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Administration and Master of Science in Mechanical Engineering.

Abstract
Verizon distributes Customer Premises Equipment (CPE) such as set top boxes, broadband routers,

and WiFi extenders to Fios customers via a variety of paths; for example: direct ship to customer (either
for self-install or for later installation by a field technician), delivery via field technicians, or retail store
pickup (primarily for self-install). Each method has its own benefits and shortcomings due to impacts on
metrics such as inventory levels, shipping costs, on-time delivery, and system complexity. Although the
majority of shipments are successfully activated in the customer's home, a non-trivial percentage results in
unused returns or inventory shrinkage. These undesirable results represent a significant amount of wasted
resources. This thesis is focused on identifying and realizing cost savings in the Fios supply chain through
reduction in waste associated with unsuccessful shipments.

In order to effectively analyze the closed-loop supply chain, accurate and reliable process mapping is
critical. Interviews with key stakeholders, together with order and shipment data analysis yielded a
complete picture of the ecosystem's processes and infrastructure. Process mining techniques augmented
this understanding, using event log data to identify and map equipment and information flows across the
supply chain. All together this analysis is used to identify order cancellations as a key source of waste.

To limit waste, it is necessary to conduct analysis both internal to Verizon's processes and externally,
to determine if there are customer trends leading to order termination. Process mining was used for the
internal analysis and, while it helped identify singular cases in which process abnormalities were associated
with undesirable outcomes, its current form proved unsuited for root cause analysis. Internal analysis did,
however, illuminate opportunities for improvement in radio-frequency identification (RFID) usage and
protocols across the supply chain. Current systems can result in poor visibility of equipment as it moves
within some segments of the supply chain. The actual monetary impact is difficult to determine but likely
to increase as the importance of RFID increases.

External analysis is conducted through predictive modelling. Using a variety of data sources, a model
with over 80% sensitivity and a low false positive rate is achieved. Operationalizing this model through
real time incorporation with sales was explored but found to be overly complex. Instead, the random forest
model yielded policy changes guided by the features with the highest importance. A pilot is currently in
development to test the efficacy of suggested changes, as the model implies significant savings opportunity.

Thesis Supervisor: Duane Boning
Clarence J. LeBel Professor, Electrical Engineering and Computer Science

Thesis Supervisor: Juan Pablo Vielma
Richard S. Leghorn (1939) Career Development Professor, MIT Sloan School of Management

3



This page intentionally left blank.

4



Acknowledgments

First and foremost, I would like to express my gratitude to the entire Verizon Global Supply
Chain organization for their support and collaboration throughout the project, especially my supervisor,
Steve Baum. He facilitated this project as a rich learning experience; his shared expertise and candid
discussion helped me grow both personally and professionally. Sincerest thanks also go to my colleagues
in the group, particularly Ernesto Allwood, and Jen Canlas. They were instrumental in helping me
retrieve, contextualize, and process mountains of data from myriad sources. Special thanks also go to
Alan Rompala, Sam Mastruserio, Matt Moore, and Frank Frontiera. Their guidance and eagerness to
share knowledge provided me with the environment and tools to succeed.

I would also like to thank my faculty advisors, Duane Boning and Juan Pablo Vielma. Each was a
wonderful source of knowledge and ideas, and their guidance was instrumental in shaping the direction of
the project.

The LGO staff, particularly Patty Eames and Ted Equi, also deserve acknowledgement for their
support and guidance during not only the internship, but also the entire LGO program.

Finally, I would like to thank my wife Lauren for her tremendous love and support. Her
monumental strength and ability to manage the kids while we were apart allowed me to stay focused and
succeed on the project and throughout the program. She is my rock, and I could not have done this
without her.

5



This page intentionally left blank.

6



Table of Contents
Abstract ......................................................................................................................................................... 3

Acknow ledgm ents......................................................................................................................................... 5

Table of Contents..........................................................................................................................................7

List of Figures ............................................................................................................................................... 9

List of Tables .............................................................................................................................................. 10

1 Introduction......................................................................................................................................... 11

1.1 V erizon Background ................................................................................................................... 11

1.2 V erizon Fios................................................................................................................................ 12

1.3 W ireline/Fios Supply Chain..................................................................................................... 13

1.4 Problem Statem ent ...................................................................................................................... 15

1.5 Research M ethodology ............................................................................................................... 15

1.6 Thesis Structure .......................................................................................................................... 15

2 Literature Review ................................................................................................................................ 17

2.1 Closed Loop Supply Chains and Reverse Logistics: Overview ............................................... 17

2.2 Big Data and Predictive Analytics in Supply Chains............................................................... 19

2.3 Radio Frequency Identification Im plem entation and V erification .......................................... 22

3 Understanding Current Operations: M odelling Existing System s ................................................... 25

3.1 Fios Supply Chain Organization and Challenges................................................................... 25

3.2 D ata Sources and Pitfalls ............................................................................................................ 26

3.3 Characterization of Existing Shipm ent Results....................................................................... 27

3.4 Analysis of Device Tracking Technologies and Current U sage ............................................ 29

3.5 Process M ining to Understand System Interactions and Trends................................................. 31

3.5.1 Process M ining Description ........................................................................................... 32

3.5.2 Application and Results .................................................................................................. 33

4 Predictive M odelling for Order Cancellations ................................................................................ 36

4.1 M ethod and M otivations ............................................................................................................. 36

4.1.1 M otivation and Goals for Predictive M odel..................................................................... 36

4.1.2 M ethods: D ata Sources and Treatm ent ........................................................................... 37

4.1.3 M ethods: Evaluation Criteria ......................................................................................... 38

4.2 M odel Selection and Results.................................................................................................. 39

4.2.1 D escription of Techniques ............................................................................................. 39

4.2.2 Treatm ent of Data Im balances ........................................................................................ 41

7



4.3 M odel Tuning and R esults ..................................................................................................... 42

4.3.1 Ordering Data Modelling ............................................. 42

4.3.2 Sales D ata M odelling .................................................................................................... 47

4.4 Application and Analysis .............................................................................. 51

4.4.1 Ordering System Model Application............................................................ 51

4.4.2 Sales Model Application ............................................. 53

SC onclusion ............ .......................................................................................................... 54

5.1 G eneralized Lessons ............................................................................................................ 54

5.1.1 Process Analysis Insights ... .................................................................................. 54

5.1.2 Predictive M odelling Insights.......................................................................... ....... 55

5.2 R ecom m endations ....................................................................................................................... 55

5.2.1 Recommendations - Predictive Model................................. ............. ........................... 55

5.2.2 Recom m endations - Process Changes ............................................ .................................... 56

5.3 Recom m endations for Future Research...................................................................................... 57

5.3.1 Future Research - Predictive M odel.............................................................................. 57

5.3.2 Future Research - Process Analysis ................................................................................ 58

R eferen ces................................................................................................................................................... 59

8



List of Figures

Fig ure 1-1: Fios Service Area ..................................................................................................................... 12

Figure 2-1: M ajor Components and Activities of a CLSC .................................................................... 17

Figure 2-2: CLSC Return Shipment Tim ing ............................................................................................ 18

Figure 2-3: RFID Components and Functionality .................................................................................. 23

Figure 3-1: Order Inform ation Flow ...................................................................................................... 26

Figure 3-2: Clean and Screen Returns by Type ...................................................................................... 28

Figure 3-3: Unused Return Order Status................................................................................................ 28

Figure 3-4: Inventory Process Flow ............................................................................................................ 30

Figure 3-5: Conform ance Checking in Process M ining.......................................................................... 33

Figure 3-6: Process Discovery in Logistics ........................................................................................... 34

Figure 4-1: Sample ROC Curve.................................................................................................................. 39

Figure 4-2: Sample Decision Tree ............................................................................................................. 40

Figure 4-3: Sample Partial AUC................................................................................................................. 43

Figure 4-4: Order M odel Tuned Random Forest .................................................................................... 44

Figure 4-5: Order M odel Tuned AdaBoost.............................................................................................. 44

Figure 4-6: Order M odel Tuned M odel Comparison.............................................................................. 45

Figure 4-7: Order M odel AdaBoost Confusion M atrix.......................................................................... 45

Figure 4-8: Order Model ROC and Partial ROC Curves with Treated Data Sets...................................46

Figure 4-9: Sales M odel Tuned Random Forest .................................................................................... 47

Figure 4-10: Sales M odel Tuned AdaBoost........................................................................................... 48

Figure 4-11: Sales M odel Comparison of AdaBoost and RF ................................................................ 48

Figure 4-12: Sales M odel Confusion M atrices ...................................................................................... 49

Figure 4-13: Sales M odel ROC Curve Comparison ............................................................................... 49

Figure 4-14: Order M odel Top 10 Feature Importances ......................................................................... 51

Figure 4-15: Door to Door Sales Cancellation Profile............................................................................ 52

Figure 4-16: Sales M odel Top 10 Feature Importances......................................................................... 53

9



List of Tables
Table 2-1: Analytics Methods and Examples ......................................................................................... 20

Table 2-2: Comparing learning algorithms (ranked from * to **** (best model)).................................21

Table 2-3: Formulae and interpretation of accuracy, precision and recall scores...................................22

Table 3-1: Key Stakeholders and Motivations....................................................................................... 25

Table 3-2: D ata Concerns by Source ...................................................................................................... 27

Table 4-1: Order Model Metrics with Threshold=0.5............................................................................ 46

Table 4-2: Sales Model Metrics with Threshold=0.5 ............................................................................. 50

Table 4-3: Sales Model Metrics with Threshold=0.7 ............................................................................. 50

10



1 Introduction

This thesis presents techniques to analyze and improve the efficiency of a closed loop supply chain

and reduce the waste associated with certain operational decisions and technologies. The thesis presents a

predictive model that can be employed to limit unused and wasteful shipments. Model discussion depicts a

solution to optimize parameters for a low false positive rate despite a highly class-imbalanced data set. In

addition, this thesis presents a technique to understand complex system interactions and process flows.

Finally, we discuss device tracking technology within the supply chain and its operational usage and impact.

This chapter provides a brief overview of Verizon as a whole, and of Fios and its supply chain operations.

Additionally, this chapter provides an overview of potentially problematic features within the system, and

the methodologies with which the project was approached.

1.1 Verizon Background

Verizon is an American multinational conglomerate and a global leader in communications. The

company was founded in 2000 as a merger between Bell Atlantic and GTE Corporation. Over the last 19

years the company has grown through dozens of mergers and acquisitions with some of the most prominent

names in American technology, including Yahoo, MCI, AOL, and Alltel, among others. Today, Verizon is

a leading provider of communications, information, and entertainment products and services to consumers,

businesses, and government agencies worldwide. In 2018, the company earned $11.6 Billion in EBITDA

(earnings before interest, taxes, and depreciation) on $130.9 billion in total revenue. At the time of this

project, the company was divided into three main segments: Wireless, Wireline, and Enterprise.

* Wireless - provides wireless voice and data services, as well as equipment sales

* Wireline - broadband video, voice, and data, corporate networking solutions, data center, and

cloud services for residences and small businesses.

* Enterprise - provides cloud-based solutions for corporate and government entities, delivering

security, mobility, and information-sharing solutions.

This organizational structure has since been changed, effective January 1, 2019 to enable the business to

focus more directly on the rollout and deployment of 5G networks across the United States. The new

structure divides the business into three new segments: Consumer, Business, and Media.

* Consumer - includes the consumer segment of the company's wireless and wireline businesses

" Business - includes products and services sold to businesses and government from both the

wireless and wireline businesses
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* Media - based on the Oath Group and its media properties, this segment focuses on generating

and disseminating media content, advertising, and technology

Although it is important to recognize the changing dynamics of the business, for the purpose of this

document, analysis is conducted according to the old wireless/wireline structure to avoid confusion.

1.2 Verizon Fios

Verizon's Fios service provides television, internet, and voice services to residential and small

business customers in the mid-Atlantic and northeastern United States through a 100% fiber optic

network, as illustrated in Figure 1-1 [2]. Fios serves about 6 million internet and 4.5 million TV

subscribers and is a major portion of the wireline business, accounting for about 40% of the unit's total

revenue. Fios marketing emphasizes high data transfer speeds, excellent reliability, and best-in-segment

customer service. Despite these excellent qualities, Fios overall subscription growth has slowed in recent

years to about 2.5% per year, and that growth is entirely from internet services. TV subscription has

experienced a net decrease in customers over the past two years, as streaming services such as Netflix and

Hulu have taken their toll on the Cable TV industry [1]. In addition to this slow growth rate, in 2013,

Verizon sold its Fios network assets in California, Texas, and Florida. As a result, Fios operates in a

relatively limited service area.

Figure 1-1: Fios Service Area

Given the decision to limit the geographical service area of Fios and the lack of substantial

organic growth, the business unit is considered to be in the mature portion of its lifecycle [2]. As a result,

controlling costs is a key metric within the business, and this thesis focuses on costs within the Fios

supply chain in particular.
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1.3 Wireline/Fios Supply Chain

Fios services require certain pieces of equipment at the customer's home to ensure network

functionality and a positive customer experience. For a typical "triple-play" bundle customer (the most

common type), there are three main pieces of required equipment: Optical Network Terminal (ONT),

Router, and Set-top box. The ONT is the interface between the fiber optic network and the in-home

network. The router receives input from the ONT via coaxial or Ethernet cable and transfers information

between the ONT and in-home devices via either wi-fi or Ethernet. The set-top box receives television

signal from either the ONT or router (depending on device) and provides basic TV viewing, with the

potential for adding DVR capabilities.

An ONT is required in any house to enable Fios services, and customers are required to rent

Verizon-provided set-top boxes as part of their TV subscription. Customers are able to provide their own

router and abstain from renting or purchasing a Verizon router; however, any customer with internet

speeds higher than 100 Megabytes per second is required to rent or purchase the newest router, the BHR4.

Fios customers are also encouraged to purchase or rent wi-fi network extenders (FNEs) to ensure quality

internet coverage throughout the home. Although there are only four device types (ONT, STB, Router,

FNE), there are multiple legacy devices that are prevalent across the network, resulting in over 20

managed SKUs. The wireline supply chain group manages the forward and reverse logistics for all of

these devices and plays a critical role in ensuring a quality customer experience at installation and in the

event of needed timely replacements or repairs.

In order to ensure proper distribution and delivery, the supply chain operates three distinct channels

for forward logistics:

" Retail: Customers may pick up or purchase devices at Verizon retail stores

* Garage Work Centers (GWCs): Installation and repair technicians work out of GWCs,

which maintain a small inventory of most SKUs. Technicians frequently pull devices out

of GWC inventory to complete both installation and repair orders.

* Direct to consumer (DTC): Many customers receive direct shipments of equipment from

the regional distribution center (RDC) to their home. This is a frequent channel for both

repair and installation orders. For installation orders, the devices are shipped to the

customer and then a technician arrives on the scheduled date to conduct the installation.

This arrangement is known as "Direct Ship." DTC repair orders are typically overnighted
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to the customer with a return box for the defective device. This is known as a "dropship"

order.

Each of these distribution channels is operational for reverse logistics as well. Customers frequently drop

equipment off at retail stores or mail devices back to the RDC. Technicians also regularly bring defective

equipment to the GWC for return to the RDC.

The focal point for the Fios supply chain is the RDC. There are two such facilities and each are

located in eastern Pennsylvania. They are operated by separate third party logistics providers (3PLs).

Each RDC receives bulk shipments from manufacturers and suppliers, which it allocates through the

aforementioned distribution channels. The RDCs process over 500,000 shipments and returns per month.

They also maintain buffer stock inventory for the supply chain. The eastern Pennsylvania location is

centralized within the Fios service area and allows for overnight shipments of equipment for repair order

to any customer home. It also allows easy resupply of GWCs and retail stores, which receive

replenishment shipments frequently. All shipments are sent through small parcel carriers such as FedEx,

UPS, or USPS.

In addition to forward logistics, there is a clean-and-screen facility co-located with one of the

RDCs and run by a separate third party service provider. This facility is responsible for receiving used

equipment from end users, inspecting it for damage, repairing it, testing it to ensure functionality, and

cleaning it. If a device is broken and unrepairable it is returned to the manufacturer (for warrantied items)

or scrapped. Once a functional device is tested and cleaned, it is placed back in RDC inventory for reuse

with a new customer. This practice allows Verizon to limit its new equipment purchasing costs while

ensuring that the customer receives quality equipment.

As Section 2.1 will discuss, certain aspects of the Fios supply chain are common across a wide

variety of industries. In particular, clean and screen and reverse logistics have become ubiquitous in the

modern economy. The rise of online shopping has required all manner of businesses to process returned

goods and return them to use when possible. The forward supply chain of Fios, as characterized by

centralized RDCs and varied local distribution channels, is also common across industries. Overall, many

problems inherent in the Fios supply chain are frequently seen across a broad spectrum of business,

particularly those operating in service-focused industries.
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1.4 Problem Statement

Every supply chain suffers from inefficiencies and waste. This thesis conveys the results of efforts

to reduce waste associated with the shipment of Verizon Fios customer premise equipment (CPE). CPE,

such as set top boxes, broadband routers, and WiFi extenders, is shipped to Fios customers via the three

channels previously mentioned. Each method has its own benefits and shortcomings due to impacts on

metrics such as inventory, shipping costs, on-time delivery, and system complexity. Although the

majority of shipments are successfully activated in the customer's home, a non-trivial percentage results

in unused returns or inventory shrinkage. These undesirable results represent a significant amount of

wasted resources. This project analyzes the system and presents a framework to find cost savings in the

Fios supply chain by reducing the waste resulting from such unsuccessful shipments. It also presents

findings related to technology employed within the supply chain such as RFID that may also relate to

inefficiencies and waste.

1.5 Research Methodology

Identifying the key differences between how a system currently works and how it is ideally meant

to function will highlight critical savings opportunities. Thus, the first phase of this project involves

building a basic understanding of the current Fios business, its underlying processes, and the data that

drives decision-making. Through a literature review, interviews with key stakeholders across the supply

chain, data collection from the various key systems, and analysis of shipment data, this phase identifies

particularly strong targets for savings opportunities. Once these key features are identified, the project

pursues a two-pronged approach. This involves focusing work on "internal" process analyses to identify

shortcomings in Fios internal business practices and systems, alongside "external" analysis to control for

factors outside of the system. External analysis leads to predictive models capable of limiting waste

through prevention of shipments with an elevated risk of customer cancellation.

1.6 Thesis Structure

This thesis is organized into six chapters. The content of each chapter is summarized below.

* Chapter 1: This chapter provides an introduction to Verizon, Fios, and the Fios supply chain. In

addition, this chapter includes a brief problem statement, description of research methodology,

and thesis structure.
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* Chapter 2: A brief literature review summarizes previous academic research work that relates to

efficiency within closed loop supply chains, device tracking technologies, and consumer behavior

predictions

" Chapter 3: This chapter focuses on the Fios supply chain's operations, organizational processes,

data collection systems, and key data which produced initial insights. This chapter also includes

analysis of device tracking technologies employed within the supply chain. Finally, it details the

techniques used to analyze the current system via process mining techniques.

" Chapter 4: The formulation and results of predictive modelling efforts are presented. The

limitations of the model are highlighted, as well as the proposed applications.

* Chapter 5: The conclusion of the thesis includes recommendations on the application of

predictive modelling within closed loop supply chains. In addition, specific recommendations for

Verizon Fios supply chain are presented. Opportunities for future research in process mining,

organizational dynamics, and predictive modelling are identified.
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2 Literature Review

Companies across the world are increasingly incorporating reverse logistics and closed loop supply

chains into their operations. These arrangements, when feasible, can have positive impacts on supply

chain costs, efficiency, and environmental impact. In addition, data collection and supply chain tracking

technology has made significant advances in recent decades, allowing unprecedented visibility of the

movement of goods, as well as the advent of "big data" and analytics within supply chains. This chapter

reviews recent research and market trends surrounding these topics.

2.1 Closed Loop Supply Chains and Reverse Logistics: Overview

Reverse logistics is defined as "The process of planning, implementing, and controlling the

efficient, cost effective flow of raw materials, in-process inventory, finished goods and related

information from the point of consumption to the point of origin for the purpose of recapturing value or

proper disposal" [4]. When a reverse logistics mechanism is combined with a product's standard forward

logistics system, a closed loop supply chain (CLSC) is formed. Among other things, a proper CLSC

requires establishment of mechanisms for retrieval, refurbishment, remanufacturing, and recycling or

disposal of used equipment. Figure 2-1 describes the major components of a typical CLSC [6].

Figure 2-1: Major Components and Activities of a CLSC
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For many companies, the initiation of closed loop supply chains was the result of legal directives

mandating collection and recovery efforts for certain types of waste. However, in recent years, numerous

industries have come to understand the potential for value creation in CLSCs. Toffel lists the following as

some of the prime motives for companies to pursue product recovery through reverse logistics [5]:
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* Reducing production costs

* Promoting an image of environmental sustainability

* Meeting customer demands

* Protecting aftermarkets

* Preempting regulation

Although the article was written through the lens of product recovery in manufacturing, these same

motives apply to the Fios supply chain. For example, "meeting customer demands" may refer to the desire

of most Fios customers to rent their equipment in lieu of outright purchases. This arrangement

necessitates a mechanism to receive used goods at the end of the equipment's life cycle (or the customer's

tenure), and thus a CLSC is an important component in the Fios business model.

There are numerous challenges to operating a CLSC, and one of the most commonly discussed in

literature is the retrieval of equipment. Sahyouni notes that there are typically two main types of return:

commercial and end-of-life. Commercial returns are often a result of customer preferences or product

defects. End-of-life returns are the result of product life cycles and new product introduction. Figure 2-2

displays the typical timing distribution of these return types. In the same study it is noted that, due to

inadequate incorporation of reverse logistics into supply chain planning, "companies now face a

considerable challenge in designing a reverse supply chain network that will meet returns processing

needs while complementing their existing forward distribution system" [7].

Figure 2-2: CLSC Return Shipment Timing
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A Deloitte strategic review also highlights difficulties of equipment retrieval, particularly in the

predictability of return volumes. It argues: "reverse logistics happens in response to an action of a

customer or supply chain actor and as such is extremely difficult to anticipate or plan for by a company"

[8]. Verizon mitigates some of the return volume risk by employing a 3PL provider to process, test, and
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refurbish its returns. Under this agreement, Verizon pays per unit processed and is therefore insulated

from daily shipment fluctuations in volume which may create short-term labor shortages or overages.

Despite these challenges, the importance of reverse logistics continues to grow around the world.

By Deloitte's estimate, reverse logistics has annual cost in the U.S. of about 200 billion USD. In order to

minimize these costs and ensure successful operation of CLSCs, Deloitte recommends the following as

key factors for success:

" Optimize forward logistics - Minimize customer returns by implementing the correct strategy in

forward logistics to limit impacts on the reverse flow

* Synergies - Merge forward and reserve flows

* Product return policy - Product return policies should not only be looked at from a commercial

perspective though should be considered from a logistics and operational point of view as well.

" Consolidation of flows - The success of a reverse flow depends on the degree of convergence

between the financial flow, operational flow as well as the information flow [8].

Verizon has addressed synergies by collocating its reverse and forward logistics facilities and it

continuously works to optimize its forward logistics to mitigate waste. The Fios supply chain generates

data during each transaction and movement of goods within the system. Thus, there are significant

opportunities to mitigate waste through analysis of processes, technologies, and big data analytics.

2.2 Big Data and Predictive Analytics in Supply Chains

Due to its somewhat nascent nature, "big data" lacks universal definition. This thesis will use Gartner's

definition, which describes big data as "high-volume, high-velocity and/or high-variety information assets

that enable enhanced insight, decision-making, and process automation" [9]. Using big data, researchers

generally approach problems using three categories of analytic method. Table 2-1 defines the methods

and provides brief examples [9]. At first glance, it may appear that prescriptive and predictive analytics

serve similar purposes since they are both forward looking. There is, however, a key distinction.

Predictive analytics merely describe a potential future outcome, whereas prescriptive techniques

recommend specific actions and generally seek to understand the predicted impact of these actions on

performance.
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Table 2-1: Analytics Methods and Examples

-Analytics Method Definition Use Case Examples

Used to describe or mimic the system or process under
study and answer the question of what is happening

Used to prescribe to the decision-maker some "optimal"
set of policies and answers the question of what will be
happening

Provide a projection of system or process performance
into the future and answer the question of what will be
happening

- Supply chain mapping
- Model risk analysis
- Model supply chain flexibility
- Production planning
e Project selection
- Profit Maximization
- Vehicle routing

- Demand forecasting
- Returns predictions

This thesis is focused primarily on predictive analytics within reverse logistics, specifically

predicting customer cancellations. Literature on this specific topic is somewhat sparse, but one particular

study by Deshmukh outlines some of the key challenges with such an undertaking [11]. The first of these

is model selection. Various machine learning and optimization programs are feasible in this use case, but

Table 2-2 outlines a comparative study between different techniques across several features [11]. The key

takeaway from this table is that it is critical to understand the conditions under which a certain technique

outperforms others for a given problem.

20
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Table 2-2: Comparing learning algorithms (ranked from * to **** (best model))
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A second challenge in predicting customer cancellations is that the data is typically imbalanced,

with far fewer cancellations than completed orders. In order to mitigate the effects of this imbalance, two

techniques are proposed: (1) down-sampling the majority class or over-sampling the minority class or

both, and (2) cost-sensitive learning, i.e., assigning a high cost to misclassification [11]. In addition,

imbalance-treated random forests and gradient boosted classifiers are identified as high performing

techniques for this type of data set.

Finally, a third challenge outlined by Deshmukh is the choice of evaluation metrics. It is noted that

overall model accuracy is not appropriate to evaluate highly imbalanced data sets. Using this metric, a

model built using a dataset containing 1% cancellations would be viewed as 99% accurate if it simply

predicted zero cancellations. In this case, sensitivity and precision are more appropriate performance

metrics. Table 2-3 shows the formula and interpretation for each evaluation metric [11].
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Table 2-3: Formulae and interpretation of accuracy, precision and recall scores

Evaluation Metric Formula Interpreation

Overall Accuracy (TP + TN) This metric says how often is the classifier
(TP+TN+FP+FN) MI

t / Recall (TP) When an instance actually falls within a class,
(TP+ FN) how ofen does dhe model correctly classify it

as falling this class
Positive Prediction (TP) When the moe predicts an intanc 10 fall

Value (PPV) / Precision (TP + FP) within a clam. how often does it actually fall
I within the class

In addition to these challenges, another issue that confronts predictive modelling is the idea of

concept drift. According to this idea subtle changes in processes over time alter the underlying probability

distributions of the data. The effect is that learning models trained on old data may be inconsistent with

new data [15]. In order to mitigate the effect of this, Chen proposes implementation of incremental

learning, whereby the data stream is divided into chunks and classifiers are trained on each data chunk

and combined to predict outcomes in the newest data chunk [15].

Although the prospects of building strong predictive models are good, Hazen provides an insightful

warning: "The modern world is data rich and thus big data analytics is likely here to say. However,

management decisions are only as good as the data on which they are based" [9]. Thus, any organization

which purports to make use of big data analytics must first lay the groundwork of reliable IT

infrastructure and data collection methods. In addition, Hazen describes socialization of analytics as

another major challenge. He argues that transitioning an organization to rely on big data analytics requires

careful strategic planning and careful consideration of the cultural and organizational ramifications of

such a tectonic shift in business focus. Although Verizon has laid a strong foundation for incorporation of

big data analytics into supply chain decision-making, this thesis outlines some impacts of problems with

consistency of data that may inhibit the effectiveness of predictive modelling or its implementation.

2.3 Radio Frequency Identification Implementation and Verification

A major factor in the advent of big data is the proliferation of cost-effective data collection and

device tracking technologies. Radio frequency identification (RFID) tags are at the forefront of this

revolution. These devices were first introduced commercially in the 1980s via active, or battery powered,

tags. These tags were prohibitively expensive and generally used only for the tracking and management of

extremely valuable property. The more recent introduction of passive RFID technology has drastically
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reduced the cost and increased the accessibility of RFID tags across the economy [12]. Today, Statista

estimates global annual RFID sales to be about 17 Billion USD, with double digit annual growth rates

over the next decade [13].

Figure 2-3 depicts key RFID system components and functionality. Each RFID tag is embedded

with a microchip that contains identification data such as an Electronic Product Code (EPC). The

microchip can also incorporate functionality beyond simple identification, including integrated sensors,

read/write storage, encryption and access control. The tag is typically attached to an item, case or pallet,

and the enterprise RFID database is updated to reflect the EPC/serial number pairing. RFID scans are

conducted with readers. These devices contain small antennae that emit electromagnetic waves which

form a magnetic field when they "couple" with antenna on the RFID tag. The tag draws power from the

magnetic field and uses it to power the microchips' circuits. The microchip then modulates the received

signal in accordance with its identification or programmed code and transmits or reflects a radio

frequency signal. The modulation is in turn picked up by the reader, which decodes the information

contained in the transponder and depending upon the reader configuration, either stores the information,

acts upon it, or transmits the information to the host computer and database [12].

Figure 2-3: RFID Components and Functionality
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sms

RFID Tag (not to scale)

The Fios supply chain is equipped with EPC-encoded passive RFID tags on the vast majority of its

customer premise equipment. Each tag contains company identification, an item description, and item

serial number. The organization employs a mix of bar code scanning and RFID scans. Typically,

palletized or boxed equipment at centralized facilities is identified using bar code scans for shipments,

and RFID scans are used for individual item inventory at more remote locations.
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The widespread implementation of RFID has numerous supply chain benefits. Attaran identifies a

few such benefits when compared to existing device tracking technologies [22]:

* Enhanced visibility along the supply chain

* Speedy and accurate information retrieval

* Accurate asset tracking

* Better-quality information

* Improved productivity

* Reduced operating costs

* Improved business process

* Improved quality & reliability

He also notes that RFID tags are capable of storing far more information than bar codes. In addition, the

ability to scan multiple RFID tags simultaneously and without direct line of sight is a drastic

improvement over often-tedious barcode scanning technology. These improvements allow the potential

for supply chain automation on an unprecedented scale, as it is possible to establish scanning protocols

that allow real-time updates of inventory and goods movement all across the supply chain, from order

fulfillment to reverse logistics.

The widespread implementation of RFID in supply chains is not without challenges. RFID tags

are more expensive than simple barcodes and it is often difficult to articulate a positive return on

investment in the technology. In addition, RFID is a wireless technology and, as such, poses some

potential security concerns to users regarding the compromise of data during wireless transmission,

storage of data, and security of storage sites [13]. It is theoretically possible for an RFID tag with

read/write capability to have its EPC information altered by nefarious third parties, or for competitors to

glean information on the movement of goods via RFID interception. Some of the security issues have

been addressed by RFID vendors by employing varying querying protocols, jamming, encryption, and

other techniques. Despite these challenges, RFID technology is capable of providing a significant boost to

supply chain productivity and visibility. The Fios supply chain employs RFID on a broad scale, and plans

are in place to broaden usage of the technology to allow higher granularity data generation. As this thesis

will discuss, there are significant improvements that should be made to RFID information flows before

such widespread change should occur.

24



3 Understanding Current Operations: Modelling Existing Systems

This chapter discusses the results of initial system analyses. It discusses the organizational structure

and nature of the existing system and the collection of data from a variety of disparate sources. This

chapter also includes analysis of device tracking technologies within the Fios supply chain, and presents a

key opportunity for process improvement related to those technologies. Finally, process mining is

discussed as a means to understand event sequences and system interactions.

3.1 Fios Supply Chain Organization and Challenges

The first step in solving any significant problem is understanding the underlying systems and

structures. A key component of the supply chain are its constituent stakeholders. Table 3-1 outlines some

of these key stakeholders in the movement and delivery of products, as well as their primary

considerations as defined by their performance metrics.

Table 3-1: Key Stakeholders and Motivations

Stakeholder Primary Considerations

3PL Providers Item processing volume

Logistics Services Low Inventory holding and procurement costs

Sales and Marketing New customer attraction and retention

Customer Service Expedient issue resolution

GWCs Expedient installation and repair

Across the supply chain, there is a wide disparity of motivations and goals between various

organizations. These goals, rooted in individual and organizational performance metrics, are often highly

logical for the specific organization but when viewed holistically they can be seen to drive the overall

business away from a global optimal solution. A strong example of this can be seen in customer service.

One the most important performance metrics for customer service representatives is short call duration.

This is a logical metric designed to increase the efficiency of the company's call center employees (it

should be noted that other metrics are in place to ensure a positive customer experience). One of the

easiest ways to potentially please a customer and quickly end a call is to ship replacement equipment to

the customer's home overnight. Therefore, a customer service representative may choose to drop-ship

after pursuing only the simplest of remedies.

A similar example can be seen in the performance of repair technicians. They are highly

motivated to complete each job as quickly as possible. As a result, there is incentive to simply replace

potentially faulty equipment instead of initially committing to in-depth troubleshooting. Clean and screen
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testing results indicate that a vast majority of returned devices are fully functional. Thus, a system which

incentivizes short duration technician visits may actually result in the unnecessary use of additional

equipment. These examples depict possible sources of inefficiencies within the holistic CLSC, but a topic

of further research may seek to understand the tradeoffs between constituent organizational incentives and

the impact on the overall business.

3.2 Data Sources and Pitfalls

In addition to the stakeholders, it is also critical to understand the IT infrastructure within the

supply chain. As mentioned in Section 1-1, Verizon is the child of numerous mergers and acquisitions.

Constant flux and steady growth throughout the company's history have resulted in a wide range of data

systems (each with its own unique set of success metrics) which drive the Fios supply chain. Figure 3-1

maps information flow for a hypothetical direct ship order.

Figure 3-1: Order Information Flow
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In this flow, an order is initially placed through a sales processing system, which sends

information to the customer premise equipment system, resulting in an order placement in Verizon's

logistics software. This program then coordinates with the 3PL provider's system to initiate the shipment.

Notification of the completed shipment initiates system updates in the reverse order, and the logistics

tracking software also updates inventory records in the company's enterprise resource planning software.

Outside of this shipment flow, there is also a system which oversees the provisioning of internet and TV

services to the customer which must be updated with correct equipment shipment information. Failure to

do so can result in equipment installation or service activation difficulties.

In short, the successful completion and tracking of a shipment from Fios may involve no less than

six IT systems. In an ideal world with perfect information transfer this complex architecture would not be
26



a problem. Unfortunately, analysis of shipment data from each system shows non-insignificant

discrepancies between systems. As a result of these data transfer issues, it can be difficult to determine

which data sets are accurate for specific features. Table 3-2 outlines some of the common apparent data

issues within the primary systems, in addition to the system-to-system mismatches.

Table 3-2: Data Concerns by Source

System-Description Common Problems

Clean and Screen / 3PL * Missing receipts (multiple shipments of devices with no
intervening receipt)

- Item received same day as shipped from RDC

Logistics Tracking * Due date mismatches
- Order status discrepancies

Customer Premise - Simultaneous activations/deactivations

Provisioning e Missing aggregate repair order data

Ultimately, it is clear that no single source of data within this system provides sufficient accurate

information to conduct analysis with any assurance of veracity. It is necessary to produce combined data

sets, focused on a particular type of equipment, and cherry-pick the most accurate features from each

constituent data system. Using these combined data sets, it is possible to garner insights to guide specific

areas to research further in the quest to eliminate waste.

3.3 Characterization of Existing Shipment Results

Although neither complex nor challenging, basic analysis of the aforementioned data is worth

discussing in brief, simply to convey the scale of the problem and motivations for further lines of effort.

Figure 3-2 shows the prevalence of unused returns at clean and screen, by type. These devices arrived

back at the RDC having never been activated on the network, and typically still in the original packaging.

They are of particular concern because they represent pure waste, in terms of shipment, 3PL processing,

and inventory holding costs.
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Figure 3-2: Clean and Screen Returns by Type
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This result shows the existence of major barriers to efficiency within the CLSC, but further

analysis demonstrates that direct shipments on technician installation orders are the main source of

unused returns. In fact, new technician installs account for about two-thirds of direct shipments to

customers, but over 85% of unused return volume. Even further, Figure 3-3 shows that cancelled orders

are the primary driver of unused returns.

Figure 3-3: Unused Return Order Status
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It is important to note that the reason Verizon ships equipment for new technician install orders is

to limit inventory levels at its hundreds of GWCs. Technicians frequently draw equipment from GWC

inventory for installation and repair orders, but the direct shipment program is simply another option that

allows Verizon to centrally hold inventory at the RDC to limit the effects of demand variability. Thus, the

direct shipment program is not entirely wrought with waste, and does serve to lower Verizon's supply

chain costs. It can, however, be improved.
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From these initial insights and the preceding infrastructure mapping, two lines of effort are

pursued. First, it is obvious that increased understanding of internal processes and systems is required.

Thus, device tracking systems, particularly RFID, are investigated to examine existing usage and

opportunities for future employment. In addition, process mining is pursued as a potential means to

increase understanding of process flows and identify information barriers. Second, predictive efforts to

limit shipments resulting in cancellations resulted in a random forest model to be discussed in Chapter 4.

3.4 Analysis of Device Tracking Technologies and Current Usage

As discussed in Chapter 2, RFID usage has become a significant asset for supply chain managers

across the globe, and Verizon is no different. The company currently employs RFID on the majority of its

customer premise equipment to provide asset visibility from the RDC all the way to device installation.

These RFIDs are installed directly onto the equipment by the OEM, and the tag information is transferred

into Verizon's database at or around the time of physical receipt at the RDC. Bulk tracking and

transactions at the RDC are generally conducted via barcode scanning; palletized and boxed equipment

generally has consolidated barcodes on the outside and the system recognizes that a scan for one device is

a scan for all devices in the container. RFID becomes a critical component further down the supply chain

to track movement of individual devices.

In order to investigate the use and effectiveness of RFID for inventory tracking, we visited a GWC

to understand the process and discuss any difficulties with the end user: the GWC "store keepers". These

individuals are entrusted with accountability for the GWC's equipment and conduct RFID-based

inventories on a daily basis. Each garage has two inventory categories: "T" stock and "S" stock. T stock,

or "truck stock" refers to devices ready to move or already on a truck for delivery to a customer premise.

S-stock denotes devices that are in GWC inventory that have not been made ready for use. This

distinction is critical because replenishment orders are placed automatically based on S-stock levels.

Figure 3-4 shows the flow of equipment and information through the GWC.
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Figure 3-4: Inventory Process Flow

In this process, equipment arrives early in the morning, typically prior to the arrival of any GWC

personnel. Devices are automatically received into GWC inventory S-stock when the delivery driver

scans the pallet barcode. Store keepers bar code scan the equipment to confirm the morning's automatic

receipt and place the equipment on shelves for use. Later in the morning, after the garage's technicians

have departed to serve customers, the store keepers conduct an RFID scan to inventory the garage's

equipment. Any RFID-labelled equipment that is not detected in this scan is automatically placed into T-

stock as it is assumed to be with a technician. If this inventory brings the GWC S-stock below a certain

threshold level, a replenishment order is automatically generated for equipment to arrive the following

morning.

This system is extremely efficient when everything is running smoothly. It typically allows a

storekeeper to conduct daily inventories of hundreds of items in less than 15 minutes. However, RFID

usage in this garage provides an excellent case study in the value of the "Gemba" Lean concept, which

alludes to visiting the place where value is created. In this case, the GWC's storekeepers informed us and

demonstrated that numerous devices are equipped with readable tags that are unidentifiable to Verizon's

ERP system. In one particular example, we observed an inventory scan of a pallet containing 80 devices.

The initial scan of these devices detected 80 RFID tags, as expected. However, when this list of tags was

transferred from the scanner into the ERP system, a small number of tags were rejected as invalid with no

associated serial number. As a result, the ERP system was automatically updated to reflect an S-stock

inventory count that was reduced by the number of rejected tags. This result was duplicated numerous

times and according to the store keeper had been a recurring problem for quite some time, particularly

with used devices coming from the clean and screen facility. This anecdotal evidence is immediately
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verifiable with available data. A comparison of the RFID tagged assets database with the ERP's inventory

database shows some mismatches and some missing data. One random sample of over 1000 serial

numbers showed that greater than 5% of devices in the ERP inventory were either not present in the RFID

tagged assets database, or had a mismatched serial number.

Although root causes of the problem are still under investigation, this episode highlights a key

issue with RFID that is not discussed at length in the literature: use of RFID, particularly in conjunction

with 3PL providers, adds complexity to a company's IT systems and careful consideration must be made

to ensure the fidelity of data. In this case, early signs indicate that data transfer between 3PL providers

and Verizon is sometimes incomplete. When a device returns to the clean and screen facility and the

RFID tag is unreadable, a replacement tag is issued and programmed to match the device. The tag

identification information should then be transferred to Verizon to allow an update within the ERP

database. It appears that this transfer of data from the 3PL to Verizon is not always occurring on a

consistent basis.

It is difficult to determine the immediate impact of this problem on the supply chain due to the

"snapshot" nature of the relevant data (the database only displays the current information for a device and

lacks transaction history). It is likely, however, that such missing data has resulted in inefficient

operations in the past and will continue to do so unless rectified. The main source of this inefficiency lies

in the daily inventory's automatic updates of on-hand inventory and subsequent automatically triggered

replenishment orders. In a hypothetical scenario in which Verizon lacks the RFID EPC information on

just 10% of refurbished devices, automatic replenishment orders will frequently result in premature

shipments of equipment (before the physical inventory count actually reaches the target threshold). As a

result, Verizon incurs significant additional inventory costs and many key supply chain planning factors

such as days of supply become skewed. As mentioned in Section 2-2, management decisions are only as

good as the data on which they are based.

3.5 Process Mining to Understand System Interactions and Trends

Sections 3-1 and 3-2 show examples of challenges associated with complex organizational and IT

structures. As a result of these types of challenges, there is some uncertainty for key decision makers

regarding both data and process fidelity. In order to better understand this uncertainty, this research seeks

to map true process flows of both information and inventory in order to ascertain where reality may be

deviating from the published, idealized processes. The goal is twofold: (1) to establish an updated realistic
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process flow, and (2) to use process mining to ascertain whether any specific deviations from the

"normal" pathways are resulting in wasteful shipments or returns.

3.5.1 Process Mining Description

Process mining is a relatively new concept that refers generally to techniques that allow users to

extract data from event logs. Researchers claim that it serves as the missing link between model-based

process analysis and data-oriented analysis techniques, allowing users to perform fact based business

process management [14]. The starting point for process mining is the aforementioned event log. Each

event in such a log refers to an activity (i.e., a well-defined step in some process) and is related to a

particular case (i.e., a process instance). The events belonging to a case are ordered and can be seen as

one "run" or "trace" of the process. Event logs may store additional information about events such as the

resource (i.e., person or device) executing or initiating the activity, the timestamp of the event, or data

elements recorded with the event (e.g., the size of an order) [14].

There are three main types of process mining outlined in the literature. The first type of process

mining is discovery. Process discovery is the most prominent process mining technique and it involves

taking an event log and producing a model without any prior knowledge of the process. The second type

of process mining is conformance. Here, an existing process model is compared with an event log of the

same process. Conformance checking can be used to check if reality, as recorded in the log, conforms to

the model and vice versa. Figure 3-5 depicts an example a process map from process mining compared to

its idealized model.
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Figure 3-5: Conformance Checking in Process Mining
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The third type of process mining is enhancement. Here, the idea is to extend or improve an

existing process model by using information about the actual process recorded in some event log.

Whereas conformance checking measures the alignment between model and reality, this third type of

process mining aims at changing or extending the a priori model. For instance, by using timestamps in the

event log one can extend the model to show bottlenecks, service levels, and throughput times [14].

There are a number of both commercial and open source tools with which to conduct analysis. In

order to avoid incurring costs for this exploratory work, we chose to work with a pair of open source

tools: the 'R' package bupaR, and the open source software ProM Tools. BupaR is significantly more

user friendly and produces far more aesthetically pleasing outputs, but ProM Tools is far more versatile

for the expert user.

3.5.2 Application and Results

Within the Verizon IT infrastructure, event log data is sparse. To limit file storage sizes, many

databases store only the snapshot of device activity, depicting only the most recent transaction. There are,

however, a few systems that store such event data in an aggregated format that proved easy to extract.

One such system is the logistics management software that Verizon uses. The event logs from this

database allow the researcher to trace the movement of a device from the RDC shelf to the customer's
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house and back to clean and screen. Figure 3-6a depicts the process flow for the event logs within this

system, and 3-6b highlights the main transactions that occur.

Figure 3-6: Process Discovery in Logistics
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The key takeaway from Figure 3-6 is that, while the main process flow is discernable based on

volume along that path, there are significant deviations from the normal process flow that occur on a

regular basis. These pathways are sometimes entirely illogical, such as a device moving from "delivered

to customer" straight to "in stock at RDC." This may be accurate, and devices may skip steps in the

process at certain times, but more likely it is an indicator of poor data (either from poor collection or

missing transactions). Efforts to expand the mapping by combining multiple systems are severely bogged

down by these "outlier" transactions. The maps become largely unreadable, and the dominant flow path is

difficult to discern.

After generating initial process maps, we endeavor to compare the processes that result in

'negative,' or wasteful outcomes, against those with positive outcomes. In this case, a positive outcome

means an activation at a customer's premise, whereas a negative outcome means any other circumstance,

e.g., unused return to clean and screen, delivered but never activated, etc. These comparisons show that

there is significant process variability across the entire population, but the 'bad' population is far more

random in its transaction sequences. Out of hundreds of bad shipments, the most common 'trace'

sequence only accounts for 2% of the population. The good shipments were slightly less variable,

although not nearly as regular as one would expect given that those shipments were all ultimately

activated and theoretically should have followed a similar flow of transactions. The most common 'trace'

sequence for good shipments accounts for about 15% of the population.
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Process mining shows significant potential to yield key insights into process flows. It is relatively

simple to conduct discovery process mining to create a new process map. Using process mining

techniques on data from the individual Fios systems, we are able to map out information and equipment

flows, and identify the dominant paths within that system. Complications arise, however, when we

attempt to integrate data from multiple systems. Discrepancies between systems present a significant data

validation challenge and varied data formats between systems prove difficult to integrate. As a result of

these challenges, we are currently unable to integrate and map process flows across the entire Fios supply

chain with any sort of certainty. This may become possible in the future if the company seeks to unify or

integrate its disparate systems into a more comprehensive solution.
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4 Predictive Modelling for Order Cancellations

This chapter describes the methods and techniques used to build a predictive model that reliably

predicts customer cancellations, as well as the key considerations that are required. Section 4-1 describes

the motivation behind such efforts and briefly describes the data sources and evaluation criteria used to

select the model.

4.1 Method and Motivations

This section outlines the reasoning behind the predictive model and some of its key considerations.

In addition, it discusses data sources and methods employed.

4.1.1 Motivation and Goals for Predictive Model

In Section 3.4 we outline the results of a simple Fios shipment outcome analysis. The key

opportunity for predictive analytics is identified as shipments on cancelled orders, which overwhelmingly

result in unused returns or missing equipment. These lost items and unused returns cost Verizon millions

of dollars per year in direct device acquisition costs, clean and screen costs, and packaging and shipment

costs. Recognizing that there is at least some inherent random nature in the behavior of customers, the

stated goal of this model is to produce actionable insights that can limit the waste resulting from these

shipments. Some of the considerations for the construction of this model include:

* Implementability: the model must be simple to disseminate and provide real-time

predictions on orders. If used in a prescriptive manner to make shipment decisions, the

model must be incorporated into the workflow of sales associates, and so it must be quick,

user-friendly, and clear in its result.

* Accessibility of data: the model must be built using data that is available at the time of

order placement. Although a plethora of data is available for a rearward looking researcher,

model features are not useful for predictive modelling unless they are actually predictive.

* Interpretability and communicability: In order for management to make decisions, they

must first understand the model and its results. Clear methods to visualize models are

imperative in business settings.

* Impact on inventory: the primary reason for the existence of the direct shipment program is

to limit GWC inventory. False positives (erroneous cancellation predictions) would result

in equipment being installed from GWC inventory that would have otherwise been

shipped. It is therefore imperative to limit false positives in the final model.
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4.1.2 Methods: Data Sources and Treatment

In order to limit the effects of concept drift, we choose to limit data samples to within the past year.

The simplest way to build a readily implementable model is to build it entirely with data from the order

processing database. For this model, each direct shipment order is associated with over 300 features from

the order processing system. After cleaning the features that are either entirely null or entirely uniform,

we are left with 50 distinct features from the order processing system. For initial model building, we

select a training sample from over 100,000 device shipments over a six-month period. Some of the key

features in the order system include:

* Order placement and due dates

" Account establishment date

* Existing Internet/TV service type

* Residence/Address Type (single family home, multi-unit apartment, small business, etc.)

" Sales Agency: Verizon employs sales representatives in-house, and also outsources sales to

third party referral agencies

* Service type: Verizon offers bundle packages of any combination of internet, phone, and

television services.

For the dates, a difference between each feature is calculated in days and employed as a feature in the

model. For example, the count of days between order date and due date is listed as the feature 'Order vs

Due Date'.

In addition to the order processing system, Verizon also uses other, more comprehensive, data sets

within its sales organization. This data is generally more rich in terms of features and content than the

ordering system data, but can be more difficult to access and integrate into real time systems. The specific

features are proprietary. A second model is developed and tuned with this data set (henceforth known as

sales data), and the expectation is that this model will be more accurate than the original, but also more

difficult to implement as it requires live input from multiple systems.

For each data source, there are significant impurities within the sample data. Rather than impute

the missing values with a calculated value such as the mean of the feature, we instead choose to recognize

missing data as its own unique value, understanding that the very fact that data is missing may be a clue

in predicting the order outcome. For categorical features, these blanks are managed through one-hot

encoding. In this process, categorical variables are converted into a new set of binary features, with one

new feature for each unique categorical value. For example, a categorical feature 'AB' with unique
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variables 'A', 'B', and 'Blank' will be converted into three new features: AB_A, AB_B, and ABBlank.

Each of these new features is binary with, for example, a value of I in ABA for each instance of 'A' in

the original categorical variable. One-hot encoding is important because it allows for the employment of

machine learning algorithms that are otherwise incapable of handling categorical variables, such as

Random Forest. For the numerical features, missing values are replaced with the value of 1,000,000. This

arbitrary number is chosen to ensure a value well outside the range of any of the actual feature data. Thus,

a random forest classifier will easily distinguish the real data from the inserted values.

4.1.3 Methods: Evaluation Criteria

As mentioned in the literature review, overall accuracy score is a poor metric to evaluate models

with highly imbalanced data. Therefore, we seek alternative methods that will allow us to evaluate a

model based on its ability to both detect true positive and limit false positives. In addition to the recall and

precision metrics outlined earlier, we also use the false positive rate, defined as:

Equation 4-1: False Positive Rate

FP
F PR =

FP + TN

where FP represents the number of false positives in the sample, and TN is the number of true negatives.

In general, for these metrics we seek a low false positive rate along with high precision and recall. For all

models, we denote "positive" or fail by 1, and "negative" or pass by 0.

In addition to these numerical metrics, we also use the Receiver Operating Characteristic (ROC)

curve as a visual basis of comparison. ROC curves are graphic illustrations of the performance of a binary

classifier based on recall (TPR) and FPR. ROC curves can be built using probability-based classifiers by

plotting TPR against FPR under different probability thresholds. For example, if a classifier assigns a

probability of cancellation to a particular sample of 0.7, it will be labelled as a 1 for all thresholds greater

than or equal to 0.7, and a 0 for all others. Thus, each threshold features different TPR and FPR values.

An ideal ROC curve goes through TPR = I and FPR = 0, which means that under some threshold, we can

achieve 100% accuracy in classification. A classifier based purely on a random guess is a straight line,

while a practical classifier is somewhere in between these two cases. Figure 4-1 shows an example ROC

curve. The area under an ROC curve (AUC) is also a useful overall metric for classifier performances

with all possible thresholds. For an ideal classifier, AUC = 1; for random guesses, AUC = 0.5 [15].
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Figure 4-1: Sample ROC Curve
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4.2 Model Selection and Results

Based on initial research, we choose to evaluate two classifiers for this problem: random forest

and Adaboost. This section describes each of the algorithms and some of their key features. It then

describes the methods evaluated to treat data imbalances. Finally, this section shows the results of the

model selection with accompanying criteria.

4.2.1 Description of Techniques

This section describes the algorithms used for predictive modelling. It discusses the basic

underlying concepts of each as well as their general strengths and weaknesses. It also briefly discusses the

parameters used to tune each model.

4.2.1.1 Random Forest

Random forest is one of the simplest and most pervasive machine learning ensemble methods. As

Table 2-2 shows, it is a robust technique that is capable of working through numerous shortcomings in the

available data to provide rapid and easily interpretable results. In the simplest terms, the algorithm works

by building multiple decision trees and merging them together to build a more accurate and robust

predictor. Figure 4-2 depicts a sample decision tree [16].
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Figure 4-2: Sample Decision Tree
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The decision tree is made up of multiple decision nodes that branch off to form a larger tree. At

each node, the hly chooses a feature from the data upon which to split and calculates the optimal

value at which to perform this split to ensure minimal gini impurity in subsequent nodes. Gini impurity is

a measure of how often a randomly selected sample from the data would be incorrectly labeled if it were

randomly labeled accordingo the distribution of labels at the node. At all nodes, the classifier is seeking

to minimize impurity, and if allowed, a decision tree classifier will continue to branch out into additional

nodes until all nodes have a gini level of 0. Such a decision tree would be highly over-fitted to the data set

and would likely be unreliable for use on any out-of-sample data. Random forest overcomes this danger

by creating multiple unique decision trees and enforcing random selection of node criteria to ensure that

each tree is not highly correlated to the others.

A random forest model can be tuned via a number of parameters. Many of these are related to

how each tree is built, and these include, but are not limited to:'

" Maximum tree depth: determines how many nodes deep, or how many decisions a tree is

allowed to make

" Minimum samples per split: refers to the minimum number required to split an internal

node

* Minimum samples per leaf: The minimum number of samples required at a terminal

decision node.

* Minimum impurity decrease: A split will only occur at a node if the resulting gini

impurity decrease exceeds a set threshold.
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These parameters exist to help tune the accuracy of a model while preventing overly complex models that

are over-fit to the training data set and incapable of handling the different value inherent in a test or out-

of-sample set. A final parameter that is key to random forest is the number of estimators, or the number of

trees in the 'forest.' This parameter is effectively a trade-off between run time and performance; as the

number increases, model performance tends to increase while model run time also drastically increases.

4.2.1.2 Adaptive Boosting

Adaptive boosting is another ensemble method that builds off of base classifiers such as decision

trees. In adaptive boosting, also known as "Adaboost," a base classifier is trained on the original data set.

In subsequent base classifier training, instances misclassified by previous classifiers will be assigned

larger weights. After training all the base classifiers, the ensemble classifier's final result is a weighted

average of the base classifiers' output. The individual base classifiers may be very weak, but as long as

the classification performances of each of them is slightly better than random guessing, the final ensemble

classifier can be proven to converge to a strong classifier.

The parameters available in building an AdaBoost model include:

* Base classifier: decision tree, support vector classifier, etc.

" Number of Estimators: The maximum number of estimators at which boosting is

terminated.

* Learning rate: there is a tradeoff between the number of estimators and the learning rate.

The main drawback to AdaBoost is that it is susceptible to noisy data and outliers, as it will attempt to

address each outlier with added weight during each boost iteration. This drawback proves to be

problematic with the Verizon datasets, as modelling results will show.

4.2.2 Treatment of Data Imbalances

In this study we must overcome the key challenge of an imbalanced data set. The minority class

represents less than 10% of the overall dataset, with the majority class filling the remainder. Two data

treatment methods are evaluated to alleviate the effects of this significant class imbalance. The first of

these is random under sampling of the majority class. The technique involves randomly removing

instances of the majority class from the training data until the desired class balance is achieved. Once the

model is trained with the rebalanced data set, it can be tested on the imbalanced data set and evaluated for

performance. The second technique is random minority oversampling, in which randomly selected

instances of the minority class are duplicated until class balance is achieved. Each of these methods has

potential shortcomings resulting from either willfully omitting data from, or introducing a high number of
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duplicates into the training set. Adaptive Boosting, as mentioned previously, is an algorithm that is well

suited for treatment of class imbalance and can be considered a third technique investigated to mitigate

the impacts.

For the purposes of the following models, the minority oversampling and majority undersampling

data treatments result in a balanced 50/50 split between the classes. Although other splits were

contemplated and may in fact be more beneficial in certain use cases, the perfect balance is used in this

thesis for simplicity.

4.3 Model Tuning and Results

This section outlines the results of predictive modelling to prevent waste within the Fios supply chain.

It compares models built with the simple ordering dataset, as well as a more comprehensive second

dataset. All of the predictive modelling work for this section was completed using Python 3 and the

scikit-learn library.

4.3.1 Ordering Data Modelling

This section describes the actions taken to tune and evaluate the predictive model built using the

ordering system data set. The random forest model is drastically improved through parameter tuning, but

the result remains relatively poor in predictive performance by the selected performance criteria.

AdaBoost tuning provides marginal benefit over the default model. Comparison of the tuned models

shows that random forest outperforms AdaBoost for this data set at every FPR level.

4.3.1.1 Parameter Tuning

The first step in the modelling process is to tune the parameters. In previous sections, AUC, ROC

curves, recall, and precision are discussed as effective criteria to evaluate model performance. However,

only one criteria can be effectively employed at a time when tuning parameters. Since Verizon seeks low

inventory holding costs, minimal inventory impact is a critical imperative for implementation of this

model. Unfortunately, each false positive that results in unnecessary prevention of an item shipment leads

to increased inventory requirements at local GWCs. Thus, it is critical to create a model that minimizes

false positives while providing sufficient true positives to justify the effort. Therefore, tuning for this

model is completed using a somewhat unique criterion: Partial AUC. As shown in figure 4-1, the x-axis

for an ROC curve is the model's false positive rate. A partial AUC is derived from limiting the FPR to a

certain maximum threshold and cutting the ROC curve off at that point. The partial AUC is then

calculated for just that portion of the curve. Figure 4-3 depicts an example of a partial AUC. This criterion
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is used because it is only financially feasible to implement a model with a high detection rate at low

FPRs. A model which, for example, approaches perfect predictability (TPR of 1) at an FPR of 0.5 but

only gently slopes upward from the origin is not implementable in this business case. In order to allow

proper comparison of partial AUC values across various maximum FPRs, we normalize the values based

on the following equation:

Equation 4-2: Partial AUC Normalization [171

1 Part. AUC - Min. Area
Normalized Partial AUC = - [1 + Max. Area - Min.]Area

2 Max. Area - Min. Area

Where max area represents the maximum AUC value for the chosen FPR range. For example, for an FPR

range from zero to 0.4, the max AUC is 0.4. The min area represents the minimum AUC value for the

chosen range. For an FPR range from zero to 0.4, this value is 0.08, calculated by determining the area

underneath the dashed "random guess" line for the portion of the curve in question.

Figure 4-3: Sample Partial AUC
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In order to efficiently tune the model, we employ scikitlearn's built in gridsearchCV, which

iterates model training and testing over every possibility of parameters within the input parameter grid.

Multiple gridsearch iterations are required to narrow in on the optimal parameters. The data for this

tuning is divided into training and test sets using scikitlearn's built in train testsplit function. The

training set contains 70% of the data, while the test set comprises the remaining 30%. After employing

these tools, the random forest model shows significant improvement with parameter tuning on the original

data set. Figure 4-4 shows the ROC curve for the default random forest model and the tuned version.
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Figure 4-4: Order Model Tuned Random Forest
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The tuned parameters for this model are:

* Maximum depth: 20

* Minimum samples per leaf: 2

* Minimum samples per split: 10

* Number of estimators: 100

The AdaBoost tuning does not yield similar improvements, as tuning efforts are met with marginal

improvements in partial AUC performance, as shown in Figure 4-5.

Figure 4-5: Order Model Tuned AdaBoost
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Figure 4-6 shows a comparison of the two tuned models on the base data set. The graph on the left depicts

the entire ROC curve, while the right figure shows the ROC curve to the left of FPR=0.4. Although the

random forest model performs slightly better within the partial AUC region and overall, the difference is

marginal.
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Figure 4-6: Order Model Tuned Model Comparison
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Although these models built on the base data set show decent performance by AUC metrics, a

confusion matrix at 50% confidence for the random forest model shows zero predictions of cancellations

due to the skewed data set. To overcome this, it is necessary to experiment with the previously mentioned

data treatments of oversampling and undersampling. Surprisingly, the AdaBoost model also exhibits

minimal predictions. Figure 4-7 shows the confusion matrix for the AdaBoost model on the test data set.

The result is heavily biased toward non-prediction in spite of the algorithm's general ability to handle

such imbalance.

Figure 4-7: Order Model AdaBoost Confusion Matrix
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4.3.1.2 Imbalance Treatment

Figure 4-8 shows the performance of the random forest model and the AdaBoost model on the

base data set as well as the oversampled and undersampled data. The tuning program based on partial

AUC for the random forest model is rerun for each new data set but the parameters remain the same.

From these curves it is apparent that AdaBoost is not suited for artificially balanced datasets. In addition,

it appears that random undersampling of the majority class has resulted in the highest performing model.

Table 4-1 shows the key metrics for each of the distinct models at a prediction probability threshold of

0.5.
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Figure 4-8: Order Model ROC and Partial ROC Curves with Treated Data Sets
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Table 4-1: Order Model Metrics with Threshold=0.5

Model Description Partial AU AUC Sensitivity False Positive Rate Precision
Random Forest Raw Set 0.5498 0.6670 0.0002 0.0000 0.5000
AdaBoost Raw Set 0.54121 0.6533 0.0328 0.0121 0.2860
RF Oversampled 0.5448 0.6418 0.4835 0.2842 0.2007
RF Undersampled 0.5449 0.6579 0.6198 0.3840 0.1924

AdaBoost Oversampled 0.5409 0.6481 0.5705 0.3376 0.1996
AdaBoost Undersampled 0.5174i 0.6335 0.6020 0.3854 0.1874

From this data, it is clear that none of these models are directly usable in our business scenario.

The random forest model derived from the undersampled data exhibits the strongest performance in terms

of high sensitivity and partial AUC, but it suffers from a fatally high false positive rate. The raw data

random forest and AdaBoost models boast low false positive rates, but that is largely due to their failure

to predict any cancellations, as evidenced by the catastrophically low sensitivity.
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4.3.2 Sales Data Modelling

This section describes the actions taken to tune and evaluate the predictive model built using the

more comprehensive sales data set 2. Parameter tuning results in improvement for both the random forest

and AdaBoost models. Similar to the ordering system data set, the random forest model outperforms

AdaBoost by most evaluation criteria. Comparison of data imbalance treatments shows that the random

forest model using raw data performs very strongly at a confidence threshold of 0.5. Ultimately, the

strongest model within this business case is the optimized random forest model built with the raw data

set, at a confidence threshold of 0.7. This model yields an extremely low FPR below 1%, while detecting

almost 40% of all order cancellations.

4.3.2.1 Parameter Tuning

Parameter tuning for the sales data set follows the same general path as the ordering data set. The

random forest and AdaBoost models are first tuned on the initial imbalanced data set, and the confusion

matrices are analyzed to determine the effectiveness of each model. Data imbalance treatments are then

applied to allow for functional models. Similar to the ordering model, the random forest sales model

shows significant improvement with parameter tuning. Figure 4-9 shows the ROC curve for the default

random forest model and the tuned version based on partial ROC optimization. Figure 4-10 shows the

tuned AdaBoost model against the default compared to the default setting. This plot shows a good

example of a model with a high partial AUC but a lower overall AUC. In this case, the model exhibits

high performance within the desired range of low FPR, which makes it the preferred model in this use

case despite its lower overall AUC.

Figure 4-9: Sales Model Tuned Random Forest
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Figure 4-10: Sales Model Tuned AdaBoost
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Figure 4-11: Sales Model Comparison of AdaBoost and RF
i0 n

08 10

1I6,

0.000 0.025 0050 0075 0.100 0.125 0.150 0.175 0200
False poste rate

Figure 4-11 compares the random forest with the AdaBoost model. It is clear that, with the raw

data set, the random forest model outperforms AdaBoost at every FPR value. In addition, unlike the sales

data model, the random forest model built using the raw data shows excellent predictive capability. Figure

4-12 shows the confusion matrices for the random forest model alongside the AdaBoost model. Although

the AdaBoost model predicts a higher percentage of the true positives in the test set, it also suffers from

high false positive count. Both, however, perform well.
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Figure 4-12: Sales Model Confusion Matrices
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4.3.2.2 Imbalance Treatment

Despite the strong performance of the raw data models, it is still worthwhile to explore whether

imbalance treated data sets can offer heightened predictive capability. Figure 4-13 shows the results for

the tuned random forest and AdaBoost models built on oversampled minority and undersampled majority

class data. Once again, this figure seems to indicate that AdaBoost does not perform well with artificially

altered data. Overall, the raw data random forest model appears to perform slightly better over the length

of the ROC curve, and the precise evaluation criteria are outlined in Table 4-2.

Figure 4-13: Sales Model ROC Curve Comparison
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Model Description

Random Forest Raw S
AdaBoost Raw Set

RF Oversampled

RF Undersampled

AdaBoost Oversampl

AdaBoost Undersamp

Table 4-2: Sales Model Metrics with Threshold=0.5

Partial AUC AUC Sensitivity False Positive Rate

et 0.79487 0.91885 0.53468 0.02306
0.77810 0.89110 0.56709 0.03299
0.78826 0.91283 0.73906 0.10077
0.78229 0.91553 0.80058 0.15192

?d 0.78227 0.90897 0.76734 0.11839
led 0.75312 0.89993 0.76342 0.13473

From this table it is clear that the random forest model displays excellent predictive capability combined

with a low false positive rate. The imbalance-treated random forest models perform similarly in relation

to AUC, but they suffer from higher false positive rates as a result of making far more cancellation

predictions. The modelling results are even more compelling from a Verizon business perspective when

the probability threshold is increased. Table 4-3 shows the evaluation criteria for each model at a

threshold of 0.7. At this threshold, the base data set model successfully predicts almost 40% of

cancellations with a false positive rate of less than 1%. The imbalance-treated random forest models are

capable of detecting additional cancellations in the data set, but they each have higher FPR rates than the

original. Notably, the AdaBoost models lack confidence in their cancellation predictions, and each model

makes only a few cancellation classifications at this high confidence level, as seen in the extremely low

sensitivity.

Table 4-3: Sales Model Metrics with Threshold=0.7

Model Description Partial AUC AUC Sensitivity False Positive Rate Precision

Random Forest Raw Set 0.7949 0.9189 0.3708 0.0088 0.8647
AdaBoost Raw Set 0.7781 0.8911 0.0006 0.0000 0.7500
RF Oversampled 0.7883 0.9128 0.6117 0.0407 0.6957
RF Undersampled 0.7823 0.9155 0.6732 0.0601 0.6301
AdaBoost Oversampled 0.7823 0.9090 0.0002 0.0000 1.0000
AdaBoost Undersampled 0.7531 0.8999 0.0006 0.0000 0.7500
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4.4 Application and Analysis

This section discusses the key takeaways from predictive modelling to detect order cancellations,

covering both the ordering system model and the sales data model. The ordering system model is

described as poor in its predictive capabilities yet insightful, as deeper analysis into the model's important

features reveals a potential low-tech and easily implementable waste mitigation solution. The sales data

model displays excellent predictive capability, but proves much more challenging to implement across the

business.

4.4.1 Ordering System Model Application

The ordering system models exhibit relatively low performance, particularly in the low-FPR

portion of the ROC curve. Each model displays a high FPR at the prediction threshold of 0.5,

accompanied by low sensitivity and precision. There is no probability threshold that allows for any of the

models to be directly used by the business in a prescriptive manner. The random forest models do,

however, yield some significant insights primarily due to the model's feature importances. Feature

importance is a calculated measure that describes the impact of each individual feature on the model's

decision making. For a random forest, each decision tree develops unique feature importances based on

the probability of the model reaching a feature's node and the resulting decrease in node impurity. The

importances from each tree are then averaged over the forest to provide the overall model feature

importance list. Figure 4-14 shows the top ten features by importance.

Figure 4-14: Order Model Top 10 Feature Importances
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From the plot, it is clear that there are certain features that dominate the model. In fact, the model

contains over 200 features after one hot encoding, but the top five features account for over 40% of the

total importance. This finding by itself is not particularly surprising, and is in fact somewhat common.

However, one particular feature from the top five list stands out and bears further discussion.
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There are numerous avenues by which Verizon conducts sales, including third party companies,

door to door salesmen, Verizon telephone agents, and web sites. Each of these unique avenues is

identified in the data as a sales agency. There are over twenty such agencies in the data, and after one hot

encoding, many of the smaller sales agencies become insignificant. The door to door sales agency,

however, is the third most important feature in the model. This is particularly significant because door to

door sales volumes are considerably lower than that of other channels, yet door to door is far more

important in predicting cancellations. Further investigation into the matter reveals that door to door sales

are, by themselves, less reliable sources for direct shipments. The overall cancellation rate for such sales

is high and the probability of cancellation drastically increases as the number of days between the order

placement and due date increases. Figure 4-15 shows the cancellation rate on door to door sales compared

to the number of days between order placement and due date, as well as the affected volumes.

Figure 4-15: Door to Door Sales Cancellation Profile
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For additional context, the cancellation rate for sales channels other than door-to-door is less than

10%. In addition, inventory impact analysis indicates that the affected shipment volume is low enough to

have marginal impact on GWC inventory levels. As a result, cancellation of all direct shipments on door

to door sales is likely to save the Fios supply chain a significant amount of money by preventing wasteful

shipments and stranded equipment.

Although the sales data models are not directly employable due to their high false positive rates,

they remain useful by providing feature importance insight that allows for further targeted analysis.
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4.4.2 Sales Model Application

Unlike the ordering model, the best sales model shows excellent performance characteristics. It

detects cancellations at a high rate with an extremely low accompanying FPR. Unfortunately, compared

to the ordering system data, the data used to build this model is not as simple to acquire in real time for

rapid decision making. There are two potentially viable options moving forward to apply this model. The

first is to analyze the sales model for important features and determine if these features can be made

available in real time to the ordering data set to potentially drastically improve that model. Figure 4-16

illustrates that the sales data model is dominated by one particular feature, which relates to a customer's

account tenure with Verizon. Given the simplicity of this feature, it is likely that there is a possible avenue

to insert this information into the sales data to drastically improve the performance and viability of such

models. For brand new customers, the value is simply zero, and for longer-tenure customers the data

clearly exists within the Verizon system and it simply needs to be extracted in a timely manner. If such

extraction is conducted, it is likely that the sales data models will become viable for prescriptive use

within the supply chain.

Figure 4-16: Sales Model Top 10 Feature Importances
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The second option for this data is to implement the model in a prescriptive manner using a more

sophisticated IT approach. The challenge for such implementation is that, since the direct shipment

decision is made during customer interaction, the model must exhibit the following attributes:

* Real-time extraction and joining of data

* Simple or automatic for sales personnel to use, and easy to disseminate

* Extremely short run time to display decision

During this project we partnered with a third party developer that specializes in real-time decision

making using big data to develop a pilot program using the model as a baseline for prescriptive analytics.

Investigations into the value and viability of this program are currently ongoing.
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5 Conclusion

This section outlines the results of this project's waste reduction efforts within the Fios supply

chain. Section 5.1 discusses generally applicable lessons regarding predictive modelling and process

analysis. Section 5.2 outlines specific recommendations for Verizon based on the research in predictive

modelling and process analysis. Section 5.3 provides recommendations for future research.

5.1 Generalized Lessons

This section highlights some of the key generalizable takeaways from the discussed research. It

discusses lessons learned in both process analysis and predictive analytics.

5.1.1 Process Analysis Insights

This thesis investigates process mining as a technique to discover the reality of process flows

within the supply chain. The technique proves to be extremely useful when the data allows. Analyses of

flows within individual systems show clear dominant paths, and the additional insights provided such as

resource usage and node duration can be extremely insightful for understanding the dynamics within the

individual system. Problems arise, however, when disparate sources of data are integrated to form an

overall view of the entire supply chain and its multitude of systems. Dissimilar formats and inconsistent

quality across data sources render process mining difficult in this case. It may be possible, with significant

effort, to normalize the data from the various sources to render a useful process flow, but that is a matter

for future research.

Analysis of Verizon's RFID usage also yields a significant insight. Data integrity is crucially

important in automated RFID systems. Although there are ways to establish fail-safes and self-corrections

within the supply chain, automated RFID decisions are capable of exacting a significant toll if the data on

which these decisions are based is unreliable. As mentioned in Sections 2-2, management decisions are

only as good as the data on which they are based. Any business must ensure that their processes

surrounding data transfer and storage are high integrity before endeavoring to incorporate significant

RFID usage into their organization. This is particular important for business which operate in a 3PL

enabled environment where third parties are frequently handling a business' equipment, and when

necessary replacing damaged REID tags. Communication with such 3PLs is extremely important to

ensure the fidelity of the RFID tag data within the system.
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5.1.2 Predictive Modelling Insights

This thesis introduces partial AUC as an optimization and evaluation criterion for predictive

models. Partial AUC is extremely useful for creating a model with optimal performance in a specific

portion of the ROC curve, and figure 4-10 illustrates a good example of this idea. The tuned model in this

plot has a higher partial AUC, but a lower overall AUC than the alternative. Since this business case

requires low false positive rates and a maximum FPR of 0.2, the overall AUC is ignored in favor of the

partial AUC. Such a decision is likely to be applicable in any case where false positive predictions carry a

significant penalty or cost.

The data imbalance treatments also yield an interesting insight. For both the ordering and sales

data sets, the raw data set random forest models exhibited higher partial and total AUCs. This implies that

the data treatment techniques applied for this thesis are sub-optimal. For the sales data set, the default

prediction threshold 0.5 results in a confusion matrix with zero positive predictions due to the class

imbalances. However, the indicators for classification are strong enough within the data that adjustment

of the prediction threshold allows for use of the model in a predictive capacity. It is perhaps logical that a

model built on randomly duplicated or omitted data may be less than ideal, and the idea of tuning a

model's prediction threshold allows us to work around the class imbalance issue without such data

manipulations. The AdaBoost model is also presented as a technique to overcome class imbalance within

the data. Literature mentions that AdaBoost does not perform well on datasets with significant outliers,

and this research confirms that idea. As mentioned previously, much of the data in this research contains

outliers and inconsistencies. The effect of these issues can be seen in the reduced performance of

AdaBoost relative the more robust Random Forest model.

5.2 Recommendations

A key goal of this thesis is to identify and mitigate sources of waste within the Fios supply chain.

This section discusses specific waste reduction recommendations based on research in predictive

modelling and process analysis.

5.2.1 Recommendations - Predictive Model

Although the predictive model built strictly using ordering system data shows poor performance

by business- relevant evaluation criteria, the model's feature importance yields insight into opportunities

to reduce waste. Primarily, further analysis of the door-to-door sales channel indicates that shipment of

equipment on such sales is rarely a prudent course of action. Although the cancellation rate drops with the

difference between order placement and order due date, even the lowest value is over double the overall

55



order cancellation rate from other channels. Based on this, there are two potential courses of action

regarding door-to-door sales: Outright cessation of shipments on such orders, or cessation of shipments

for door-to-door orders when the time between order placement and due date exceeds seven days. The

first option prevents all of the waste associated with door-to-door shipments, but may have unforeseen

inventory impacts. The rudimentary impact analysis neglected variables such as seasonality, regional

preferences, and order variability, and there is potential that such a policy change might heavily impact

specific GWCs, despite minimal overall impact on population averages. The second option is likely to

prevent over 70% of the wasteful shipments associated with door-to-door sales without the elevated risk

of inventory impacts. Either option is likely to result in significant waste reduction within the Fios supply

chain. Implementation of either option should be relatively simple, as it could be disseminated to sales

agents as a company policy change, effective immediately. It is recommended that either policy option be

implemented as soon as possible in a limited pilot to test the impact and savings opportunity in practice.

There is also further opportunity to use the most effective model in a prescriptive manner to

prevent undesirable shipment results. Although the ordering data alone does not provide sufficient

predictive capability to merit further efforts, it is clear that augmentation of ordering data with key sales

data provides excellent predictive performance. Efforts in this area should be focused on (1) adding key

data such as account tenure into the ordering system data database or (2) real-time integration of the

different data sources in a manner that allows a sales agent to provide a rapid decision on whether to

direct ship or not. Implementation of such a prescriptive model across the disparate sales agencies may be

difficult and it may be worthwhile to target specific troublesome order sources that have higher than

average rates of cancellation.

5.2.2 Recommendations - Process Changes

Significant efforts have been made over the course of this project to understand the underlying

processes within the Fios supply chain. This work reveals a complex underlying IT infrastructure that is a

result of numerous mergers and acquisitions over the course of decades. One maj or problem within this

network is data inconsistency across systems. Despite the fact that a single order requires input from six

separate systems, it appears that there is very little data validation that occurs when information is

transferred from one system to another. One specific recommendation on this matter is that instead of

'pushing' data from one system to the next without notification of receipt, each transaction should be

validated. A validation process would likely result in slower transaction times or higher computing power

requirements, but it would pay dividends in data consistency among systems.
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An additional challenge within the supply chain is the use of RFID at GWCs. This process,

outlined in Figure 3-6, is simple and logical but assumes perfectly-associated tags on all equipment to run

smoothly. As this research has found, this is not always the case. As a result, physical GWC inventory

counts can be misrepresented within the ERP system, leading to erroneous replenishment orders and some

loss of awareness of the true state of the system. In the future, Verizon plans to increase the use of RFID

across its supply chain and it is imperative that the identified tagging errors be rectified. Many of the

problems with Verizon's RFID usage are related to data transfer challenges from 3PL suppliers. It is

recommended that the process for such data transfer is refined to allow for increasingly accurate RFID tag

data transmission and validation for each device.

5.3 Recommendations for Future Research

This research focused on analyzing Fios supply chain internal processes and on predictive analytics

to prevent waste. Work on both lines of effort yields significant opportunity for future research.

5.3.1 Future Research - Predictive Model

Predictive modelling for this thesis is conducted with the general knowledge that any model

implementation must limit false positives and the resulting inventory cost impacts. There is an

opportunity to enhance the optimization of predictive models by incorporating real-world costs and

benefits into parameter tuning. By incorporating model implementation costs, inventory impacts of false

positives, true positive cost savings, and other related monetary impacts, it is possible to create an

optimization model that analyzes predictions at each prediction threshold. This allows the user to

simultaneously identify the optimal prediction threshold for each model and analyze the expected cost or

benefit of its implementation. Such a model requires intimate knowledge of an organization's cost

structures but may reap significant benefits in identifying ideal parameters and justifying the project to

key stakeholders.

In addition, predictive efforts for this project focused entirely on direct shipments of equipment to

customer premises on new technician install orders. This order type, although significant, only represents

a small percentage of total shipments within the Fios supply chain. There is likely some potential to use

predictive modelling for internal processes, such as GWC replenishment orders, that would result in cost

savings across the supply chain.

Furthermore, the ability to implement prescriptive models in a customer-facing environment is

somewhat limited by the challenge of real-time decision-making at the sales agent level. Further research
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on methods to disseminate and implement prescriptive models under such circumstances is necessary to

understand the challenges inherent in such an undertaking.

Finally, concept drift is briefly discussed in Section 2-2, but the idea is not addressed in this

thesis. The existing models are built using batch data from a nine-month period and there is limited

consideration of the temporal nature and potential time-related shifts in trends. Out of sample testing on

more recent data batches shows good results, but it is likely that predictive capability will degrade over

time. Further research into the potentially changing nature of Verizon's data and the resulting shift in

prediction indicators is warranted. Incremental or online learning solutions may be investigated in future

work.

5.3.2 Future Research - Process Analysis

The primary focus of process analysis in this thesis is on the use of process mining for root cause

analysis. Due to the complexity and inconsistent interaction between the various constituent systems in

the Fios supply chain, such efforts were generally in vain. It is relatively simple to conduct process

discovery to understand the general flow of equipment and information, but we find it difficult to use such

information in a systematic way to identify the sources of friction that may cause undesirable outcomes.

Further research on process mining is required to identify the capabilities of the tool for statistical analysis

and correlation identification.

In addition, analysis of the various stakeholders and incentive structures across the Fios network

shows potential sources of conflict. One key example is highlighted in Chapter 3: the tendency of

customer service representatives to ship a customer replacement equipment in order to keep the call

duration short, despite the obvious waste of potentially shipping equipment unnecessarily. It may be

worthwhile to conduct an analysis of the overall system dynamics to understand the various competing

incentive structures within the business that potentially result in units striving independently for their

'local optima' instead of each part of the business collaborating in order to achieve the global optimum.

58



References

[1] "Verizon ends first-half 2018 with strong operating results," accessed February 15, 2019, from
https://www.verizon.com/about/news/verizon-ends-first-half-2018-strong-operating-results.

[2] "Verizon Fios Coverage Map," accessed February 15, 2019, from https://broadbandnow.com/Verizon-
Fios.

[3] Damodaran, Aswath. "The Little Book of Valuation: Characteristics of Mature Companies," accessed
February 15, 2019 from
http://people.stem.nyu.edu/adamodar/New Home Page/littlebook/maturecompanies.htm.

[4] Govindan, K., Soleimani, H., & Kannan, D. "Reverse logistics and closed-loop supply chain: A
comprehensive review to explore the future." European Journal of Operational Research, Vol. 240, Issue
3, 1 February 2015, pp. 603-626.

[5] Toffel, M.W. "Strategic Management of Product Recovery," California Management Review, Vol. 46,
No. 2, 2004, pp. 120-141.

[6] Gaur, J., Subramoniam, R., Govindan, K., Huisingh, D. "Closed-loop supply chain management:
From conceptual to an action oriented framework on core acquisition," Journal of Cleaner Production,
Vol. 167, 20 November 2017, pp. 1415-1424.

[7] Sahyouni, K., Savaskan, R.C., Daskin, M.S. "A Facility Location Model for Bidirectional Flows,"
Transportation Science, Vol. 41, Issue 4, November 2007, pp. 431-541.

[8] Deloitte. The hidden value in Reverse Logistics Point of view. Accessed February 17, 2019 from
https://www2.deloitte.com/content/dam/Deloitte/be/Documents/process-and-
operations/BE POV Supply-chain-strategy 20140109.pdf

[9] Hazen, B.T., Skipper, J.B., Boone, C.A. et al. Annals of Operations Research (2018) Vol. 270, pp.
201-211. Accessed from https://doi.org/1 0.1007/s 10479-016-2226-0

[10] Fallon, Nicole. "Predictive or Prescriptive Analytics? Your Business Needs Both," Business News
Daily, December 16, 2015. Accessed February 20, 2019 from https://www.businessnewsdaily.com/8655-
predictive-vs-prescriptive-analytics.html.

[11] Deschmukhl, A., Kewlani, M., Ambegaokar, Y., Lanham, M.A. "Risky Business: Predicting
Cancellations in Imbalanced Multi-Classification Settings." Accessed February 25, 2019 from
https://mwdsi2018.exordo.com/files/papers/79/final draft/MWDSI Paper final submission.pdf

[12] Li, Suhong and Visich, John K., "Radio Frequency Identification: Supply Chain Impact and
Implementation Challenges" (2006). Management Department Journal Articles. Paper 44.
http://digitalcommons.bryant.edu/manjou/44.

[13] Statista. "Projected size of the global market for RFID tags from 2016 to 2020." Accessed February
20, 2019 from https://www.statista.com/statistics/299966/size-of-the-global-rfid-market/

[14] Aalst, Wil M. P. Van Der and Schahramn Dustdar. "Process Mining Put into Context." IEEE Internet
Computing 16 (2012): 82-86.

59



[15] Chen, H. Boning, D. (2019) "Machine Learning Approaches for IC Manufacturing Yield
Environment." In Machine Learning in VLSA Computer Aided Design (pp. 175-199). Springer.

[16] Deshpande, M. "Supervised Learning - Using Decision Trees to Classify Data." Published by Zenva Academy.
Accessed February 26, 2019, from https://pyhonmachinelearning.pro/supervised-Iearning-usinz-decision-trees-to-
classify-data/

[17] McClish, D.K. "Analyzing a Portion of the ROC Curve." Medical Decision Making Vol. 9, no. 3

(August 1989): 190-95. https://doi.org/1 0.1 177/0272989X8900900307.

[18] Attaran, Mohsen. (2007). "RFID: An enabler of supply chain management." Supply Chain

Management Journal. 12.

60


