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ABSTRACT

The partial differential squations of continuity, momentum,
and energy wero developed for the laminar boundary layer of a steady,
compressible flow in the entrance region of & tube. These were trans-—
formed into ordinary differential equations, and then solved with the
aid of the M.I.T. Differential Anmalyzer for particular boundary condi-
tions and a constant Prandtl number of the fluid equal to O.Th.

The solution was developed in terms of a power series of the
"length parameter®, The first two or three terms of this power series
were obtained for seven cases of different entrance Mach numbers and
different thermal conditions at the tube wall, Rapid convergence was
obtained for the ceees where the entrance Mach number equalled 2,8,

The effects of compressibility, pressure gradient, and heat~
ing or cooling at the tube wall were studied. The theoretical results
were compared with those for laminar flow over a flat plate with zero
pressure gradient, and also with experimental weasuremente made in the

entrance region of a tube, In the region where a laminar boundary



layer appears to exist and does not rill the entire cross-section of
the tube, close agreement was observe: between the predicted and
measured values of static pressure, adimbatic-wall temperature, and
heat~transfer rate,

Comparisons between theory and experiments indicate also that,
when the entrance diameter Reynolds number is large, the transition
from laminar to turbulent flow seems to have occurred before the entire
cross-section of the tube is filled with the laminar boundary layer,
When the entrance dismeter Reynolde number is sufficiently low, the
entire cross-section may be filled with leminar boundary layer before
transition occurs. However, the analysis presented here is not valid
when the laminar boundary layer fills the entire cross-section of the

tube or the boundary layer become turbulent.
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NOMENCLATURE

inside radius of tube

constant of integration, see eguation (A-69)

specific heat at constant pressure

specific heat at constant volume

inside diameter of tube

internal energy per unit mass

vector body force per unit mase

function of » , see equation (B-2)

mean apparent friction coefficient, defined in equation (A-80)
function of » , see equation (A-15)

local true friction coefficient, defined in equation (A-77)

mass rate of flow per unit area, defined in equation (A-89)

any positive integer for either exponent or subscript

repeated indices indicate summation from 1, 2, 3, «..s 00

local heat-transfer coefficient

function of » , see equations (A-42) and (A-53)

ratio of specific heats, cp/cv

coefficient of _5"'in velocity polynomial, see equation (A-19)
distance from end of curved contour of nozzle

Mach nunmber, w/(kRT)yz
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ReL
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static pressure

rate of radial heat transfer per unit circuwferential area

perfect~gas constant
cylindrical coordinates

recovery factor, defined in equation (A-85)
diameter Reynolds number, wd/)/

length Reynolds number, based on distance from end of curved
contour of nozzle, wL/»

length Reynolds number, based on distance from entrance sec-
tion of tube, wz/»

absolute temperature
time

ccefficient of_S"'in temperature polynomial, see cquation (A~21)
velocity component in radial direction

velocity component in circumferential direction

velocity vector

velocity componsut in axial direction

coefficient of $™ in density polynomisl, see equation (A-22)
coefficient of S in pressure polynomial, see equation (A-20)
thicknesa of either velocity- or temperature—boundary layer
length paremeter, defined in equation (A-13)

independent variable in transformed boundary-layer equations,
defined in equation (A-14)

function of 7 , see equation (A-16)
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adiebatic-wall conditions
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measured core conditions at the first station
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measured upstream stagnation conditions
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velocity~boundary layer
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xii



INTRODUCTION

The growing importarnce of problems involving compressible-
fluid flow in ducts, with or without heat transfer, has heen emphasized
in many fields during the past decade. However, most of the analytical
and experimental work carried out previous to this decade was devoted
to incompressible flow, Although this work may be success®ully applied
to the low-subsonic regime, extrapolation to ths high-subsonic or super-
sonic regime is inadequate.

Within the past several years, in a ressasch program sponsored
by the Office of Naval Research and conducted at M.I.T., an extensive
amount of experimental data was obtained on recovery factors, apparent
friction coefficients, and heat-transfer coefficients for supersonic
flow of air in a tube, These results, which have been systematically
reported in a series of papers (1, 2, 3)*, were calculated on the basie
of a simple one-dimensional flow model, which assumes uniform properties
of the stream at any cross-section of the tube, This simple flow model,
although adequate for fully-developed flow, wus found inadequate to in-
terpret some of the results (3)e It was realized tnat in the supersonio
regime the flow could never attain the fully-developed stage and that

tha entrance-region effects were impcrtant. It was found necessary to

* Numbers in parentheses refer to items in Bibliography.




consider the growth of the boundary layer in the direction of flow,
A simplified two-dimensiona) approach based on the Karmar—-Pohlhausoen
integral method was attempted, end the results were encouraging (4).
Theoretical investigations of the flow of an incompressible
£luid in the entrance region of a circular tube have been carried out
by Hagenbach (5), Neumann (6), Couette (7), Boussinesq (8), Schiller
(9), Atkinson and Goldstein (10), Langhsar (11). In this thesis, the
effects of compressibility and heat transfer have been studied. The
basic partial differential equations of continuity, momentum, and
energy, simplified within the usual assumptions of the boundary-layer
theory, were transformed into & series of simultaneous ordinary differ—
entizl equations. These transformed differential equations were then
solved with the aid of the M.I.T. Differential Analyzer, for combina-
tions of two different Mach numbers at the entrance of the tube and
three different thermal conditions at the tube wall, namely, adiabatic,
cooling, and heating. The transformed boundary-layer equations for
incompressible flow derived in Atkinson and Goldstein (10) were also
solved for comparison, It should be noted, however, that the present
analysis is valid only when the boundary layer remains laminar, with
the coexistence of an isentropiec core in the cunter of the tube. For
other assumptions end the derivation of these equations, see Appendix A,
Variations of the static pressure, adiabatic-wall temperaturoc,
and rate of haeat tranafer, predicted from the theoretical anelysis, were

compared with the experimental measurements made in the entrance region




of & tube. Compurisons were also made between the predicted values of
local true friction coefficients, losal recovery factors, and local

heat-transfer coefficients for laminar flow in the entrance region of
a tube and thoese for laminar flow over a flat plate with zero pressure
gradient, Effects of compressibility, pressure gradient, and heating

or cooling at the tube wall were also studied,




RESULTS

The trensformed boundary-layer equetions derived in Appendix A

(A-37, A-42, A-48, and A-53) were solved with the aid of the M.I.T,
Differential Analyzer for the six cases shown below in Table 1, The
solution of each of these six cases was carried up to terms containing
_S"" , as indicated in the table. The Prandtl number of the fluid was
assumed constant at O.74. The differential equations for the incom-
pressible laminar boundary layer given by Atkinson and Goldstein (10)
were also solved for comparison, For the method of solving the differ-

ential equations, see Appendix B.
TABLE 1

Case Entrance Mach Number Thermal Condition &t Wall n

A 2.8 Adiabatic 3
B 2.8 Cooling, 6, = 2 2
o; 2.8 Heating, €, = 3 3
D 2.0 Adiabatic 2
E 2.0 Cooling, 6, = 1l.445 2
F 2.0 Heating, O, = 2,107 2
G Incompressible Adiabatic 2

i. The Functions £, ©p, and Their Derivatives

Fig. 1 shows the variation of the functions f, }l' and f,
’



versus the parameter » for the three adiabatic cases with different
entrance Mach numbers, It is shown in Appendix A that %» is the inde-
pendent variable used in the transformed boundary-layer equations, and
is defined through equation (A-14). The functions f,, are functions of
v) and are the coefficients of the different powers of the length
parameter ;5 (defined through equation A-13) in the stream function y?
(equation A-15), Fig, 2 shows the variation of ;l versus the same
parameter » for the seven cases given in Table 1. The variations of
6 and ;1 versus %) are shown respectively in Figs. 3 and 4 for the six
compressible cases. The functions @, are functions of » only end are
the coe®ficients of the different powers of the length parameter § in
the temperature ratio‘T/T° (equation A-16). They are related also to
the temperature profiles inside the boundary layer through equation
(A=75).

It should be noted that a simple relationship between %n and
the velocity profile inside the boundary layer exists only in the incom-
pressible case (10). If the effects of compreesibility are included,
the velocity profile inside the boundary layer is represented by egqua-
tion (A-74), in which Gn also appears, Fiy. 5 shows the first approxi-
mations tc the velocity profil< >r ths seven cases given in Table 1,
These approximations were obtained by taking the terms containing only
the zero power of the length parameter § —— from equation (A-T4)
for the compressible cases, and equations (25) and (27) in Atkinson
and Goldstein (10) for the incompressible case, Equation (4-75) indi-

cates that Fig. % also shows the first approximations to the temperature



profile inside the boundary layer,

2. Bouridary-Layer Thickness

The boundary-layer thickness S 18 related through equation
(A-14) to the value of » at which the velocity or temperature inside
the boundery layer reaches a certain arbitrary fraction of the core
velocity or core temperature., In view of the trial-and-error procedure
involved in the solution of the first set of the differential equations
(Appendix B), it seems that this arbitrary value of » may be chosen
as one at which eitner Fl (the transformed variable introduced in Appen-
dix B for the machine solution of the differential equations) or 91
becomes constant within the accurasy of the differential analyzer. The
values of » corresponding to the boundary-layer thickness are tabulated
for the different cases in Table C-1, Appendix C.

It is shown in squations (A-74) end (A-75) that F, end 6, are
related respectively to the first approximations of the velocity and
temperature profiles inside the boundary layer. Figse. 3 ana 5 indicate
that the thickness of the velocity-boundary layer is smaller than that
of the temperature-boundary layer, for given entrance Mach numbers and
thermal conditions at the wall, The ratio between the velocity-boundary-
layer thickness and temperature-boundary-layer thickness, which may also
be predicted from a study of the basic equations, is of the order of the
square root of the Prandtl number of the fluid flowing inside the tube,
For given thermal conditions at the wall, the velocity-and temperature-

boundary-layer thicknesses increase with increasing entrance Mach number,



For given entrance Mach numbers, the effect of heating at the wall is to
jncrease the boundary-layer thicknesses, while the effect of cooling is
to decrease the boundary-layer thicknesses.

The variation of the ratio of the boundary-layer thickness to
the tube radius, Jya, versus the length parameter, J§ , the length
Reynolds number hased on the local core conditiona,‘“ﬁ$4€ » and the
length-to~radius ratio, z/a, is shown in Figs,. 6, 7, and 8 respectively
for cases A and C. The boundary-layer thickness- ratio estimated from
Howarth's result (12) for compressible lawinar flow over a flat plate
with zero pressuve gradient was also plotted in FPig. 6, ueing the values
of the local core Mach number and the local length Reynolds number cal-
culated Por case A, It is to be noted from Fig. 8 that the boundary-
layer thickneses has & tendency to increase rapidly with increasing length,
when the length parameter approaches its limiting value (to be discussed

below).

3, Region of Validity of the Present Anslysis

Since the presert analysis is valid only when the boundary
layer does not fill the antire cross-section of the tube (Assumption ¢,
Appendix A), the theoretical results, for the entrance Mach numbers of
2,0 and 2,8, should not be extended too far beyond a value of the length
parameter of about 0,05 (Fig., 6 and Table C-1, Appendix G). Since the
present analysis is velid only for the laminar boundary layer (Assumption
b, Appendix A), the theoretical results should not be extended also be-

yond the epproximate value of & transitional length Reynolds number of




1 to 3 x 106 (3, 4),

In view of the above limiting conditions, the value of the
ratio of the length to the radius over which this present analysis is
applicable was plotted in Fig. 9 versus the entrance diameter Reynolds
number, for the entrance Mach numbere of 2,0 and 2,8, Since the tren-
sitional length Reynolds numbcr quoted above is only approxiuate, the
length Reynolds number based on the entrance conditions is used instead
of that based on the local core conditions., These two length Reynolds
numbers are related to each other through equation (A-84). The values
of the ratio of the length to the radius below the straight lines of
constant length parameter and the rectangular hyperbolae of constant
length Reynolds number are those over which this present analysis is
valid, It is observed from Figs., 7 and 9 that the limiting condition
at low entrance diameter Reynolds numbers is the value of the length
parameter, while that at high entrance diameter Reynolds numbers is the

value of the transitional length Reynolds number,

4, Velocity and Temperature Profiles

Both ceses A and C were solved in series form to the terme
containing ‘5‘ (equations A-42 and A-~53). The velocity and tempera-
ture profiles across the boundary layer were computed through equations
(A-74) and (A-75), and plotted versus the radial positione in Figs. 10
and 11 respectively, for different values of the length parameter. The
curves represent the sum of terms up to .3". (Necessary data for com-
putations are given in Tables C-2 and C-3, Appendix C)., A slight bump

may be observed for both the velocity and temperature profiles at high




values of the length parameter. whether this bump is significant or is

mainly due to comgutation error inherent in the differentiel analyzer

needs further study.

5. Static Pressure Distribution

The ratio of the static pressure at any section along the tube
to that at the entrance section was plotted for case A in Fi;. 12 versus
the length parameter (equation A-20)., Three curves are shown, represent-
ing the sum of terms up to :g"', with values of n equal to 1, 2, and 3
respectively. (For values of /GL , see Table C-3, Appendix C). It was
explained abovs that the solution should not be extended too far beyond
a value of the length parameter of approximately 0.05; although the
boundary layer may still remain laminar. At a value mf‘s of C.05, the
value of /65:?3 , which represents the correction of curve 5 over curve
2, constitutes only about 2% of the value represented by curve > at this
same value of ‘3 . The next correction term,/cf’j4 , has been estimated
by extrapolation to be only about 1% of the value represented by curve 5
at the value of $ of 0,05, Since this 1% is within the computation
accuracy of the differential analyzer fur the sum of terms up to .53
it is not worthwhile to calculate this fourth-power term,

The static pressure distribution along the tube, obtained ex-
perimentally with the adiabatic epparatus described in Kaye, et al. (3,
4) as test combination B, was plotted in Fig. 13 versus the "modified

VA
length parameter® 265, D)( (Ae,):, ) o 3Since the entrance condition of

the test section wes not measured experimentally, the pressure ratio is




10

formed by dividing the static pressure by the upstream stagnation pressure,
The modified length parameter is formed in a manner analogous to the length
parameter (equation A-13), except that the former is based on the measured

values corresponding to the firét station instead of the actuul entrance |
conditions, |

It has been pointed out in the earlier papers (3, 4) that it
is very confusing to plot experimental values corresgonding to the dif-
ferent entrance diameter Reynclds numbers on a single chart, However,
if the pressure ratio is plotted versus this modified length parameter
as shown in Fig, 13, a definive trend may be obeerved., The experimen-
tal points fall on a curve close to the theorstical curve calculated
for case A, for a length of tuhe depending on the entrance diameter
Reynolds numbers, At higher entrance diameter Reynolds numbers, the
experimental points deviate from this curve at an earlier station. The
points of deviation appear to correspond to the approximate transiticnal
length Reynolds number cited above,

Several facts should be borne in mind, however, in meking any
interpretation of Fig. 15, Firstly, the theoretical curve was calculated
for the adiabatic case of en entrance Mach number of 2.8, which is very
close to the exit Mach number of the supersonic nozzle used in test
combination B, based on the isentropic area ratio, However, due to
frictional effects, it is difficult to estimate the actual Mach number
at the entrance of the tube, Secondly, the modified length parameter
was calculated on the basis of the measured conditions at the first

station, while in the theoretical analysis, the length parameter was
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celculated on the basis of the entrance conditions., Thirdly, all static
pressures were measured at the tube wall. It seems hardly justified to
ignore the effects of interactions between shock and transition on these
well-tap measurements, Fourthly, in the theoretical analysis, the
variation of absolute viecosity with temperature was neglected., The
effect of this variation on the predicted pressure distribution needs
further investigation.

The ratio of the locai static pressure to tne stagnation
pressure, measured with test combination B (3, 4), was also plotted in
Fig. 14 versus the length Reynolds number, based on the local length
and the core conditions at the firet station. For comparison, the
predicted values of the pressure ratio, calculated for case A for three
different entrance diameter Reynolds numbers up to the sum of terms
containing J§3 , were also plotted versus the length Reynolds number,
based on the local length and the entrance conditions, Agreement
between the predicted and measured values is fairly good for that
portion of the experimental curve where a laminar boundary layer
appears to be present,

Fig. 15 shows for case G the variation of the ratio of the
static pressure at any section along the tube to that at tne entrance
section versus the length parameter (equation A-20), Again, three
curves are shown, representing the sum of terms up to :f"', with values
of n equal to 1, 2, end 3 respectively, (For values of /él,, see Table
Cc-3, Appendix 0).

In Fig, 16, the static pressure distribution along the tube,
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obtained in the experimental heat exchanger described in Shoulberg, et
al. (13) was plotted versus the modified length parameter. The entrance
diameter Reynclds mumber based on the meesured conditions at the first
station and the ratio of the tube-wall temperature to the core tempera-
ture at the first station are also indicated for each experimental curve,
The theoretical curve calculated for case C up tc the sum of terms con-
taining _S’ is also shown for comparison, It should be noted that the
actual entrance conditions were no“ measured in the test set~up, that
the Mach number, according to the ieentropic area ratio, is about %e0
at the exit plane of the supersonic nozzle, and that the total length-
to-diameter ratio of the heat exchanger is about 31, in comparison

with a value of about 42 for the test combination B.

In order to get a clearer picture, Fig. 16 was blown up to a
larger scale in Fig, 17. Comparison between Fig. 17 and Fig. 16 of
Shoulberg, et al. (13) indicates agein the advantage of plotting the
pressure ratio versus the modified length parameter,

The theoretical prediction of the pressure distribution
along the tube is shown in Fig. 18 in terms of the static pressure
ratio versus the length parameter for the six compressibie casea given
in Table 1, Only the first approximetions representing the sum of
terms up to the first power of the length parameter were plotted.
(Values of (3, fcr the various ceses are given in Table C-3, Appendix
C)e For given supersonic entrance Mach numbers, the effect of heating
ie to incresse the rate of rise of the static pressure ratio with in-

creasing length parameter, while that of cooling is to decrease the
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rate of riss of the pressure ratio with increasing length paurameter,
For given thermal conditions at the wall, the case of higher supersonic
entrance Mach number shows a more rapid rise of the static pressure

ratio with increasing length parameter,

6. Adiabavic-dWall Temperature and Recovery Factor

Fig. 19 shows the variation of the ratio of the adiabatic-wall
temperature to the stagnation temperature, predicted for case A, versus
the length parameter, Three curvee are shown, representing the sum of
terms up to €™, with values of n equal to O, 1, and 2 respectively
(equations A-16, A-26, and A=27). The rapid convergence of the series
solution is apparent,

Fig. 20 shows thu variation of the ratio of the adiabatic-well
temperature to the upstream stagrnation temperature, obtained with the
adisbatic apparatus described in Kaye, et al, (3, 4) as test combination
B, versus the modified length parameter, Curve 3 of Fig. 19, represent~-
ing the sum of ﬁerma up to_S‘, was carried over for comparison. In
making any interpretation of this plot, the facts pointed out ebove for
interpreting pressure distributions should also be kept in mind. In
addition, with the present test set-up, longitudinal heat transfer to
the first and last stations of the test section has not been entirely
eliminated, This heat transfer probably accounts for the abnormal rise
of the meesured *adiabatic-wall" temperatures at the two ends of the
test section,

The variation of the ratio of the adiabatic-wall temperature



14

to the stagnation temperature versus the length parameter is shown in
Fig. 21 for cases A and D. Both ourves represent. the sum of terms up
to the first power of the length parameter. The chart indicetes that
this ratio increases as the entrance Mach number decreases, This same
trend has been predicted for laminar flow over a flat plute with zero
pressurse gradient by Emmons and Brainerd (14).

The recovery factor, defined by equation (A-85) and calculated
through equation (A-87) up to the sum of terms containing 3"} (with
values of n equal to O, 1, and 2 for case A4, end equal to O ancd 1 for
case D), was plotted for the same two cases in Fi_. 22, The case of
the lower entrance Mach number (caee D) gives a higher recovery factor
at the same value of the length parameter. The theoretical analysis
of E;mons and Brainerd for compressible laminar flow over a flat plate
(14) indicates that, as a good first approximation, the recovery factor
may be calculated as the square root of the Prandtl number. Fig. 4 of
Emmons and Brainerd (14) also indicates that for the range of Prandtl
number between O and 1 the recovery factor increases as the free-stream
Mach number dscreases, The line representing the square root of the
Prandtl number (O0.74) used in this theoretical analysis is also shown
in Fig. 22 for comparison,

The values of 6, (0) for the‘various cases cited above are
given in Table C-4, Appendix 0. The values of tn for the different

cases are also given in Table C-3, Appendix C.
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7. Local True Friction Coefficient

With the informetion given in Tables C-3 and O-4, Appendix C,
the local true friction coefficient f,, defined by equations (A-76) end
(A-77), may be calculated through equation (A-78). It is recognized
from equation (A-78) that this friction coefficient is a function of
the length parameter and the lemnyth Reynolds number. Using equations
(A-13) and (A-84), £, may be plotted for the different entrance diameter
Reynolds numbers versus the length Reynolde number based on the local
core conditions, Fig. 23 shows such a plot for case A, for two different
entrance diemeter Reynolds numbers. Three curves are shown for each
entrance diemeter Reynolds number, representing the sum of' terms up to
,Sn , with values of n equal to O, 1, and 2 respectively. Convergence
of the series solution seems fairly rapid,

In Fig. 24, the comparison of the local trus friction coeffi-
cient for the adiabatic cases of different entrance Mach numbers is
shown at two different entrance diameter Reynolds numbers, For cass A,
the curves represent the sum of terms up to 5' ; while for cases D and
G, the curves represent the sum of terms up to §. In the same figure,
curves for laminar flow over a flat plate with zero pressure gradient
are also shown. The incompressible curve was obtained by Blasius (15),
and the compressible curve for a free-stream lMach number of 2 was
obtained by Emmons and Brainerd (14) for constant absolute viscosity.

| In order to make a clearer comparison, the lower part of

Fig. 24 was expanded into a larger plot as shown in Fig, 25. The curve
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for laminar flow over & flat plate for a free-stream Mach number of 2.8
was also added for comparison. The following facts are observed from
these figures:

(i) Unlike the plate-flow, the local true friction coeffi-
cient for the tube-flow, when plotted versus the length Reynolds number,
depends also on the entrance diameter Reynolds numbers.

(1i) PFor constant entrance diameter Reynolde number, the
friction coefficient decreases with increasing length Reynclds number,

(1iii) For the same supersonic entrance Mach number and at
the same length Reynolds number, the friction coefficient at higher
entrance diameter Reynolds number is larger than that at lower entrance
diameter Rsynolds number, For incompreseible tube-flow and at the same
length Reynolds number, on the other hand, the friction coefficient at
higher entrance diameter Reynoldes number is smaller than that at lower
entrance diameter Reynolds number,

(iv) The curve representing the friction coefficient for
the tube-flow at higher entrance diameter Reynolds number lies closer to
the curve representing the friction coefficient for the plate-flow, with
a free-stream Mach number equal to the entrance Mach number pertaining
to the tube-flow,

(v) For supersonic flow, the friction coefficient for
the tube-flow is lower than that for the plate-flow of corresponding
tfree-stream Mach number, For incompressible flow, the friction coeffi-

cient for the tube-flow is higher than that for the plate-flow. This
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reversal may be accounted for by the fact that the pressure gradient
along the tube in these two cases is just opposite. It seems reasonable
to predict that for subsonic flow, the friction coefficient for the
tube-flow will be higher than that for the plate-flow of corresponding

free-stream Mach number,

(vi) As in the case of the plate-flow, the effect of com-
pressibility is to decrease the friction coefficient for the same
entrance diameter Reynolds number and length Reynolds number.

Fig. 26 shows the comparison of the local true friction co-
efficient for cases A and C at different entrance diameter Reynolds
numbers, All curves represent the sum of terms up to J"’ (equation
A-78). For the same entrance diameter Reynolds number and at the same
length Reynolds number, the effect of heating is to decrease the local
true friction coefficient,

Equation (A-79) indicates that f‘(—'%.i)/z is a function of
the length parameter only. Fig. 27 shows a plot of f}(%‘.l)/" versus
the length p;rameter for cases A, C, D, and G, For cases A and C, the
ordinate was calculated up to the sum of terms containing _S" , While
for cases D and G, this was calculated up to the sum of terms containing
S . (For convergence of the series solution, see Fig. 23). Correspond-
ing values for laminar flow over a flat plate are also shown for compari-
son, The effects of compressibility, pressure gradient, and heating at
the tube wall are shown clearly,

/2
First approximations to f,(—“—’b’i) were plotted in Fig, 28
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versus the length parameter for the eeven cases given in Tuble 1. The
ePfects of compressibility, heating and cooling at the tube wall are

clearly shown,

8. Mean Apparent Friction Coefficient

The mean eapparent friction coefficient, defined according to
equation (A-80), was calculated through equation (A-81) for incompress-
ible flow and through equation (A-82) for compressible flow. Fig. 29
shows a plot of the product of the mean apparent friction coefficient
and the length-to-diameter ratio versus the length perameter, for
different entrance Macn numbers ana thermal conditions at tne tube wall.
For cases A and C, the curves represent the sum of terms up to _53,
while for ceses D and G, they represent the sum of terms up to_j‘.

Comparison of Fig, 29 with Fig. 27 indicatee that the effect
of compressibility is the same on both the mean apparent friction
coefficient and the local true friction coefficient; viz., to give
higher values of the friction coefficient at lower entrance Mach numbers,
However, the effect of heating at the tube wall on the mean apparent
friction coefficient is just opposite to that on the local true friction
coefficient; viz., heating gives higher values of the wean apparent
Priction coefficient, and yet lower values of the local true friction
coefficient. This apparent discrepancy is due to the way the two fric-
tion coefficients are defined, The mean apparent friction coefficient
is related to the static pressure change along the length of the tube,

Using the knowledge developed in one-dimensional compressible-flow inside
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a constant—area duct that the effects on pressure change due to heating
and friction are in the same direction, it seems justified that the value
of the mean apparent friction coafficient. will be increased, when there
ie heating at the wall, On the other hand, the local true friction
coefficient is related to the radial velocity gradient st the well. When
there is heating at the wall, the boundary-layer thickness is increased,
the radial velocity gradient at the wall is decreased, and thersfore the

local true friction coefficient is decreased,

9. Local Heat~Transfer Coefficient

The local heat-transfer coefficient h,, defined through equation
(A-88), may be calculated from equation (A-93) in terms of the Nusselt
number, from equation (A-90) in terms of the Stanton number based on the
entrance mass velocity, or from equation (4-91) in terms of the Stanton
number based on the local mass velocity. Necessary data for computation
are given in Tebles C-3 and C-4, Appendix C.

It is to be noted from equation (4-9%) that the local Nusselt
number is a functicn of the length parameter only. Fig. 30 shows for
case C & plot of the Nusselt number versus the length parameter, The
curves represent the sum of terms up to “5“', with velues of n equal to
0, 1, and 2 (equation A-93). The convergence of the solution is apparent,

For comparison, curves for laminar flow over a flat plate with
zero pressure gradient were also plotted in Fig. 30 for both the incom-
pressible case (16) and the compressible case of free-stream Mach number

equal to 2.8 (17, 14). It is to be noted that the curve for compressible
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plate-flow was deduced from equation (63) of Chapman and Rubesin (17),
using the skin friction drag coefficient obtained in Emmons and Brainerd
(14) for an insulated plate. The usuel assumption of neglecting the
effect of heating or cooling on the shape of the velocity profile within
the boundary layer was made in the computation of this curve for com-
pressible plate-flow,

It is shown in equations (A-90) and (A-91) that the local
Stanton number, like the local true friction coefficient from equation
(A-78), is a function of both the length parameter and the length
Reynoldes number, In Fig. 31, the local Stanton nunber based on the
entrance mass velocity was plotted for case C at different entrance
diameter Reynolds numbers versus the length Reynolds number based on
the local core conditions. However, just contrary to what has been
observed for the local true friction coefficient (Fig. 26), the local
Stanton number based on the entrance mass velocity is higher at lower
entrance dismeter Reynolds number for the same length Reynolds number,
This apparent discrepancy is eliminated when the Stanton number based
on the local mass velocity was plotted in Fig., 32 versus the length
Reynolds number at different entrance diameter Reynolds numbers.

For comparison, Figs. 31 and 32 also show the local Stanton
number for laminar flow over a flat plate with zero pressure gradient
for both the incompressible case (16) and the compressible case of
free-stream Mach number equal to 2.8 (17, 14).

First epproximations to the local Nusselt number were plotted

versus the length parameter in Fig. 33 for cases B, C, E, and F, They
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were calculated through equation (A-93), using only the terms of zero
power of the iength parameter. Curves for laminar flow over a flat
plate with zero preseure gradient were also plotted for comparison for
both the incompressible case (16) and the compressible cases of free-
gtream Mach numbers equal to 2,0 and 2.8 (17, 14). It ie shown that
the effect of compressibility is to decrease the iocal Nusselt number
for the same length parameter and that, for a given entrance Mach

numkter, the lccal Nueselt number for heating is smaliler tnean that for

cooling.

10. Local Rate of Heat Transfer

Equation (A-88) indicates that the local heat-transfer co-
efficient is aefined on the basis of the difference petween the actuel
wall temperature and the adiabatic-wall temperature, the latter being
obtained as a funciion of the length parameter for the adiabatic case
of identical entrance Mach number,

It seems, however, thet some sort of justification should be
made for using thie temperature difference as the effective thermal
potential which ceuses the radial heat transfer. OCn the contrary, there
is reason to believe that this temperature difference should not be the
effective thermal potential for the radial heat transfer, For example,
due to the effect of heating or cooling upstream of a certain locaetion
on the shepe of the velocity and temperature profiles within the boun-
dary layer, it seems doubtful that the "equilibrium" temperature of the

wall, if it should be jnsulated at that location, would be the same &s
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the "adiabatic-wall" temperature for the case of a wall insulated all
along the length.

Difficulties with this usual definition of the local heat
transfer coefficient were encountered for the case of variable surface
temperature for the plate-flow (17). Difficulties may likely be present
@lso with the tube problem, even for the case of constant surface
temperature, if this surface temperature should be fairly close to the
adiabatic-wall temperature, For example, in equation (4-93), the de-
nominator may become zero at a certain value of the length parameter,
while the numerator may still remain finite, thus giving a heat-transfer
coefficient of infinity!

A different parameter is found necessary to correlate the rate
of heat transfer., A typical one, -&—% , related to the radial tempera-
ture gradient at the tube wall, is suggested through equation (A-94).

It was plotted for case C in Fig. 34 versus the length parameter, In
this same figure, the measured values of the heat~transfer rate, obtained
in the experimentel heat exchanger described in Shoulberg, et al. (13),
were also plotted versus the modified length parameter, It is to be
noted thet the measured rete of heat transfer is expressed in a form
analogous to the suggested parameter, except that in the experimental
case, the measured conditions et the firat station were used instead of
the sctual entrance conditions, Where the flow appears to be laminar,
fair agreement is observed between the measured and predicted values of

the rate of heat transfer,



11. Mach-Number, Fluid-Density, and Static-Temperature Dis-

tribution Inside the Isentropic Core

Fig. 35 shows the variation of the Mach number inside the
isentropic core for cases A, C, and 2, The core Mach number was
calculated from the isentropic pressure ratio, using Table 30 of "Gae
Tables" (18). For case A, two curves are shown, representing respec-
tively the values calculated from the pressure ratios up to the sum of
terms containing _S‘ and ‘53 (equation A-20). Convergence of the
seriee solution is fairly rapid. For case C, the curve was calculated
from the pressure ratioas up to the sum of terms containing _5’ , while
for case D, the curve was calculated from the pressure ratios up to
the sum of terme containing $* .

The ratio of the local core Mach number to the entrance Mach
number was plotted in Fig. 26 versus the length parameter for the same
three cases, Here, all the curves were calculated from the pressure
ratios up to the sum of terms containing $°. It is observed that, as
compared with case A, the drop in the value of this ratio of the local
core Mach number to the entrance Mach number with increasing length
parameter is more rapid for ceses C and D.

The ratios of the local core fluid density end the local core
static temperature to their respective entrance values were plotted for
cases A, C, and D in Figs. 37 and %8 versus the length parameter. They
were calculated through equations (A-22) and (A-21), using the values
of «, and t, given in Teble C-3, Appendix C. For case A, the ratios

Wwere computed up to the sum of terms containing _5‘ and 53 . Rapid
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convergence i:c again observed., For case C, the ratio was computed up
to the sum of terms containing :33 » while for case D, the ratio was
computed up to the sum of terms containing $* .

For given supersonic entrance Mach numbers, the effect of
heating ie to increase the rate of rise of both the density and tem-
perature ratios with increasing length parameter, Por given thermal
conditions at the wall, the case of higher supersonic Mach number shows
a more rapid rise of both the density and temperature ratios with

increasing length parameter.
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CONCLUSIONS

The differential equations for a steady, laminar, boundary-
layer flow in the entrance region of a tube were solved for the in-
compressible case and six compressible cases of constant Prandtl number
(0.74) for different entrance Mach numbers and different thermal condi-
tions at the tube wall (Table 1). The effects of compreseibility,
pressure gradient, and radial heat transfer at the vall were studied.
The treoratical reaults were compared with those for ivminar flow over
a flat plate with zero pressurs gradient and also with exper.mental
measurements made in the entrance region of a tube.

The theoretical reaults obtained in tnis thesis are valid
only where the laminar boundary layer existe and does not fill the
entire cross-section of the tube., The limiting ratic of the tube
length to tube redius, over which this preser.t arnalysis .is applicable,
is shown in Fig. 9, corresponding to entrance Mach numbers of 2.0 and
2.8 and different entrance diameter Reynolde numbers, It indicatss
that the limiting condition at low entrance diamoter Reynolds numbers
is the value of the length parameter of about 0,05, while at high
entrance diameter Reynolds numbers it is the value of the transitional
length Reynolds number of about 106.

It is observed from Fizs, 12, 15, 19, 22, 23, 30, 35, 37, and
38 that, since the velue of the length parameter is small, tne series
golution employed in this analysis converges very rapidly.

For given thermal conditions at the tube wall, both the



velocity-and temperature-boundary-layer thicknesses increase with
increasing entrance Mach numbers, For given enirance Mach numbers, the
effect of heating at the wall is to increase the boundary-layer thick-
nesees, while that ¢f cocling is to decreass the boundary-layar thick-
nesses,

The meessured values of static pressure, adiabatic-wall tem-
perature, and rate of heat transfer, obtained in the entirance region of
a tube, were compared with the respective predicted values, It is
observed from Figs. 13, 14, 16, 17, 20, and 34 that the agreement is
good where the boundary-layer flow appears to be laminar and does not
£ill the entire crnss—section of the tube,

With increasing length parameter, the fluid density, static
pressure, and static temperature inside the isentropic core increase
for all cases of supersonic flow, For given thermal conditions at the
tube wall, the ratios of the local core fluid density, local static
pressure, and local core static temperature to their respective values
at the entrance section increase more rapidly with increasing length
parameter at higher supersonic entrance Mach numbers. For given super-
sonic entrance Mach numbers, these ratios increase more rapidly with
increasing length parameter, when there is heating et the wall,

With increasing lengtli parameter, the core l.ach nuwber
decreases for all cases of supersonic flow. For given supersonic
entrance Mach numbers, the effect of heating is to decrease ths core
Mach number at the same length parameter, The ratio of the local core

Mach number to the entrance Mach number drops faster with increasing

26
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length paramster, if‘the supersonic entrance Mach number is closer to
unity.

The ratio of the adiabatic~wall temperature to the stagnation
temperature at a given length parameter decreases with increasing
entrance Mach number, Likewise, the recovery factor at a given length
parameter decreases with increasing entrance Mach number. Both the
recovery factor and the ratio of the adiabatic-wall temperature to the
stagnation temperature increase with increasing length parameter, The
recovery factor for the entrance laminar flow inside a round tube
agrees fairly well with that predicted for laminar flow over a flat
plate,

The following facts are observed for the local true friction
coefficient:

(1) Unlike the case of the plate-flow, the local true
friction coefficient for the tube-flow, when plotted versus the length
Reynolds number, depends also on the entrance diameter Reynolds numbers,

(ii) For constant entrance diameter Reynclds number, the
local true friction coefficient decreases with increasing length Reynolds
number,

(iii) For the same supersonic entrance Mach number and at
the same length Reynolds number, the value of the friction coefficient
increases with increasing entrance diameter Reynolds number, However,
for incompressible flow, its value decreases with increasing entrance
diameter Reynolds number,

(iv) The value of the friction coefficient at higher
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entrance diameter Reynolds number also lies closer to that for the
corresponding plate-flow, with a free-streem Mach number equal to the
entrance Ms.ch nuunber pertaining to the tube-flow.

(v) For supersonic flow, the friction coefficient for
the tube-flow is lower than that for the plate-flow of corresponding
free~stream Mach number., For incompressible flow, on the other hand,
the friction coefficient for the tube~flow ie higher than that for the
plate-flow, This reversal may be accounted for by the fact that the
pressure gradient along the tube in these two cases is just oppesite,

(vi) As in the case of the plate-flow, the effect of
compressibility is to decrease the friction coefficient, for the saume
entrance diameter Reynolds number and at the same locel length Reynolds
number,

(vii) The effect of heating is to decrease the friction
coefficient, while that of cooling is to increase the friction coeffi-
cient.

A mean apparent friction coefficient, defined through the
change in static pressure along the tube according to equation (A-80),
is found convenient for design purposes, It is shown that the value
of this coefficient is decreased due to the effect of compressibility
and is increased due to the effect of heating at the tube wall,

The local Nusselt number is found to decrease with increasing
length parameter. Its value is decreamsed due to the effect of com-
pressibility. For the same entrance Mach number end at the same length
paramater, higher Nusselt numbers are obtained with cooling than with

heating.



29

The local Stanton number is a function of both the length
parameter and the length Reyrnolds number. lence, unlike the case of
the plate-flow, it depends aleo on the entrance diemeter Reynolds
number, when plotted versus the length Reynolds number, However, just
contrary to what has been observed for the local true friction coeffi-
cient, the local Stanton number for supersonic flow, defined on the
basis of the entrance msses velocity, decreases with incressing entrance
diemeter Reynolds number., This is probably due to the manner this
local Stanton number was defined, When the Stanton number is formed
on the basis of the local mass velocity, it i3 found that its velue
increasee with increasing entrance diameter Reynolds number,

The local heat~transfer coefficient, defined on the basis
of the difference between the actual wall temperature and the adiabatic-
wall temperature, is found somewhat unsatisfactory for correlating
radial heat transfers at the tube wall, This is due to the fact that
the difference between the actual wall temperature and the adiabatic-
wall temperature is not necessarily the true thermal potential causing
the radial heat transfer. A new parameter j&%& is defined through
the radial temperature gradient at the wall, Its value depencs only
on the length parameter, and is found to decrease with increasing

length parameter,



APPEND A

DERIVATION OF EQUATIONS FOR THE LAMIMAR BOUNDARY LAYER

OF A STEADY, OOMPRESSIBLE FLOW 1. THE ENTRANOE REGION OF A TUBE

l, Asewsotions
{(a) B8teady flow

{b) Laminar boundary layer
() One~dimensiomal, isentropic flow inside the core
(d) Perfeot gee, with constant Op 2 A s and A
(e) Nogligible extermal tody foroe
() Inside the boundary layer,
u w, v= 5?-0 = 0
(8) dv/5 K1, and since opM/A = 0 (1) for most gases,
fr/s K1
2, Basie Equations
The basic equations of continuity, momentum, and energy in

terms of the Gibbs vector notation are:

(A=1)

z/oﬁ-vp—g'-v ﬁuv';)+ V,C“.é) (A=2)

vhere f = Vi; + ( v J‘)conjnpu
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2(pE)+v-(EpU) = (Y-V) v + T-(AVT) )

In tarms of the oylindrical coordimtes, with 3 = 3% = U=
[5— O , oconstant Op » AL and A\ , and using perfect~gas relationships,

P =PRT, E = oy, and o, ~cy =R (a-lt)
the basic uquations become,
2 2 _
o (1) + 35 (rpw) = o (a-5)
u 2 Lyud/ow  u ow
P ”’"’; -SE +3 amlon tx ?J)
, 2 w , o'
ru(Fe+ie -4 3E)  wo
2 Qw 2 2 ou L, oW
Llusy ”‘“"aj) 5'5“’3/_/“3}(5E+/L+2J)
Pw 1 dw , dw -
+ (5 *taont )‘) (-1
2
/Oc(u,94+w'3j) (u.-£+ar;}£)
12T 27T P “
= "(‘a"]i‘ taoxt aj*) +‘z/“[(2 +(/L j
+ Jwy p) Qw \*
-3(EE R ) v (5P EE (a-8)

3s Boundary-~Layer Equations

Assuming J/s {{ 1, and neglecting the small quantitlee of
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second order, the basic equations are reduced to

ﬁ(apu} + J(Afw) (a-5)
g—f = o0 (a-9)
ﬁ(u;?f;‘;-’ng’) =“§f a/t mgy)“'m)

LG (w5 ) = w5\ (ZE+ 3T
+/“(a ) (-11)

4, Transformations
The continuity equstion (A-5) ie automatically satisfied by

defining a stream function _{/ » Such that

) 3
fu./z, = - —a—f‘
. 14 ¢ (4-12)
S = SR j
Set
$= (_éz_ 7‘:_. _J_(__/_)"_ 2( FAe %
= \ar, A\ &) = a (4=13)

4/)-
—_ =3 2 %
CE = 2- B PR e
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where

Zu,a

S

Fes,

W
AL

_
Ry = S

Assume that the stresm function and the temperature within
the boundary layer can each be expressed in terms of a convergent

sories as followss

g = -a‘/zuc[S]Z(ij‘ﬁ(’;)+5"f3@)+“']
= - 2Ru (5710 (u-13)

7 [a()+56(5)+ $26,(3) +-]

~
0

= 713" 6.09)] (4-16)

Dencting {m(y) by f” , :é- by f , eto, and using
equations (A-12) and (A~15), one obtains

v E R sl Sh )

= £ RS @im
w = FBE[SE-2f) 5 Cfof)

+5(Jﬁ—v/{,)+



w o= —:—57{;5[_5m(mfm‘7f;»)] (a-18)

5,. Velocity, Pressure, Temperaturs, and Density Relstionahipe
1 ] 30

Assune

w=w(1+hS+hS+ESH )

=w (14 8 hm) (A-19)
p=RO+ASHAS HAS )

= 20+ 3™Bm) (1-20)
T =TO+LS+ LS L5+ )

= 7.(/+ jm/tn) (A-21)
L= plrraS+oaS 4008+ )

=L (+357a,) (a~22)

The relationships betwsen k,,‘, ,@,,, Zms a0d Oy, may be derived

by using the perfect~gas equation and the isentropic conditions inside

the core.

With the perfect~gas equation,

P = PRT, (a-4)
£(1+578)= R 7.1+ 8%, )(1+5™25)
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T.(+ S™ta) + 3 (14 S4n) = o4 3E

Equating the coefficients of the terms in same powors of the length

parameter and with the entrance Mach number M, defined by

2 afz'

M, = PV A (a-27)
one obtains,

t, = -(k-1)M, R, )
t, = (&M ( k+2R,) y (A~28)

’td = “'(k" ’)Moz(k,kz + é3) y

By elimineting the /3': from equations (A-23) and (A-2%) and

uning equation (A-28), there results,
K = -M"%, )
o, = ,vL"{ [a-k)ﬂ/lf—/]%b— R, }
&, = -2 [1- (M) %]

+ M (- 1k, MRy

(4-29)

and
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‘/Qﬂ//ozé,
| 8, = kZM, (M- 1) ,&,‘-— kM. %,

; m”(M,"- Nk é,, — M, Ry

e
|

r (4-30)
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6, Trarstormed Boundary-Layer Equations
The coantimuity equation (A-5) is automstically sstisfied by

the introduction of the stream function defined in equation (A-12).
Wiih the f'ollowing substitutions, the momentum equation (A~10)

ft combined with equation (A-9) may be transformed into equation (A-36):

r - 7" (5 N f"‘ (A=17)
| w = 2“5_@@) [5 (mfm 7/»~.)] (A-18)
=-(% ) )/z( 7b)(’a, (5m+n @»f 5“‘; 6 {j) (#-31)

(™" g0 f = fn]
S=GEEN + 57 flG 0929

°3 %
) 5”“‘;*]'-2‘—')7?6,,.9—;’#
/ + 5’;6n J

N

(A-32)
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5k = GRS R 54 )
fjmm-)'@‘ﬁ )
W B +25 T8
L+d-2 .. -
S e
¥, \a
s = 2(55) o
n = % | (a-35)
f = ﬁo(/‘f'j”)g,.‘,) (a-20)
M"LE /6?7', (a-27)
_,/7:.: = /- 475 (A-14)




-(/+5n/8n)[5m_l(mfm_7f;,)](5£+j-z€;f; +jtil—2’4/;)

L (37T ely0f -0 ]
s hoed |
£+£z

/‘[(1-,-)4—?47])

mtn+teo +j -3

& Ot ff

)14 5 7]

"45(’*5’%,1)(5”}'26‘.]; +51€+1—z,6,;/e;)
T0-498)0+ 578, )35 g {, +25% ,,f;) (a-36)

This equation (A-36) should be valid at any length sz or
length parameter 5 o Hence, the coefficients of the terms in same
powers of the length parameter, after being grouped togethsr on one
side of the equstion, should be identically equal to zero.

For the terms containing 5' s

e,f,“«r(zéﬁa,/,)/,. +(é;+é,/,)f: = 0 (A-3T7)

For the terms containing j , after simplification and com-

bination with equation (A-37):




&ﬁ.ir(zw@/’,)/i +(é+e)lz’,——afi)/i
+z(e,/f+éf)/z+){;6; +(z/f+/,/f)a;
v(frpl-f)a = M) 30

here

Hip) = #0-2f)af+af)-fef -+ (1-39)

Por the terms containing 51, after simplification and com-

bination with equations (A-37) amd (A-38)s
af{Jr {;292 + a,f,)fi +(a+af, —/za;f)ji
s Gl

+(f.f.+//%‘“2}é793 = HM,(») (4-40)

vhere
Hi(») = (479,—6,,)% +(—ze,f;—zé;—ﬂzez+d’)a; + 49,){;{
+(af-26f,-8 - O+3£0.- 388 + 45+ 46)f,
+ 448, +(=24 L4 8yl +41)6,
+(—.zf;/; + 49//}"+4/{"~/3,;f’7@
+{ﬁ,‘- z/f,)e,/,"—r k——%whﬁ,) + 4;4,/1’, (A-41)
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In a similar manner, it oan be ahown that for the terms

containing 5”1 (n 2> 2) the equation will be of the form,
af; +(26 + 9/’)/& +le + é,/, —(n—f)eszl,{f]ﬂ{f°
v rlaf+if ) + O +(2f+ PG,
+[/+/f “(h*')f;)]d, = /\/m—a(p) (A-42)

where /(,, ;(y) will be a function of » , containing Lo . {n 1}

6y Gy ees Ons ; and their derivetives, Note that when the value
of n is set to bo equal to 1, equation (A-42) is not reducible to
equation (A-37).

With the following substitutions, in addition to squations
(A-13); (A-14), (a~17), (4-18), (a-20), (A-27), (A=31), (A-33), and

(A=35), the energy squation (A-11) may be transformed into equation

(a-47),
= 7,(576.) (A-16)
Z8 .
:aa_E = ’()-é‘_j—) (:2,%) 7:(.5 é") (5_45)
7 To | pm-t :
'g; = ):; {5 [(m")am." 79’-»]/ (A-bk)

,,(7;_)4/7)[5»1-/ ;.‘) (T)(Z)/P*ys)/j '6.) (a-45)

G
g >~ (a-46)

I\
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ST STT a0 f)]
r0rsTB 5 4G5 - 98]
~()0+ 578 X5 e )
=-20+578.)(5"4.)
2201 578.) (57
HEGIM-495)(S™ aft 5070L)"

Again, this equation (A-47) should be valid at any length =z
or length parameter _5 o Hence, the coefficients of the terms in same
powers of the length perameter, after being grouped together on one side
of the equation, should be identically equal to zero.

For the terms containing 5" 3
L6+ 6+(5IM (af+6f) = o (a-18)

For the terms containing $ y after simplification and com~

bination with equation (A-48);s
Fo+fa-fo +26f.
+(%——/)Mz(6,%+t9,f)[%9‘+%9z +9,/i+¢9;f;)

= 1.(») (A~89)
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where

H.(y) = -6 +26-2(3 +29)6 - (AL )ﬁj{a (A=50)

For the terms containing 5" , after simplification and com-

bination with equation (A-49)s
a‘.,.‘@_, +}€¢9_, _ZI{;@ + 36/
+5mi(afref)fa+faraf+af) = Hity) wm

whers

Ha(n) = (6, -(—'%)ﬂa]ﬁ -2/6, +2¢3,+17)€l]]’1
_4‘@@+[}‘i~zm+zy)]e]e;
+ (ﬁ;/)ﬁ‘}_#?]ﬁ@_(ﬁ—;ﬁ 8

¢ Y2 G (5% 0+ 95 +29)]f.@

~CENgae )+ o] f e
(af+8fi+16+718)

- %;")Mf{ SRR -
+21’af+el/)(@/; +€;ﬁ)



It can be shown that for tho terms containing Sh—l(n 2 2),

the equation will be of the form,
Lo, + fié’;. *(n—/)ffé’n + ”61/”
(M (af+f)(fa+fa+ af. +af.)
= Hon-z(7) w2

where M,.-:(»)will be a function of » , containing f,, f; y eoe /n—/ ;
B,y 6,5 eee G, 3 and their derivatives., Note that when the velue of

n is set to be equal to 1, equation (A-53) is not reducible to equation

(A"“‘?)o

J. Boundary Conditions

With equations (A-17), (A-19), and (A~22), prcvided that an

isentropic core exists, one obtains,

“w = EHT A= S0
= w;(/+ 5°%;)

Or,

(§™f) = 20+ S0)(14 5°4,) (a-54)

With equation (A=29),



(f:)c =z w
(f;)c = 2(k,+a) = 2(-M") £,

Y (a-%5)

(f;)c =2(k,+ A +)
=24,(-M,>) - k,‘M,‘[J -(2-% )M,‘] }

etc.

Or, in general,

(fn«r/)c =< Zn/é,, C(n.—i,

<=0

with g (A-56)

b ==/, n=01 2" )

With equations (A-16) emd (A-21), provided that an isentropic

core exists, one obtains,

7. =7(5""8.). = .(+57C.)
or,

(s7'a,) =/+5 "L (a~57)

With equation (A-28),



(Zz)c =/ )

@) =1, = -(A-1)M,4, r (A-58)
(). = 1. = ~(h-DM (hut %) )

atc.

Or, in genersl,

(gni'l)c = tn

with (A-59)

The above boundary conditions are satisficd at the outer edge
of the boundary layer, provided that an isentropic core exisis, As a
1imit, they are satisfied as the radius r approaches zero, or as the valus
of approaches 2:-’3 o

At the wall of the circular tubs, r =4a, or )= 0 for

finite length z:

u =0, or with equation (A-18), £ (0) = O (A~-60)

w =0, or with equation (A-17), a.?n () = © (A~61)
For an adiabatic wall,

2L =0, or with equation (A-43), 5n (6) = 0 (A-62)
For a wall maintained at any arbitrary temperature distribution,

L = (5" 0n)y = Ow (4-63)
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vhere
@, = the function of the length parameter 5 , representing the
given arbitrary temperaturs dietribution at the wall.
Equations (A-56), (4=~%9), (A-60), (A-61), combined with either
(A-62) or (A=63) give the required boundary conditions for solving the
differential equations (A-37), (A-42), (A-48), and (A-53).

8, Evaluation of GQonstants &

a a_ 7
Mass Rate of Flow _— D _,_.-9!
=,27rj/°a)'/zabb——2/4:a/ B/Laéb
[-]

el Any Length z
= Zﬁ{g:a -ZL’O)

/?u,o' 77-0_2' — oonstant (A-64)

\

vhere [, _, &nd .‘PA“ are eveluated at{ their respective radii at
a centain length z or length parameter § .

From equations (A-15) and (A-60),

—'la,_—. N = 0 (A=65)

Also, from equation (A-15),

ﬂ::a = —Q%M(Sm/m)ﬁ;o (A-66)

Substitution into equation (A-64) gives

(S fheo = % a=sn)
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Integration of equations (A-55) and (A-56) .ives
(fﬁ)L = Rn+ C, )
(Iz‘},)C 2(k,+a,)y + C, r (A~68)
(fs).

1

i

Z(h + Ra+a)y + (5 )

eta,

Or, in general,

(fm)c = z(é:é Ofm-,-z,)7 +Com (A-69)

where C; , Cp , « . . are the respective integration constants.

/
At r =0, or )-——’;3’, ons obteains,

(f’"')/»:o = Zlf(z ééa/m—/—é + C-”‘ (a-70)

Substituting equation (A-70) into equation (A-67) and equating
the coefficients of the terms in same powers cf the length paramster,
one obtains,

Zh . +2Cn =0

(=0
with - (a-71)




In particular,

C, = ‘E/(é,“x,) = -%(Mf« /)

G =-5(kthota)
f&4l e 27
= _ﬁ}(Mol— /) + __él:?-_g_[j (Z /é)M,,J}
etc,
Or,
2 C, 3
/éi, - jhsz;'/

é 26 __2M[3Czkﬂﬂj
oM (M>-1)

eto,

Sumeary of Important Relationsahips

Combining equations (A-17), (A-4), (A-16), (A-21), (A-22), and

(A-19), ons obtains,

w = ™" G
@ 20+ 5*a)1+ L)1+ ST R))

Combining equations (A-16) and (21), one obtains,
et
T _ .S 75

S

Te 1+ %L

The shearing stress at the tube wall is found as

2 .
’Z:V = f;/4‘<(§5=§,L=,ab

49

)

} (A-T72)

r (A-T3)

(A=Tk)

(A-75)

(A=76)




¥ith equation (A-31) and defining ths local true friction

coefficient rz as

f) = L pu* (A-77)

one obtains,

By omemen o
f=H B AN 5] 5 fur5d ), aere
Or,

HCR = AN (5™ e fo o500, oo

A mean apparent friction coefficient ta convenient for design
purposes may be defined as
4il) = S o
20U,
where
AF_-—-_ Py — Ps for incompressible and subsonic flows,

and

AP:’E P = Py for supersonic flows,

For incompressible flow, using equation (25) of Atkinson and

Goldetein (10) and Bernoulli's relationship,

4hil(B) = O+ SR - 1 e
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For compressible rlow, with equations (A-20), (A-4), and

(A‘27) ’

V2 = (57 e

Assuming a constant value of the absolute viecosity and

using the respective definitiona of the two length Reynolds numbers,

\

_ wy
Ry, =
and > (A-83)
— Wz
/caic = > y
one obtains,
/‘ﬁq, _ D w,
Fe,. A ufc) (4-84)

The local recovery factor r is defined through the following

equation:
— _ Taw-Te _ [ Taw ____)/_z;____ (A-85)
SR A (% (
With equations (A-16), (A-21), and the well-known adiabatic
relationship
s ‘é—/ *
;., = /1+EIM, (4-86)
one obtairs,
jm-la ‘/o) -(/+5n[)
(a-87)

= T+ EEIm) -1+ 57L)
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The loocal heat-transfer coefficient h, based on the differeance
of actual wall temperature and the adiabatic-wall temperature is obteined

through the thermesl boundary condition at the tube wall,
T — 7T
7= 7\(;),,,21% = /9(7;‘ Jaw) (A-88)

The ediabatic-wall tomperature is obtained as the function of the length
paramster for the adiabatic case of identical ontrance Mach number,

With equations (A-43), (A-16), and defining

G. = Lw;
G,

(4-89)

I

S we
one obteins,

by — 1y n Y (570,
5'7%: 20 (w;;) (Sn_lgn)w—(jé‘/@é aw

(A-50)

or,

,l') - ___/___ _G"g /1' )/c Zl (5m-/éaL— (5-91
A s (570, (580

Since i
D _ b\ GDY/& 1
AR = () 2P)(%) (ms2)
one obtains, j
(S™ 7 G B
'/JJ)'\_D— = - n-1 2 _/ei-! (a=93) 1
(ig 6L)w (:§ 62)0“' 'E
¥ith equations (A-43) and (A-88), one obtains,
?a/)‘z = "é_(jmdém)w (A-94)

B AL R S S SR T ey A 4 SR L 2 £ gupd e ana T



AFPENDIX B

METHOD OF SOLVING THE DIFFERENTIAL EQUATIUNS

WITH THE AID OF THE M.I.T. DIFFERENTIAL ANALYZeR

The transformed boundary-layer equations derived in Appendix
A (A-37, A=42, A-UE, and A-53) were solved with . he aid of the M.I.T.
Differential Analyzer, Since there are available only eiphteen
integrators in this differential analyzer, the following transformations
#erns made, so that the machine may be used to solve these simultaneous

differential equations:

and
= ¢ ” Z -
F = glfn + flen s ¥ith n 2 2 (B=-2)
Equations (A-37) and (A-48) are thus transformea into
F + £gF = 0 (B-3)
and
| oo . "t‘l 2 *2
Bquations (A-42) and (A-53) are transformed into, with n 2 2,
and

‘00 . Ld .
o 1t f18, - (n-1)fjo, + nfe,

k_' * o _ .
+ 2 Mﬁ "E, = Kono (7) (B-6)




Sl

It is observed that the first set of the differential
equations (B~3 and B-4) are non-linear, while the generel uifferentisl
equations with n 2 2 (B-5 and B={) are linear.

It is also observed from equaticne (A-56), (A-59), (A~=60),
(A-61), (A-62), and (A-63) that the boundary conditions of the
differential equations are known at two boundariee; viz,, &t the tube
wall and at the outer edge of the boundary layer.

Since the equations (B-3) and (B-4) are non-linear, it was
necessary to guess él (0) and @, (0) or él (0), and to run the
differential analyzer to some large value of 7 , If the final values
of Fl and 9, approach asymptotically 2 and 1 respectively, the

L[] L]
original choices of F; (0) and ©; (0) or &, (0) were satisfactory.

Since the equations (B-5) and {B=6) are linear, it is not
necessary to use this trial-and-error method, Linear combinations of
the solutions to the gensral differential equations and the corre~
sponding homogeneous differential equaticns may be adjusted to satisfy
811 the boundary conditions, For example, for case A (Mo==2.8, adiabatic
wall j and n = 2, the requirad boundary conditions ares

[ ] .
At ) =0, f,=1£f, =0, =0 (B-7)

As %) —> large, 2’2 — 2(1--}42 )kl
° (B-8)

2

With the transformation equation (B-2), the required boundary




N
A\

cenditions become,
AL =0, f,=F, = 0, = 0 (6-9)
As % —>large, Fy — 2(1-kMS )k,

(B~10)
e, —» —(k-l)M2 k
2 o 1

Let the general differential equations be dencted by
L, () = K, (9
L, () Ky ()

and the corresponding homogeneous differential equations be denoted by

|

0

I

L (2)
The required solutions F2 and 6, mey be represented by the following

linear combinations:

(B-11)

8y = Oy t POy + o€y,

2
where F2a’ °2a5 F2b’ °2b5 and F2c’ 8,, are respectively the solutions
to the differential equations, which are liested in Table B-1 in the

columns headed by the same letters as those of the subscripts. The

corresponding initial conditions are also shown,



0
<

TABLE B-1

(2a) (2b) (2¢)
Differential L (7)=K Ly (»n) =20 Ly () =0
Equations 1,2()))=K2 L, () =0 L, () =0
£, (0) 0 0 0
F, (0) 0 0 o
F, (0) 0 1 £, (0)
e, (0) 0 0 1
52 (0) 0 0 0

According to equation (B-10), the constant coefficients
b and o in equation (B-11) are obtained by eolving the following
simultaneous algebraic expressions;

As ) — large,
2
(B-12)
Opp t+ bOy, + oy —» =(k=1)MC K,
With b and ¢ thus determined, the required solutions in

terms of F2 and 92 are obtained through equation (B-11). In particu-

lar, the required initial conditions are



£,(0) = F, (0) = &, (0) = 0
F, (0) = b + cf, (0) (B-15)
e, (0) = ¢

With either heating or cooling at the tube wall, 65 (0) 1is
given according to equaticn (A-63), but éb (0) needs to be determined,
A similar method may be followed to find the required eolution, by
using the linear combinations

Fy = Fpy + bFy, + cFy  + dFyy
(B=14)

where Fog, 92&; sz, 92b; F2c’ 92c; and de, de are respectively tne
solutione to the differential equations, which are listed in Table B-2
in the columns headed by the same letters as those of the subscripte.

The corresponding initial conditions are also shown,
TABLE B-2

(22) (2b) (2¢) (2d)

Differential Ly (7)=K; L; (9)=0 L (»)=0 1L

£, (0) o 0 0 0
F, (0) 0 0 0 0
F, (0) 0 1 £, (0) 0
6, (0) 0 0 1 0

9, (0) 0 0 0 1



The constant coefficient ¢ 1is determined from the given
value of 6, (0), while b and d are determined by solvin, ths
following simultaneous algebraic expressions:

As » —> large,
2
2 (B=15)

With b, ¢, and d thus determined, the required solution is
obtained through equation (B~14). 1In particular, the required initial
conditions are

£,(0) =F, (0) = 0
9, (0) = ¢
. v (B-16)
Fp (0) = b + cf (0)

8, (0) =d



APPENDIX C

TABULATION OF RESULTS

TABLE C-1

Limiting Values of » for Calculation

of Boundary Layer Thicknesses

Case Entrance Mach Numbe: Thermal Condition at Wall ", N
A 2,8 Adiabatic 3.9 44
B 2.8 Cooling, 6, =2 3.7 4,2
c 2.8 Heeting,, 6, = 3 4,5 4.7
D 2 Adisbatic 5¢7 4,1
B 2 Cooling, ©,~1.445 3.5 4,0
F 2 Heating, ©,%2.167 3.9 4,2
G Incompressible Adiabatic 22



TABLE C-2

Values of Fn and Gn

(1) Caso A, My = 2.8, Adisbatic

2 . O _fa. S s
0 0 2.330 0 0.85 0
0.5 0.484 2,262 4,99 0.97 5.8
1.0 0.953 2.065 11.51 0.52 4o, 3
1.5 1.371 1.775 17,64 1,03 96,1
2.0 1.691 1.465 21.75 -2,50 144,45
2.5 1,886 1.22C 22,82 -2.18 130,2
3.0 1.971 1.079 21.99 ~0,23 67.8
3.5 1.996 1,022 21.20 1.72 37.0
4,0 2,001 1,005 21,01 2.77 30.8
4.5 2,001 1,002 20.95 3.09 29.6
5.0 2.001 1.002 20.95 3,17 29.7



TABLE C-2, Continued

Values of Fn and en

(11) case C, ¥, = 2.8, Heatins, 6_ = 3

¥ R 6, Fy 65 P 6,
0 0 3 0 0 0 0
0.5 0,451 2.803 L, 84 0.01 -2.% 7.1
1.0 0.891 2.495 11.35 -0.60 264 14,0
1.5 1,293 2.107 18,16 =244 109.1 12.1
2.0 1.620 1,703 23,42 ~h,47 190.7 11,2
2.5 1.840 1,364 25,61 ~4,67 214,5 23.5
340 1.953 1.147 25.15 -2.37 134.7 67.9
3.5 1,992 1,046 24,02 0.65 52.9 7042
4,0 2,002 1.011 23,42 2,63 30,6 4o.7
4,5 2,003 1,00% 23,27 3.42 29,1 14,5

5.0 2,003 1,002 23,28 3,61 30.4 2,6
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TABLE C-3

Values of 3., t,, X, and ¥k,

Case ._/i]_-_ Ao _ffj_ 2! to Y
A 11.29 50.1 248 2,225 1.35 59.2
B* 10.53 3.008
c 12,78 60.2 330 5.650 0.559 58.8
D 10,27 57.9 2,954 0. 77
E* 9. 434 2,696
e 11,70 3. 344

Case x4 X, Xy ky ko ks
A 8.063 22,8 125 -1.028 ~0.951 -13.5
B* 7.519 -0.9591
c 9.126 26.4 170 -1,164 -0.855 -19.7
D 14335 30.6 -1.834 =5.29
E* 6.739 -1.685
e 8.360 -2,090
G 3,474 ~9.16

* Coamrutatiorsfor n = 2 are still in progress,




Case

B*

Q

Case

B*®

Q

L

F,(0)

C.971
1,013
0.903
1.099
1.347

1,024

8;(0}

2,330
2
3
1,685
1445
2,167

Velues of Fn(O), fn(o)ﬁ

TABLE C-4

L]
0,(0), and 6,(0)

F,(0)

Te7

7.6
4,1

65(0)

0.85

0.66

%j(o)
-17

63(0)
1.8

7,(¢)

0.417
0.507
0.301
0.6%%
0. 794
C.473

1,328

51(0)

0
0.154
-0.277

0
0.124

62(0)

-0005'9

* Computatiomsfor n = 2 are still ir progress.

63
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APPENDIX D

RECOMMENDATIONS FOR FUTURE WORK

Along with the "exact® analysie presented in this thes le,
some preliminary work was done, based on the Karman—~Fohlhausen integral
method, in which a linear velocity distribution wne assumed to exist
inside the laminar boundary layer of a steady, compressible flow in
the entrance region of a tube, The predicted distribution of tne
static pressure along the length of the tube obtained with this approxi-
mate method was found to agree fairly well with that obtained in the
more exact analyeis presented here, It appears very encouraging to
extend this approximate method by employing a parabolic velocity diestri-
bution inside the leminer boundery layer.

The present analysis shculd be extended to cover the region
where the laminar boundary layer already fille the entire cross-section
of the tube, The transitional and turbulent regimes of the tube flow
should also dessrve thorough investigations,

Using the theoretical results obtained in this thesis, the
provlem of stability of the laminar boundary layer of a steady, com
pressible flow in the entrance region of a tube may be anslyzed in
detail,

With the present ammlysis, the effect of variable eurface
temperature may be investigated, It has been shown in Appendix B that

the value of the constant coefficient ¢ in equation (B-14) may be



assigned arbitrarily according to a given distribution of the surface

temperature at the tube wall, the values of the constant coefficients

b and d may be calculated through the algebraic expression (B-1%), and
a new set of values may then be obtained for the functions F.(7) and

€. (7).

One of the assumptions made in the pressant snalysis is that
the value of the absolute viscosity of the compreseible fluid is tanen
a8 a constant, However, the effect of the change in absolute viscosity
with temperature should be carefully studied, The method presented
here may easily be extended to cover the case where the absolute vis-
cosity is represented by a power series of the absolute temperature
with integral exponsents.

In order to obtain a better understanding of the tube problem
presented here, it is worihwhile to measure experimentslly with a tiny
probe the velocity and temperature profiles inside the boundery leyer,
the radial distribuiion of static pressure across any section of the
tube, the effects of the interactions between shock and transition on

the radial distribution of the static pressure, etc,, etc,
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FIG.29 +F() VERSUS LENGTH FPARAMETER,
FOR DIFFERENT ENTRANCE MACH NUMBERS

AND THERMAL CONDITIONS AT TUBE WALL
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F1G.33 FIRST APPROXIMATION 70
L OCAL NUSSELT NUMBER
VERSUS LENGTH PARAMETER,

FOR DIFFERENT ENTRANCE MACH NUMBERS

AND THERMAL CONDITIONS AT TUBE WALL

AT PLATE, M=0, hD/A = 060//5
M=2, h)D/A = 04‘?5/5

M =28, hD/N= 0438/5

COOLING, Gy = /445, M, = 2

HEATING, 8, = 2167, M, =2
8,=3,M, =28
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THEORETICAL PREDICT/ON
FOR LAMINAR BOUNDARY

LAYER, M, =28, HEATING,
7w/7; =

NUMBERS INDICATE
(Rey)., %10

AUNNO.  SYMBOL (RepdyX16°  Tu/Ta

H-20 @) 070 32
K-19 ) /.25 3.2
K-22 $) 2.0 3.2
K-21 @ 2.7 3.2 \

FIG.34 MEASURED VALUE OF §e/(AT),
VERSUS MODIFIED LENGTH PARAMETER,
HEAT -TRANSFER APPARATUS (/3)

AN)

5 /0 50
MODIFIED LENGTH PARAMETER, 2(5) m——")a)",wo‘
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