no backward paths exist. The proof is as follows, If we
trace in the reverse direction (i.e. opposite to the direction indi-
cated by the arrowheads) along any path in a cascade graph, the trac-
ing process must end at a source node, which transmits but does not
receive (i.e. a node from which one or more branches radiate but up-
on which no branches terminate). Otherwise the path could be ex-
tended in the reverse direction until it eventually closed upon 1tself;
an impossibility in a cascade structure. Having established the ex-
istence of at least one source node, let us choose one of these, des-
ignate it as node number one, and then temporarily erase 1t from the
graph, together with its radiating branches. The remaining graph
agein exhibits a source which may be taken as node number two. By
removing node 2 we find one or more sourcee from which to choose
node 3, and so on to completion, at which point all branches, and
all nodes from which any branches originally radiated, have been
erased. Remaining are one or more gink nodes, which received but
did not tranemit in the original graph. The zink'nodas are numbered
last in any desired order. Let us now assume that there is no path
from node k to any of the nodes 1, 2, 3, ..., J-1, where k>J].

22
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Under this essumption, there is no path from k to j via a node ear-
lier than j. The only possible path from k to j, then, ic one which
does not contain 1, 2, «+e, or j -1. In the light of the numbering
procedure described above, however, no such route is permitted, since
' J 1s a source when 1, 2, +++, and j -1 are removed. Hence there is no
path at all from k to j, provided we assume none from k to 1, 2, +-.,
or j-1. Since this assumption 1s valid for j = 2 it follows for all
j by induction. Thus, we have proven the existence of an order of
flow for cascade graphs, such that there are no backward paths from

.| later to earlier nodes.

) Figure 3.6 shows two simple cascade graphs whose nodes have been
numbered in the order of flow. The numbering of graph (a) is unique,
whereas other possibilities exist for graph (b), the scheme shown in

(c) being an example.

2 . 2 4
3 Y 3 5
b

(a) o)
4 5
/ 6
2 3
(c)
f?gy. 2.6

3.5 Partitioning

The notion of an order of flow may be applied, in modified form,
to a flow graph having both cascade and feedback branches. As a first
step let us consider the graph shown in Fig. 3.7, which would be a

cascade graph were it not for the presence of the self-loop t An

22°
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2
12 'f}3
]:(} > a Y — O
‘ X, X3
F19. 3.7

order of flow still prevails, however, since no backward paths exist
(1.e. paths from k to j, where k >j). Now consider the more compli-
cated structure shown in Fig. 3.8. If the imbedded feedback graph

is encircled and treated as a single supernode, then an order of flow

again prevails; from the source x to the supernode x2x3 to the

sink XL' With the aid of matrix notation we may condense this graph

to the form shown in Fig. 3.9. Coupling within the supernode is

t}z fiJ
t32 ti.?

e 4,2] b
' [x, %3]

Flg. 30 9

24,
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specified by the single self-branch whose branch transmission is a
matrix instead of a single term, Similarly, the matrix t12 tl3

takes the place of the two branch transmissions tl2 and t13 appear-
ing in Fig. 3.8. In general, a branch originating at a supernode
containing b nodes and terminating upon a supernode of ¢ nodes will
have a matrix transmission of b rows and c¢ columns. Similarly, the
variable associated with any supernode is & row matrix containing the
individual node variables. Within each supernode the individual nodes

are numbered consecutively in any order.

When a flow graph i1s condensed and numbered in the order of flow,
thet graph is said to be partitioned. The process of partitioning
places the flow matrix in a particularly significant form. For illus-
tration Fig. 3.10 shows (a) a flow graph, (b) its condensation, and
(c) the corresponding flow matrix, Beceause of the order of flow, the

3
/
(a) 4
2
3
) /2 4+
T T
’—th :'”ibz "153 : o i
—ty, V1 |ty 2
@ |2 23 1 ~T24 |
0o | o T
e
0 1 0 | 0 |I-t,
A {
Frq. 3./10
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lower left portion of the flow matrix is empty. No path from a node
or supernode to an earlier node or supernode can be present (i.e.

tjk =0 for §j k, provided j and k are not common to one supernode).

The Laplace development of a determinant shows that

aa:‘ Pab I
P = ‘(;'E-;“ =|Paal‘|Pbb , (3.1)
bb
where P 18 partitioned into subdeterminants Pc d having ¢ rows and
d columns, and where O represents an empty subdeterminant. We see
immediately from the form of Fig.3.10(c) that the flow determinent
of a graph is equel to the product of the flow determinants of its
imbedded feedback graphs. The flow determinant of a cascade graph

evidently has the value unity.

Having identified feedback graphs with factors of the flow de-
terminant, we may complete the tie by giving a suitable mathematical
meaning to the index of a feedback graph. The index is found by re-
moving nodes until only a cascade graph remains, the index being the
minimum number of such removaels required. When nodes j and k are re-
moved the new flow determinant is the algebraic complement of the
diagonal subdeterminant

Pi;  Pik
Pej  Pxx .

The complement is obtained by striking out rows and columns j and k
in the original flow determinant. For example, the removel of nodes
1l and 3 from a graph originally having nodes 1, 2, 3, 4, changes the
flow determinant from ,

Pyy Pap Pz Py Por Py
to
P33 P3p P33 Py Pi Pyl ’
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which is the complement of

P11 P13
Ps1 P33y *
The index, then, may be identified as the order of the smallest diag-

onal subdeterminant whose complement is unity, since a unity comple-

ment indicates a remaining cascade graph.

3.6 The Residusl Flow Graph

A cascade graph represents a set of equations which may be
solved by direct substitution. Figure 3.11, for example, has the

Z, :rz X,
Frg. 3.1(
associeted equation set
x, = £5(x))
Xy = f3(x1,x2) (3.2)

x, = fL(xl’XZ’XB)’
Given the value of the source Xy, we obtain the value of x, by the

explicit process

%, = £ tytn), ZEVCICN) | SRR AEN (3.3)

In general, once the order of flow is established, a knowledge of

X fixes X, since paths from X3y X, 5%°% OF X to x, are nonexist-

ent. Similarly, with X3 and X, known, x3 ie determined explicitly;
and so on to x,. A& cascade graph is immediately reducible, there-

fore, to a residual graph in which only sources and sinks appear.

27
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The residual form of Fig. 3.11 is the single branch shown in
Fig. 3.1<, which represents Eq. 3.3. The extension to more than

x, O o2,

Fig, 342

one source or sink is obvious. Had two sources and two sinks ap-
peared in the original cascade greph, the residual greph would have

contained a maximum of four branckes as indicated by Fig. 3.13.

S/nk

Squvrce Source

sim k

Figq. 3./3

Unlike those associated with a cascade graph, the equations of
e feedback graph are not soluble by direct substitution. Consider

the simple example shown in Fig. 3.14. Ar attempt to express x; as

Frq. 3.14

an explicit functioa of x fails because of the closed chain of de-

pendency between x,, and x,. The equations are

2 3
x, = f2(xl’x3)

XB = f3(x2), (304)

so thet elimination of x, by substitution yields

2
Xy = fB[f2(xl’x3{] = FB(xl’XB)' (3.5)
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With x & specified constant we have Xy expressed as a function of
itself, The implicit relationship may sometimes be solved for X3 a8
an explicit function of X In general, however, the solution for Xy
requires a cut and try process of the first order, which is equive-
lent to plotting y = F3(x1,13) against Xq and noting its intersection

with the line y = x3.

Nevertheless, certain superflous nodes may be eliminated from a
feedback graph by direct substitution, leaving the more bothersome
implicit relatlonships exposed. The definition of index implies the

existence of a set of residual nodes, equal in number to the index,

whose removal interrupts all feedback loops in the graph. The set 1is
not alwaeys unique. In Figs. 3.15(a) and (b) the set corsists of a

2 3
(a) i
a ﬁyl 3'/5 )

single node. In graph (a) node 2 is the only possibility, whereas
either 1, 2, or 3 may be chosen as the residual node in graph (b).
Once & set of residual nodes has been chosen, all other nodes, except
sources and sinks, may be eliminated by direct substitution. The
presence or absence of particular residual branches in the residual
graph may be determined by inspection of the dependencies indicated
In the original graph. For the sake of definiteness, we may define

a residual path as a path which originates at a source or a residual
node and terminates upon a sink or a residual node, but which passes
through no residual nodes. Branch j-k will appea; in the residual
graph 1f and only if residual path j-k is present in the original
flow graph. As an example, consider the reduction shown in Fig. 3.16.
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(@) )
fagu.ihlé;

The sources, sinks, and residual nodes, which are retained in the
residual graph, are shown darkened. Residual branch 2-5 in (b) ac-
counts for the residual paths 2-4-5 and 2-3-4-5 in graph (a). Simi-
larly, 2-2 in (b) represents the combinec effect of 2-3-2, 2-3-4-2,
and 2-4-2 in (a). A path from 1 to 5 exists in (a) but only via
node 2, Hence there is no residual path 1-5. Accordingly, residual
branch 1-5 is absent from (b). For comparison, the equations of

graph (a) are

X, = fz(xl,x3,x4)

x, = f_{x,)
X, fA(XZ’XB)
x5 = £5(x,)
and those associated with (b) are
f F
= £ fxta(xy), £, [y 2,001} = 25157 o

=1, {r4[3cz,f3(x2)]} Py (%)) -

A minor dilemma arises in the reduction process if we desire,
for some reason, to preserve a node which is neither a residual node
nor a sink. In Fig, 3.17(a), for example, if we desire an eventual
solution for Xy in terms of X s then a node corresponding to Xg must
be retained in the residual graph. Apparently, no further reduction
is possible. The simple device shown in (b) may be employed, however,
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a)
C)-—a——1£21:::::::t}—$£—{) c>-—>—-£;E—a-—<)
! 2 3 4 / 2 44
b) (c)
Fig. 3.17

to obtain the reduction (¢). The trick is to connect node 3 to an
additional node through a branch of unity transmission, so that
X, = X,. Node 3 then disappears in the reduction, leaving the de-

4 73

sired value of x3 available at the sink,

Since a flow graph and its residual counterpart, though differ-
ent in form, are both representations of the same analysie problem,
it is perhaps not surprising that their flow determinants (i.e. their
Jacobians) have the same value. To prove this, we need only show that
the ¢limination of a variable by direct substitution leaves the value
of the flow determinant unchanged. The direct elimination of a par-
ticular variable, say X9 i8 possible only if fn is independent of X s

Xn = fn(xl’xz’.."xn_l)‘ (3.8)
Substitution into fk yields
x = k[xl,xz,-u,xn_l, fn(xl’x2""’xn_1)] (3.9)
k = 1’2""‘,!1"1

and total differentiation gives
n-1

ax, =jZ=i dxy(byy 48500, (3.10)
k =1,2,0¢0,n-1,

Taking n = 3 for convenience of illustration, we now write the matrix

equation
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-t -tg, -tlB' "1 0 0] '1-t11-t13t31 t1o7t3t5, -tlB‘
ty Ity bl 01 of=] <ty -tooto, I-tyo-tosta,  ~tog . (3.11)
_‘t31 ty, 1 Jf'jl ta, 1- i 0 0 1 ]

(a) (b) (c)

Matrix (a) is the original flow matrix and the upper left portion of
(¢) 1s recognizable as the flow matrix of the residual greph., Since
the determinant of the product of two matrices equals the product of
their determinants, we see that the eiimination of a superfluous node
leaves the value of the flow determinant unchenged.

3.7 Reciprocation of a Flow Path

A single constraint or relationship among several variables ap-
pears topologically as a cascade graph containing one sink and one or
In principle,

more sources. Figure 3.18(a) is an elementary example.

Xz A,
X, X3 X, —t—0) x,
}X§::f25§,3(2) 5()=f7(h§ﬁz§)
(a) F19. 3.8 &)

nothing prevents us from solving the equation in (a) for one of the
independent variables, say X to obtain the form shown in (b). In
terms of the flow graph, we say that branch 1-3 has been reciprocated.

The reciprocation of a path 1s accomplished by reciprocating each of the

branches along that path, as shown in Fig. 3.19. Reciprocation of
branch 1-3 in (a) yields graph (b),
branch 3-5 in (b) gives (c).

result of reciprocating path 1-3-5 in graph (a).

Similarly, reciprocation of
Hence graph (c) is recognizable as the
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4 + 2 4 2 4
/ 3 Ky ’ 3 3 / 3
(a) cb) (c)

/-77. 2./9

Topologically, the reciprocation of a path has two effects.
First, the directions of branches forming that path are reversed,
and second, branches entering that path have their entry points
shifted tc the next downstream node in the new direction of flow.
The reciprocation of an open path (i.e. an unclosed path) is sig-
nificant only if that path starts from a source node. Otherwise,
two expressions for the same variable are obtained and two separate
graphs are required in the topological representation, contrary to
our original hypotheses regarding flow graphs and their associated
equations. For illustration, let us reciprocate the aingle branch
3-5 in Fig, 3.19(a), thereby obtaining an expression for X, in terms
of x, and Xgeo Branches 1-3 and 2-3, however, already imply that g
is a function of Xy and Xye The new graph, then, takes the degener-
ate form shown in Fig. 3.20, which fits rather poorly into our pic-
ture of signal flow,

2 4

3 3
Fiq. 3.20

Thus far, the possibility of reciprocating a closed path has
not been considered, By a rather simple extension of the foregoing
notions we see that feedback loops do lend themselves readily to re-
ciprocation. For example, given the graph of Fig. 3.21(a), we may
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/ /
2 3 2 3
X, = £(X,, «3) A= F(x,,X;)
X3 = glxz) X, = G(%3)
@) )
F}g 2. 21

alternatively solve the first equation for x3 and the second for Zys
producing a new graph as shown in (b). Branches external to the path
which 18 being reciprocated evidently obey the same shifting rule as
that developed for open paths. We may, in fact, define the reciproca-
tion of any path, closed or open, as follovs:

The reciprocation of a flow path containing branch

Jk but not branch ik is accomplished by transform-

ing each branch jk into branch kj and replacing

each branch ik by a new branch ij.
The definition enunciated above evidently excludes open paths which
do not originate at sources, since if k is such a point of origina-
tion there exists a branch ik but no branch Jk and the meaning of
branch 1§ is lost. In addition, reciprocation is not applicable to
a closed path which intersects itself (i.e. which touches upon the
same node more than once, as does the path 1-2-3-2-1), for if jk and
mk are both contained in the chosen closed path and if jk is recipro-
cated first, then branch mk becomes mj and the original closed path

1s destroyed,

The process of reciprocation, as might be expected, influences
the topological properties of the flow graph. Of greatest interest
here is the'effect upon index. The reciprocation of a path may yield
a nsw graph whose index 35 the same as that of the original graph,

2/
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a8 in Fig. 3.21., It is also possible that the index may be reduced,
as 1llustrated by the reciprocation of loop 2-3-2 in Fig. 3.22(a),

) ‘ )

a
Frg. 3.22

vwhich yields a graph (b) of index one. Similarly, the index may in-
crease, as demonstrated by the reciprocation of path 2-3-2 in (b)

which restores graph (a).

In general, paths parallel to a givea path contribute to the
formation of feedback loops when the given path is reciprocated, and
conversely. Hence, if we wish to accomplish a reduction of index we
should choose for reciprocation a path having many attached backward
paths but few parallel forward paths. No specific rules or tests
for the minimum index obtainable by reciprocation will be given here,
chiefly because such rules, stemming from a consideration of the flow
determinant, are sufficiently unwieldy to be of vanishing practical

" interest,

The use of reciprocaticn may be illustrated by the simple analy-
sis problem which follows. Given the cathode-follower circuit shown
in Fig. 3.23; it is desired to plot an output-input characteristic;
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a curve showing e s a function of ey for a specified tube ib =
f(eb,ec) and specified values of E, . and R, . Since e, is the nat-
ural driving variable, we might construct the flow graph shown in

Fig. 3.24, The uppermost branches, whose transmissions are not in-
dicated, represent the function ib = f(eb,ec); presumably available

in the form of graphical plate characteristics.

As it stands, the flow graph is of index unity, elther 1b or

e, serving as the residual node. For a single specified value of

k
e,y & first order cut and try process is required for determination

of the corresponding value of e’ Taking 1, as the residual node,
we may essume a trial value for 1b and then, knowing e and Ebb’ com-
pute the values of the remaining variables & ©5s and e, As ib is
varied through a range of trial values, a load line e, = Ebb--ibRk
and a bias line e, ¥ el-iibRk are described upon the plate character-
istics. The intersection of the load and blas lines, of course, rep-

resents the desired solution.

Since an output-input curve, rather than a single operating
point, is desired, we might have simplified the problem somewhat by
beginning with an assumed value of e, (or 1b) and calculating the
corresponding value of e, required by the equations., A series of
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such value-pairs specifies the output-input characteristic just as
well as a series obtained by choosing each value of e, first. If e,
is chosen first, the assoclated computatiocnal process corresponds

to a graph in which e, @ppears as a source, To obtain such a graph,
we may reciprocate path s €, ib, ey in Fig. 3.24. The resulting
form is shown in Fig. 3.25.

F1g. 3.25

Following the simple rules developed earlier, we change the direc-
tions of the branches along the path s €. ib, e and shift the
tips of branches (ek,ec) and (eb,ib) along the new direction of flow
to obtain the new branches (ek,el) and (eb,ec). By inspection of the
circuit the new branch transmissions are as shown in the figure. &
cut and try process is no longer required since the index has been
reduced to zero. Choosing a value of e s Ve compute ey = Ebb"ek’

1, = ek/hk, e, = f(e.,1,) from the plate characteristics, and e, =

e te,, all as dictated by the cascade graph of Fig. 3.25.

k
The foregoing cathode-follower problem was chosen for simplicity
of 1llustration. Having such simplicity and familiarity, it may, of
course, be grasped and analyzed without recourse to flow graphs.
Nevertheless, the flow graph notion affords an organized represen-
tation which the reader may find attractive even in such simple
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problems. When the problem becomes more complex, the practical ad-
vantages of flow graph methods stand out somewhat more strongly. The
flcw graph tends to extend our powers of perception with regard to

the character of a set of functional reiationships. If we see a prob-
lem clearly, then no graph is needed. As the complexity increases,
flow graph notions become a valuable aid to systeml.zation. A still
greater increase in complexity, however, may make the graph itself so
complicated that perception suffers until the graph has been somewhat
condensed by one reduction process or another. In short, the flow
.graph offers no panacea to the analyst but it does provide a graphi-
cal langusge which facilitates the formulation and logical analysis
of a great variety of problems, If a specific problem is totally con-
founding and mysterious, then a flow graph may or may not help. If,
on the other hand, we have at least some familiarity with a device or
circuit, if we have some notion as to how to proceed with the problem,
then flow graph methods can help to crystallize our thinking., Ulti-
mately, the organization of the problem comes from within our minds,
not from the flow diagram, which can not be expected to serve as more

than a convenient mode of expression or manipulative tool.

33
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CHAPTER IV

THE ALGEBRA OF LINEAR FLOW GRAPHS

4.1 Introduction

The preceding chapters have dealt largely with the properties of
general flow graphs. We shall novw specialize our attentlon to graphs
of the linear class. As specified previously, a linear flow graph is
one whose branch transmissions are not dependent upon the values of the
node variables. Linear circult problems lead to such graphs, provided
the analysis is carried out in the frequency domain where the iinear
intego--differential equations involving time become linear algebraic

equations with frequency as a paramever.

The restriction to linear problems permits us to develop a quanti-
tative algebra for the manipulation of flow graphs. The formal back-
ground was set forth in the second chapter, wherein the transmission
matrix was ldentified as the inversz of the flow matrix. In this chap-
ter we shall be concernsd with the evaluastion of a transmission by di-
rect manipulation of the flow graph. In developing the algebra of lin-
ear flow graphs we shall accumulate a body of theorems, relations, and
methods vwhich constitute the beginnings of a basic theory of feedhack
in linear systems. This theory is supplemented in the later chapters
dealing with sensitivity and stability.

4.2 Elementary Transformations

Figure 4.1 illustrates several elementary transformations or equiv-
alences. The parallel or multipath transformation (a) reduces the num-

ber of branches. The cascade transformetion (b) eliminates a node, as

« , .
a+b
6
abd
b) O—i—o——i—o = O———0
Frq. 4./
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ab bc

ad cd

Frg. 4.1

does the star-to-mesh transformation (c), of which (b) is actually a
special case. These elementary equivalences permit us to evaluate the
branch transmissions appearing in a residusl graph by systematic re-
duction of the original graph.

Consider, for example, the diagram of Fig. 4.2(a) (the explicit
counterpart of Fig. 3.16, on which braanch transmissions were not in-
dicated.) Elimination of node 3 by means of the star-to-mesh trans-
formation ylelds graph (b). By the parallel equivalence, we may imme-
diately simplify to the form (c). Subsequent elimination of node 4 and
combination of parallel branches leads through (d) to the residusl
graph (e).

In practice it is possible to recognize the branch traasmicsions
of the residual graph by direct inspection of the original diagram, In
crder to provide a sound basis for this more direct process, we may de-
fine a path transmission as the product of the transmisslons of the
branches forming that path. In addition, a residual transmission from

J % k 1is defined as tne algebraic sum of %ihe transmissions of all dif-
ferant residual paths from j to k. As defined previously, e residual
path is one which originates at a source or a residual node and termin-
a%es upon a sink or . residual node, but which does not pass through
any resldual nodes. 1t follows trom the nature of our elementary trans--
formations that the transmission of branch j-k in the residual graph is
equal to the residual transmission from j to k in the original Zraph,
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Returning to Fig. 4.2(a), we observe that three different residual

paths rrom node 2 to itself are present. The sum of their transmissicrns
+t .t ., ¢+ - -
is t24t42 23%32 t23t34t42, which checks the value of the self-trans
mission at node 2 in the residual graph of Fig. 4.2(e). Similarly, two
paths from 2 to 5 are present and the residual trensmission is evidently
+ .

given by t24t45 t23t34t45 No residual path exists from 1 to 5 in the
original graph, since such paths are prohibited from passing through

node 2, the residual node. Hence no branch connecting 1 to 5 appears

in Fig. 4.2(e).

4.3 Loop Transmission and Loop Difference

When a flow graph is simplified to its residual form, one or more
self-loops appear. The effect of a self-loop at node j upon & signal
passing through node j may be studied in terms of Fig. 4.3. The signal

t

tx\ fx

—_——
(-t)x X x
Fg. 43

leaving the node along each of the outgoing branches is x, the value of
the node varisble. The signal returning via the self-loop is tx, where
t is the transmission of the self-branch. Since signals entering the
node add elgebraically to produce x, it follows that the external sig-
nal entering from the left must be (1-t)x. The node and self-loop,
therefore, may be replaced by a single cascade branch whose transmission

is the reciprocel of (1-t), as shown in Fig. 4.4.

t
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Approaching the self-loop effect from another direction, we may
observe that a signal entering the node is confronted with an infinity
of paths by which it may eventually exit and pass onward. One peth
passes directly *hrough the node, the second path traverses the loop
once before leaving, the third path circles the loop twice, and so on,
Hence, when a unit signal 1s injected into the node, the total exiting
signal is given by the geometrical series

1+t+t2+t3+--o=l—%-g, (4.1)
which sums to the familiar result. The convergence of this series
(for t <1) poses no dilemma in view of the validity of analytic con-
tinuation. The result is evidently valid for all values of t except
the singular point t = 1, near vwhich the transmission 1/(1-t) becomes
arbitrarily large.

The self-loop to branch transformation evidences the basic effect

of feedback as a contribution vo the denominator of an expression giv-

ing a transmission in terms of branch transmissions. In our algebra,

feedback is assoclated with division or, more generally, with the in-
version of a matrix whose determinant is not identically equal to unity.

For the purpose of enlarging upon the notion of circulating signal-
flow, we shall now define the loop transmission of a node as the sig-
nal received at that node per unit signal transmitted by that node. In
Fig. 4.5, for example, a unit signal transmitted from node 1 passes out-
ward along branches a and b. In traversing node 2 the signal is divided
by 1 -d. The locp transmission of node 1, then, is equal to the total
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returned signal,

be
'21 =aty_g - (4.2)

An alternative definition of loop transmission is the following,
given here for the sake of additional perspective. If node k is ox-
panded into a receiver k' and a transmitter k", and if the internal
connecting branch is broken or removed, then the loop transmicsion of

node k may be defined as the transmission from source k" to sink k'.

In terms of this definition, Fig. 4.5 may be replaced by Fig. 4.6 for
the evaluation of ZI. The transmission from 1" to 1' is given by ex-
pression 4.2, as may be seen by performing a self-loop elimination at
node 3 and then applying the cascade and parallel equivalences to ob-

tuin a single equivalent branch transmission from 1" to 1!.

II
C
a d
a6 2
Firqg. 4.6

Another quantity, for which we shall find subsequent use, 1is the
loop transmission of & brench. In Fig, 4.5, the loop transmission of
branch b would be obtained by breaking or cutting branch b at some
point, injecting a unit signal at the forward side of the breek, and

then measuring the signal returned to the opposite side of the cut, as
shown in Fig. 4.7(a). Since the e_,~al traverses the entirety of
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branches t &and c, and also passes through two nodes supporting self-
loope, the returned signel is given by

b
T, = (l—d;!(l-a) . (4.2)

The loop transmission of a branch may also be specified in terms
of the existing definition for the loop transmission of a node. We
shall, in fact, define the loop transmission of & branch as the loop

transmission of a new node artificially introduced at some internal
point of that branch. The introduction of the new node i effectively
replaces the given breanch j-k by two cascaded branches j-i and i-k,
such that the product of their transmissions is equal to that of the
original branCh.(tjitik = tjk). In relation to our running example,
the loop transmission of branch b in Fig. 4.5 is identical by defini-
tion to the loop transmission of node 3 in Fig. 4.7(b).

Witk regard to notation, we shall designate all loop transmissions
by the symbol}. Subscripts denote a certein node or brench, the dis-
tinction being evident from the mamuner in which the flow graph is let-
tered or numbered. In Fig. 4.7(b), to teke a specific exemple, ’Z’B is
the U of node 3 and'l‘:1 represents the P of an arbitrary node, Either
’2'13 or Tt might be used to designate the Tof the specific branch b,
but the 7”of an arbitrary branch j-k would probably be given the double
subscript 231:’

To summarize the foregoing definitions and illustrations, we may
state that'Z:j represents the transmission from node j to itself, with
all possible return paths tsken into account. It is evident that cas-
cade branches can have no effect upon the value of’l}.. As a consequence,
only that imbedded feedback graph which contains node j need be conrsid-
ered in the evsluation of '23. In Fig. 4.8, for example, = '13 =753 =

to3base 2 4

F'/q 4.8
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Having defined loop transmission, we may expand the simple self-

loop equivalence to a more general form, which may be stated as follows.
If a signel yj 1s injected into some node j of a general linear flow
graph, then the transmission from the external signel source to node j
is given by

= —31 (4.4)

T, =
1T

3

Sl e

Figure 4.9 shows the associated flow graph. Quantity 1-?3, which
finds its way into all feedback calculations, is defined as the loop

~ = -

/, N Ay
/’7 remamnder
q. / I of graphk, \
d x. \ no sovrces .
J -
\ ,l
\ 7/
\\__’ 7
Firg. 4.9
difference of node j,
D = l_ . *
3 4] (4+5)

A corresponding definition applies %o the loop difference of a branch
Djko
The loop difference DJ mey be interpreted as the fre:tional part
of xj supplied by yj, the remaining contribution to xj coming, of
course, from signals which return through the remainder of the graph.
A simple methemetical reletion exists between the loop difference and
the flow determinant. As demonstreted in Chapter II, the transmission
ij and P, where ij is the
cofactor of pJj in the flcw determinant P. Hence, from Eqs. 4.4 and

from yj to xj is given by the quotient of P

4.5, vwe may vrite

_ P
D, = <&, (4.6)
I Py

|
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Since ij is just the value which P would assume if node j were absent,

we have the relation
- B
Dj - Po b4 (4-7)
where P0 is the flow determinant of the graph remaining when node j
(together with all its connecting branches) is erased from the original
graph.

The loop difference of a branch Djk bears a similar relstion to
the flow determinant. As demonstrated in Section 3.€, the value of P
is invariant under the elementary transformations. Hence, we may in-
troduce an auxiliary node at some internal point of branch j-k without

altering P, In addition, the erasure of this auxiliary node effectively

breaks or removes branch j-k. In view of our definition of ik as the
of the auxiliery node, it follows directly that
D, =& (4.8)

P
jk Po
vhere Po ie the flow determinant of the graph remaining when branch j-k

is erased from the original graph.

An illustrative example might prove worthwhile at this point. Con-
sider the simple graph shown in Fig. 4.10(e).
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The flow determinant is

1 -b -c
P=|]-a 1 O]l =1-a(b+ecd). (4.9)
0 -d

With node 1 erased, the graph tekes the form shown in (b), a cascade
graph for whict the flow determinant is evidently unity. The loop dif-
ference of node 1 is therefore

_ P _1-a(b+ecd) _
1 - Po -— 1 - 1—ab-&0do (10010)

D

By inspection of graph (&), the loop transmission of node 1 is
‘zi = ba + cda, (4411)

which checks the relation D, =1 -’l’i. With branch ¢ removed, the flow
graph remeining is that shown in (¢). Its determinant has the value
1-ab. Hence the loop difference of utranch c is

-2 _21-albted) _, _scd
l:’13“1-"0‘ 1-ab -~ 1"T1-ab* (4.12)

The loop transmission TiB of branch c is the T of an auxiliary node in-
troduced into that branch. Since branches b and c are in simple cas-
cade, however, node 3 serves as just such an auxiliary node. In other
words, '1’13 = 23. Loop tr:smsm:lss:l.on‘Z"3 is equivalent to the transmis-
sion from 3" to 3' in the graph of Fig. 4.1l. For a unit signal orig-
inating at 3", the signal injected into node 2 has the valve d so that

{ C 3!
a b
2 d 3"
Fiq. 4N
X, i1s given by I—:%-s « The signal appegring at 3' is just 8CX,, with
the result that
T =T = 2% (4-13)

As before, the relation between D and 7" is verified, D13 =1 —'1'13.

L3
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In electricel circuit problems the node variables are currents and
voltages. Hence the branch transmissions are impedances, admittances,
or ratios of impedances or admittances. We may speak, therefore, of the
loop transmission around a "tube", meaning the loop transmission of the
branch whose trensmission is the transconductance or amplification fac-
tor of that tube. Figure 4.12(a) shows the current equivalent circuit
for a tube, together with a connecting network. The plate resist-nce

aund interclectrode capacitances are treated as part of the network. A

E;,I C:Di Im£g L g..

I
JT s 4\_2) 1 ——04,
wor. I
E,| re (1 11, . Z g
@) )
Frg. 4.12

convenient flow graph representation is shown in Fig. 4.12(b). The
plate-to-grid transfer impedance is defired by the E te I0 ratio as
measured with the tube "dead" (i.e. with 8 O, but with the plate re-
sistance sustained at its normal value). From the graph, we see that
the loop transmission cf the tube is

'Tgm = B Zoe (4.14)

or I E
T = (¢ due to tube)(3 due to network). (4.15)

g, E I

Had the voltage equivelent circuit been employed, the circuit and
graph would have appeared as shown in Fig. 4.13, An external volteage
drive is provided in this case, rather then a current source. The
boxed networks of Figs. 4.12 and 4,13 differ only in the placement of
the element representing plate resistance; in parallel with Io and in
series with Eo, respectively., The plate-to-grid transfer function Apg

45
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is defined by the ratic of E2 to E° as measured with the tube dead
(i.e. u = 0). The loop transmission of the tube is

7-; = - pAos (4.15)
or E, E,
T = (3= due to tube) (== due to network).
ko Ep 5

Relations 4.14 and 4.15 are actuaslly identical. Their identity becomes
apparent when the network elemewﬁ representing plate resistance is taken
into account. An alternative demonstration of the identity stems from
physical considerations. The 9"of the tube is just the 9’ of node Eg in
Fig. 4.13(b). Expanding this node into a trarsmitter and a recelver,

we have the graph shown in Fig. 4.14(a), from which 9 may be evaluated
as the transmission from E; to Eé. In the associated physical circuit (b)

‘ “
L9 5
M E"l i i;q /‘Ell
-/ E, T4 49 Y- 9
A
E fg e ®
2 f;I nefwork IEZ
@) &)
Figq. Z 14

£
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the node expansion appears as a break in the grid lead. If one volt

is applied at E; then the voltage appearing at Eé is numerically equal
to the 7 of the tube. This measurement is obviously independent of the
type of equivalent circuit used to represent the actual vacuum-tube cir-
cuit; provided, of course, the representation is valid. Incidentally,
the loop difference of the tube is just the voltage appearing across

the break (E;-—Eé) per unit voltage applied at E;. Hence D. as well as
7T, is interpretable in terms of a physical measurement. In an actual
circuit this measurement may be difficult to perform, since it requires
brecking the grid lead inside the point at which the grid-to--cathode
and grid-to-plate capacitances are effectively connected. Nevertheless,
such an interpretation is an aid to the evaluation of 2 or D by inspec-

tion of a circuit.

The circuit shown in Fig. 4.15(a) may be represented by the flow

graph (b). Here we have a one-terminal-pair element Z, as contrasted

I E
~o, fwork
L4 neTwdr
:b \
- T
(a) b

Frg. FI5

with a transfer element such as p or g. If the input admittance of the
connecting network is Yo’ then the loop transmission of impedance 7 is

- oy = (E 1
't% = - = (I due to Z)(E due to network). (4.17)

The negative sign accounts for the fact that Yo is defined in terms of
a current opposite to that shown in the figure. The expansion of node
E or I does not, in this case, lead to the interpretation of Q as the

direct result of a single physical measurement. For one-terminal-palir
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elements, then, we have only the result that the loop transmission of
an impedance (or admittance) is the negative of the product of that
impedance (or admittance) and the admittance (or impedance) which it

faces.

The foregoing discussion is illustrative of the manner in which
the concept of loop transmission may be linked to certain physical ele-
ments. It must be remembered, however, that the fundamental definition
of T comes from the flow graph. Starting from the graph, we are free
to undertake whatever interpretations seem interesting and useful in a

given problem.

We shall now prove a theorem which will be of subsequent interest
in the chapter on transients. Our chief purpose here is not to obtain
a result for immediate use, but rather to illustrate the ease with which
flow graph concepts may be applied to the proof or derivaiion of certain
feedback theorems. Such theorems and formulas, usually developed in
terms of a circuit or other physical device, and usually proven by manip-
ulation of equations or their determinants, often become aphorisms when
stated in the language of flow graphs. For one familiar with flow graph
techniques, it is simpler in many cases to derive the result by inspec-
tion of an appropriate graph than it is to memorize the theorem or for-

mula and carry it in readiness.

The theorem to be considered is as follows: The ratio of the loop
differences of two tubes in a circuit is the same as the ratio obtained
by computing each loop difference with the other tube dead. Clearly,
the circuit may be represented as a flow graph in which each of the two
tubes (i.e. each g or y) eppears as a branch. Introducing an auxiliary
internal node in each of these two branches and eliminating all other
nodes by means of elementary transformations and self-loop to branch
transformations, we are left with the flow graph shown in Fig. 4.16.
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The theorem may now be stated more generally as follows: The ratio of
the loop differences of any two nodes in a flow graph is the same as
the ratio obtained by computing each loop difference with the other
node removed. By inspection of Fig. 4.16,

_ be
Dl—l-[a+1_d (4.18)
_ be

D2—l—[d+1_a]. (4.19)
Hence,

D

1l 1l-a

5, " 14 (4.20)

Quantity (1 -a) is recognizable as the value of D, as computed with

node 2 removed from the graph. Similarly, D2 = 1-d vwhen node 1 is
absent. The demonstration is therefore complete. In reducing the
original graph to the form of Fig. 4.16 we need only consider the
feedback graph containing nodes 1 and 2, since cascade branch trans-
missions do not enter the calculation of a loop difference. Had nodes
1 and 2 occurred in separate feedback graphs, then no coupling would
exist (1.e. branch b or c would be absent from Fig. 4.16) and the the-
orem would reduce to a trivial special case in which Dl = 1l-a and

D2 = 1 -d with or without the opposite node present.

4.4 The Evaluation of a Transmission

We now have four tools which may be applled to the problem of
evaluating the transmission from one node to another in a linear flow
graph. These tools are (1) the elementary transformations, (2) the
concept of residual transmission, (3) the self-loop to branch trans-
formation, and (4) the general concepts of loop transmission and loop
difference. Actually, (1) and (2) are closely related, as are (3)
and (4). In support of these tools there lies the flow graph topology

developed earlier,

53
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To proceed with an illustrative example, we shall find the trans-
mission T13 through graph (a) of Fig. 4.17. A convenient means of indi-
cating the desired transmission is shovn by graph (b) in which a source

@) ,m

Fq. 4.17

end a sink have been affixed. When only one source and one sink are
present we may drop the subscripts and speak, without ambiguity, of the
(source-to-sink) transmission T. The T of graph (b) is evidently iden-
tical with the le of graph (a).

With the source providing a signal Xy the signal at node 1 mqﬂ be
: i

found from the relation

1 1 1
P . (4‘21)
X, Dy ].—11

By inspection of the graph,‘za.is the transmission cf path ac as modi-
fied, of course, by the effective self-loop bd at node 2. Hence

ac

Ty =1"pa ?
and
X
11 o
% = [ _ec . ' (4422)
1-bd

With the value of Xy known, we may think of node 1 as a source which
injects a signal ax, into node 2. Branch c evidently can not affect
the value of x2/x1 and may be removed, if we wish, for this calculation.

54
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Again by inspecticn,

x2 azl
. “1°bd° (4.23)
1
Finally,
X
;2 = b, (4e24)
2
and the over-all transmission is
X, X, X
Tz_l._g.._j.______&b____ (4.25)
X X, 00X 1-ac~-bd * o
o 1 2

In the foregoing example we have paid in complexity for our fail-
ure to recognize the topological characteristics of the graph. Begin-
ning afresh, we identify the graph as one of first index, the only pos-
sible residual node being number 2. The residual graph, obtained either
by applying the star-to-mesh equivalence at nodes 2 and 3, or by identi-
fying the appropriate residual transmissions, is that shown in Fig. 4.13.

ac+bd

a z2 b
Fig. 4.16

By inspection, the value of T is the same as that given by expression

25,

For a second example, we shall take the second-index graph shown

in Fig. 4.19. The source-to-sink transmission is just the reciprocal

ad e £ .
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of D.. Because of the chain structure of the graph, a simple con-

1
tinued fraction results,
_ 1
T= 1 - &d
be
l-—=———— . (4426)

As a check, let us also compute T by reduction to a residual graph.

We may choose as residual nodes any one of the pairs (1,3), (2,3), (2,4).
The choice (1,3) offers the advantage that no direct source-to-sink re-
sidual transmission is present. Figure 4.20(a) shows the corresponding
residual graph. Eliminating the self-loop at node 3, we have graph (b)

ad be +cf-

@)

ad 3

de
/

b> / I=(be+cf)

/ ab

{
abde  Ldli-cf)
()

Frgq. 4.20
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which immediately reduces to the residual form shown in (c). By in-
spection of graph (c),

1 - 1-be-cf
1_-8d(1-cf) " 1-ad-be-cf+acdf’ (4+27)
1- (be +cf)

T =

which proves to be identical with expression 4.26.

In quest for a more orderly presentation of the reduction process
outlined above, let us examine the most general second-index residual

graph vhich is sketched in Fig. 4.21(a). The substitution of a branch

)
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for the self-loop at node 3 leaves a first-index graph (b) which has
the residual form shown in (c). Denoting the new residual transmissions

by primes, we have

..t
A b

12 12 —t33
st 4 _3_14
14 14 33
bt (4.28)
thy = oy * Toges
33
e =t 4 _u_&
24 24 33 ’
and, by inspection of graph (c),
te' ]
T = =t 4 2% (4.29)

VA VA e
The general scheme, made evident by the orderliness of the subscripts
in expressions 4.28 and 4.29, may be stated as the following reduction
formula., The elimination of node i from a flow graph leads to a new
flow graph whose branch transmissions are given by
t,, =t +Ej£-13‘-

e T ik T 1ot 0

(4.30)

vhere the primed and unprimed transmissions belong to the new and the
original graphs, respectively.

The general process for the evaluation of T by graph reduction may
now be summarized as follows:
Step (1): A set of residual nodes is chosen and the superfluous
nodes are eliminated by either (a) elementary trans-
formations, (b) evaluation of the residual transmis-
sions by inspection, or (c) the repeated application
of the reduction formula. For superfluous nodes, of
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course, t_ , vanishes and relation 4.2C assumes a

i1
particularly simple form. Alternative (b) is prob-
ebly the simplest of the three, however, provided

we are careful to notice a1l possible residuel paths.

Step (2): One of the residual nodes is eliminated by either
(a) the self-loop to branch transformation, or (b)

the reduction formula,

Steps (1) and (2) are then repeated in order until the desired trans-
mission is obtainable by inspection. If the formula is employed in
step (2), however, the resulting graph is residual and further appli-

cations of step (1) are not necessary.

A final example, shown in Fig. 4.22, will illustrate the use of
the reduction formula. The residual nodes in greph (&) are 3 and 5.

(«)
cé)
R
/ S5
'é/ z(;.?"é\?S /- 3’3
@ O —> ;o —9,
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By inspection, the residual transmissions appearing in graph (b)

are

t:13 = 1oty ¢ tiglaatas

:;3 ) :32:23: TR P

15 = "12"24"45

35 = b3bs + taaTiatys (4.31)
Dol

55 ~ 75665 54 45 56 64 45
57 = Tsetere

Now, application of the reduction formula to node 3 yields graph (c).
Finally, by inspection of (c), the over-all transmission 1s

t!_t!
(¢! + 2222y

15 1"‘53 57
T = t' tl ¢ (4'32)
1-(1';' + 3 [ )

4.5 Reciprocal Transmissions

We have already seen how the form of a flow graph is altered by
the reciprocation of & path. For lineer graphs it is profitable to
continue with an inquiry into the quantitative effects of reciprocation.

In particular, we wish to determine the branch transmissions esppearing

in the reciprocated graph.

n
Figure 4.23(2) shows two branches which may be imaégd to form part
of & larger graph. The signal entering node 2 via branch b is bx3. The

3
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contribution arriving from trench a, then, must be just x2-bx3, since
the sum of these two contributions is equal to Xy Hence, given X, and
X35 the required value of x, is that indicated by graph (b).

In general, therefore, we may say that the reciprocation of branch
j-k 1s accomplished by (1) reversing that branch and inverting its trans-
mission, (2) shifting any branch i-k not contained in that path to the
new position i-j and dividing its transmission by the negative of tjk'

The operaticn is specified by the transformations

R
by t
B (4.23)
t' :E.k.
2 - bl
i) tjk

where primes denote the new branch trensmissions.

Figure 4.2/ offers an elementary example of the use of reciprocation
in the evaluation of a transmission. Application of the reduction formule

to node 3 of the second-index graph shown in (a) leads to the expression

@ { a 2 c 3 4

/5@7, 4,24
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cf

x a( )
TR T (pess, (T-BITe)-cdr (4.24)
l-e

Reciprocation of path 1-2-3-4 produces cascade graph (b), for which

the transmission 1is
1 b1 e ag]
=-2)(¢-9) - 2. (4.35)

Since the reciprocation is here accompanied by an index reduction
(from 2 to 0), T' is more readily obtainable by inspection than is T.

This example 1s indicative of the general result which may be sum-
marized a8 follows. If & path joining a source to a sink is recipro-
cated, the graph obtained has a transmission which is the reciprocal
of the original transmission. Moreover, if the reciprocation accom-
plishes a reduction of index, then the reciprocal transmission may be

considerably simpler from the standpoint of evaluation by inspection.

Figure 4.25 illustrates, in principle, another possible use of

reciprocation in transmission calculations. The transmission TlA of
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graph (a) is evidently given by

X
r b et (20

In graph (b), the result of reciprocating path 1-2-3-5, the transmis-

siors of interest are

x
t
T54=x—4:-:-+f (4037)
5
x
v _ 1 _ 1 d
T5l - X " abe a ° (4.28)
It follows that
7! St
T, =248 (4.29)
4 g 71 d4° -
51 @abe " a

which checks with the previous result. In genersal,

Tjk ey (4.4C)
i

[ 3V

where Tjk is the transmission from a source node J to any other node k,
and where T:k and T;j are found from the graph after a path joining j
to i has been reciprocated. For i = k, of course, T;i = 1 and we have

the simple reletion indicated previously.

Had we reciprocated path 1-2-3-4 in Fig, 4e25, we would have ob-
tained & graph with the same index as graph (a), namely unity. Graph
(b), however, 1s e cascade structure having zero index. It is possible,
therefore, that a transmission calculation mey be simplified somewhat
by the reciprocation of s path which does not connect the specified in-
put and output nodes. In the simple example given here, cf course, re-
lation 4.36 is very easily obtainable without recourse to special de-

vices such as reciprocation,

€3
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As an incidental note we shall mention at this point another flow
graph transformation which is, at first glance, apparently related to
reciprocation, and yet entirely different in effect. A graph is said
to be transposed vhen the direction of each branch is reversed, leaving

the branch transmission unsltered. In short,

tgk = by (4.41)

where the prime denotes a branch transmission of the transposed graph.
It follows that

T}k = Tyye (4e42)

This result, immediately obvious from the matrix relation T = t—l, also
follows from an elementary consideration of signal flow., Each path from

Jj to k in the origirel graph (including those paths which traverse e feed-
back loop once, twice, etc.) is evidently replaced in the transposed graph
by & path k-j having the same transmission. Hence TLj’ which is the sum

of all such path transmissions, is equel to T The summation must be

Jk*
assumed to converge, of course, but this gives us no trouble. We may
simply choose values of t for which the T series is convergent, and then

continue the function T(t) throughout the t domain,

Figures 4.26(a) and (b) show a flow graph and its transposition.
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f?g, +.26

Graph (c) is topologically identical with (b) except for & reversal of
the orientation (i.e. (c) is the image of (b) in a vertical line). Given
only graphs (a) and (c), a knowledge of transposition helps uc to recog-
nize the equality of their transmissions. 1In general, transposition
serves as an equivalence trensformation which may be used to obtain al-

ternative flow graph representations of a specified trensmission.

4.6 The Transmission Relative tp a Particular Branch

It is often desirable to express a transmission T in a form which
emphasizes its dependency upon the transmission of a particular brench
t, which ve shall call the reference branch. In order to accomplish

such a representation, we may isolate the specified reference branch by
the Introduction of two auxiliary nodes and then reduce the graph to a

form containing only four nodes; the two auxiliary nodes plus the source
and sink which define T. An illustrative example is shown in Fig. 4.27.

g

@)
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I
I-F
© 624—9045
fig. 4.27 =

U SRR NI i

ab ::o’b

BELN A A

Desirous of focusing our attention upon the chosen reference branch t

of graph (a), we place two auxiliary nodes as indicated in graph (b).
Elimination of the unwanted nodes leads directly to grsph (c). It is

T S G B DA B N Sl s ek

clear from the nature of this process that an arbitrary graph may always
be reduced to the stendard form shown in Fig. 4.28. The relation be-

tween the reference transmission t = t and the over-all transmission

i)

Jjk
J < k
m — - n
Fig. 4.28
T = Tmn is given by
t .t t

T (t mj jk kn

. ) =t + . (1001&3)
mn' jk mn 1 _tjktkj

For convenlience of physical interpretation we shall adopt the simpler
notaticn,

Te
T(t) = To + =T , (444)

where by definition,

T, = the direct transmission (or leakage) past branch t =
7° = the loop transmission around branch t (4+45) B
Tf = the forward transmission through branch t. ;

66



Page IV-29

Quantities Tf and T each contain t ae a fector, whereas To is in-
dependent, of t, Incidentally, transmissions T, To’ and Tf have the
seme dimensions (i.e. xn/xm in Fig. 4.28) while T (like all loop trans-
missions) is dimensionless. The feedback formula is similar in nature
to the reduction formula 4.20 developed previously for the elimination
of a node., Expression 4.43 may be thought of as a reduction process
which accounts for the effect of a particular branch.

The use of the feedback formula in circuit analysis is illustrated
by the following example, Suppose that we desire to find the voltage am-
plification E2/E1 of the circuit shown in Fig. 4.29. We might, of course,

Io® w
- o L L e
F fa ﬁghmfg ' Rj -

Frg. 4,29

construct a sprawling fiow graph such as that shown in Fig. 4.20(a).

%

t _1
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By inspection of the residual graph (b), the transmission is
R R, =R
5 E+DE - eh) ra-er)
BB . R BH < BU-g Ry
E, ~ R " R, +R,+R, + R, °*
LR T R R T RRIGRRR
Ry TR T2

A neater original greph having slightly more complicated branch trens-

(4.46)

missions is shown in Fig. 4.31(a). From the residual form (b), we see

(@)
kR
on,f;,«@Hg
E, £
< : R0-9.) & | = °
Fi1g. 4.3/
that the transmission is again
R2(1-ng3)
R R s Foll - &yl . (4o47)
£y Bk Ry +Ry+Rytg iy

l+ey R, +R, +R,
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If we wish to use the feedback formula, however, we must think
in terms of the standard flow graph, For purposes of illustration the
formula will be evaluated for two different reference transmissions.
Suppose, first, that the transconductance &, is taken as the reference

element. The corresponding flow graph is shown in Fig. 4.32(a). For

"
G ! £,

-/

e In & 4 %n 45

£ £ g £
(@) Frg. 4 32 4

convenience of physical interpretation, we may expand node Eg as shown
in (b). By inspection of the graph,

B
A

—— ¥
TO - (El)E" -0 (1*“4'3)
g

E!

T = (%) (4.49)
g E;=0
E E

P S I ¢ T (4450)
1 Eg=0 gEl=0

Now, by inspection of the corresponding circuit, Fig. 4.33, we identify

Ks
% — AW -—1
® hid 0. i: = "0
Z 5o Qlag' ik s
bt t

Lo~
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the transmissions,

R

2
To = R ¥R, +R (4:50)
R,
T = & R 7 R% +R, (4.52)
R, +R o(Ry +R,)
T = Grin,ny) %W}%‘> (4-53)

Upon application of the feedback formula, we find
R2(Rl+-§3)(R24-33)

2
T—:Eﬁ- 2 - R R (4.54)
“E TR.+R.+R. &nm RR ’ .
1 Ryt BRy*Ry 1+ g 1%
Ry +R,+R,

which simplifies to the same form as expressions 4.46 and 4..47.

As an alternatlve, let us now choose resistance R, as the ref-
erence transmission. As we shall see, To vanishes and a particularly
simple formulation results. The appropriate flow graph is shown in

Fig. 4.34, together with the circuit.

r.
T 2 E. ——ANNWA———
? ) g, Lz
/ o '}. f.
E’& P54
E, %
/757, 4,34
By inspection of Fig. 4.34, we 1identify
2
T = ——) =0 (4-55)
° E'g =0

70
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1+— R
T = —Rz(admittance faced by R‘?)E],: 0= Rlile) (4.56)
I ng
T, = (—-) (1) = ——i)n . (4.57)
£ 2o * Ry R +R, 2
Hence,
T R, (1 R, )
T=——f—,z_, R+Rg"; — . (4.58)
Ryt 3 18R

The feedback formula may be placed in many other forms, each of
which finds special use. If, for example, T 1is known for the par-
ticular valucs of the reference transmission t = O and t =o, then
the T corresponding to eny other value of t is given by

o_T T
T(t) = 5= Zoa (4.59)
where, of course,
T(o) =T

T(o0) = R

Since T contains t as a factor while T° and TOD do not, expression 4.59
points out & well known property of linear systems which may be stated

in the language of flow graphs as follows. If all branch transmissions
in a flow graph are fixed, except for one which has the arbitrary value
t, then the transmission T of the graph is related to t by a linear

fractional transformation of the general form

+b
treeo (4-60)

where a, b, and ¢ are constants.

T =

Another representation of the feedback formula is especially
adaptable to the determination of driving-point impedances or admit-
tances. The derivation of this form follows from Fig. 4.35. Suppose
that the input impedance E/I of the system is to be found in terms of
a particular reference transmission t. By inspection of the graph
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e
—_—
)/ o | oystem
fa £ contaning
| z
. e/
frg. .35
Z
- E_ £
Z'I°zo+1-'z" (4.61)
where
Zp = atb (4.62)
T = te. (4.63)
Expression 4.61 may be rewritten as
Z
1- (- 1)
_ o)
222, (4.64)

Let us now find the value of the loop transmission of t in the pres-
ence of a load YL as shown. The flow graph provides two paths around
t, one through c¢ and the other through b, —YL, and a, The second path
supports a feedback loop -Y Zo' The value of 7", therefore, is

L
bYLa
T=tle-5735). (4.€5)
1+ ZOYL
For YL = 0 and YL = 00, the input terminals are open-circuited and
short-circuited, respectively, Hence, we may write
To.c, = o (£.46)
ab
Ts.e, = He-37), (4.67)
L L o
and Zf
Tsee. = ’Z;.c. Tz ¢ . (4.68)

2
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It follows that

- B.Co
Z2=12 (7= pr= ). (4.69)
The expression breaks down, of course, when Z0 vanishes or becomes
infinite,

An 1llustretive application of formula 4.69 will be made to the
circuit shown in Fig. 4.36. Taking g, a8 a reference, we find

A7
I —VWh-
———
0 -
1e o

Hg~436
TOQCO(I = O) = - ngz (4’70)
’Té.c.(E =0) =0, (4.71)
Z, = (E =R, +R,, (4472)
gm 0
8o that
I l-l-ng2 e

Our primary purpose in this chapter has been to develop & simple
flow graph slgebra and to indicate the applicapility of this algebra to
linear analysis problems. The several formulscs and examplec are to be
taken only as illustrations of this applicability. The main point is

that such formulas may be derived very simply on the {low graph basic,

often by mere inspection of an appropriate graph.

| ?
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CHAPTER V

SENSITIVITY CONSIDERATIORS

5.1 Introduction

From the design standpoint, not only the transmission through a
system is of interest, but also the manner in which that transmissior
is affected by changes in the system parameters. In a vacuum-tube am-
plifier, for example, we may ask for the change in midband gain caused
by a varlation in the transconductance of one of the tubes, due per-
haps to the aging of that tube or to the deviation of that tube from
the norm of a manufactured lot. If such variations have little effect,
we say that the sensitivity of the gain, relative to the transconduct-
ance,is small,

In this chapter the sensitivity concept will be developed for flow
graphs. We shall examine certain structures which exhibit low sensitiv-
ity, mentioning possible design applications. Our purpose, however, is
not to obtain specific design criteria, but rather to obtain a feeling
for sensitivity. The flow graph offers a general basis for such con-

siderations.

5.2 The Sensitivity of a Transmission Relative to a Particular
Reference Branch

The sensitivity of a transmission T to changes in a particular

reference branch t is defined here as

dfmtr _ 91/T
S = Jdnt = 2u/t" (5.1)
If we relax expression (5.1) to admit small increments rather than dif-
ferentials, then S is the percentage change in T produced by a one per

cent increase in t.

The sensitivity may be evaluated by direct differentiation of the
feedback formula 4.44 discussed previously. However, for the sake of a

14
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novel viewpoint which provides additional background, we shall venture

a less straightforward approach to the evaluation of S. Consider, first,
any two branches A and B of a flow graph, By the introduction of auxil-
iary nodes (as described previously in connection with the feedback
formula) we may reduce the graph to the essential form shown in Fig. 5.1,
which places branches A and B in evidence. Cascade branches are dropped,

Frg. 5.1

since they do not enter the forthcoming considerations. If continuity
of signal flow ie postulated, then thc loop transmission of every node

and branch must equal unity. Branch ¢, for example, has the loop trans-
mission

s

_ cAdB 2
2R Ty Isee ) I (5.2)

as measured by breaking branch ¢ and computing the transmission from
one side of the break through the graph to the other side of the breach.
Since branch ¢ is actually unb.oken in Fig. 5.1, the signal flow is con-

tinuous and't; = 1. Hence the branch transmissions are related by the
constraining esquation

i Ay B, _1

r T 2T =5 : (5.3)
, Given B,a,b,c,d, we way compute A. Treating a,b,c,d as constants, we

: have a functionsl dependence between A and B. Now, since

dh(iTAla-E) = g—i_@ﬁ ’ (504)
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for a constant, it follows that

3na 177
Sas = - (l—--_,%), (5.5)

vhere TZ

theorem.

= aA,‘Té = bB. This result may be stated as a general

If A and B are any two branch transmissions in a feed-
back graph which supports continuous signal flow, then,
for small changes, the ratio of the percentage increase

in A to the percentage decrease in B is equal to the
ratio of their loop differences.

According to a previous theorem, each loop difference may be computed
with the other branch removed, without affecting their ratio.

With expression 5.5 at hand, we return to the question of sensi-
tivity. Figure 5.2(a) shows the familiar graph which results from ex-
haustive reduction about the reference branch t. With a unit signal

@) (b)

F/y, 5.2

injected at the source, the signal appearing at the sink is just T,
the transmission of the graph, If, now, the sink is connected to the
source through a branch of transmission l/T, as shown in (b), the re-
sult 1s a feedback graph in which continuity of signal flow is pre-
served. The concept here is the same as that usually employed in the
description of a feedback oscillator. Taking t and 1/T as the two
variable branch transmissions of the feedback graph, we have, from
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relation 5.5,

or

1.-2
S = g‘ﬁ:z 1 _% 9 (5.6)

where U 1s the loop transmission of t in Fig. 5.2(a).

Before going on to more general considerations, we might profitably
examine a very elementary design problem which illustrates the use of
the sensltivity formula. Suppose that the voltage transmission of the
circuit shown in Fig. 5.3 has the specified value T = E2/E1 =-1, What

c-r-—"—F——7>7" —— = 1
| W
{ t . R |
7 | .fE | 'l 3 ¥E.
E q 7mE ! 2.
! Ly T !
: |

values of &y and R should be chosen for an "optimum" (minimum) sensi-
tivity of T to changes in gm? Our first task is the evaluation of T
in terms of &y and R. By Inspectlon of the circuit,

1
To=Rez (5.7)
T=-g Bty = - B (5.8)

For variety, let us use the alternative form of the feedback formula
4+59 vwhich requires the evaluation of T for €y infinite. From Fig., 5.3,
we observe that a very large value of By will result in a current ng
which tends to oppose any deviation of Eg from the value zero. For

Eg = 0, the voltage generator must supply a current numerically equal

77




Page V-5

to El’ Hence E2 = - REl and

T ="R. (5'9)
The transmission is gi.en by
T°~T®'L" 1-gR
1-7T ~ 2+g +R°
It follows that for T = -1, as postulated, the constraining relation

T = (5.10)

between gm and R is

Eyt3
R = E‘;——l, (5.11)
and that the sensitivity is
To
l1-+- Lg
§=o—2L o B (5.12)

S1-T -(gm+1)2

The "optimum" design, therefore, is obtained by choosing a very large
transconductance, whence the sensitivity is very small. The accompany-
ing value of R 18 very close to unity.

The above example indicates the general rule that the sensitivity
is small when the loop transmission of the reference element is large,
The sensitivity also vanishes if T is made equal to To’ a condition
vhich in practice is usually either unobtainable or trivial. In the
above example, T° can be made equal to -1 only by the use of an unal-
lowable negative resistance R = -3, Had the specified transmission
been T = 1/3, however, then the available generator pover E /A would
have exceeded the desired load power (E /3) and a passive circuit would
have sufficed (i.e. g, =0, R=11is the solution). In short, when To-T
the reference element does not contribute to the transmission and pre-

sumably may be removed from the system.

A large loop transmission results in what is commonly called "nega-
tive feedback". This terminology arises from the logarithmic represen-
tation of the feedback formula. The logarithm is
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1
Lu(t-1) = dn 1+ dn(sEs). (5.13)
The real part of Eq. 5.13 is

Lt -'rol =,@n|'rf| +in 'I'}Trl , (5.14)

vhere by definition
“6“'T"To| = the gain due to the reference transmission (5.15)

h]rfl = the forward gain (5.16)
dn Ifl,;:-l = the feedback gain. (5.17)

In words, the gain (nepers or decibels) due to the reference element
is the sum of the forward gain through that element and the feedback
gain. The feedback is said to be positive or negative according to
the algebraic sign of expression 5.17. In general, the term transmis-
sion refers to the ratio of a response to a drive, whereas a gain is
the logarithm of a transmission. The imaginary part of Eq. 5.13 re-
lates the phases of the factors entering the feedback formula. The
transmission (T'_To) due to the reference element has a phase shift
equal to the sum of the phase shifts of the forward transmission (Tf)
and the feedback factor (1/1 -T).

5.3 Insensitive Flow Graphs

The example considered in the preceding section is representative
of a particular class of insensitive flow graphs; those in which the
reference transmission is made very large in order to achieve low sen-
sitivity. The basic effect is shown in Fig. 5.4. We shall postulate
& reference element composed of two cascaded branches, the first being
a linear transmission A and the second a nonlinear transmission
X = f(xz) which exhibits a saturation limit for large values of X,
Figure 5.4(b) illustrates a graphical construction from which the out-
put-input characteristic (x3 v8 xo) may be determined, For a speci-
fied value of x,, the corresponding values of x, and x, are fixed by in-
tersection O of the straight line x = xo-l—Bx3 and the curve x3==f(Axl).
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B
o——L—/
\~+—_
X, X A K, fx) %
?Q3
_éxo N x3: 7664/5(1) ) AI>’4
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— \ x,
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X

T'= o0 (/4:-' 00, 5 nejraﬂ:’é?)

’7’=O(A=/, B=0q)
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As transmission A is increased to a new value A', the nonlinear trans-
mission curve shears to the left. If, at the same time, transmission
B is changed to the value B', then the output Xy is unaltered. For
all such pairs of values of A and B, we have a family of output-input
characteristics, all passing through the origin and the point Q in
Fig. 5.4(c) Only two of these are shown. Others, such as those cor-
responding to points O and O' in (b), lie somewhere between the curves
T=0and T= . Note that the scale of X has been compressed in
Fig. 5.4(c), as compared with the scale used in (b). As A becomes
very large, the intersection point O moves very close to the vertical
axis in (b). Hence, in the region below saturation, Xy = —xo/B, with
the result that the over-all transmission is independent of A and also
independent of the form of the nonlinear transmission function f(x).
It follows that a time-varying signal injected at X, will be reproduced
at Xs without distortion end with an amplification T = -1/B, provided
the saturation limit of the output element is not exceeded.

Another approach to the question of distortion is afforded by the
concept of a "contamination source". Suppoge that branch 2-3 in Fig. 5.5
is nonlinear. We may express the output signal from this branch as the

f?gg.SZfi §(ﬁ‘z) |

sum of a linear term and a contaminating signal representing the ef-
fects of distortion,

Xy = txy 4 E(xz). (5.18)
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Equation 5.18 leads to the linear graph shown in Fig. 5.5, containing a
contemination source. The notation is actually quite general. Quan-
titiee x may stand for the complex frequency spectra (i.e. the Fourier
or Laplace transforms) of time-varying signals, in which case t is a
complex function of frequency (such as an impedance function) and

is an operator which produces a gpectrum E(x) from a spectrum x ac-
cording to some definite, though perhaps complicated, rule.

Given a desired output signal 13, we may elways (1) determine the
corresponding input x, from the known properties of the nonlinear hranch,
(2) choose an appropriste lineer transmission t, which represents the
gross effect of the branch, and (2) find the resulting contemination,
E(x,) = xy-tx,. It matters little whether we write € a5 & function of

2
x, or x,, since X, and x., are explicitly related by the properties of

tt21e bra.?xch. If we demang an output signal Xs vhose level exceeds the
saturation limit of the nonlinear element, then presumably x, and %(xz)
must become infinite in order to supply the required output. For the
entire class of physically obtainable output signals, however, we may
expect the required input x, and the contamination g(xz) to remain

bounded. Now, by inspection of the graph, the transmission from X to

13 is
_ At
Ty3 = T-Bt * (5.19)

and the transmission from g(xz) to Xy is given by

1

33 = T- 4Bt ° (5.20)

T

By superposition, the complete output signel 1s

_ At 1
Xy = T-aBt %o T T-ABt ‘é(xg)- (5.21)

For large velues of A, expression 5.21 approaches

1 1
5= b, - b (5,22
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For unsaturated operation g(xz) i8 bounded and the last term of relation
5.22 may be made negligible by the choice of a sufficiently large value
of A. We have, then, the general result that sensitivity and distortion
are both smell when the loop transmission is large, provided the system

remains unsaturated,

For low distortion systems, wherein g(x2) is a small correction, we
may compute the amount of distortion eppearing in the output by a rapidly
convergent successive approximations method. As mentioned previously,
the contemination may be thought of as & function of either the input or
output of the nonlinear element., With é..(xB) in place of E(xz), Eq. 5.21
suggests the iterated operation,

x§k+l) = IAT%'- x + l—},-?g(xgk)). (5.23)

Taking
&(x)= o, (5.24)

we have as a first approximation

NI

1-7T “o? (5.25)

wherein distortion 1is ignored. Given x§l), the corresponding input

x:(zl) may be computed and the "first contamination" is then found from

(1), = (1) (1) N
g(xB ) - 13 - tx2 . (50‘6)
The second approximation, which inciudes distortion, is
(2) _ _At_ L 2, (2) o
X TT % tTow6(5 ) (5.27)

The third step will teke into account the "first distortion of the
distortion", or the "second contemination", and so on to the limit.
The practical value of the process stems from the fact that xgz) is
actually a very good approximation to 13 in low distortion systems.
In addition, the computation of the first contemination 5.26 is not
excessively troublesome in practice, whereas the determination of

second and higher contaminations is usually much more tedious.
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The preceding discussion has been concerned with low-sensitivity
systems in vhich the reference transmission is large. There exists
another class of insensitive graphs in which none of the branch trans-
missions need be large. We shall find, however, that the difference is
one of configuration rather than principle. In both classes the sensi-
tivity reduction is accomplished by making the loop transmission of the
reference branch very high. The "ideal regulator® shown in Fig. 5.6
provides a transmission which is insensitive to changes in the refer-

ence transmission t. The desired transmission from xo to x2 is to.

In order to detect any variation of t from the desired value to’ the
output is fed through an attenuator l/t° and subtracted from the input
x to give the error X3e For t = to’ we have Xy = O. If t becomes
larger than to’ a negative error signal is produced at x3. This error
is fed back to the input through branch C as a correction signal, there-
by reducing the value of x and helping to compensate for the unwanted
increase in t. A simple quantitetive analysis shows that the choice

C = 1 ylelds flat compensation; that is, an increase in t produces a

correction which reduces x in the same proportion.
The condition for flat compensation mey be deduced by inspection
of the flow graph. The loop transmission of node 1 is

= te -
Tl =C - to . (5-‘-8)

Hence, the transmission from x, to X, is given by

t £

T = = . (5-29)
12 1-7 1- ¢+ 2
o
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For C = 1, this reduces to
T12 = to’ (5.20)
which is obviously independent of the reference transmission t. The
insensitivity to chenges in t 1s also indicated by the loop transmission
of t,
> Ct/to

e (5.21)

vhich becomes infinite for C = 1, Contamination, representing distor-
tion or noise, does not contribute to the output x, when injected into

node 2, since

. 1 1
22 7 1-T,

vanishes for C

(5.32)

0
[
[ ]

The reciprocation of path 0-1-2 in Fig. 5.€ offers still another
means of recognizing the properties of the graph. The result of this
reciprocation is shown in Fig. 5.7. The reciprocal transmission is

(5.23)

8o that T approaches to for values of C near unity.

5¢4 Insensitive Multistage Graphs

A8 a somevhat natural extension of the sensitivity considerations
undertaken thus far, we shall examine the following problem. Given a
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flow graph conteining a number of reference branches whose trensmissions

u,V,W,+++, 2 are subject to variation or deviation from the desired oper-

ating point UgsVs¥os°*®s 2, how should the fixed tranamissions of the
remaining branches be chosen for (1) a specified value of the over-all
transmission T(u,v,w,++-,2) at the operating point, and (2) a minimum
sensitivity of T to variations in u,v,w,<e+,2? PFirst of &ll, we shall
qualify the problem further by ignoring direct transmission past any of
the reference branches. This qualification is equivalent to the comdi-

tion

W

1}
o O O

T(u,o,w,0~-,z)

T(u,v,0,°°+,2)
(5.34)

L ]
L d
L]

L

.. )v,w’QCQ,o) - 0.

In other words, every path from the source to the sink passe:; through

all of the reference elements.

If two auxiliary nodes are introduced into each reference branch,
after the manner of Fig. 4.27 (page IV-27) and superfluous nodes are
eliminated, the resulting simplified graph will have the form (for
three reference elements) shown in Fig. 5.8. This is the most general

f?gu 3.8

structure which complies with the above simplification procedure and
which also satisfies our assumption regarding direct transmission.

Unity transmissions may be assigned to the fixed forward branches, as



shown, withou!t loss of generality. For justification ¢f such an ap-
parently restrictive assignment, we need only recognize the following

general normalization rule.

If each branch transmission tjk in a flow graph is multi-
pliec by a scale factor aik’ the scale factors being 30
chosen that the transmissions of all closed paths are un-
altered, then the cver-all transmission of the graph is
multiplied by G108t 3y where 1,2,3,¢++,myn is any
path from the source to the sink.

The transmissions of graphs (&) and (b) in Fig. 5.9, for exemple, are

c/df
a/d b/oF
L R AN
Ud ver
)

frq. 5.9

identical. If the branch transmissions are now renamed, u' = ud,
a' =ad, etc., we have a structure similar to that shown in Fig. 5.8,

The normalization rule also permit wus to choose

wo=v =w =1 (5.35)

as an operating point for the refeience transmissions in Fig. 5.8.
Likewlise without loss of generality, the desired transmission al the
operating point may be taken ss unity,

T{1l,1,1) = 1, (5.36)
It remains to determine the values of a,b,c,d,e,f which satisfy

requirement 5.36 and whick also meke T insensitive to changes in
u,v,W. Reciprocation of the forward path in Fig. 5.3 ylelds the



cascade structure shown in Fig. 5.10. Without actually evaluating

the reciprocal transmission we see that the expression will be of the

form

1 1 1 , _
i jgo: g‘ijk(%‘”i‘%’bﬂ(é*)k’ (5.37)

-

a finite Taylor's series in three independent variables, linear in

each. The function
-1 -1 -1 -1
T = g(u ,v ,w ) (5.38)

may be interpreted as a surface in four dimensional space, T_l being

plotted as the elevation above the u—l,v_l,w—l hyper-plane. If &all

' coefficients in the Taylor'!s series except Aooo and Alll can be made
to vanish, then

Len GGG -, (5.39)

and the surface will exhibit a saddle point at ul= a, v =D, wt=e,
In the neighborhood of this point the surface is flat and level, so that
'I‘—l is insensitive to changes in the reciprocal reference transmissions.
As an obvious consequence, T is insensitive to changes in u,v,w in the

nelghborhood of u = a—l, v=b"
tivity at the operating point, the choice

, W= ¢, Since we desire low sensi-

a= =c=1 (5.40)
{8 indicated. Now, by inspection of Fig. 5.10, we identify

88



rage v-l10

d=e=0
£2- 400 (5.42)
=41

In addition,
Ao =1 (5.42)

in order %o satisfy condition 5.36, The final result is the flow
graph shown in Fig. 5.11, having positive feedback around each stage
and over all negative feedback. [Ref:22,p.478] The transmission i piven

Ly

1 1 1 1

(-1 = (§-D(GF-D(E -1 (5.43)

Fig, S/
or
_ uvw
T(u,v,%) = 77 (u+v+w) + (uv+vwt+wa) ° (5044)
For small deviations from the operating point, T departs from

unity by an approximate amount

AT = (Au) (Av) (Aw). (5445)

With u = v = w = 0,9, for example, relation 5.45 gives T = 0.999. The
actual value, to the fourth decimal place, is T = 0.9986. It is 11-
luminating to compare these results with those obtained from a simple

cascaded combination of three reference branches, for vwhich

T = uww. (5.46)

39
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For small excursions about the operating point, we have, approximately,

AT' = Au+Av +Aw. (5.47)

With u = v = w = 0.9, relation 5.47 gives T' = 0.7, The actual value,
of course, is T' = 0.729. Hence the transmission variation is reduced

from roughly 30 per cent to 0.1 per cent by the use of feedback.

The extension to more than three reference elements is obvious.
In general, for n cascaded reference branches, each having the same
maximum variation At, the addition of fixed feedback branches as shown
in Fig. 5.11 has two effects: (1) the value of T at the operating point
remains unchangad, and (2) the maximum per unit variatior in T is re-
duced from AT' to

n
~ (AT
arx (51, (5.48)
Approximation 5,48 comes from the exact expression
n
1 1
(-1 =TI (-1 (5.49)
T~ k=1 0% ¥
where t,,t., e++, t_are the reference transmissions.
1’72  "n

It may be noted from the form of relation 5.49 that if any one of
the reference transmissions is maintained precisely at the desired oper-
ating value (unity), then the transmission T is completely independent
of the values taken by the other reference transmissions. Suppose, now,
that Fig. 5.12 represents a two-stage feedback amplifier. We are pre-
sented with the apparent enigma that if the gain of one stage is held
exactly at the desired value (unity), then the other stage is unimport-
ant and may, presumably, be removed from the system without affecting

-1

/ u 2 3 U 4

Fiq. S5.12
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the over-all transmission, This enigma may be resolved by considera-
tion of the following results. Let

Tjk(u,v) = x_ per unit signal injected at node j. (5.50)
Then

T,,(,1) = Ty,(u,1) = 0 (5.51)

Ty4(u,1) = Tu(u,l) =1 (5.52)

T,,(5,1) = T, (3,1) = o1, (5.53)

On the basis of relatioms 5.51 and 5.52, the signal levels throughout
the graph do not change as u approaches zero, Relation 5.53, however,
shows that the slightest noise or distortion injected at the second
stege will appesr greetly amplified in the output for small values of
u. Hence the amplifier may be expected to perform poorly for small
values of u, even vwhen very close tolerances on Vv are maintained. Now

suppose that u is held at unity while v varies. It follows that

T, (1,9 = T),(1,) = $-1 (5.54)
T,5(L,%) = § (5.55)
T, (1,9 =1 (5.56)

= 0. (5.57)

T34(l,v) = TAL(l;v)

Relations 5.56 and 5.57 show that the gain remains unchanged and the
output remeins free of contemination as v is made smaller. Equations
5.54 and 5.55, hovever, point out the fact that the signal levels with-
in the amplifier grow very large as Vv decreases, 80 thet saturation may

be expected to occur.

The insensitive structure shown in Fig. 5.11 has, of course, many
slternate forms which may arise in the analysis of'particular physical
problems. Figure 5.,13(a) indicates one of these possibilities. The
introduction of auxiliary nodes (b) leads to a residual graph (c) which
{s identical with the residual form of Fig. 5.11. Hence the transmlis-
sions of the graphs shown in Figs. 5.11 and 5.13(&) are the same,

an
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) o—

U 2 w

Fig. 5.13
The general residual structure of an insensitive multistage graph
is indicated by Fig. 5.14. At the operating point all branch trans-
missions are unity, with the exception of tnl which is negative, as

Fzg, 5. /4
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shown, This feedback ring possesses the special property that a signal
injected at any given node will appear only at the next counterclockwise

node. The ring has, in fact, an injection trensmission metrix T which

is just the transposition of the flow matrix p. For n = 4,

0 -1 0 0] (0 0o o 1]
o o0 -1 o0 1 0 0 0

P=lo o o alp T=lo a4 o of-
2 0o o o] o o -1 o]

Incidentally, each element of p or T is equal to its cofactor and both
determinants have unity value. The insensitivity of T14 is indicated
by the presence of zeros in the last column of the T matrix., These

zeros represent discrimination against contaminaeting signels which en-

ter the system at points other than the input.

The sensitivity considerations underteken in this chapter show
that an erbitrarily small sensitivity to incremental changes in stage
transmission may be had by employing a sufficiently large number of
stages. In the next chapter, which deals with the general topic of
transients in linear flow graphs, we shall find that the aumber of
stages 1s limited, in practice, by stabllity and bandwidth requirements.

a2
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CHAPTER VI

TRANSIFNTS IN LIN%AF FLCV. GRAPHS

6,1 Transmission Functions

Then excited by a time-dependent drive y(t), » dymamical system

rescts with a response

x(t) = gly(t)], (7.1)

where @ is an operator characterizing the system, Ve chnll poctulate

that a linear system is one which obeys the addative law

lay, (t) + vy, (¥)] = afly, (t)] + BALy, (t) ], (7.

vhers yl(t) and y2(t) are any tve driviae functions weirbled by conginnts
e

s and b, Typrersion 6,2 is simply & stetement of the ene-o coition prine

riple., As a natural extension we may write

(=]

y(t) = kg;w akfk(t) (6,2)
00
x(t) = kgw a B£, (1)), (6ad)

provided, of course, the series converge properly. Now consider the

particuler expressions

oo
y(t) = Z@ 7et ) £t = Kt )t (6.5)
x(t) = 2.yl ) Al - ke ) e, (6.6)
vherein
sin m(t/t )
P8) =~ ‘ (6.7)

mt
Given y(kto) for all k, ceries 6.5 interpolates an ahslytic function y(t).

Cinee £(t) is relatively small except in the vieinity of t = 0, end since
o0

jf‘(t)dt =1, (6.8)

- Q0

9%
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ve see that y(t) is, in effect, represented as the sum of a succession
of slightly overlapping pulses, If limits are approached by series £.5
and 6.6 as to becomes arbitrarily small, then these same limits are

approached by the integrels

y(t) = lim jym £t —T)AT (6.9)
t—=+0 Jeo
O

x(t) = lim jym Blr(t -T)1aT . (£a10;

It is convenient to denote 6,9 ~nd 4,10 hy the more compret ewprecsons

[-Y~]
y(t) = ffm) 3(t -l (o
-00
(%=
x(t) = Jym #lt,7)aT, (cz,
200

vherwin function d(t) 1s the unit impulse
sin W(t/to)

5(t) = 1lin s s

t—C
o}

a pulse of unit area vhose effective durstion is so short that the ceotunl
shape and duration of the pulse do not rnter into consideration, Txpres-
sion 6.9 is valid everywhere except at points of discontinuity of y(t),
vhere a splke or overshoot of the Gibbs variety appenrs. TFor piecewise
contiruous functions we may say that 6,9 holds "almost everywhere,"
Tunction #(t, ) 1s just the response at time t due to a unit impulse
drive applied at *ime T+ The integral form of thr supcrposition prin-

ciple, therefore, is
00 o0
A § yse-nan) = | y@)glse-r) lar. (6.14)
-~ o0 Yoo
Thus fw=1 only linearlity has been assumed, TLet ur now postulate

that the system 1s time-invariant,

(b - tl) = Bly(t - tl)] for &eny ty (H,15)
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»(t) =0 for t <ty
if y(t) = 0 for t <t;. (£.16)

te a direct conseauence of 6,15,

#(t,r) = A5t -T)] = h(t -T) (6.17)
and we ere permitted to write
00 00
X(t) = IY(T)h(t—T)dT: fh(’t’)y(t-'r)dr, (\(,;}_3)

Novi, in view of the realizability condition 6,16, function h(¥) vanishes
for negative T fo thet the lower 1limit of the rizht-hand integral may b

chenged to zero, The final result is the femilier convolvtion integral

v

o
<) = § n@) vyt -7)az, (.17
N

vherein h(?) is the weighting function or memory of the system, Althourh
# Piemann integral is defined only for piecewise continuous interrands,
the presence of impulses in h(t) or y(t) offers no real practical dif-
ficvlty, If, for example, y(t) = 5(t), then it is only necessary to

" visualize y(t) es & very short pulse of unit area, whereupon we oo bl
y(t -7) is isrge in the neighborhood of T- t tnd irnorable =lecvhere,
Cuantity h(¥) is essentially constsant in this neighborhood and may be

replaced by h(t), leaving
o0
c(1) = () [yt -M)aT = nv), (6.500)
o

Relation (.00 exhibits the obvious result that the unit Impulse response
of the system is identical with the memory function, Simtlarly, for the

singularity functions
g~ -
Zk(t) = 1lim X f(t)y, . (6.71)
£(t)—wd(t)Ldt

it follows Jirectly that (slmost everywhere) for sny (piccewise contin-

wous) function f(t),

o0 00
k
t o0 -
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Mso, by allowing f{t) to approach Bj(t), we cobtein

oo
= - I
6j+k(‘t) f 5j(T) E)k(t T)art. (6.72)
— 00
Fith the aid of these elementary relations 6.22 and €,77?, we may spesk
of singularity functions in the language of ordinary integrals,

Henceforth we shell write the convolution integral in the gener-

z1ized form

o0
n (%t
- (k) i
¥(t) = [h(‘t)y(t—'l‘)d‘rJr 1::25 E} ajky (t—bjk), (6.7¢4)
k
M = S
i,

The effect of singularity functions in the syrtem memory te o eceoanted
for by the series, thereby leaving « piecewise continucu: funeclon L)
within the Riemsnn integral., This form will be ureful in ‘i forth-
coming discussion of stability. For the pre=ent we shell simply assert
that the time-domain behavior of e verv larse clace of linear phyrical
systems is describable in terms of & piecewise continuous weirhting
function h(?), together with e serles of derivative coefficients sy

and time lags bjk’ as shown in Ea. 6,74,

Suppose, now, that attention ie restricted to drives of the form

y(t) =Y exp(st), (6.75)

where s 1o the complex freguency

s =0 + jw (6.26)

g nnd m brin~ rerl parameters. No essential lous of rene rellty results
from thic restriction since any time-furction me* be an2tyzed into ex—
ponentinl components by Fourler methods. Tt is te be understood, of
cource, that the ectusl physical veriable is the real prrt of erprecsicn

6.5,

rely(t)] = } Y| exp(at) cos(ot + #), (.07
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where
= {1 evp(if) (6.23)

is the so called complex amplitude of the drive, Oper=ation upon the

exponential function 6.25 by the generelized operator 7,2, yieldes »

response
00
n @ ¥
x(t) = [J‘l"(T) exp(-sT)aT + - P> a, s expl-t, sl YV explat),
A k=0 j=n J¥ JE
(61,79

Hence the response is of the form

x(t) = X exp(st), (£,20)

vhere the rsntio of the complex amplitudes X anc ¥ i: ~"ven by the trons-

mission function

00

n (o od
T(s) = -i— = fh(’t’) exp(-sT)dT + 2:: ;: . apl=h

The right hand side of Ea. 6.3l is recognizabl= 7« the sum of n Leplace
integral end n diffrrent Dirichlet serles, cach neri=s multiplied by a
different power of s, Postulating convergence of the integral for a
sufficiently large rinite value of o0, assuming convergence of the series,
snd remembering thet h(T) is piacewise continuour, we o»cerve that

Ta. 6,71 detines an analytic function T(s). &ince h(T), #., , 7nd bik

’
Jk
nre rezl, the transmission function erxhibits conjurnte cymmetry,

T(F) = T(s), ((.22)

’

mhere the hor directs us to take the complex conjusate 7 the curntity

reneath i1,

Physic: 1 cvetems having 2 finite numter cf lumped o remcters,
(recistances, celf snd mutual inductances, cepacitonces, i~id mocses,
veirhtless sprinps, and so forth) always yield trensmiscion functions
which nre rational. A rationel transmission is = ratic ~f polymomirls

in & and therefore mey be placed in the factored form
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o

. )

TT (s - 85)
T(e) = AT (6.22)

- ’

n:
TT(s - SJ)
=1

vhere Sj snd 93 are the poles and zero frequencies of T(s), r;rpnctive;y.
A factor may appeatr more than once in the numerator or denominstor of
T{s), producing e pole or zero of order or multiplicity other tl:n unity,
In senersl, if

lm (s - so)“ T(s) = K, (F.34)

S—»5

o

vhere K 1s finite ond nonzero, then T(s) is sald to exhibit & pole of
order n (for n positive) or a zero of order -n (for n negative) at the
point s = So° The existence of a pole or zeroc st s =00 may bhe deter-
mined by examining T(1/s) in the neigkborhood of the origin., Now let
Np and Nz be the numbers of poles and zeros, respectivelv, counting
multiple polec or zeros according to their multiplicity, »nd let =
posrible pole or zerc at infinity be incluved in the count. Tt follcws

from the form of evpression .22 thsat

N, = Np. (6.75)
£i oan illustration, the tranemicsion
1

(see 6,5¢)

cxhiblts » double zero at s = @@ and polss at ¢ = 0, -1, Hence
N_ = N_ =2, Another result of interest here concerns the placement

2 p
eg

of noles and zeros. From relation A.2” we have

17| =), (6.36)

It follovy that if s pole (or zero) of multiplicity p oceurs gt £ ther.
one of the come order must be located at E;. Hence pole- nnd zeros which

#re not real muct oceur in complex conjupate poice,

Phiyslesl cvstems lwving distributed paremeter. o hypothetical sys-
tome Wovine on ‘nfinte number of finite lumped 3o rrmeters 1eed to trane--

micsions which rre rnalytic but {rreticoncl, The ictribitod versmeter
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sycteme are of creater interest here since they represent devices within

the reslm of experience.

Consider, for example, a unit length of transmission line having
distributed parsmeters R = L =G = C =1, If this line is terminnted

in its characteristic impedance

WIR + 1s
Zo “¥o+ s 1, (6.37)

then the voltnce transmission ratio is the irretions1l function
T(s) = exp(-s - 1). (6.78)

In the absence ¢ shunt conductance (G = 0, R~ L = C = 1), ve may aeain
postulete thnt the line be terminated in its cher: cterictic impedwsnce,

vhence the tronemission 1is

() = expl —¥a(s + D1, (6.20)

The multiva%%d character of expression 6,39 arises from the fact that
the terminal impedance is unrealizeble as a finite cystem, In order to
provide the postuleted termination we must azttach =n infinite length of
the same trensmission line, Conditions 2t the fer end of an infinite
line are, of course, beyond our control, Tdentification of the two
branches of function 6,39 with inward and outward traveling waves, to-
pether vith the intuitive assomption that only the cute-rd weve will
=xist, le~ds us to the cholce of that branch for which lT(S“'( 1., If
the line terminrtion is rerlizable as a finite svstem, however, then
the trensmiccion function is again single valued. Tn prrticular, let
ue tak~ P -1, € =1, G =0, and 2 unit resistive lond, The associntled

vaoltaee tyrrnemicsion ratio is

1
T = 1 . (6.40)
cosh '\/s(s+1 + ;‘Vs(sr—l) cinh Ve (e 1)
“tnce -inh {-~:) - - sinh ¥ &nd cesh ‘=x) = cogh %, thr chelice of sien

o the rndiecn? Yz no efiect upon the value of T(s), provided the same
sign 17 ured ceencistently in each or the three ploces v re the radicel

appenY s,

On tl~ hesis of experience, it appears that linerr jbysicel svstems
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constructible in a finite space lead to (sinpgle-velued) meromorphic
transmission functions. A meromorphic function has nc singulerities
in the finite s-plane other than poles and hence only # finite number
of poles (or zeros) in any finite region of the s-plane. FPationnl

functions are, of course, meromorphic.

Certrin restrictions are implied brs the Paley-Tiener theorem,

which vill be rephrased here as follows:
Giver the gein function G(jw), where
G(s) = In lT(s)‘, (£..41)

a necessary and sufficlent conditicn for the
existence of an associated phase functicn such
that T(s) is realizable, i,e. such thrt the
cvctem represented by T(s) does nct respond
hefore the initial applicaticn of the Arive,

ie thet
00

S‘ |G ()]
Y dr < 00 (C'.!;?)

1+ o

L5 a result of this elegent theorem we may state the following corollary,

L necessary (tut not sufficient) condition
for the physical reslizability of & civen
trensmicsion T(s) 1g thet its gein function

must satisfy the Paley-Wiener criterion.

Transmissions exp(-s), exp(s), tanh s, and sn, for evemyle, sotisfy
criterion A,42. vhereas exp(SQ) does not, As en illuctration of the
inenfficiency of the criterion, we need only notice thnt exp(-s) is
realizable r¢ tre transmission of & lossless matched trensmission line,
vhile exp(s), representing a perfect negntive tine Jelrv, i not phys-—

ically obtainshle,

6, The Strbhilitv of a Transmission

Conzi’er ~ Irive contalning two discrete cemplex frvcurneles 81

and S?,
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v(t) = Y exp(slt) +Y exp(th). (6.43)

1 2

By cuperposition, the associsted response is

x(t) = T(s;) ¥, exp(s t) + T(s,) ¥, exp(s,t). (6.44)

Ncv suppose thet 85 is a pole of T(s). If Y? vanishes, ve have s drive
containing only one complex freauency,
- VAT
Y(t’) Yl eXP(Slt)’ ("Ov-b)

but the responre may still contain two complex freauencies,

¥(t) = Xy exp(slt) + X, evp(s,t), (. 16)
vhere
v = /,
1 T(sl) ¥, (6.47)
X, = T(S?)' Y? =090 . 0 = indeterminnte, (6.48)

In general, the response will exhibit components at the driving freouencies
and also 1t the pole frequencies of T(s). The terme involvine pole fre-
aquencies ore ususlly referred to as transients, sinecr v diceipetive pns-
tive cvetemrs these ceomponents eventuelly die cut, lecving the o called

steady strte reenonse due to the drive,

The complex amplitudes of trrnsient terms rre indeterminete on the
basis of the snrlysis given here but thev mey he avalusted from the initial
conditions in #nv prrticular procblem. Fer our rurreser, the retnal values
of these emplitudes are unimportant., ¥e may zesume, however, that ail pos-
gible transients of a physical svstem will heve heen excited at some time
In the finite historv of the device, co that the compley ~mplitudes of
trenaiente, though possibly veryv smell, are nenvenishine, Thie eritntion
mey be =ttriluted to initial switching, thermal noise, or other incidentsl

7isturbances,

A steoble tranomiscion will now be defined ne followe:

If, by plecing » bound upon the drive y(t) -nd
ite first n derivatives, a bounded response +(t)
is nssured, then the transmission frem v(t) to x(t)

ie stable. If such assurance is impossible for
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rny finite n, then the transmissicn 1is unstable,

Unlter this definition, the poles of a transmission sre nececarrily ev-
cluded from the right half s-plene ond the finite jo» savie, Tn other
c-plane or pocsceibly at infinity. The vroof follove from the fret thot
the respence contains transients of the form ¥ exp(sot), vhere

S, 70, 7T jqo is a pole of T(c) end vhkere coefficicnt ¥ in nonvenichine,
The trensmission is evidently unstrble if GO is positive sinee the trons—
ient then rrovs expconentially, Morecver, if & pole occvirr cn the finite
Jv nris, then e bounded stesdy-state drive of the sanme freouency will
produce en infinite (stesdy-state) response, As to miltiple noles in
the finite s plone, we find by allowing n simple peles te conlecce thnt,
tke trrnsisnt recpconse due tc an nth order necle st s = 5, centrire time—
dernendent terms of the form

£ exp(sot); X =0, 1, 2y eee yn -1, ((0/9)

"rnee the seme restrictions arrcly te poles of multinlicit s srestor then

oMe,

Ncthins yet has besn saild about the permissihility of sinmid:rities
bt irfinity in = stable transmission functicn, The effect of o nole st
infinity unon the time-respenes is particularly cimple, The voltape-to-
current tronemicesion of an idesl capacitance C, for exrmple, 1 junt
T(<) = Cs, Mny arplied voltape wave v(t) vields = current recponsn
»t) = Cdyl(t)/dt. Hence ¢ hounded sourre wave veltspe preduces o current

(]

ATty

-

conmpcees of 2 secuence of impulses, Under the Aefinition of otr

~

nAcpted hera) hevever, we sre permitted bte clrec @ bhount on dv () /8

-

. vo
£yt tre trenemiesion T(s) = s iz stable. Vith an ntl order pole at
infinity, the response ceontaine, in meneral; the Siret n derivatives of
the drive, It follows thet a pole =t infinity dces nct rrotuce insto-
hility, ~lthcueh it mey result in unbounded resperie for ceri-in bounded
Irives,

Returnins to the generslized convelntion intarrel,
oo

s )
%(t) = 5‘ r@yenar s 2 2 e o, (g
o]
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ve infer thnt the nocessary and sufficient condition for stsbility is
thet

| 22
h dt"f‘ o, < oo . {‘.5!,)
L j‘l('l')l Ry M [ -Jk‘ _ (h.59)
°
For if we choose
!y<k)(t)| =M, k=0,1,7, .vs, n, (f.51)
)
sive y(-TF) the same sion as h(T) for (2lmost) a2ll T, =nd let y(f)(—bjk)

take the sien of aﬁy, then
v 0

oo
x(0) = M [ S;Ihﬂ-)l ar + é'o%o lajkll. (6.50)

It follows directly from .50 and
00 n o, o2
T(s) = S‘h('},‘) erp(-sT)AT+ 2 s° 2 a. exp(-b, s) (F.71)
° k= j=0 Jk ik

thnt & necessary stzbllity condition upon T(s) is that
|z(s)} <00, for o 20, « #oo. (6.22)

This means that a steble transmicsion may have no sinfulerities in the

interior of the richt half s-plane or upon the finite j» axis,

For rationsl transmission condition £.£3 is also sufficient, Tor ir-
rational meromorphic transmirsions, however, which exhiblt essentinl cingu-
lrrities at infinity, the sufficiency is cquestionable unless certain ad-
ditional restrictions «r~ imposed upon L(i) or T(s). Twe memory function
h(t) = cos(tz), for example, feils to satisfy criterion H.60, althouph its
TLaplace transform is free of sinfularities in the right half c-plane and

upon the j» axle, Tnstability is demonstrslle b the choice of the par—

2
tienlar drive yfit) = cos(t ) . which results in an unbounded cutput st
t =0, o)
x(N) = S. cos’ ('t'?)d‘l' = QO , (6.54)
o I

Under our definition of stabilitv, rowever, 7 boimd mev Yo rlaeed upon

the derivetive of y(t), sc that the dencity of zero-croccines of v(t) is
o]

limited #nd “rives such ss y(t) = cos(t’) are excluded, fence the time—

fomein =nd frecuency domain stsbility criterie rerer in thir cxumple, Ve
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¢hall now assert without proof that if the density of zero-crossings of

h(t) and the density of points t = bik
) each v .
then conditions 6,50 and £.53 are mecessary and sufficient for stebility.

are bounded as t becomes larege,

Thie assertion is supported here only by experience, It is known to be
true for rotionel trensmissions and for each c¢f meany mercneorphic trans-
mission “uncticns which have come under the considerztion of the writer,

The proof {c= disprocf) is left as a suggestion for further investirssnticn,

5.2 Nycuict Manrving

Under certein conditions, the presence or absence of rirht hnlf plane
poles or zeros in a transmission T(s) may be ascertsined from the behovior
of T(e) on the ju axis. Given the analytic form of T(c) *t i~ often much
less tedious tc compute and vlot the complex locur of T(j+) than it is to
solve directlv for the pole freguencies, Morecver, the function T(jm)
is sometimes aveilable only in graphical form ac thre dirveect o derived

result of erperimental steadyv-state tests upon a physicesl device,

A corplex rlot of T(jw) is celled a Nyquist diagram, The informrtion
mov also be presented as a complex locurs of the loosrithm of ™(in) or as
cenparste curves of the gain and phase of T(jw), each 1lotited acrainst the
lorarithm of w, For cur purposes the simple Nyguist jlot will suffice,
Tet us nnsane, fer the present, thet T(s) is free of rinmal=aritics on
the jo 2xic, including the point &t infinity. The Nyoniot plet is then

airple clored curve which may intersect itself as shevn in Fir, /.1,

The directicn of incressing m is indicated by the sarrow-hesrds, In

T-plane s#-plene

I

‘TE:TT];?ZA)

S=fw

Fig. 6.1
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methematical language, the jo axis in the s-plane meps intc the Nyauicst
plct in tbhe T-pleane, Any cther curve in the s-plane would man irnto the
T-plane in = similar fechion, Since T(s) is sinsle-valued, the moyping
15 unicuej any s—curve maps into a single T-curve (porhaps self inter-
secting). fy,novever, we attempt toc map a T—curve into nn c-curve, the
maoping vill in general be multiple-valued., Cerncider, for exanrie, that
sepmant, of the real T-axis lyine between +1 2nd +4, T1f T(s) = s?, then
the s-plene map of this segment is » peir of cegments, one betveen -0
end -1 =nd the other runnine frcem +1 tc 47, Fach ceprrate brench of oreh
an s-map, cf course, is itself a simple curve and these curves dc not

cross each other,

Before deriving a recult which relates te pole smd zare locntions,
ve ghall need to stot~ cne additionsl property of the rn-lytic morpine

trenzaformation T(s). This property is confermelity »nd it mev he deo-

eribed ne fallowss

If 2 poeint b, mevin~s about in the s-plene, suddenly
crenpes its courrse to the risht er to the 1left, then
the cerresponding T-plane roirt, B = T(b) will »t

the seme time alter its course by the same anecle =nd

in the name direction relative to its origin=l motion.

Confermelity follows directly from the fact that =n anelvtic function, by

definition, possesses & unique cerivative,

Now consider the curve AB joining points A ond B in the T—plane, ag

shown in Fiv, 5.2, The corresponding s-plane mep of AB iz shovmn by the

T-plane s—plane

q,

28 |
é£ .’/_‘_7,//'
b o "4

b, ‘\‘. .
ag 4 I

b;
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separate curves a bl’ a.b,, etc. Ry conformelity, if the jo #xis crosses

2727
tvo of the =b curies from left-to-right, as seen bv an observer facing
aleng »b in the indiceted direction, then the Nyruist plot muet cut acrose
the AB curve twice from left tc risht, as shovn, . Other possitle btranches
of ab, such #s # b, and a b , are not intersected bv the jm axis since

372 L4

suck intersections would necesserily show In the T-plane, Tf we let

n = totel multiplicity cf e-points in the richt half c-plane

-,

[&]
n, = totel multiplicity of b-points in the ~iht helf «—plane
n = net numbter cf left-to-rifht croreines of AT 1r the
Nycuist plot (risht-to-left crassin-~ counted ««

nerative)
then evidently

= - f, re
n=n. - (7,7¢8)

A multiple m-tcint (a2 multiple root of the ecuaticn T(s) = &) must, of
course, be counted according to its mvltipliecity, since v different ot
curves would razdicte from such a point cf multiplicity p. Tor Fie, 4,0,
n =2 and naig 2. Firure £,3 provides ancther illustrition, Given
neints A #nd B, ve sketch any curve AB jcining then rna then indicate
corrresnonding s—plane intersections as shorm in (b)), Tve porsibilities
renaietent, =ity (h) are (c¢) =nd (). TFor heth () =n? (1), of course,
nEn, - N = N,

Suprnose, now, thet the orizin in the T-plan~ coincides with point .
in Fig. 6.2(a), so that the a-points are zeros of T(¢). Sunpose, elco,
that point B i #1llowed to move far out in the T-plin~, causing the b-
points to arproach the poles of T(s). It follovs thrt !1e net number of
clockeise encireclements of the origin by the Nycuist plet ic ool to the
axcess of zeros over poles in the right half s-plin~, fiwe (,2(a) in-
Aicates ecvsl numbers cf poles and zeTos in the ri-ht V17 lrne, PRy
joinins peint € in Fie, 6,2(a) to » distant R-print, v+ ~voul! Tind that
T(s) t- s # totel right hal® plane pcle multiplicitv of ¢ le-ct two, 1In
raneral, i any point in the finite T-plane i~ encirele? counterclockwive

by the Nyruicst plot, then at least cne richt half nlanc yole 1o nasured,
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T-plane

(=)

s-plane s-plnane s-plane

a, o— 9, )
—— ¢ ::)'

 ——
‘i b ¢/‘A 4
2
(b (c) ()

Fip:. /“3

Theorems cuch as A,55 and the ccrollary recults Ada:zTinys with poles
and zercos rre the basis for all stability eriteric vhich depend upon
Nycuist plots. Our ourpose in reiterating these vell-lneyn thecrems hes

been to evpose 2 proof brsed upon rimple curve-sicetehins snd depending

only upon ~lemenirry concepts of contiruity ~and confermelity, The ora-
phical simnlic’ts of this process mukes it unnccecorry Lo ponepber the
details o” # v rhicular theorem, Instentl, & moment of (vneil vork clves
the decsired recult directly. For emphasis, we 2217 ol Jown Lhe process
in deteil., 0Oiven the Nyouist plot of a trensmi. . ion T(:) for vhich n“ ie
known, ve find ny by (1) sketching s directed curve AB, (7) noting the

intersections of this curve with the Nyvouist plot, (2) sketchine
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conformal intersecticns on the j» arxis in the s—nlane, () =g=irning =
poscible set of a and b points which properly terminstzs the s-plene curves
in = menner consistent with the specified velue of n,, and () noting ny
from the sketch., Then n, is unknown, c©f course, the Nvemist plot can tel]

us only the value of tre difference L

!t the outset of our Aiscussion of Nyaulst disgrams T(g) ves ascun
reculsr on the entire jw exis, including the point =t infinity., MNow Jeo
us tcke up a sirple example which illustretes the modifiznrtions neéoysnry
vhen the jm axis passes through a pole or zero of T(s), Consider the prr-

ticulnr transmission

1 .
T(s) = o7 1) (Farf)

vhore Nycuist plot is the T-plane contour showvn in Fie, £.4(a), the nrp
of the s—contour indieczted in (b), Corresponding porticns of the tvo con-
teurs are dencted hv numbere in parenthesec =nd the orisin in exch 1 Jrne

i¢ marked bv a hesvy dot, Tc cbtain a clecsad T—contour vhicel deooa net

oo [ o) o
x

(2) 0

(a) (v
Flg. 6.2

paae throurh the origin, we need inly ~iter the s—-contcur a¢ shown In
Fiz, 6.5(b). If the s-plane semicircles (2) and (/) zre mede very lerre
and very rmrll, respectively, 211 richt half plene vo000 nd peles of
T(s) £211 vithin the c—centeur, By joinine the aricin te Lho s int ot
inTinity i the T-plene, ve have ¢ AP cvrve o150 0 v e Toeonicur
tre ceme numbor of times in ench Adirection., Hernce T(2) Yeu the came mun-

ber of zeoc rnd poier in the dnterior of the rirskt hal® ~pline,  The
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3)

O

(2)

Fig. 6.5

orientation of circular ares (?) and (4) in the T-plane is determined by
conformality., In passing from (1) to (2), (?) to (3), (3) to (4), and
(4) to {1), the s-contour turns right through 90°, T-contour must do
the seme, se shown. Since T(s) exhibits a double zero at s =09, the

asymptotic behavior is

T(s)»% , A5 500, (6.57)
8

By vriting s and T in polar form, we observe that T must traverse a
(nearly) complete small circle as s prgresses along the large semicircle
(?). Fere the analytic form of T(s) unknown, then a log-log plot of the
experimental data, |T(jm)| versus w, would exhibit & slope of -2 for
large w, indicating a double zero. In any case the multiplicity of =
pole or zero must be determined before the T-plane ercs are shown., A
multipliclty p always lends to a T-plane arc which encompasses, in the
limit pr redians,

An essentiml singularity et infinity, such as that appearing in
T(s) = exp(-s), requires special attention if the Nyquist plot is to be
closed properly. The same approach applies, however. Figure 6,4(z)
shows the Nyquist plot of T(s) = exp(-s). Here it is convenient to

choose a rectengular rather than a semicircular detour about the point
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T-plane s-plane

(2)

a

a 0 3) W

“)

(a) (b)
Fig. 6.6

at infinity in the s-plane, FEvidently T(s) has the same number of zeros
and poles in the right half plane. The simple function exp(-s), of course,

possesses neither poles nor zeros anywhere.

Nyquist technicues do not enter certain active system synthesis pro-
blems where stability is assured by the original choice of pole positions.
Nevertheless, the Nyquist plot of a transmission function offers a means
of presentation which is often attractive to the designer, even when his
gystem is known to be stable, In paurticular, the Q associated with a
pole close to the jo axis may be estimated [Ref:25] from a plot of 1/T(s).
The "M-circle criterion," which has found use in servomechanisms deslen,
is an adaptation of this principle. Such techniques serve as e semi-
quantitative tie between the steady-state and transient behaviors of the

transmission system.

6.4 The Stability of a Transmission Relative to a Particular Branch

: . The flow graph shown in Flg. 6.7 represents a generalization of the
elementary stability problem originally posed by Nyouist. It is a gener-

alization in the seme sense that the feedback formula 4.44 is a gener-
alization of Black's formula 2.5.
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Fig. 6.7
The trensmission is given by
Te(s)

T(s) = To(s) + I T (6.58)
where

T,(s) = a(s)t(s)b(s)

T(s) = t(s)e(s).

Suppose that all branch transmissions are known to be stable. Since the
product of two transmissions can have cnly the poles of each factor, it
follows that T (s) and T(s) are also stable, From the form of 6.58 we

see that the only possible right half s-plane poles of T(s) are the
1-points of T(s). It remeins, therefore, to count the number of times
whichT(s) assumes the value unity in the right half s—plane. Figure 6.3(a)
shows a possible Nyquist plot of T(s). Allowing point B to recede toward
infinity in the ¥-plane causes pointcs b to approach the poles of T(s).

For the plot shown, T(s) is evidently unstable since T(s) assumes the

T -plane s~plane
e ¥-
/
/ ) . ,Q
/ b i
‘._. —ett
aq
2
( IM/OSSI‘/?
\_ ——-.bz
(a) - (b)
Fig. 6.8
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value unity exactly once in the right half s—plane., A branch such as a2b2
is impossible since T(s) has been assumed stable (i.e. no right half

plane poles). Had the Nyquist plot not encircled point A, then there
would have been no a-points at all in the right half plane, and T(s) would
have been definitely stable.

In some feedback systems T(s) is purposely made unstable in order to
achieve certein performance characteristics. This does not mean that T(s)
is also unstable, as the following example will show, Let us postulate
that T(s) hes no right helf plane zeros but may, perhaps, be unstable.
Suppose that the Nyauist plot of T(s) 1s shown by Fig. 6.9(a). For this
plot no right half plane b-points are possible so that T(s) is stable,

T -plane s-plane

|

-t m-posszé/e
%

a

(b)
Fig. 6.9

Figure 6.10, however, indicates an unstable transmission T(s), since ex-
actly one b-point occurs in the right half plane,

T -plane s-plane
T=1 : 4+—e b
‘\“:; agcr’ L
(a) (b)
Fig.. 6.10
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In either of the above examples we might equally well have plotted
the Nyquist diagram of the loop difference D(s) = 1 —T(s) and taken
D = O as the critical point B. In servomechanisms analysis the negative
of 7 is usually plotted, making -1 the critical point. The choice is
trivial, Whatever the critical point, we join it to snother point whose

right half plane multiplicity is known, and then deduce the stability of

the system from a simple conformal sketch,

6.5 The Stability of a General Flow Graph

In this section we shall consider the stability of the trensmission
through a general flow graph, postulating at the outset that the branch
transmissions are all stable. We shall find that each imbedded feedback
graph is a potential oscillator, which may produce an unstable pole in
the transmission, The simple example shown by Fig. 6.11 is instructive

{ S+a
/ 2 3
Fig. 6.11

at this point. By inspection of the graph,

_ 8(s t+a
Ty, = T1-% ° (6.59)

This transmission exhibits a pole at s = 1 where the loop differences D2

and D3 have zeros. If, perchance, a = -1, then the pole disappears and

the transmission is apparently equal to s. Nevertheless, a growing trans-
jent still appears at nodes 2 and 3, so that the system eventually saturates
and fails to operate as a linear transmission device, Mathematically, the
stability of a particular transmission depends only upon the locations of
its poles. In practice, however, that transmission is stable and linear
only if every node in the graph is free of undamped transients, If no

undamped trensients appear at any node in the graph, we shall say that

the graph is stable.

The various signals entering a particular node may be separated into
ﬁeedback signals and cascade signals, according to the type of branch
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through which they arrive. The complex frequencies present in the feed-
back signal at node j are just the zeros of the loop difference Dj’ for
then‘73 = 1 end the condition for contimuity of signal flow at node j is
satisfied, A cascade signal at node ] may arise either from a pole of the
transmission of a cascade branch entering node j from some other node i
or from a signal of the same frequency at node i. An undamped cascade
signal, however, can come only from another node, for the simple reason
that all branch transmissions are stable. It follows that an undamped
gignal at any node arises either from a zero of the loop difference of
that node or from a zero of the loop difference of some other ncde. Hence,
a flow graph‘is stable if and only if the loop differences of its nodes
exhibit no zeros in the right half s-plane or upon the {inite jo axis,
Since the loop transmission of a node depends only upon the transmissions
of branches in the feedback graph containing thnt.node, it is sufficient
to consider separately the stability of each feedback graph, The flow
graph is stable if and only if each of its imbedded feedback graphs 1s
stable. Moreover, we may begin with the residual graph is we so desire,
for its branch transmissions, being sums of products of branch trans-

missions appearing in the original graph, are likewise stable,

To proceed with the development of a stability criterion, let the
nodes of a feedback graph be numbered 1, 2, ... , n in any desired order
and let |

Dj = loop difference of ﬁodeAj as computed with
nodes 1, 2, ... , J present but nodes j+1,j+2, ¢ee, n
temporarily erased from the graph,

Evidently DA = Dn' We shall first show that the product

P= DiDé coe Dﬁ (6.60)

is independent of the order in which the nodes are numbered, The proof
follows from a theorem mentioned in Chapter 4. We may restate Eq. 4.20
in the form

= DIDY - (6.61)
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Yhere DH is computed with only nodes 1, 2, «.. j-2 and j present, and
Dj'l is found from the graph containing only nodes 1, 2, .ss , jo The
right hand side of Eq. 6,61 is recognizable as just the D5 i product
which results when the numbers of nodes j and j-1 are interchanged.
Since any permutation is obtainable by such interchanges, the demon-

stration is complete,

Loop transmission1r3 is equal to the returned signal at node j when
a unit signal is transmitted from node j, as computed with nodes j+1,
342, ..+ » n temporarily erased from the graph, A right half plane pole
of‘r' at some frequency s  means that an undamped signal returns to ncde
b even when no signal 1s transmitted from j. It follows that at least
one of the nodes 1, ?, ... , j-1 will oscillate at frequency Sy if node
j is also erased., Since the numbering of nodes is arbitrary, we may
assume that the oscillation appears at node j-1 when j is obliterated.
Hence a pole of D3 =1 —‘t' at S, is a zero of DJ 1 at s o’ provided we
number the nodes properly. A zero of DS 1 however, is not necessarily
a pole of D!, for the branches connecting node j to lower numbered nodes
may result in zero coupling between nodes j-1 and j at frecuency S0
Figure 6.12 shows the result of erasing nodes j+1,3+?2, <. » n and then
eliminating nodes 1, 2, ... , J-2 by the reduction processes described

in Chapter 4.

d
G a--
J-! P J
Fig. 6.12
By inspection of the figure
Di—l =1-a ‘ (6.62)
b

If the coupling transmission bc vanishes at 84 then a zero of D3 1 at 54
‘does not appear as a pole of D&. In this case, however, an oscillation

of frequency 5o persists at node j-1 even with node j present, for then
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Dj_l(j present) = l-a- %%a'= l-a, (6.64)

As a result of the foregoing discussion we may state that

If a new node j is added to a graph containing nodes
1, 2, ¢ee 4 j=1, and if the original graph oscillated
at a frequency s _, then either (1) the zero of D3—1

at 8, appears as a pole of D3 and the new graph oscil-
lates only at the zero frequencies of D!, or (2) the
zero of Di—l at so does not appear as a pole of D3

and the new graph oscillates at both S, and the zeros

of D!,
J
The product P = DiDé cos DA, therefore, contains only the poles of Di and

has zeros at each natural frequency of the complete graph. SinceT!,
being a residual transmission of the oririnal erarh, is stable, it follows
that

The product P = DID} ... D! has no poles in the right
half s-plane or upon the finlte jw axls and contains

ell the zeros of the loop differences Dl,D?, cee Dn'

Hence a Nyquist plot of P will detect the presence of richt half plane
zeros in eny loop difference of the complete feedback granh, Alterna-
tively, we may meke a Nyquist plot of each of the loop Aifferences Dé.
If

N
H

j number of right half plane zeros of Dj

nunber of right half plane poles of Dj,
n, =z, - p,
S B
then the Nyouist plot of D3 ylelds the difference nj.

P =2z, for =1, 2, «ee » n=1, and since p, = 0, we have
j+1 J 1

o]
t

Now, eince

n *

= ng = p,. (6.65)

A positive p, means instability, a 1 equal to zero indicates stability,
and a negative pﬁ is impossible,
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The feedback graph shown in Fig, 6.13 will cserve as an illustrative

Fig.‘6.13

example, By inspection of this graph,

Df=1-a (6.6€)
Dy=1-b (6.67)
def
Dy =1 -c - FoyAse) (6.68)
P = (1-a)(1-b)(1-c) - def (6.69)
def P

D) =1 -2 - Foby(ie) = (Ih)(ig) (6.70)
P

Dy = Y1) (6,71)
P

D3 = [Ta) (15 (6.72)

Loop differences Dl’ D2, and D3’ all have the same zeros and these are just
the zeros of P, The zeros of Di and Dé appear later as poles of Dé. This
is also true if the numbering of nodes 1 and 2 is interchanged. If per-
chance,

e=1-a, (6.72)

then the coupling among the three nodes vanishes at the zeros of Di.
Under condition 6.73, D and D} are unchanged but

p) |

Dy=1-c &, (6.74)

P = (1-a)[(1-b)(1-c)- af] ° (6.75)

n - L(A-b)(1-¢) - df](2-s)

D = (Iib)(l-c) 2 (6.76)
_ (A-p)(1-c)- af

D, = T (6.77)
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_ (1-b)(1-¢)- af
3 1-b

D (6.78)

Here D1 has zeros not contained in D2 or D3 but the product P still ex-

hibits every zero of Dl’ D?, or D3. The zeros of Di do not appear later

as poles of D! or D!, since the system oscillates at the zero frequencies

2 3
of Di even when nodes 2 and 3 are present,
"Relation 4.7 of Chapter 4 leads to a very simple relation between
product P and the flow Adeterminant, They are, in fact, identical, If

we let

Pj = value of the flow determinant as computed with

only nodes 1,2, ... , j present,

then evidently
P

j-1
where Po = 1, Hence
P = Pn = DiD{ ces Dﬁ R (6.80)

The flow determinant P, whose value is the sum of products of branch
transmissions, has no right half plane or finite jm axis poles and its
zeros are the natural frequencies of the graph, Hence a Nyguilst plot of
P (or the sunccession of Nyquist plots of its factors Di,Dé, ses Dﬁ)
determines the stability of the graph. The practice of treating each
imbedded feedbarck graph separately in a stability analysis is justified
by the fact that the flow determinant of a graph is the product of the
flow determinants of the imbedded feedback graphs.

As a final example we shall undertake to determine the stability of
the vacuum-tube amplifier shown in Fig, 6.14.

3

S

£,

AAA
\ 4

N
p

ifoern
AW~
L

Figo 6. 14
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Under the usual assumptions the linear incremental equivalent circuit is
that shown by Fig. 6.15.

Fig; 6.15

is Jjust the

An appropriate flow graph appears in Fig, 6.16. Voltage v

L)
£

Fig., 6,16

net force “1Eg1 - Ek tending to draw current downward through rpl and Rl'
The interpretation of this graph is simplified if we eliminate nodes
Egl and Eg2 by means of the star to mesh transformation to obtain the

slightly more condensed form shown in Fig, 6.17,
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Fig. 6.17

Loops F‘kvlllEk and F‘kV?IZEk represent the degenerative feedback in each
stage due to cathode loeding, whereas loop Eklelv.?IzEk eccounts for
positive feedback aronnd both stages due to cathode coupling. The eraph
is of index unity and Ek is the residual node., By inspection of the
graph, the residual transmission from node k tc itself is
e Rl " (17 (4102,

k (rpl+Zl) ( rp2+22) rpl+Z1 :r-p2+Z2

(6.81)

If 2, Zps and Z, are passive, then‘l’k is stable and a Nycuist plot of
Dk =1 -'l"k determines the stability of the system. Cuppose that Zl and
22 are purely resistive but Zk is a parallel RC combination. Factoring
Zk in expression 6,81 and setting D = 0O ('t‘k = 1), we have

k
_ M
=5+ cs . (6.22)
where (
+1) ),z +1 L+l
M= kP2 ik 2 (6.22)

(rpl+Zl) (rp2+227 rpl+Z1 rp2+Z2
The transient complex frequency of the system is, from 6.82,

s=%m—GL | (6.84)
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Instability results when
MG, | ' . (A.85)
Incidentally, wien M is approximetely equal to G this circuit is useful

as a level selector, the static output-input chesracteristic being that
shown in Fig. 6.18,

62'
-~ Cobe 2 cot o

42— /inear operation, T=/, T= A& /a€ = 00

—————— Cobe | cofff

Fig. 6.18

6.6 The Stability of a Multistage Insensitive Graph

In Chapter 5 it was shown that the sensitivity of a cascaded structure
could be markedly reduced by the use of feedback, Ve may now investipate
the stability of such a structure, making certain assumptions as to the
frequency dependence of its branches, The example to be considered here
although not sufficiently general to encompass all low-sensitivity desien
problems, is nevertheless illustrative of the limitations upon sensitivity
which may be imposed by stability and bandwidth recuirements, TFigure 6,19
shows a three stage structure having positive feedback around each stage
and negative feedback around the complete system. Ve shall assume that

only the forwsrd elements are frecuency dependent. In particular,
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let

th)=£3, | (6.86)

yielding an asymptotic frequency characteristic of the type associated
with parasitic shunt capacitence in a voltage amplifier, The transmission
of this éréph is insencitive to changes in the stage gain t(s) at the
operating point t = 1. Hence s = 0 is the operating frequency. It fol-
lows from Eq. 5.43 that the transmission T of an n-stage graph of this
type may be found from

(F-1) = (F-D™ (6.87)
Hence T(s) has poles where
(F-1)" =1, (6.88)

Taking the nth root of Eq. 6.88, we find the critical values of t to be

= 1 N
e Ty L LR S N (6.39)

The location of points tm in the t-plane is shown in Fie, 6.70. Nyouist

t-plane
@
tm.’ /(
-~ — 9m= (g%’——’t’ m
// [ ]
— { 1
o ,
o3, 4 1
L
Y ,
Fig., 6.20
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plots of t(s) are made in Fig., 6.21., The arrows indicate the direction

t-plane
t13)=,_i__
/,ﬂ' S+/
L .
S+ /
AN TS 6 = 2:s+a).f+l
7/ N 7 \
/ \o/
w=0,t=0 v e W=0, ¢t=/
\ /‘}\
\sﬁ':// \\'//
\\\ o
Fig. 6.21

of increasing w. With two or more stages In the graph, critical points
fall within the Nyquist plet of t(s) = 1/s+l. Hence t(s) takes on a
critical value at some right half plane frequency and T(s) is unstable,
By modifying the low frequency behavior of t(s) it is possible to alter
the shape of the Nyquist plot as shcwn by the dashed locus in Fig, 6.21,
One possible scheme of low frequency compensation yields

_f sta 1
t(s) “(2s+a s+l * (6.90)

This compensating factor reduces the phase angle of t(jw) in a certain
region but leaves the high frequency asymptotic character of t(s) un-
chenged., The critical polnt closest to the real t axis falls at an

angle

é% = 1/2n. ‘ (6.91)

For a €< 1, the Nyquist plot of function 6.90 dips to a minimum phase
angle of

6 ., Ev2a at W, 5,/%— (6.92)
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at s pnint where the real part of t(jw) is very nearly equal to one half,
By the choice of a sufficiently small value of a, the plot may be made to
exclude all critical points. For a large number of stages the useful
bandwidth of T(jw) may be taken as the phase-dip frequency o . It fol-
lows from 6.91 and 6,92 that the maximum stable bandwidth obtaineble with
this particular type of compensation is given by the approximate expres-

sion

o & L (6.93)

For comparison,a cascaded n-stage structure having no feedback and no

compensation has an over-all bandwidth eaqual to

1 .

W = =, (6.94)
(o] 1‘:

Relation 6,93 points out a practical limitation upon the number of stages.

By increasing the number of stages we may reduce the sensitivity, provided

we are at the same time willing to sacrifice bandwidth,

¥ith the aid of a more sophisticated compensation function it is per-
haps possible tc increase the gain-bandwidth product somewhat. Neverthe-
less, the example given here suggests some general relationship among
gain, bandwidth, and sensitivity which recuires that one be snerificed if
the others are to be enhanced., The establishment of such a relationship

appears to be an end worthy of future investigation.
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CHAPTER VIT

CONCLUDING REMARKS

The flow graph approach offers a visual structure, a universal gra-
phical language, a common ground, on the basis of which all analysis
problems involving relationships among a number of variables may be laid
out and compared. The similarity between two physical problems arises
not from the arrangement of physical elements or the dimensions of the
variables but rather from the structure of the set of relationships which
we care to write, ~ The challenge facing us at the start of an analysis
problem is to express the pertinent relationships as a flow graph having
simplicity and beauty. The degree to which this challenge is met is
limited by our experience, judgement, and fundamental knowledge; in short,
by our ability to perceive the problem, That poor perception of a pro-
blem may lead to an ugly flow graph is to be expected. Such ugliness
usually fades with a few revisions of the graph as familiarity and con-
fidence increase, It is hoped, however, and this hope is the very mo-~
tivation for the work presented here, that a knowledge of flow graph
techniques will enhance and extend our poviers of perception, no matter
how weak these powers may be at the beginning of a problem. An ugly
flow graph is, perhaps, better than none. At the other extreme, a care-
fully composed flow graph, exhibiting to a trained glance the very es-
sence of a problem, is, in the opinion of the writer, worth a thousand

vords or a hundred equations,

The underlyingz purpose of this paper is the exposition and illus-
tration of a tool, rather than the statement of factual results. Many
of the feedback theorems proven here are also proven in Bode's treatise,
The use of positive stage feedback and over-all negative feedback for
low distortion amplification is also mentioned in the literature
[Ref:22,p.478]. The proofs given here, however, are novel, as are cer-
tqin results, In particular, thé general stability ceriterion advanced

by Bode directs us to plot the Nyquist diagram of the loop difference of
the jth tube (i.e. the jth gp O p) in a circuit, as computed with only
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tubes 1,2, ..o » J active., The succession of such diagrams determines the
stability of the circuit. For the circuit of Fig. 6.14, two plots would
be required. The snalysis presented here, however, needs but one plot,
that of the loop difference of the cathode impedance Zk'

Another new result is the use of conformality alone (curve sketching)
to obtain stability information from a Nyquist plot. Previous methods de-
pend upon the "principle of the argument," a theorem from the theory of
functions of a complex variable, which states that the net number of clock-
wise encirclements of the origin by the Nyquist plot of T(s) measures the
excess of zeros of T(s) over poles of T(s) in the right half nlane, In
recalling such a theorem from memory, it is all too easy to replace clock-

wise by counterclockwise or to interchange zeros and poles.

The flow graph concepts outlined in this paper have been presented
in part, to graduate students in subject 6.633, Electronic Circuit Theory,
at the Massachusetts Institute of Technology. The response has been, in
general, favorable. The students appear to absorb the material of
Chapters III and IV with some relish, Whether this is mass evidence of

the usefulness of flow graphs or merely a symptom of the "new toy" com-

plex, only time will reveal,
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