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Abstract

Understanding how contagions spread is an important task, particularly when consid-
ering infectious diseases. An individual’s likelihood of getting infected by a contagion
is determined by a combination of inherent susceptibility and exposure to other indi-
viduals who may spread the disease. In a real world setting, an individual’s infection
status may be directly observable, but it is difficult to identify whether an individual
is spreading the disease. As a result, the exact influence function by which disease
is transmitted is difficult to understand as well. We present a neural network based
method, NeuralPALS, to learn the spreader, exposure, and infection status of indi-
viduals in a network. Unlike previously developed methods, we do not assume an
exposure function and instead devise methods to learn this function. Through ex-
periments on synthetic data we illustrate our method’s efficacy in determining both
spreader and infection states. We also demonstrate NeuralPALS’s ability to learn
different exposure functions. In addition, we utilize a dataset of patients from a large
urban hospital and demonstrate our preliminary results in determining the spread of
Clostridioides difficile.

Thesis Supervisor: John Guttag
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Chapter 1

Introduction

1.1 Overview

Understanding how contagions spread remains an increasingly important task in the

world around us. Contagions, while often associated with infectious disease, can also

be understood as opinions, products, and more. The likelihood of a given individ-

ual contracting a contagion can be understood by analyzing both the individual’s

personal characteristics as well as the influence of potential contagion spreaders that

an individual comes into contact with. For example, disease spread is contingent on

both an individual’s susceptibility and their contact. Political opinion is also derived

from both an individual’s own line of thinking and the opinions of their friends and

contacts.

In medical settings, we frequently have access to a patient’s individual characteris-

tics, allowing us to determine their inherent susceptibility. Unfortunately, we may not

always completely know the contagion states of an individual’s neighbors, preventing

us from possessing a comprehensive understanding of the individual’s likelihood of

contracting the contagion. This is particularly true in the presence of asymptomatic

spreaders - individuals who may not show symptoms of a contagion but possess the

ability to spread it. Focusing on the example of infectious diseases, it’s vital for

healthcare providers to understand which patients might be spreaders of a disease, in

order to limit contact of other patients with these spreaders. Spreaders who do not
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exhibit symptoms, referred in this work as latent spreaders, pose a special problem for

healthcare providers. While identifying latent spreaders is important, understanding

how exposure is determined remains critical as well. For example, if exposure to just

one spreader is enough to significantly raise the contagion risk of a patient, healthcare

providers would act differently than if exposure to multiple spreaders is required for a

patient to acquire a contagion. In this work we aim to not only find latent spreaders

in a disease network, but also to understand the influence functions present in these

networks.

1.2 Healthcare-Associated Infections and Clostrid-

ioides Difficile

Healthcare-associated infections (HAIs) are infections acquired by a patient in a

healthcare setting, such as a hospital or clinic. HAIs are responsible for over 100,000

deaths per year in the United States, with over 1 in 31 hospital patients acquiring

an HAI [3]. Clostridioides Difficile (C. diff ) is a major HAI, a bacteria that infects

the colon, leading to the deaths of over 15,000 Americans every year [2]. C. diff

is spread through the fecal-oral route, with a common vehicle being contaminated

surfaces in hospitals. Understanding latent spreaders of C. diff and its contagion

mechanisms could lead to better healthcare outcomes, in which care providers could

separate latent spreaders from potential victims.

1.3 Problem Definition and Contributions

In this work we aim to find latent spreaders and understand patterns of exposure in

networks. While this work specifically focuses on an infectious disease setting, note

that the work can apply to other examples, such as deciphering the spread of polit-

ical opinion through social networks [6]. We work with a snapshot of a community

- that is, observing the state of individuals at a given point in time, and develop a

neural-network based model to predict the probability of individuals getting infected.
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Inputs to our model include individual patient characteristics, and an adjacency net-

work consisting of contact between patients. Through this, we develop the following

contributions:

∙ Predicting Individual Spreader States - We utilize an individual’s charac-

teristics to predict their spreader state. Specifically, we learn a set of weights

that map from individual characteristics to the probability of being a spreader.

∙ Learning Exposure Functions - We experiment with different possible ex-

posure functions to understand contagion spread. Different contagions spread

through different mechanisms - as a result, being able to modify the exposure

function of a model is critical to working with different contagions. An exam-

ple of a naive exposure function is simply averaging the spreader states of an

individual’s neighbors, and thresholding the exposure state based on this. For

example, if an individual has 5 neighbors, 3 of which are spreaders, then their

exposure state would be 0.6, which we could threshold to 1 - as a result, the

individual is understood to be exposed.

∙ Predicting Individual Infection States - Through a combination of individ-

ual characteristics and the exposure derived above, we learn the probability of

an individual contracting an infection. This approach utilizes both susceptibility

and exposure to develop a model of disease transmission. As with the spreader

states, we learn weights that correspond to a mapping from the characteristics

and exposure to the probability of infection, which provides an understanding

of the importance of exposure on infection probability.

1.4 Outline

In the following chapters of this thesis, we will cover the following work. To begin,

in Chapter 2 we cover technical background material and detail a brief review of

related literature. In Chapter 3 we discuss the synthetic data generation process and

the NeuralPALS model. We then detail experiments run on both synthetic data and
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real patient data in Chapter 4, explaining. Finally, in Chapter 5, we re-examine the

primary finding of this work and describe avenues for future experimentation.
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Chapter 2

Background and Related Work

2.1 Technical Background

In this section, we present necessary background information on both the model we

develop, NeuralPALS, and the data utilized.

2.1.1 Neural Networks and Permutation Invariance

Neural networks have been used in machine learning applications for many years be-

cause of their effectiveness as universal function approximators - a relatively simple

neural network can represent a wide range of functions. Neural networks have been

utilized throughout different fields, including numerous medical applications [1]. Neu-

ral networks have traditionally been developed to train on vectors and other forms of

ordered data, with columns of input matrices representing different features. How-

ever, there are many learning tasks where input order is irrelevant. For example, if

an input is a list of numbers and the goal is to find the sum, the order of numbers

in the list does not modify the final result. We classify these sorts of learning prob-

lems as permutation invariant. A function, 𝑓 , is permutation invariant for a given

permutation 𝛼 if 𝑓(𝑥1, 𝑥2, ..., 𝑥𝑛) = 𝑓(𝛼(𝑥1), 𝛼(𝑥2), ..., 𝛼(𝑥𝑛))

Recent work from Zaher et al. has established an architecture for the class of

permutation invariant problems [7].
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Figure 2-1: DeepSets Architecture [7]

The DeepSets architecture consists of converting inputs to latent representations,

applying a permutation invariant function on the latent representations, and then

applying a non-linear transformation. The architecture is illustrated in Figure 2-1.

Assume input 𝑋, consisting of 𝑚 data points, 𝑥1, 𝑥2, ..., 𝑥𝑚. The 𝜑 layer transforms

each input to a latent representation, 𝜑(𝑥1), 𝜑(𝑥2), ..., 𝜑(𝑥𝑚). The DeepSets authors

prove that addition in the latent space is a permutation-invariant function. After

summing the latent representations, the authors apply another network, 𝜌, leading

to the final output, 𝑆(𝑋) = 𝜌(
∑︀𝑚

𝑖=1 𝜑(𝑥𝑖)). The authors also introduce methods to

condition the network on prior information but we do not use these in NeuralPALS.

We employ the DeepSets architecture to learn exposure states, which we explain in

detail in Chapter 3.

2.1.2 Synthetic Data

Synthetic data generation is commonly used when designing and evaluating predictive

models. Synthetic data allows researchers to devise specific experiments and test

various parameters without having to seek out new real-world datasets, a process
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that is often difficult and time-consuming. Synthetic data is particularly valuable

for this work because of the nature of the problem - latent spreader states are, by

definition, not observed. As a result, it is often difficult to verify the accuracy of a

model in predicting latent spreaders in a real world dataset.

2.1.3 Hospital C. diff Dataset

To properly understand the success of our model in the real world we use a dataset

from a large urban hospital, comprising over 70,000 total patients. As mentioned in

Chapter 1, we specifically study C. diff. infection. We utilize the following selection

criteria to develop a dataset for modeling. There are two sub-populations to select -

the main cohort (to learn infection states) and the neighbors of these cohort members

(to learn spreader states). We use similar data selection criteria to the PALS work

described below. We only consider hospitalizations from May 2012 to May 2014.

Cohort

We assign an infected status to cohort members based on if they are diagnosed with

C. diff infection after their fifth day in the hospital. This threshold, though somewhat

arbitrary, is chosen to limit incidences of C. diff infection contracted outside of the

hospital. Patients who are confirmed to have C. diff infection before the threshold

are removed from our cohort. For all patients in the cohort we extract the infection

state and individual characteristics. Individual characteristics comprise recorded in-

formation about patients, including medications, lab results, and more. All values

are binarized.

Neighbors and Adjacency Network

C. diff infection is frequently spread through contaminated surfaces. In a hospital

setting, vehicles for transport include rooms and nurses. C. diff may be transmitted

from a patient to another patient sharing the same room. Similarly, a nurse, who visits

multiple patients in a day, may transfer C. diff between patients. As a result, we
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construct two adjacency networks - a room network, with an edge between patients

who shared time in the same room, and a nurse network, with an edge between

patients if the same nurse administered medication to them on the same day. We

exclude neighbors who are already in the main cohort, and then extract individual

characteristics for the remaining patients.

2.2 Related Work

Contagion spread has been a popular avenue of research because of its importance in

public health. Traditional epidemiological models of contagions include "susceptible,

infected, removed" (SIR) and "susceptible, infected, susceptible" (SIS) models. These

models are compartmental in nature, grouping individuals into categories - a simplistic

approach that is useful for understanding population dynamics. In this work we strive

to achieve a more granular understanding of contagion spread. The SIS and SIR

models have been extended to to an individual-scale but these extensions have been

unable to effectively learn latent spreaders [4].

2.2.1 PALS

Makar et al. devised a variational inference algorithm, PALS, to learn latent spreaders

and infection states [8]. We build off the work in their paper in our research. The

synthetic data generation process, described in Chapter 3, is based on the process in

PALS. In addition, we utilize a similar real-world dataset.
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Figure 2-2: PALS Generative Model [8]

Variational inference essentially consists of finding the closest possible distribution

to the "true" one by learning ideal parameters. PALS utilizes the generative model

seen in Figure 2-2. In the model, 𝑧𝑗 is a Bernoulli random variable that models

whether a neighbor, 𝑗, is a latent spreader of the disease. 𝑥𝑗 models the neighbor’s

characteristics and u is a set of weights. The probability of exposure, Θ𝑖|𝑧𝑗is a Beta

variable, and the infection state of the individual modeled, 𝑖, is a Bernoulli variable.

We do not explicitly detail the PALS algorithm here, but the authors demon-

strated its ability to effectively learn latent spreaders and infection states on both

synthetic and real-world data. However, PALS assumes a simple exposure function -

an individual is considered "exposed" if more than half of their neighbors are spread-

ers. In contrast, we want to learn different exposure functions dynamically - for

example, if an individual needs to be in contact with just one spreader to be exposed,

or if probability of exposure goes up non-linearly with each additional spreader con-

tact. In this work we aim to perform at least comparably to PALS on learning latent

spreader states while improving exposure calculations.
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Chapter 3

Methods

3.1 Data

In this work we utilize both synthetic and real patient data. Synthetic data provides

an easily modifiable process to investigate the performance of different models under

varying parameters. The real-world data is used to assess the accuracy of models in

a potential application.

3.1.1 Synthetic Data Generation

For this work we desired a few characteristics for the data generation method. To

begin, the method must be transparent and easily modifiable. The method must be

probabilistic and non-deterministic to mimic noise in real-world conditions. Finally,

the method must control the probability of infection given both susceptibility and

exposure. As a result, we based our data generation model on those described in the

original PALS work, with slight modifications detailed below [8].

As mentioned previously, in order to predict individuals’ infection statuses we

desire to understand the impact of both susceptibility characteristics and of exposure

to disease spreaders. We make the assumption that spreader status and susceptibility

are independent. As a result, we must generate the following:

∙ Spreader and susceptibility characteristics
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∙ Spreader, susceptibility, and exposure states

∙ Adjacency network of individuals

We re-implemented the PALS data generation process in Python and describe the

methods here.

Spreader Variables

To draw spreader variables, we rely on 4 parameters - 𝑁 , the number of individu-

als, 𝑝𝑠𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔, the proportion of individuals that are spreaders, 𝐷𝐶+, the number of

variables that are positively correlated with spreader status, and 𝐷𝐶−, the number of

variables that are negatively correlated with spreader status. We utilize the following

steps to draw spreader states:

1. Draw spreader state, 𝑐𝑖, for individual 𝑖 as 𝑐𝑖 ∼ Bern (𝑝𝑠𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔).

2. If an individual has 𝑐𝑖 = 1, that is, they are a spreader:

(a) Draw 𝑥𝑖,𝑚+ ∼ Bern (1/𝐷𝐶+).

(b) Draw 𝑥𝑖,𝑚− ∼ Bern (0.1/𝐷𝐶−).

3. Else, if an individual has 𝑐𝑖 = 0, that is, they are not a spreader:

(a) Draw 𝑥𝑖,𝑚+ ∼ Bern (0.1/𝐷𝐶+).

(b) Draw 𝑥𝑖,𝑚− ∼ Bern (1/𝐷𝐶−).

4. Concatenate 𝑥𝑖,𝑚+ and 𝑥𝑖,𝑚−, to form 𝑥𝑖,𝑚, the spreader variables for an indi-

vidual.

In steps 2(a) and 3(b) we set the Bernoulli distribution parameter so that, on

expectation, an individual will draw 1/𝐷𝐶+ traits. In steps 2(b) and 3(a) we use 0.1

as a constant to essentially minimize the likelihood of an individual drawing those

traits. This was arbitrarily chosen and use of a similarly small constant would not

significantly impact the outcome.
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Susceptibility Variables

The process of drawing susceptibility variables is nearly identical to that of drawing

spreader variables, but with different parameters. For susceptibility, we utilize 𝑁 , the

number of individuals, 𝑝𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒, the proportion of individuals that are susceptible,

𝐷𝑆+, the number of variables that are positively correlated with susceptibility status,

and 𝐷𝑆−, the number of variables that are negatively correlated with spreader status.

We utilize the following steps to draw susceptibility states:

1. Draw susceptibility state, 𝑠𝑖, for individual 𝑖, as 𝑠𝑖 ∼ Bern (𝑝𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒)

2. If an individual has 𝑠𝑖 = 1, that is, they are susceptible:

(a) Draw 𝑥𝑖,𝑙+ ∼ Bern (1/𝐷𝑆+)

(b) Draw 𝑥𝑖,𝑙− ∼ Bern (0.1/𝐷𝑆−)

3. Else, if an individual has 𝑠𝑖 = 0, that is, they are not susceptible:

(a) Draw 𝑥𝑖,𝑙+ ∼ Bern (0.1/𝐷𝑆+)

(b) Draw 𝑥𝑖,𝑙− ∼ Bern (1/𝐷𝑆−)

4. Concatenate 𝑥𝑖,𝑙+ and 𝑥𝑖,𝑙−, to form 𝑥𝑖,𝑙, the susceptibility variables for an indi-

vidual.

Adjacency Matrix

Developing the adjacency matrix is an important part of the data generation process,

since we want control over how spreaders are placed through the network. If disease

spreaders are scattered through a hospital uniformly, then different exposure and

infection outcomes would be expected than if spreaders were highly concentrated in

a few wards.

The data generation process utilizes a stochastic block model (SBM) - a generative

process for random graphs.

We utilize the following parameters - group size, that is, how large each ‘group’

in the network will be, 𝑝𝑐𝑜𝑛𝑐, a measure of how concentrated spreaders are in the
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network, and 𝑝𝑖𝑛 and 𝑝𝑜𝑢𝑡, which control the likelihood of edge formation between

members of the same and different groups, respectively.

We begin by assigning individuals to groups using the following process.

1. Create 𝑁
𝑔𝑟𝑜𝑢𝑝𝑠𝑖𝑧𝑒

groups, each of which could be thought of as a hospital ward.

2. Assign half the groups to be ‘spreader’ groups, and the other half of groups as

‘non-spreader’ groups

3. For each individual that is a known spreader, with a probability of 𝑝𝑐𝑜𝑛𝑐, assign

them to a ‘spreader group’ at random.

(a) Draw the probability of being assigned to a spreader group, 𝑠𝑝𝑟𝑔𝑟𝑜𝑢𝑝 ∼

Bern (𝑝𝑐𝑜𝑛𝑐)

(b) If 𝑠𝑝𝑟𝑔𝑟𝑜𝑢𝑝 = 1, randomly select a ‘spreader’ group, and assign the individ-

ual to that group.

(c) Else, randomly select a ‘non-spreader’ group to assign the individual t.

4. For each individual that is not a spreader, we simply randomly assign them to

the the remaining spots left in groups.

After groups have been assigned, we have a set of communities, and now draw

edges between the communities to create the graph. For every pair of individuals,

𝑖 and 𝑗:

1. If 𝑖 and 𝑗 are in the same group, draw edge ∼ Bern (𝑝𝑖𝑛).

2. Otherwise, if 𝑖 and 𝑗 are not in the same group, draw edge ∼ Bern (𝑝𝑜𝑢𝑡).

3. If edge = 1, then assign an edge between the two, otherwise, there is no edge

between them.

Through these steps we have assigned edge assignments between every pair of

individuals, constituting a complete adjacency network.
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Exposure States

From the previous steps, we have 𝑧, a vector of dimension (𝑁 × 1) with the spreader

states of each individual, and 𝑎𝑑𝑗, the adjacency network of edges between individuals,

with dimension (𝑁 × 𝑁). We concatenate 𝑧 by itself N times on the vertical axis,

to produce an (𝑁 × 𝑁) matrix, 𝑧𝑓𝑢𝑙𝑙. Next, we element-wise multiply 𝑧𝑓𝑢𝑙𝑙 and

𝑎𝑑𝑗, to produce another (𝑁 × 𝑁) matrix, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑡𝑎𝑡𝑒𝑠. Each row in this matrix

represents the spreader states of a given individual’s neighbors. If two individuals

aren’t connected, 𝑎𝑑𝑗 has value 0 at 𝑎𝑑𝑗(𝑖, 𝑗), so 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑡𝑎𝑡𝑒𝑠 would also have value

0. Consequently, the only values of 1 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑡𝑎𝑡𝑒𝑠 are when two individuals are

connected and one is a spreader.

The PALS model utilized a mean influence function, which we will describe here.

Further influence functions are described later in this text. The mean influence func-

tion simply assigns an exposed state to an individual if at least half of their neighbors

are spreaders. This produces our exposure vector, 𝜂, of size N x 1.

Infection States

Having produced individual susceptibility states and exposure states, we can finally

draw the infection states for each individual. We begin by drawing a set of weights,

𝑤, which we will use to multiply individual characteristics by to produce the infection

states.

Generating 𝑤 relies on the following parameters - 𝑝(𝑦|𝑆+), 𝑝(𝑦|𝑆−), and 𝑝(𝑦|𝜖).

These parameters control the probability of infection from having a positive suscep-

tibility variable, a negative susceptibility variable, and from exposure, respectively.

1. We draw the non-exposure-based infection weights as the following:

(a) 𝑤𝑆+ = 𝑁(𝜎−1(𝑝(𝑦|𝑆+)), 0.1𝐼)

(b) 𝑤𝑆− = 𝑁(𝜎−1(𝑝(𝑦|𝑆−)), 0.1𝐼)

2. We draw the exposure-weights in a similar fashion. 𝑤𝑒 = 𝑁(𝜎−1(𝑝(𝑦|𝜖)), 0.1𝐼)
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Note that here, N is a multivariate Gaussian distribution. 𝑤𝑆+ is a matrix of size

(𝑁 × 𝐷𝑆+), 𝑤𝑆− is a matrix of size (𝑁 × 𝐷𝑆−), and 𝑤𝜖 is a vector of size (𝑁 × 1).

𝐼 simply represents the identity matrix, utilized for covariance. 𝜎−1 represents the

inverse sigmoid function 𝑦 = 𝑙𝑜𝑔(𝑥/(1 − 𝑥)).

At this point we may concatenate the three matrices above, to form 𝑤, our matrix

of infection weights. We similarly concatenate 𝑥𝑖,𝑙 and 𝜂, to produce 𝑥, the matrix of

individual characteristics. Finally, we draw the infection states:

1. 𝐼𝑛𝑓𝑚𝑢𝑙𝑡 = 𝑤 𝑥

2. 𝐼𝑛𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑 = 𝜎(𝐼𝑛𝑓𝑚𝑢𝑙𝑡)

3. 𝑦 = ∼ Binomial (𝐼𝑛𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑)

𝐼𝑛𝑓𝑚𝑢𝑙𝑡, 𝐼𝑛𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑, and 𝑦 will all be of shape (𝑁 × 1). 𝜎 represents the sigmoid

function, defined as 𝑦 = 1/(1 + 𝑒−𝑥).

Modifications to PALS Data Generation

While the PALS data generation method described above largely produces the type of

synthetic data we desire, there were minor tweaks made to improve data generation.

Consider a simple example, with 𝐷𝑆+, 𝐷𝑆− = 1. We use this example to further

elucidate the PALS data generation method. The infection weight vector will be of

shape (3 × 1), and assume probabilities 𝑝(𝑦|𝐸) = 0.8, 𝑝(𝑦|𝑆+) = 0.3, 𝑝(𝑦|𝑆−) = 0.1.

Through the weight generation process, the weight vector, on expectation, will be

will be < −0.847,−2.197, 1.386 >. Assume that individual characteristic vector is of

format <Positive Susceptibility Trait, Negative Susceptibility Trait, Exposure Trait>.

We begin by defining the following example individuals:

1. < 1, 0, 0 > - an individual exhibiting the positive susceptibility characteristic

2. < 0, 1, 0 > - an individual exhibiting the negative susceptibility characteristic

3. < 0, 0, 1 > - an individual exhibiting the exposure characteristic
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4. < 0, 0, 0 > - an individual exhibiting no characteristics

5. < 0, 1, 1 > - an individual exhibiting the exposure characteristic and the nega-

tive susceptibility characteristic

6. < 1, 0, 1 > - an individual exhibiting the exposure characteristic and the positive

susceptibility characteristic

Next, we calculate the infection state of each individual, as described in the pre-

vious section, by multiplying individual characteristics by the weights and applying

a sigmoid function to the output.

1. 𝜎(< 1, 0, 0 > * < −0.847,−2.197, 1.386 >) = 0.3

2. 𝜎(< 0, 1, 0 > * < −0.847,−2.197, 1.386 >) = 0.1

3. 𝜎(< 0, 0, 1 > * < −0.847,−2.197, 1.386 >) = 0.8

4. 𝜎(< 0, 0, 0 > * < −0.847,−2.197, 1.386 >) = 0.5

5. 𝜎(< 0, 1, 1 > * < −0.847,−2.197, 1.386 >) = 0.3

6. 𝜎(< 1, 0, 1 > * < −0.847,−2.197, 1.386 >) = 0.63

The first three results correspond to the probability parameters defined above.

However, the issues present with the sigmoid-based probabilities manifest themselves

in the individuals 4 and 6. To begin, individual 4 has a 50% chance of infection, even

though they are neither susceptible nor exposed. Additionally, individual 6 is both

susceptible and exposed, yet has a lower probability of infection than individual 3,

who is only exposed.

As a result, we make the following modifications to the data generation process.

∙ If an individual has a characteristic vector of all 0’s - < 0, 0, 0, ..., 0 > - they

are not exposed, and their susceptibility state is unknown based on this vector.

Since we assign a ground truth susceptibility state for every individual in the

data generation process, we assign infection probability based on this. If the
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individual was designated as susceptible, we assign the infection probability as

𝑝(𝑦|𝑆+) and otherwise 𝑝(𝑦|𝑆−). This ensures these individuals do not have the

artificially large infection probability of 0.5.

∙ If an individual has a states vector with positive susceptibility traits and the

exposure trait, then we set their probability of infection to be the minimum of

their current state, 𝑝(𝑦|𝑆+) and 𝑝(𝑦|𝐸). This ensures the probability is never

lower than it should be.

3.1.2 Hospital Data

To perform validation on a real-world dataset, we use data from a large urban hospital,

with specific criteria as mentioned in Chapter 2. We utilize a super-set of the cohort

in the PALS work, since we were unable to apply the exclusion criteria mentioned in

thee original research paper [8]. The cohort of patients ended up comprising 23,889

individuals, with 1292 individual variables. The roommate cohort included 47,356

patients, with 1772 individual variables.

3.2 NeuralPALS

The model we develop in this work is a neural network to learn latent spreader, expo-

sure, and infection states. We begin by defining the inputs to the model - 𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠,

𝑥𝑐𝑜ℎ𝑜𝑟𝑡, 𝑎𝑑𝑗, and 𝑦𝑐𝑜ℎ𝑜𝑟𝑡.

∙ 𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 - (𝑛𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 × 𝐷𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) matrix, with 𝐷𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 being the individual

features of the neighbors. As mentioned, in the MGH data, the spreaders are

not in the cohort themselves, so we use 𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 to learn spreader states

∙ 𝑥𝑐𝑜ℎ𝑜𝑟𝑡 - (𝑛𝑐𝑜ℎ𝑜𝑟𝑡 ×𝐷𝑐𝑜ℎ𝑜𝑟𝑡) matrix, similar to 𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠, but for cohort members.

∙ 𝑦𝑐𝑜ℎ𝑜𝑟𝑡 - (𝑛𝑐𝑜ℎ𝑜𝑟𝑡 × 1) matrix the infection labels for members of the cohort

∙ 𝑎𝑑𝑗 - (𝑛𝑐𝑜ℎ𝑜𝑟𝑡×𝑛𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) matrix, an adjacency network between the cohort and

neighbors.
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Figure 3-1: NeuralPALS Architecture

The first section of the model learns the spreader states. The input to this section

is 𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠, and we connect it to a fully-connected (𝐷𝑒𝑛𝑠𝑒) layer with 1 output neu-

ron, which is subsequently connected to an activation layer. We choose a LeakyReLU

activation because of its efficacy at resolving the vanishing gradient and dying ReLU

problems [5]. The outputs of this layer are theoretically the spreader states for the

model. The fully-connected layer and activation functions should allow the model

flexibility in learning non-linear functions.
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The next section of the model is calculating the exposure states. As mentioned

previously, there are multiple ways to conceptualize learning the exposure states. A

natural approach to this problem would be the following - we consider each cohort

member’s neighbor’s spreader state by building a (𝑛𝑐𝑜ℎ𝑜𝑟𝑡 × 𝑛𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) matrix, and

connect this to a fully-connected layer, achieving an output size of (𝑛𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 × 1).

This output layer would theoretically be the exposures. However, this approach is

flawed. Traditional neural network methods often treat input as vectors, with different

columns representing different variables. However, in our example, the location of

a spreader in the matrix doesn’t matter - that is to say, our learning problem is

permutation invariant. We define permutation invariance in Chapter 2. As a result,

we build a permutation invariant layer, as inspired by the work of Zaheer et al. [7].

We have mapped spreader states to a latent dimension through the use of the

fully connected layer and activation function at the end of the first section of the

model. We take advantage of the finding that summation is a permutation invariant

in the latent space [7]. First, we multiply the adjacency matrix by the spreader states,

producing a matrix of shape (𝑛𝑐𝑜ℎ𝑜𝑟𝑡 × 1). This serves as summation in the latent

space. We then use a fully-connected layer to learn potential non-linear functions

on the output of the matrix multiplication layer. The output of this layer can be

understood as the exposures.

The final section of the model parallels the first. We concatenate the newly learned

exposures to 𝑥𝑐𝑜ℎ𝑜𝑟𝑡, producing a matrix of size (𝑛𝑐𝑜ℎ𝑜𝑟𝑡 × (𝑛𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 + 1)). We then

connect a fully connected output layer with 2 neurons - the final layer, infection status,

can be thought of as a binary classification problem. We utilize a softmax activation

layer to normalize output into a probability distribution, representing probability of

infection status.

3.3 Influence Functions

As mentioned previously, the influence function present in the spread of a contagion

is unknown. As a result, one of the goals of NeuralPALS was to develop a model that
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is agnostic to different influence functions, or at the least is easily adaptable to them.

Assume 𝑧 is the vector of learned spreader states, and 𝑎𝑑𝑗 is the adjacency network of

individuals. When considering influence functions we ignore how 𝑧 is learned, instead

focusing on determining the impact of 𝑧. We also define 𝜂 as the exposure states

vector, the output of each influence function.

A simple influence function utilized by previous work is simply the mean influence

function, defined as 𝜂𝑖 = 1 if
∑︀𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑗=1 𝑧𝑗

𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
≥ 0.5 else 0, where 𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 are the

neighbors of 𝑖, that is, individuals with which 𝑖 shares an edge. While this influence

function excels in its simplicity, its not entirely representative of real-world infection

spread. For example, an individual walking around a mall with 500 people, of which

100 are spreaders, is classified as not-exposed, whereas an individual who has three

neighbors, of which two are spreaders, is classified as exposed. For many diseases,

being in the presence of non-spreaders does not confer additional protection against

a disease.

As a result, a logical alternative influence function would be a thresholded influ-

ence function, defined as 𝜂𝑖 = 1 if
∑︀𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑗=1 𝑧𝑗 ≥ 𝛼 else 0, where 𝛼 is the threshold.

This provides a magnitude based influence function.

For highly viral infections, sometimes exposure to just 1 spreader is enough for

an individual to be considered exposed. As a result, we define a specific case of the

threshold influence function, as the minimum influence function, formally defined

as 𝜂𝑖 = 1 if
∑︀𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑗=1 𝑧𝑗 ≥ 1 else 0.

While unlikely in infection spreading settings, it is possible that every neighbor

of an individual must be spreading, leading to the maximum influence function.

This is similar to the aforementioned mean function, but 𝜂𝑖 = 1 if
∑︀𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑗=1 𝑧𝑗

𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
= 1

else 0.

We define all of these influence functions in our data generation method and syn-

thesize data with differing influence functions to test models’ robustness to different

influence functions.
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3.4 Baselines

In order to compare our methods we utilize numerous baselines. We include baselines

from previous work. We choose these baselines to isolate various aspects of learning.

3.4.1 NoNet

The simplest baseline we present is one that simply attempts to understand infection

state from susceptibility variables. In cases where exposure is irrelevant, it is ex-

pected that this baseline, NoNet, would perform well. Conversely, when exposure is

a significant aspect of infection status, NoNet would be expected to perform poorly.

We implement NoNet as a logistic regression, learning weights from susceptibility

variables to infection status.

3.4.2 𝑧0

This baseline builds off NoNet by including both spreader variables and susceptibility

variables. 𝑧0 is provided with spreader states at training time, and so attempts to

learn a weight mapping from spreader variables to spreader states for use at test time.

We implement 𝑧0 as two logistic regressions, to learn spreader and infection variable

weights.

3.4.3 𝑛0

This baseline presents the best-case scenario for learning, in which spreader states,

and as a result, exposure, are fully known during both training and testing time. As

a result, we do not have to develop a logistic regression to learn spreader states, and

instead only train a regression on the infection states.

3.4.4 𝑛0𝑘

While some baselines include all of the spreader states for training, testing, or both,

it’s unlikely in the real world that every spreader state is known. As a result, com-
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paring partial spreader training to a baseline is important. 𝑛0𝑘 is trained on a subset

of the spreader labels in training time, and then attempts to predict spreader and

infection states at test time.

3.4.5 PALS

Finally, we compare our model to the original PALS model, described in detail in

Chapter 2. We utilize inference code provided by the authors to provide a faithful

recreation.

3.5 Experimental Setups

We employ a series of experiments to verify the effectiveness of NeuralPALS. We inves-

tigate learning spreader states, exposure states, and infection states through various

data generation parameters. Full experiment details and results are presented in

Chapter 5. We primarily utilize AUC as our evaluation metric. Since we frequently

work with imbalanced datasets, simple binary accuracy does not suffice as an evalua-

tion metric - a model could overfit and learn one class and exhibit very high accuracy

in an imbalanced dataset.
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Chapter 4

Experiments and Results

In this chapter we present results on our experiments with synthetic data and hospital

data. We begin by defining our default data generation parameters and then explain

experiments run with NeuralPALS on the synthetic data. Then, we explain how we

extended our model to a real-world dataset and present preliminary findings.

4.1 Experimental Setup

We utilize the following parameters in our experimental setups, unless otherwise spec-

ified. All variable descriptions are present in Chapter 3.

∙ 𝑛𝑡𝑟𝑎𝑖𝑛 = 500

∙ 𝑛𝑡𝑒𝑠𝑡 = 500

∙ 𝑝𝑖𝑛 = 0.5

∙ 𝑝𝑜𝑢𝑡 = 0.01

∙ group size = 10

∙ 𝑝𝑐𝑜𝑛𝑐 = 0.9

∙ 𝑝𝑠𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔 = 0.5

∙ 𝐷𝐶+ = 5, 𝐷𝐶− = 5
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∙ 𝑝𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 = 0.5

∙ 𝐷𝑆+ = 5, 𝐷𝑆− = 5

∙ 𝑝(𝑧|𝐶+) = 0.8

∙ 𝑝(𝑧|𝐶−) = 0.2

∙ 𝑝(𝑦|𝑆+) = 0.5

∙ 𝑝(𝑦|𝑆−) = 0.5

∙ 𝑝(𝑦|𝐸) = 0.9

∙ Exposure Function = mean

4.2 Understanding The Impact of Exposure

In this experiment we vary the probability of infection given exposure, while keeping

the probability of infection given susceptibility constant at 0.5. This experiment

essentially isolates the impact of exposure on infection.
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Figure 4-1: Effect of Varying 𝑝(𝑦|𝐸) on Infection AUC

The result of this experiment are shown in Figure 4-1. As expected, NoNet main-

tains an AUC around 0.5 regardless of 𝑝(𝑦|𝐸). This is expected - NoNet does not

have information or predictive power of exposure, so an AUC of 0.5, exhibiting no

predictive power, is reasonable. In general, all of the other models increase their

predictive power as 𝑝(𝑦|𝐸) increases. The oracles perform the best - 𝑛0 is provided

with all spreader states (train and test), so it is expected to exhibit the best per-

formance. 𝑧0 receives access to the spreader states at training time, leading to its

second-best performance. NeuralPALS performs comparably to PALS throughout

the experiment.
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Figure 4-2: Effect of Varying 𝑝(𝑦|𝐸) on Infection AUC

Next, we set 𝑝(𝑦|𝑆+) = 0.02 and 𝑝(𝑦|𝑆−) = 0.002. As a result, few individuals

should be infected exclusively from susceptibility without exposure. This experiment

further isolates the effect of exposure on infection state. Unfortunately, we were

unable to run the PALS baselines for multiple experiments because of issues with the

original codebase. The observed trends of this experiment are shown in Figure 4-2.

We vary 𝑝(𝑦|𝐸) in this experiment from 0.02 to 0.9. The result of this experiment

are similar to those in 4-1, and NeuralPALS is quite close in AUC to 𝑧0, even though

NeuralPALS is not trained on spreader states. This indicates that NeuralPALS is

able to learn spreader states without direct access to them at training or test time.
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4.3 Understanding the Impact of Susceptibility

Figure 4-3: Effect of Varying 𝑝(𝑦|𝑆) on Infection AUC

In this experiment, we isolate the impact of susceptibility, varying 𝑝(𝑦|𝑆+) from 0.5

to 0.9. As expected, all of the models improve their AUC as 𝑝(𝑦|𝑆+) is increased.

When 𝑝(𝑦|𝑆+) is less than 0.7, it is clear that the slight impact of exposure separates

NeuralPALS and the oracles from NoNet, but once susceptibility is the primary cause

of infection then all of the models converge.

4.4 Learning Exposure States

Effectively learning exposure states is also an important component of NeuralPALS.

We set up multiple trials and examine NeuralPALS’ effectiveness at learning the

exposure states.
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Exposure Function 𝑝(𝑠𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔) 𝑝(𝑦|𝐸) 𝑝(𝑦|𝑆+) 𝑝(𝑦|𝑆−) AUC

Mean 0.5 0.9 0.9 0.2 0.649

Mean 0.5 0.9 0.2 0.2 0.759

Max 0.7 0.9 0.9 0.2 0.602

Max 0.7 0.9 0.2 0.2 0.697

We include two exposure functions - the mean and max influence functions. We

vary 𝑝(𝑦|𝑆+) to modify the difficulty of the task. The 𝑝(𝑦|𝑆+) = 0.2 setting is

designed to be the easier task - the majority of infected patients must be infected

through exposure instead of susceptibility. NeuralPALS achieved greatest exposure

AUC on the mean exposure function, with 𝑝(𝑦|𝑆+) = 0.2, the easier difficulty of

the two 𝑝(𝑦|𝑆+) settings. Additionally, the mean influence function is a function

that could be effectively modeled by a traditional regression, so its unsurprising that

NeuralPALS could model it effectively. NeuralPALS was able to attain AUCs on

the max influence function that were on average only 5% worse than on the mean

influence function. The max function is a non-linear influence function and this

finding demonstrates NeuralPALS’ potential to effectively learn this class of functions.

4.5 Hospital Data

As mentioned previously, we use a dataset of over 70,000 patients. We split the data

into test and train networks by year - patients hospitalized from May 2012 - May

2013 are in the training set and patients hospitalized from May 2013 - May 2014 are

in the test set. This mimics the approach taken by the original PALS work. The

dataset is highly imbalanced - 1.61% of the training cohort is infected and 1.58% of

the test cohort is infected. We utilize the roommate network, constructed through

the methods described in Chapter 3.
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4.6 NeuralPALS on Real Data

We train the NeuralPALS model on the data described above. To account for the

imbalanced dataset, we implement sample weighting - in our loss function, samples of

the infected class are weighted approximately 60x more than uninfected samples, to

prevent the model from overfitting to the uninfected label class. We train the model

for 100 epochs using the 𝐴𝑑𝑎𝑚 optimizer.

4.7 Real Data Experiment

At this stage of the work, we have recently begun experiments on the real data, so

the preliminary results are very limited. We implement a logistic regression as a

simple baseline to understand if NeuralPALS is learning the impact of exposure on

infection, instead of just the impact of susceptibility. We do not implement 𝑛0 or 𝑧0,

the baselines from our synthetic data experiments, as we do not have ground truth

access to the spreader state labels.

Model Infection AUC (averaged over 20 trials)

Logistic Regression Baseline 0.55

NeuralPALS 0.643

These experiments show increased predictive power using NeuralPALS as com-

pared to the baseline - theoretically the impact of exposure. We detail the many

directions of future work present in Chapter 5.
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Chapter 5

Conclusions and Future Work

5.1 Summary

In this work we developed NeuralPALS, a neural network-based approach to under-

standing contagion spread. Specifically, we focused on identifying spreader, exposure,

and infection states. NeuralPALS strove to utilize permutation invariant architecture

to learn exposure functions for contagion spread. We incorporated synthetic data

generation to validate the various goals of our research. In all synthetic experiments,

NeuralPALS was shown to perform superior to a baseline, NoNet, that did not in-

corporate exposure to learn infection states. NeuralPALS was also shown to perform

comparably to PALS, the work which much of this work was built off of. Experiments

were performed to demonstrate NeuralPALS’s ability to learn exposure states with

different exposure functions, demonstrating the flexibility of the model. We also pre-

sented preliminary results on a dataset from a large urban hospital, with the task of

predicting C. diff infections. NeuralPALS once again demonstrated improved predic-

tive power over a baseline that doesn’t account for exposure state. We hope that the

NeuralPALS model may be utilized to learn unknown exposure functions for various

infectious diseases.
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5.2 Limitations

Certain limitations of our approach must be acknowledged. Comprehensive compar-

ison to the original PALS model could not be performed for multiple experiments

due to problems with implementing the PALS inference. When working with the

real-world data we ran into multiple limitations as well. We excluded members of

the cohort from the spreading population - a form of selection bias that we hope

to correct for in future work. In addition, we were unable to duplicate the exact

cohort exclusion criteria used in the PALS research, preventing a direct comparison

of model accuracies. For both the synthetic and real-world experiments we assume

a simplistic network structure - that edges are one-way and unweighted. This is a

limited representation of true contagion spreading mechanisms.

5.3 Future Work

There are numerous avenues for future work. To begin, we must perform a complete

comparison to PALS to fully understand drawbacks and advantages of the Neural-

PALS model. The PALS work also presented results on partial-spreader training.

This is when the spreader states of a few members of the population are known at

training and potentially testing time. Understanding NeuralPALS’s ability to extrap-

olate from partial spreader knowledge is vital in our comparisons. Furthermore, in

this work we only present preliminary results on the real-world hospital dataset. De-

tailed experimentation to improve infection prediction accuracy on this dataset still

needs to be performed. In this work we only analyzed the roommate network and

experiments still need to be conducted on the nursemate network.

An important avenue for future work is developing more advanced network struc-

tures. Incorporating weighted edges to account for time spent together by neighbors

could allow for a better understanding of exposure. In addition, combining the nurse-

mate and roommate networks could help understand the relative impacts of each on

exposure.
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Our model assumes a stationary view of contagion spread. Adding a temporal as-

pect to NeuralPALS would help researchers understand how contagion spread evolves

over time.
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