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Abstract
Perceiving accurate 3D object shape is important for robots to interact with the
physical world. Current research along this direction has been primarily relying on
visual observations. Vision, however useful, has inherent limitations due to occlusions
and the 2D-3D ambiguities, especially for perception with a monocular camera. In
contrast, touch gets precise local shape information, though its efficiency for recon-
structing the entire shape could be low. In this thesis, we propose a novel paradigm
that efficiently perceives accurate 3D object shape by incorporating visual and tactile
observations, as well as prior knowledge of common object shapes learned from large-
scale shape repositories. We use vision first, applying neural networks with learned
shape priors to predict an object’s 3D shape from a single-view color image. We then
use tactile sensing to refine the shape; the robot actively touches the object regions
where the visual prediction has high uncertainty. Our method efficiently builds the
3D shape of common objects from a color image and a small number of tactile ex-
plorations (around 10). Our setup is easy to apply and has potentials to help robots
better perform grasping or manipulation tasks on real-world objects.

Thesis Supervisor: Edward H. Adelson
Title: John and Dorothy Wilson Professor of Vision Science

3



4



acknowledgments

I would like to first express my gratitude to Prof. Edward Adelson. It is my privilege
to have him as my advisor. Ted is extremely knowledgeable and always shares wisdom
us. More importantly, he has been very inspiring and encouraging. From him, I
learned to aim for top-quality research, and how to refine the work step by step
without haste.

I would like to say thank you to Prof. William Freeman for being a great academic
advisor and sharing valuable experiences.

A special thank you to my best friend and roommate, Bai Liu, for all the support-
ing and discussion. He always encourage me when I was trapped by research problems.
I also would like to say thank you to Dr. Wenzhen Yuan, from whom I have learned
a great deal about how to be a good researcher. Her constructive suggestions and
insightful ideas helped me so much.

I would thank my labmate for making the lab such a lovely group, Branden
Romero, Sandra Liu, Achu Wilson, Filipe Veiga, and Yu She. I would also appreciate
all the help and accompany from my friends, especially Siyuan Dong, Dongying Shen,
Jiajun Wu, Xingyuan Sun, Zhengdong Zhang, Changchen Chen, Lei Xu, Yue Wang,
Fengyi Li, Xiaoyue Gong, and Yilun Zhou.

Finally, I want to thank my parents for always believing in me and supporting me
unconditionally in the past years.

5



6



Contents

1 Introduction 13

2 Related Work 17
2.1 3D Shape Completion from Vision . . . . . . . . . . . . . . . . . . . 17

2.1.1 Matching from Database . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Completion by Structure and Regularities . . . . . . . . . . . 19
2.1.3 Gaussian Process Implicit Surface . . . . . . . . . . . . . . . . 20
2.1.4 Neural Network-based . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Tactile Sensing for Shape Reconstruction . . . . . . . . . . . . . . . . 22

3 Method 25
3.1 3D Reconstruction from Vision and Shape Priors . . . . . . . . . . . 25

3.1.1 2.5D Sketch Estimation . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 3D Shape Estimation . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Tactile Sensing for Shape Refinement . . . . . . . . . . . . . . . . . . 28
3.2.1 3D Reconstruction from GelSight . . . . . . . . . . . . . . . . 29
3.2.2 Registration of World and System Coordinates . . . . . . . . 29
3.2.3 Updating Shape Reconstruction with Touch . . . . . . . . . . 30

3.3 Policy for Active Tactile Exploration . . . . . . . . . . . . . . . . . . 32

4 Experiments 35
4.1 Robotic System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Conducting Touch without Collision . . . . . . . . . . . . . . . . . . 36
4.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7



4.5 Shape Priors and the Exploration Policy . . . . . . . . . . . . . . . . 38
4.6 RGB vs RGB-D Input . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Conclusion and Future Work 43
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2 Immobilization . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.3 Evaluation on Robot Tasks . . . . . . . . . . . . . . . . . . . 44

8



List of Figures

1-1 Our model for 3D shape reconstruction. It first reconstructs a rough
3D shape from a single-view color image, leveraging shape priors learned
from large-scale 3D shape repositories. It then efficiently incorporates
local tactile signals for shape refinement. . . . . . . . . . . . . . . . . 14

2-1 Matching from database [1] . . . . . . . . . . . . . . . . . . . . . . . 18

2-2 Shape completion from different types of symmetry [2]. Blue: partial
observation; Green: shape from symmetry. . . . . . . . . . . . . . . . 19

2-3 Gaussian Process Implicit Surface representing (a) A simple ”blob”
defined by 15 points on the surface, one interior +1 point and 8 exterior
-1 points arranged as a cube; (b) Two views of the Stanford bunny
defined by 800 surface points, one interior +1 point, and a sphere of
80 exterior -1 points [3] . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2-4 3D shape completion using Convolutional Neural Networks (CNN) and
3D shape synthesis for refinement [4] . . . . . . . . . . . . . . . . . . 22

2-5 (a) A cookie is pressed against the skin of an elastomer block. (b) The
skin is distorted, as shown in this view from beneath. (c) The cookie’s
shape can be measured using photometric stereo and rendered at a
novel viewpoint. [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3-1 An overview of our interactive system that estimates 3D shape from
monocular vision, touch, and shape priors. . . . . . . . . . . . . . . . 26

9



3-2 Our model has three major components. It first estimates the object’s
2.5D sketches (depth, surface normals, and silhouette) from a single
RGB image. It then recovers a rough 3D shape from them. Third, it
integrates tactile signals to update the latent shape encoding and to
generate a refined 3D shape. . . . . . . . . . . . . . . . . . . . . . . . 27

3-3 Tactile signals on different parts of the object and the corresponding
3D reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3-4 Reprojection loss for touches. (a) When the sensor makes a touch
attempt but fails to reach the object, the voxels along its trajectory
should all be 0. (b) When the sensor contacts the object, the corre-
sponding voxels should be 1, and all voxels in front of it along the
trajectory should be 0. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3-5 Our policy on finding the next place to touch. (a) A 2D search grid
overlaid on the voxel grid, where the confidence values of the voxel
prediction are assigned to the search grid. (b) After the assignment,
we compute the integral map and use it to efficiently search for the
region of maximal uncertainty. See text for details. . . . . . . . . . . 32

4-1 Results on 3D shape perception. From a single RGB image, our model
recovers a rough 3D shape using shape priors. The reconstruction
often captures the basic geometry, but deviates from the actual shape
in various ways. The results improve gradually with touch signals.
For example, for the bell-shaped bottle in the last row, the initial
reconstruction is too fat (best seen from the top-down view). With
tactile signals, our model recovers its flat shape. Our system also
corrects object pose, as shown in the water bottle case. . . . . . . . . 36

4-2 We show the effects of shape priors and the policy. If we Direct Edit
the voxels’ value (not using learned priors to update), each touch can
only be used to update the shape locally. The shape does not change
much even after many touches. With Random Policy, it takes longer
for the model to obtain fine shape structure. . . . . . . . . . . . . . . 38

10



4-3 The two priors on the sugar box. A network trained on general shapes
predicts a less accurate shape, which is later corrected by touches. A
network trained on box-like shapes gives better results. . . . . . . . . 39

4-4 Shape estimation accuracy with respect to the number of touches, mea-
sured in Chamfer distance. Our policy recovers the shape accurately
and efficiently. With Random Policy, it takes much longer to recon-
struct a reasonable shape; if we Direct Edit the voxels’ value (not using
learned priors to update), the object is hardly updated after each touch.
The Human method asks a human to manually select where to touch
for each step and can be seen as a reference for comparison. . . . . . 40

4-5 Our method can use either our estimated depth maps or Kinect depth
maps. A Kinect depth map can be helpful if it is accurate: for ex-
ample, the initial reconstruction of the left bottle is flatter using the
Kinect depth map. However, if we purely rely on Kinect depth, our
reconstruction would not be as accurate when the Kinect depth is
inaccurate (see the transparent water bottle). . . . . . . . . . . . . . 40

11



12



Chapter 1

Introduction

For a robot to effectively interact with the physical world, e.g., to recognize, grasp,
and manipulate objects, it is highly helpful to know the accurate 3D shape of the
objects. 3D shape perception often relies on visual signals; however, using vision
alone has fundamental limitations. For example, visual shape perception is often
ambiguous due to the difficulties in discriminating the influence of reflection [6]; real-
life occlusions and object self-occlusions also pose challenges to reconstruct full 3D
shape from vision. The use of depth sensors alleviates some of these issues, though
depth signals can also be too noisy to capture the exact object shape, and depth
measurement is largely impacted by the object’s color or transparency.

Touch is another way to perceive 3D shapes. The majority of tactile sensors
measure the force distribution or geometry over a small contact area. A robot can
use multiple touches, combined with the position and pose of the sensor in each touch,
to reconstruct an object’s shape without suffering from the ambiguity caused by its
surface color or material [7]. Tactile sensing is however constrained by the size and
scale of the sensor: as each touch only gets information of a local region, it may take
many touches and a long time to reconstruct the full shape of an object.

A natural solution is to use tactile sensors to augment vision observations, just as
human use fingers—using vision for rough shape reconstruction and touch exploration
for shape refinement, especially in occluded regions. For example, Bjorkman et al. [8]
explored refining visually perceived shape with touch, where they used a depth camera
for a point cloud, a three-finger Schunk Dextrous hand for tactile data, and Gaussian
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Figure 1-1: Our model for 3D shape reconstruction. It first reconstructs a rough 3D shape
from a single-view color image, leveraging shape priors learned from large-scale 3D shape
repositories. It then efficiently incorporates local tactile signals for shape refinement.

processes for shape prediction.

In this thesis, we propose a model that estimates the full 3D shape of common
objects from monocular color vision, touch, and learned shape priors. We first use
vision to predict the full 3D shape of the object from a monocular color and/or
depth image, leveraging the power of 3D deep learning and large-scale 3D shape
repositories. Specifically, our model is trained on many 3D CAD models and their
RGB-D renderings; it learns to reconstruct a 3D shape from a color image by capturing
implicit shape priors throughout the process. It generalizes well to real scenarios,
producing plausible 3D shapes from a single image of real-world objects.
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We then let the robot touch the object to refine the estimated shape. The tactile
sensor we use is a GelSight sensor [9], which measures the geometry of local surface
with high spatial resolution. By touching object surface with GelSight, the robot ob-
tains additional constraints on the object geometry. Instead of making a local update
to the reconstruction for each touch, which is inefficient, we incorporate local tactile
constraints to refine the shape globally using the learned shape priors. Moreover,
we propose an exploration policy that actively selects the touch point to maximally
reduce the uncertainty in the shape prediction. This helps to reduce the number of
touches needed.

We aim to make the system efficient and easy to apply. For efficiency, we use only
one visual image and a few touch explorations (5–10 touches); for system simplicity,
we use a fixed color camera and a tactile sensor on the effector of a 6-DOF robot arm.
The setup can be easily applied to other robots as well.

We test our system on multiple common objects, and show that with a small
number of touch exploration, the robot can predict the 3D object shape well. We
also present ablation studies to qualitatively and quantitatively validate the effect of
our learned shape priors and the active exploration policy. The system can be easily
applied to other robots that have a high degree-of-freedom arm and an external color
camera. This enables the robot to effectively perceive 3D object shape and to interact
with the object.

15
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Chapter 2

Related Work

2.1 3D Shape Completion from Vision

The problem of reconstruction of full 3D shapes from depth maps or partial scans can
be defined as 3D shape completion. It has been widely studied in robotics, computer
vision, and computer graphics. The input is partial observations of 3D objects, usually
taken from depth cameras which tend to be noisy and have missing data. The goal
is to predicate possible full 3D shapes from the observations. Compared to partial
observations, the estimated full 3D shape can help robots perform better on tasks
like grasp planning [10] [11].

Researchers explored different methods to solve this problem, including matches
from the database, completion by structure and regularities, Gaussian process implicit
surface and neural network based methods, etc. The following part gives an overview
of different methods and discussion about their advantages and disadvantages.

2.1.1 Matching from Database

Since it’s challenging to directly estimate the full 3D models, researchers explored to
leverage the power of the database. The idea is to find the nearest neighbors in the
database to represent the object given the partial scan. By this way, it’s guaranteed
to generate a real object from the database without hallucination.

The key techniques are how to separate different objects from a scene, and how
to effectively retrieve the most similar 3D models from the database.
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Figure 2-1: Matching from database [1]

Shao et al. [1] applied a conditional random field (CRF) to segment different
objects. And they posed the model matching problem as a model instance recognition
problem, trained a random forest on rendering depth images to model index in the
database. The extracted features include depth difference, normal structure tensor,
geometry moment and spin image. For pose estimation, they extended the random
forest so that the children of each node also have different transformation distribution.

Nan et al. [12] proposed search-classify region growing method for segmentation,
which trained a classifier first and iteratively expand the regions to maximize the
prediction confidence. To fit the real data better, a non-rigid deformation based on
iterative closest point (ICP) is applied on the template of each class. The features
are based on the size ratio of the bounding box of different parts and angles between
different parts.

Li et al. [13] extended classic 2D image stitching framework to 3D model matching.
They first extract key points based on 3D Harris feature; then calculate the global
and local descriptor for the key point based on signed distance function (SDF); finally,
run random sample consensus (RANSAC) to match the 3D models.

In terms of evaluation, [1] [12] [13] mainly focused on running time, recognition
accuracy and qualitative results.

The methods based on database guarantee to generate shapes that exist in the
real world, and in many cases, the models from the database are good enough in
tasks like scene understanding and navigation. The limitation is that it’s difficult to
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generalize to new objects if there are no similar objects in the database. And due to
the hardware limitation of the depth sensors, only using depth information makes the
methods difficult to perform well on small, thin, reflective, or transparent objects [13].

2.1.2 Completion by Structure and Regularities

Most of the man-made objects and many natural objects have symmetry and struc-
tures in them. In computer graphics, [14] showed that a lot of objects can be
decomposed by a small number of parts with repetition, mirror, scale, and transfor-
mation. So when 3D scan missing some information, the structure and regularities
can be used for 3D shape completion. The key technique is how to find symmetry
and structures based on partial data.

Figure 2-2: Shape completion from different types of symmetry [2]. Blue: partial observa-
tion; Green: shape from symmetry.

Thrun and Wegbreit [2] proposed shape completion from different types of symme-
try, such as plane reflection, line reflection, point reflection, axial symmetry, spherical
symmetry, and composite symmetry, etc. Given the partial data and the parameters
of the symmetry plane, axis, or points, they applied the completion based on symme-
try and used a probabilistic model to measure the likelihood of the partial observation
being sampled from the complete model. The algorithm discretely searches the pa-
rameters for symmetry with hierarchy and optimize locally to fit the data better.
When the objects are complex with multiple symmetric parts, the search space be-
comes prohibitively large. The algorithm needs more assumptions and restrictions to
find the part symmetries.
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Speciale et al. [15] detected symmetry plane by extracting features from the trun-
cated signed distance function (TSDF) and matching the high-curvature and high-
gradient regions with RANSAC or Hough transformation. After symmetry detection,
instead of directly reflecting all the points, the completion is formulated as an op-
timization problem to minimize the cost with respect to surface smoothness and
symmetry.

Sung et al. [16] further combined symmetry-based completion with database
knowledge. They annotated the structure and symmetry in the database so that
the incomplete scan can find the closest structure and perform symmetry-based com-
pletion. They also provide quantitative results by randomly removing points from
complete point clouds and measure the Hausdorff distance.

The symmetry-based method has very impressive results. The limitation is that
the huge searching space for symmetry detection makes the model require many as-
sumptions to work efficiently. Combined with the database, the searching is acceler-
ated, but it required a similar annotated structure existing in the database.

2.1.3 Gaussian Process Implicit Surface

In the robotics community, Gaussian Process is widely used because it could provide
uncertainty for its prediction. To represent the 3D objects from sparse points, Gaus-
sian Process Implicit Surface (GPIS) was proposed [3]. The GPIS combined Gaussian
Process Regression with implicit surface, so that the 3D surface is represented with
all the points whose Gaussian Process prediction is equal to 0. The GPIS also has
the uncertainty for each prediction on the surface so that robots can actively explore
the uncertain area.

Yi et al. [17] explored Gaussian Process Regression for 2.5D depth reconstruction
from sparse data points. The robot explored the uncertain regions to work more
efficiently. Kaul et al. [18] extended GPIS with surface normal constraint for shape
completion. Bjorkman et al. [8] combined the visual and tactile data using GPIS to
actively refine the 3D shape. Mahler et al. [19] explored how GPIS can be used with
sequential convex programming for grasp planning.

GPIS can generate smooth surfaces and provide uncertainty for better active
perception. The limitation is that to find the implicit surface, it’s necessary to predict

20



Figure 2-3: Gaussian Process Implicit Surface representing (a) A simple ”blob” defined by
15 points on the surface, one interior +1 point and 8 exterior -1 points arranged as a cube;
(b) Two views of the Stanford bunny defined by 800 surface points, one interior +1 point,
and a sphere of 80 exterior -1 points [3]

most of the points in space which could be expensive if there are many data points
collected [11].

2.1.4 Neural Network-based

With the recent advancements in deep learning and large 3D shape dataset [20],
researchers explored to leverage the power of neural networks for shape completion.
Wu et al. [21] was among the first to proposed 3D-CNN for shape recognition and
completion. They represented the 3D shape in voxels which is convenient for neural
networks to train and infer. Dai et al. [4] obtained very impressive results on 3D
shape completion from partial depth scans by levering 3D convolutional networks
and nonparametric patch-based shape synthesis methods. More recently, Varley et
al. [10] explored how to better grasp an object by first employing a convolutional
neural net for shape completion.

A more challenging problem is to recover 3D object shape from a single RGB
image, without depth information. Solving the problem requires both powerful recog-
nition systems and prior shape knowledge. With large-scale shape repositories like
ShapeNet [20], researchers have made significant progress on data-driven approaches
for shape synthesis, completion, and reconstruction [22, 23, 24, 25, 26].

The problem of 3D reconstruction from RGB data can be reduced into 3D shape
completion by first estimating intrinsic images (e.g., depth, and surface normal maps)
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Figure 2-4: 3D shape completion using Convolutional Neural Networks (CNN) and 3D
shape synthesis for refinement [4]

from RGB data [6]. Some recent papers have studied the problem of depth and surface
normal estimation [27] from a single image.

In particular, the visual component of our model builds upon MarrNet [28], which
jointly estimates intrinsic images and full 3D shape from a color image and has demon-
strated good performance on standard benchmarks [29].

In this thesis, we propose to use intrinsic images as a unified representation for
both visual and tactile observations and the learned shape priors. We demonstrate
that our system is able to recover better 3D shape from either RGB or depth obser-
vations, compared to the state-of-the-art.

2.2 Tactile Sensing for Shape Reconstruction

In robotics, multi-modal learning has been widely exploited for grasping [30], track-
ing [31], scene layout probing [32], and shape recognition with active exploration [33].
There has been also research on connecting multi-modality data, e.g., localizing ob-
ject contact via visual observation [34], using vision to learn better tactile represen-
tations [35], and learning the sharing features between vision and tactile [36].

For shape reconstruction in particular, tactile data have also been exploited for
both local [37][38] and global shape completion [39, 40], sometimes in a bimanual
setting [41]. In recent years, researchers started to use active learning for shape
reconstruction from tactile sensing [42, 17, 43, 44]. Luo et al. recently wrote a com-
prehensive review article on tactile perception which includes object shape percep-
tion [45].

Tactile data have been used to complement visual observations for shape recon-
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struction [8], shape reasoning [46], and grasping [47]. Planning has also found its use
in shape estimation from visual and tactile data [48]. We refer readers to Bohg et
al. [7] for a thorough review. These papers, however, directly augment visual obser-
vations with tactile signals without leveraging shape priors. In comparison, we use
shape priors learned from large-scale shape repositories to efficiently integrate tactile
and visual observations.

Figure 2-5: (a) A cookie is pressed against the skin of an elastomer block. (b) The skin
is distorted, as shown in this view from beneath. (c) The cookie’s shape can be measured
using photometric stereo and rendered at a novel viewpoint. [5]

In this thesis, we obtain tactile observations with the GelSight sensor [9]. The
GelSight sensor is engineered mainly to achieve high precision for the measurement of
the contact surface geometry [5] and shear force [49]. The GelSight sensor consists of
three components: (1) soft silicone gel (2) color LEDs illumination and (3) a webcam.
The three-color LEDs illuminate the gel from different angles. Since each surface
normal corresponds to a unique color, the color image captured by the camera can
be directly used to reconstruct the depth map of the contact surface by looking up a
pre-made color-surface normal table. GelSight is able to recover high-fidelity object
shape. This makes it particularly useful in object shape reconstruction among tactile
sensors. GelSight has also found its in wide applications including physical material
modeling [50] [51], surface hardness estimation [52], slip detection [53], and robot
grasping [54].
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Chapter 3

Method

We reconstruct the 3D shapes of the objects from both vision and touch. The pipeline
of the system is described in Figure 3-1: we first reconstruct a voxelized rough 3D
model of the object from a Kinect color image, and then touch the areas that visual
prediction is not of high confidence. The tactile data provide us with the precise
location and geometry of the object surface, especially in the occluded areas. These
signals can later be posed as constraints to refine the 3D shape. The touch is con-
ducted in a closed-loop exploration process: each time the robot touches the surface
location which has the maximum uncertainty in the shape prediction. The policy
aims to reduce the times of touches, making the reconstruction more efficient.

3.1 3D Reconstruction from Vision and Shape Pri-
ors

Our 3D reconstruction model exploits a key intermediate representation—intrinsic
images (a.k.a. 2.5D sketches) [6]. The use of intrinsic images brings in two key ad-
vantages. First, it is a unified representation that integrates multi-modal data (RGB
images, depth maps, and tactile signals). Using intrinsic images allows us to build
a principled framework for multi-model shape reconstruction. Second, color images
and 3D shapes become conditionally independent given intrinsic images. When depth
data are not available, our formulation decomposes the challenging problem of single-
image 3D reconstruction into two simpler ones: intrinsic image estimation and 3D
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Record a Kinect image of the object

3D reconstruction from the single image 
with shape priors

Calculate the most uncertain region

Move the tactile sensor to face the region 
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Open the gripper to touch
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Refine the 3D reconstruction with tactile 
signals

Move the tactile sensor 
closer to the target region

Converge/Max iterations?

Yes

No

Yes

No

Start

End

Figure 3-1: An overview of our interactive system that estimates 3D shape from monocular
vision, touch, and shape priors.

shape completion. This provides us with better reconstruction results from a color
image.

Our network, therefore, has two components to recover 3D shape from a color
image. The first is a 2.5D sketch estimator (Figure 3-2-I), predicting the object’s
depth, surface normals, and silhouette from the color image; The second is a 3D
shape estimator (Figure 3-2-II), inferring voxelized 3D object shape from intrinsic
images. When depth data is available, we can use them to replace the predicted
depth for possible better performance.
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(e) 3D Shape

I. 2.5D Sketch Estimation II. 3D Shape Estimation(b) 2.5D Sketches

(a) 2D Image (c) shape encoding

III. Tactile Sensing

(d) Coarse Shape 
from Vision

normal

depth

silhouette

Normal Ball

Figure 3-2: Our model has three major components. It first estimates the object’s 2.5D
sketches (depth, surface normals, and silhouette) from a single RGB image. It then recovers
a rough 3D shape from them. Third, it integrates tactile signals to update the latent shape
encoding and to generate a refined 3D shape.

3.1.1 2.5D Sketch Estimation

The first component of our network (Figure 3-2-I) takes a 2D color image as input
and predicts its 2.5D sketches: depth, surface normals, and silhouette. The goal of
2.5D sketch estimation is to distill intrinsic object properties from input images, while
discarding properties that are non-essential for the task of 3D reconstruction, such as
object texture and lighting.

We use an encoder-decoder network for this step. Our encoder is a ResNet-18 [55],
turning a 256×256 RGB image into 384 feature maps, each of size 16×16. Our
decoder has three branches for depth, surface normals, and silhouette, respectively.
Each branch has four sets of 5×5 transposed convolutional, batch normalization, and
ReLU layers, followed by a 1×1 convolutional layer. It outputs at the resolution of
256×256.

3.1.2 3D Shape Estimation

The second module (Figure 3-2-II) infers 3D object shape from estimated 2.5D sketches.
Here, the network focuses on learning priors of common shapes. The network archi-
tecture is again an encoder and a decoder. It takes a normal image and a depth
image as input (both masked by the estimated silhouette), maps them to a 200-dim
vector via a modified version of ResNet-18 [55]. We changed the average pooling
layer into an adaptive average pooling layer, and the output dimension of the last
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Image and Touch Regions Touches Depth MapsGelSight Sensor

Figure 3-3: Tactile signals on different parts of the object and the corresponding 3D recon-
structions

linear layer to 200. The vector then goes through a decoder, consisting of five sets of
transposed convolutional, batch normalization, and ReLU layers followed by a trans-
posed convolutional layer and a sigmoid layer to output a 128×128×128 voxel-based
reconstruction of the shape.

3.2 Tactile Sensing for Shape Refinement

Tactile sensing obtains precise information in the local area: the data from the Gel-
Sight sensor provide high-resolution 3D geometry of the contact surface, and the
position reading from the robot tells the exact location of the touch surface in the
global space. The tactile data set solid constraints on the object’s shape, and thus
help to refine the 3D shape prediction from vision.
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3.2.1 3D Reconstruction from GelSight

We can reconstruct the height function z = f(x, y) from the GelSight tactile image [9].
Under the assumption that the lighting and surface reflectance are evenly distributed,
the light intensity I at (x, y) can be modeled as

I(x, y) = R

(
∂f

∂x
,
∂f

∂y

)
(3.1)

where R is the reflectance function which is a nonlinear function.

We first build a lookup table to obtain the inverse function R−1, which maps
observed intensity to geometry gradients. A ball with known radius is pressed on the
GelSight multiple times to collect data. Then, the gradient can be computed as

(
∂f

∂x
,
∂f

∂y

)
= R−1(I(x, y)) (3.2)

After calculating the gradients, we reconstruct the height map z = f(x, y) by
integrating the gradients. It can be represented as the Poisson equations (∇f)2 = g,
where

g =
∂f

∂x

(
∂f

∂x

)
+

∂f

∂y

(
∂f

∂y

)
. (3.3)

We use the fast Poisson solver with the discrete sine transform (DST) to solve
it, and get the height-map reconstruction. Figure 3-3 shows some examples of the
GelSight images and the reconstructed 3D surfaces when contacting different areas
on the mustard bottle.

3.2.2 Registration of World and System Coordinates

We need to register three coordinate systems: world, robot, and voxel (vision). To
align the world the robot frame, we calibrate three points in the real world xw1 =

(0, 0, 0)T , xw2 = (1, 0, 0)T , xw3 = (0, 1, 0)T , record their corresponding robot coor-
dinates xr1, xr2, xr3, and calculate the transformation matrix by solving the linear
equations

Xr = Rr ·Xw +Tr, (3.4)
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where Xr = [xr1,xr2,xr3], Xw = [xw1,xw2,xw3], Rr is the rotation matrix, and Tr

is the translation vector.

To align voxels with the world frame, we use the correspondence of a fixed point
o, axes ax, ay, az, and the scale s to calculate the transformation. The bottom center
of the voxels ov is aligned with the fixed point on the table in the world frame ow.
The axes can be calculated based on the camera’s position and orientation. In our
setting, ax = (−1, 0, 0)T , ay = (0, 1, 0)T , az = (0, 0, 1)T . The scale of each voxel can
be calculated by s = np × lp, where np is the number of corresponding pixels to each
voxel and lp is the length of each pixel in the real world. Then the rotation matrix
Rv = s ·

[
ax, ay, az

]T
. The transformation between world and voxel coordinate can

be represented as
xw = Rv · (xv − ov) + ow. (3.5)

After registration, we can map touches into corresponding voxels and control the
robot arm to touch the target regions in the real world.

3.2.3 Updating Shape Reconstruction with Touch

We then present how we update the model’s prediction with tactile signals, after
converting them into surface normals, and registering them into the system coordi-
nates. The key observation here is to design a differentiable loss function that enables
fine-tuning with back-propagation.

Figure 3-4 illustrates our design. Given a 3D point in space and its normal vector
n, we gradually move the robot arm toward the destination, unless it touches a solid
object halfway between. Either way, we obtain signals on whether the 3D voxels
along the trajectory are occupied. We use vp to represent the value at position p in
a 3D voxel grid, where vp ∈ [0, 1]. Assume the GelSight sensor suggests the voxel
p0 = {x0, y0, z0} is filled (Figure 3-4b). Our differentiable loss tries to encourage
the voxel’s value to be 1, and all voxels in front of it, along the direction n, to be
0. This ensures the estimated 3D shape matches the obtained tactile signals. The
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𝒏 =	
Voxels with a target 
value of 0
Voxels with a target 
value of 1

(a) (b) Voxels of the object

Figure 3-4: Reprojection loss for touches. (a) When the sensor makes a touch attempt but
fails to reach the object, the voxels along its trajectory should all be 0. (b) When the sensor
contacts the object, the corresponding voxels should be 1, and all voxels in front of it along
the trajectory should be 0.

differentiable loss for a voxel p is defined as

L(vp) =


v2p, p = p0 + kn, ∀k < 0

(1− vp)
2, p = p0

0, otherwise

. (3.6)

The gradients are

∂L(vp)

∂vp
=


2vp, p = p0 + kn, ∀k < 0

2(vp − 1), p = p0

0, otherwise

. (3.7)

The loss and gradients can be similarly derived when the GelSight sensor suggests
the voxel p0 is empty (Figure 3-4a).

After collecting touch signals, we compute losses and back-propagate gradients to
the latent vector from the 2.5D sketch encoder. We then update it (with a learning
rate of 0.001) and use the shape decoder to get a new shape. We repeat this process
for 10 iterations for each touch.
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(a) Overlaid search grid (b) Integral maps for region search

Figure 3-5: Our policy on finding the next place to touch. (a) A 2D search grid overlaid
on the voxel grid, where the confidence values of the voxel prediction are assigned to the
search grid. (b) After the assignment, we compute the integral map and use it to efficiently
search for the region of maximal uncertainty. See text for details.

3.3 Policy for Active Tactile Exploration

We here describe our policy that automatically discovers the most uncertain region of
the prediction for the next tactile exploration. Since the value of each voxel vi,j,k is the
output of the sigmoid function which indicates the existing probability, the network’s
confidence score of voxel vi,j,k is defined as ci,j,k = |vi,j,k − 0.5|. We therefore would
like to find a region S that is of the same size as the GelSight sensor and minimizes∑

(i,j,k)∈S ci,j,k.

This seemingly simple problem is challenging as the region S can be of any orienta-
tion, and we want the optimization to be fast. Our algorithm is based on integral maps.
Given a plane, we sample a 2D grid on the plane and assign each point’s confidence
score fp,q as its closest voxel’s confidence score, as shown in Figure 3-5a. We then
compute the integral maps on the 2D grid; specifically, we have gp,q =

∑p
i=1

∑q
j=1 fi,j.

As
gp,q = fp,q + gp−1,q + gp,q−1 − gp−1,q−1, (3.8)

we can compute the matrix G in O(N2) time, where N is the length of the voxel grid.

As the size of the GelSight sensor S = k×k is known, we can then find the region
S with a minimal summed confidence score using G, again in O(N2). This is because
for a particular region [p+ 1, p+ k]× [q + 1, q + k], as shown in Figure 3-5b, we can
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compute its regional sum in O(1) as

k∑
i=1

k∑
j=1

fp+i,q+j = gp+k,q+k − gp,q+k − gp+k,q + gp,q. (3.9)

Finally, we in parallel evaluate multiple planes by searching over yaws (every 90◦)
and pitches (every 10◦).
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Chapter 4

Experiments

We now present experimental results. We first introduce our robot platform setup
and how we generate training data for the networks. We then discuss our main
results—how we reconstruct high-quality 3D shapes with vision, touch, and shape
priors. Further, we conduct ablation studies to understand the contributions of each
model component: how shape priors and the active exploration policy help to recon-
struct shapes more efficiently, and how well our system adapts to RGB and depth
data.

4.1 Robotic System Setup

The robotic system includes a 6-DOF robot arm, a GelSight tactile sensor, and a
Kinect 2 (as shown in Figure 1-1). The GelSight sensor is mounted on a WSG 50
parallel gripper for the convenience. The target object is fixed to an optical bread-
board in the robot’s working space so that it will keep static during the interaction
with the robot.

The robot arm is a UR5 from Universal Robotics with a reach radius of 850mm.
The WSG 50 gripper is a parallel gripper from Weiss Robotics with force feedback. We
do not use the gripper for gripping the objects, but we use the gripper’s force feedback
to alert collision of the sensor so that we install the GelSight sensor outwards in order
to better touch the objects. The GelSight sensor we apply is the version introduced
in [56]. It captures the surface geometry of a contact area of 19mm×14mm with a
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Input Results (0 touch) Results (5 touches)Results (3 touches) Results (15 touches) Results (25 touches)

Figure 4-1: Results on 3D shape perception. From a single RGB image, our model recovers
a rough 3D shape using shape priors. The reconstruction often captures the basic geometry,
but deviates from the actual shape in various ways. The results improve gradually with
touch signals. For example, for the bell-shaped bottle in the last row, the initial reconstruc-
tion is too fat (best seen from the top-down view). With tactile signals, our model recovers
its flat shape. Our system also corrects object pose, as shown in the water bottle case.

resolution of 640×480 and a frequency of 30Hz. The raw output from the sensor is in
the format of an image, and we reconstruct the 2.5D topography of the surface from
it. The Kinect 2 captures RGB images of the target area, and is fixed on the side of
the table at a 45.72cm height and a 30◦ tilt angle.

4.2 Conducting Touch without Collision

When touching the object surface, the robot should carefully avoid collision with the
object. This is especially the case in our setup, as the initial 3D reconstruction can
be imprecise, and the robot does not have much effective contact feedback other than
the sensing surface of the GelSight sensor. We make the robot progressively head
toward the target region from distance in the direction of the surface normal. In each
touch attempt, the approach is conducted by the slow opening of the parallel gripper,
so that the force feedback from the gripper’s current provides a protection of the
collision, especially when the collision does not happen on the GelSight’s sensing area.
At the same time, we also plan the motion of the robot when transferring between
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different touch attempt to avoid interfering with the object. Our basic strategy is
to take a detour in the high-up area when changing the target positions. But we
also calculate the radial angles between the two target locations. When the angle is
small, it indicates that the two locations are close, and it is safe for the robot to move
directly to the second location to save time.

4.3 Dataset

We generate synthetic training data of paired images and 3D shapes for networks to
learn shape priors. We use Mitsuba [57] to render fourteen object categories (bag,
bottle, bowl, camera, can, cap, computer keyboard, earphone, helmet, jar, knife,
laptop, mug, remote control) in ShapeNet [20] from 20 random views using three
types of backgrounds: 1/3 on a clean, white background, 1/3 on high-dynamic-range
backgrounds with illumination channels, and 1/3 on backgrounds randomly sampled
from the SUN database [58]. For each object in each view, we render an RGB image
and its depth, surface normal, and silhouette. We augment our training data by color
and light jittering during training.

We train the 2.5D sketch estimator and the 3D shape estimator separately on
synthetic images. The 2.5D sketch estimator is trained using the ground truth surface
normal, depth, and silhouette images with an L2 loss. The 3D shape estimator is
trained using ground truth voxels and a binary cross-entropy loss. We implement our
model in PyTorch. We use the Adam optimizer [59] with β1 = 0.5, β2 = 0.9 and a
learning rate of 5×10−4 for the 2.5D sketch estimator, and stochastic gradient descent
with a learning rate of 2× 10−2 and a momentum of 0.9 for the 3D shape estimator.
For visualization, bilateral filters are applied to remove aliasing [60].

4.4 Results

We show the main results in Figure 4-1. From a single RGB image, our learned model
correctly segments the object and produces a rough 3D shape estimation. We then
let the robot automatically touch the objects and use the tactile signals to further
refine the shape. For the sugar box in row 3, we use a prior learned on box-like shapes
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Results (3 touches) Results (15 touches) Results (25 touches)

Direct Edit

Rand. Policy

Ours

Figure 4-2: We show the effects of shape priors and the policy. If we Direct Edit the voxels’
value (not using learned priors to update), each touch can only be used to update the shape
locally. The shape does not change much even after many touches. With Random Policy,
it takes longer for the model to obtain fine shape structure.

instead of all fourteen categories. An ablation study is presented in Section 4.5.

Our system works well on a variety of object shapes. Each example shown in the
figure has its distinct shape, and our model works well on all of them. For example,
our model recovers the fine curvature of the spray bottles. As our model does not
require a depth image as input, it can deal with transparent objects like the water
bottle (though it can still use Kinect depth when available, as shown in Section 4.6).

4.5 Shape Priors and the Exploration Policy

We then present three ablation studies to understand how the learned priors and the
active exploration policy contribute to its final performance. First, we compare our
model with two variants: Direct Edit and Random Policy. The first one does not use
shape priors; instead, it directly uses the tactile signals to edit the voxelized shape,
i.e. changing the values of the touched voxels to 1 and the voxels in front of them to
0. The second does not use our policy. It randomly chooses where to touch within
the object’s bounding box. The performance of the second baseline has large variance
due to its randomness. For quantitative evaluation, we run it 10 times and compute
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Results (0 touches) Results (5 touches) Results (25 touches)

Prior 2
Color Image

Prior 1

Figure 4-3: The two priors on the sugar box. A network trained on general shapes predicts
a less accurate shape, which is later corrected by touches. A network trained on box-like
shapes gives better results.

the mean of its scores.

Figure 4-2 shows qualitative results. Both the policy and the shape priors help to
obtain an accurate shape estimation much faster, significantly reducing the number of
touches required. Without the priors, each touch can only be used to update a local
region of the shape; without the policy, the shape may become significantly worse
before eventually getting better.

We further quantitatively compare the shape obtained after each update with the
ground truth shape. Our metric is the classic Chamfer distance (CD) [61], widely
used in the computer graphics community for measuring shape similarity. For each
point in each cloud, CD finds the nearest point in the other point set, and sums the
distances up.

We show quantitative results in Figure 4-4. Here, we also have a human policy,
where humans select the position of the next touch. This can be seen as a reference
for the optimal policy. Our full model achieves a low Chamfer distance after a few
touches, close to the human, while the baselines (w/o policy or priors) take much
longer.

We also evaluate how priors learned on different training sets affect results. Fig-
ure 4-3 shows that for the sugar box, a network trained on general shapes predicts a
less accurate shape, which is later corrected by touches; in contrast, a network trained
on box-like shapes gives better results. This reveals an interesting future direction:
it will be helpful to classify the object’s type from vision, which may inform the most
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Figure 4-4: Shape estimation accuracy with respect to the number of touches, measured in
Chamfer distance. Our policy recovers the shape accurately and efficiently. With Random
Policy, it takes much longer to reconstruct a reasonable shape; if we Direct Edit the voxels’
value (not using learned priors to update), the object is hardly updated after each touch.
The Human method asks a human to manually select where to touch for each step and can
be seen as a reference for comparison.

efficient policy and prior.

4.6 RGB vs RGB-D Input

Results (25 touches)Results (0 touch)Results (25 touches)Results (0 touch)

Color Image Color Image

Est. DepthEst. Depth

Kinect Depth Results (25 touches)Results (0 touch)Results (25 touches)Results (0 touch) Kinect Depth

Figure 4-5: Our method can use either our estimated depth maps or Kinect depth maps. A
Kinect depth map can be helpful if it is accurate: for example, the initial reconstruction of
the left bottle is flatter using the Kinect depth map. However, if we purely rely on Kinect
depth, our reconstruction would not be as accurate when the Kinect depth is inaccurate
(see the transparent water bottle).

We finally evaluate how our model works on RGB vs. RGB-D data, to better
understand its practical applicability. Figure 4-5 reveals that our method can use
either our estimated depth maps or Kinect depth maps. A Kinect depth map can
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be helpful if it is accurate: for example, the initial reconstruction of the left bottle
is flatter (and therefore better) using the Kinect depth map. However, Kinect depth
maps can also be unreliable: it fails to estimate the depth of the transparent water
bottle. If we purely rely on Kinect depth, our reconstruction would not be as accurate
as our current formulation, which is able to recover 3D shape purely from a color image
and touch.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

We have presented a novel model for 3D shape perception that integrates visual and
tactile signals with learned shape priors. Our model uses intrinsic images as the
intermediate representation to unify multi-modal signals. We have also proposed
an active exploration policy to search for the most informative touches. Our model
performs well on real objects, recovering their 3D shape accurately. Ablation studies
verify that the use of touch priors and the exploration policy enables more efficient
shape recovery. Our model works well with RGB and RGB-D data, and can handle
transparent objects.

We hope our approach can inspire future research in fusing common sense knowl-
edge into building object models: the idea of learning an object prior can be extended
to not only model shapes, but objects’ physical attributes; we can also refine the
learned object prior through interaction [7].

5.2 Future Work

There are many aspects of this work could be improved in the future, including how
to better evaluate efficiency of the system, how to solve the immobilization problem
and how to evaluate the reconstructed shape on real robot tasks.
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5.2.1 Efficiency

Evaluate efficiency by real time instead of number of touches.
In this work, to evaluate the efficiency of the policy, we followed some previous

works using accuracy with respect to the number of touches. However, in real exper-
iments, the policy tends to explore regions back and forth, which takes a lot of time
of switching between the regions repeatedly. A more interesting problem would be
how long does the data collection really takes.

By considering the switching time, the policy would find the trade-off between
uncertainty and distance from current position. Exploring a nearby regions take
much less time than exploring a distant region then coming back in the middle.

Also sliding would be much more efficient than poking discretely. The question
is how to find a safe exploration strategy for sliding. Torque information may be
needed to avoid collistion. And increasing the tactile area of a hand can also make
data collection more efficient.

5.2.2 Immobilization

Most of the works on 3D shape reconstruction from tactile would assume the object
is fixed. To make the method more practical, this immobilization has to be solved.

One solution is using bimanual robots, so that another hand could grasp the
object. Sommer et al. [41] explore the 3D reconstruction in bimannual setting. It
would be interesting whether adding the high-resolution tactile sensors like GelSight
could further improve the performance.

Another direction would be exploring the object dynamically, with tracking and
matching the models during intereaction. Ilonen et al. [62] explored the direction of
3D reconstruction while grasping.

5.2.3 Evaluation on Robot Tasks

Evaluate how the reconstructed shape would be helpful for improving grasp planning
and manipulation task.

In terms of what is a good estimated 3D shape, we evaluated the distance between
the reconstruction and the groud-truth shape. Moreover, to actually help robotics
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task, whether the fine details and smoothness of the object are important for robot
could be further explored.
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