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Abstract

This thesis develops a modeling framework to examine the impacts of real-time in-
formation on transit passenger behavior, particularly the passenger’s choice of path
and departure time. By examining how passengers may alter their travel decisions
in response to various types of real-time information, the quantitative impacts of
passenger information systems can be evaluated.

As a foundation for the research, an analytical framework for both transit ser-
vice and passenger path and departure time choice is presented. A transit service
model is developed that explicitly incorporates several elements which most influence
the passenger’s trip travel time reliability: stochastic departure and running times,
connections between routes, and time-dependence. These elements are critical in ex-
amining travel times in a transit network where real-time information may be most
useful. Based on these transit service characteristics, two path choice models are
developed: a static model, which assumes that the passenger determines a vehicle
boarding strategy upon his/her arrival at the origin terminal; and a dynamic model,
which assumes that the passenger decides his/her boarding strategy as vehicles arrive
at the terminal. The dynamic model is also shown to be useful in describing adaptive
path choice decisions made during the passenger’s trip. In addition, two passenger
departure time choice models are considered: one in which passengers arrive at the
origin stop entirely at random, and a second in which arrivals at the origin stop are
coordinated with scheduled vehicle departures.

The passenger’s path choice decision may also be affected by the availability of
real-time information and the passenger’s experience with the transit service. A set of
scenarios is developed to examine several dimensions of real-time passenger informa-
tion systems, including: the type of information given; the time when the passenger
receives the information; and, the accuracy of the information in predicting network
conditions. Variations in passengers’ level of experience with the transit service and
with the real-time information are also included in the modeling framework.

These scenarios are examined using a corridor-level network simulation that is
based on the transit service model and incorporates the path and departure time
choice models. A case study from the Massachusetts Bay Transportation Authority is
used to assess the anticipated passenger response to different levels of real-time in-
formation, using the measures of origin-to-destination travel times and path choices.
The results of the simulation model suggest that the potential reduction of travel



times resulting from real-time information are very modest, on the order of 2% to
3% of the total origin-to-destination travel time. Yet, this amount accounts for 70%
to 95% of the possible travel time savings in the selected networks. The results also
suggest more significant changes in path choices from this real-time information. The
overall magnitude of travel time savings, however, raises significant questions about
the benefits of real-time passenger information systems to the transit passenger.

Thesis Supervisor: Nigel H. M. Wilson
Title: Professor of Civil and Environmental Engineering

Thesis Supervisor: David H. Bernstein
Title: Assistant Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

In recent years, there has been significant growth in the application of new infor-
mation technologies in the field of transportation. Automated systems, information
systems, vehicle control systems, and other technologies have advanced quickly in
the past ten to fifteen years. Transportation researchers are mounting more detailed
studies of these technologies, investigating both the theory and application of these
technologies for all transportation modes, and both public and private interests have
invested in developing these technologies.

In public transportation, specifically in urban public transportation, several ma-
jor implementations of these types of technologies are now being planned. The last
several years has seen a growing investigation of intelligent vehicle/highway systems
(IVHS), covering privaie vehicle traffic management, driver information, and vehicle
control systems. Urban mass transit also has a major research program in advanced
public transportation systems (APTS), emphasizing operations control, customer in-
formation, and vehicle control systems.

The research components of IVHS and APT'S have emphasized project implemen-
tation and, to a lesser extent, evaluation and modeling of traffic patterns and traveler
behavior in response to these new information technologies. Particularly with respect
to urban mass transit, there has been remarkably little research on evaluating the
effects of real-time information on operations control and passenger information sys-
tems. The focus of the APTS effort has, instead, been on implementation, with less

emphasis on research to assess these new technologies. This is in part because exist-
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ing urban transportation planning methods are often inappropriate to assess these
new information technologies. A fresh look at methods to evaluate transportation
options with these new technologies is necessary.

This thesis examines planning models which may be used to assess the value, to
the transit passenger, of real-time passenger information systems. These information
systems have been proposed to reduce passenger uncertainty about travel conditions
and improve passenger decision-making for transit trips. In particular, it seems likely
that providing information about current transit system characteristics and projected
vehicle travel times may reduce uncertainty and improve decisions about trip timing.
The research presented in this thesis examines the latter hypothesis, i.e., that real-
time information may improve passenger decision-making regarding their trip timing.
To this end, it is necessary to examine the underlying operating environment in public
transit that favors real-time information systems, including the factors of service
reliability and travel time uncertainty. The following sections describe the context of
travel time reliability and the relevance of real-time passenger information systems
in transit. The third section poses the research question and a specific research plan
to evaluate the role of real-time information in transit passenger decision-making.

Finally, the last section outlines the organization of the remainder of the dissertation.

1.1 Travel Time Reliability

Anyone who has ever waited for a transit bus or train can attest to the fact that
transit service can be unreliable. A trip which takes twenty minutes one day may
take thirty minutes another day, because there are delays which result in longer waits
or travel times for passengers. Mass transit operates in an inherently stochastic
environment: travel times can depend on things such as traffic conditions, passenger
loads, equipment and labor availability, and other external factors (e.g., weather).
Because of this variation, vehicles may be delayed over the course of a route. This
variability in travel times can make the transit operating environment much more
uncertain for both transit operators and passengers.

In this context, transit service reliability may be defined as providing a transit

service that is consistent and repeatable in its characteristics. One factor which is
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central to this concept of service reliability is the variation in the amount of time a
vehicle or user spends in getting from one point to another in the network. The time
spent waiting for a vehicle and in transit on that vehicle (hereafter referred to as
“running” time) are both subject to stochastic variation. Travel time reliability, then,
may be defined as a measure of the consistency and repeatability of the travel time
between two points in the transit network.

This characterization of reliability is important to both the transit system operator
and the transit passenger. However, the operator and the user quantify this travel
time reliability in different ways: the operator tends to regard reliability in terms
of vehicle performance, while the user regards reliability in terms of the trip itself
and not in terms of specific vehicles. The operator is typically more concerned with
measures of vehicle schedule adhere -cc, while the passenger is more concerned with
measures of variation in origin-to-destination (o-d) travel times. For transit passen-
gers, these o-d travel times may not be linked with a single transit vehicle, or even
with a single transit route. Instead, the passenger may be more concerned with the
travel time characteristics on each route segment he/she may use, including multiple
route segments if a transfer is necessary during the trip.

Moreover, the factor of route transfers may significantly affect travel time reliabil-
ity for transit passengers. In any transit system, not all origins and destinations will
be linked by direct service. Instead, at some point in many passenger trips, trans-
fers may be required between routes, implying a change of vehicles. These transfer
connections bring about even more uncertainty for passengers. Are the transfers
coordinated so as to minimize the adverse impacts for passengers while waiting for
a vehicle on the transfer route? Specifically, if a passenger misses a connection to
another route due to the inherent uncertainty in trip timing, there is an additional
cost associated with a longer wait or alternative travel arrangements.

This level of reliability of service may ultimately influence the decisions made by
the passenger. Depending on when the passenger arrives at the origin stop, differ-
ent paths may be most appealing, from the perspective of origin-to-destination travel
times. If the passenger has a high probability of making a transfer connection, a
certain transfer path may seem most attractive. At another time, though, the same

path may not be preferred because of more adverse timing of the transfer. The de-
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sirability of different travel options depends on both the variability of travel times
in the transit network as well as the time at which the trip is taken. Thus, the
implicit or explicit schedules of transit service and the level of variability of travel
times around those schedules may affect what paths the passenger may choose and
also what his/her resulting travel time in the network will be.

More specifically, in the midst of a transit service environment which includes
vehicle schedules and an associated reliability of travel times, passengers must make
decisions about their trips. Decisions that seem to be most critical in day-to-day trip
planning include the decision about what time to begin the trip, hereafter called the
departure time choice, and the decision about what routes (or combination of routes)
to take to reach the destination, hereafter called the path choice. The fundamental
premise for this thesis is that the level of variability and time-dependence in transit
network travel times will have an impact on how passengers make these path and
departure time decisions.

For this analysis, the assumption is made that there is an implicit level of ve-
hicle travel time reliability in the network. This is obviously a function of factors
under direct control of the transit operator, such as vehicle and crew availability and
real-time control strategies, as well as exogenous factors such as traffic congestion,
weather, accidents, etc. Regardless of these endogenous and exogenous factors, this

research assumes that the transit operating conditions are given for the planning

horizon in question.

1.2 Real-Time Passenger Information

Assuming that there is some intrinsic level of uncertainty in transit travel times,
providing additional information about transit services to passengers can reduce pas-
senger anxiety and improve trip decisions. This research will examine passenger in-
formation systems which provide information to passengers in real time; i.e., in light
of the current state of the system. Included in this characterization is any infor-
mation, in addition to existing route and schedule information, provided to travelers
regarding current or projected system conditions, such as vehicle locations, expected

departure times and expected running times.
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Much of the focus of transit passenger information systems to date has focused
on more elementary, or static, forms of information for passenger trip planning, such
as basic routes and schedules. Such information is indeed critical to passengers in
making fundamental decisions on possible travel modes, paths, and departure times.
Much less effort, however, has been focused on the value of real-time information
for these decisions. Current vehicle location technologies, often described as auto-
matic vehicle identification (AVI) or location (AVL) systems, allow accurate tracking
of vehicle movements in the transit network. As the cost-efficiency of AVL and AVI
technologies improves, so does the ability to provide information on vehicle move-
ments to passengers in real time. Real-time information systems may have benefit,
then, in reducing the level of uncertainty in vehicle movements and travel times in
the network. Passenger decision-making may also be improved by this reduction in
uncertainty.

More traditional passenger information systems provide passengers with route
and schedule information, and perhaps provide some prescriptive information re-
garding sensible routes serving the passengers’ origin and destination. This type of
information allows the passenger to determine an itinerary, including a transit route
(or routes), a stop or station near his/her origin and destination, and the scheduled
timing of the trip. Passengers using this information can make reasonable decisions
about what routes to use and how to schedule their trip among other activities they
have planned on a given day.

When transit travel time reliability is low, however, the value of static informa-
tion declines. When transit services adhere very closely to scheduled departure and
travel times, static information is sufficient, and real-time information provides little
additional value to the passenger. However, if there is more significant variation in
travel times on transit routes, passengers may be uncertain of when (or even if) tran-
sit vehicles will arrive at a stop or station, how long the trip may last upon boarding
the vehicle, and whether they can make certain connections between routes. In this
context, passengers will have much more difficulty in planning their trips.

The basic premise of this thesis is that passengers’ decisions about which routes to
use and how to schedule their trips will depend on the level of information available

to them. Particularly, the hypothesis of this thesis is that passengers’ decisions about
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potential routes and travel times can be facilitated by accurate real-time information.
Where there is the potential for significant variation in vehicle travel times, real-
time information should allow passengers to plan their trips most effectively. In
situations where passengers may choose among different routes serving their origin
and destination, having the most current information on travel conditions on each
route can assist in making better route decisions for a given travel objective. One
may also restate this conjecture, suggesting that the value of real-time information
to the passenger seems intuitively to be greatest when the passenger has a number
of route and trip timing options for the chosen origin-destination pair.
Unfortunately, there has been little empirical or analytical evidence in support of
the value of real-time information systems in public transit. The APTS program is
currently developing a number of operational tests, but these are largely still in the
conceptual or early planning stages. Furthermore, very little research has focused
on assessing the value of these information systems before such systems are imple-
mented. There is clearly a need for a more critical assessment of these information

technologies.

1.3 Research Question

The above discussion has established that the transit operating environment is in-
herently stochastic. Specifically, in daily operations the travel times of vehicles and
passengers through the transit network may be subject to significant variability. In
this context, there are two general premises which guide this research. First, it is
presumed that travel time uncertainty can have an impact on passenger decision-
making, with respect to both path and departure time choices. Second, the level
of real-time information provided to the passenger will affect his/her assessment of
travel times and, as a result, will impact these path and departure time decisions.

The fundamental issue to be addressed in this research is as follows:

Research Question: Given the stochastic nature of travel times in public transit,
how might real-time information on vehicle movements affect passenger decisions

on path and departure time?

To this end, this thesis has two major objectives. First, it is necessary to develop
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path and departure time choice models which are sensitive to the uncertainty of
timing in transit vehicle movements as well as to levels of real-time information
provided to the passenger. This involves models of path and departure time choice
which account for both the stochastic nature of path travel times as well as the time-
dependence of these choices. The development must also provide a framework by
which passengers can adapt these choices to new information on actual or projected
conditions in the transit network. The objectives of the first major thrust of the

research, then, are the following:

1. Investigate and develop an analytic model of transit vehicle movements on
routes which incorporates time-dependence, based on the vehicle schedules, and
uncertainty of travel times, corresponding to stochastic departure times and

running times.

2. Investigate and develop an analytic model of passenger path choice which is
based on intuition about path choice behavior in this same transit service en-
vironment. The path choice model, then, should make use of the above transit

performance model.

3. Examine existing models of passenger departure time choice which may be con-

sistent with these transit service and path choice models.

The second objective of this research is to use the resulting path and departure
time choice models to examine the impacts of different types of real-time information.
It is suspected that the impact of this information will depend upon the following
factors: the type of information given to the passenger, when (or where) the passenger
receives the information, and the level of accuracy of the information. In this context,
then, the research seeks to measure the impact of this information on passenger path
and departure time decisions. The criteria used to evaluate these impacts includes
the resulting passenger decisions of different o-d paths and potential reductions in o-d
travel times and their vanability. Thus, this second research effort has the following

objectives:

1. Identify a set of likely scenarios for implementation of real-time passenger in-

formation systems. These should include variation among:
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¢ Types of information (current and/or projected travel conditions);

¢ Timing of information during the passenger trip (before or during the trip);

and,

e Accuracy (or precision) of the information technology.

2. Investigate the effect of these different levels of information on passenger be-
havior. These effects may be quantified using the measures of o-d travel times

and path choices.

3. Extend this type of analysis to a case study to demonstrate its potential in a

real-world setting.

1.4 Thesis Organization

The thesis is organized around these two main objectives. The major emphasis of the
next three chapters (Chapters 2, 3, and 4) is to develop and describe the necessary
path and departure time choice models. The following three chapters (Chapters 5,
6, and 7) discuss a detailed simulation model used to assess the various aspects and
impacts of real-time information. The organization of these chapters is described in
the following paragraphs.

The next chapter (Chapter 2) reviews the literature in a number of relevant areas,
including transit travel time reliability, transit service models, and transit path and
departure time choice modeling. It also examines the state of the art of real-time
information systems, particularly in their development and implementation in urban
mass transit.

The third chapter develops a simple transit performance model for shuttle routes.
The resultant analytical model describes the distribution of travel times from an
origin to a destination in a shuttle network, based on vehicle movements which are
both stochastic and time-dependent.

The fourth chapter develops path and departure time choice models for the shut-
tle network model presented in Chapter 3. Two different path choice models are
presented. The first is a static model in which the passenger decides a boarding

strategy upon arrival at a particular stop in the network. The other model is dy-
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namic and describes the case in which the passenger decides a boarding strategy as
vehicles arrive at the particular stop. Two different passenger departure time choice
(i.e., choice of “arrival time” at a particular stop) models are also reviewed within the
context of these two path choice models. The integration of the path and departure
time choice models is also discussed.

Because of several analytic difficulties resulting from the generality of the shuttle
network distributions and the path choice models, it is difficult to draw specific re-
sults from these models without a clearer definition of transit service characteristics.
To draw more specific conclusions about the path choice models and about the impacts
of real-time information, a simulation model is developed and analyzed in Chapters
5 and 6, respectively. A set of simulation scenarios is described which takes advan-
tage of different possible sources of real-time information as well as variation in a
passenger’s level of experience with the system. The analysis examines the effect of
the type, timing, and accuracy of the real-time information on passenger travel times
and the resultant route assignment.

Chapter 7 extends the simple shuttle network to a case study using a radial
corridor at the Massachusetts Bay Transportation Authority (MBTA). Using vehicle
performance data from the MBTA, the effects of real-time passenger information
on passengers in this travel corridor is assessed. Chapter 8 summarizes the major
conclusions and contributions of this research, and also presents a number of ideas

for future research in this and similar areas.
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Chapter 2

Literature Review

In order to examine the effect of real-time information on passenger hehavior, a merg-
ing of ideas must take place. That is, the literature on passenger behavior and infor-
mation modeling is not well-integrated, at least in the field of public transit. For this
reason, this chapter seeks to integrate this literature under some common themes.
The first involves modeling of a traveler’s choice of path and departure time in tran-
sit networks, under the assumption that vehicle movements in transit networks are
subject to stochastic variation and time-dependence. To this end, there has been
much prior research on models of transit service and passenger behavior. The second
major theme, and the focus of current research in this area, emphasizes the role of
information technology and how real-time information on vehicle locations and travel
times might improve passenger decision-making.

In order to place the research in its appropriate context, this chapter reviews
the literature on transit service modeling, passenger path and departure time choice
models, and real-time information systems. After an initial glossary of terms, the
second section discusses route and network models of transit service. In the context
of these service models, the chapter reviews models of transit passenger behavior,
focusing on path and departure time choice. The fourth section discusses research on
the traveler’s response to real-time information, within the context of urban trans-
portation and IVHS research. Finally, the last section reviews the state of the art of

real-time passenger information systems in public transit.

23



2.1 Glossary of Terms

The terms listed below are defined in a manner consistent with their usage in this
thesis. Even a casual review of the literature indicates that each of these terms may

have a wide variety of definitions.

Definition 1 A route (or a line) is a set of nodes and connecting arcs which are served
by set of transit vehicles which serve all nodes and arcs in the set in a pre-specified
order and according to some schedule. As a description of transit service, this closely

resembles traditional definitions of a transit route from an operator’s perspective.

Detinition 2 A route segment (or a line segment) is a subset of nodes and arcs on a

route, including at least two nodes and their connecting arcs.

Definition 3 A set of common routes (or, alternatively, a set of common route seg-
ments) represents a set of routes (or route segments) which share two or more nodes.
This definition generalizes the more standard assumption that common routes also

include two or more nodes and arcs.

Definition 4 A path (or an itinerary) is a sequence of route segments which a pas-
senger may use in traveling from an origin to a destination. A path will include at

least one transit route segment.

Definition 5 Transit path choice (or the passenger’s path choice strategy) is the pro-
cess by which a passenger selects a single path for a trip, given the set of all paths

serving the origin and destination.

Definition 6 A transit passenger’s path choice set is a set of paths which the passen-
ger may consider using for a given trip. An optimal choice set is that choice set which

optimizes some passenger path choice objective (e.g., minimum expected travel time).

Definition 7 Transit path assignment is the process of assigning passengers to spe-

cific paths, based on certain criteria regarding the passengers’ choice of paths from

his/her path choice set.

Definition 8 A set of common routes is said to have coordinated schedules if the

timetable for vehicle departures from a node is constructed so that the time-weighted
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average interval between vehicle departures on all routes is minimized. For example,
if two routes have identical headways, a coordinated schedule would imply that one
route be scheduled with departures at times one-half of the headway later than the
other route. If the routes have different headways, the routes are scheduled such that
the time-weighted average of vehicle inter-arrival times is minimized. Two routes,
with a 10-minute and a 15-minute headway, for example, would be scheduled so that
the first departure on the 15-minute headway route will leave the terminal 2.5 minutes

after the first departure on the 10-minute headway route.

Definition 9 A set of common routes is said to have uncoordinated schedules if the

route schedules are not coordinated.

2.2 Stochastic Transit Route and Network Models

One of the most critical aspects of transit service which must be addressed in this
research is the inherent level of service reliability. If transit service were perfectly
reliable (e.g., always on time), there would be no need for real-time information sys-
tems. Indeed, the fundamental premise of the need for real-time information systems
is that the transit environment is essentially one of uncertainty, particularly in the
realm of travel times.

In contrast, most models of transit routes and networks assume that vehicle travel
times and headways are deterministic, albeit perhaps unknown to the passenger.
Much of the earlier literature on transit performance models assumes that vehicles
travel exactly on schedule, and passenger origin-to-destination travel times depend
only on these deterministic running times plus a waiting time which depends only
on the frequency of routes serving that o-d pair. More recently, there has been some
research to develop transit service models in which the vehicle travel time character-
istics are explicitly stochastic. The following section reviews the stochastic models;
the deterministic models are included as part of the discussion of transit path choice
models in Section 2.3.

There are a number of transit route and network models in the literature which
explicitly account for stochastic travel time characteristics. The most salient an-

alytic models include Andersson and Scalia-Tomba [5], Powell and Sheffi {61] and
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Marguier [48]. A considerable literature on simulation models also exists. As both
analytic and simulation models of transit networks will be considered in this thesis,

both of these types of models are reviewed below.

2.2.1 Analytic Models

Andersson and Scalia-Tomba [5] present a summary of the mathematics and statis-
tics which were used in the simulation of Andersson et al. [4]. Their model examines
the movement of vehicles on a single bus route, incorporating passenger boardings
and alightings at each stop, as well as stochastic running times between stops. They
establish a set of mathematical relationships regarding vehicle dwell times and run-
ning times and derive statistical relationships for computing various parameters of
these dwell times and running times, both across a given day and across days of the
week.

Powell and Sheffi [61] develop a model of bus route performance using probability
distributions. Using the assumption that vehicle travel times may be correlated, the
authors develop recursive relationships for travel time, boarding and alighting time,
and vehicle load distributions for each stop on the route. Their model allows for
vehicle bunching. [The topic of transit vehicle bunching is treated more substantially
by Newell and Potts [54], Potts and Tamlin [60], Heap and Thomas [29], Newell [53],
Chapman and Michel [14], and Boyd [12]]. A simple numerical model is developed,
showing some statistical results from the probability model.

Marguier [48] also examined the performance of buses on a single bus route. His
analysis is similar to that of Powell and Sheffi, in that he determines recursive re-
lationships for the mean and variance of travel time and vehicle load distributions
for each stop on the route. However, he assumes that there will be no bus pairing
or bunching. Marguier also computes the variance of resulting dispatch times on
successive trips at route terminals. Using the assumption that the parameters of
passenger flows and travel times do not vary over the course of the day, Marguier
derives non-recursive expressions of the means and variances of headways, loads,
and dispatch delays. Marguier also uses these closed-form solutions to derive equa-
tions for various passenger and operator performance measures. Using a simulation

model, Marguier compares the results of the closed-form solutions with those from a
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simulation of vehicle movements, with mostly positive results.
These studies suggest the following elements for transit route and network mod-

eling:
e Stochastic running times and boarding/alighting times;
e Stochastic vehicle loads;
e Correlation of vehicle travel times and vehicle bunching; and,

¢ Dispatch delay at route terminals.

There are, however, several shortcomings of this research. First, these researchers
have implicitly emphasized headway regularity rather than schedule adherence, in
that route-level performance is measured in terms of variability of headways rather
than variation about a particular schedule. Headway adherence is more significant
for short headway service; however, for longer headways, schedule adherence may be
a more appropriate measure of transit service quality. In addition, one of the major
drawbacks of these studies is their implicit disregard for passenger behavior and
o-d travel patterns. Typically, they assume random passenger arrivals at each bus
stop, as well as a simple model of passenger alightings which disregards passenger
o-d travel behavior. For this reason, it will be necessary in this thesis to develop an
analytic model of transit service which is oriented toward the passenger’s perspective

on travel time reliability.

2.2.2 Simulation Models

Because of the great complexity required in rigorous analytic models of transit ser-
vice, simulation is often preferred. There are a large number of transit route and
network simulation models which have been developed over the past twenty years,
following the growth of computer capabilities. Most of these simulations have been
developed explicitly to examine transit operating performance and operations plan-
ning for single bus routes, using a stochastic framework similar to that of the analytic
models presented above.

These route-level models often simulate vehicle control strategies to improve oper-

avions on these routes. Specifically, the models of Bly and Jackson [9], Koffrnan [37],

27



Andersson et al. [4], Andersson and Scalia-Tomba (5], Abkowitz =t al. (1] and Senevi-
rante [63] examine route-level operating dynamics and different control strategies to
improve bus on-time performance. These models typically assume a random pattern
of passenger arrivals at each stop (i.e., Poisson arrivals) and a binomial distribution
for the number of alighting passengers at each stop. Similar route models were com-
bined in the research of Kulash [39] to produce a full network simulation. With this
network model, Kulash examined vehicle allocation in the network to minimize each
of several passenger-oriented performance measures, including waiting time, total
travel time, and vehicle crowding.

Other models have explicitly examined passenger waiting times using simulation.
Abkowitz and Engelstein [2] use data from Los Angeles to estimate passenger arrival
patterns on routes of varying headways. Using these functions, they calibrated a
route-level simulation model which examines vehicle holding strategies and the re-
sulting impacts on waiting times for passengers, both on board and waiting for the
bus. Bowman [10] and Turnquist and Bowman [69] explicitly consider passenger
waiting times in their network simulation. Passenger arrival patterns are assumed
to be correlated with scheduled vehicle arrivals. The authors examine different net-
work designs and, in the work of Bowman [10], real-time operations control policies
using the network performance measures of passenger waiting times, transfer times,
and total o-d travel times.

The analytic and simulation models presented above offer some insight into the
mathematical and probabilistic aspects of transit system dynamics. However, as
with the analytic models, the simulation models assume an operator’s perspective
on transit service. Although the models often use passenger-oriented performance
measures to evaluate operating plans and real-time control strategies, there are no
models to date that specifically focus on analysis or simulation of passenger behavior
in these types of networks. As a result, the models of passenger behavior used are
relatively simple. This is especially true of the few network models which exist,
primarily because of the significant complexity and hnst of assumptions necessary for
network modeling. A more passenger-oriented approach to transit service modeling

will be necessary for this thesis.
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2.3 Transit Path Choice Models

Given the broad range of analytic models for transit networks, there are a correspond-
ingly large number of models about how transit passengers choose a path from origin
to destination. Early research in this area focused on “path assignment,” meaning
that individual passengers use some disaggregate method to choose a path with a
resulting deterministic or stochastic aggregate assignment to o-d paths. This section
summarizes the passenger assignment process in transit networks. There are sev-
eral sections to this literature, covering deterministic transit path assignment, path
choice for common route segments, and path choice in stochastic and time-dependent
(transit) networks.

The review below is motivated by the observation that more accurate real-time
information about vehicle locations, departure times, and travel times may improve
the decisions made by passengers about which routes and paths to consider. In this
regard, this review examines these models with a critical view toward how accu-
rately the models intuitively reflect individual passenger behavior, and also how well

information can be incorporated into the models.

2.3.1 Transit Path Assignment

A considerable literature exists in the area of transit service planning and demand
modeling. This discussion will first consider models which fall into the area of tran-
sit path assignment, which is the manner in which a given aggregate o-d demand
is “assigned” to various routes. While a larger discussion of these models appears
subsequently in this section, it is important to begin this section by discussing these
assignment models in terms of their assumptions about transit service. In partic-
ular, most of these models assume deterministic route travel times, and thus are

particularly of interest here.

Deterministic Service Models

Robert Dial [21] was one of the first researchers to examine the problem of assigning
passengers to transit paths. His simple network model assumed that vehicle running

times are deterministic and headways are exponentially distributed. That is, there
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is no fixed schedule, and the number of passengers served by a particular route is
directly proportional to that route’s frequency share. Thus, for any random point in
time, the a priori probability that a vehicle from one route will arrive next is equal
to its frequency share. Mathematically, if f; is the frequency of route ¢, and the set

R includes all routes serving a stop, then,

3
Yier fi

FProb(Route r arrives next) =

(2.1)

Other authors assume similar service models in terms of deterministic running
times and exponentially distributed headways, including le Clercq [42], Andreas-
son [6], and Mandl (46]. More recent path assignment models make similar assump-
tions about transit service, including Spiess [65], de Cea et al. {20}, Nguyen and
Pallottino [55], and Spiess and Florian {66].

Recently, Jansson (33, 32] and Jansson and Ridderstolpe [34] have explicitly ques-
tioned the assumption of exponentially distributed headways. Instead, they assume
that headways are deterministic. In this case, the frequency share approach shown
in equation (2.1) is not always valid; it is only true for specific vehicle arrival times.
For example, if two routes serve a stop with identical 10-minute headways and with
each route scheduled so that a vehicle arrives 5 minutes after the other route’s sched-
uled arrival, the passenger share (assuming randomly arriving passengers) for each
route will indeed be one half. However, if they are not timed in this way, a different
share occurs: for example, if the second route is timed 4 minutes after the first, the
passenger shares are 60% for the first route and 40% for the second.

Thus, under the assumption of deterministic headways, the resulting passenger
shares depend upon the timetables. Jansson and Ridderstolpe work with the con-
cept of perfectly coordinated schedules, which results in passenger shares being the
same as the route frequency shares from equation (2.1). Their model also allows for
uncoordinated schedules, in which the arrival time of any one vehicle is uniformly
distributed between successive arrivals on any other route. Uncoordinated schedules
do not necessarily imply a particular schedule, as the example above might suggest.
Instead, Jansson and Ridderstolpe assume that the schedules are not perfectly corre-

lated, and that the level of coordination is not specified by the vehicle operator. These
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models are incorporated in the transit planning software VIPS II [33, 32).

In practice, this assumption about schedule coordination is certainly not true; the
operator will specify some schedule (coordinated or not). The difference between a
specific schedule and the authors’ assumption is most obvious for routes with equal
headways. The authors’ assumption about uncoordinated schedules, when used in the
2-route, 10-minute headway example above, yields a 50/50 passenger split between
the two routes, although a specific schedule (which is not perfectly coordinated) can
yield much different passenger shares. Thus, the approach of Jansson and Ridder-
stolpe [34] does not explicitly consider the effects of different vehicle schedules on
transit path choices.

Summarizing, based upon the above research, many of the transit service models
in use today (in packages such as VIPS II, UTPS, and EMME/2) assume determinis-
tic vehicle travel times and either exponentially distributed or perfectly coordinated
and deterministic headways. Both of these headway assumptions result in passen-
ger shares equal to the route frequency shares. For uncoordinated schedules, the
passenger shares depend on the specific schedule or on the assumptions about how
the schedule is constructed. This last issue of schedule coordination has not been

sufficiently addressed in the path assignment literature to date.

Path Assignment Methods

Transit path assignment techniques have existed for over twenty-five years, beginning
with Dial’s {21] transit path assignment (or “transit pathfinder”) algorithm. Dial
created an algorithm which generates “optimal” origin-destination paths in transit
networks. Generally, his methodology is based on computing the shortest paths in
the network using the more generic label-correcting algorithm. An improvement of
Dial’s algorithm was presented by le Clercq [42], who used a label-setting rather than
label-correcting algorithm for determining shortest paths in the network; however, in
most other respects, his approach is similar to that of Dial. The models of Dial [21]
and le Clercq [42] assign passengers to a single path with the minimum expected
travel time, except in the case of common routes (or paths) with equal travel times,
in which case the assignment is proportional to route frequencies.

There are a number of common elements to the work of Dial [21] and le Clercq [42].
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First, both authors use a network representation in which each pair of nodes in a
route are connected using unique arcs. Both algorithms then use this representation
of route segments, rather than more typical road links, to determine the shortest
transit path from a given origin to all destinations. Link travel times are assumed to
be constant, and waiting and transfer times are specifically assumed to be equal to
one-half the headway, regardless of the headway value. When several transit routes
operate on the same link, the expected waiting time (or transfer time) is equal to one-
half of the inverse of the sum of the route frequencies; i.e., all routes are available
and assignment to routes on common line segments is proportional to the relative
line frequency.

Andreasson [6] and Mandl [46] separately formulated the transit network design
problem. One of the phases in network design involves assigning passengers to paths
in order to determine the allocation of vehicles to various routes in the network. The
procedure discussed by Andreasson was later adopted as part of the Volvo transit
planning package VIPS [28]. Both Andreasson’s and Mandl’s network design models
assume that transit passengers arrive at stops randomly and that vehicle arrivals at
stops are exponentially distributed.

Andreasson [6] expanded on the models of Dial [21] and le Clercq [42] by perform-
ing a path assignment based on a simple heuristic to include paths in the passenger’s
optimal choice set. If the travel time conditional upon boarding a given path is less
than the minimum over all paths of the headway plus the travel time after boarding,
that route is included in the path assignment. For example, if path A has a travel
time conditional upon boarding of 30 minutes, and the shortest path travel time con-
ditional upon boarding (path B) is 24 minutes and has a headway of 10 minutes,
path A is included in the path assignment, since 30 < 24 + 10. Once the optimal
path choice set is determined, path assignment is again based on the relative route
frequencies.

Mandl [46], on the other hand, used a heuristic devised by Chriqui and Robil-
lard [16] (discussed later) to compute which routes should be included in a passen-
ger’s choice set over common route segments, and aggregates link running times
for these common route segments using a frequency-weighted sum of route running

times. Mandl also computes waiting times (and transfer times) based on one-half
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the inverse of the sum of combined route frequencies. Assignment to common routes,
then, is based on the frequency share.

The model formulated by Jansson and Ridderstolpe [34] and used in the VIPS II
software {33, 32] assumes the existence of a vehicle timetable, and that vehicle move-
ments adhere perfectly to this schedule. As a result, depending on the level of co-
ordination of routes, different path assignments may be inferred. Again, for routes
which are not coordinated, the assignment is based on the presumption that vehicle
departures on any route are uniformly distributed between departures on any other
route. A heuristic is used to solve for the path assignment in the case of uncoor-
dinated routes. For perfectly coordinated routes, a heuristic assigns passengers to
routes based on frequency share, although such an approach is only correct when
common routes have identical headways.

These models represent much of the state of the practice in path assignment.
Path assignm ~nt techniques based on the work of Dial and le Clercq are used in the
UPATH/UMODEL functions of the UTPS transit planning software by a number of
large cities in the United States. Jansson and Ridderstolpe’s assignment technique
is used in the VIPS II software produced by the Volvo Corporation for transit service
planning. However, there are several significant shortcomings to these models. First,
they are unable to incorporate either the inherently stochastic nature or the inherent
time-dependence of travel times and vehicle movements in the transit network. A re-
lated issue is the assumption that all expected waiting times may be approximated by
one-half of the headway, which has been shown to be inappropriate for longer head-
ways (over 10-12 minutes) by a number of authors (e.g., Jolliffe and Hutchinson [35],
Bowman [10], and Bowman and Turnquist {11]}).

One seeming inconsistency in several of the analyses presented above is the cal-
culation of waiting times at one-half of the prevailing headway, while also assigning
route shares on common route segments according to a route’s frequency share. As
noted by a number of authors (e.g., Turnquist [68] and Marguier and Ceder [49]),
the assumption that waiting times are equal to one-half of the prevailing route head-
way is equivalent to assuming that schedule adherence is perfect; i.e., headways
are maintained perfectly. Furthermore, the assignment of passengers to common

routes according to a route’s frequency share, when passenger arrivals are entirely
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random, must be based on the assumption that vehicle departures are perfectly coor-
dinated. The assumption that vehicle departures (i.e., headways) are exponentially
distributed is inconsistent with the assumption that waiting and transfer times are
equal to one-half the prevailing headway. On the contrary, the mean waiting time
with exponentially distributed headway= is equal to the full prevailing headway. No
one has noted this inconsistency to date.

More recent transit path assignment models incorporate some of the stochastic
nature of vehicle headways by explicitly assuming that vehicle headways are expo-
nentially distributed. Recent work by de Cea et al. [20] and Spiess and Florian [66]
formulate the transit path assignment problem as a linear program, as a relaxation
of a mixed integer program. The model of de Cea et al. is used in the TRANSCOM
trarsit planning software, while Spiess and Florian’s approach is used in the EMME/2
transit planning software.

In both of these works, the authors use the definitions of itinerary (i.e. path),
route, and strategy as defined in Section 2.1. de Cea et al. [20] presents the math-
ematical programs from both Spiess [65] (which is very similar to Spiess and Flo-
rian [66]) and Chriqui [15], the latter being a mathematical formulation of Chriqui’s
approach determined by de Cea [19]. The formulations presented are very similar, ex-
cept that the two formulations differ in the representation of “line segments”: Spiess’
network representation uses transit line segments connecting adjacent nodes only,
while Chriqui’s approach uses “line sections” which includes links for non-adjacent
nodes that are connected by a bus route. The result in this case is that Spiess’ for-
mulation focuses on adding simple line segments to the optimal path choice strategy,
while Chriqui’s approach adds “line sections” to the optimal path choice strategy.
As a result of these representations, Spiess’ proposed solution algorithm is a form
of a shortest path algorithm, while Chriqui’s algorithm uses a network search to
define feasible o-d paths, followed by a greedy heuristic (similar to Chriqui and Ro-
billard [16]) to determine optimal o-d paths. Both approaches assign path choice
probabilities based on relative route frequencies.

Both approaches represent a significant improvement over previous transit path
choice models by modeling the possibility that passengers may consider multiple

paths in an optimal passenger path choice set. Furthermore, the paper by de Cea
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et al. is helpful in its contrast of network representations and by emphasizing the
importance of these in determining path assignments. However, both approaches
still assume random passenger arrivals, lack of schedule coordination among over-
lapping bus lines, and sufficiently short headways to accommodate the assumption
that vehicle inter-arrival times are exponentially distributed.

Nguyen and Pallottino [55] discuss the transit path assignment problem with the
aim of improving the state of the art of network representation for model development.
The authors present the concept of hyperpaths, which allows a fairly generic graph
framework to accommodate transit path assignment in both deterministic and prob-
abilistic settings. A hyperpath is a set of simple paths (for a single origin-destination
pair) which are in a passenger’s “optimal” choice set [16]. For each origin-destination
pair, there is a graph consisting of any number of hyperpaths, based on the number
of feasible choice sets on that o-d pair. The graph model is used in computing shortest
paths and in determining passenger assignment for each origin-destination pair in
the network. Each arc in a hyperpath has an associated “cost” and probability of
being traversed. Once these hyperpaths are constructed, shortest path calculations
and equilibrium traffic assignment can be performed. Shortest paths can be deter-
mined by taking the probability-weighted sum of arc costs within each hyperpath,
then assigning all-or-nothing flow on the hyperpath with minimum cost. Waiting
times or transfer times in this case are proportional to the inverse of the sum of the
frequencies of all transit routes serving the origin in a hyperpath. The framework
accommodates any number of path assignment techniques, including that developed
later in this thesis. Time-dependence and stochastic running times are not explicitly
treated by these authors.

To summarize, current path assignment techniques have considerable shortcom-
ings in describing the assignment of passengers to paths. First, there is little con-
sideration of the inherently stochastic nature of travel times, particularly running
times. Second, in none of these assignment models is there any explicit consideration
of the timetable or of scheduling of route-to-route transfers. Because the context of
real-time information incorporates both time-dependent and stochastic service char-

acteristics, it is not possible to use these models directly in this research.
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2.3.2 Common Route Segments (or Paths)

The stochastic and time-dependent nature of transit service has been considered more
explicitly in the research on common route segments, or common paths. In this prob-
lem, passengers are assigned to different routes serving a common origin and destina-
tion, based on the arrival patterns of vehicles at the origin stop, which are assumed to
be inherently stochastic. Because of the centrality of this path choice problem to the
development of this thesis, the models of Chriqui and Robillard [16], Marguier [47],
Marguier and Ceder [49], and Jansson and Ridderstolpe [34] are reviewed in greater
detail.

Chriqui and Robillard [16] examined the issue of how transit passengers might be
assigned to various routes serving a common origin and destination. Their hypothesis
is that passengers traveling on a common route segment will choose a certain subset
of those lines on which they would be prepared to travel (i.e., an optimal choice set).
Specifically, they will choose that set of routes which, when the passenger takes the
first bus to arrive on any route of the set, minimizes the expected total travel time
(wait plus in-vehicle time).

The problem is stated as determining a choice vector (of dimension r, where r
is the number of common lines) containing elements 1 and 0, where z; = 1 if the
route is in the optimal subset, and z; = 0 otherwise. Chriqui and Robillard assume a
certain probability distribution for the waiting time for each route, and then derive
an expression for the expected waiting time for the next vehicle, given the choice
vector. [The mathematical formulation is presented later in equations (4.17) and
(4.18).] It is assumed that routes on this common line segment are independent,
and that passenger arrivals are random. Using explicit enumeration of all (common)

routes, the authors suggest the following greedy heuristic:

1. Sequence the routes according to expected in-vehicle travel time (fastest route

first).

2. Let X, the choice vector, be (1,0,0,...), and compute the expected total travel

time with this choice vector.

3. Add the next (slower) route into the choice vector, and compute the expected

total travel time. If the result yields a lower expected travel time, repeat this
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step. Otherwise, terminate; the prior choice vector is “optimal.”

The motivation for this heuristic is that “it is illogical for a passenger to let a bus
of a given route go by and wait for a bus with longer in-vehicle time” (p. 119). The
heuristic always produces the optimal solution for the following cases: when the
waiting time distributions for all routes are identical; when all routes have the same
in-vehicle travel time; and when all routes have exponentially distributed headways.
They hypothesize, but are unable to prove, that under more general waiting time
distributions, their heuristic produces an optimal solution. This assertion is later
refuted by Marguier [47].

Finally, the concept of a “clever” passenger is introduced. Such a passenger might
revise his/her choice set while waiting, based on the distributions of waiting time. The
authors only raise this point in passing, remarking that in the case of exponentially
distributed waiting times, the optimal set does not change over time.

The shortcomings of the analysis of Chriqui and Robillard [16] are discussed in
Marguier [47]). Like Chriqui and Robillard, Marguier assumed that there could be
a number of bus routes serving an origin-destination pair, with the object of the
research being to examine how one might choose an “optimal” set of routes so that,
upon taking the next vehicle arriving on any of those routes, the expected trave: time
to the destination is minimized.

Marguier examined the boolean decision vector proposed by Chriqui and Robil-
lard. His first observation about this decision vector was that any optimal solution
would necessarily include the route with the shortest expected in-vehicle travel time.
[This was implicitly assumed by Chriqui and Robillard.] Yet, as mentioned above,
Marguier determined that the heuristic proposed by Chriqui and Robillard was not
necessarily optimal for all headway distributions. Even for the simple case of deter-
ministic headways (in which the waiting time is uniformly distributed between zero
and the headway), examples of a three-route case for which the Chriqui and Robil-
lard heuristic fails to find the optimal strategy were shown. Specifically, Marguier
demonstrates a case fer which the strategy (1,0, 0) performs better than (1,1, 0), but
(1,0,1) is better than (1,0,0), thus violating the heuristic.

Marguier went on to examine the 3-route case in greater detail, and found counter-

examples to most of Chriqui and Robillard’s implied logical relationships with respect
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to optimal route strategies. In many cases, it is slightly more advantageous to ex-
clude some medium-speed routes from the optimal choice set if there are much higher
frequencies on faster and slower routes. Using certain families of waiting time dis-
tributions, he demonstrates under what conditions such counter-examples will arise.
He briefly describes similar results for a 4-route case, but it is clear that the level
of effort required to examine proposed route choice sets rises exponentially with the
number of common routes.

Marguier also examines the case of a “clever” passenger. This clever passenger
updates his/her optimal set of routes based on the distribution of waiting times for
each route and the amount of time they have already waited. Again, he shows that
any optimal strategy over time will always include the shortest in-vehicle time route.
However, through a brief examination of the 2-route case, Marguier determines that,
depending on the form of the waiting time distribution, there are conditions under
which the preference for (1,1) or (1,0) might change in either way. That is, there are
conditions under which it might be advantageous to add routes to the optimal choice
set after some waiting, while in other cases it is better to drop slower routes from the
optimal choice set as waiting time increases.

There are several shortcomings to the two results presented above. First, both
researchers focus on trips which can be completed without transfer over a number
of routes. This allows the assumption that the expected travel time after boarding
a chosen path does not vary as a function of time. However, such an assumption
may be violated for trips which might include a transfer. In such situations, the
optimal boarding strategy (i.e., the optimal choice set) is time-dependent. Another
shortcoming which is evident from Marguier’s work is that choosing such a subset of
“optimal” routes is not as simple as applying a greedy heuristic. Explicit enumeration
of paths will be necessary for more complicated passenger waiting time distributions.

Marguier and Ceder [49] describe how clever passengers might formulate a strat-
egy in waiting for buses in this same case of overlapping bus routes. The distribution
and mean of the waiting time is derived using two particular headway distributions:
the “power” distribution and the gamma distribution. Their analysis assumes that
the variation in bus arrival times is sufficiently large that passengers do not time their

arrivals to coincide with vehicle arrivals (i.e., passengers arrive randomly). They also
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assume that passengers know both expected route headways and expected in-vehicle
travel times.

The authors describe the distributions of waiting time for both the instant of
arrival and conditioned on the amount of time already waited. For the most simple
case of two routes sharing a common route segment, they define criteria under which
a passenger might choose to include the slower route in the initial choice set. For the
power and gamma distributions, as waiting time increases, the slower route will never
be added to the optimal choice set. Finally, the authors derive formulas to describe
the path assignment as a function of these two routes’ frequencies and headway
variations. The results suggest that the proportion of travelers on each route is a
decreasing function of the coefficient of variation of headway on the route. However,
the approach outlined by Marguier and Ceder is limited in that it only considers two
routes and specific headway distributions.

Jansson and Ridderstolpe [34] consider the transit route choice problem for net-
works in which all headways and running times are deterministic. The stochastic
nature of the problem arises from the assumption that there is no explicit coordi-
nation of headways on the transit routes, and thus the waiting time for any vehicle
departure may be modeled using a uniform distribution over the period of one head-
way. In this context, the authors present a heuristic to determine path assignment.
They use a greedy heuristic similar to that presented by Chriqui and Robillard [16].
However, rather than recomputing the expected travel time and the expected waiting
time precisely at each iteration, routes are added to the choice set until the in-vehicle
time of the route to be included exceeds an approximate “expected” travel time for
the current set of routes. Because of this approach, it is not clear that Jansson and
Ridderstolpe’s approach will always produce the optimal choice set (i.e., with the
minimum expected travel time).

The authors also use several examples to compare their heuristic with existing
path assignment techniques, including Chriqui [15] and Spiess [65]. For these exam-
ples, their heuristic performs similarly to Chriqui’s. However, since Spiess’s formu-
lation computes path assignment based on relative route frequencies, the results of
the authors’ heuristic differ significantly from these of Spiess. This difference results

from two assumptions. First, as Jansson and Ridderstolpe note, Spiess’ approach
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does not account for differences in in-vehicle travel times for routes covering common
line segments. Second, Spiess’ approach assumes that vehicle headways are expo-
nentially distributed, not deterministic. For these reasons, significant differences are
noted in both path assignments and in expected travel times.

From this path choice literature, several general comments can be made. First,
the models make specific assumptions regarding the waiting time distributions for
an arriving passenger, with results being dependent on the assumed distribution. In
addition, none of the authors address the vehicle timetables, which will significantly
impact waiting times and path assignment on common route segments. Because the
greedy heuristic of Chriqui and Robillard [16] is optimal only for specific waiting time
distributions, explicit path set enumeration seems necessary for more general wait-
ing time distributions. Finally, these authors have not investigated the more general
“clever” passenger’s path choice problem posed by Chriqui and Robillard for more
than a simple two-route case, and this approach lacked a more general model frame-
work. A time-dependent model of transit path choice is necessary for this research,

corresponding to the dynamic nature of real-time information systems.

2.3.3 Shortest Paths in Stochastic Time-Dependent Networks

There is a substantial literature on shortest paths. Of greatest relevance to the
research in this thesis is the literature regarding shortest paths in both stochas-
tic and time-dependent networks, as these two issues are the most constraining in
defining scheduled service (i.e., transit) networks. The most relevant work is that of
Hall (25, 27], who considered shortest paths in transportation networks where travel
times are both stochastic and time-dependent. Furthermore, as Hall’s work explicitly
considered transit networks, his work is discussed in greater detail below.

[There is also a substantial amount of research in stochastic shortest paths; these
authors, however, tend to generalize their results for communications networks where
travel times are not time-dependent. In this respect, the literature on stochastic
shortest paths is not particularly helpful to this research, and will not be covered
explicitly here. The interested reader is referred to the works of Frank [24], Mir-
chandani [50], Sigal et al. [64], Loui [45], Eiger et al. [23], and Mirchandani and
Soroush [51] for helpful discussions of the stochastic shortest path problem.]
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[A similar literature exists for shortest paths where link travel times are time-
dependent; i.e., travel times are a function of time. Such is the case for transit
networks. A good discussion of these problems exists in Cooke and Halsey [17], Drey-
fus [22], and Orda and Rom [57, 58]. The literature demonstrates how time-dependent
problems may be reduced to problems solved through “standard” shortest path tech-
niques. However, as noted by Hall [27], direct application of these time-dependent
shortest path methods is not really feasible because of the stochastic nature of travel
times in transit networks. This complication eliminates the effectiveness of the time-
dependent analysis in the current context.]

Hall [25, 27] examines the issue of finding the shortest path in networks which
have both stochastic and time-dependent travel times. In such networks, it is not
always true that the shortest paths are simple and concatenated. That is, it is not
always true that the shortest topological path from an origin to the destination in-
cludes the shortest topological paths from the origin to any nodes in that shortest
origin-destination path. Hall demonstrates this concept through a simple counter-
example, showing that the minimum expected time path on an o-d pair is not a
simple extension of the shortest path to an intermediate node.

Hall proposes a simple algorithm to determine the shortest path in such cases.
The algorithm assumes that each arc in the network has a lower bound on its travel
time (i.e., a minimum possible travel time on each arc). The algorithm proceeds as

follows:

1. Using the minimum possible travel times, a“shortest” path through the network
is determined. From this “shortest” path, the expected o-d t